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ABSTRACT 
 

Annual rhythms of seasonal daylength act as powerful cues for seasonal fertility 

and physiology. As seasonal daylength changes, nocturnal melatonin secretion is 

altered, providing the organism an internal representation of daylength through 

melatonin exposure and duration. Melatonin has been linked with various 

neuroendocrine and gonadal changes. By altering external light/dark phase 

durations I expected an increase in zebrafish growth and fertility, mediated by 

changes in the hypothalamic‐pituitary‐gonad axis. These results confirm zebrafish 

photoperiodic responsively through physiological measures of growth and 

reproduction, neural gene expression in the hypothalamus and pituitary, and 

circadian gene expression profiles from clonal cells and tissue explants. 

 

Long‐term entrainment of adult zebrafish to long day (16h/8h light dark) 

photoperiods stimulated growth (length and weight), while short day (8h/16h 

light dark) groups had delayed and inhibited growth rates throughout life.  Long 

day entrainment increased gonadal weight in females only, while male testis 

showed no response to photoperiod differences. Zebrafish fecundity and fertility 

were stimulated by long day entrainment, coupled with dramatic inhibition of 

spawning immediately after exposure to short day conditions.  

 

Neuroendocrine targets showed a number of tissue and subtype specific 

differences in circadian and photoperiodic expression, including a 3‐fold increase 

in melatonin receptor expression in the zebrafish pituitary over the hypothalamus, 

with circadian expression of melatonin receptor 1 and photoperiodic modulation 

of melatonin receptor 2, a pattern repeated in the circadian expression of 

hypothalamic diodinases enzyme Dio2 and the seasonal expression of Dio3.  

 

Zebrafish cells, tissues contain functional circadian clocks and are directly light 

responsive. Using transgenic clonal cell lines (Per1:luc and Cry1a:luc) and tissues 

(Per3:luc) the effect of light duration vs. pulse entrainment was monitored in vitro 

using skeleton photoperiod exposure. In all cases, circadian gene expression 

entrained to the first light pulse after the longest period of darkness, regardless of 
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the time or phase of the exposure, thus selectively oscillating to the shortest 

daylength. Per3 expression in the hypothalamus showed a direct light responsive 

profile, not seen in pituitary or pineal tissue explants. The current work presents 

novel physiological, endocrine and cellular evidence supporting the hypothesis 

that zebrafish are responsive to changes in seasonal photoperiods. 
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CHAPTER 1 – GENERAL INTRODUCTION 
1.1  What is Photoperiodism?    

 Biological imperatives in a seasonal environment 

Growing up on a rotating planet can be a tricky business. Most organisms have 

evolved in a dynamic environment where daily and seasonal changes are the 

norm. Due to the 23.43o vertical tilt of the earth’s axis, our annual planetary 

rotation around the sun leads to the cycle of seasons in an antiphasic relationship 

between the northern hemisphere and southern hemispheres (Bradshaw & 

Holzapfel, 2007). 

In a seasonal environment, evolutionary fitness must include the ability to cope 

with these changing seasons, optimizing periods of fertility and growth with cycles 

of food and energy abundance. Organisms that reproduce too late in the autumn 

risk exposing their offspring to the extremes of winter weather and those that 

begin an early migration or become dormant too soon miss additional 

reproductive opportunities and resources (Bradshaw & Holzapfel, 2007). By 

synchronizing fertility to seasonal photoperiod (length of the daily light‐dark 

cycle), organisms increase their reproductive success, ensuring their offspring 

develop during periods of optimal environmental conditions (Hazlerigg & Wagner, 

2006). These seasonal changes must be endured and even exploited for animals to 

survive and thrive.  

 

Most living things anticipate the predictable seasonal changes in the weather and 

behave accordingly. Some animals migrate thousands of kilometers to more 

moderate climates, others build up fat stores for dormancy, grow thick winter 

covers of fur or feathers, or simply lower their metabolic rates and wait for the 

return of the sun (Callaghan et al., 2004). Photoperiodism has been noted in 

organisms such as rotifers, annelids, mollusks, bony fish, frogs, turtles, lizards, 

birds, and mammals (Bradshaw & Holzapfel, 2007). In vertebrates, the light/dark 

cycle synchronizes numerous circadian rhythms such as locomotor activity, food 

intake, growth and reproductive states. Other factors, such as temperature, food 
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availability and salinity (in fish) also influence these rhythms, but were not tested 

in the current work (Koger et al., 1999). Examples of photoperiod‐influenced 

physiological changes include annual cycles of coat color (pelage) change in 

Siberian and Syrian hamsters (Phodopus sungorus and Mesocricetus auratus) (Paul 

et al., 2007), the annual cycles of reproduction, molting, and migration in Tree 

Sparrows (Passer montanus) (Dixit & Singh, 2011), and rates of smoltification 

(movement from fresh to salt water) in Atlantic salmon (Salmo salar) (Bjornsson 

et al., 2000).   

 
1.2  A role for the biological clock in photoperiodism 

1.2.1  What is a circadian clock? 

The self‐sustained circadian (approximately 24‐hours) rhythms regulating daily 

activities are often referred to as “the biological clock”. Almost all organisms 

display circadian rhythms with similar basic properties – the rhythm is 

synchronized to environmental cues (predominantly light), is maintained in the 

absence of such cues, and is displayed in constant periodicity over a wide 

temperature range (Fukada, 2003). 

In mammals the “master clock” controlling circadian rhythms is located in the 

small region of the hypothalamus called the superchiasmatic nucleus (SCN). 

Experiments have shown that the SCN transmits daily hormonal and electrical 

signals in keeping with the day/night cycle (Morris et al., 2012). For many years 

the SCN was considered the exclusive site for biological timekeeping in mammals. 

This was in contrast to several other vertebrates, where clocks were known to be 

present in peripheral tissues such as the pineal gland and eye (Granados‐Fuentes 

& Herzog, 2013). Peripheral clocks have now been described in a number of 

mammalian and non‐mammalian tissues including the oesophagus, lungs, liver, 

pancreas, spleen, thymus, and skin (Yamazaki et al., 2000). Work on zebrafish cells 

(in vivo and in vitro) suggests that the vertebrate circadian timing system may be 

highly distributed, with a majority of cells containing a clock (Whitmore et al., 

1998a). 
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The genetic basis of circadian rhythms was established through the identification 

of mutant circadian patterns, and in the polymorphisms within clock genes 

themselves (Konopka & Benzer, 1971).  Underlying a majority of overt rhythms is 

a feedback loop composed of cycling gene products, which influence their own 

synthesis and degradation (Takahashi, 1995).  Post‐translational modification, 

protein dimerization and nuclear transport are all essential features of how these 

biological clocks tick (Takahashi, 1995). The role of specific circadian genes within 

seasonal photoperiodism will be discussed further in Chapter 4.  

   
1.2.2  How is photoperiodic time measured? 

In exploring the role of photoperiodism in biological timekeeping, it is important 

to define the 3 main models of circadian timing. These models form the basis of 

modern circadian testing regimes and give a context for the work presented here; 

describing how peripheral and central circadian oscillators function and how light 

perception can be translated into biological clocks and calendars.  

Some of the first explorations of seasonal rhythmicity were based on experiments 

on plants such as soya bean (Glycine max), mimosa (Mimosa pudica) and tobacco 

(Nicotiana tabacum) (Garner & Allard, 1927; Nanda & Hamner, 1958; Parker et al., 

1945). In the early 18th century the French scientist, Jacques de Mairan noticed 

mimosa leaves would droop and stiffen in time with the daily periods of dark and 

light, and these rhythmic leaf movements would persist in periods of extended 

darkness, stiffening during the plant’s “subjective day” and dropping during the 

“subjective night”. This crucial observation wasn’t revisited again till the early 

1920s, with the work of two US plant physiologists, H.A. Allard and W.W Garner. 

Their work focused on a mutant strain of tobacco, called the “Maryland Mammoth” 

which continued to grow throughout the year, not setting seed till late December, 

when the winter frost would kill the plant ending any chance for reproduction 

(Garner & Allard, 1927).  Previous observations suggested that light intensity, 

wavelength and duration of light exposure were all critical in the control of plant 

flowering as reviewed by (Lumsden, 2002). Using these cues, Allard and Garner 

extended the plants “subjective night” by physically moving them into a darkened 

room in the early evenings, causing the tobacco to flower three months early 
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(Garner & Allard, 1927).  This clearly established the length of the night (and 

conversely day‐length) as a critical factor in the timing of plant flowering, a 

phenomenon they called photoperiodism. This finding suggested that plants use 

light as both an energy source in photosynthetic reactions, and as a cue for 

seasonal timing. By tracking the expanding and contracting night (and day) 

lengths, plants are able to mark the passage of the seasons, effectively keeping an 

internal “calendar”, enabling them to anticipate seasonal change and regulate their 

reproduction and growth accordingly (Jackson, 2009). 

 
In 1938, Karl Hamner and James Bonner suggested that the photoperiodic signal 

for plant “flowering” was a diffusible substance, and by exposing plants to long or 

short periods of darkness, they confirmed that flowering is primarily a response to 

the dark portion of the photoperiod (Hamner & Bonner, 1938). For many plants 

there is a species‐specific critical daylength that controls these states of 

development, as in short‐day plants like marigolds (Calendula officinalis), which 

flower when the days are no longer than 6.5h short‐day and long‐day plants such 

as the Japanese morning glory (Ipomoea nil) which flower in daylengths of 16h or 

longer (Jackson, 2009).  Night‐length control of photoperiodic events leads to the 

formulation of the first theoretical model of circadian timing, the Hourglass 

Theory. Three early models of seasonal timing have been proposed for light‐

induced photoperiodic responses, (1) the Hourglass Timer, (2) the External 

Coincidence model and (3) the Internal Coincidence model. 

 
The Hourglass model of timing (as shown in fig 1.1) was first described by Erwin 

Bunning in the early 1930s. As with the mimosa experiments by Jacques de 

Mairan, Bunning found the leaves of the common runner bean (Phaseolus 

coccineus) were elevated during the day and lowered at night (Bunning, 1932). By 

wiring the plant’s leaves to a rotating drum, he was able to record their cyclic 

movements and found they oscillated with an average period of 24.4h (Bunning, 

1932). Bunning suggested the phase of this internal 24h rhythm was synchronized 

by light exposure at dawn and dusk. He suggested that the timing mechanism 

behind the photoperiodic response had two alternating phases, approximately 12 

hours each; one light‐loving (photophilic) and the other dark‐loving (scotophilic) 
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(Bunning, 1960). This model suggests the presence of a substance damaged or 

removed by light, which accumulates over the course of the night, only to be 

eliminated in the morning sun (Aschoff, 1960).  A certain quantity of this 

substance is necessary to trigger a physiological response (such as flowering in 

plants, or growth of gonads in mammals). As winter nights become longer this 

“night‐substance” accumulates till an internal threshold is reached, initiating a 

given photoperiodic response such as maturation of the reproductive system 

(Aschoff, 1960). This model argues against the participation of an inner circadian 

clock, as the hourglass lacks any endogenous rhythmicity and must be reset or 

‘turned over’ by the light cycle each day (Aschoff, 1960). 

 
Evidence for this form of timekeeping came from experiments with light 

regulation of reproduction in the green vetch aphid (Megoura viciae) (Lees, 1952). 

During summer (LD photoperiods) this insect reproduces asexually, and begins 

sexual reproduction during autumn and winter (SD photoperiods). Lees found that 

exposing LD‐entrained aphids to prolonged LD light regimes extended their 

asexual phases, while exposure to SD photoperiods led to a switch from asexual to 

sexual reproduction and egg laying (Lees, 1952). Later work found inconsistencies 

with the hourglass theory, as the actual conversion rate of this “night substance” 

took far less time than predicted by the critical dark periods observed in the 

species tested (Vaz Nunes & Saunders, 1999). 

 

         
Figure 1.1 ‐ The “hourglass” model 
of photoperiodic timing. In the light, 
substance X is converted to 
substance Y. In the dark, substance Y 
is converted back to substance X. 
The duration of the light and dark 
periods determine the ratio of X to Y. 
This ratio can be used to measure 
day/night length and therefore the 
seasonal photoperiod. Adapted from 
Foster and Kreitzman, 2004. 
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The second major model of photoperiodic time keeping, the External Coincidence 

(EC) Theory of Photoperiodism expands on the hourglass model, giving a greater 

emphasis on the entrainment of endogenous phases of light sensitivity and 

insensitivity. This model proposes the existence of a circadian rhythm of 

photoperiodic photosensitivity where the majority of the night‐phase is sensitive 

to light, while the day‐phase is photo‐insensitive. As daylength increases in spring, 

light exposure during the photosensitive phase would stimulate photoperiodic 

behaviour, while light exposure during the photo‐insensitive period would inhibit 

it, as shown in fig. 1.2 (Pittendrigh, 1966). According to this model, as nights get 

shorter (in LD or summer), the dawn light of the daily photophase extends 

“backward,” eventually illuminating a critical period (φ) in the late (subjective) 

night (Pittendrigh, 1966).   

 

Evidence for this model was first found in the pupal eclosion of fruit fly 

(Drosophila pseudo­obscura) (Pittendrigh, 1966). Light pulses falling early in the 

night caused phase delays in the underlying circadian oscillation (of pupal 

eclosion), while those falling late in the night caused phase advances in these 

rhythms (Pittendrigh, 1966). The External Coincidence model suggests a dual role 

for light in setting the internal clock; (1) light could entrain the circadian clock, 

setting the “time” for the rhythmic changes of photosensitivity (between the 

photophil and scotophil periods) and (2) light could stimulate or inhibit 

photoperiodic behaviour, depending on the current phase of the organism 

(Pittendrigh, 1966).  In the EC model, it is not the total duration of light or dark 

that matters, but the organism’s photoperiodic phase when light exposure begins 

at dawn. 
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Figure 1.2 ‐ The External Coincidence model of Photoperiodism. a) An internal 
circadian oscillator tracks day/night length annually. During winter (long nights) 
the photoinducible phase (orange dot) is not exposed to light, but in (b) summer 
(short nights) this sensitive phase does encounter light, triggering a photoperiodic 
response.  Light influences both photoperiodic physiology and sets the phase of 
the daily oscillator.  
 

Similar to the External Coincidence model, the alternative Internal Coincidence 

(IC) model of photoperiodism links photoperiod with an internal circadian rhythm 

(Pittendrigh, 1972). This model emphasizes a singular role for light, solely as a cue 

for endogenous rhythm entrainment and suggests the photoperiodic clock is based 

on two oscillators; one entrained to dawn and one to dusk (Pittendrigh, 1972). As 

the annual daylength changes, the coincident phase between the two oscillators is 

altered providing a signal encoding seasonal daylength. By the late 1950s evidence 

showed that multicellular organisms house more than one circadian pacemaker, 

each with their own cycles and phase relationships (Pittendrigh et al., 1958). 

Pittendrigh proposed that altering the prevailing photoperiod may modify these 

internal phase‐relationships, causing particular physiological pathways to become 
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synchronized or desynchronized, such that the secretion of a hormone would 

coincide with the availability of its receptor(s) at the target tissue (Pittendrigh et 

al., 1958). In this model (shown in fig 1.3), light has a single entrainment role, 

setting the period of a pair of downstream oscillators whose synchronized phasing 

leads to circadian and seasonal gene expression (Pittendrigh, 1972). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3 ‐ A representation of the Internal Coincidence model of photoperiodism. 
By measuring the relative proximity and synchronization of two independent 
circadian clock elements, an organism is able to monitor the changes in the 
external photoperiod, enabling expression of later photoperiodic signaling 
cascades, turning the circadian clock into a seasonal calendar.  
 

1.2.3   Evidence of a circadian clock underlying photoperiodism 

Several experimental protocols have been developed testing the underlying 

mechanisms of circadian rhymicity, and confirm the involvement of the circadian 

system in photoperiodic time measurement (Vaz Nunes & Saunders, 1999). These 

protocols involve the use of night‐break light pulses, such as resonance light 

cycles, non‐24h cycles (T‐cycles) and skeleton photoperiods of light and dark. 
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The Nanda‐Hamner or Resonance protocol has become one of the main techniques 

used to determine an organism’s circadian and seasonal timing.  This regime is 

structured with a basic circadian period (tau or T) of 12 hours, or multiples of 12 

hours (e.g., LD 6h:18h, LD 6h:30h, LD 6h:42h, etc.).  Normally the main light period 

is 6h‐12h with a dark period extending the overall period length to 18h–72h 

(Nanda & Hamner, 1958).  It would be expected that photoperiodic induction 

would be most effective when the circadian system is in resonance (or harmony) 

with the photic environment, such that photoperiodic induction is normal seen in 

organisms when tau approximates 24h, 48h and/or 72 hours and non‐24h 

light/dark periods such as 36h and 60h “days” are normally non‐inductive (Nanda 

& Hamner, 1958). Positive Nanda‐Hamner experiments support the use of an 

endogenous circadian clock, as specific gating of induction to periods of 24h would 

be unlikely in a simple timer system such as an hourglass timer. 

 
Extending from Nanda‐Hamner regimes, skeleton photoperiods and complex night 

interruption experiments were developed. In T‐cycle experiments, the main light 

phase is 6h‐12h, with an extended dark period systematically interrupted by a 

short light pulse at later and later points in each cycle (Vaz Nunes & Saunders, 

1999).  Skeleton photoperiods mimic full photoperiods, by exposing subjects to 

light at both dawn and dusk, with no light exposure between these points. This 

protocol limits the subjects’ total daily light exposure, but maintains the entraining 

signal of light during the photosensitive periods of dawn and dusk.  By varying the 

time of the second (dusk) pulse, it is possible to pinpoint the window of a 

photosensitive phase in the subjective night (Pittendrigh, 1964).  A good example 

of a simple skeleton photoperiodic regime is shown in figure 1.5, using avian 

gonadal growth as an outcome of skeleton photoperiod exposure.
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1.3  Circadian and Photoperiodism in Mammals, Birds and Fish 

Animals time reproduction to fit closely with the change of seasons, ensuring that 

their young are born at peak of food availability.  In the northern hemisphere, the 

breeding of long gestating animals like bears, deer, and herd cattle is triggered by 

the decreasing daylengths of autumn (thus SD breeders), allowing their offspring 

to be born the following spring or early summer (Bradshaw & Holzapfel, 2007). 

Animals with short gestating times such as birds and small mammals like hamsters 

mate in the lengthening days of early spring (LD breeders), giving birth a few 

weeks later (Karsch et al., 1984). The ability to translate the prevailing 

photoperiod into circadian and seasonal hormonal signalling has been a strong 

research focus in vertebrates of all kinds (see Bradshaw, 2007 for review). The 

circadian models of internal and external coincidence timing suggest a role of the 

circadian clock in performing the functions of a long‐term timer or calendar 

(Lincoln et al., 2003). In vertebrates, the response to photoperiod is based on both 

the absolute day length, and the previous photoperiodic history of the animal 

(Malpaux et al., 2001). 

   
1.3.1  Mammalian circadian systems 

The linear mammalian light‐reception pathway is based on electrical activity of the 

retinal afferents of the eye, which act as circadian inputs to the hypothalamus, 

entraining clock gene expression and electrical activity of the SCN neurons 

(Sumova et al., 1995). In mammals, the electrical activity of the SCN is high during 

the day, and low at night; a circadian pattern which continues under constant 

conditions (Hazlerigg & Wagner, 2006). Low electrical pulses in the SCN at night 

stimulate the release of noradrenaline from its sympathetic nerve terminals to the 

pineal gland (Granados‐Fuentes & Herzog, 2013), leading to a cascade of calcium 

signalling which causes the activation of the enzyme arylalkylamine N‐acetyl 

transferase (AA‐NAT), the rate‐limiting enzyme controlling the conversion of 

serotonin to melatonin in the pineal (Granados‐Fuentes & Herzog, 2013). Direct 

control of melatonin release is also possible, through the light‐associated 

inhibition of AA‐NAT by the local pinealocytes (Malpaux et al., 2001). This pineal‐

derived melatonin then targets cells in the basal hypothalamus and pituitary gland 
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controlling the release of reproductive and growth hormones which are released 

into the systemic circulation for downstream effects in various tissues throughout 

the body (Hazlerigg & Wagner, 2006).  The SCN controls pineal activity, thereby 

modulating the nocturnal production of melatonin and removal of the pineal 

prevents photoperiodic responsiveness (Granados‐Fuentes & Herzog, 2013). 

Melatonin, considered the "night hormone", is secreted into the blood by the 

pineal gland during periods of darkness in both day‐active (diurnal) and night‐

active (nocturnal) animals (Morris et al., 2012). It is also produced by the retina 

and gut in significant amounts (Damian, 1977), although the roles of these tissues 

in central timekeeping is still under scrutiny (Huether, 1993). Pineal melatonin 

production begins on or soon after dusk and ends before dawn (Falcon et al., 

1989).  As seasonal daylength changes, nocturnal melatonin secretion changes, 

providing vertebrates an internal representation of daylength through melatonin 

exposure and duration (Morris et al., 2012). 

   
In mammals, photoperiodic control of reproduction and growth has been clearly 

demonstrated in a series of ablation experiments. Disruption of the SCN inhibits 

photoperiodic responses and blocks the regulation of reproduction through 

annual photoperiodic signals (Klein et al., 1983; Reppert et al., 1981).  Previous 

work in Syrian hamsters (M. auratus), demonstrated that pinealectomy prevented 

photoperiodic gonad regression and gonadotrophin secretion normally initiated 

by a short day (winter) photoperiod, and subsequent melatonin injections 

reversed the effect (Reiter, 1975). Working with pinealectomized ewes, Fred 

Karsh and colleagues demonstrated that a short‐day melatonin injection profile 

stimulated reproduction, while a long day injection profile left the animals under 

gonadal regression (Wayne et al., 1988).  Exposing these sheep to a short‐night or 

“spring” photoperiod while injecting them with a “winter” melatonin profile (and 

vice versa) demonstrated a clear insensitivity to the prevailing photoperiod – the 

principal response was timed to injected melatonin profile (Roche et al., 

1970; Wayne et al., 1988). Photoperiodic reproduction in mammals is determined 

by the duration of melatonin exposure thereby encoding night length, rather than 

light exposure during a photoinducible phase, as earlier believed (Malpaux et al., 
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2001), thereby negating the role of the previously postulated Hourglass and 

External Coincidence models of photoperiodism.  

 
1.3.2  Avian circadian systems 

In birds, both the eye and pineal gland act as paired, autonomous circadian 

oscillators each having light sensitive photoreceptors, and rhythmically secreting 

melatonin (Piesiewicz et al., 2012). Ocular‐ablation studies have shown that birds 

without eyes can still entrain to circadian photoperiods, indicating a non‐ocular 

photoreceptor system unlike the linear retinal‐hypothalamic‐pineal system used 

by mammals (Menaker, 1968), as shown in figure 1.4.  

 

 
Figure 1.4 ‐ a) Photoperiodism in mammals. Light stimulation via the retina and 
SCN to the pineal, which secretes melatonin, acting on the brain, pituitary gland 
and other downstream targets; b) a proposed model for photoperiodism, where 
light acts directly on central and peripheral tissues, including the eye, brain and 
pineal gland. Melatonin is secreted in response to photoperiod, and its effects on 
the fish pituitary may be modulated by seasonal melatonin receptor expression. 
Melatonin exposure may gate pituitary hormone expression, leading to seasonal 
hormone secretion to the gonads and downstream tissues. 
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In the avian circadian system both the eye and pineal gland are semi‐independent 

circadian oscillators (Dawson & Goldsmith, 1983), having light sensitive 

photoreceptors (Takahashi et al., 1984), and rhythmically secrete melatonin 

(Piesiewicz et al., 2012). Working with the common house sparrow (Passer 

domesticus), Mike Menaker demonstrated that sparrows with no eyes could still 

entrain to circadian photoperiods, indicating a non‐ocular photoreceptor system 

in use (Menaker, 1968), quite unlike the linear retinal‐hypothalamic‐pineal system 

used by mammals. Using thin fibre optics, a small set of neurons were isolated in 

medial basal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) which 

respond directly to light and house a set of body clock genes that oscillate 

approximately every 24 hours (Foster & Soni, 1998). These deep‐brain 

photosensitive neurons detect changes in light at dawn and dusk and respond to 

annual changes in photoperiod (Foster & Soni, 1998), as predicted by the Internal 

Coincidence model of photoperiodism.  

 

Work in young chicks has demonstrated a nocturnal peak in pineal aaNAT, which 

is modulated by LD/SD conditions (Majewski et al., 2005). Levels of aaNAT, its 

enzymatic activity, and pineal melatonin content changed during postembryonic 

development, depending on the season of hatching; SD hatched birds showed no 

changes in the pattern and amplitude of diurnal rhythmicity over age while in LD 

hatched birds, age‐related changes were noted over time (Piesiewicz et al., 2012).  

 

As an independent oscillator, the avian pineal releases melatonin during periods of 

darkness and can maintain its entrained circadian oscillations in vitro, yet pineal 

removal has little effect on the seasonal reproduction of the birds (Zimmerman & 

Menaker, 1979). Transplantation of an entrained pineal to an arrhythmic host 

restored the appropriate circadian profile, but ablation of the pineal did not 

completely block circadian activity (Zimmerman & Menaker, 1979). Although 

melatonin reflects the length of the dark period, it does not seem to be the only 

form of seasonal timing in bird neurobiology (Yoshimura, 2010). The role of the 

bird SCN was found to act as a damped oscillator – not able to initiate a self‐

sustaining circadian oscillation itself, but crucial to behavioural rhythms 

(Takahashi & Menaker, 1982). SCN ablation in the sparrow led to arrhythmic 
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behaviour, regardless of pineal condition, suggesting that both the pineal and SCN 

are important for proper circadian rhythmicity in avian brains (Takahashi & 

Menaker, 1982) 

 

Working with Japanese quail (C. japonica), Brian Follett exposed subjects to a set 

of  “skeleton photoperiods”; photoperiods with graduating pulses of light set later 

and later within the dark phase of the light/dark cycle (Sharp & Follett, 1969).  As 

shown in fig 1.5, only birds exposed to a light pulse between 12h‐16h after dawn 

were stimulated to breed, indicating a clear photoinducible phase of reproductive 

sensitivity as predicted by the External Coincidence theory (Sharp & Follett, 1969).   

 

 
Figure 1.5 ‐ a) Testicular growth in Japanese quail maintained under a 6h 
light/dark cycle with a skeleton photoperiod, circles indicate time of 15min light 
pulse; b) structure of the skeleton photoperiod and light pulse regime. Adapted 
from Sharp & Follett, 1969. 
 
The precise timing of a given photoinducible phase varies from species to species. 

For birds in temperate climates, the longer nights of winter led to the 

photoinducible phase falling during the dark period. As the days lengthen, the 

photoinducible phase is exposed to dawn light, and reproduction is triggered 

(Hastings & Follett, 2001).  Experiments using skeleton photoperiods have been 

performed on isolated tissues and zebrafish cell cultures and are discussed in 

detail in chapter 4. 

 
1.3.3  Refractory outputs in response to extended photoperiods 

Countering this stimulatory photoperiodic system is a built‐in block to on‐going 

reproduction throughout the rest of the year. Single‐brood birds, such as the 

starling (Sturnus vulgaris) become insensitive or “refractory” to long days 
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approximately 6 weeks after initial stimulation (Dawson & Goldsmith, 1983). This 

refractoriness is reversed by exposure to the shortening daylengths of late 

summer and fall, allowing them to respond to stimulatory photoperiods again the 

following spring. In contrast with birds, mammalian refractoriness is based on 

insensitivity to the previous inhibitory daylength (i.e. ignoring the block to 

reproduction). Small mammals like hamsters regress their reproductive systems 

in the autumn as a direct response to the decreasing daylength, and spontaneously 

redevelop their reproductive systems in spring (Rudeen & Reiter, 1980). The 

opposite is true in sheep, a short‐day breeder, as reproduction is inhibited by the 

long daylengths of summer until they become insensitive/refractory to the 

inhibitory effect of long daylengths and resume photoperiodic fertility (Almeida & 

Lincoln, 1984).  

 
1.3.4   Fish circadian system 

Several circadian core clock genes have been identified in fish, which act as 

transcriptional activators and/or repressors, modulating protein stability and 

nuclear translocation.  In zebrafish, the molecular mechanism of circadian 

rhythmicity is based on a set of interacting positive (stimulatory) and negative 

(inhibitory) feedback loops (Whitmore et al., 2000). The positive loop is formed by 

the heterodimerization of CLOCK and BMAL1 proteins, activating transcription of 

three period (mPer1, mPer2 and mPer3) and two cryptochrome (mCry1 and mCry2) 

genes. The negative feedback loop involves the translocation of PER:CRY 

heterodimers to the nucleus to repress their own transcription by inhibiting the 

activity of the CLOCK:BMAL1 complexes (Cahill, 2002a). 
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Figure 1.6: A simplified diagram of the autoregulatory feedback mechanisms 
involved in the regulation of the circadian clock. The interactions between a 
negative feedback loop repressing per and cry gene transcription (blue lines) and a 
positive feedback loop promoting Bmal and Clock transcription (red lines) acts to 
maintain circadian rhythmicity. 
 

Transcripts for most zebrafish clock genes are rhythmically expressed in tissues 

throughout the body and in embryonic cell lines, and can entrained to exogenous 

LD cycles (Whitmore et al., 2000). Interestingly, zebrafish clock genes are 

rhythmically expressed in both the classical central circadian pacemaker regions 

(such as the SCN) and in almost all peripheral tissues tested (Whitmore et al., 

1998b). Experiments monitoring the expression of zebrafish circadian clock genes 

in cell and tissue explant cultures are described in detail in chapter 4.  

 

1.3.5  Photoperiodism in fish 

The light/dark cycle modulates behavioural processes in fish such as migration, 

skin pigmentation, O2 consumption, and food intake (Migaud et al., 2010).  Fish 

have adapted to annual changes in environmental cues, so that physiological 

functions such as growth and reproduction are also seasonal (Falcon et al., 2007).   

Early photoperiodic work on fish has shown that exposure to seasonal light cycles 

compressed into periods shorter that 1 year caused rainbow trout (Oncorhynchus 
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mykiss) to spawn 3mo‐4mo earlier than control fish under ambient condition 

(Hoover, 1937).  Similar light regimes have also been shown to alter the spawning 

timing in Medaka (Oryzias latipes) (Koger et al., 1999) and European Sea Bass 

(Dicentrarchus labrax) (Rodriguez et al., 2004), among others.  

Photoperiodism is fish has been studied primarily in farmed and commercial 

stocks, where it is regarded as a key environmental cue for the timing of seasonal 

reproduction and growth (Taranger et al., 2010). Previous studies have shown that 

artificial light regimes may increase growth rates up to 25% in farmed trout (O. 

mykiss) (Taylor et al., 2006) and can advance gonadal maturation in Indian carp 

(Catla catla) (Bhattacharyya et al., 2005). 

 

In salmonids such as rainbow trout, photoperiod provides the cue for 

smoltification (fresh/salt water transition) and initiation of gonadal maturation 

and spawning (Bromage & Duston, 1986). Results suggest that exposure to LD 

(long day) during normally SD (short day) environmental conditions (such as the 

winter months) significantly alter reproductive entrainment cycles (Randall & 

Bromage, 1998).  In cases of prolonged LD or continuous light exposure (LL), a 

significant increases in puberty rates has been shown in salmon (S. salar) 

(Oppedal et al., 1999), while LL can have inhibitory maturational effects in Atlantic 

cod (Gadus morhua), depending of the season during which the regime is applied 

(Hansen et al., 2001). 

 

Interestingly, in species such as the grey mullet (Mugil cephalus), both continuous 

light (LL) and continuous darkness (DD) inhibit gonad maturation (O’Donovan‐

Lockard et al., 1987).  These inhibitory effects of constant photoperiod exposure 

may depend on the photophase duration; in Eurasian perch (Perca fluviatilis) 

reproductive inhibition was observed under a constant long photoperiod (17h 

L:7h D), while only a partial inhibition was observed under a shorter constant 

photoperiod (12h L:12h D) (Migaud et al., 2004).  

 
A final aspect of photoperiodic influence may depend on the direction of 

photoperiodic change. In European sea bass (D. labrax), there is evidence that the 
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absolute duration of the photoperiod exposure is less important that the direction 

of change (i.e. from long to short day conditions) in determining the onset of 

gonadal maturation (Carrillo et al., 2009).  These effects are likely gated, such that 

if a particular size or physical threshold is not reached during a critical circannual 

phase, then the maturational event may be delayed till the next cycle (Bjornsson et 

al., 1994).  Once a threshold is reached, photoperiod determines the initiation of 

sexual maturation, while timing of spawning is more affected by environmental 

conditions locally (Davies, 2002). 

     
1.3.6  Melatonin in fish 

Early work on the circadian system in vertebrates like zebrafish focused primarily 

on the retina and pineal gland (two organs of common diencephalic origin) as 

centres of circadian clock control (Cahill, 1996; Falcon et al., 2003b).  Both tissues 

are known to regulate the rhythmic release of melatonin, in a number of teleost 

species (Bolliet et al., 1996; Falcon et al., 1989).  These melatonin rhythms 

persisted in culture, under constant conditions (Cahill, 1996), and reflected similar 

profiles seen in mammals (Falcon et al., 2010). Plasma melatonin was higher at 

night than during the day and the shape of these oscillations changed with the 

season (Gern et al., 1978)  being of short duration and high amplitude in the 

summer, and low amplitude, long duration in the winter (Underwood, 1990).   
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Figure 1.7: Daily plasma melatonin levels (Mean ± SEM; pg/ml) in atlantic salmon, 
rainbow trout, european sea bass and atlantic cod. Plasma melatonin is increased 
at night and drops quickly in the early morning in all 4 species, reminescent of 
findings in mammalian models. Figure adapted from Bromage and Randall, 2001. 
 
