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ABSTRACT 

Lights near 560 nm appear brighter when flickered, whereas lights near 520 or 650 nm appear 

yellower. Both effects are consistent with signal distortion within the visual pathway—brightness 

changes at an expansive nonlinearity, and hue shifts at a compressive one.  We previously 

manipulated the distortion products generated by each nonlinearity to extract the temporal 

properties of stages of the L- and M-cone pathways that signal brightness and colour before (early 

stages) and after (late stages) each nonlinearity. We find that the attenuation characteristics of the 

early and late stages are virtually identical in both pathways: the early temporal stage acts like a 

band-pass filter peaking at 10-15 Hz, while the late stage acts like low-pass filter with a cut-off 

frequency near 3 Hz. 

We propose a physiologically-relevant model that accounts for the filter shapes and incorporates 

both nonlinearities within a common parvocellular pathway. The shape of the early bandpass filter is 

consistent with antagonism between “center” signals and more sluggish and delayed “surround” 

signals, while the late filter is consistent with a simple two-stage low-pass filter. Modelling suggests 

that the brightness-change and hue-shift are both initially caused by the half-wave rectification and 

partition of signals into ON and OFF components. However, the hue shift is probably caused by the 

additional effects of a later nonlinearity that compresses chromatic “red” and “green” signals. 

Plausible sites for the expansive half-wave rectifying nonlinearity are after surround antagonism, 

possibly from horizontal cells, but the compressive nonlinearity is likely to be after the late filter. 
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INTRODUCTION 

Flickering a light of constant time-averaged intensity may enhance its brightness (e.g., Bartley, 

1938, 1939, 1951a, 1951b; Brewster, 1838; Brücke, 1848) or alter its hue (e.g., Ball, 1964; Ball & 

Bartley, 1966, 1971; Bartley & Nelson, 1960; Stewart, 1887; van der Horst & Muis, 1969). Both changes 

are consistent with nonlinearities that affect the appearance of the visual input by distorting its 

representation within the visual pathway. Brightness enhancement and hue change seem to be 

distinct effects with different spectral sensitivities (Ball, 1964; Ball & Bartley, 1971; Petrova, Henning, 

& Stockman, 2013a, 2013b; van der Horst & Muis, 1969; Walters & Harwerth, 1978). Consequently, it 

is possible to choose target wavelengths that favour either brightness enhancement or hue change. 

We used a 560-nm target that changed in brightness when flickered, and a 650-nm target that changed 

in hue (Petrova et al., 2013a, 2013b). The two effects also seem to be generated by different 

nonlinearities: the enhancement in brightness is consistent with an expansive nonlinearity (e.g., 

Petrova et al., 2013a; Wu, Burns, Reeves, & Elsner, 1996), whereas the hue change in the red-green 

spectral range towards yellow is consistent with a compressive nonlinearity (e.g., Petrova et al., 2013a; 

van der Horst & Muis, 1969). 

The distinct nature of the two effects led us to consider the possibility that the responsible 

nonlinearities might lie in different postreceptoral pathways—the one causing hue change lying in a 

chromatic pathway, and the other causing brightness enhancement in a luminance or brightness 

pathway. Consequently, in our two previous papers, we used the nonlinearities to investigate 

separately putative chromatic and brightness pathways (Petrova et al., 2013a, 2013b). In both cases, 

we applied a linear-nonlinear-linear "sandwich" model (e.g., Burns, Elsner, & Kreitz, 1992; Burton, 

1973; Chen & Makous, 1990; Chen, Makous, & Williams, 1993; Christiansen, D'Antona, & Shevell, 

2009; MacLeod, Williams, & Makous, 1992; Marmarelis & Marmarelis, 1978; Spekreijse & Reits, 1982; 

Stockman & Plummer, 1998; Trimble & Phillips, 1978; Victor & Shapley, 1980; Victor, Shapley, & 

Knight, 1977) to extract the temporal properties of the early (pre-nonlinearity) and late (post-

nonlinearity) stages of each pathway.  Using monochromatic 650-nm flicker, we extracted the 

properties of the “chromatic” pathway (Petrova et al., 2013a), and using monochromatic 560-nm 

flicker those of the “brightness” pathway (Petrova et al., 2013b). Here, we compare the results, and 

come to the surprising conclusion that although the nonlinearities that change hue and brightness 

seem to be different, they may lie in the same pathway. In this paper we combine new data with our 

previous measurements to generate a physiologically plausible model. 