Figure 1.7 shows the daily change of plasma melatonin in 4 teleost species. Overall, 

the duration of the nocturnal melatonin expression is directly proportional to 

night length. Similar daily patterns of melatonin expression have been seen in 

Goldfish (Carassius auratus) (Iigo et al., 1994), Pike (Esox lucius) (Falcon et al., 

1989) and Stickleback (Gasterosteus aculeatus) (Mayer et al., 1997), among others. 

These findings suggested the plasma melatonin profile is an indicator of both day 

length and season, and led to the proposal of melatonin as a time‐keeping 

molecule in teleost fish (Bolliet et al., 1996; Falcon et al., 2007).  

 
Experiments using exogenous melatonin administration in fish are problematic, as 

injections have a short half‐life of 8min‐9min and cause transitory spikes of 

plasma melatonin (Skliar et al., 2006). Melatonin implants provide long‐term 

delivery, but only at constant levels which don’t produce the expected 

reproductive response in other vertebrate models (Bartness et al., 1993). As 

zebrafish are too small to provide regular blood samples, accurate measurement of 
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plasma melatonin is problematic.  Researchers often turn to mRNA expression of 

secondary targets such as hypothalamic and pituitary hormones which are known 

to be linked to melatonin activity in order to study the effect of photoperiod on 

teleost reproduction (Bayarri et al., 2004). Photoperiodic advancement and delay 

experiments have shown significant changes in GnRH, FSH and LH expression 

following photoperiodic maturation in Rainbow Trout (O. mykiss) (Davies et al., 

1999).  

 
In zebrafish, pineal melatonin is used as a systemic signal for circadian and 

seasonal light/dark cycles (Cahill, 1996). Melatonin is circulated through the 

cerebrospinal fluid and blood, acting on targets throughout the body, through 

tissue‐specific expression on melatonin receptors (Vatine et al., 2011). Specific 

photoperiodic effects on growth and reproduction may be determined by 

melatonin modulation of control centres such as the pituitary, hypothalamus and 

the gonads themselves (Hazlerigg & Wagner, 2006). The photoperiodic expression 

of melatonin receptors in a range of target tissues has been explored in detail in 

the current work and will be discussed in detail in chapter 2. 

 

1.4   Photoperiodism reinvented: TH and DIO expression 

Increasingly evidence suggests that thyroid hormone (TH) is crucial for the 

expression of seasonal rhythms in vertebrates (Barrett et al., 2007). TH expression 

is controlled by hypothalamic neurosecretory cells releasing thyroid‐stimulating 

hormone‐releasing hormone (TSH‐RH). This releasing hormone targets the 

thyrotroph cells of the anterior pituitary, increasing the release of thyroid‐

stimulating hormone (TSH), which stimulates the production of thyroxine (T4) 

from the thyroid gland (Nakao et al., 2008b).  

 
Vertebrate thyroid hormones have two isoforms; thyroxine (T4) is circulated 

systemically, with a low biological activity; and the more biologically potent form, 

triiodothyronine (T3), is created in target tissues through the local conversion of T4 

by deiodinase enzymes (Hazlerigg & Wagner, 2006).  As shown in figure 1.8, the 

two principal deiodinase enzymes found in local tissues are type 2 deiodinase 

(Dio2) and type 3 deiodinase (Dio3) (Hazlerigg & Wagner, 2006). Dio2 catalyzes 
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the conversion of T4 to the active T3 form, while Dio3 converts T3 to inactive 

reverse‐T3 (rT3) form. The relative expression and activity of Dio2 and Dio3 

determine the levels of biologically active T3 in the brain (Nakao et al., 2008b).  

 

Figure 1.8 ‐ Thyroid hormone 
(TH) processing by local 
deiodinase enzymes.  The 
main form of circulating 
thyroid hormone, T4 is 
converted to T3 in tissues 
expressing type 2 deiodinase 
(Dio2). T4 can also be 
converted to an inactive form, 
reverse T3 (rT3) by type 3 
deiodinase (Dio3).  Both rT3 
and T3 can be processed into 
T2. Figure from Hazlerigg and 
Loudon, 2008.  
 

 

Using autumn‐breeding mammals such as sheep, Fred Karsh and colleagues have 

shown that thyroidectomy removes the seasonal (or photo‐refractory) inhibition 

of reproductive behavior normally expressed in spring (Billings et al., 2002). 

Injections of T4 in these thyroidectomised animals restores endogenous 

springtime reproductive inhibition, but has only a weak effect on the onset of 

photoperiodic reproduction in autumn (Billings et al., 2002). These inhibitory 

springtime T4 effects have been shown to be maximally effective within the basal 

hypothalamus of thyroidectomised ewes (Anderson et al., 2003). Experiments 

using microinjection mapping have shown the ependymal cells of the ventral 

hypothalamus as the site of the greatest photoperiodic induced Dio2/Dio3 activity 

in both long and short day breeding mammals (Hanon et al., 2008). This 

ependymal cell layer is composed of tanycyte cells surrounding the 3rd ventricle 

which act as regulatory cells for the transport of solutes in/out of the brain 

(Hazlerigg & Loudon, 2008). These tanycyte cells project to the pars tuberalis of 

the anterior pituitary, and may regulate the hypothalamic‐pituitary hormone relay 

system (Nakao et al., 2008b). 
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Figure 1.9 gives a schematic drawing illustrating the differences between 

mammalian and non‐mammalian (vertebrate) light reception systems, and a 

model of the connection between the hypothalamus and pituitary gland 

specifically.   
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Figure 1.9:  Schematic drawing 
highlighting the proposed differences 
between vertebrate/avian and 
mammalian photo‐neuroendocrine 
systems.  
 
A) Coronal section; (left) in ancestral 
systems, light input (red) to different 
structures serves different functions such 
as vision, circadian and photoperiodic 
input. These signals are integrated and 
initiate photoperiodic‐linked endocrine 
secretion from the pituitary (open 
arrows). In mammals (right), light input is 
through the eyes, and the hypothalamus 
integrates these cues into photoperiodic 
information. These signals may be 
translated in the pars tuberalis, before 
passing to the pituitary gland where 
endocrine output is initiated.  

 
B) Schematic of the hypothalamic‐pituitary portal system. Hypothalamic 
neurosecretory cells release signals into median eminence (ME) capillaries, which 
drain into portal vessels (red) to the pituitary endocrine cells, whose hormones are 
secreted into peripheral circulation. The dashed line indicates the plane of section 
of the inset, a coronal view of the ME ventral to the third ventricle (3V); cells 
surrounding the 3V form the paraventricular zone (PVZ), extending to the ME. The 
pituitary pars tuberalis (PT) lies adjacent to the ME. Figures from Hanon et al., 
2008.
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Working with Japanese quail (C. japonica), Brian Follett and others have shown 

that thyroidectomy inhibits seasonal responses to photoperiod, such as gonad 

growth, and this response can be restored by T4 injections (Follett & Nicholls, 

1985). T4 levels in the hypothalamus increase during the lengthening days of 

spring, and drop in autumn, reflecting the stimulating long day photoperiod of the 

species (Yoshimura et al., 2003). When the quail were exposed to stimulatory long 

photoperiods, Dio2 was significantly up regulated in the hypothalamus, 

synthesizing more active T3 (Yasuo et al., 2005). Exposure to inhibitory short 

photoperiods suppressed Dio2 while increasing Dio3 expression, effectively 

limiting T3 availability in a seasonal manner (Nakao et al., 2008b). T3 targets 

include the GnRH cells of the median eminence (in the ventral hypothalamus), 

which release GnRH pulses into the portal blood supply, managing the subsequent 

release of downstream pituitary hormones such as LH and FSH (Nakao et al., 

2008b). 

 

Experiments in mammalian models with both long and short day breeders suggest 

that T4/T3 expression by local Dio enzymes conversion governs seasonal 

reproduction (Hazlerigg & Loudon, 2008) and the seasonal photoperiod regulates 

the expression of these deiodinase enzymes within the basal hypothalamus 

(Nakao et al., 2008b). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 1  Page 40 

 
 
Figure 1.10: Schematic drawing of the proposed photoperiodic regulation of 
thyroid hormones in avian ependymal cells. Light received by deep brain 
photoreceptors induces TSH expression in the pituitary pars tuberalis (PT; pink). 
Long‐day expression of TSH leads to the formation of TSH in the PT, acting on TSH 
receptors (TSHR) expressed by ependymal cells (blue); leading to seasonal 
changes in hypothalamic Dio1‐2‐3 expression. Tanycytes convert T4 into bio‐active 
T3, stimulating the release of hypothalamic GnRH. GnRH is carried to the pituitary 
(pars distalis; PD) by portal blood vessels, modulating release of LH and FSH from 
the anterior pituitary into general circulation. Figure adapted from Nakao et al., 
2008. 
 

The principal components making up the thyroid axis are conserved across 

vertebrates, including teleost fish (Power et al., 2001). As with mammalian and 

avian models, thyroid hormones play crucial roles in regulating development, 

differentiation and metabolism and species are unable to grow and mature 

normally without them (Porterfield & Hendrich, 1993). Much of the past TH fish‐

specific literature has highlighted the importance of THs during metamorphosis, 

early development and growth (Power et al., 2001). Thyroid hormone receptors 

(TR) have been isolated from several teleosts such as Japanese flounder 

(Paralichthys oliaceus), sea bream (Sparus aurata) and zebrafish (D. rerio) (Power 

et al., 2001). 
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In Atlantic cod (G. morhua) photoperiod alterations affect cyclic patterns of sex 

steroids, thyroid hormones, and the timing of spawning (Norberg et al., 2004).   In 

this species, plasma T3 levels are highest from mid‐summer to fall, coinciding with 

the highest annual growth rate (Norberg et al., 2004). Both plasma T3 and T4 levels 

exhibit a strong seasonal rhythm in teleosts and are associated with the uptake of 

thyroid hormones by developing eggs from circulating plasma levels, accounting 

for significant declines in plasma T3 seen prior to spawning (Tagawa & Brown, 

2001). Previous data suggested temperature acted as a major regulator of TH 

expression, but modern studies have focused on photoperiod as a primary 

entrainer of thyroid hormone secretion (Comeau et al., 2000). Thyroid hormones 

also act as growth inducers in fish (Donaldson et al., 1979), stimulating growth 

hormone secretion (Ebbesson et al., 1998). Up till now there has been no literature 

available regarding the seasonal photoperiodic T4/T3 expression by local Dio 

enzymes within the basal hypothalamus in light entrained zebrafish and the work 

presented here (Chapter 3; figures 3.1 and 3.3) is the first of its kind. 

     

1.5  Photoperiodism and Reproductive Endocrinology 

The coordination of photoperiodic reproduction and physiology is controlled by 

neuroendocrine signaling, which integrates signals of reproductive, nutritional, 

and health conditions with environmental cues (Gan & Quinton, 2010).  The 

hypothalamic‐pituitary‐gonadal axis (HPG) stimulates the release of hormones 

such as gonadotrophin‐releasing hormone (GnRH), luteinizing hormone (LH) and 

follicle‐stimulating hormone (FSH) (Sharp & Follett, 1969). In mammals, the 

hypothalamus receives input regarding the day length, environmental conditions 

and internal physiological states, while the pituitary secretes trophic hormones 

which act downstream controlling sexual maturation and reproduction in 

vertebrates (Gan & Quinton, 2010). 

The vertebrate pituitary gland has two lobes, the anterior (adenohypophysis) and 

posterior (hypophysis), with the anterior pituitary further divided into three 

distinct regions known as the pars tuberalis (PT), pars intermedia (PI) and the 

pars distalis (PD) (Romer & Parsons, 1977). The main function of the anterior 
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pituitary is the synthesis and release of a number of related hormones. In fish, the 

pituitary houses six different cell types, characterized by the hormones they 

secrete, such as lactotrophes generating prolactin (PRL); somatotrophs, growth 

hormone (GH); thyrotrophs,  thyroid‐stimulating hormone (TSH); corticotrophs, 

adenocorticotrophic hormone (ATCH), and gonadotropes, follicle‐stimulating 

hormone (FSH) and luteinizing hormone (LH) (Romer & Parsons, 1977).  

 

1.5.1  GnRH forms in zebrafish  

Gonadotrophin‐releasing hormone (GnRH) released from the ventral 

telencephalon‐preoptic region and hypothalamus induces gonadal development 

and maturation of fish through the secretion of gonadotrophins such as LH and 

FSH from the pituitary gland (Zohar et al., 1995). Non‐mammalian vertebrates 

express two to three forms of GnRH. Zebrafish have two forms; GnRH‐2 (cGnRH‐

II), expressed in the midbrain, and GnRH3 (sGnRH), a hypothalamic form used in 

hypothalamic‐pituitary signaling (Kuo et al., 2005) and is illustrated in fig 1.11. In 

zebrafish, GnRH3 (in forebrain and diencephalon) is expressed three to four fold 

higher than GnRH‐2 (in the midbrain) and have four different GnRH receptors 

which are expressed in a variety of tissues (Tello et al., 2008).The variation in 

structure, location, and response strength to GnRH forms indicates that these four 

receptors may have novel functions (Tello et al., 2008).In some fish, the fibers 

entering the pituitary come from cells expressing other forms of GnRH, whose 

roles are still unknown (Lethimonier et al., 2004).  
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Figure 1.11: Comparative teleost GnRH systems, with expression of both GnRH‐2 
(cGnRH‐II) and GnRH (sGnRH3).  Examples of expression of these GnRH subtypes 
in the midbrain and pituitary in different teleost species. Figure adapted from 
Lethimonier et al., 2004. c= chicken, m= mammalian, s= salmon, sb= sea bream 
   

1.5.2  Seasonal expression of Prolactin 

In mammals, Prolactin (PRL) is released from the anterior pituitary (from the pars 

distalis) and is linked with melatonin signalling in this region (Lincoln, 1999).  PRL 

regulates milk production and is associated with seasonal changes such as food 

intake, metabolic rate and winter coat (pelage) growth in sheep (Lincoln et al., 

2003). The possibility of a paracrine role of PRL has been postulated heavily in 

mammalian circannual research (Johnston, 2004). Anterior pituitary (pars 

tuberalis) cells express melatonin receptors in a seasonal manner and are thought 

to regulate PRL secretion (from the lactotrophes of the pars distalis) by producing 

“tuberalin”, a PRL releasing factor not yet fully characterized (Johnston, 2004). 

This hypothesis suggests photoperiodic melatonin secretion (and melatonin 

receptor expression) entrains PRL cycling independently from other pituitary 

hormones, regulating a number of key phases of sexual maturation (Bachelot & 

Binart, 2007).  

european eel goldfish

masu salmon european sea bass
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In fish, PRL has over 300 different functions grouped into 5 categories: (1) 

osmoregulation, (2) growth and development, (3) endocrinology and metabolism, 

(4) brain and behavior, and (5) reproduction (Bole‐Feysot et al., 1998). PRL 

expression has been found in the pituitary, liver, intestine, and gonads of the sea 

bream (S. aurata) (Santos et al., 2001) and in the pituitary, liver, kidney, spleen, 

gill, muscle, gonads, and brain of goldfish (C. auratus) (Tse et al., 2000).  The 

almost ubiquitous expression of PRL throughout fish tissues may build evidence 

for presence of multiple, separate seasonal timers, which respond to a common 

melatonin signal or indicate a wholly independent role of PRL in fish. This 

hypothesis is beyond the scope of the current work, but is an excellent direction 

for future research. 

 
1.5.3  Seasonal LH and FSH expression 

In avian models, the gonadotrophs, controlled by GnRH, release luteinizing 

hormone (LH) and follicle‐stimulating hormone (FSH); in certain cases, GnRH itself 

can directly affect gonads, altering the functioning of the ovaries and testes 

downstream (Sharp, 1996). In females, FSH promotes gonadal maturation, 

follicular selection and regulates progesterone secretion by granulosa cells of the 

developing follicles while LH regulates estrogen production by maturing ovarian 

follicles (Sharp, 1996). In males, FSH stimulates gonadal growth and estrogen 

secretion by Sertoli cells while LH controls the productions of androgens by Leydig 

cells (Sharp, 1996). 

Like other vertebrates, gonadal development in teleost fish is stimulated by LH 

and FSH.  Recent work on the responsiveness of teleost reproductive system to 

seasonal photoperiods has been demonstrated in the male stickleback (G. 

aculeatus).  Fish kept in LD (16h/8h) showed increased pituitary LH and FSH 

expression and maturation over SD (8h/16h) entrained fish (Shao et al., 2013). 

Seasonal expression in these hormones has also been noted, with LH expression 

peaking in late spring (long day) and FSH peaking in mid‐winter (short day) 

(Hellqvist et al., 2006). Samples of FSH from isolated pituitary glands of rainbow 

trout (O. mykiss) also demonstrated comparable seasonal profiles (Santos et al., 

2001). Both LH and FSH receptors are strongly expressed in zebrafish gonads, and 
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are present in kidney and liver tissues also (Chen & Ge, 2012). Experiments 

suggest that FSH signalling is limited in sexually immature female gonads, but 

plays a significant role in zebrafish ovarian follicle development later in life (Kwok 

et al., 2005). 

1.5.4  Seasonal GH expression 

In mammals, GH is released in nocturnal pulses from the pituitary gland, linked to 

the body's circadian cycle (Norris et al., 2003). GH has a number of downstream 

effects, including the stimulation of bone and muscle growth (Sam & Frohman, 

2008).  

While GH samples taken from goldfish maintained under naturally alternating 

seasonal photoperiods showed no clear daily rhythms in expression, they were 

closely correlated to seasonal changes in daylength, with the highest mean daily 

serum GH levels found in spring/summer (LD) and the lowest in early winter (SD) 

(Marchant & Peter, 1986). In adult salmon and sea bream, plasma GH levels 

increase with increasing photoperiod, i.e. from April to June (Boeuf, 1993). 

Conversely, decreasing daylength in winter season suppressed GH levels, whereas 

fish kept under long photoperiod during the same period of time did maintain high 

plasma GH levels (Bjornsson et al., 2000). 

 

The release of teleost GH is also affected by melatonin, in a variable manner. 

Experiments using cultured adult trout pituitaries showed a bi‐modal change in 

GH release, with picomolar concentrations of melatonin inducing a reduction in 

GH release, and higher (nanomolar range) concentrations resulting in the 

stimulation of GH secretion (Falcon et al., 2003b). Further evidence of melatonin 

modulation of GH secretion comes from pituitary culture experiments where the 

addition of luzindol (a melatonin receptor blocker) prevents both inhibitory and 

stimulatory responses of GH to melatonin concentration (Falcon et al., 2003b). 

Circulating melatonin is expected to decrease in LD conditions, while SD melatonin 

expression is expected to increase (Kezuka et al., 1988). The bimodal effects of 

melatonin on GH release, and the annual variations in the sensitivity to melatonin, 

may be an underlying factor in the management of biological resources for either 
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reproduction or growth in sexually mature fish.  The seasonal expression of GH in 

zebrafish is reported in detail in Chapter 2, while measures of growth are given in 

Chapter 1. 

 

1.6  Zebrafish as a circadian model 

Key discoveries in circadian biology have been made through large‐scale genetic 

mutant screens, using model organisms such as Drosophila and mouse (Reppert & 

Weaver, 2002). A popular alternative vertebrate model system to mouse is the 

zebrafish (D. rerio), a member of the largest group of vertebrates known, the 

teleost super‐order, which comprises more than 90% of the total number of 

described fish species (Pitcher, 1986). Zebrafish (D. rerio) are small, free spawning 

teleost fish with a wide distribution extending from India into Burma (Engeszer et 

al., 2007). These fish are ideal for reproductive studies, as they spawn regularly, 

ovulating approximately every 4‐5 days, they are highly fecund, providing 

between 100‐500 eggs at each laying and their eggs are fertilized outside the body, 

developing in a transparent chorion (Westerfield, 1995). The eggs are non‐

adherent, transparent and have a developmental period from fertilization to 

hatching of 96h at 26°C (Laale, 1977). All juveniles are hermaphroditic during 

early development (Takahashi, 1977). Sex differentiation begins at 23–25 days, 

where ovaries may degenerate and transform into testes in males (Takahashi, 

1977). The process of sex differentiation is completed by 40 days post‐hatch and 

gonadal maturation is completed by 60 days (Takahashi, 1977). As spawning time 

and clutch sizes have been shown to increase with age (Spence et al., 2008), the 

experiments described here began no earlier than 90 days post‐hatch, to ensure 

sexual maturity in all specimens. 

 

As a tropical and sub‐tropical native, zebrafish (D. rerio) are subject to minimal 

changes in seasonal light, as compared to species in temperate regions such as 

northern Europe (stickleback, G. aculeatus) and Japan (medaka, O. latipes) 

(Wittbrodt et al., 2002). Recent work has demonstrated the importance of 

temperature in zebrafish swimming behaviour (Condon et al., 2010), but did not 

investigate the physiology of reproductive seasonality, a wide‐ranging 
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phenomenon of seasonal teleost biology.  The authors suggested that photoperiod 

may be a secondary cue of seasonal change in animals living in tropical latitudes 

(Condon et al., 2010), making the results presented here particularly novel (see 

Chap 2).  

 
In mammals, the SCN was thought to act as the principle circadian pacemaker, 

entraining its activity to light‐dark cycles and coordinating damped oscillations in 

numerous dependent tissues (Granados‐Fuentes & Herzog, 2013). This circadian 

model was overturned in fish, in 1998‐2000, when David Whitmore and others 

found isolated, cultured fish organs possess endogenous circadian pacemakers 

(Whitmore et al., 2000; Whitmore et al., 1998a). In zebrafish and other non‐

mammalian vertebrates, the photo‐neuroendocrine system is organized as a 

network of semi‐independent, light‐sensitive oscillating units particularly in the 

retina, pineal gland, and hypothalamus (Whitmore et al., 2000). Cells displaying 

both photosensitive and circadian oscillations have been described in numerous 

peripheral tissues and in cell culture (Vatine et al., 2011). In most zebrafish tissues 

examined there is a functional circadian clock and these cellular circadian clocks 

can be directly entrained to a rhythmic light‐dark cycle (Whitmore et al., 2000). 

The presence of light‐sensitive oscillators in peripheral tissues suggests the 

zebrafish circadian system is based on distributed pacemakers, independently 

entrained by light exposure (Vatine et al., 2011). This has led to a long debate over 

the role of melatonin and other central circadian cues in models with clearly 

defined peripheral clock oscillators and photoreceptors such as zebrafish (Cahill, 

2002b; Falcon et al., 2010). 

 
In 1996, studies of the zebrafish clock were published by Greg Cahill’s group, using 

a video analysis system to monitor larval zebrafish circadian activity, as a form of 

fish mutant screen (Cahill et al., 1998). Cahill’s lab found evidence of a functional 

circadian pacemaker with a population average period of 25.6 hours, and a 

variance of 30min to 1 hour (Cahill, 1996).  Many of the genes involved in the 

mammalian circadian clock have zebrafish homologues and transcripts for most of 

these genes are rhythmically expressed in multiple tissues (Vatine et al., 2011). 
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Historically, it was believed that photoperiodic timing was transmitted to the 

reproductive axis by daily and season changes in melatonin (Sundararaj & Sehgal, 

1970). More recently, the effect of thyroid hormone activity and tissue‐specific 

diodinase enzyme expression has been highlighted as a possible signaling pathway 

in seasonal photoperiodic reproduction (Nakao et al., 2008b). Although the 

circadian clock is now being extensively explored in zebrafish, to date there has 

been no analysis of photoperiodism and seasonality in this species. Given the lack 

of evidence for seasonal responsiveness in this model of choice, I hypothesize 

increases in zebrafish growth and fertility when housed and entrained in long day 

photoperiodic conditions. These increases are likely mediated through a number 

of pathways, including:  

 

• Changes in growth (length and weight) over the zebrafish lifespan  

• Seasonal fertility and fecundity in light entrained populations 

• Pituitary hormone expression (GH, LH, FSH and TSH) 

• Melatonin receptor expression in the hypothalamus and pituitary 

• Dio enzyme expression in the hypothalamus 

Each set of experiments listed above is reviewed in the following chapters 2 ‐ 4. 
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CHAPTER 2 ‐ PHOTOPERIOD ON FERTILITY AND GROWTH 
2.1  Introduction 

While there are many environmental cues used to determine seasonal change 

(such as light, temperature and food availability) the present chapter focuses on 

the effect of photoperiod on the reproductive capacity of the popular model 

organism, zebrafish (D. rerio). Zebrafish are diurnal (active during daylight hours) 

and synchronise to external light/dark cycles (Spence et al., 2008). Their first 

activity period begins immediately after lights on, with other high activity periods 

in the early afternoon and the last hour of light. Zebrafish can grow up to 65mm in 

the wild, normally reaching a maximum of 40mm in captivity and have a life‐span 

of 24‐36mo (Spence et al., 2008); the zebrafish sampled in this study were 

monitored between 3mo to 24mo, during their peak reproductive years. There are 

a number of advantages to using zebrafish for reproductive experiments; 

reproductive capacity can be monitored in detail, with counts of clutch sizes 

weekly; groups can be exposed to specific lighting conditions, independent of 

temperature and other seasonal factors; zebrafish are small enough to enable 

significant samples to be housed in lab facilities, and their external fertilization 

allows easy monitoring of both fecundity and fertility rates (Cahill, 2002a). 

 

 
Figure 2.1 – Representative pictures of adult male and female zebrafish (15mo). 
Female fish generally have rounder bellies (due to distended ovaries), while males 
are slimmer and longer from end to end. Picture adapted from 
https://wiki.med.harvard.edu/SysBio (Aug 2012).  
 

Zebrafish spawn during the first hours after illumination, beginning within 

minutes of light exposure and normally ovulate every 3‐5 days in optimal 

conditions (Westerfield, 1995). In the wild, zebrafish breeding pairs spawn at 

irregular intervals, ranging from 1‐6 days and may produce several hundred eggs 
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in a single clutch (Eaton & Farley, 1974). The eggs are non‐adherent, transparent 

and have a developmental period from fertilization to hatching of 96h at 26°C 

(Laale, 1977). All juveniles are hermaphroditic during early development, 

developing ovaries at 10–12 days (Takahashi, 1977) with sex differentiation 

beginning at 23–25 days, when ovaries degenerate and transform into testes in 

males (Takahashi, 1977). The process of sex differentiation is completed by 40 

days post‐hatch and gonadal maturation is completed by 60 days (Takahashi, 

1977). As sexual differentiation is not completed until 2mo post‐hatch, the current 

experiments were began 90 days post‐hatch, to ensure sexual maturity in all 

specimens.  

 

Studies have shown that teleost fish are sensitive to photoperiod manipulation. In 

Atlantic salmon (S. salar), continuous light exposure affects growth and sexual 

maturation, and night time illumination reduces plasma melatonin rhythms (Davie 

et al., 2009), with similar conditions impacting reproductive status in European 

Sea Bass (D. labrax) (Bayarri et al., 2004). The most established model teleost 

photoperiodic reproduction is the Japanese medaka (O. latipes), who have a 

natural breeding season from April to September (LD) and whose daily rhythms of 

early morning egg laying follows photoperiodic cues (Wittbrodt et al., 2002). 

Experiments of photoperiodic factors on reproductive parameters in this species 

indicate oocyte atresia and lower clutch sizes over time, when fish were moved 

from LD (16h/8h) to SD (8h/16h) (Koger et al., 1999).  

 

By manipulating photoperiod regimes under controlled conditions, I aim to 

describe the links between seasonal light responsiveness, growth and 

reproduction in zebrafish.  As noted in other teleost species, LD conditions are 

associated with increases in both reproduction and body growth, and I 

hypothesize similar stimulatory effect in LD entrained zebrafish (as compared to 

SD cohorts). The following data describes the effects of different photoperiodic 

light regimes on physiological measures, such as average body weight and length, 

and reproductive parameters such as clutch sizes and fertilization rates.  
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2.2  Methods and materials 

The following experiments were performed within the UCL fish facility. Zebrafish 

were bred from a stock of wild‐type samples (Ab tup), raised by the fish facility 

staff in a fish nursery under standard conditions until 90 days post‐hatch. From 

3mo onwards, zebrafish were housed in specially designed metal cabinets fitted 

with LED light arrays. Each cabinet houses 12 x 1.5 litre tanks, or 6 x 3 litre tanks, 

with up to 50 fish per tank.  Each LED array was timer controlled, set to LD 

(16h/8h), SD (8h/16h) or control (14h/10h) lighting profiles (400–700 nm at 

2,500 μW/cm2). Cabinet‐housed fish were fed twice daily, housed on an open‐

water circuit, with individual tanks cleaned once a week. Figure 2.2 illustrates the 

light‐tight cabinets used and the LED systems used. 

 

 
Figure 2.2 – Pictures of the UCL fish facility where the zebrafish used in these 
experiments were raised and housed throughout the experiments. Left: some 
light‐tight metal cabinets shown closed; Right: a single cabinet housing a 
number of fish tanks, opened. 
 
2.2.1  Zebrafish breeding 

Trials of photoperiodic breeding, fertility and fecundity were performed with long 

and short day entrained zebrafish, in two experiments. Adult fish were given 12 ‐ 
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40 days of pre‐test breeding, in control lighting (14h/10h light/dark) in the main 

breeding room, and bred every 4 days to adapt them to semi‐continuous egg 

laying, as per Westerfield (1995). These fish were moved to LD or SD cabinets for 

2 days of acclimatization, represented by grey divisions in figures 2.5 ‐ 2.8. Water 

quality, air and water temperature, food availability, and pH all conformed to UCL 

Fish Facility standards. All adults were housed at 1 male: 3 females for optimal 

breeding as per UCL fish facility recommendations and per Westerfield (1995). 

Fish were age‐matched siblings, either 3.5mo old (fig 2.5; newly mature) or 10mo 

(fig 2.6: established breeders) at the start of testing. All eggs were collected 2 to 4 

hours after lights on (ZT 2‐4) and washed twice with a 0.5% bleach solution before 

counting began, to minimize bacterial infection between samples.  

 
Statistical testing was performed with Kolmogorov‐Smirnov tests, normally used 

for comparison between two non‐normally distributed groups with cumulative 

differences over time. Analysis was performed using an external web‐based stats 

calculator (Kirkman, 1996), accessed Nov. 2010.  D‐values give a measure of the 

cumulative difference between two groups; the closer to 1, the higher the 

significant cumulative difference between datasets.  

 

2.2.2  Lighting conditions 

All data shown are based on differences between LD (16h/8h) and SD (8h/16h) 

conditions. Control conditions, are based on the regular light cycle of the UCL fish 

facility (14h/10h).  

Points defined as “ZT” refer to zeitgeber time, a standard of time based on the 

point of lights on (or dawn; usually defined as ZT 0). This is opposed to “CT” time 

(circadian time) which refers to the point of the internal circadian cycle entrained 

to external ZT times, in such cases CT O represents ZT 0 in conditions of full 

darkness. Figure 2.3 illustrates the entrainment lighting conditions used. 
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Figure 2.3 ‐ Schematic of light entrainment conditions. Long day (LD) refers to 
16 hours of light, 8 hours of dark per 24h day; Short day (SD) refers to 8 hours 
of light, 16 hours of dark per 24h day.  Zeitgeber time (ZT) refers to hours after 
dawn, or lights on. 
 
2.2.3  Measures of body length and weight; gonad weight 

All zebrafish growth data for length and weight are based on standard methods of 

anatomical measurement. Zebrafish length was recorded from the tip of the snout 

to the tip of the caudal fin. It is a straight‐line measure, not measured over the 

curve of the body, using a standard 12‐inch ruler, with mm increments. Zebrafish 

weight was recorded on intact samples, blotted dry before recording. Whole body 

weights were recorded to 3 significant figures, using a standard lab analytical 

balance (Sartorius, London, UK). 

Whole gonad (ovary and testis) weights were recorded directly after a midline 

dissection, blotted dry and recorded to 3 significant figures, using a standard lab 

analytical balance (Sartorius).  Ovary weights included all mature and/or 

immature oocytes present.  

 
2.2.4  Egg Collection 

To avoid adult consumption of eggs, a set of rectangular nested dishes were used 

to promote and catch eggs at the bottom of each tank. The base dish is clear 

plexiglass (4”x10”x4”), with a second (slightly smaller; 3.8”x9.8”x3.8”) dish nested 

within it, with a fine mesh bottom (blocking direct access to the eggs, as they drop 

into the base dish). Marbles are then placed in the dish (mess bottom), to simulate 

rocks/riverbed debris, where zebrafish lay their eggs in protected niches. These 

nested dish sets are placed in the bottom of the breeding tanks 10h‐12h before 

anticipated ovulation, no earlier than 4 days after the previous breeding cycle.  

This allowed the deposited eggs to sink between the marbles, minimizing 

consumption and egg loss. These breeding dishes (with marbles) were collected 
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the following morning, and the eggs were removed with a hand‐pipette and 

counted one‐by‐one under the microscope. Overall clutch numbers, regardless of 

condition were recorded as a measure of fecundity. The resulting egg clutches 

were also examined for fertilization and further development, as a measure of 

fertility. 

   

2.3  Results 

2.3.1  Length / Weight of adult zebrafish in different photoperiods 

Adult zebrafish body length and weight are significantly affected by exposure to 

long and short day photoperiods. Adults were tested at 6‐30 months, having spent 

all their lives in LD or SD, from 3 months onwards. Data for both males and 

females are pooled, and are shown in figure 2.4.  

Adult body weights were significantly greater in LD over SD raised fish at the 

majority of ages measured (fig 2.4 ‐ left axis; bar graph); 11mo and 15mo, (both 

p<0.001); and 20mo and 30mo (both p<0.01), while measures taken at 6mo and 

24mo failed to reach significance. 

Differences in adult body length (fig 2.4 ‐ right axis, line graph) were significant 

between LD and SD fish at 11mo, 15mo, 20mo and 30mo (each p<0.001); while 

6mo and 24mo samples were not significantly different between conditions 

(p>0.05).  

 

 



 

Chapter 3  Page 55 

 
Figure 2.4 ‐ Body weight is greater in LD compared with SD raised fish from 
6mo‐30mo of age (bar graph, left axis); 11mo and 15mo (p<0.001); 20mo and 
30mo (p<0.01); 6mo and 24mo (p>0.05). Whole body length is higher in LD 
versus SD from 6mo to 30mo of age. (Line graph, right axis); 11mo, 15mo 
(p<0.001) and 20mo and 30mo (p<0.01) were strongly different between 
conditions, while 6mo and 24mo fish were non‐significantly different between 
conditions (p>0.05). N = 37‐101; depending on age. 

 
Throughout life zebrafish raised in LD (16h/8h) photoperiods grew heavier and 

longer as compared with their SD (8h/16h) counterparts. LD growth peaked at 

15mo (sexual maturity), gradually declining thereafter (at 20mo, 24mo and 

30mo). After early similarities (at 6mo), group differences between length and 

weight continued throughout life. SD fish showed little to no growth between 6‐

11mo (a strong growth period for LD fish) and moderate growth between (15‐

24mo). Growth rates were significantly different between groups until 24mo.  

Appendix A gives the t‐test results for these growth comparisons and illustrates 

the degree of freedom for each pairing (n = 101 at 6mo, to n = 37 at 30mo). 

 
2.3.2  Fecundity of zebrafish on short and long photoperiods 

Measures of zebrafish entrained to long and short photoperiods for fertility and 

fecundity were performed with 2 sets of samples. Experiment 1 focused on 

breeding rates from young (3.5mo; newly mature) fish, over a long period (100 
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days consecutively) to establish a baseline for photoperiodic differences between 

groups. 132 fish were tested, housed at a ratio of 3 males: 9 females, in 1.5‐liter 

tanks. Fish were pre‐tested in control (fish facility) lighting conditions (14h/10h) 

and moved into either LD (16h/8h) or SD (8h/16h) lighting cabinets on day 42 for 

the duration of the study (see fig. 2.5).  As these fish were newly mature, an 

extended pre‐testing breeding period was undertaken to confirm normal breeding 

rates before experimental testing began. 

 
Figure 2.5 ‐ Photoperiodic fecundity of adult zebrafish, 3mo‐6mo old 
(experiment 1). Pre‐testing in control lighting conditions on days 0 ‐ 41, 
followed by breeding in LD (orange points) or SD (blue points) from day 46 ‐ 
100. Grey bar indicates the switch from control to experimental light regimes, 
on days 42/43. Grey points indicate clutch sizes of control fish kept in 14h/10h 
LD conditions. 
 

After acclimatization, newly entrained LD and SD fish showed moderate changes 

in egg laying. SD fish decreased egg‐laying 4 days after entrainment and 

maintained a low level of 50‐100 eggs per clutch 30 days later. While LD fish 

showed a fecundity trendline lower than controls (LD slope = +1.4199, control 

slope = +5.3877), they significantly differed from their SD cohorts (SD slope = ‐

4.0035), laying over 450 eggs per clutch (on average; D = 0.923; p = 0.001).  

 

In experiment 2, fish breeding began at 10mo of age (adult; sexually mature and 

established breeders), for 50 days consecutively. 72 fish were tested, housed at a 



 

Chapter 3  Page 57 

ratio of 1 male: 3 females per tank. Pre‐testing was performed for 12 days in 

control lighting (14h/10h), then tanks were moved into LD (16h/8h) or SD 

(8h/16h) cabinets. After 18 days, these tanks were then switched into opposite 

lighting cabinets – e.g. LD into SD or SD tanks into LD cabinets, to monitor the 

effects of acute photoperiodic changes on egg laying.  This experiment had a 

shorter pre‐testing period than experiment 1, as the sample fish were previously 

established breeding pairs and were sexually mature at the commencement of the 

testing. A 1:3 ratio of males to females was used, consistent with experiment 1, but 

total sample size was limited by age‐matched stock available at the beginning of 

the study period. The goal of experiment 2 was to confirm and validate the 

previous pilot data (experiment 1) and to extend these findings by introducing a 

light‐phase “switch” in the final phase of testing, as shown in figure 2.6.  

 

 
Figure 2.6 ‐ Photoperiodic fecundity of adult 10mo‐12mo zebrafish. All tanks in 
control light regime on days 0‐12. Phase 1 (middle): tanks were moved into 
either LD (orange points) or SD (blue points) on days 14‐32. Phase 2 (right): 
tanks were switched into opposite conditions (LD to SD ‐ orange points; SD to 
LD – dark blue points; indicated by dotted trendlines) for the remaining testing 
period (days 34‐52).  Separator bars indicate a switch from control to 
experimental light regimes (on days 12/13 and 33/34), grey points indicate 
clutch sizes of control fish kept in 14h/10h conditions. 
 

Experiment 2 results (shown in figure 2.6) indicate an immediate drop in clutch 

size in breeding pairs moved from control to SD lighting cabinets, with average 
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clutch sizes on day 15 significantly different between groups (control = 219, SD = 

0; p=0.001); tanks moved into LD lighting displayed a small, but insignificant 

increase in egg laying (day 15 control = 219, vs. LD = 241; p>0.05) directly 

following LD light exposure. Over the course of basic light entrainment (fig 2.6, 

middle; pre‐testing into LD or SD), significant changes in fecundity rates were 

measured, with LD fish increasing their clutch sizes from 241 (day 15) to 550 (day 

31; overall LD slope = +17.308), and SD entrained fish dropping their clutch sizes 

from 0 and 6 (days 15 and 16, respectively) to 2 (day 32; SD slope = ‐3.7977).  By 

the end of the regular entrainment phase (in LD or SD conditions), SD fish 

averaged less than 10 eggs/clutch and LD fish 400‐450 eggs/clutch.  The 

difference in photoperiodic‐sensitive fecundity rates was significant different 

between conditions (D = 0.786; p = 0.001). Rates of egg laying by SD fish ceased 

completely within 18 days of entrainment (Fig 2.6, middle), 2‐fold faster than 

younger SD entrained fish (35 days; shown in Fig 2.5, right). 

 

Experiment 2 added an interesting twist on the basic entrainment protocol shown 

earlier, by moving LD or SD entrained fish into their opposite conditions after 30 

days of single photoperiod exposure. Clutch sizes dropped dramatically after 

moving into opposing light regimes (fig 2.6, right side: LD into SD, or SD into LD; 

dotted trendlines). LD clutches dropped from 550 eggs/clutch to less than 100 

eggs/clutch when moved in SD lighting (fig 2.6 right side, orange points). SD fish 

moved into LD conditions moderately increased their egg laying, from less than 30 

eggs/clutch (day 32 in SD) to over 100 eggs/clutch (day 35 in LD). Egg laying 

trends in both groups (after light switch, phase 3) fundamentally reflected the 

original entrainment effects (phase 2, middle), rather than that of the new 

environmental conditions. This is exemplified by the synchronized slopes between 

LD (solid orange line; phase 2) and LD into SD (dashed orange line; phase 3), and 

between the SD (solid blue line; phase 2) and SD into LD (dashed blue line; phase 

3) trendlines, where the slopes between the two phases are conserved, while the 

average clutch sizes changes in accordance with the new lighting conditions. LD 

entrained fish moved into SD cabinets had an acute drop in egg laying, which 

increased at the same rate as phase 2 levels (LD phase 2 = 17.308, phase 3 = 
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16.775). SD fish moved into LD cabinets had a small increase in clutch sizes that 

continued to decrease at a similar rate as recorded in phase 2 (SD phase 2 = ‐

3.7977, phase 3 = ‐3.9488; Fig 2.6, middle). As shown in figure 2.6, the differences 

between LD (into SD) and SD (into LD) groups were highly significant (D = 0.3; 

p<0.001), with opposing trends mirroring the entrainment of the previous light 

exposure paradigm (in phase 2). Figures 2.5 and 2.6 illustrate the significant effect 

of photoperiod on fecundity and indicates an immediate effect of photoperiodic 

changes on reproductive capacity.  

 

2.3.3  Fertility of zebrafish on short and long photoperiods 

Fertility rates (viability of the gametes; live, fertilized eggs) were measured 

throughout the long‐term experiments as described above. Embryos collected 

throughout these studies showed no difference in developmental abnormalities 

between conditions (data not shown).  

 

Photoperiodic‐sensitive fertility rates from light entrained adults were 

significantly different (Figure 2.7; D = 0.700, p = 0.007) between conditions. LD 

fish laid eggs clutches with 91% live eggs, increasing to 98% by day 100 (LD slope 

= 0.0743). SD fish laid clutches with an average of 88% live eggs, dropping to 81% 

by day 100 (SD slope = ‐0.1378; Fig. 2.7).  
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Figure 2.7 ‐ Fertility rates (% of live eggs/clutch) between light entrained adults 
(3mo‐6mo). Day 0‐41; entrainment in control (14h/10h) lighting. Days 46‐100: 
breeding in LD (orange points) or SD (blue points). Grey bar indicates the 
switch from control to experimental light regimes, on days 42/43. Grey points 
indicate control samples kept in 14h/10h LD conditions. 
   

As shown in Fig 2.8 (middle), fertility rates were significantly different between 

conditions, with LD fish laying 65% to 79% live eggs per clutch between days 15‐ 

32 (LD phase 2 slope = 0.6635), and SD fish laying 40% to 39% live eggs in the 

same period (SD phase 2 slope = 0.0349; D = 0.650; p = 0.010). After a switch into 

opposing light conditions (LD into SD, or SD into LD; Fig 2.8, right), fertility of LD 

clutches dropped from 94.5% to 41.7% eggs/clutch, increasing gradually to 68.2% 

by day 52 (orange dotted trendline; overall LD phase 3 slope = 1.6536).  SD clutch 

fertility immediate increased when moved to LD conditions from 39.1% (day 32) 

to 80.0% (day 35). After this initial increase, the “SD into LD” fertility levels 

dropped precipitously from 80.0% to 0.0% (blue dotted trendline; SD phase 3 

slope = ‐4.7086; Fig 2.8, right). While trends are noted in the 3rd experimental 

phase (Fig 2.8, right side), data are not significantly different (D = 0.500; p=0.111).  
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Figure 2.8 ‐ Fertility between light entrained adult (10mo‐12mo) fish. Grey bars 
indicates switch from control to experimental light regimes at day 13/14, and 
into opposite light conditions at day 33/34 (indicated by dotted trendlines). Tanks 
were moved into either LD (orange points) or SD (blue points) on days 14‐32, 
and switched into opposite conditions (LD to SD ‐ orange points; SD to LD – blue 
points; indicated by dotted trendlines) for the remaining testing period (days 34‐
52). 
 

2.3.4  Gender­specific differences in LD and SD entrained gonad tissues 

The effect of photoperiodic lighting conditions on gonad development shows a 

profound difference between males and females. Gonad weight is significantly 

different between LD and SD groups in ovaries at 6mo, 11mo, 15mo and 20mo, but 

not in testes at any time.   

 

Ovary weight was higher in LD than SD entrained females from 6mo‐20mo (fig 2.9, 

bar graph on left axis). During early‐to mid life these differences significant at 6mo 

(p<0.001), 11mo (p<0.05), 15mo (p<0.01) and 20mo (p<0.05). Measures taken in 

later life (24mo and 30mo) show a loss of this LD associated gonadal increase in 

ovary weight (p>0.05, respectively). Interestingly, the difference between LD and 

SD entrained ovaries were measureable at 6mo, while whole body weight and 

length measures did not reflect difference between experimental groups until 

11mo (comparing figure 2.9 with figure 2.4). 
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There were no significant differences in testes weight (fig 2.9; line graph on the 

right axis) at any age (including 30mo, p > 0.05), indicating a specific bias in 

photoperiodic lighting effect on female gonads exclusively. 

 

 
Figure 2.9 ‐ Gonad weight is significantly different in ovaries (bar graph; left 
axis), LD > SD at 6mo (p<0.001), 11mo (p<0.05), 15mo (p<0.01) and 20mo 
(p<0.05). No differences were shown in testes weight at any age (line graph; 
right axis).  N = 81 to 33 (6mo to 30mo, respectively). 
 

Detailed results of statistical measures and N numbers for fish and tissues tested 

are provided in Appendix A. 

2.4  Discussion  

The data presented here clearly indicate a stimulatory effect of lengthening 

photoperiod on physiological measures such as growth and reproductive capacity. 

Previous findings have shown that teleost fish growth follows photoperiodic 

cycles, with long days (summer photoperiods) stimulating growth in diurnal 

species (Ghomi et al., 2011). These current results confirm the initial hypothesis, 

that long day entrained zebrafish would have increased growth and fertility (as 

measured by greater clutch sizes) as compared to short day entrained zebrafish.  
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2.4.1  Growth differences between LD and SD entrained zebrafish 

The current work demonstrates a clear trend in increased body growth, in both 

weight and length, in LD raised zebrafish, over their SD raised cohorts (see figure 

2.4). All fish used in the current studies were raised in 14h/10h lighting conditions 

for the first 3 months (post‐hatch), and were moved to LD or SD conditions 

thereafter. Interestingly, there was no significant effect of photoperiod on growth 

at 6mo between groups, while both body length and weight were significantly 

different at 11mo, 15mo, 20mo and 30mo. This lack of difference at 6mo (after 

3mo of light entrainment) suggests that photoperiodic control of growth and 

maturation may be gated by a development stage in early adulthood (6mo‐11mo), 

when the majority of the fish are reproductively active. Samples of whole body 

weight and length were pooled, to include both males and females. As females 

showed significant increases in ovary weight at 6mo (LD over SD), it is important 

to note that these gonad‐specific differences did not alter overall measures of 

weight. Measures of body weight were linked to length changes throughout the 

lifespan. Overall, long‐day raised zebrafish grew heavier and longer as compared 

with their short‐day counterparts, throughout their lives.  

 

Growth rates are expected to depend on food availability, as fish are primarily 

visual feeders, longer daylengths are often associated with extended feeding 

periods. Recent work has shown that during 12h/12h LD conditions zebrafish 

have nocturnal feeding patterns, with 88.0% of the daily intake occurring in the 

last 4h of the dark phase. When food availability was restricted to the light phase, 

feeding activity was altered, while growth rates were maintained (del Pozo et al., 

2011). It is important to note that food availability was carefully controlled in the 

current study, with fish in all conditions being fed twice daily during the light 

phase of their subjective day (ZT 1 and 6), during which time food was consumed 

within 5min of delivery. In addition, studies have shown that increasing light 

duration affects fish growth through better food conversion efficiency, and this 

rate is higher during increased photoperiods such as LD over SD (Taylor et al., 

2006).  
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The effect of seasonal photoperiods has been most often recorded in smoltifying 

fish species (fish who move from fresh to sea water during development) such as 

Gilthead Sea Bream (S. aurata) (Mingarro et al., 2002) and Atlantic salmon (S. 

salar) (Bjornsson et al., 1995).  Previous experiments have shown that salmon 

exposed to 7 weeks of SD photoperiods have reduced growth compared to 

continuously light exposed cohorts (Sigholt, 1997) and parr‐smolt transition is 

dependent on exposure to an increasing photoperiod after short‐day conditions 

(Bjornsson et al., 1995). Interestingly, increasing the duration of the daily 

photoperiod not only stimulates growth in salmon after smoltification, but also 

triggers early sexual maturation (Le Bail, 1988).  

 

In freshwater species such as Goldfish (C. auratus), the highest rates of growth in 

the northern hemisphere are July (LD – summer), and the lowest in February and 

March (SD – winter) (Marchant & Peter, 1986).  In zebrafish, the females tend to be 

larger than males in both domesticated and wild populations, and have an annual 

growth and spawning season that commences just before the monsoon season 

(June‐September), when food availability and conditions are optimal (Spence et al., 

2007). Researchers have suggested that reproductive maturity is related to body 

size in zebrafish (Spence et al., 2008), and domesticated zebrafish can reach 

maturity by 75 days (post‐hatch), when zebrafish were 23‐24mm in length (Eaton 

& Farley, 1974). In the samples tested here, LD fish were 21.1mm at 6mo, growing 

to 27.3mm by 11mo, while SD fish grew from 20.8mm (6mo) to 21.2mm (11mo) 

and 24.5mm (15mo); during the same time period 3mo‐6mo zebrafish females had 

significant increases in ovary weight, mainly due to oocyte maturation; together 

these results suggest a link between growth and reproductive maturation, shown 

in the figures 2.5 – 2.8. 

 

The current set of experiments confirmed an increase in LD‐associated growth, but 

did not examine the role of alternating, cyclic lighting patterns (summer into 

winter) as would be expected in the wild. Both groups (LD and SD) showed 

increased growth over time, with the proportion of change being significantly 

higher in LD‐conditioned fish throughout life.  
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2.4.2  Effects of photoperiod on fecundity in young and mature zebrafish 

In the current study, adult zebrafish fecundity (clutch size) and fertility (number of 

live, successfully fertilized eggs) showed significant differences between fish 

housed in continuous LD or SD lighting. Two sets of experiments were performed, 

using young (3mo‐6mo) and older (10mo‐12mo). Experiment 1 (young fish: 3mo 

to 6mo), focused on the breeding rates of young fish exposed to different 

photoperiods over an extended timeline of 100 days. Interestingly, while the LD 

(16h/8h) group showed a significant increase in fecundity rates over the SD 

(8h/16h) cohort, these differences were not greater than control (14h/10h) 

samples. This unexpected result may be due to the same developmental/age 

related photoperiodic gating effect shown in the growth data of figure 2.4, where 

LD/SD groups housed in experimental conditions from 3mo to 6mo did not show 

any differences in body weight or length.  While the fecundity of young (3mo‐6mo) 

LD fish show a gradual increase in clutch sizes over time (LD slope = +1.4199; 

from day 43 to day 100), mature (10mo‐12mo) LD fish (in experiment 2) showed 

significantly greater increases over time (LD slope = +17.308; fig 2.6; phase 1, 

middle).  

 

In this set of experiments, both young (3mo‐6mo) and older (10mo‐12mo) adult 

zebrafish entrained to long day (summer) light conditions show increased 

breeding rates (Figures 2.5 and 2.6) and successfully fertilized eggs (figures 2.7 

and 2.8).  Yet, compared to experiment 1 (3mo‐6mo) results, sexually mature 

breeding pairs (experiment 2) laid approximately 30% fewer eggs/clutch at their 

maximum (fig 2.6, phase 1, middle; approx. 550 eggs/clutch) than their younger 

cohorts (fig 2.5, right; 850 eggs/clutch).  

 

Findings in Japanese Medaka (O. latipes) has shown embryo production drops 

dramatically after moving LD (16h/8h) entrained breeders into SD (8h/16h) 

conditions, and ceases completely after 14 days in SD (Koger et al., 1999).  Return 

to LD lighting resumed embryo production within days, indicating a dual control of 

photoperiod on Medaka embryo production ‐ inhibiting established egg laying 

rates and re‐initiating them after cessation (Koger et al., 1999).  In the current 
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study, SD entrained zebrafish took 100 days to cease egg laying (figure 2.5), and 

return to LD conditions after SD entrainment (figure 2.6) had an immediate but 

short‐lived rescue effect, with clutch sizes increasing 10‐fold, with rates then 

dropping at the same rate established in the initial entrainment period (Fig 2.6; 

middle, blue trendline). 

 

Acute changes in photoperiodic fecundity have been noted in Medaka after light 

switching, with decreased clutch sizes in LD to SD groups, and vice versa (Koger et 

al., 1999). In the current study this ‘acute switching’ effect was not sustained; 

previously entrained LD fish increased fertilization rates after the initial (SD‐

induced) drop and past SD‐entrained fish had a steep drop in fertilization rates 

after the initial (LD‐stimulated) increase on day 35 (fig 2.6). These results indicate 

two time courses for light modulation of reproduction in zebrafish; an immediate 

effect, shown within 1‐2 days and a long‐term effect (14‐21 days) based on the 

previously entrained photoperiod. The temporal differences in photoperiodic 

breeding responsiveness suggests two forms of photoperiodic reproductive 

control; local (immediate) control of egg release mediated by direct 

responsiveness in the ovaries and long‐term control of gamete development, likely 

modulated by reproductive hormones such as LH and FSH expressed by the 

pituitary.  

 

Fertility rates (as measured by live‐fertilized vs. dead eggs) were significantly 

different between LD and SD groups in both young (3.5mo; Fig 2.7) and older 

(10mo; Fig 2.8) zebrafish populations. Recent results using Siamese fighting fish 

(Betta splendens) have also shown decreased fertility rates in SD over LD 

photoperiods (Giannecchini et al., 2012). Similar results have been shown in 

tilapia subjected to a 18h/6h photoperiod, with higher fertility rates than other 

photoperiods due to action of melatonin on the hypothalamic‐pituitary‐gonadal 

triggering the release of hormones responsible for gametogenesis and maturation 

of gametes (Campos‐Mendoza et al., 2004). 
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When LD entrained fish were moved into SD lighting, there was an initial drop in 

fertility, returning to initial levels after 14‐20 days (Fig 2.8, right, orange dotted 

trendline). This result is surprising, as this group was maintained in previously 

inhibitory (SD) conditions, and suggests a protective effect of LD entrainment on 

the reproductive system. In contrast, SD entrained fish moved to LD conditions 

show an immediate increase from 40% to 80% successfully fertilized eggs/clutch. 

This initial increase is short‐lived and within 14‐20 days, the fertilization rate 

dropped to 0 %, regardless of the stimulatory LD lighting conditions (Fig 2.8, right, 

blue dotted trendline).  These novel results indicate the sensitivity of zebrafish 

fertility to photoperiod, and show the important role of parental photoperiodic 

history to successful breeding.  

 
Further work with this experimental regime is recommended in order to confirm 

the results provided here with other amenable teleost species, such as Medaka or 

Goldfish, and were undertaken here as zebrafish provide a relatively rare 

opportunity to study these “acute photoperiodic switch” effects, due to their small 

size and amenable housing conditions.   

 
2.4.3  Effects of photoperiod on zebrafish gonadal weight  

Gonad weight was significantly different in ovaries entrained to LD over SD 

throughout adult life (6mo‐20mo), but not during old age (24mo‐30mo). No 

differences in testis weight were shown between conditions, at any age.  

Preliminary histological examinations of SD entrained ovaries revealed oocyte 

atresia, reduced levels of mature and developing oocytes (data not shown). Similar 

to other vertebrates, the teleost reproductive cycle has two major phases; the 1st 

phase controls the proliferation, differentiation and growth of the gametes 

(spermatogenesis and vitellogenesis), while the 2nd phase controls the maturation 

and preparation of the oocytes and spermatozoa for release and insemination 

(Mylonas et al., 2010). Reproductive dysfunctions in males include reduced sperm 

volume and diminished sperm quality, whereas uneven or failed oocyte 

maturation is commonly observed in females (Bobe & Labbe, 2010). Changes in 

ovary, but not testis weight suggest a gender‐specific effect of photo‐stimulation 

and reproductive capacity, such that successful oocyte development may be 
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dependent on long day photoperiods. This confirms similar findings in Medaka, 

where male gonads maintained a functional morphology, indicated by mature 

sperm production and large numbers of maturing germ cells in both LD and SD 

conditions, while female gonads displayed clear oocyte atresia under SD lighting 

(Koger et al., 1999). Ovarian weight in catfish (Heteropneustes fossilis) also 

increases significantly with an increased daily photoperiod from 12h to 14h, 

suggesting that oocyte maturation is governed by the increasing photoperiod 

(Sundararaj & Sehgal, 1970). In both sets of breeding experiments, moving from 

LD (or control) conditions into SD lighting reduced clutch sizes (fecundity) and 

number of fertilized eggs (fertility) (Figs 2.4 ‐ 2.7). Coupled with the changes in 

age‐related ovarian weight, these results suggest that females produce immature 

eggs or fertilization rates depended on behavioral traits not measured in the 

current study.  

   
These results demonstrate the effects of photoperiod on zebrafish reproduction, 

by interfering with the control of gonadal maturation and preparation for 

reproduction, leading to extended delays or even complete inhibition of 

reproduction (Amano et al., 2000). As hypothesized, spawning fecundity (clutch 

sizes) and clutch fertility (live/dead eggs) were increased in LD over SD 

photoperiods, and are likely mediated by the action of melatonin on the HPG 

(hypothalamic‐pituitary‐gonadal) axis, triggering the release of hormones 

responsible for gametogenesis and maturation of gametes (Davies et al., 1999). 

While I expect increases in LD fertility and growth, the modes of controls 

underlying these effects are complex, involving changes in the expression and 

release of a cascade of reproductive hormones from the pituitary. The results 

shown in this chapter suggest a possible mode of action for melatonin in the 

maturation of oocytes, mediated by the prevailing photoperiod, working to 

synchronize oocyte maturation and ovulation to specific temporal windows. 

Further investigation into the neuroendocrine control of zebrafish photoperiodism 

in reviewed in chapters 3 and 4. 
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CHAPTER 3 – PHOTOPERIODIC HORMONE EXPRESSION 
3.1   Introduction 

The molecular mechanisms of the circadian clock have been extensively 

investigated in vertebrates (Hazlerigg, 2012). In mammals, the master circadian 

clock is located in the suprachiasmatic nuclei of the hypothalamus (SCN). Light 

signals from the retina reach the SCN directly via the retino‐hypothalamic neural 

tract.  Photoperiod duration is encoded by the electrical activity of the SCN master 

clock, which signals to the pineal gland, controlling the rhythmic secretion of 

melatonin, the main hormone associated with circadian biology. Internal 

representation of seasonality is therefore encoded by the presence and duration of 

melatonin in systemic circulation (Morris et al., 2012). Downstream targets of 

melatonin include the hypothalamus and pituitary gland (Morris et al., 2012). The 

anterior pituitary (adenohypophysis) expresses melatonin receptors and consists 

of several different cell types, characterized by the peptide hormones they secrete; 

such as the lactotropes which generate prolactin (PRL), somatotropes ‐ growth 

hormone (GH), thyrotrophs ‐ thyroid‐stimulating hormone (TSH), gonadotropes, 

secreting follicle‐stimulating hormone (FSHβ) and luteinizing hormone (LHβ) and 

corticotropes secreting adrenocorticotropic hormone (ACTH) (Nica et al., 2006), as 

shown in figure 3.1. 



 

Chapter 3  Page 70 

 
Figure 3.1: mRNA expression of hypothalamic and pituitary hormones. Releasing 
hormones from the hypothalamus include GHRH and GH, stimulating the 
expression of LH, FHS, PRL and GH in the anterior pituitary (adapted from Fox, 
1984). 
 

Seasonal differences in melatonin, melatonin receptor expression and 

hypothalamic/pituitary hormones may reflect both day length and season, giving 

cues for both circadian and annual physiological changes. For reasons discussed 

earlier, circulating melatonin levels were not recorded in the current work. This 

chapter explores the daily and lifelong differences in hormone and melatonin 

receptor expression in the hypothalamus and pituitary in zebrafish raised in LD or 

SD light regimes. While melatonin receptor expression is itself seasonal, direct 

measures of circulating melatonin would provide a more complete understanding 

of seasonal physiology and is recommended in future work. Together, measures of 

melatonin and tissue‐specific melatonin receptors would be helpful. These data 
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provide evidence of the key link between photoperiodic input to seasonal fertility 

at the cellular and tissue levels of zebrafish physiology, expanding the role of 

circadian clock components from simple daily timers to short and long term time‐

givers, encoding information regarding seasonal and annual timing.   

 

3.1.1   GnRH and gonadotrophin expression 

Vertebrate growth and reproduction is mediated by the hypothalamic‐pituitary‐

gonadal axis (HPG), controlling the release of a host of neuroendocrine hormones 

in a seasonal manner (Migaud et al., 2010). In mammals, ventral hypothalamic 

cells release GnRH in seasonally modulated pulses into the portal blood system, 

carrying it to the anterior pituitary (Chappell, 2005). These photoperiodic GnRH 

pulses are used as a seasonal cue for the appropriate release of LH and FSH, which 

target the reproductive organs, causing the release of testosterone and oestrogen; 

stimulating overall reproductive activity (Nett et al., 2002). In addition, teleost 

GnRH fibers entering the pituitary are thought to be capable of releasing GH 

(Marchant et al., 1989) and PRL (Weber et al., 1997).  As detailed in section 1.5.1, 

zebrafish GnRH has 2 main forms, including GnRH3, found predominantly in the 

fish ventral telencephalon, preoptic and anterior hypothalamic regions. This 

GnRH3 isoform was selected for hypothalamic measurements in the current work, 

and is referred to as GnRH hereafter. The current work profiles GnRH expression 

in the preoptico‐hypothalamus, with comparative measures of LH, FSH, TSH and 

PRL from the pituitary of LD and SD entrained zebrafish populations. 

       
3.1.2   GHRH and GH expression 

The classic view of anterior pituitary GH release is based on the stimulation of 

GHRH (growth hormone releasing hormone) from the hypothalamus, and GHRH 

has been shown to stimulate GH release in teleost fish (Lee et al., 2007). Tissue 

distribution studies have shown showed that teleost GHRH is expressed primarily 

in the brain, with GHRH receptors actively expressed in both the brain and 

pituitary (Lee et al., 2007).  Recently, GHRH has been shown to stimulate GH 

release from pituitary cells in goldfish (C. auratus) (Grey & Chang, 2013). GH acts 

mainly to modulate postnatal growth, and contributes to regulating metabolism, 
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reproduction, immunity, development, and osmoregulation in different species 

(Gahete et al., 2009). Samples of zebrafish specific GHRH and GH were taken from 

hypothalamic and pituitary tissues and measured for circadian and lifespan 

expression in LD and SD photoperiodic conditions. 

 

3.1.3   Melatonin receptor expression (MT1, MT2 and Mel1c) 

Transduction of photoperiodic information via the retino‐hypothalamic‐pineal 

pathways leads to melatonin secretion patterns reflecting the length of the dark 

period (Davies et al., 1999). The expression of pineal melatonin has been linked to 

fish growth and reproduction, with species‐specific differences (Falcon et al., 

2010), and in zebrafish, administration of melatonin has recently been shown to 

increase egg production and maturation (Carnevali et al., 2011). Due to the wide 

range of receptor distribution in the teleost brain, melatonin may have a number 

of different physiological effects in fish (Gaildrat & Falcon, 1999).  

 
Two melatonin receptor isoforms, MT1 and MT2 (Mel1a and Mel1b in older 

papers) are commonly expressed in a host of vertebrates such as mammals and 

birds. In mammals, MT1 is expressed in the SCN and pars tuberalis, and is thought 

to mediate the circadian response to melatonin, while MT2 is expressed most 

commonly in the retina (Reppert et al., 1994). In fish, three high affinity melatonin 

receptor subtypes have been identified; MT1 (Mel1a), MT2 (Mel1b) and Mel1c, 

which are thought to mediate various physiological functions of melatonin in the 

central nervous system and peripheral tissues (Reppert et al., 1996). Both MT1 

and MT2 are widely distributed in the brain and retina, whereas Mel1c expression 

is mainly found in peripheral nervous tissue (Park et al., 2007b). Measures of 

Mel1c in the current study were of such low abundance that data could not be 

recorded consistently in the areas of interest (hypothalamus and pituitary) and 

were not included in the following analysis.   

 

Seasonal expression of melatonin receptors in downstream tissues such as the 

gonads may allow for direct control of photoperiodic reproduction (Sauzet et al., 

2008) or indirectly via the centres of neuroendocrine control such as the 

hypothalamus and pituitary (Gaildrat & Falcon, 1999). The data presented here 
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addresses the expression of melatonin receptors in the hypothalamus and 

pituitary, and profiles the difference in hormone expression in LD and SD 

entrained tissues. 

 
3.1.4   TH, TSH and Dio expression 

Thyroid hormone has been strongly linked to seasonal growth and suggested to be 

a circannual timing mechanism in vertebrates (Hazlerigg & Loudon, 2008). The 

main TH isoforms, T4 and T3 act in opposition to each other to activate or inhibit 

TH signaling in target tissues. The availability of T4 and its conversion into the 

biologically potent T3 form is governed by changes in deiodination enzyme activity 

in local tissues (Hazlerigg & Loudon, 2008). In the mammalian and avian 

hypothalamus, the local expression of type 2 deiodinase (Dio2) and type 3 

deiodinase (Dio3) has been shown to change with seasonal photoperiods and 

likely mediates downstream neuroendocrine expression in a light‐responsive 

manner (Lechan & Fekete, 2005). Summaries of these pathways are shown in 

figures 1.8 and 1.9. In mammals, pituitary derived TSH acts within the mediobasal 

hypothalamus to control tanycyte DIO gene expression (Hanon et al., 2008) and 

the majority of MT1 positive cells also express TSH, in a photoperiodic manner 

(Dardente et al., 2003). The current findings describe the circadian and lifespan 

expression of teleost TSH in the pituitary and Dio1, Dio2 and Dio3 in the zebrafish 

hypothalamus and suggest a link between melatonin receptors, TSH and 

deiodinase enzyme expression in light entrained brain tissues. 