The sandwich model has been used extensively in vision research (e.g., Burns et al., 1992; Burton, 

1973; Chang, Kreitz, & Burns, 1993; Henning, Hertz, & Broadbent, 1975; Krauskopf, Wu, & Farell, 1996; 
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MacLeod & He, 1993; MacLeod et al., 1992; Stockman & MacLeod, 1986; Stockman, MacLeod, & 

Lebrun, 1993; Williams, 1985). In most cases, its application relies on the assumption that internal 

nonlinearities generate new visual signals within the visual pathway by distorting the visual input 

signal and so changing its frequency spectrum and hence its appearance (Bedrosian & Rice, 1971). In 

our previous experiments, the visual input was a “contrast-modulated” stimulus produced by 

sinusoidally flickering a light of 650- or 560-nm at fc Hz and then sinusoidally modulating its contrast 

at a much lower frequency, fm Hz (see Figure 1). The frequency components of this stimulus, in 

addition to the component at 0 Hz corresponding to the mean level around which the light is 

modulated, consist of three high-frequency sinusoids: one at fc Hz, the carrier frequency, and two 

“side-bands” at fc-fm and fc+fm Hz. There is no component at fm Hz in this stimulus until the signal 

encounters a nonlinearity and undergoes distortion. Distortion of contrast-modulated flicker by a 

typical compressive or expansive nonlinearity, produces components at higher harmonics of the 

carrier and side-bands in addition to “inter-modulation” distortion products. The particular inter-

modulation distortion product that concerns us is the one at fm Hz, because we see brightness 

enhancements and hue changes that vary at that frequency. We assume that it is the distortion 

product at fm Hz that produces the effects that we see.  

[Insert Figure 1 about here] 

Figure 1 illustrates the basic phenomena and shows, as a function of time, the amplitude of one 

modulation cycle of the two contrast-modulated waveforms—650-nm light in the upper panel, and 

560-nm light in the lower panel.  When 650-nm sinusoidal flicker with a carrier frequency, fc, 

between 5 and 40 Hz is contrast-modulated at an fm of 0.5 Hz (and the modulation is high enough for 

the distortion to be above threshold), observers report a hue change at 0.5 Hz from red, when the 

flicker contrast is low, towards yellow, when it is high (indicated by the icons above the upper 

waveform). By contrast, when 560-nm flicker is similarly contrast-modulated, observers reported a 

brightness change at 0.5 Hz that is brightest when the flicker contrast is high (indicated by the icons 

above the lower waveform). For further details about this work, please see Petrova, Henning & 

Stockman (2013a, 2013b). Their work, and the work reported here, is an extension of comparable 

measurements by Stockman and Plummer (1998), who dissected the S-cone pathway using a 

contrast-modulated 440-nm flickering target superimposed on an intense steady 620-nm 

background (to isolate the S-cone response), and of Wu et al. (1996), who measured brightness 

enhancement. 

In this paper, we compare the early and late filter shapes estimated from the hue change 

generated by 650-nm contrast-modulated flicker and the brightness enhancement generated by 

560-nm contrast-modulated flicker.  We propose a physiologically relevant model that accounts for 
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the shapes of the early and late filters. The model incorporates, within a single scheme, an expansive 

nonlinearity that distorts the contrast-modulated flicker signal and enhances brightness, and an 

additional compressive nonlinearity that changes hue. The shapes of early filters, estimated from the 

distortion of M- and L-cone isolating contrast-modulated flicker, are also modelled. 

 

SUMMARIES OF METHODS AND PREVIOUS RESULTS 

 The methods for estimating the shapes of the early (pre-nonlinearity) and late (post-

nonlinearity) filter shapes have been extensively described in our previous paper (Petrova et al., 

2013a).  We summarize them briefly here. The primary visual stimulus was contrast-modulated 

flicker. Its temporal waveform, Vm(t), was:  

𝑉𝑉𝑚𝑚(𝑡𝑡) = 𝑅𝑅�{1 + 𝑚𝑚 [0.5 + 0.5 cos(2𝜋𝜋𝑓𝑓𝑚𝑚𝑡𝑡)]sin(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡)} ,    [1] 

where fc is the carrier frequency, fm is the modulation frequency (both in Hz), and m is the overall 

modulation or Michelson contrast. The factor in square brackets is sometimes called the “amplitude 

modulation” and the amplitude-modulation in our experiments, at fm Hz, always varied sinusoidally 

between 1 and zero; i.e., Vm(t) was 100% amplitude modulation. 