 

Initial experiments were performed to determine the circadian expression of these 

targets, allowing optimal timing of long‐term tissue sampling in later phases of 

research. Long‐term hormone profiling was taken from photo entrained (LD and 

SD) groups over the course of the zebrafish lifespan (6mo, 15mo, 24mo). These 

assays provide a profile of daily and lifelong neuroendocrine signalling in 

zebrafish, and establish a clear correlation between seasonal light exposure and 

photoperiodic hormone expression. Expanding of my initial investigations (see 

chapter 2), I hypothesized that reproductive and growth hormone expression from 

LD entrained samples would be increased throughout life, and in the light phase 

(ZT 3 and 9) of a given light/dark circadian cycle. Conversely, I expected SD 
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entrained samples to show low or inhibited growth and reproductive hormone 

expression throughout life.  As with other models described above, expression of 

hypothalamic GnRH and pituitary gonadotroph mRNA levels were expected to 

correspond, with increased expression in LD over SD conditions. Growth 

hormones mRNA expression was expected to peak in the late night or early 

morning (ZT 21 or ZT 3), with corresponding increases in GHRH in the 

hypothalamus. Expression of MT1, MT2 and Mel1c in zebrafish hypothalamus and 

pituitary samples are novel and were monitored with the expectation of increased 

mRNA expression of all 3 isoforms in the dark (ZT 15 and 21), and higher 

expression in SD over LD entrained samples throughout life.  Data regarding 

mRNA expression of Dio1, 2, 3 and TSH were also new in this model, but I expected 

increased in TSH, LH and FSH in LD pituitaries, and increased Dio2 mRNA 

expression in LD hypothalamic samples, as shown in figure 1.9 (chapter 1).  

 

3.2  Methods and Materials 

3.2.1  qPCR experimental sampling 

Circadian target expression 

The following circadian experiments focused on the periodicity of tissues over a 

single 24h period. Tissue samples were taken at ZT 3/9/15/21, having been 

entrained beforehand to a 12h/12h light dark cycle in specially designed light 

cabinets (see fig 2.2).  Hypothalamic and pituitary samples were pooled separately 

(N = 5), and tested in triplicate (15 samples tested per condition, per timepoint, 

with 60 individual samples total). Samples were tested in triplicate on each qPCR 

plate. All individuals were age‐matched cohorts (5mo old) and entrained for 7 

days before sampling began.   

Lifespan photoperiodic target expression 

Fish were raised in LD (16h/8h) or SD (8h/16h) lighting cabinets from 3mo – 

30mo, and were housed as described earlier (see Chapter 2 methods). 

Hypothalamus and pituitary samples were taken from fish at 6mo, 15mo and 

24mo. All tissue samples were taken at ZT 9, the timepoint at which the majority of 
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the genes of interest are most abundantly expressed (see fig 3.2 and 3.3).  These 

samples were pooled (n=5) into a single Trizol tube for RNA extraction and 5 

samples of RNA were taken for analysis (n=25 fish per condition). qPCR measures 

were taken in triplicate, and mean values used for analysis. Samples were taken 

from 150 fish total, for age groups (6mo/15mo/24mo) and photoperiodic (LD and 

SD) conditions.  

 

3.2.2  RT­PCR protocol  

Total RNA was extracted from tissue samples using TRIzol reagent (Invitrogen, 

Life Technologies, Grand Island, NY) according to the manufacturer’s instructions. 

The quality and quantity of the RNA was confirmed by NanoDrop (Thermo Fisher 

Scientific, Loughborough, UK). 1µg of total RNA (Hypothalamus) or 0.1µg 

(Pituitary) with ultrapure water up to 9.5µl, was incubated with 1µl Oligo‐dT 

primer mix (10 µM), 1µl Random Hex primer mix (10 µM) and 1µl dNTP mix (10 

µM) for 5 min at 65°C. Then, 4 µl RT buffer x5, 2 µl dTT (dithiothreitol 100 mM), 1 

µl RNAse Out (40 U/µl) and 1 µl Superscript‐II reverse transcriptase (Invitrogen) 

were added and the reaction was incubated at 25°C for 10min, 42°C for 1 hour, 

70°C for 15min, held at 4°C. 

 

3.2.3  qPCR protocol  

cDNA was stored at ‐20°C before qPCR processing.  The real time PCR was 

performed using a RealPlex quantitative PCR machine (Eppendorf, Cambridge, UK) 

and SYBR Green I kit (Invitrogen).  

 

The PCR reaction was carried out 20µl/well, containing 2µl cDNA (1:5 dilution), 

7µl of H2O, 1µl 5’ primer (10 µM), 1µl 3’ primer (10 µM) and 9µl of mix (SYBR 

Green II). The qPCR reaction was run for 2min at 95°C, 15s at 95°C, 15s at 60°C, 

15s at 68‐72°C (depending on primer melting temps) for 30‐40 cycles. Melting 

curves were analysed for specificity of the resulting PCR products and the absence 

of primer dimers.  
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3.2.4  qPCR target analysis and normalization 

Extensive normalization pre‐testing was performed to evaluate the rhymicity of 

candidate housekeeper targets, including Ubq, bActin and RPL‐13 (data not 

shown). Ubq was confirmed to be non‐circadian and non‐photoperiod responsive 

(data not shown). The specific primers (and their GenBank accession numbers) 

used to amplify targets of interest are listed in Appendix B.  

For each transcript, the efficiency (E) of each primer set was calculated from the 

slope of the standard curve using the formula: E = 10(‐1/slope) ‐1, and only 

primer sets with E‐values higher than 95% (where 100% = 1) were used for 

further long‐term sampling (calculations not shown).  

Gene expression was analyzed using the 2‐∆∆Ct method (Bustin, 2002), and was 

normalised against (Ubq) mRNA expression in the same samples and expressed as 

relative to a single “baseline sample” taken at ZT 21 for each target tested.  For 

each qPCR value presented in the following graphs, the average of 3 replicate wells 

was taken and compared to the average of 3 replicate Ubq measures from the 

same tissue sample. These values were compared to get a “calibrated” value (Mean 

target/Mean Ubq; at a single timepoint), this calibrated number is expressed 

relative to the expression of a single well of the target gene taken at ZT 21 (lowest 

time of expression). This method allows the calibration of oscillating genes in 

reference to a non‐oscillating control (Ubq), and gives a reference in relation to a 

universal fixed point in the circadian cycle (ZT 21).  

 

3.2.5   qPCR targets 

Targets of hypothalamic circadian expression included the diodinases enzymes 

Dio1, Dio2 and Dio3; GnRH, and GHRH. Melatonin receptors 1 and 2 were 

measured while Mel1c levels were not sufficient for qPCR recordings. 

Hypothalamic levels of circadian genes Per1, Per3 and Cry1a were also tested, with 

the exclusion of Per 2, a known light‐inducible gene, not suitable for circadian 

profile testing. Pituitary samples tested in this set of experiments include GH, LH, 

FSH, PRL, TSH, melatonin receptors (MT1, MT2) and the circadian genes Per1, Per3 

and Cry1a.  The inclusion of Per1, Per3 and Cry1a recordings in circadian 
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experiments provided positive controls, illustrating the oscillating profile and 

abundance of classic circadian clock mRNA targets in the tissues of interest. Tables 

of qPCR mean values of target expression at each timepoint (relative to samples of 

same target at ZT 21) are included in Appendix C. 

 

3.2.6   Statistical testing 

All samples were measured in triplicate by qPCR, and expressed as Mean ± SEM 

(standard error of the mean). The normality of the distribution and homogeneity 

of variance were tested, normally distributed data was analysed, using a 1‐way 

Anova (between subjects) to compare multiple targets at each timepoint or 

condition. Post‐hoc testing was conducted with the Tukey HSD (Honest Significant 

Difference) test, using the online stats calculators (http://www.physics.csbsju. 

edu/stats/ and http://web.mst.edu/~psyworld /tukeyscalculator.htm; accessed 

Spring 2011). The level of statistical significance was set at p<0.05 (significant), 

p<0.01 (highly significant), and p<0.001 (extremely significant). Anova and Tukey 

HSD results for circadian results are listed in appendices D.1 and D.2; lifespan 

measures are listed in appendices D.3 – D.6. 

 

3.3  Results 

3.3.1  qPCR Hypothalamic target expression over circadian timepoints 

Initial circadian experiments focused on the daily cyclic expression of hormones 

and receptors in the zebrafish brain and is shown in fig 3.1 a‐d. Overall, hormone 

and receptor targets showed moderate circadian oscillations, the majority of 

which showed single peaks at ZT 9 (late day), with up to 3‐4 fold higher than base 

levels in Dio2, GnRH and MT1 (fig 3.1 b‐d). 

 

The classic core clock genes Per1 and Per3 showed highly significant expression 

levels during the day (ZT 3, 9 > ZT 15, 21; p<0.001), with early morning (ZT 3) 

Per1 levels peaking 11‐fold higher than baseline levels (ZT 3 > ZT 21; p<0.001). A 

distinctive peak in hypothalamic Cry1a mRNA levels was shown at ZT 9 as 

compared with all other timepoints tested (ZT 9 > ZT 3, 15, 21; p<0.001; fig 3.1a). 
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These genes were the most abundant targets tested in the zebrafish hypothalamus, 

with clear changes in circadian expression, up to 11 fold higher than baseline 

measures (at ZT 21).  

 

Hypothalamic GnRH expression peaked at ZT 9, with highly significant differences 

between this and other timepoints (ZT 9> ZT 3, ZT 15, p<0.001; ZT 9> ZT 21; 

p<0.01; figure 3.1b). GHRH had bimodal expression peaks, at ZT 9 and ZT 21 (fig 

3.1b). GHRH ZT 9 samples were significantly greater than ZT 3 and ZT 15 (p<0.01), 

while the late night peak at ZT 21 was significantly higher than ZT 3 and ZT 15 

(p<0.05). 

 

Circadian expression of melatonin receptors (MT1 and MT2) in the hypothalamus 

was distinctive, with a single, highly significant circadian peak was found in 

hypothalamic MT1 expression at ZT 9 (p<0.001), while recordings taken in the 

evening, night and early morning (ZT 15, 21 and 3) were stably expressed. MT2 

expression was stably expressed and showed no circadian oscillations between 

day and night. The specificity of these melatonin receptor subtype differences is 

remarkable and suggests a unique role for MT1 receptors in mediating circadian 

information.  

 

Hypothalamic Dio2 expression showed a specific and significant circadian peak at 

ZT 9 (Fig 3.1d; Dio2 ZT 9 > ZT 3, ZT 15, p<0.01; ZT 9 > ZT 21; p<0.001), while Dio3 

levels were higher in the late day/evening (ZT 9, ZT 15), over early morning and 

late night timepoints (ZT 21, ZT 3; fig 3.1d, p<0.01). Interestingly, hypothalamic 

Dio1 expression was clearly not circadian, with stable expression levels 

throughout the day and night. These differences in circadian expression of Dio 1‐2‐

3 in the hypothalamus is interesting in that there is a single distinct peak in Dio2 

(ZT 9), as compared with all other Dio measures across the light/dark cycle. 
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3.3.2  qPCR Pituitary target expression over circadian timepoints 

 
Circadian expression in the pituitary Per1, Per3 and Cry1a levels mirrored patterns 

found in the hypothalamus, high at ZT 3‐9, and low at ZT 15‐21 (see figs 3.2a and 

3.3a). Per1 expression increased significantly, 25 fold (ZT 3) and 14 fold (ZT 9) 

over baseline levels, dropping significantly in the dark (ZT 3>ZT 9, 15, 21; 

p<0.001; ZT 9>ZT 15, 21; p<0.001). Per3 changed significantly, with early morning 

peaks (ZT 3), dropping thereafter (ZT 3>ZT 9, p<0.01; ZT 3>ZT 15, 21; p<0.001; ZT 

9>ZT15, 21, p<0.01). Pituitary Cry1a expression had a specific and significant peak 

at ZT 9 (ZT 9>ZT 3, 15, 21; p < 0.001). Cry1a expression at ZT 9 was 27 fold higher 

than relative baseline values, demonstrating a strong circadian influence in the 

late afternoon. Overall, the 3 classically defined circadian targets measured in the 

pituitary, Per1, Per3 and Cry1a, were expressed up to 3 fold higher than other 

targets (such as MT1, LH or FSH).  

 

Daily pituitary GH expression had a distinctive (and significant) peak at dawn (ZT 

3>ZT 9, 15, 21; p<0.01), as compared to time points tested, which were stably 

expressed. LH, FSH, PRL and TSH level all showed a bi‐modal increases in 

expression at ZT 9 and ZT 21, while samples taken at dawn (ZT 3) and dusk (ZT 

15) were low (fig 3.3b). LH ZT 9 and ZT 21 expression was significantly greater 

than ZT 3 and 15 (ZT 9, 21>ZT 3,15; p<0.01). FSH and PRL were similar in 

expression (although PRL comparisons were not statistically different), with the 

greatest levels of FSH at ZT 9 (ZT 9>ZT 3, 21; p<0.05; ZT 9>ZT 15; p<0.01). 

Pituitary TSH ZT 9 levels were significantly higher then timepoints tested (ZT 

9>ZT 3, 15, 21; p<0.001). Overall, a trend in circadian hormone expression can be 

shown in figure 3.3b, where highest expression is in the late day (ZT 9), with a 

smaller increase at ZT 21, in the late night, just before dawn.  

Melatonin receptors showed clear circadian expression in the zebrafish pituitary. 

MT1 expression was significantly higher at dawn (ZT 3), 8.5 fold over baseline 

levels (ZT 3>ZT 9, 15, 21; p<0.001), decreasing throughout the night, until a 

circadian rise at ZT 21, in anticipation of dawn. MT2 levels had a degree of 

circadian expression, with a single peak at dawn, 4 fold higher than baseline levels 

(ZT 3>ZT 9, 15, 21; p < 0.001). Other times showed a gradual (non‐significant) 
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increase in expression through the night. Clearly, circadian control of melatonin 

receptors in the pituitary is significantly more focused in MT1 over MT2 receptors, 

suggesting different roles and sensitivities of these receptors to circadian (and 

therefore likely seasonal) photoperiods.  
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3.3.3  qPCR Hormone targets over lifespan  

Having characterized the circadian expression of the genes of interest (section 

3.3.2), it was possible to optimize DNA sampling for long‐term sampling, as the 

majority of the genes of interest were most abundantly expressed at ZT 9 (late 

day). The following data and expression rates are discussed in terms of 

physiological links, with both hypothalamic and pituitary targets discussed 

together, in relation to their known biochemical inter‐relationships.  

3.3.3.1  qPCR GnRH and gonadotrophin hormone expression over lifespan 

GnRH expression was higher in SD fish during early life (6mo‐15mo), as compared 

to LD samples and this difference in expression was lost by old age (24mo), as 

shown in fig 3.4a.  The clear increase in short day expression of gonadotrophin‐

releasing hormone is unexpected, as zebrafish breeding is clearly inhibited by long 

term SD exposure (see chapter 2). The age specific differences at 6mo and 15mo 

are synchronized, with a similar 1.9 fold increase in SD over LD measures in both 

samples, before aged fish lose this distinctive SD > LD expression pattern (see fig 

3.4a).  

The photoperiod expression of pituitary gonadotrophic hormones (LH, FSH, PRL 

and TSH) is significantly higher in SD over LD samples in early life (6mo). FSH 

samples were SD>LD throughout life (6mo, 15mo, 24mo), while TSH levels were 

SD>LD with decreasing differences at 15mo and 24mo. By 24mo, LH, PRL and TSH 

were not significantly different between LD and SD (only FSH maintained the 

previous SD>LD results; fig 3.4e). The 6mo peak in SD>LD pit hormones is 

synchronized with measures of GnRH in the hypothalamus, and may be associated 

with a generalized increase in pituitary hormones and hypothalamic releasing 

factors under short‐day conditions.  
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Figure 3.4 ‐ qPCR measures of (a) Hypothalamic GnRH,  
 
(on next page) (b) Pituitary LH, (c) FSH, (d) PRL, and (e) TSH expression in LD and 
SD photoperiods throughout life. Gene expression in LD samples are shown in red; 
SD samples in blue. Samples were taken at 6mo (left), 15mo (middle) and 24mo 
(right) in all figures. Error bars represent SEM; 5 sets of tissue samples were 
pooled into each tube, with 5 tubes tested at each timepoint and condition (N = 
25). mRNA samples were tested in triplicate (75 individual samples at each 
timepoint). 
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 Looking at hormonal expression in detail, pituitary LH levels were significantly 

higher in SD over LD levels at 6mo (p<0.01), before equalizing (with no significant 

differences between SD and LD) at 15mo and 24mo (fig 3.4b). Distinctive (and 
significant) increases in expression of FSH in SD groups was shown throughout the 

lifespan (SD>LD; p<0.01 at 6mo, 15mo; p<0.05 at 24mo), with a gradual decrease 

in these levels overtime, while LD FSH levels remained stably expressed 

throughout life. 
 

Pituitary PRL expression was significantly higher at 6mo (SD > LD; p<0.01), and 

maintained a similar pattern of expression at 15mo. Significance in SD>LD 

measures was lost at 15mo and 24mo, due to increased variability in LD PRL 

measures, with gradually increasing PRL levels in LD samples throughout life (see 

fig 3.4d), a trend which seems specific to PRL specifically  

 

Echoing expression rates in FSH samples, TSH levels were significantly higher in 

SD over LD samples at 6mo (p<0.01), with a gradual decline in SD TSH over time. 

Similar to long day FSH levels, LD TSH expression was stably expressed 

throughout life, with no significant differences between age groups in this 

condition. 

Overall, high levels of hypothalamic SD entrained GnRH expression at 6mo and 

15mo are reflected in the target expression of the downstream pituitary 

hormones, LH, FSH, PRL and TSH; all hormonal measures indicate a greater SD 

over LD expression pattern at 6mo and 15mo. Lowered GnRH levels at 24mo were 

consistent with decreased SD hormonal expression (fig 3.4a).  LD entrained GnRH 

expression was sustained between 6mo and 15mo, increasing at 24mo. This trend 

is reflected in LD PRL expression, but reversed in LD LH levels over time. LD FSH 

and TSH expression levels were not significantly different over lifespan and did 

not reflect a change in GnRH expression as shown in fig 3.4.  
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3.3.3.2  qPCR GHRH and GH expression over lifespan 

GHRH expression in the hypothalamus was variable over the sampling ages tested, 

with SD>LD at 6mo (p<0.01), LD<SD at 15mo (p<0.01) and no difference between 

conditions at 24mo.  Considering the dramatic shift in GHRH results, further 

testing between 6mo‐15mo is recommended to further explore this result. 

 

 
Figure 3.5 ‐ qPCR measures of (a) Hypothalamic GHRH, and (b) Pituitary GH 
expression in LD and SD photoperiods throughout life. Gene expression in LD 
samples are shown in red; SD samples in blue. Samples were taken at 6mo (left), 
15mo (middle) and 24mo (right) in all figures. Error bars represent SEM; 5 sets 
of tissue samples were pooled into each tube, with 5 tubes tested at each 
timepoint and condition (N = 25). mRNA samples were tested in triplicate (75 
individual samples at each timepoint). 
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Interestingly, the trend in GHRH expression between groups is inverse between 

6mo and 15mo , where levels are low in LD GnRH (6mo) and significantly higher at 

15mo; while SD GnRH levels start high (6mo), then drop significantly at 15mo, 

matching LD levels at 24mo (as shown in fig 3.5a).  

 

Levels of pituitary GH expression were significantly different between 

photoperiodic conditions with SD > LD at 6mo (p<0.01), 15mo (p<0.05) and 24mo 

(p<0.01). The most notable relationship in lifespan expression of GH is the 

significant increase in SD GH from 15mo to 24mo (approximately 60%) (fig 3.5b). 

Interestingly, the increased expression of GHRH in LD hypothalamic samples (at 

15mo specifically) was not linked with downstream pituitary (LD) GH levels, 

which remained low throughout life.  

   

3.3.3.3  qPCR MT1 and MT2 expression over lifespan  

Photoperiodic expression of the melatonin receptors MT1 and MT2 were 

markedly different in hypothalamic and pituitary samples, over lifespan.  

 

In the hypothalamus, MT1 expression showed no differences between LD and SD 

groups until 24mo, where LD MT1 showed a significant increase over SD levels 

(p<0.01, fig 3.6a). Within the pituitary, MT1 expression was significant only in late 

life, with SD>LD (p<0.01; fig 3.6b). MT1 expression in the pituitary was 43% 

higher than peak hypothalamic MT1 expression, as noted by the difference in axis 

between fig 3.6a and b. Hypothalamic LD MT1 increased in late life, but remained 

low in LD pituitary 24mo samples, with no change in expression of SD MT1 at 

15mo‐24mo, as shown in the hypothalamic samples. Interestingly this is in direct 

opposition to hypothalamic results for MT1 at the same age and indicates a tissue 

specific difference in late life MT1 expression between long day and short day 

exposed samples.  

 

It is also important to note that pituitary MT1 expression at 6mo failed to reach a 

minimum threshold for qPCR recording (data not shown), while LD 15mo and 

24mo MT1 expression were not significantly different (fig 3.6b).  
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Expression of MT2 in the hypothalamus was greater in LD > SD groups at 6mo 

(p<0.05), and non‐significantly higher at 15mo, before dropping dramatically at 

24mo.  This drop in LD MT2 expression in old age was significant when compared 

with 6mo and 15mo levels (p <0.01). In the pituitary, MT2 expression reflected 

hypothalamic patterns, with increased MT2 levels in LD samples in early life, 

before a significant drop at 24mo (p <0.01; fig 3.6d). While pituitary LD MT2 levels 

dropped over lifespan, LD hypothalamic levels show sustained MT2 expression in 

early life, dropping significantly in old age only (fig 3.6 d vs c).  

 

Pituitary MT2 expression in short day groups declined moderately from 6mo to 

15mo, before a significant increase at 24mo over LD samples (p<0.01; fig 3.6d, 

right side). The significant increase in MT2 expression in aged SD pituitary 

samples was not seen in hypothalamic samples taken at the same time, as 

hypothalamic SD MT2 expression was maintained at low levels throughout life 

(see fig 3.6 c+d). 
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3.3.3.4  qPCR Hypothalamic Dio1­2­3 expression 

Hypothalamic Dio1, Dio2 and Dio3 expression was measured by qPCR over the 

zebrafish lifespan (6mo, 15mo, 24mo). SD Dio1 expression was significantly 

greater than LD at 6mo (SD > LD; p <0.001), dropping gradually to non‐significant 

levels at the other ages tested (see fig 3.7a). Overall, SD Dio1 expression declined 

moderately over time, while LD Dio1 levels increased significantly from 6mo‐

15mo, and matched SD Dio1 expression levels in old age (thus 24mo LD and SD 

Dio1 levels were not significantly different).  

Dio2 hypothalamic expression was closely matched between LD and SD samples 

throughout the ages tested (6mo, 15mo and 24mo), with no significant differences 

between ages and was not measurably altered by different photoperiodic light 

conditions (fig 3.7b). 

 

Dio3 expression in the hypothalamus changed significantly with photoperiod. At 

6mo and 24mo, LD samples were significantly higher than SD (p<0.05 and p<0.01, 

respectively). At 15mo, these differences were inverted, with LD Dio3 levels 

significantly lower than SD samples (LD<SD; p<0.05).  

 

Overall, circadian expression of deiodinase enzymes in the hypothalamus is 

limited to Dio2 specifically, with an increased level of expression in the late day 

(ZT 9; figure 3.2d). When measured over the lifespan, Dio2 expression is stably 

expressed between LD and SD groups, with little photoperiodic effects.  In direct 

opposition to Dio2 profiles, hypothalamic Dio1 is clearly not circadian, while 

photoperiodic SD > LD levels are significant increased (at 6mo; p<0.05). Dio3 

expression in the hypothalamus was variable in both circadian and lifespan time 

points, with no clear patterns in expression between LD and SD conditions (fig 

3.7c). These results are interesting, as overall. Dio1 and Dio2 expression are 

opposite in both circadian and photoperiodic trends, reflecting the complementary 

relationship between these targets, in a novel aspect in zebrafish. 
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Figure 3.7‐ qPCR measures of Hypothalamic Dio1, Dio2 and Dio3 expression in 
LD and SD photoperiods throughout life. Gene expression in LD samples are 
shown in red; SD samples in blue. Samples were taken at 6mo (left), 15mo 
(middle) and 24mo (right) in all figures. Error bars represent SEM; 5 sets of 
tissue samples were pooled into each tube, with 5 tubes tested at each timepoint 
and condition (N = 25). mRNA samples were tested in triplicate (75 individual 
samples at each timepoint). 



 

Chapter 3  Page 93 

3.4  Discussion 

Evidence of photoperiodic sensitivity has been gathered from a number of teleost 

species, while direct measures of light‐dependent hormonal expression have been 

limited to larger species such as salmon and sea bass (Amano et al., 2003).  The 

data presented here focuses on the daily and lifelong expression of a host of 

reproductive and growth related targets in zebrafish, including hypothalamic 

releasing hormones and their downstream pituitary targets. Novel findings 

associated with the tissue‐specific expression of melatonin receptors (circadian 

and lifelong differences between LD and SD) and the differences between Dio1, 

Dio2 and Dio3 expression in the zebrafish hypothalamus are presented here for 

the first time. The analytical challenges of measuring hormone and receptor 

expression in a small model organism were overcome using quantitative PCR 

methods, yielding comparative measures of target expression in the nanomolar 

range (see methods, chapter 3). Considering differences in the seasonal expression 

of melatonin receptors themselves, it is important to note that photoperiodic 

melatonin released may be independent of the melatonin receptor expression 

shown here. My initial hypothesize of a lifelong increase in reproductive and 

growth hormone mRNA expression was partially supported, with target specific 

differences which are discussed in detail in the following discussion.  

 

3.4.1 Circadian expression of target genes 

Conveying and synchronizing a circadian message to tissues throughout the body 

requires some delivery mechanisms, which are presumably both neural and 

hormonal. Studies of circadian hormonal expression in fish are often limited to 

melatonin expression in larger species. The physiological effects of daily variations 

in circulating melatonin and melatonin receptors expression in different tissues 

are starting to be reviewed in depth, and are implicated in such diverse processes 

as reproduction, locomotor activity, feeding and sleep in fish.  

 

The expression of neuroendocrine hormones from the hypothalamus and pituitary 

can be expressed as a function of circadian timing, with changes reflecting daily 

environmental cycles of light and dark. In addition to describing the daily rhythms 
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of the target genes of interest, this circadian data helped to pinpoint the optimal 

timing of DNA sampling for long‐term studies. 

 

3.4.1.1   Per1, Per3 and Cry1a  

Samples taken from both the hypothalamus and pituitary show clear circadian 

oscillations, as illustrated by the rhythmic expression of the classic circadian genes 

Per1, Per3 and Cry1a (fig 3.2a and 3.3a). The expression of Per1 and Per3 were 

strongly circadian in both tissues, with higher peaks during the light period (ZT 3 

and ZT 9), over the dark period (ZT 15 and ZT 21). As described in the literature, 

both Per1 and Per3 mRNA rhythms peak at dawn in an LD cycle (Cahill, 2002a), 

and the early peaks (ZT3 and ZT 9) of Per1 and Per3 confirm these findings.   

 

Cry1a expression was also matched between hypothalamus and pituitary samples, 

with a daily circadian peak at ZT 9, and low expression levels throughout the rest 

of the light/dark period, with lowest expression at ZT 21 (see fig 3.3a). This light‐

phase peak at ZT 9 confirms previous findings with zCry1a mRNA rhythms, which 

peak during the day (Cahill, 2002a). 

 

The relative expression levels Per1, Per3 and Cry1a were approximately double in 

pituitary as compared to hypothalamus samples, suggesting a dramatic shift in 

light/dark expression in the pituitary for these circadian genes. Overall, these 

rhythmic expression patterns match timing patterns previously reported in 

zebrafish tissues (Cahill, 2002a), and clearly confirm the existence of circadian 

clocks in the zebrafish hypothalamus and pituitary primarily, see fig 3.2a and 3.3a.  

 

3.4.1.2   GnRH and gonadotrophins (LH, FSH, PRL) 

Experiments done in vitro have demonstrated that circadian clock function acts to 

regulate the secretion of timed GnRH pulses in cell culture (Chappell et al., 2003). 

As shown in figure 3.2b, GnRH expression in the zebrafish hypothalamus is clearly 

circadian, with peak expression at the end of the day (ZT 9), followed by a 

moderate increase just before dawn (ZT 21).  
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GnRH (and downstream gonadotrophin) secretion is dynamic, rising in the late 

afternoon in tandem with peak Cry1a levels (as shown in figure 3.2a).  Previous 

mammalian experiments in over‐expressed mCry1 (in vitro) have shown 

significant increases in GnRH pulse amplitude, further suggesting this core clock 

protein is actively involved in the modulation of neurohormone secretion 

(Chappell et al., 2003). And in sea bass kept in extended long day photoperiods 

(18h/6h), a daily rhythm in GnRH expression was noted, with the highest levels of 

expression during the mid‐light period (Bayarri et al., 2004). The results here 

confirm the circadian expression of GnRH and extend these findings to zebrafish. 

 

Peak GnRH pulses in the late afternoon have also been linked to diurnal changes in 

gonadotrophins such as LH in vivo (Sisk et al., 2001). In teleosts, daily GnRH mRNA 

and plasma LH peaks are consistency higher in the dark period up to 8 hours 

before spawning (Gothilf et al., 1997). In zebrafish, a bi‐modal peak in expression 

was noted (fig. 3.3b), with increased expression at both late day and late night, 

reflecting the circaidan expression of GnRH from the hypothalamus. 

 

Previous experiments on teleost fish indicate the effects of circadian melatonin on 

neuroendocrine hormone expression are species specific and mixed, depending on 

age, photoperiod exposure, and local conditions. In masu salmon (O. masou), 

melatonin administration reduced gonadotrophin releasing hormone (GnRH) in 

the hypothalamus and downstream luteinizing hormone (LH) in the pituitary 

while stimulating follicle stimulating hormone (FSH) content (Amano et al., 2003). 

The current results confirm this pattern, as both GnRH and LH expression profiles 

are highly synchronized, with a significantly higher expression of FSH at late day. 

As melatonin expression is expected to be greatest in the dark period, the second 

peak in GnRH and its corresponding pituitary hormones (LH, FSH, PRL, TSH) is 

unexpected. This secondary late night bi‐modal peak (ZT 21) may be due to 

sampling transcriptional information (mRNA) rather than plasma protein 

expression.  

In vitro studies from cultured trout pituitary glands show inhibition of prolactin 

(PRL) release in the presence of physiological doses of melatonin, indicating that 
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melatonin may lower nocturnal PRL release (Falcon et al., 2003a). As shown in fig 

3.3b, nighttime PRL levels are significantly lower than in the day, with the lowest 

level of PRL expression at ZT 15, 3h into the dark period, thus confirming previous 

published results in Rainbow Trout (O. mykiss).  

The current findings are consistent with previous reports, with downstream 

expression of the gonadotrophic hormones (LH, FSH, PRL and TSH) following 

GnRH bi‐modal patterns, with peaks in the late day and late night (fig 3.3b), thus 

the timing and profile of pituitary hormone mRNA resembles that of the releasing 

hormone, GnRH, as expected by my initial hypotheses.  

 

3.4.1.3   GHRH and GH 

In mammals, GH is released in nocturnal pulses from the pituitary gland, linked to 

the body's circadian cycle (Norris et al., 2003). GH has a number of downstream 

effects, including the stimulation of bone and muscle growth (Sam & Frohman, 

2008). In fish, diurnal variations of GH secretion have been described in Rainbow 

Trout (O. mykiss) (Gomez et al., 1996) and Atlantic Salmon (S. salar) (Bjornsson et 

al., 2000), among others. In Goldfish (C. auratus), diurnal GH expression levels 

differ between SD and LD photoperiods, with SD groups expressing peak GH levels 

in the early night, while LD groups have peak GH in the early morning (Marchant & 

Peter, 1986).  The current results extend these findings in zebrafish, and give 

evidence for a dramatic peak in GH expression 3h after lights on (ZT 3; as shown in 

fig 3.3b). 

 

Circadian expression of growth hormone releasing hormone (GHRH) in the 

hypothalamus was highest in the late afternoon (ZT 9) with a shallow 2nd peak at 

ZT 21 (fig 3.2b), similar to GnRH and gonadotrophic mRNA patterns, yet lower in 

amplitude. Downstream pituitary GH mRNA is seemingly independent of GHRH, 

with a significant peak GH at ZT 3 only (a GH specific result, as compared to other 

pituitary hormones; fig 3.3b). The initial expectation of a clear link between GHRH 

and GH expression patterns has been overturned. Ideally, further higher resolution 

analysis of GHRH (and GH) expression in zebrafish hypothalamus will be 
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performed (hourly timepoints, over a 24h period) to pinpoint detailed changes in 

this target, and this strategy is recommended for future work. 

The expression of GH mRNA shown here may also be based on the circadian 

expression of melatonin during the light/dark periods. Experiments using cultured 

adult trout pituitaries showed a bi‐modal change in GH release, with picomolar 

concentrations of melatonin inducing a reduction in GH release, and higher 

(nanomolar range) concentrations resulting in the stimulation of GH secretion 

(Falcon et al., 2003a). Further evidence of melatonin modulation of GH secretion 

from the pituitary comes from pituitary culture experiments, where the addition of 

luzindol (a melatonin receptor blocker) blocked both the inhibitory and the 

stimulatory responses of GH to melatonin concentration (Falcon et al., 2003a). 

These results, while seemingly delayed as compared to predicted expression 

profiles, may be due to processing delays in melatonin/GH interactions. GH levels 

are stably expressed from ZT 9 – 21 (late day and throughout the night), with a 

significant peak 3h after dawn (fig 3.2b). Given the difference between 

transcription and translation measures it is possible that GH expression follow 

melatonin secretion, with a consistent 4h‐5h delay throughout the circadian cycle.  

 

3.4.1.4   MT1 and MT2 

Within the hypothalamus, melatonin receptor 1 (MT1) had a strong circadian 

profile, with a clear 4‐fold peak in expression in the late day (ZT 9), which 

contrasts sharply with the absence of circadian expression in MT2 in the same 

tissue (as shown in fig 3.2c).  Melatonin receptor expression in the pituitary was 

markedly different than hypothalamic circadian patterns. Similar to the classical 

circadian genes per1 and per3, pituitary MT1 and MT2 expression showed a 

significant peak at dawn (fig 3.3c), followed by a drop in late day and evening 

levels until late night levels increased slightly.  

Analysis reveals that MT1 is the major subtype expressed in the pituitary, with 

dawn mRNA levels 8.5 fold greater than at dusk, while early morning pituitary 

MT2 levels are 4 fold higher than at dusk (fig 3.3c). Furthermore, MT1 expression 

peaks 6h later in the hypothalamus, than in the pituitary (ZT 9 vs. ZT 3, 



 

Chapter 3  Page 98 

respectively). These early morning peaks are specific to the pituitary, as the 

hypothalamus samples showed a single mid‐afternoon peak in MT1 expression 

and no circadian oscillations in MT2 expression. Reports of goldfish melatonin 

receptor expression have provided evidence of circadian variability in MT1 and 

MT2 in the optic tectum, with a single concurrent peak at dawn (ZT 0, under 

12h/12h lighting), while melatonin binding shows a broad plateau from ZT10 to 

ZT14 (Ikegami et al., 2009). This suggests that melatonin receptor expression is 

likely post‐transcriptionally regulated, with a 10h–14h of time lag between 

transcription and appearance of receptor proteins. The transcriptional and post‐

translational regulation of multiple subtypes of melatonin receptor is considered 

to be an important molecular basis of melatonin action (Iigo et al., 1994).   

 

In rodents, the expression of MT1 mRNA shows robust circadian rhythms with low 

levels during the day, and a rapid rise at the beginning of the dark period (ZT 14), 

coincident with an abrupt increase in levels of circulating melatonin measured by 

radioimmunoassay When housed in DD (constant dark), peak MT1 expression 

moved to the middle of the subjective night, approximately 8h before the peak of 

protein expression (Masana et al., 2000). Using measures of 2‐[125I]‐Iodomelatonin 

binding  (in the SCN), melatonin receptor activity was highest 2h after lights on, or 

at the beginning of the subjective day (Masana et al., 2000). 

 

Immunocytochemistry measures of melatonin receptors in the hypothalamus and 

pituitary would be helpful in describing the protein expression of these targets, 

but suitable antibodies for zebrafish targets were not available at the time these 

experiments were undertaken. Future experiments exploring protein expression 

of melatonin receptors, such as immunochemistry, western blots and 2‐D protein 

gels would be advantageous in comparing transcriptional and translational 

differences in expression. In the current work, Mel 1c expression levels were sub‐

threshold for qPCR measurement in the zebrafish hypothalamus and pituitary, and 

thus not shown.  Level of MT1 and MT2 were highly abundant in these structures 

and figures 3.2c and 3.3c illustrate the circadian expression profiles of MT1 and 

MT2 in 12h/12h light conditions.  
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The initial expectation and hypothesis of global MT1, MT2 and Mel1c increases in 

ZT 15 and 21 were not confirmed. Overall, these results suggests that circadian 

expression of melatonin receptors is exclusive to the pituitary and the dramatic 

circadian response of pituitary MT1 at dawn gives evidence a primary role of this 

receptor (over MT2) in photoperiodic modulation of gonadotrophin release in the 

zebrafish pituitary. Clearly, transcriptional melatonin receptor expression is 

rhythmic (fig 3.3c), tissue specific (pituitary, not hypothalamus) and subtype 

specific (MT1 over MT2). While these rhythms could be expressed differently 

between RNA and protein, there are daily changes in melatonin responsivity, 

which are likely involved in circadian and photoperiodic hormonal release.  

     

3.4.1.5   Dio1, Dio2 and Dio3 

Circadian deiodinase enzyme expression within the zebrafish hypothalamus is 

target dependent, with clear Dio2 peaks in the late day (ZT 9), reflecting Cry1a 

expression levels in the same tissue, while Dio1 and Dio3 expression did not show 

any clear circadian rhymicity (see fig 3.2b).  These data are novel, as no published 

reports on circadian oscillations in teleost Dio expression are currently available 

and these results confirms reports from photoperiodically entrained rodents 

where temporal changes of Dio2 mRNA levels in animals kept under long‐day and 

short‐day conditions were monitored (Yasuo et al., 2007). These findings 

demonstrated that Dio2 mRNA levels are expressed rhythmically in the ependymal 

cells of LD‐entrained hamsters with peak expression in the late day (ZT 9), while 

Dio2 expression in SD ependymal cells remained low throughout the day (Yasuo et 

al., 2007).   

 

As far as is known, this is the first demonstration of a diurnal rhythm of Dio2 

expression in the zebrafish hypothalamus and this result is important to unravel 

the molecular basis driving the photoperiodic switch between T3 and T4, as has 

been reported in fish (Morin et al., 1993).  As described in the introduction (see 

chapter 1), T3 is created in target tissues through the local conversion of T4 by 

deiodinase enzymes in hypothalamic tanycyte cells (Hazlerigg & Wagner, 2006). 

Dio2 converts T4 to bio‐active T3, while Dio3 inactivates T3, and the relative 
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expression of Dio2 and Dio3 determines the levels of biologically active T3 in the 

brain (Nakao et al., 2008b). T3 activity stimulates the release of GnRH by the 

hypothalamus into the portal blood vessels to pituitary where LH and FSH release 

is increased (see schematic fig 1.9 for details) (Nakao et al., 2008b). I propose that 

the clear circadian expression of Dio2, with peak levels in the late day (ZT 9; fig 

3.2d) may be associated with the increase in hypothalamic GnRH at the same point 

(fig 3.2b) stimulating increases in FSH and LH also observed at ZT 9 (see fig 3.3c).   

   

3.4.1.6   TSH co­localizations 

As previously reported, TSH receptor expression is co‐localized with Dio2 in the 

hypothalamic tanycytes of photoperiodic animals such as the Syrian Hamster (M. 

auratus) (Revel et al., 2006; Yoshimura et al., 2003) and Quail (C. japonica) 

(Yoshimura et al., 2003) and Dio2 is a key enzyme in the control of thyroid‐

hormone activity, converting thyroxine (T4) into tri‐iodothyronine (T3) in the 

hypothalamus (Hazlerigg & Loudon, 2008). Work by Nakao et al. (2008), has 

shown that TSH is induced in the Quail PT within 14hours of LD exposure, and 

Dio2 expression follows 4h later in the neighboring hypothalamic ependymal cells. 

The current results show paralleled peak expression of Dio2 (in hypothalamus) 

and TSH (in pituitary) in the late day (ZT 9). As Dio2 is thought to be mediated 

through TSH receptors (TSH‐R) in hypothalamic tanycyte cells (Nakao et al., 

2008a), the profile of circadian and photoperiodic expression of these receptors is 

recommended in future studies.  

 
3.4.2  Photoperiod expression of qPCR targets throughout lifespan  

Seasonal photoperiods have been shown to alter spawning and reproductive 

hormone expression in teleost fish (Zohar et al., 2010). In optimal conditions, 

zebrafish are able to spawn every 3‐4 days, throughout their lives (Westerfield, 

1995). Gamete development and maturation are dependent on endocrine factors 

such as GnRH and pituitary gonadotropes via the HPG axis (Dickey & Swanson, 

2000). Differences in hormone and receptor expression between 

photoperiodically (LD and SD) entrained zebrafish groups were monitored over 

the course of their lifespan (6mo, 15mo and 24mo) and presented here.  
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3.4.2.1  GnRH and pituitary reproductive hormones (LH, PRL and FSH) 

As demonstrated in figure 3.4, lifespan measures of GnRH were sensitive to 

photoperiod, with a significant increase in SD GnRH expression (over LD) at 6mo 

and 15mo.  These results were unexpected, countering the expected results 

hypothesized earlier. In late life, zebrafish SD GnRH levels drop sharply, matching 

LD levels. In rainbow trout (O. mykiss), GnRH levels are highest during March‐April 

(SD), falling from May to July (LD) and are associated with seasonal gonadal 

maturation (Choi et al., 2010). And previous reports have observed that teleost 

GnRH receptors (Jodo et al., 2005) are seasonal expressed, with profiles 

correlating with seasonal changes in gonad size and sex steroid serum levels (Sohn 

et al., 1999). 

As expected, the expression of hypothalamic GnRH (SD>LD) had a similar pattern 

of expression in the pituitary hormones LH, FSH, and PRL at 6mo and 15mo (fig 

3.4). These results confirm similar findings in vivo and in vitro in goldfish (C. 

aruratus) (Sohn et al., 1999) and gilthead sea bream (S. aurata) (Zohar et al., 

1995), where GnRH is known to stimulate gonadotrophin release. And in goldfish, 

short‐day photoperiods have been shown to increase TSH mRNA (Sohn et al., 

1999) as was shown here in 6mo samples.  

 

Lifespan measures of FSH were sensitive to photoperiod, with lifelong increases in 

SD>LD groups, and peak SD FSH expression at 6mo, declining gradually at 15mo 

and 24mo (fig 3.4c). These differences were unexpected, as LD entrained fish are 

consistently more fertile (as shown in chapter 2, fig 2.5 – 2.8). Previous work using 

iteroparous species (having multiple reproductive cycles over the lifespan), such 

as Rainbow Trout (O. mykiss) has shown a decrease in plasma FSH after 

vitellogenesis, suggesting that FSH levels fall and remain at a level sufficient to 

maintain gamete growth without stimulating further follicular recruitment (Prat et 

al., 1996). This contrasts with semelparous species (characterized by a single 

reproductive episode) such as salmon, where FSH levels increase as vitellogenesis 

proceeds (Swanson et al., 1989). These species produce a single cohort of eggs in a 

lifetime and compared to zebrafish, do not maintain a store of immature oocytes in 

their ovaries. In the present study, SD entrained groups had significantly higher 
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FSH mRNA expression throughout life, as compared with their LD cohort, which 

had no significant increases over time (see fig 3.4c). It is proposed that the 

prolonged FSH elevation seen in these animals may result from the need to 

maximize vitellogenin production and oocyte maturation in reproductively 

inhibitory conditions (as shown by the low fecundity levels in fig. 2.4).  

 

In rainbow trout (O. mykiss), plasma FSH levels rise prior to ovulation, producing a 

minor peak at final maturation followed by a subsequent decline, and increase 

only once the eggs have been stripped from the body (Prat et al., 1996).  Given the 

stimulatory effects of LD photoperiods on zebrafish reproduction, the constant 

presence of mature oocytes throughout adult life may act to dampen long‐term 

FSH expression. Additionally, FSH levels may be in constant flux, with short‐term 

peaks before weekly egg laying episodes, and these peaks may be overlooked in 

long‐term sampling performed here. LF 

 

3.4.2.2  GHRH 

Hypothalamic GHRH levels were significantly different in LD and SD photoperiodic 

groups in early life. At 6mo, LD GHRH was low, before rising sharply at 15mo, 

while SD GHRH levels began significantly higher at 6mo before dropping at 15mo 

(see fig 3.5). Interestingly, these photoperiod differences are almost diametrically 

opposite the expression of GnRH from the same hypothalamus samples (fig 3.4a), 

where SD hormone expression dominates at 15mo.  As noted in the circadian 

expression of GHRH and GH, there is no apparent synchronization between these 

targets and this independence is shown in figure 3.5, where SD GHRH levels drop 

dramatically from 6mo‐15mo, while GH levels from the same population increases 

at each time point tested, significantly so at each timepoint tested. Unexpectedly, 

the current results indicate a lifelong increase in pituitary GH expression in SD 

over LD entrained samples, while LD GH expression is relatively flat throughout 

life.  

GHRH is known to stimulate a dose‐dependent release of GH from teleost pituitary 

cells, suggesting a direct action on pituitary somatotrophs (Vaughan et al., 1992) 

and GHRH‐immunoreactive fibers are present in the proximal pars distalis where 
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gonadotrophes are located (Zohar et al., 2010). Pituitary cells taken from sexually 

regressed goldfish (C. auratus) are been shown to be more responsive to GHRH 

than those taken from sexually recrudescent fish (Peng & Peter, 1997). This 

indicates that sexual maturation and likely sex steroids may alter responsiveness 

of somatotrophs to GHRH and may result in de‐synchrony between hypothalamic 

GHRH and pituitary GH expression in fish under long‐term photoperiodic 

exposure. The heightened GHRH sensitivity of pituitary explants from sexually 

regressed (SD entrained) specimens (over LD entrained groups) would be highly 

recommended for future experiments. Given the dramatic inhibition of SD 

conditioning on zebrafish fecundity (chapter 2), it would be anticipated that long 

term SD groups may be more responsive to GHRH expression, through heightened 

GHRH receptor expression, increased GHRH translation, transcription and/or 

plasma hormone levels.  

 

In addition to the complicated effects of sexual maturation on GHRH/GH 

expression, a recent review of GHRH and PACAP (pituitary adenylate cyclase 

activating polypeptide; a related GH releasing hormone) postulated a reliable role 

for PACAP as a GH stimulator, over GHRH (Canosa et al., 2007) and is linked with 

GHRH expression, as these two peptides are encoded together on the same gene 

(Parker et al., 1997).  In in vitro experiments, salmon PACAP was shown to release 

GH from cultured salmon pituitary cells, in a dose‐dependent manner, while GHRH 

governed GH release was less reliable and dose dependency could not be 

demonstrated (Parker et al., 1997). Due to the limited hypothalamic samples 

available from each age group, GHRH was selected as a prime candidate for 

photoperiodic control of GH, based on evidence in goldfish (C. auratus), a teleost 

species closely related to zebrafish (Rao et al., 1996). The revision of the classic 

hypothalamic GHRH – pituitary GH relationship may be reflected in the data 

shown here, as GH expression in any group showed little relationship to GHRH 

levels in LD and SD samples (as shown in figures 3.2 and 3.5). Unfortunately, 

limited samples sizes over long experimental phases precluded the monitoring of 

alternate GH‐releasing factors, and given additional resources, measurement of 

long and short day PACAP levels would be of interest in future experiments.  
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3.4.2.3  GH 

In previous reports, seasonal expression of plasma GH levels have a clear seasonal 

pattern (high in LD; low in SD) in teleosts species such as goldfish (C. auratus) 

(Marchant & Peter, 1986), and gilthead sea bream (S. aurata) (Mingarro et al., 

2002). In Atlantic salmon (S. salar), serum GH levels increase in spring and 

summer during sexual maturation, relating GH to reproductive function 

(Bjornsson et al., 1994) and GH can stimulate gonadal steroid production (Van der 

Kraak et al., 1990), gametogenesis and vitellogenesis (Mosconi et al., 2002). The 

current results are unexpected and counted the hypothesis of a lifelong increase in 

GH mRNA in LD over SD conditions. GH expression was significantly higher in SD 

over LD throughout life (fig 3.5b). It has been suggested that GH expression is 

responsive to food intake and is involved in energy allocation during the pre‐

spawning season, for later gonadal development and vitellogenesis (Canosa et al., 

2005; Mingarro et al., 2002). Given the dramatic increases in LD‐associated 

fertility and fecundity (see Chapter 2), it is a reasonable to hypothesize that GH 

expression (mRNA and/or protein) may be inhibited in favor of reproductive 

hormone expression in fecund LD groups, a somewhat ubiquitous evolutionary 

strategy in fish (Roff, 1983). Further measures of photoperiodic GH, including 

higher resolution measurements (daily timepoints) to pinpoint detailed changes in 

GH, and GH receptor expression by the reproductive organs would be necessary to 

confirm this, and are recommended in future experiments.  

The secretion of GH is also affected by melatonin, in a variable manner. It has been 

shown that in vitro, cultured trout pituitary glands alter GH release after melatonin 

administration, in a dose‐dependent manner, with inhibition of GH release at 

concentrations of daytime circulating melatonin levels, and melatonin‐induced 

increases in GH release with concentrations closer to night‐time melatonin levels 

(Falcon et al., 2003a). This suggests that melatonin contributes to the nocturnal 

increase and diurnal decrease in plasma GH levels, as reported in vivo for Atlantic 

salmon (S. salar) (Bjornsson et al., 2000). Under conditions that stimulate GH 

secretion, melatonin also induced a sustained inhibition of PRL release (Falcon et 

al., 2003). GH and PRL are two closely related hormones that often act in an 

antagonistic manner (Nguyen et al., 2008). The effects of melatonin on growth may 
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thus result from the differential impact the hormone has on GH and PRL, and 

perhaps on other pituitary hormones. As reported recently (Falcon et al., 2010), 

higher melatonin doses can have stimulatory effects on GH release, with bi‐modal 

effects on cultured pituitaries likely mediated by differential expression of 

melatonin receptors in this region (Falcon et al., 2010). Extending this finding 

within the present model, the lifelong increase in SD GH expression may indicate 

the increased rate of circulating melatonin in SD entrained groups. The division 

between GHRH and GH profiles may be explained through a melatonin‐specific 

action in the gonadotrophins, as facilitated by seasonal and circadian melatonin 

receptor expression (and action) in the zebrafish pituitary.  

 

3.4.2.4   Melatonin receptor expression 

RT‐PCR analysis showed that both MT1 and MT2 genes were expressed in the 

pituitary and hypothalamus, while Mel1c levels were below measurable 

thresholds. Hypothalamic MT1 and MT2 expression was low (and not significantly 

different) in both LD and SD groups (6mo and 15mo), with a dramatic increase in 

MT1 levels at 24mo in SD fish (fig 3.6a) and concurrent drop in MT2 levels in the 

same group (24mo SD fish; fig 3.6c). 

 

SD pituitary MT1 expression was high at 6mo and 24mo, with a 15mo drop in 

expression, while pituitary LD MT1 levels were low throughout life; sub‐threshold 

at 6mo (fig 3.6b). Pituitary MT2 levels dropped steadily in SD groups from 6mo to 

24mo, but were significantly higher than their LD cohorts at young and middle age 

(6mo and 15mo; fig 3.6d). Unexpectedly, LD pituitary levels had low expression 

levels over lifespan (in MT2), or sub threshold to low levels in MT1 (at 6mo; fig 

3.6b). In all cases, little seasonal difference (LD vs. SD) was noted till late life 

(24mo), where expression levels were consistently higher in pituitary than 

hypothalamus.  

 

Diurnal variations of melatonin receptor expression have been shown in the brain 

chum salmon brain for MT1 and MT2 (Shi et al., 2004) and in the brain, retina, and 

pineal gland of golden rabbitfish (S. guttatus) for MT1, MT2 and Mel1c (Park et al., 
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2007a), suggesting that the alternate expression of melatonin receptor subtypes 

may account in part for the diurnal variations in the melatonin binding sites in the 

brain. Interesting links between photoperiod and melatonin receptors have been 

made, through the regulation of hypothalamic deiodinase expression, and are 

outlined in the next section. 

 

3.4.2.5   TSH and Dio1, Dio2, Dio3 

Reports from mammalian photoperiodic studies have demonstrated increased 

melatonin receptor expression in the anterior pituitary and pars tuberalis (PT) 

(Dardente et al., 2003). PT cells derive from thyrotrophs during development, and 

seasonally express both thyroid‐stimulating hormone (TSH) and the common 

glycoprotein subunit used to form the active heterodimer, thyroid‐stimulating 

hormone (TSH) (Klosen et al., 2002). TSH released from the PT acts on the 

mediobasal hypothalamus, in the ependymal cell layer surrounding the third 

ventricle and target tanycyte cells (Hanon et al., 2008). Tanycyte cells may work to 

modulate hypothalamic‐pituitary interactions through the hypophyseal stalk and 

pituitary portal system and transport melatonin across the blood–brain barrier 

(Rodriguez et al., 2005).  PT cells expressing TSH are melatonin‐sensitive and 

express MT1 receptors yet are blind to TRH (thyrothrophin releasing hormone) 

suggesting a melatonin specific output (Hazlerigg & Loudon, 2008). As shown in 

figure 3.3d, lifelong TSH levels (LD and SD) followed similar patterns in pituitary 

FSH expression, with increased expression in SD samples throughout life, over LD 

levels. Similarly, pituitary MT1 levels were higher in SD entrained groups at 6mo, 

and 24mo (over LD groups), but dropped to LD levels at 15mo. Pituitary MT2 

levels showed increases in SD > LD at 6mo only, with no significant differences at 

15mo between groups, and a LD > SD switch in peak expression at 24mo.  While 

the pattern of LD TSH expression was echoed in the MT2 LD expression pattern, it 

more closely resembles the overall SD>LD expression of gonadotrophins 

throughout the ages tested.  

 
As described in mammals, PT‐derived TSH acts locally within the mediobasal 

hypothalamus to control tanycyte Dio gene expression (Hanon et al., 2008) and 

TSH receptor expression is co‐localized with Dio2 in the hypothalamic tanycytes 
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(Revel et al., 2006). Dio2 is a key enzyme in the control of thyroid‐hormone 

activity, converting thyroxine (T4) into tri‐iodothyronine (T3) in various target 

tissues (Hazlerigg & Loudon, 2008).  

 
The expression of Dio1 and Dio2 were similar between LD and SD groups 

throughout life, with a notable exception in LD 6mo Dio1 (significantly lower than 

SD and LD aged samples; fig 3.7a). Hypothalamic Dio3 levels were strongly 

affected by photoperiodic conditioning, with opposite expression peaks 

throughout life, ending with a significant increase in LD Dio3 at 24mo (fig 3.7c). 

This result is interesting when compared with circadian expression profiles, where 

Dio2 is clearly circadian and Dio3 daily levels are flat. These differences suggest a 

differentiation between circadian (Dio2) and photoperiodic (Dio3) responsiveness 

in these interactive enzymes. 

 

Dio2 expression did not respond to photoperiodic changes in wild‐types, whereas 

it was strongly induced by LD conditions in Syrian hamsters (Revel et al., 

2006; Yasuo et al., 2007), and Japanese quail (Yasuo et al., 2005; Yoshimura et al., 

2003). In Djungarian hamsters, Dio2 expression was induced when animals were 

transferred from short to long days, but did not change when animals were 

transferred from long to short days (Barrett et al., 2007; Watanabe et al., 

2004; Yasuo et al., 2006). Thus, the effects of photoperiod on gene expression in 

the ependymal cells (EC) appear to be specific for species, strain, and experimental 

schedule. 

 

In a recent study using MT1 and MT2 knockout mice, a link between melatonin 

receptor expression and photoperiodic Dio3 expression was described, where 

melatonin injections suppressed Dio2 and induced Dio3 expression in wild‐types, 

and this effect was blocked by MT1 disruption (Yasuo et al., 2009). They found 

photoperiodic melatonin levels affects the expression of Dio2 and Dio3 in 

hypothalamic ependymal cells (EC), acting through MT1 receptors in the pituitary 

pars tuberalis (PT). This is corroborated by other mammalian studies, showing 

that the EC itself does not express melatonin receptors (Bartness et al., 

2001; Schuster et al., 2000).  The PT was considered the target site for seasonal 
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melatonin signalling due to high levels of MT1 mRNA while lacking MT2 mRNA 

(Reppert et al., 1995), MT1 mRNA and TSH protein co‐localization in the PT 

(Klosen et al., 2002) and PT produced TSH regulates Dio2 and Dio3 expression in 

the EC in Japanese quail (Nakao et al., 2008b), sheep (Hanon et al., 2008), and mice 

(Ono et al., 2008).  

   

3.4.2.6  Seasonal vs. constant photoperiods 

Fish with short reproductive cycles, such as zebrafish, generally respond positively 

to exposure of a short period of constant daylengths (Westerfield, 1995), while 

species with a long gonadal maturation cycles usually require seasonally changing 

day lengths (Bromage, 2000).  Transitional photoperiodic phasing is particularly 

necessary in setting seasonal reproduction in long‐lived species with the capacity 

for multiple generative cycles (Davies, 2002).  Sequential seasonal changes in day 

length entrain the endogenous circannual rhythms, which ultimately control 

reproduction (Migaud et al., 2010). 
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CHAPTER 4 ‐ PHOTOPERIOD ON CELLS AND TISSUES 
4.1   Introduction  

4.1.1   Core clock mechanisms in zebrafish  

As shown by Whitmore et al. (2000), early zebrafish embryos and derived cell 

lines contain functional circadian clocks. In isolation from other tissues, these cells 

contain an entrainment pathway (with the ability to see light) and display 

circadian gene oscillations (Whitmore et al., 2000). A general model of circadian 

gene regulation has been established in zebrafish, where the transcription–

translation auto‐regulatory feedback loop forms the core of the circadian clock 

mechanism, in a very similar manner to that described in mouse and Drosophila. 

The proteins CLOCK (CLK) and brain muscle ARNT‐like (BMAL) form a 

heterodimer, acting to enhance the regulation of the period (per) and cryptochrome 

(cry) genes, initiating their transcription. The repressors PER and CRY interact 

with the CLK:BMAL heterodimer, thereby down‐regulating their own expression 

(Cahill, 2002a). A significant difference between zebrafish and other model 

systems lay in the increased number of clock molecules, with zebrafish having at 

least six cryptochrome, three clock and three bmal genes. The implications of these 

additional genes are not fully understood at this time and are outside the scope of 

the current work.  

Using their responsive properties to direct light, clock‐containing cells offer a 

novel method to monitor the responsiveness of circadian clock genes to different 

photoperiodic light regimes, complementing previous findings such as behavioural 

measures, fertility and growth (discussed in chapters 2 and 3). By coupling a 

luminescent reporter to core clock genes, it is possible to visualize the molecular 

responsiveness of individual cells and tissue explants to varying photoperiodic 

conditions. It is therefore possible to monitor dynamically how the core clock 

mechanism entrains to differing photoperiods, and possibly obtain clues of how 

photoperiod may occur from a cellular point of view. 
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4.1.2   Regular and skeleton photoperiodic entrainment  

The entrainment of circadian oscillators to photoperiod was first addressed using 

Drosophila pupae eclosion timing (Pittendrigh, 1964). Pittendrigh demonstrated 

that single light pulses (or a two pulse “skeleton” photoperiod) could entrain the 

circadian clock and initiate a set of oscillations that persist in the absence of light. 

A skeleton photoperiod contains a light and dark phase, similar to a full 

photoperiod, with each light phase defined by short pulses of light at the beginning 

and end of the phase, rather than continuous light exposure throughout the day 

(Pittendrigh, 1964).  

 
In general, two forms of response are likely when cells are exposed to skeleton 

light regimes. Full entrainment occurs when the observed circadian rhythms 

between skeleton and full photoperiods are equal (shown in fig 4.1 a+b). If the 

response to a skeleton regime occurs only during the light pulses, with no 

sustained peak during the dark phase between the pulses, then no entrainment 

has occurred, and light is said to have a “masking effect” (shown in fig 4.1c; 

(Pittendrigh, 1964). 
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Figure 4.1: Schematic of skeleton photoperiod responsiveness. a) full 
photoperiod stimulates a circadian response throughout the light period, b) 
a symmetrical skeleton photoperiod of the same duration elicits a matching 
response, c) a skeleton photoperiod causing a masking effect or light‐driven 
response, where circadian responsiveness is governed by absolute light 
exposure and is absent between pulses.  d) Long day photoperiod – full 
duration (16h/8h) vs. LD skeleton photoperiod (2h‐12h‐2h/8h) and, e) 
short day photoperiod – full duration (8h/16h) vs. SD skeleton photoperiod 
(2h‐4h‐2h/16h). Note that all skeleton light pulses are of matched duration 
(2h).  
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4.1.3  Key questions in circadian rhythmicity 

Considering the direct light responsiveness of zebrafish cells to a single short pulse 

of light (Tamai et al., 2007), it was interesting to extend this line of testing to the 

target tissues employed in the current work (zebrafish hypothalamic and pituitary 

explants) in either LD or SD (regular and skeleton) light regimes. Figure 4.2 

illustrates the proposed entrainment regimes possible for both LD and SD skeleton 

photoperiods.   

 

Figure 4.2: Proposed entrainment of peripheral clocks to full and skeleton 
photoperiods in LD and SD regimes. The leading entrainment pulse for each 
regime is shown in orange. 
 

Some key issues derived from this line of questioning include: 

 
• Are the entrainment patterns seen in full photoperiods accurately 

represented by comparable skeleton light/dark cycles? 

• Does a LD skeleton photoperiod cause the internal circadian clock to 

entrain to the first light pulse, thus interpreting a daylength of 16h (2h‐

12h‐2h/8h), or the second pulse, thus responding to a subjective 12h 

daylength (2h‐8h‐2h/16h)?  

• Conversely, does SD skeleton entrainment cause an oscillation of 8h, with 

entrainment linked to the first pulse of the light period (2h‐4h‐2h/16h) or 

does the clock entrain to the second pulse, with a resulting subjective 

circadian period of 20h (2h‐16h‐2h/8h)? 
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4.1.4   Skeleton photoperiods and circadian models of time  

Using the External Coincidence model of photoperiodism (see chapter 1, fig 1.2), 

an organism does not need to experience a full 12 hours of light to trigger 

reproductive events, but simply experience a light pulse at dawn and again at 

dusk, approximately 12 or 14 hours later, with the time between being spent in 

darkness (a classic skeleton photoperiod); as long as light coincides with a photo‐

sensitive phase to induce a long day response. In this model, the key 

photoinducible phase is activated by individual pulses of light exposure, rather 

than total light duration, and these pulses set the phase of the daily oscillator, 

initiating a host of downstream effects (see fig 1.2). It is the timing of the light 

pulses rather than their duration that is critical, as a very short light pulse can 

operate a photoperiodic “switch” if it falls at a specific phase of the circadian cycle. 

Brian Follett and Peter Sharp demonstrated this method in the late 1960s by 

exposing Japanese quail to different lengths of skeleton photoperiods (Follett & 

Sharp, 1969), as illustrated in figure 1.5 (chapter 1). Starting at dawn, the subjects 

received 6h of light, with different groups left in extended periods of darkness 

before being exposed to 15min pulses of light; such as 6h light, followed by 8h of 

dark before a 15min pulse, compared to other groups of 6h light, 12h dark+pulse, 

or 6h light, 4h dark+pulse, etc. Results demonstrated that a 2nd “dusk” pulse given 

between 12h‐16h after the “dawn” (lights on) led to reproductive stimulation, as 

measured by testicular growth and increases in reproductive hormone levels 

(Follett & Sharp, 1969), clearly demonstrating a 4h photoinducible phase in avian 

subjects (between CT 12‐16).  

 

Skeleton photoperiod experiments in mammals have similarly suggested that a 

circadian timer sits at the core of photoperiodic time measurement. In a notable 

set of experiments in rodents, blinded male hamsters were maintained for 11 

weeks in LD or SD photoperiods or in constant darkness, with brief (15min) light 

pulses given at 6h intervals.  LD entrained hamsters displayed little to no gonadal 

atrophy;  those maintained in constant darkness showed severe gonadal 

regression, while subjects in 2h/22h (with brief 15min light pulses at the 

beginning and end of the light period) did not undergo gonadal atrophy (Rudeen & 

Reiter, 1980). These experiments suggest that photoperiodic control of 
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reproduction in these rodents is likely not exclusively linked to light duration, and 

that the timing of a skeleton light pulse is important to stimulate (or inhibit) 

mammalian circannual reproductive cycles (Rudeen & Reiter, 1980).  

   
Recalling the Internal Coincidence model of photoperiodism (chapter 1; fig. 1.3), 

the relative proximity and synchronized phasing of two independent circadian 

clock elements (linked to dawn and dusk respectively) are used to monitor 

changes in the external photoperiod. Within the mammalian pars tuberalis, 

melatonin receptors are abundant and melatonin binding alters gene expression of 

several clock genes, including cry and per (Lincoln et al., 2003). Reflecting the 

internal coincidence model, cry gene expression in sheep pituitaries increases as 

melatonin levels rise in the evening and per gene expression drops with declining 

melatonin at dawn (Lincoln et al., 2003).  As shown in figure 4.3, the interval 

between per and cry expression varies as the melatonin signal expands and 

contracts with varying photoperiod (Hazlerigg & Loudon, 2008).  

   
 

 
 

 

 

 

 

 

 

 
 
Figure 4.3 ‐ Photoperiod and the internal coincidence of circadian clock gene 
expression. The length of the dark/night phase is translated into an extended 
melatonin secretion profile ‐ shorter in summer nights and longer in winter, which 
leads to altered patterns of circadian clock gene expression in the mammalian PT 
(pars tuberalis). The coincidence of per (dawn) and cry (dusk) gene expression 
changes as the dark period expands and contracts over the annual seasonal cycle. 
Figure adapted from Hazlerigg & Loudon, 2008.  
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The synchronization and relative intensity of cry and per expression is presented 

here, as this chapter focuses on the direct measurement of circadian 

responsiveness of luminescent cells and tissue explants to full and skeleton 

photoperiods using LD and SD regimes. Three types of testing were performed; a) 

responsiveness of core clock gene expression to photoperiod in clonal cell 

populations, b) responsiveness of homozygous Per3­luc transgenic tissues 

including circadian‐associated targets such as the pituitary, hypothalamus and 

pineal gland, and fish scales, and c) measurement of fecundity in sexually mature 

fish raised in LDsk or SDsk photoperiods (complementing “full” photoperiod data 

shown in chapter 2, figures 2.5‐2.8). This data gives insights into the inner 

workings of peripheral clock mechanisms and is useful in comparing cellular, 

tissue and behavioural clock responsiveness in zebrafish. 

 

4.2  Methods and Materials 

4.2.1  Luminescent zebrafish cell lines 

Per1­luc and Cry1a­luc cells were provided from established lab stocks, and 

produced as described previously (Vallone et al., 2004). In the following 

experiments, all cells were plated at 2.5–5.0 x105 cells per milliliter. 

 

4.2.2  Zebrafish Per3­luciferase transgenic 

Per3­luc transgenic zebrafish were bred and raised in the UCL aquatic facility. This 

transgenic stock was created with an insertion in the period 3 (Per3) promoter 

driving the expression of luciferase (luc) and were a generous gift of the Cahill 

group (Kaneko et al., 2006). 

 
4.2.3  Bioluminescence assays 

Per1­luc and Cry1a­luc cells were plated in quadruplicate wells of a 96‐well plate 

in media containing 0.5 mM luciferin (Promega, Madison, Wis.). Cells were placed 

on a 12h/12h  light/dark cycle for 3 days before being transferred into 

experimental photoperiods, as indicated in results. Bioluminescence was 

monitored on a Packard TopCount NXT scintillation counter (28°C). The intensity 
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of bioluminescence (counts per second) correlates with circadian clock gene 

expression (Carr et al., 2006).  

 

Per3‐luc tissue harvesting was performed within minutes of sacrifice and added to 

a pre‐prepared media solution with L15 media with 0.5mM luciferin, Pen/Strep, 

Gentomycin and 15% Fetal Calf Serum (FCS). For fish scale experiments, scales 

were taken from anesthetized zebrafish, and cultured in the same manner as Per3‐

luc tissues; all samples were recorded in triplicate and mean values reported. All 

recording was performed in a temperature stable environment, with light/dark 

cycles controlled by LED light arrays illuminating plates with a full spectrum light 

source (1500 µW/cm2).  Each well was counted for 10s, hourly, for up to 3 weeks. 

 

4.3  Results 

4.3.1   Per1­luc and Cry1a­luc expression in full LD / SD 

Initial Packard traces of Per1­luc and Cry1a­luc cells in full LD (16h/8h) and SD 

(8h/16h) photoperiods are shown in figure 4.4.  Per1­luc cells in SD (4.4a; blue 

points) display a circadian delay during the dark phase of the cycle while 

maintaining a robust synchronization to light onset. In both LD and SD regimes, 

Per1 expression peaks at ZT 3 and shows similar rhythmic amplitudes (fig 4.4a). 

Cry1a­luc cells show strong light responsiveness in LD and SD (fig 4.4b, near 

vertical peaks at lights on), while SD entrained cells are phase delayed in extended 

darkness (fig 4.4b; blue points). This figure clearly establishes the differential 

effect of seasonal photoperiods on the cellular circadian clock.  
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Figure 4.4: Per1­luc and Cry1a­luc cells exposed to LD (16h/8h) and SD 
(8h/16h) complete photoperiods.  a) Per1­luc cells in SD show a phase delay 
during the extended dark phase, b) Cry1a­luc cells show a phase delay during 
extended periods of darkness (SD cells; blue) yet are strongly synchronized to 
light onset.  
 
4.3.2   Circadian gene expression in SD skeleton lighting 

Figure 4.5 illustrates the entrainment of circadian genes Per1­luc, Per3­luc and 

Cry1a­luc in peripheral clocks residing within individual body scales and clonal cell 

lines in a SD skeleton photoperiod (2h‐4h‐2h/16h). Both Per1­luc cells and Per3­

luc scales entrain to the 1st pulse (dawn) of light (see fig 4.5a), thus entraining 

preferentially to the shorter subjective daylength (2h‐4h‐2h, rather than 2h‐16h‐

2h; see 4.2 for schematic of these phases). Within SD skeleton lighting, peak Per1 

expression peaked at ZT 3, while Per3 peaked at ZT 3‐5 (fig 4.5, red and green 

traces respectively). While Per1­luc cells began with a 8‐fold increase in oscillatory 
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amplitude, as compared with Per3­luc scales, these levels reached parity by day 8 

(fig 4.5a – 192h). Slight responses to the 2nd light pulse were noted in both cells 

and scales, with no significant effect of circadian phase. It is important to note that 

recordings taken within the first 24h – 36h of entrainment are subject to phase 

inhibition, as cells are moved from ambient light phases to experimental 

conditions.  

 

Figure 4.5b illustrates the responses of Cry1a cells to skeleton SD lighting, where 

the blue traces clearly show a direct response to light on/offset, and display a 

masked entrainment pattern with short peaks in expression at both dawn and 

dusk of light pulses. Similar to Per1­luc recordings, Cry1a­luc cells display dawn 

pulse entrainment, with the first Cry1a peak at ZT 3, the second at ZT 5, with the 

4h dark period between pulses being interpreted as “day”. The secondary peak in 

Cry1a expression leads to a delay in circadian offset, extending peak Cry1a 

expression into the early dark phase of the SD skeleton lighting. This two peak 

induction reflects the fact that cry1a is directly light inducible, as well as clock 

controlled. 
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Figure 4.5: Evidence of entrainment to SDsk (2h‐4h‐2h/16h) photoperiod. a) 
Per1­luc cells (red) and Per3­luc fish scales (green) entrain the first pulse 
(dawn) directly, with little to no activity at dusk; b) Per1­luc cells (red) and 
Cry1a­luc cells (blue) entrain to the first (dawn) pulse by day 2 (48h), but Cry1a­
luc expression is masked by the two pulse skeleton photoperiod. 
 

4.3.3  Clonal cell entrainment to full and skeleton photoperiods 

The entrainment of core clock genes were recorded systematically using long‐term 

(up to 3 weeks) TopCount measures of bioluminescence. Figure 4.6a shows the 

circadian oscillations of Per1­luc and Cry1a­luc to LD (16h/8h), DD (full dark) and 

Control (12h/12h) photoperiods. Per1­luc expression peaks at ZT 3 after light 

onset in both the 16h/8h and 12h/12h regimes. In the absence of light (in DD) 

these oscillations persist with increasingly attenuated amplitudes. In the same 
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light regimes (LD, DD, 12h/12h), Cry1a­luc expression (fig 4.6a; blue trace) peaked 

directly after light onset and was strongly rhythmic throughout the testing period, 

displaying a marked compression of oscillatory amplitude in DD and drifting of the 

dawn peak 1h‐2h later by day 9 (DD, 216hrs middle). Cry1a cells moved into 

12h/12h lighting then displayed clear circadian (day) oscillations, with a phase 

delay of 1h‐2h; peak expression at ZT 5 (midday), rather than ZT 3 (dawn) in LD 

conditions. Cry1a cells were strongly (and immediately) light responsive in both 

LD and 12h/12h conditions.   

Cell traces shown in figure 4.6b, were exposed to LDsk (2h‐12h‐2h/8h), DD (full 

dark) and LD (16h/8h) photoperiods. In LDsk, Per1­luc cells show rapid 

entrainment to the dusk pulse (the 2nd of the 2h‐12h‐2h light pulses) and have 

stable oscillations in culture within 24h, with peak expression at the same phase 

angle seen in LD (16h/8h) entrainment conditions (fig 4.6b; red trace). On the LD 

skeleton cycle, the “dawn” pulse induced a secondary increase in Per1­luc 

expression, causing a small lag in the 24h oscillation before light‐dependent 

repression occurred. Entrainment to the dusk pulse was maintained after entry 

into DD (fig 4.6b; red trace at 144 hrs), with peak Per1­luc expression at CT 3. 

Interestingly, the amplitude of Per1­luc expression increased 3 fold in DD, 

suggesting the removal of light‐induced repression of Per1 allowed full expression 

of the gene, coupled with on‐going clonal growth. The end of the DD period shows 

an experimental issue with an acute drop in Per1 expression at the end of day 8 

(just prior to 216h), which is not repeated, in the following experimental days. In 

full LD (16h/8h) conditions after LDsk and DD exposure (fig 4.6b, right), Per1­luc 

expression began to rise at lights off (ZT 16); this is in contrast to the results in fig 

4.5a (left), where peak entrainment began at dawn, rather than dusk pulses. The 

different responses between Per1­luc expression in fig 4.5a and 4.6b likely reflect 

prior oscillation patterns, which (in fig 4.6b) were first established in the LDsk 

regime during the first 6 days of entrainment (fig 4.6b, left; 0 – 144h). 

 

Cry1a­luc cells are entrained to the “dusk” (2nd) pulse and exposure to the dawn 

pulse resulted in a small secondary peak, suggesting a masking effect during 

skeleton photoperiod exposure, leading to an extended offset of Cry1a expression. 
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In fig 4.6b (left side, blue), the longest period of darkness is mid‐way between the 

skeleton pulses (2h‐12h‐2h) rather than the “true” night period (8h dark). Cry1a­

luc expression entrains to light as though the longest dark period is the night, 

rather than the day.  

 

During DD, a continuous, 24h Cry1a­luc rhythm was shown, based on the dusk 

peak originally presented in LDsk. Cry1a peaks shifted 1h‐2h in the DD phase, 

based on the entrainment schedule of the previous light conditions (fig 4.5b, 

middle).  A change into LD (16h/8h) reset this rhythm leading to a ZT 5 peak on 

the 2nd LD day (fig 4.6b – blue trace). Cry1a expression in DD showed a drop in 

oscillatory amplitude, as this gene is a light inducible as well as clock regulated 

(Tamai et al., 2007). Amplitude was consequently regained immediately upon 

exposure to a light/dark photoperiod. As noted with Per1­luc expression (midway 

through Day 8; 192 hours) an experimental error caused a minor aberration in 

Cry1a oscillations, likely due to an accidental interruption of the DD entrainment. 

Shortly thereafter the cells moved to LD (16h/8h) lighting and Cry1a­luc 

oscillations were immediately synchronized by light exposure, as shown by day 10 

(240h; fig 4.6b, right side).  

 

Figure 4.6c shows the effects of SD (8h/16h) photoperiodic entrainment, before 

entering DD (full dark). Light onset led to an increase in Per1­luc expression, with 

a peak at ZT 3, which gradually declined to a nadir point at ZT 11 (3h into the dark 

phase). At each dawn period, an acute jump in expression was related to light 

exposure, increasing the peak oscillation briefly between ZT 0‐3.  In addition, SD 

entrained Cry1a­luc expression peaked at ZT 3, with a strong rhythmic amplitude 

which persisted in full darkness. A technical problem at 144h caused a brief 

resetting of this oscillation, accounting for an unequal peak in responsiveness in 

the DD phase (4.6c‐ blue trace, right), but did not alter the timing the oscillation.  

 

Finally, exposure to SDsk (2h‐4h‐2h/16h) led to peak Per1­luc expression at ZT 3, 

associated with the dawn (first) skeleton pulse (fig 4.6d; red trace). A minor 

expression increase to the dusk pulse led to a small extension in Per1 decline. 

Cry1a­luc expression showed two peaks, the highest of which was expressed at ZT 
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3 after the dawn pulse, suggesting entrainment to a 2h‐4h‐2h subjective daylength 

(fig 4.6d; blue trace). The 2nd Cry1a peak came shortly after the dusk pulse, and is 

indicative of a directly light stimulated circadian clock element. As shown 

throughout testing, movement into DD led to a strong drop in circadian amplitude, 

synchronizing with Per1 expression levels in this phase (as shown by the 

oscillation amplitudes on the Y axis; fig 4.6d, right).  

 

The results shown in figure 4.6 a‐d confirms peak Per1­luc expression at ZT 3 after 

a dawn pulse (or initial light onset) in all experimental photoperiods except LDsk 

(in figure 4.6b, left side). Cry1a responded to SD skeleton lighting as though the 

two closest pulses were the “day” phase, and the longest dark period was night, 

with the first of the light pulses acting as the strongest entrainment factor.  

 

Figure 4.6 (next page): In vitro cell culture of circadian clock rhythms monitored 
up to 18 days. Per1‐luc (red) and Cry1a (blue) expression in a) LD, DD and 
12h/12h full photoperiods; b) LDsk, DD, and LD photoperiods; c) SD into DD 
photoperiods; and d) SDsk into DD photoperiods. 
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4.3.4 Per3­luc tissue explants ­ full and skeleton photoperiods 

Monitoring of tissue‐specific circadian rhythms was undertaken with a focus on 

Per3­luc expression. These tissues were tested in parallel with the cell lines shown 

in figure 4.6, thus they were exposed to the same photoperiodic lighting regimes. 

As previously shown (see fig 4.5a), Per1 and Per3 expression levels are 

comparable in a SD skeleton regime, with Per3 levels peaking 1‐2hrs after the 

expected ZT 3 Per1 peak. Testing Per3­luc tissue explants allows us to measure 

differences in isolated regions (such as the pituitary, hypothalamus and pineal 

gland). These tissue‐specific responses defined regional responsiveness to 

seasonal photoperiodic lighting and explored responses to skeleton light regimes 

(light exposure vs. light duration) in these specific regions. 

 

Figure 4.7a illustrates the periodicity of Per3­luc in tissues explants, when exposed 

to LD (16h/8h), DD (full dark) and 12h/12h (control) lighting conditions. Per3­luc 

rhythms peaked at ZT 3 in both the LD and 12h/12h regimes, with oscillations 

persisting in DD (fig 4.7a – middle). Long term testing of hypothalamic explants 

was not sustained after 8days of culture (blue trace), while pituitary samples 

continued to oscillate well past 17 days (pink trace), without a change in media.  

The differences in tissue longevity are likely due to explant size and specific tissue 

perfusion needs.  

 

Per3­luc expression in LDsk (2h‐12h‐2h/8h), DD and LD (16h/8h) is shown in fig. 

4.7b.  As with Per1­luc cell expression, tissue Per3­luc expression peaks at ZT 3. All 

three tissues types responded to the 2nd light pulse (dusk) as their primary cue for 

circadian entrainment, suggesting that the tissues treat the longest dark period 

(12h) as the subjective night and interpret the day phase as consisting of 2h‐8h‐2h 

light phase. Interestingly, hypothalamic Per3­luc oscillations had a small secondary 

(dawn) peak while maintaining a clear 24h rhythm in dusk entrainment (fig 4.7b – 

blue trace). This result was specific to the hypothalamus, while pituitary and 

pineal explants were unresponsive to dawn light pulses. Hypothalamic oscillations 

in DD were more quickly attenuated than pituitary and pineal Per­3luc rhythms 

(day 9, 216h, blue trace), but resumed a robust rhythmic amplitude when exposed 

to a full LD light dark cycle (fig 4.7b, right side, blue trace). 
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As shown in figure 4.7c, all tissues were exposed to SD (8h/16h) light for 6 days 

before being moved into full darkness. Per3­luc expression was the same in all 

tissues, peaking at ZT 3 in the SD phase, with continued oscillations in DD. 

Hypothalamic recordings were significantly higher in amplitude at the start of 

recording, decreasing over time as the tissues weakened in culture.  

 

Figure 4.7d illustrates the expression of Per3­luc tissues in SDsk (2h‐4h‐2h/16h) 

before moving to DD. In all cases, Per3­luc expression peaks at ZT 3, with the main 

entrainment pulse at dawn. The second light pulse (dusk) elicited a slight response 

in hypothalamic and pineal samples, extending the Per3­luc period within each 

24h cycle slightly. By 240h (day 10), both the pituitary and hypothalamic samples 

had phase drifted in DD conditions by approximately 1h/day.  

 

Overall, Per3­luc expression peaks at ZT 3 (after the dawn pulse) in the majority of 

photoperiods tested, such as LD (fig. 4.7a) and SD (fig. 4.7c) and SDsk (fig 4.7d). 

Interestingly, Per3 expression entrains to the dusk pulse in the LD skeleton 

photoperiod. Tissues exposed to LD skeleton lighting entrain to a 2h‐8h‐2h/12h 

photoperiodic cycle, taking the longest dark period to be the subjective night. 

Exposure to a SD skeleton photoperiod (2h‐4h‐2h/16h) caused preferential 

entrainment to the dawn pulse (2h‐4h‐2h), again interpreting the (longest) 16h 

dark phase as the subjective night.  When comparing LDsk and SDsk results, it is 

clear that all three neural tissues tested undergo a phase‐shifting effect, as 

predicted by Pittendrigh and Daan (1976), and consistently interpret the first 

pulse after the longest dark period as “dawn” and set their circadian oscillations to 

this cue preferentially.  

 

Figure 4.7 (next page): In vitro tissue explant culture of Per3­luc rhythms 
monitored up to 18 days. Pituitary explants (pink), Pineal glands (green) and 
Hypothalamic samples (blue) from Per3­luc mutants were measured in triplicate, 
with means shown above.  Per3­luc expression was tested in a) LD, DD and 
12h/12h photoperiods; b) LDsk, DD, and LD full photoperiods; c) SD into DD 
photoperiods; and d) SDsk into DD photoperiod
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4.3.5   Skeleton photoperiodic breeding  

As first shown in chapter 2, behavioral tests of fecundity were performed under 

varying photoperiodic conditions. Fecundity results under full LD and SD 

photoperiods are shown in figures 2.5 (LD vs. SD over 100 consecutive days) and 

2.6 (LD vs. SD, followed by a “switch” into opposite regimes, up to 52 days total).  

Shown here, figure 4.8 illustrates the result of fecundity testing (mean clutch size) 

in adult zebrafish housed in LDsk (2h‐12h‐2h/8h) or SDsk (2h‐4h‐2h/16h) as 

compared to groups housed in regular UCL fish facility conditions (14h/10h; black 

trendline).  

Figure 4.8: Photoperiodic fecundity of adult zebrafish, 8mo old. a) Pre‐testing in 
control lighting conditions on days 0‐38, followed by breeding either LDsk (2h‐
12h‐2h/8h; orange points) or SD (2h‐4h‐2h/16h; blue points) from day 41 ‐ 90. 
Grey bar indicates the switch from control to experimental light regimes, on days 
38‐41.  Grey points indicate clutch sizes of control fish kept in 14h/10h LD 
conditions.  
 

Photoperiodic fecundity levels changed immediately when moved from control 

conditions (14h/10h) into experimental light‐controlled cabinets. At the start of 

entrainment, fish exposed to LDsk lighting had a mean breeding level of 404 

eggs/clutch, while SDsk exposed fish laid less than 72 eggs/clutch (Control mean = 

250 eggs/clutch). Over the course of the experimental phase (days 41‐90) LDsk 

fish had decreasing fecundity levels (LDsk slope = ‐1.5406), but maintained 

average level greater than the control (slope = +1.5581) or SDsk (slope = ‐1.2517) 

groups. SDsk fish showed an immediate drop in clutch sizes (72 eggs on day 51), 

down to a single egg laid on day 89.  
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The difference in skeleton photoperiodic‐sensitive fecundity levels was highly 

significant different between conditions (D = 0.062; p = 0.001). Levels of egg‐

laying by SDsk fish reached a low of 1 egg laid/day after 50 days of entrainment 

(Fig 4.8, right side), while LDsk groups had clutches of no less than 98 eggs/day at 

the same point. 

 

4.4  Discussion 

Entrainment of peripheral clocks in zebrafish cell lines and tissues explants have 

given interesting insights into the role of changing photoperiods on the molecular 

core components of the clock.  The use of skeleton photoperiods allows further 

investigation of the role of specific clock genes in seasonal responsiveness, 

exploring the possibility of tissue‐specific differences between dawn and dusk 

sensitivities.  

     
4.4.1   Skeleton and Full Photo­entrainment 

The entrainment of zebrafish cellular circadian rhythms to full LD and SD 

photoperiods shows clear peaks in Per1 at ZT 3 and Cry1a at ZT 5, in both 

conditions. SD entrained cells had a clear lag in the declining phase of each cycle as 

compared to LD cells, but 24h circadian oscillation peaks were maintained 

throughout the experiment. This demonstrates the importance of the circadian 

period regardless of daylength in peripheral clocks, and establishes a clear dawn 

(ZT 3‐5) responsiveness in these cells (see fig 4.4). 

 

Key research questions in regards to peripheral clock expression involve the 

timing of skeleton pulses in defining the subjective “night” or dark period of the 

entrained circadian period. During a LD skeleton regime (2h‐12h‐2h/8h), the clock 

could entrain to either the first 2h light pulse (followed by 12h of dark) or the 

second pulse (followed by 8h of dark). While the skeleton 2h‐12h‐2h phasing 

matches the duration of a full 16h LD light phase, total light exposure is no more 

than 4h. Conversely, would a SD skeleton photoperiod initiate entrainment to a 2h‐

4h‐2h/16h photoperiod, with cells responding to the dawn pulse primarily, or 
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would the cellular clock entrain preferentially to the dusk pulse (2nd light pulse; 

2h‐16h‐2h/4h), a subjective “20h day, 4h night” regime?  

 

These questions were addressed in clonal cell populations (expressing Per1­luc 

and Cry1a­luc) and in transgenic fish scales (expressing Per3­luc).  In a SD skeleton 

photoperiod (2h‐4h‐2h/16h), both Per genes entrained to the first 2h light pulse 

after 16h of dark, with comparable amplitudes and periodicities.  Cry1a­luc 

expression in the same SD skeleton test also entrained to the “dawn” pulse (2h‐4h‐

2h) of the photoperiod, but displayed the masking effect of direct light 

responsiveness, as both light pulses stimulated Cry1a expression. This result 

confirms previously published findings in 12h/12h skeleton photoperiods, where 

Cry1a­luc cells had dual peaks after light pulses as short as 15min (Tamai et al., 

2007).  

 

Testing of clonal populations expressing Per1­luc and Cry1a­luc indicated peak 

expression directly after light exposure (approximately ZT 3) in LD, SD, and 

12h/12h photoperiods (Fig 4.6a‐d). When exposed to a LD skeleton regime (2h‐

12h‐2h/8h) Per1­luc cells entrained to the first light pulse (subjective dawn) after 

the (longest) 12h dark period, followed by a small (masking) peak at the “dusk” 

light pulse, after the 8h dark period (fig 4.6b; red trace). In LD skeleton exposure, 

both dawn and dusk pulses stimulated Cry1a­luc expression. Peak Cry1a­luc 

expression was recorded 3h after 2nd pulse, suggesting that the cells interpreted 

longer dark phase of 12h as the subjective “night”, and used the alternate 2h‐8h‐

2h/12h regime as their skeleton photoperiod; a model of a 12h/12h light dark 

cycle rather than the possible 16h/8h cycle interpretation.  

 

As noted by Pittendrigh and Daan (1976), skeleton lighting models predict 

entrainment patterns will be more stable when activity is focused within the 

longer pulse interval, over the shorter. In cases of increasing asymmetry, 

organisms may "phase jump", shifting their active periods from the shorter to the 

longer interval, in the current model the circadian “dawn” would be interpreted as 

the first light pulse after the longest period of darkness. This phase shift, called 

“psi jumping” (Pittendrigh & Daan, 1976), is evidenced between full and skeleton 
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photoperiods in figure 4.6b, where Per1­luc and Cry1a­luc expression entrains to 

the first light exposure after the longest period of darkness, as “dawn”, an 

interpretation based on dark‐length, reminiscent of the key role of night length in 

the External Coincidence Model of Photoperiodism (see figure 1.2, chapter 1 for a 

review). When comparing LDsk and SDsk Per3­luc results, it is clear that all three 

tissues tested undergo a phase‐shifting effect, as predicted by Pittendrigh and 

Daan (1976), and consistently interpret the first pulse after the longest dark 

period as “dawn” and set their circadian oscillations to this cue preferentially. 

 

Per1­luc entrainment to a SD skeleton regime resulted in a single peak in 

expression, followed by a slight lag in phase oscillation, with entrainment linked 

with the subjective “dawn” pulse; thereby interpreting the 2h‐4h‐2h/16h cycle as 

having a 8h “day” period, rather than the extreme 20h “day” possible with a dusk 

pulse entrainment. In the same SD skeleton conditions, Cry1­luc expression peaked 

just after the 1st light pulse (2h‐4h‐2h/16h), with a secondary peak at dusk. In this 

photoperiod, Cry1a­luc cells interpreted the two closest pulses as “day”, and the 

longest dark period as “night”, as they had in the LD skeleton regime. This reflects 

and extends previous results, where entraining skeleton photoperiodic pulses of 

15min induced peaks in Cry1a expression after each exposure (Tamai et al., 2007).  

 

In zebrafish light inhibits CLK:BMAL function (in part) through the transcriptional 

activation of cry1a. The binding of the CRY1a protein to CLK and BMAL (singly) 

prevents the formation of an active transcriptional complex, leading to the light‐

dependent repression of per1 (Tamai et al, 2007). This process is thought to be 

one route by which the core clock mechanism is entrained to photoperiodic cycles 

in this system. As shown in figure 4.6, this repressive relationship between Cry1a 

and  Per1 is illustrated in period of DD, where Cry1a expression drops 

immediately, and Per1 levels increase in tandem (as Cry1a repression is removed). 

 

This interaction is further illustrated as light‐sensitive Cry1a expression is strongly 

inhibited in full darkness (fig 4.6, middle), which coincides with the strong 

increase in Per1 expression, likely due to the release of Cry1a repression. The 

results of LD and SD skeleton entrainment given here reflect classic circadian work 
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by Colin Pittendrigh (1964) where Drosophila eclosion activity “jumps” such that it 

is timed to occur in the shorter of the two inter‐pulse dark intervals.  

 
4.4.2   Per3­luc tissue responsiveness 

The expression of Per1 in cell lines is synchronized with Per3 rhythms in 

transgenic zebrafish scales (fig 4.5a; green trace). Peaks in both genes are maximal 

at ZT 3, reflecting published findings in vivo and other zebrafish cell lines tested 

(Cahill, 2002a). Per3­luc expression in photoperiod‐associated tissues such as the 

pituitary, pineal and hypothalamus also peaks at ZT 3, a finding also noted in 

regular LD and SD photoperiods (see fig 4.7a+c). When exposed to skeleton 

photoperiods, peak Per3 –luc expression remained locked to ZT 3, and is entrained 

to the 1st light pulse after the longest period of darkness (dawn in SDsk; dusk in 

LDsk). These results reflect results in clonal cell responsiveness, in matched 

experiments (fig 4.6). In both LD and SD skeleton regimes, pineal and pituitary 

samples responded to a single light pulse while hypothalamic samples in the LD 

skeleton regime showed a secondary peak with the 2nd pulse exposure 

(exclusively). This novel finding in hypothalamic tissue explants suggests that 

some regional sensitivity in neural light responsiveness exists and may be 

stimulated in vitro. Further work using hypothalamic explants would help define 

the nature of this tissue‐specific phenomenon. Ideally, initial tissue explant 

entrainment, followed by an extended period in DD would explore questions 

regarding tissue specific free running periods, and comparisons between 

dispersed hypothalamic cells and intact hypothalamic explant cultures would be of 

interest. 

 
4.4.3  Per/Cry Coincidence Theory 

The entrainment of peak timing amplitudes and the difference in oscillatory 

rising/dropping phase entrainment (as shown in fig 4.3) raises the possibility of 

independent “morning and evening” oscillators within zebrafish cells, with each 

oscillator sensing light at dawn or dusk specifically. PER and CRY proteins are key 

components of the negative limb of the circadian clock, rhythmically modulating 

circadian gene transcription via E‐box motifs on target genes (Cahill, 2002a). 
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Zebrafish Per1 expression has been shown to peak near dawn, mimicking similar 

circadian oscillations in seasonally sensitive mammals such as syrian hamsters (M. 

auratus) and soay sheep (Ovis aries) (Cahill, 2002a; Hazlerigg & Wagner, 2006). In 

seasonally breeding hamsters, this increase comes in the early morning as 

circulating melatonin levels decline and has been localized to the PT (Messager et 

al., 1999). Using direct injection of melatonin, Dardente and colleagues have 

shown clear induction of Cry1mRNA and inhibition of Per1 mRNA in the 

mammalian PT (Dardente et al., 2003). These findings suggest the amplitude and 

expression of Per1 and its repressor Cry1a, could be linked with melatonin 

signaling and could be regulated in a tissue‐specific manner, creating a 

photoperiodic “calendar” model, based on melatonin action on Per1 and Cry1 

expression in the PT. This model predicts the seasonally changing night length 

(interval between dusk and dawn light exposure), as represented by the duration 

of nocturnal melatonin secretion, may be reflected in the temporal coincidence of 

the per and cry genes in the PT of the mammalian pituitary.  Unlike Cry1 in 

mammals, a key difference in zebrafish Cry1a is its’ direct light responsiveness. 

Currently, no data exist regarding putative responsiveness to melatonin by this 

gene. Consequently, I was unable to confirm a mammalian style‐model in the 

current work, as tissue constraints in zebrafish did not allow PT specific 

experimentation. After extensive trials, long‐term cultures of isolated pituitaries 

were performed using transgenic Per3­luc samples. These results need to be 

replicated in Per1­luc and Cry1a­luc mutants in order to fully examine this model 

in the current system. My work has proven the feasibility of this approach and 

established a novel protocol for micro‐cultures in a new vertebrate circadian 

model system.  

 

An alternative interpretation from figure 4.3 fits more with an external 

coincidence model (see figure 1.2; chapter 1 also). The long photoperiod 

dramatically increases the duration of expression of cry1a in zebrafish cells, as a 

direct consequence of its light inducibility; long days mean more cry1a expression. 

As cry1a is a strong repressor of per1 expression, the rising phase of per1 

expression is delayed by a duration very similar to the increase in photoperiod. 

The peak timing is the same, but the per1 rhythm is delayed, a fact that is very 
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clear when one examines the trough in expression rather than the peak. If there is 

a photoinducible phase or window associated with this timing, in the mid or late 

night, then this change of waveform on a long day would place this photoinducible 

window now into the light (around dawn) on a long day. It is important to state 

that we do not yet know if these cell lines show a downstream photoperiodic 

response. However, the above change in entrained waveform could provide an 

underlying clock mechanism that could drive photoperiodism in cell culture.  

 

4.4.4  Breeding in Skeleton Photoperiods 

After establishing the responsiveness of isolated zebrafish cells and tissue explants 

to full and skeleton photoperiods, it was useful to record the behavioural effects of 

such regimes on previously established measures such as fecundity and breeding.  

Figures 2.5 to 2.8 have illustrated the stimulatory effects of LD light exposure on 

clutch sizes, and the inhibitory effect of SD regimes on both fertility and fecundity. 

Would established pairs of breeding zebrafish respond to skeleton photoperiods in 

similar way to full light regimes, as shown in chapter 2? Figure 4.8 illustrates the 

mixed results found in the current skeleton breeding model. The LDsk regime did 

stimulate breeding, with a significant increase in clutch sizes at the beginning of 

the experimental period, which was sustained above SDsk and control groups 

throughout the testing period. LDsk clutch sizes were highly variable throughout 

testing and while clutch sizes remained high, there was a decline in mean 

fecundity over time, which is not demonstrated by groups in full LD entrainment 

conditions.  

 

Fecundity rates of SDsk entrained zebrafish were similar to full SD entrained 

groups. Initial SDsk exposure coincided with an immediate drop in breeding levels, 

which declined over time. As expected, SDsk entrained pairs had lower clutch sizes 

than LDsk and Control groups, and displayed less variability in egg laying 

throughout the experiment.  

 

Exposure to a skeleton LD photoperiod had a positive effect on zebrafish fecundity, 

and skeleton SD lighting inhibited egg laying, and these effects were significantly 
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different than controls. These effects were acute, starting on the first day of 

entrainment and sustained throughout the testing period. Skeleton photoperiods 

differed from full photoperiodic entrainment, as fecundity levels declined over 

time, suggesting that absolute light duration is necessary for physiological fitness 

rather than matched light exposure in the form of skeleton “pulses”, as tested here. 

Further work such as monitoring the light‐responsiveness of reproductive tissues 

is necessary to clearly establish a link between local and systemic control of 

fecundity in relation to photoperiod.  The differences currently observed between 

LDsk and SDsk reproduction may be due to the limited light exposure duration (4h 

in both conditions or the need for appropriate phasing of a photo inducible phase, 

or altered internal coincidence of oscillating genes. 

   
4.4.5  Overall skeleton photoperiod responsiveness 

Overall, the work described above has established the similarity between cell and 

tissue responsiveness in in vitro models of skeleton and full LD/SD seasonal 

photoperiodism. Three fundamental zebrafish circadian genes Per1, Per3 and 

Cry1a were monitored in long term cultures and consistently entrained to light 

pulses, such that the shortest dark phases were interpreted as part of the 

subjective day, with the longer dark phase as subjective night. Circadian‐

associated tissues such as the pituitary, pineal and hypothalamus were cultured 

individually to monitor the possibility of differential regional rhymicity and 

responsiveness. Transgenic Per3­luc expression in these tissues was expressed as 

expected, with peaks at ZT 3 in all photoperiods tested. Interestingly, 

hypothalamic Per3­luc explants displayed a clear secondary peak after the dusk 

pulse in LD skeleton lighting, a result in this tissue specifically. This result suggests 

a complex interaction with other classic circadian genes such as Cry1a and further 

work using transgenic models would be highly informative. Finally, long‐term 

behavioural testing was undertaken to monitor the effect of seasonal skeleton 

photoperiods (LD and SD) on zebrafish fecundity. While skeleton LD lighting did 

have a stimulatory effect of clutch sizes, this effect diminished over time, while full 

LD entrainment had increasing rates of reproduction throughout the testing 

period. SD skeleton entrainment inhibited egg laying, as with full SD photoperiodic 

entrainment (see Chapter 2). These results are mixed, suggesting that light 
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duration (timing of light pulses) does work to influence whole animal reproductive 

parameters, but is not maximally stimulatory, as full LD light (16h/8h) exposure 

increases egg laying sequentially and significantly over time.



 

Chapter 5  Page 136 

CHAPTER 5 – GENERAL DISCUSSION AND FUTURE WORK 
 

The current work was undertaken to gain a better understanding of the 

photoperiodic regulation of seasonal reproductive physiology and somatic growth 

in the popular genetic model, zebrafish (D. rerio), and determine if this species is a 

useful new model with which to study the biology of photoperiodism. The results 

of this study have many applications, most notably to inform industrial 

aquaculture guidelines for teleost stock growth and maturation, and for use by 

zebrafish labs worldwide.  

 

This research project had three main paths of study: 

1) The effect of photoperiodism on whole organism physiological measures, 

such as growth and breeding, with a focus on groups housed in seasonal LD 

(16h/8h; summer) and SD (8h/16h; winter) light conditions. 

2) The effect of LD and SD photoperiods on the expression of pituitary and 

hypothalamic hormones underlying growth and reproduction. These 

results are later discussed in relation to tissue‐specific melatonin receptor 

expression to determine a relationship between neuroendocrine factors 

and the circadian system. 

3) The responsiveness of isolated zebrafish cells and pituitary/neural explant 

cultures to seasonal skeleton photoperiods, exploring the effect of total 

light exposure on circadian rhythmicity in peripheral clock gene expression. 

   

5.1  Photoperiod and Growth 

Photoperiodic responsiveness, growth and nutritional status are important to 

reproductive timing and success, with species‐specific thresholds of size, weight 

and growth to be crossed before sexual maturation can be achieved (Taranger et 

al., 2010).  The data presented in chapter 2 clearly demonstrate the stimulatory 

effect of LD photoperiods (16h/8h) on adult zebrafish growth, as determined by 

simple measures of body weight and length (see fig. 2.4). This is reminiscent of 
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results in salmon, where exposure to increasing photoperiods (spring into 

summer) triggers early sexual maturation and stimulates growth (Le Bail, 1988). 

Light‐mediated increases in growth were greatest between 11mo to 30mo 

coincident with the period of peak reproductive activity, and were absent in early 

adulthood (6mo), which might indicate an early period of photo‐insensitivity. 

 

Gonad weight was also significantly different between LD and SD groups, between 

6mo to 20mo. Preliminary histological examinations of SD ovaries revealed oocyte 

atresia, while LD ovaries displayed abundant mature oocytes (data not shown). 

Interestingly, there were no differences in testis weight between LD and SD, at any 

age tested. Changes in ovary, but not testis weight indicate a gender‐specific effect 

of photo‐stimulation and reproductive capacity, such that successful gonad 

maturation (and successful reproduction) is dependent on long day photoperiods 

and may be primarily determined by the photoperiodic‐sensitivity of the female 

zebrafish.  

 
In order to explore the interplay between the external photoperiodic conditions 

and these physiological results (chapter 2), experimentation focused on pituitary 

and hypothalamic hormone expression under LD and SD conditions (chapter 3). 

     

5.2  Photoperiod and neurohormone expression 

Physiological maturation and growth is governed by the synthesis and release of a 

number of neurohormones (Holloway et al., 1999), while the individual control of 

reproductive status and gonadal maturation is governed by the synthesis and 

release of pituitary gonadotrophins specifically (Davies et al., 1999). Many of these 

endocrine signals are photoperiodically regulated and responsive to growth rates, 

thereby providing a link between internal resource/growth cues and the 

hypothalamic pituitary gonad (HPG) axis in fish (Holloway et al., 1999). Results 

discussed in chapter 3 focus on the daily and lifelong expression of a host of 

reproductive and growth related hormones in zebrafish, including the 

hypothalamic releasing hormones and their downstream pituitary targets, tissue‐

specific expression of melatonin receptors (circadian and lifelong differences 
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between LD and SD) and circadian and photoperiodic oscillations of Dio1, Dio2 

and Dio3 expression in the zebrafish hypothalamus, never before published.   

 

5.2.1  GnRH and pituitary gonadotrophins 

Circadian clock genes are involved in the regulation of timed GnRH 

(gonadotrophin release hormone) pulses in cell culture (Chappell et al., 2003). In 

the current work, hypothalamic GnRH expression had dynamic, circadian 

oscillations; rising in the late afternoon in tandem with peak Cry1a levels (see fig 

3.1a), thus confirming similar findings in other (larger) teleosts (Bayarri et al., 

2004), and extending these findings to zebrafish. Peak GnRH pulses in the late 

afternoon have also been linked to diurnal gonadotrophin expression, such as LH 

in vivo (Sisk et al., 2001); also confirmed here, as both GnRH and LH expression 

profiles are synchronized. At night, (ZT 15; 3hrs into the dark period) pituitary 

PRL levels are at their lowest, coinciding with the increase in nocturnal melatonin 

expression. This may reflect similar findings in cultured trout pituitary, where PRL 

is inhibited in the presence of physiological doses of melatonin (Falcon et al., 

2003a). Overall, circadian expression of the pituitary gonadotrophic hormones 

follows GnRH bi‐modal patterns, with peaks in the late day and late night (fig 

3.2b), and is consistent with similar patterns reported in larger teleost fish 

(Bayarri et al., 2004). Though it is not possible to actually measure the levels of 

circulating hormone in the blood of zebrafish, these results do show that this 

species might provide a useful and more convenient model system for studying 

reproductive hormonal changes in larger, commercially important fish species.  

 

Long‐term measures of GnRH and pituitary LH, FSH, and PRL levels were 

significantly higher in SD>LD groups at 6mo and 15mo (fig 3.3). These results are 

similar to findings in both goldfish (C. aruratus) (Sohn et al., 1999) and gilthead 

sea bream (S. aurata) (Zohar et al., 1995), where GnRH is known to stimulate 

gonadotrophin release, leading to similar expression profiles. At first glance this 

SD>LD difference may be counter‐intuitive, when compared with stimulating 

effects of LD exposure on growth and reproduction documented in chapter 2. In 

salmon, FSH expression increases as vitellogenesis (maturation of vitellogenin; an 
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egg yolk precursor protein) and reproduction proceeds (Swanson et al., 1989), 

thus LD induced reproduction would be expected to coincide with a rise in FSH, in 

direct opposition to the findings shown here. These unexpected results may be 

explained by the breeding strategy used by a given teleost species. Zebrafish are 

an iteroparous species (having multiple reproductive cycles over their lifespan), 

similar to Rainbow Trout (O. mykiss). In trout, FSH levels oscillate within a given 

reproductive cycle, decreasing after vitellogenesis and remaining low, while being 

sufficient to maintain gamete growth without stimulating further follicular 

recruitment (Prat et al., 1996).  I postulate that zebrafish FSH may oscillate in a 

similar, iteroparous manner, within their shorter reproductive cycle of 3‐4 days in 

zebrafish (Westerfield, 1995), as compared to the extended seasonal cycles of 

trout.  If correct, LD entrained zebrafish would be expected to express FSH in short 

peaks, 10‐12hours before ovulation, dropping to baseline levels immediately after 

egg laying. Conversely, SD entrained zebrafish with low breeding rates would 

likely have high baseline FSH levels throughout their reproductively active years, 

as they struggle to develop mature oocytes and maximize vitellogenin production. 

Recently, administration of exogenous melatonin (mimicking a SD photoperiod) 

has been shown to increase egg production and levels of vitellogenin in zebrafish 

(Carnevali et al., 2011). Zebrafish reproductive hormone levels are likely quite 

dynamic, with short‐lived peaks between spawning periods. These hormonal 

expression peaks may be overlooked by long‐term sampling regime used here, 

where samples were taken systematically at different ages. Further experiments, 

expanding the resolution of sampling times, monitoring the expression of FSH 

receptors in the gonads and incorporating the use of knockout models for GnRH 

and gonadotrophins may conclusively determine any seasonal sensitivity in this 

model and are recommended in future testing to confirm the current hypothesis. 

In essence, the regulation of reproductive hormone gene expression is not as 

straightforward as initially expected, and more extensive (high resolution) 

sampling frequencies are planned for future experiments. 

 
5.2.2  GHRH and GH 

Measures shown in chapter 3 (fig 3.1 ‐3.2) demonstrate the circadian rhymicity of 

hypothalamic GHRH (growth hormone releasing hormone) and pituitary GH 



 

Chapter 5  Page 140 

(growth hormone) expression, though their oscillatory profiles are not 

synchronized. GHRH levels mirrored GnRH and gonadotrophic expression profiles, 

with lower amplitude. Pituitary GH expression is seemingly independent of GHRH, 

with a significant peak just after dawn (ZT3). In mammals, GH is released in 

nocturnal pulses from the pituitary gland and acts to stimulate bone and muscle 

growth, while in fish GH expression is diurnal (Sam & Frohman, 2008). 

Experiments using cultured trout pituitaries have shown bi‐modal GH release, 

with picomolar concentrations of melatonin inhibiting GH release, while higher 

(nanomolar) concentrations increase GH secretion (Falcon et al., 2003a).  In the 

current study, GH transcript levels are stably expressed from ZT 9 – 21 (late day 

and night), with a single significant peak 3h after dawn. Given the differences 

between transcription and translation, it is possible that GH expression follows 

melatonin secretion, with a consistent 4h‐5h delay throughout the circadian cycle. 

Further study is recommended to confirm this hypothesis, including sampling 

these tissues at higher time resolutions and the use of both protein and mRNA 

techniques to discern possible differences between expression and secretion. 

Unfortunately at this time, good antibodies do not exist against these proteins in 

zebrafish.  

 

Teleost GH is associated with energy allocation during the pre‐spawning season, 

and contributes to the physiological decision to “spawn or wait” (Canosa et al., 

2005; Mingarro et al., 2002). As the expression of GH is down‐regulated in LD 

entrained samples (at 6mo, 15mo and 24mo), it is reasonable to hypothesize that 

these reproductively active groups may inhibit GH synthesis in favour of 

reproductive hormone expression. Further measures of photoperiodic GH, 

including higher resolution measurements (daily timepoints) to pinpoint detailed 

changes in GH, and GH receptor expression (within the reproductive organs) 

would be necessary to confirm this, and are recommended in future experiments. 

This could result in de‐synchrony between hypothalamic GHRH and pituitary GH 

expression in fish under long‐term photoperiodic exposure, as in the case here.  

Heightened GHRH sensitivity of pituitary explants from sexually regressed (SD 

entrained) specimens (over LD entrained groups) would be highly recommended 

for future in vitro experiments. Given the dramatic inhibition of SD exposure on 
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zebrafish fecundity (chapter 2), I anticipate long‐term SD groups would be more 

responsive to GHRH expression, a hypothesis outside the scope of the current 

work. 

     
5.2.3   TSH, MT1 and MT2 

Mammalian photoperiodic studies have demonstrated increased melatonin 

receptor expression in the anterior pituitary and pars tuberalis (PT) (Dardente et 

al., 2003). PT cells derive from thyrotrophs during development, and seasonally 

express both thyroid‐stimulating hormone (TSH) and the common glycoprotein 

subunit used to form the active heterodimer, thyroid‐stimulating hormone (TSH) 

(Klosen et al., 2002). TSH released from the PT acts on the mediobasal 

hypothalamus, in the ependymal cell layer surrounding the third ventricle and 

target tanycyte cells directly (Hanon et al., 2008). Tanycyte cells are thought to 

modulate hypothalamic‐pituitary interactions through the hypophyseal stalk and 

pituitary portal system, and alter melatonin transport across the blood–brain 

barrier (Rodriguez et al., 2005). In mammals, the pituitary PT cells expressing TSH 

are melatonin‐sensitive and express MT1 receptors, yet are “blind” to TRH 

(thyrothrophin releasing hormone), suggesting a melatonin specific interaction 

(Hazlerigg & Loudon, 2008). In goldfish, short‐day photoperiods have been shown 

to increase TSH mRNA (Sohn et al., 1999) as was shown here in 6mo samples (fig 

3.3d). 

   

Melatonin binding assays have pinpointed active sites within the HPG 

(hypothalamic‐pituitary‐gonad axis) (Falcon et al., 2010), with seasonal 

differences in a number of teleost species (Sauzet et al., 2008). As shown in 

chapter 3, expression of melatonin receptor subtypes MT1 and MT2 is tissue 

specific, gene specific and age specific with clear differences between LD and SD 

entrained photoperiodic groups (fig 3.5c). Both TSH and FSH levels were greater 

in SD>LD samples throughout life, similar to pituitary MT2 levels (in LD only). 

Interestingly, short‐day MT2 levels differed from gonadotrophin expression, at any 

of the ages tested (fig 3.3 vs fig 3.5d).  
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Overall, circadian expression of zebrafish MT1 and MT2 is robust within the 

pituitary, with a dramatic peak in MT1 expression at dawn (compared with pit 

MT2), similar to the classical circadian genes Per1 and Per3 (fig 3.2c). 

Interestingly, these early peaks were tissue‐specific, as hypothalamic samples 

showed a single (circadian) peak of MT1 expression in the late day and an absence 

of circadian oscillations in MT2 altogether (see fig 3.1c). Taken together, these 

results suggest that MT1 has a primary role in photoperiodic modulation of 

gonadotrophin release (over MT2). These findings are novel and demonstrate that 

transcriptional melatonin receptor expression is; a) circadian, b) tissue specific 

(pituitary over hypothalamus) and c) target specific (MT1 over MT2). Mimicking a 

short day photoperiod through extended melatonin administration has been 

shown to increase gonadal maturation, but does not trigger a full photoperiodic 

response from the brain‐pituitary‐gonadal axis of young LD entrained salmon 

males (Amano et al., 2000). Interestingly, levels of pituitary GnRH, LH and plasma 

testosterone were all suppressed by a ten‐fold increase in circulating melatonin, 

suggesting that exposure to increased melatonin levels is involved with gamete 

maturation specifically (Amano et al., 2004). Based on the current findings in 

differential melatonin receptor expression in the zebrafish pituitary, I propose that 

MT1 and MT2 act as “gate‐keepers” of seasonal reproductive signalling, and are 

themselves seasonally expressed.  

 

5.2.4  Dio1, Dio2 and Dio3 

In mammals, PT‐derived TSH acts locally within the mediobasal hypothalamus to 

control tanycyte Dio gene expression (Hanon et al., 2008) and TSH receptor 

expression is co‐localized with Dio2 in the hypothalamic tanycytes (Revel et al., 

2006). Dio2 is a key enzyme in the control of thyroid‐hormone activity, converting 

T4 into bio‐active T3 in various target tissues (Hazlerigg & Loudon, 2008).  

Conversely, Dio3 works to inactivate T3, and together the relative expression of 

Dio2 and Dio3 determines the levels of biologically active T3 in the brain (Nakao et 

al., 2008b). Mammalian T3 activity stimulates the release of GnRH by the 

hypothalamus into the portal blood vessels to pituitary, where LH and FSH release 

is increased (see fig 1.9 for details) (Nakao et al., 2008b).  
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The interaction of photoperiodic melatonin expression and reproductive 

activation (specifically within the hypothalamus and pituitary) is more clearly 

defined in mammalian models than in teleost systems. Using MT1 and MT2 

knockout mice, a link between melatonin receptor expression and photoperiodic 

Dio3 expression has been described, where melatonin injections suppressed Dio2 

and induced Dio3 expression in wild‐types, and this effect was blocked by MT1 

disruption (Yasuo et al., 2009). Researchers have also found photoperiodic 

melatonin levels affect Dio2 and Dio3 expression in hypothalamic ependymal cells 

(EC), acting through MT1 receptors in the pituitary pars tuberalis (PT). This is 

corroborated by other mammalian studies, showing that the EC itself does not 

express melatonin receptors (Bartness et al., 2001; Schuster et al., 2000).  The PT 

is considered a target site for seasonal melatonin signalling due to high levels of 

MT1 mRNA while lacking MT2 mRNA (Reppert et al., 1995), MT1 mRNA and TSH 

protein co‐localization in the PT (Klosen et al., 2002) and PT produced TSH 

regulates Dio2 and Dio3 expression in the EC in Japanese quail (Nakao et al., 

2008b), sheep (Hanon et al., 2008), and mice (Ono et al., 2008).  

 

The zebrafish deiodinase enzyme expression levels reported here are entirely 

novel, as no published reports on circadian oscillations in teleost Dio expression 

were available at the time of writing, although Dio enzyme expression in 

photoperiodically entrained rodents (Yasuo et al., 2007) has been a major topic of 

circadian research in recent years. In birds, photoperiodic signals are received by 

deep brain photoreceptors of the medial basal hypothalamus (MBH) and 

integrated with the endogenous circadian oscillations of the clock‐gene system 

(Yasuo et al., 2005). Daylength cues of light and dark thereby modulate deiodinase 

expression (Dio2 and Dio3), which stimulate and inhibit GnRH and its target 

reproductive hormones in the hypothalamus and pituitary, respectively 

(Yoshimura, 2010). Experiments shown in chapter 3 illustrate that the circadian 

expression of Dio1, Dio2 and Dio3 in the zebrafish hypothalamus is gene specific, 

with peak Dio2 levels in the late day. This agrees with rodent data, where circadian 

Dio2 mRNA levels are rhythmically expressed in the ependymal cells of LD‐

entrained hamsters and peak at ZT 9, while Dio2 expression in SD ependymal cells 

remained low throughout the day (Yasuo et al., 2007).   
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Photoperiodic expression of LD and SD Dio1 and Dio2 were similar throughout 

life, with a notable exception in LD Dio1 at 6mo, which was significantly lower 

than 15mo‐24mo samples (fig 3.6a). Hypothalamic Dio3 levels were strongly 

affected by photoperiodic conditions, switching at each timepoint tested; 6mo 

LD>SD, 15mo SD>LD and 24mos LD>SD. This complex result is interesting when 

compared with circadian expression profiles, where Dio2 is clearly circadian and 

Dio3 daily levels are stably expressed from late day throughout the night (ZT 9, 15 

and 21). These differences suggest a differentiation between circadian (Dio2) and 

photoperiodic (Dio3) responsiveness in these interactive enzymes. 

 

As far as is known, this is the first demonstration of a diurnal rhythm of Dio2 

expression in the zebrafish hypothalamus and is important in unravelling the 

molecular basis driving the photoperiodic switch between T3 and T4, as reported 

in fish (Morin et al., 1993).  I propose that the circadian expression of Dio2, with 

peak levels in the late day (ZT 9; fig 3.1d) may be associated with the increase in 

hypothalamic GnRH at the same time (fig 3.1b) stimulating increases in FSH and 

LH also observed at ZT 9 (fig 3.2c). The lack of clear photoperiodic impact on Dio 

expression levels may reflect the frequency, and time‐scale of the time points 

examined. In quail the major photoperiodic changes in Dio levels were seen 

rapidly, within the first two days of a long day response. It would be very 

interesting to repeat these studies on Dio expression levels in zebrafish, but under 

a similar experimental paradigm, following immediate transfer to a long day 

photoperiod.  

 

5.3  Photoperiod and Breeding 

Seasonal photoperiods have been shown to alter spawning and reproductive 

activity in teleosts (Zohar et al., 2010) and to regulate teleost gonadal maturation 

and breeding rates in a wide range of marine and freshwater species (Amano et al., 

2000; Hansen et al., 2001). In the current study, zebrafish reproduction 

(fecundity/clutch size and fertility/number of live, successfully fertilized eggs) 

was significantly different between fish housed in continuous LD or SD lighting. 

Two sets of experiments were performed, using young (3mo‐6mo) and older 
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(10mo‐12mo) zebrafish. When entrained to LD conditions, both groups had 

greater breeding rates (fig 2.5 and 2.6), and significantly more successfully 

fertilized eggs (fig 2.7 and 2.8), compare to SD entrained groups. Older, 

reproductively established fish (experiment 2; 10mo‐12mo old) were more 

sensitive to LD exposure over time, with higher fecundity rates, as measured by 

trend line analysis, yet laid approximately 30% fewer eggs/clutch at their peak (fig 

2.6, phase 1, middle; approx. 550 eggs/clutch) than the younger (3mo‐6mo) fish 

tested (fig 2.5, right; 850 eggs/clutch).  

 

The current breeding results shown in chapter 2, are also reflected in comparable 

finding in Japanese medaka (O. latipes), where embryo production drops 

dramatically after moving LD (16h/8h) entrained breeders into SD (8h/16h) 

conditions, ceasing completely after 14 days in SD (Koger et al., 1999).  Return to 

LD conditions resumed embryo production within days, indicating a dual control 

of photoperiod on medaka embryo production ‐ inhibiting established egg laying 

rates and re‐initiating them after cessation (Koger et al., 1999).  In the current 

study, SD entrained zebrafish took 100 days to cease egg laying (fig 2.5), and 

return to LD conditions after SD entrainment (fig 2.6) had an immediate but short‐

lived “rescue” effect, with clutch sizes increasing 10‐fold, before dropping to the 

same breeding rate established in the initial entrainment period (Fig 2.6; middle, 

blue trend line). These results indicate two time courses for light modulation of 

reproduction in zebrafish; an immediate effect, shown within 1‐2 days and a long‐

term effect (14‐21 days) based on the previously entrained photoperiod. The 

temporal differences in photoperiodic breeding responsiveness recall comparable 

results in medaka and illustrate two forms of photoperiodic reproductive control, 

a) local (immediate) control of egg release mediated by direct responsiveness in 

the ovaries and b) long‐term control of gamete development, likely modulated by 

reproductive hormones such as LH and FSH expressed by the pituitary. Both 

zebrafish fecundity and fertility rates (as measured by live/fertilized eggs) were 

significantly higher in LD>SD, in both young (3.5mo; Fig 2.7) and older (10mo; fig 

2.8) groups. Recent results in siamese fighting fish (Betta splendens) have also 

shown increased fertility rates in LD>SD samples (Giannecchini et al., 2012), and 

tilapia subjected to a 18h/6h photoperiod, have higher fertility rates due to the 
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modulation of the HPG axis by melatonin, triggering the release of hormones 

responsible for gametogenesis and gamete maturation (Campos‐Mendoza et al., 

2004). In species such as rainbow trout, ovarian recrudescence and vitellogenesis 

is stimulated by long or increasing daylength, while ovulation and later oocyte 

maturation is synchronized by decreasing or short photoperiod (Bromage & 

Duston, 1986). 

 

These results suggest specific phases in the reproductive cycle, which can be 

delayed or advanced by photoperiodic manipulations, under the control of an 

(photoperiod entrained) endogenous clock mechanism that expresses a phased 

response to daylength, as has been reported in salmonids (Randall & Bromage, 

1998). Importantly, in many female salmonids such as rainbow trout, failure to 

switch from long to short days after the summer solstice doesn’t inhibit spawning, 

but acts to desynchronize spawning times within the population (Randall & 

Bromage, 1998). In contrast, male trout (O. mykiss) continue to express sperm 

throughout the spawning season, suggesting that spermatogenesis is less strictly 

regulated by photoperiod than oogenesis in females (Migaud et al., 2010). In both 

sets of breeding experiments, moving from LD (or control 14h/10h lighting) 

conditions into SD lighting reduced clutch sizes (fecundity) and number of 

fertilized eggs (fertility) (figs 2.4 ‐ 2.7). Coupled with the changes in ovarian 

weight, these results suggest that gender differences are a significant variable in 

the expression of zebrafish photoperiodic responsiveness, as shown for the first 

time in chapter 2. 

     

5.4  Circadian Clock Genes and Skeleton Photoperiods 

Cellular circadian rhymicity is based on auto‐regulatory transcription–translation 

feedback loops, where CLOCK (CLK) and brain muscle ARNT‐like (BMAL) proteins 

form a heterodimer, stimulating period (per) and cryptochrome (cry) genes, 

initiating their transcription. The core clock repressor proteins PER and CRY 

interact with the CLK:BMAL heterodimer, thereby down‐regulating their own 

expression (Cahill, 2002a). By coupling a luminescent reporter to targeted core 

clock genes, it is possible to visualize the molecular responsiveness of individual 
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cells and tissue explants to varying photoperiodic conditions. Using skeleton 

photoperiod protocols (chapter 4) I examined the role of specific clock genes in 

the measurement of seasonal daylength, exploring the possibility of tissue‐specific 

differences between dawn and dusk responsiveness. 

 

Initial skeleton lighting tests aimed to determine the entrainment of cellular 

circadian rhythms, as cells could entrain to either the first or second light pulse in 

a given 24h cycle. Using clonal cell populations and transgenic fish scales in a SD 

skeleton photoperiod (2h‐4h‐2h/16h), per3, per1 and cry1a genes all entrained to 

the “dawn/first” pulse (2h‐4h‐2h) of the light regime, following the longest period 

of darkness (see fig 4.5). Under a LD skeleton regime (2h‐12h‐2h/8h) Per1­luc 

cells entrained to the first light pulse, while both dawn and dusk pulses stimulated 

Cry1a­luc expression, with Cry1a­luc peaking 3h after 2nd pulse, suggesting that the 

cells interpreted longer dark phase of 12h as the subjective “night”. These results 

confirm predictive models first described by Colin Pittendrigh, which proposed 

activity (both cellular and behavioural) focused to the longest period between 

pulse intervals leads to maximally stable entrainment patterns (Pittendrigh & 

Daan, 1976). In addition, a phenomenon called “psi jumping” or phase shifting can 

also occur in cases of significant circadian asymmetry, where organisms can shift 

their active period from the shorter to the longer interval directly (Pittendrigh & 

Daan, 1976). This is the case when comparing Per1­luc, Per3­luc and Cry1a­luc 

expression between full and skeleton photoperiods (fig 4.5b), where circadian 

oscillations were consistently entrained to the first light exposure after the longest 

period of darkness.  

 

Both per1 (in cell lines) and per3 expression from transgenic zebrafish scales were 

synchronized, peaking at ZT 3 and reflecting published findings in vivo and other 

zebrafish cell lines tested (Cahill, 2002a). Per3­luc expression in photoperiod‐

associated tissues such as the pituitary, pineal and hypothalamus also peaks at ZT 

3, a finding also noted in regular LD and SD photoperiods (fig 4.6a+c). When 

exposed to skeleton photoperiods, peak Per3 tissue expression remained locked to 

ZT 3, just after the dawn pulse (during the SD skeleton regime) and after the dusk 

pulse (during the LD skeleton regime).  
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In both LD and SD skeleton regimes, pineal and pituitary samples responded to a 

single light pulse while hypothalamic samples in the LD skeleton regime 

(exclusively) showed a secondary light response after the dawn pulse. This novel 

finding in hypothalamic tissue explants suggests that some regional sensitivity in 

neural light responsiveness exists and may be stimulated in vitro. Further work 

using hypothalamic explants would help define the nature of this tissue‐specific 

phenomenon. Ideally, initial tissue explant entrainment, followed by an extended 

period in DD would explore questions regarding tissue specific free running 

periods, and comparisons between dispersed hypothalamic cells and intact 

hypothalamic explant cultures would be of interest. 

 

In recent years, much research attention has focused on the use of independent 

morning and evening oscillators, each sensing light at dawn or dusk specifically 

(see Lincoln et al., 2003 for a comprehensive review).  As with many mammalian 

models tested, zebrafish Per1 expression peaks near dawn (see chapter 4). In 

seasonally breeding hamsters this peak coincides with a decline in circulating 

nocturnal melatonin and has been localized to the PT (Messager et al., 1999). In 

addition, injection of exogenous melatonin increases Cry1mRNA and decreases 

Per1 mRNA in the mammalian PT (Dardente et al., 2003). Together, these findings 

link Per1 and its repressor Cry1a with melatonin activity within the pituitary, thus 

combining seasonal/photoperiodic melatonin expression with cellular clock gene 

oscillations in a key neuroendocrine controller, known to modulate reproductive 

cues.  As zebrafish Cry1a is known to be directly light responsive (unlike 

mammalian Cry1 homologues), further work is necessary to extend this putative 

(mammalian) model of seasonal circadian/photoperiodic gene expression here, 

and was beyond the scope of the current work. Future experiments recording the 

responsiveness of Cry1a to melatonin and Cry1a knockout testing are 

recommended to address this line of questioning.  

 

Having established cell and tissue responsiveness to full and skeleton 

photoperiods, I extended my breeding (fertility/fecundity) tests to monitor 

skeleton light regimes on reproductive behaviour.  As shown in chapter 2, LD 

photoperiods stimulated fecundity, while SD regimes inhibited both fertility and 
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fecundity (fig 2.5‐2.8). Skeleton photoperiods differed from full photoperiodic 

entrainment, as fecundity levels declined over time, suggesting that absolute light 

duration is necessary for physiological fitness rather than matched light exposure 

in the form of skeleton “pulses”, as tested here.  Based on these results, I 

hypothesize that the timing of light pulses/periods is a key factor in the 

stimulatory effect of LD (and LD skeleton) regimes on zebrafish reproduction, as 

the absolute duration of light exposure between LDsk and SDsk groups remained 

equal.  This argues for a key role of the clock in the zebrafish photoperiodic 

response, either by appropriate phasing of a photo inducible phase, or altered 

internal coincidence of oscillating genes. Further work such as monitoring the 

light‐responsiveness of reproductive tissues is recommended to determine any 

putative links between local and systemic control of fecundity in relation to 

photoperiod.   

 

Overall, results from skeleton and full LD/SD photoperiodic testing clearly 

demonstrated a cellular “interpretation” of the shortest dark phase (between 2 

light pulses) as subjective day, with the longer dark phase as subjective night. And 

while long‐term tissue cultures using transgenic pituitary, pineal and 

hypothalamus explants showed peak Per3­luc expression at ZT3, a clear secondary 

(dusk) peak was noted in hypothalamic samples under LD skeleton lighting 

exclusively. Finally, long‐term behavioural testing was undertaken to monitor the 

effect of seasonal skeleton photoperiods (LD and SD) on zebrafish reproduction. 

Both full and skeleton SD entrainment inhibited egg laying, while LD skeleton 

regimes stimulated breeding rates, with this effect weakening over time.  These 

results show that timing of light phases (through skeleton regimes) influence 

reproductive behaviour, but increased light duration (through full photoperiod 

regimes) is necessary to induce maximal LD/Summer stimulatory effects. 

      

5.5   Conclusions 

Timely prediction of seasonal change is crucial for many species to survive and 

reproduce successfully. The changing length of the daily photoperiod is one of the 

most predictive cues for the seasonal timing of physiology and reproductive 
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biology. A distinct feature of teleost physiology is their sensitivity to seasonal 

photoperiodic change, and their use of these light/dark cues to entrain and 

synchronize their seasonal reproduction.  In many organisms short days inhibit 

and long days stimulate seasonal responses, while experimental paradigms such 

as skeleton photoperiods have demonstrated that it is not the total amount of light, 

but the precise timing of a given light pulse that induces the photoperiodic 

response, thus providing a role for the circadian system in the measurement and 

interpretation of daylength. After decades of research into the role photoperiod on 

seasonal breeding, clear molecular pathways have yet to be described in full. The 

emerging picture of teleost photoperiodism is similar to that of avian species, 

where non‐ocular light receptors and de‐centralized oscillators are synchronized 

to provide the brain‐pituitary‐gonad axis its necessary cues. Melatonin’s role is not 

necessarily to act as an initiatory messenger, “conducting” an orchestra of 

individual cellular clocks as in mammals, but to entrain a number of lower level 

reproductive processes such as gonadal maturation and oocyte recruitment. While 

the molecular mechanisms of photoperiodism are still hotly debated in 

mammalian models, the current work demonstrates a clear role for the use of 

zebrafish, as a new model system for the study of photoperiodic changes in gene 

expression and physiology.  

 
The ability to synchronize circadian physiology and behavior with the extrinsic 

light cycle, is governed by the circadian clock, acting at different levels, ranging 

from the control of rhythmic gene expression, protein degradation and transporta‐ 

tion, to the modification of the structure of neuronal circuits and synapses (Elbaz 

et al., 2013). The current work presents evidence of the circadian control of genes 

expression, with clear differences in pituitary and hypothalamic rhythmicity 

patterns in a number of reproductive and growth‐associated genes.   

 
Advances in genetic and imaging tools will play a key role in the future application 

of zebrafish to study circadian rhymicity and clock regulation within the 

reproductive system. Novel methods for targeting neuronal gene mapping, such as 

the UAS/Gal4 system, are becoming more commonly used in zebrafish (Vatine et 

al., 2011). Use of this method in mapping seasonal changes in synaptic networks 

and ligand/receptor binding will provide a powerful approach in the future. Real‐
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time imaging of synaptic connectivity in the zebrafish brain during LD and SD will 

shed light on how circadian and homeostatic processes regulate synaptic 

plasticity. 

 
The use of zebrafish (D. rerio) as a model of circadian and seasonal biology has a 

number of positive and negative aspects. Due to their small size and short lifespan 

(2‐4years), they are easy housed and many hundreds of fish may be tested in a 

single experiment. They are ideal for studies of fertility and fecundity, due to their 

regular spawning cycles and provide 100‐500 eggs at each laying. In contrast to 

other fish models, zebrafish eggs are non‐adherent, allowing easy counting and 

manipulation.  

 
Some challenges are involved when using zebrafish as the main model for 

photoperiodic research; samples of systemic melatonin and reproductive 

hormones is limited by insufficient blood samples, the inability to take repeat 

samples (blood or tissues), and the lack of antibodies available for 

immunohistochemistry in this species. These issues were faced directly in the 

course of the work presented here, and are the main reasons for the focus on 

mRNA, qPCR and gene expression data, rather protein synthesis and activity rates.  

Interestingly, as a tropical species, zebrafish (D. rerio) are not subject to seasonal 

changes in photoperiodic light specifically. Yet the data presented here used this 

exogenous variable as the main cue for seasonal change, with dramatic 

behavioural and genetic results. The photoperiodic sensitivity of the zebrafish 

pituitary, hypothalamus and reproductive system clearly support my hypothesis 

that zebrafish are indeed responsive to seasonal light duration and are an 

excellent model for future vertebrate circadian physiology.CN 

 
To conclude, the work presented in this thesis represents novel research exploring 

the interactions of photoperiod, reproduction and growth in zebrafish. It provides 

useful information for the aquaculture, fisheries and scientific communities. In so 

doing, it is clear that further research remains to be performed to clearly define 

the underlying physiological mechanisms that regulate photoperiodically 

regulated reproduction and growth in one of the most popular genetic and 

scientific animal models in use today. 
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APPENDIX A: STATISTICAL RESULTS (CHAPTER 2) 
Appendix  A.1   Effects of Photoperiod on Zebrafish Body Growth 

 

 
   

Body Weight (g) – LD vs SD conditions 

Age  T­test  DF  P value    Significance 

6mo  0.348  101  0.7300  P > 0.05  nil 

11mo  19.800  78  0.0001  P < 0.001  *** 

15mo  7.350  87  0.0001  P < 0.001  *** 

20mo  3.370  80  0.0012  P < 0.01  ** 

24mo  1.170  80  0.2500  P > 0.05  nil 

30mo  3.860  37  0.0004  P < 0.01  ** 

Body Length (mm) – LD vs SD conditions 

Age  T­test  DF  P value    Significance 

6mo  0.91  101  0.3700  P > 0.05  nil 

11mo  14.40  78  0.0001  P < 0.001  *** 

15mo  12.70  87  0.0001  P < 0.001  *** 

20mo  6.77  80  0.0001  P < 0.01  ** 

24mo  1.33  80  0.1900  P > 0.05  nil 

30mo  4.04  37  0.0003  P < 0.01  ** 
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Appendix  A.2 Effects of Photoperiod on Zebrafish Gonad Weight 

 

 

Ovary Weight (g) – LD vs SD conditions 
Age  T­test  DF  P value    Significance 

6mo  4.180  29  0.000  P < 0.001  *** 

11mo  0.911  22  0.047  P < 0.05  * 

15mo  3.500  31  0.001  P < 0.01  ** 

20mo  1.920  44  0.042  P < 0.05  * 

24mo  0.273  25  0.790  P > 0.05  nil 

30mo  0.712  11  0.490  P > 0.05  nil 

Testis Weight (g) – LD vs SD conditions 
Age  T­test  DF  P value    Significance 

6mo  ‐1.310  52  0.200  P > 0.05  nil 

11mo  ‐1.660  51  0.100  P > 0.05  nil 

15mo  1.280  28  0.210  P > 0.05  nil 

20mo  ‐1.910  39  0.063  P > 0.05  nil 

24mo  ‐1.830  14  0.088  P > 0.05  nil 

30mo  1.980  22  0.060  P > 0.05  nil 
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APPENDIX B: QPCR PRIMERS (CHAPTER 3) 
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APPENDIX C: TABLE OF QPCR MEAN VALUES (CHAPTER 3) 
 

 

 
 
 
 
 
 
 
 
 

qPCR Target expression ‐ circadian measures (mean values)

Hypothalamic 
Targets 

ZT 3  ZT 9  ZT 15  ZT 21 

Dio1  1.56  1.61  1.51  1.60 

Dio2  2.30  3.65  1.83  1.59 

Dio3  1.44  2.58  2.54  2.08 

GnRH  1.49  2.70  1.41  1.87 

GHRH  1.23  1.85  1.25  1.76 

MT1  1.89  3.92  2.13  2.00 

MT2  1.96  1.70  1.61  2.15 

Per1  11.53  9.68  1.56  2.81 

Per3  9.21  8.67  1.20  4.57 

Cry1a  2.82  7.16  1.84  1.39 

Pituitary Targets  ZT 3  ZT 9  ZT 15  ZT 21 

GH  2.76  1.69  1.70  1.91 

LH  1.63  2.13  1.44  2.05 

FSH  1.85  2.70  1.65  1.92 

TSH  1.49  2.23  1.20  1.67 

MT1  8.42  3.93  1.11  1.96 

MT2  4.08  1.40  1.53  2.41 

Per1  25.46  14.49  3.08  5.15 

Per3  16.53  9.74  2.18  2.17 

Cry1a  6.62  27.62  4.26  1.67 
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qPCR Targets ‐ Lifespan measures (mean values) 
Hypothalamic 

Targets 
Photoperiod  6mo  15mo  24mo 

Dio1 
Long Day (16h/8h)  1.08  1.48  1.24 

Short Day (8h/16h)  1.50  1.37  1.28 

Dio2 
Long Day (16h/8h)  1.16  1.58  1.37 

Short Day (8h/16h)  2.61  1.55  2.45 

Dio3 
Long Day (16h/8h)  2.11  1.54  3.00 

Short Day (8h/16h)  1.82  1.44  1.85 

GnRH 
Long Day (16h/8h)  1.32  1.38  1.90 

Short Day (8h/16h)  2.33  2.61  1.69 

GHRH 
Long Day (16h/8h)  1.30  2.73  1.98 

Short Day (8h/16h)  2.63  1.47  1.85 

MT1 
Long Day (16h/8h)  1.40  1.34  2.22 

Short Day (8h/16h)  1.34  1.33  1.50 

MT2 
Long Day (16h/8h)  1.81  1.85  1.07 

Short Day (8h/16h)  1.21  1.51  1.27 

Pituitary Targets  Photoperiod  6mo  15mo  24mo 

GH 
Long Day (16h/8h)  1.43  1.82  1.65 

Short Day (8h/16h)  2.33  2.75  4.67 

LH 
Long Day (16h/8h)  1.41  1.81  1.73 

Short Day (8h/16h)  2.72  2.09  2.11 

FSH 
Long Day (16h/8h)  1.57  1.57  1.39 

Short Day (8h/16h)  3.54  2.83  2.49 

PRL 
Long Day (16h/8h)  1.41  1.62  1.97 

Short Day (8h/16h)  1.91  1.98  1.64 

TSH 
Long Day (16h/8h)  1.79  1.69  1.42 

Short Day (8h/16h)  2.84  2.19  1.60 



 

Appendix C  Page 157 

 
* values shown are averaged from 5 readings per individual, for a total N of 25     
per recording 
 
 

MT1 
Long Day (16h/8h)  ‐  2.12  2.34 

Short Day (8h/16h)  4.22  2.45  5.27 

MT2 
Long Day (16h/8h)  5.51  3.86  1.81 

Short Day (8h/16h)  2.83  1.86  4.82 
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APPENDIX D: STATISTICAL SUMMARIES (CHAPTER 3) 
 
Statistical Summary of qPCR measures using 1‐way Anova and Tukey Post‐Hoc 
testing. Data shown here indicate statistical significance of mean qPCR measures 
of hormone expression in the Hypothalamus and Pituitary from LD and SD groups. 
 
All samples were analysed F (3, 8); with 3df within groups; 8df between groups. 

Appendix  D.1  Circadian recordings of Hypothalamus  
(6mo/15mo/24mo) 

Hypothalamic Circadian stats – 1‐way Anova 

  F Value  P Value  % 

Dio1  0.0709  0.97  3.00 

Dio2  9.33  0.0054  99.46 

Dio3  4.403  0.042  95.8 

GHRH  11.95  0.0025  99.75 

GnRH  5.175  0.028  97.2 

MT1  16.92  0.0008  99.92 

MT2  1.293  0.34  66 

Per1  77.4  0.0001  99.99 

Per3  37.37  0.0001  99.99 

Cry1a  18.07  0.0006  99.94 
 

Hypothalamic Circadian stats – Tukey Post‐Hoc Test 

Target  Comparisons  Tukey  p value  Significance 

Dio1  no post‐hoc testing  ‐ 

Dio2 

9 vs 3  7.32  P < 0.01  ** 

9 vs 15  9.87  P < 0.01  ** 

9 vs 21  11.17  P < 0.001  *** 

3 vs 15  2.55  P > 0.05  ‐ 

3 vs 21  3.85  P > 0.05  ‐ 

15 vs 21  1.30  P > 0.05  ‐ 
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Dio3 

9 vs 15  0.26  P > 0.05  ‐ 

9 vs 21  3.24  P > 0.05  ‐ 

9 vs 3  7.38  P < 0.01  ** 

15 vs 21  2.98  P > 0.05  ‐ 

15 vs 3  7.12  P < 0.01  ** 

21 vs 3  4.14  P > 0.05  ‐ 

GnRH 

9 vs 21  7.96  P < 0.01  ** 

9 vs 3  11.60  P < 0.001  *** 

9 vs 15  12.37  P < 0.001  *** 

21 vs 3  3.64  P > 0.05  ‐ 

21 vs 15  4.41  P > 0.05  ‐ 

3 vs 15  0.77  P > 0.05  ‐ 

GHRH 

9 vs 21  1.02  P > 0.05  ‐ 

9 vs 15  6.79  P < 0.01  ** 

9 vs 3  7.02  P < 0.01  ** 

21 vs 15  5.77  P < 0.05  * 

21 vs 3  6.00  P < 0.05  * 

15 vs 3  0.23  P > 0.05  ‐ 

MT1 

9 vs 15  12.51  P < 0.001  *** 

9 vs 21  13.42  P < 0.001  *** 

9 vs 3  14.19  P < 0.001  *** 

15 vs 21  0.91  P > 0.05  ‐ 

15 vs 3  1.68  P > 0.05  ‐ 

21 vs 3  0.77  P > 0.05  ‐ 

MT2  no post‐hoc testing  ‐ 

Per1 

3 vs 9  5.38  P < 0.05  * 
3 vs 21  25.34  P < 0.001  *** 

3 vs 15  28.97  P < 0.001  *** 

9 vs 21  19.97  P < 0.001  *** 

9 vs 15  23.59  P < 0.001  *** 
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21 vs 15  3.63  P > 0.05  ‐ 

Per3 

3 vs 9  1.43  P > 0.05  ‐ 

3 vs 21  12.30  P < 0.001  *** 
3 vs 15  21.24  P < 0.001  *** 

9 vs 21  10.87  P < 0.001  *** 
9 vs 15  19.81  P < 0.001  *** 
21 vs 15  8.94  P < 0.01  ** 

Cry1a 

9 vs 3  11.27  P < 0.001  *** 
9 vs 15  13.82  P < 0.001  *** 
9 vs 21  15.32  P < 0.001  *** 
3 vs 15  2.55  P > 0.05  ‐ 
3 vs 21  4.05  P > 0.05  ‐ 
15 vs 21  1.51  P > 0.05  ‐ 

       

Appendix  D.2  Circadian recordings of Pituitary (6mo/15mo/24mo) 

 

Pituitary Circadian stats – 1‐way Anova 
  F Value  P Value  % 

GH  6.969  0.112  88.85 

LH  4.479  0.058  94.191 

FSH  8.798  0.073  92.737 

PRL  0.762  0.061  93.890 

TSH  26.14  0.021  97.855 

MT1  28.06  1.141  99.999 

MT2  25.8  0.17  83.00 

Per1  62.62  5.013  99.999 

Per3  24.780  5.771  99.998 

Cry1a  142.3  2.98  99.99 

Pituitary Circadian stats – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

GH 
3 vs 21  7.20  P < 0.01  ** 
3 vs 15  8.97  P < 0.01  ** 
3 vs 9  9.06  P < 0.01  ** 
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21 vs 15  1.78  P > 0.05  ‐ 
21 vs 9  1.86  P > 0.05  ‐ 
15 vs 9  0.08  P > 0.05  ‐ 

LH 

9 vs 21  0.94  P > 0.05  ‐ 
9 vs 3  5.87  P < 0.05  * 
9 vs 15  8.10  P < 0.01  ** 
21 vs 3  4.93  P < 0.05  * 
21 vs 15  7.16  P < 0.01  ** 
3 vs 15  2.23  P > 0.05  ‐ 

FSH 

9 vs 21  5.01  P < 0.05  * 
9 vs 3  5.46  P < 0.05  * 
9 vs 15  6.75  P < 0.01  ** 
21 vs 3  0.45  P > 0.05  ‐ 
21 vs 15  1.74  P > 0.05  ‐ 
3 vs 15  1.29  P > 0.05  ‐ 

PRL 

9 vs 21  1.37  P > 0.05  ‐ 
9 vs 3  10.99  P < 0.001  *** 
9 vs 15  12.01  P < 0.001  *** 
21 vs 3  0.92  P > 0.05  ‐ 
21 vs 15  1.95  P > 0.05  ‐ 
3 vs 15  1.03  P > 0.05  ‐ 

TSH 

9 vs 21  10.83  P < 0.001  *** 
9 vs 3  14.31  P < 0.001  *** 
9 vs 15  19.91  P < 0.001  *** 
21 vs 3  3.48  P > 0.05  ‐ 
21 vs 15  9.09  P < 0.01  ** 
3 vs 15  5.61  P < 0.05  * 

MT1 

3 vs 9  11.89  P < 0.001  *** 
3 vs 21  17.11  P < 0.001  *** 
3 vs 15  19.36  P < 0.001  *** 
9 vs 21  5.22  P < 0.05  * 
9 vs 15  7.47  P < 0.01  ** 
21 vs 15  2.25  P > 0.05  ‐ 

MT2 

3 vs 21  11.27  P < 0.001  *** 
3 vs 15  17.14  P < 0.001  *** 
3 vs 9  18.02  P < 0.001  *** 
21 vs 15  5.92  P < 0.05  * 
21 vs 9  6.79  P < 0.01  ** 
15 vs 9  0.87  P > 0.05  ‐ 

Per1 
3 vs 9  13.86  P < 0.001  *** 
3 vs 21  25.66  P < 0.001  *** 
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Appendix D.3  Lifespan qPCR: Hypo Targets (Single Age vs 
Conditions) 

Data shown indicates statistical significance of mean qPCR measures of hormone 
expression in the Hypothalamus from 6mo, 15mo and 24mo samples between LD 
(16h/8h) and SD (8h/16h) photoperiods.  

 

3 vs 15  28.27  P < 0.001  *** 
9 vs 21  11.80  P < 0.001  *** 
9 vs 15  14.41  P < 0.001  *** 
21 vs 15  2.61  P > 0.05  ‐ 

Per3 

3 vs 9  7.99  P < 0.01  ** 
3 vs 15  16.90  P < 0.001  *** 
3 vs 21  16.91  P < 0.001  *** 
9 vs 15  8.90  P < 0.01  ** 
9 vs 21  8.91  P < 0.01  ** 
15 vs 21  0.01  P > 0.05  ‐ 

Cry1a 

9 vs 3  34.41  P < 0.001  *** 
9 vs 15  38.27  P < 0.001  *** 
9 vs 21  42.32  P < 0.001  *** 
3 vs 15  3.87  P > 0.05  ‐ 
3 vs 21  8.11  P < 0.01  ** 
15 vs 21  4.24  P > 0.05  ‐ 

6mo Hypothalamus – 1‐way Anova 
  F Value  P Value  % 

Dio1  3.339  0.08689  91.311 
Dio2  8.008  0.2725  72.75 
Dio3  1.944  0.2697  73.03 
GnRH  8.19  0.2213  77.87 
GHRH  3.947  0.2069  79.31 
MT1  2.78  0.1877  81.23 
MT2  1.41  0.2268  77.32 

6mo Hypothalamus – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

Dio1  LD vs SD  4.73  P < 0.05  * 
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Dio2  LD vs SD  0.25  P > 0.05  ‐ 

Dio3  LD vs SD  5.11  P < 0.05  * 

GnRH  LD vs SD  7.36  P < 0.01  ** 

GHRH  LD vs SD  9.38  P < 0.01  ** 

MT1  LD vs SD  0.46  P > 0.05  ‐ 

MT2  LD vs SD  4.18  P < 0.05  * 

15mo Hypothalamus – 1‐way Anova 
  F Value  P Value  % 

Dio1  0.541  0.087  91.252 

Dio2  0.002  0.195  80.51 

Dio3  3.429  0.244  75.57 

GnRH  2.394  0.552  44.82 

GHRH  4.428  0.311  68.93 

MT1  0.547  0.068  93.169 

MT2  0.98  0.299  70.11 

15mo Hypothalamus – Tukey Post‐Hoc Test 

Target  Comparisons  Tukey  p value  Significance 

Dio1  LD vs SD  1.23  P > 0.05  ‐ 
Dio2  LD vs SD  0.08  P > 0.05  ‐ 
Dio3  LD vs SD  4.90  P < 0.05  * 
GnRH  LD vs SD  7.32  P < 0.01  ** 
GHRH  LD vs SD  5.63  P < 0.01  ** 
MT1  LD vs SD  0.14  P > 0.05  ‐ 
MT2  LD vs SD  2.24  P > 0.05  ‐ 

24mo Hypothalamus – 1‐way Anova 
  F Value  P Value  % 

Dio1  0.247  0.041  95.87 
Dio2  4.058  0.286  71.4 
Dio3  3.691  0.478  52.10 
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GnRH  0.862  0.368  63.24 
GHRH  0.341  0.265  73.5 
MT1  4.041  0.177  82.28 
MT2  7.783  0.186  81.44 

24mo Hypothalamus – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 
Dio1  LD vs SD  0.68  P > 0.05  ‐ 

Dio2  LD vs SD  0.56  P > 0.05  ‐ 

Dio3  LD vs SD  6.96  P < 0.01  ** 
GnRH  LD vs SD  0.74  P > 0.05  ‐ 

GHRH  LD vs SD  1.41  P > 0.05  ‐ 

MT1  LD vs SD  5.93  P < 0.01  ** 
MT2  LD vs SD  1.61  P > 0.05  ‐ 
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Appendix  D.4  Lifespan qPCR : Hypo Targets (Photoperiod over 
Lifespan) 

Data shown indicate statistical significance of mean qPCR measures of hormone 
expression in the hypothalamus from lifespan samples between conditions LD 
(16h/8h), and SD (8h/16h) photoperiods.  
 

 

LD Hypothalamic ‐ 1‐way Anova 
  F Value  P Value  % 

Dio1  2.234  0.0575  94.25 

Dio2  8.008  0.2725  72.75 

Dio3  1.944  0.2697  73.03 

GnRH  4.148  0.299  70.1 

GHRH  4.434  0.3718  62.82 

MT1  3.873  0.1967  80.33 

MT2  1.41  0.2268  77.32 

LD Hypothalamic – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

Dio1 

6mo vs 15mo  1.83  P > 0.05  ‐ 

15mo vs 24mo  1.10  P > 0.05  ‐ 

6mo vs 24mo  0.73  P > 0.05  ‐ 

Dio2 

6mo vs 15mo  2.79  P > 0.05  ‐ 

15mo vs 24mo  1.39  P > 0.05  ‐ 

6mo vs 24mo  1.39  P > 0.05  ‐ 

Dio3 

6mo vs 15mo  3.80  P < 0.05  * 

15mo vs 24mo  9.74  P < 0.01  ** 

6mo vs 24mo  5.94  P < 0.01  ** 

GHRH 

6mo vs 15mo  8.12  P < 0.01  ** 

15mo vs 24mo  4.26  P < 0.05  * 

6mo vs 24mo  3.86  P < 0.05  * 

GnRH 

6mo vs 15mo  0.38  P > 0.05  ‐ 

15mo vs 24mo  3.29  P > 0.05  ‐ 

6mo vs 24mo  3.67  P > 0.05  ‐ 
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MT1 

6mo vs 15mo  0.47  P > 0.05  ‐ 

15mo vs 24mo  6.87  P < 0.01  ** 

6mo vs 24mo  6.40  P < 0.01  ** 

MT2 

6mo vs 15mo  0.29  P > 0.05  ‐ 

15mo vs 24mo  5.67  P < 0.01  ** 

6mo vs 24mo  5.38  P < 0.01  ** 

SD Hypothalamic ‐ 1‐way Anova
  F Value  P Value  % 

Dio1  0.5412  0.0706  92.94 

Dio2  0.9152  0.1613  83.87 

Dio3  4.098  0.235  76.5 

GnRH  1.94  0.4429  55.71 

GHRH  4.434  0.3718  62.82 

MT1  0.3966  0.0649  93.511 

MT2  1.429  0.0724  92.76 

SD Hypothalamic – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

Dio1 
6mo vs 15mo  1.69  P > 0.05  ‐ 
15mo vs 24mo  1.17  P > 0.05  ‐ 
6mo vs 24mo  2.87  P > 0.05  ‐ 

Dio2 
6mo vs 15mo  3.36  P > 0.05  ‐ 
15mo vs 24mo  1.21  P > 0.05  ‐ 
6mo vs 24mo  2.16  P > 0.05  ‐ 

Dio3 
6mo vs 15mo  7.14  P < 0.01  ** 

15mo vs 24mo  4.91  P < 0.05  * 
6mo vs 24mo  2.23  P > 0.05  ‐ 

GHRH 
6mo vs 15mo  6.59  P < 0.01  ** 
15mo vs 24mo  2.16  P > 0.05  ‐ 
6mo vs 24mo  4.43  P < 0.05  * 

GnRH 
6mo vs 15mo  1.52  P > 0.05  ‐ 

15mo vs 24mo  4.98  P < 0.01  ** 
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6mo vs 24mo  3.47  P > 0.05  ‐ 

MT1 
6mo vs 15mo  0.14  P > 0.05  ‐ 

15mo vs 24mo  2.41  P > 0.05  ‐ 
6mo vs 24mo  2.27  P > 0.05  ‐ 

MT2 

6mo vs 15mo  4.02  P < 0.05  * 

15mo vs 24mo  3.22  P > 0.05  ‐ 

6mo vs 24mo  0.80  P > 0.05  ‐ 
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Appendix D.5  Lifespan qPCR : Pituitary Targets (Single Age vs 
Conditions) 

Data shown indicates statistical significance of mean qPCR measures of hormone 
expression in the Pituitary from 6mo, 15mo and 24mo samples between 
conditions LD (16h/8h) and SD (8h/16h) photoperiods.  

 

 

6mo Pituitary ‐ 1‐way Anova 
  F Value  P Value  % 

GH  0.5701  0.2172  78.28 

LH  7.365  0.2569  74.31 

FSH  12.97  0.5708  42.92 

PRL  2.051  0.1084  89.16 

TSH  0.5546  0.2067  79.33 

MT1  0.2931  5.989  ‐  

MT2  0.9591  18.87  ‐  

6mo Pituitary – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

GH  LD vs SD  6.69  P < 0.01  ** 
LH  LD vs SD  8.95  P < 0.01  ** 
FSH  LD vs SD  9.03  P < 0.01  ** 
PRL  LD vs SD  5.26  P < 0.01  ** 
TSH  LD vs SD  8.00  P < 0.01  ** 
MT1  LD vs SD  ‐  P > 0.05  ‐ 
MT2  LD vs SD  4.01  P < 0.05  * 

15mo Pituitary ‐ 1‐way Anova 
  F Value  P Value  % 

GH  1.21  0.6139  38.61 

LH  4.11  0.2088  79.12 

FSH  5.05  0.411  58.9 

PRL  0.9562  0.1794  82.06 

TSH  1.111  0.2434  75.66 

MT1  0.2858  0.6711  32.89 
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MT2  1.359  3.241  ‐ 

15mo Pituitary – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

GH  LD vs SD  4.11  P < 0.05  * 
LH  LD vs SD  2.21  P > 0.05  ‐ 
FSH  LD vs SD  7.09  P < 0.01  ** 
PRL  LD vs SD  3.06  P > 0.05  ‐ 
TSH  LD vs SD  3.65  P > 0.05  ‐ 
MT1  LD vs SD  1.40  P > 0.05  ‐ 
MT2  LD vs SD  4.31  P > 0.05  ‐ 

24mo Pituitary ‐ 1‐way Anova 
  F Value  P Value  % 

GH  5.976  1.346  0.016 

LH  0.5013  0.3314  66.86 

FSH  1.703  0.5706  42.94 

PRL  0.4087  0.2841  71.59 

TSH  1.316  0.2263  77.37 

MT1  3.262  3.062  0.074 

MT2  8.901  1.184  0.0043 

24mo Pituitary – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

GH  LD vs SD  9.02  P < 0.01  ** 

LH  LD vs SD  2.38  P > 0.05  ‐ 

FSH  LD vs SD  5.04  P < 0.05  * 

PRL  LD vs SD  2.32  P > 0.05  ‐ 

TSH  LD vs SD  1.36  P > 0.05  ‐ 
MT1  LD vs SD  5.80  P < 0.01  ** 

MT2  LD vs SD  9.58  P < 0.01  ** 
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Appendix  D.6  Lifespan qPCR : Pituitary Targets (Photoperiod 
Over Lifespan) 

Data shown indicates statistical significance of mean qPCR measures of hormone 
expression in the Pituitary from lifespan samples between conditions LD (16h/8h) 
and SD (8h/16h) photoperiods.  

 

LD Pituitary ‐ 1‐way Anova 
  F Value  P Value  % 

GH  0.5701  0.2172  78.28 

LH  0.9724  0.1474  85.26 

FSH  6.031  1.006  0.014 

PRL  1.175  0.2197  78.03 

TSH  0.5546  0.2067  79.33 

MT1  0.1768  0.4582  54.18 

MT2  0.714  4.392  ‐  

LD Pituitary – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

GH 

6mo vs 15mo  2.90  P > 0.05  ‐ 

15mo vs 24mo  1.26  P > 0.05  ‐ 

6mo vs 24mo  1.64  P > 0.05  ‐ 

LH 

6mo vs 15mo  3.61  P > 0.05  ‐ 

15mo vs 24mo  0.72  P > 0.05  ‐ 

6mo vs 24mo  2.89  P > 0.05  ‐ 

FSH 

6mo vs 15mo  0.00  P > 0.05  ‐ 

15mo vs 24mo  0.65  P > 0.05  ‐ 

6mo vs 24mo  0.65  P > 0.05  ‐ 

PRL 

6mo vs 15mo  1.55  P > 0.05  ‐ 

15mo vs 24mo  2.59  P > 0.05  ‐ 

6mo vs 24mo  4.14  P < 0.01  ** 

TSH 
6mo vs 15mo  0.76  P > 0.05  ‐ 

15mo vs 24mo  2.06  P > 0.05  ‐ 
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6mo vs 24mo  2.82  P > 0.05  ‐ 

MT1 

6mo vs 15mo  ‐  ‐  ‐ 

15mo vs 24mo  0.92  P > 0.05  ‐ 

6mo vs 24mo  ‐  ‐  ‐ 

MT2 

6mo vs 15mo  2.23  P > 0.05  ‐ 

15mo vs 24mo  2.77  P > 0.05  ‐ 

6mo vs 24mo  4.99  P < 0.01  ** 

SD Pituitary ‐ 1‐way Anova 
  F Value  P Value  % 

GH  3.098  1.618   

LH  0.7204  0.5092   

FSH  0.8997  1.341   

PRL  0.722  0.174   

TSH  2.351  0.6778   

MT1  2.514  3.368   

MT2  5.585  1.371   

SD Pituitary – Tukey Post‐Hoc Test 

Target  Comparisons  Tukey  p value  Significance

GH 

6mo vs 15mo  1.14  P > 0.05  ‐ 

15mo vs 24mo  5.23  P < 0.01  ** 

6mo vs 24mo  6.37  P < 0.01  ** 

LH 

6mo vs 15mo  3.30  P > 0.05  ‐ 

15mo vs 24mo  0.10  P > 0.05  ‐ 

6mo vs 24mo  3.20  P > 0.05  ‐ 

FSH 

6mo vs 15mo  2.37  P > 0.05  ‐ 

15mo vs 24mo  1.14  P > 0.05  ‐ 

6mo vs 24mo  3.51  P > 0.05  ‐ 

PRL 
6mo vs 15mo  0.63  P > 0.05  ‐ 

15mo vs 24mo  3.05  P > 0.05  ‐ 
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6mo vs 24mo  2.42  P > 0.05  ‐ 

TSH 

6mo vs 15mo  3.06  P > 0.05  ‐ 

15mo vs 24mo  2.78  P > 0.05  ‐ 

6mo vs 24mo  5.83  P < 0.01  ** 

MT1 

6mo vs 15mo  3.74  P < 0.05  * 

15mo vs 24mo  5.95  P < 0.01  ** 

6mo vs 24mo  2.22  P > 0.05  ‐ 

MT2 

6mo vs 15mo  2.99  P > 0.05  ‐ 

15mo vs 24mo  9.11  P < 0.01  ** 

6mo vs 24mo  6.13  P < 0.01  ** 

Control Pituitary ‐ 1‐way Anova 
  F Value  P Value  % 

GH  1.41  0.4275  0.28 

LH  4.383  0.1146  0.043 

FSH  0.9618  0.2972  0.41 

PRL  0.1023  0.1879  0.9 

TSH  2.418  0.2046  0.13 

MT1  2.947  3.658  0.085 

MT2  1.673  18.76  0.22 

Control Pituitary – Tukey Post‐Hoc Test 
Target  Comparisons  Tukey  p value  Significance 

GH 

6mo vs 15mo  1.64  P > 0.05  ‐ 

15mo vs 24mo  2.91  P > 0.05  ‐ 

6mo vs 24mo  4.56  P < 0.05  * 

LH 

6mo vs 15mo  1.96  P > 0.05  ‐ 

15mo vs 24mo  8.31  P < 0.01  ** 

6mo vs 24mo  6.35  P < 0.01  ** 

FSH 

6mo vs 15mo  2.13  P > 0.05  ‐ 

15mo vs 24mo  1.64  P > 0.05  ‐ 

6mo vs 24mo  3.77  P > 0.05  ‐ 
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PRL 

6mo vs 15mo  1.19  P > 0.05  ‐ 

15mo vs 24mo  1.28  P > 0.05  ‐ 

6mo vs 24mo  0.09  P > 0.05  ‐ 

TSH 

6mo vs 15mo  4.75  P < 0.05  * 

15mo vs 24mo  0.77  P > 0.05  ‐ 

6mo vs 24mo  5.51  P < 0.01  ** 

MT1 

6mo vs 15mo  2.60  P > 0.05  ‐ 

15mo vs 24mo  6.93  P < 0.01  ** 

6mo vs 24mo  4.32  P < 0.05  * 

MT2 

6mo vs 15mo  2.65  P > 0.05  ‐ 

15mo vs 24mo  1.99  P > 0.05  ‐ 

6mo vs 24mo  4.64  P < 0.05  * 
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APPENDIX E – CONGRESS BIBLIOGRAPHY AND 
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Olsen, J. and Whitmore, D. “Seasonal Photoperiodism In Zebrafish – Evidence 

Of Daylength Effects On Pituitary Hormone Expression.” Society for Light 

Treatment and Biological Rhythms Conference, Vancouver, Canada, June 

2008. Unpublished conference poster.  

Olsen, J. and Whitmore, D. “Seasonal Reproduction - Oscillations in Zebrafish 

Hormone Expression. ”UCL Graduate School Poster Competition, UCL, 

London, UK, March 2009. Unpublished conference poster, winner for 

Biosciences category. 

Olsen, J. “Photoperiodism in Zebrafish - how seasons regulate fertility.” 

Integrative Physiology Post-Graduate Students Conference, Aberdeen, 

Scotland, May 2009. Unpublished conference proceedings.  

Olsen, J. “Seasonal and Circadian rhymicity in Zebrafish reproduction.” Paris 

Interdisciplinary PhD Symposium Conference, Paris, France, June 2011. 

Unpublished conference poster.  
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