The flickering component of Equation [1] can be expanded to show that it comprises three 

sinusoidally-flickering terms: 

𝑉𝑉𝑚𝑚(𝑡𝑡) = 𝑅𝑅�{1 + 𝑚𝑚 [0.5sin(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) + 0.25sin(2𝜋𝜋(𝑓𝑓𝑐𝑐 − 𝑓𝑓𝑚𝑚)𝑡𝑡) + 0.25sin(2𝜋𝜋(𝑓𝑓𝑐𝑐 + 𝑓𝑓𝑚𝑚)𝑡𝑡]},  [2] 

where the components, at fc Hz, with amplitude 0.5 𝑅𝑅�𝑚𝑚 and two sidebands at fc - fm and fc + fm Hz 

with half the amplitude of the carrier, are made explicit. Observers manipulated the overall contrast, 

m, using the method of adjustment to find thresholds for flicker or for hue shift or for brightness 

change as appropriate. 

 

Determination of the early filter shapes 

The early filter shapes at 5 Hz and above were estimated using contrast-modulated flicker with a 

fixed fm of 0.5 Hz, and variable fc. The observers’ task was to find the threshold for the hue or 

brightness change at 0.5 Hz as a function of fc (Hz) by varying the overall modulation of the contrast-

modulated stimulus (i.e., a temporal contrast sensitivity function or TCSF for hue or brightness 

change was measured). Given that the stages after the nonlinearity were always presented with the 

same low-frequency distortion product (a near-threshold 0.5-Hz change in appearance), the late-

stage does not influence the shape of either TCSF—it only scales them (i.e., shifts the TCSFs up or 
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down on conventional double logarithmic co-ordinates). Moreover, since the nonlinearity requires 

the same contrast variation at its input to produce the threshold 0.5-Hz distortion product, the 

nonlinearity has no influence on the shape of the TCSF and can also be ignored. Consequently, the 

TCSF for detecting the hue or brightness change at fixed fm = 0.5 Hz as a function of fc reveals the 

shape of attenuation characteristics of the early stages before the nonlinearity.  Plotted as log10 

sensitivities against frequency (log scale), the TCSFs are proportional to the log10 attenuation of the 

early filter as a function of carrier frequency. 

Figure 2 shows both directly measured results (above 5 Hz) for observer DP (left-hand column) 

or GBH (right-hand column). Sensitivity to hue-change is shown as yellow symbols, sensitivity to 

brightness-change as grey symbols. (The error bars indicate ± one standard error based on the three 

measurements contributing to each data point.)  Results for four successive time-averaged radiances 

for the hue and brightness measurements are shown. The time-averaged 650- and 560-nm radiances 

at each level are roughly equated for L-cone excitation (Stockman & Sharpe, 2000a).  Data from the 

lowest to the highest levels are shown as inverted triangles, circles, diamonds and squares, 

respectively, and the results at the different radiance levels have been arbitrarily separated for 

clarity. Further, at each level, the directly measured 560-nm brightness-change data (grey symbols) 

have been vertically aligned with the directly measured 650-nm hue-change data (yellow symbols) 

using a least squares fitting criterion—the point is that, vertical shifts apart, the early filter shapes 

for brightness enhancement and hue shift at each radiance level are the same. 

[Insert Figure 2 about here] 

Also shown in Figure 2 are indirect estimates of the low-frequency end of the early filter (f < 5Hz) 

from both hue-shift (open symbols) and brightness-change (black symbols) experiments. [Direct 

measurements could not be made at low frequencies (fc < 5 Hz) because at those frequencies the 

carrier also produces changes in hue and/or brightness that make the separate detection of the 

distortion product difficult.] In this low-frequency region, we inferred the shape of the early filter 

from other measurements by assuming that conventionally measured TCSFs for detecting flicker 

reflect the multiplicative combination of the early and the late filters. Thus, the logarithmic 

differences between the TCSFs measured using sinusoidal 650-nm flicker and the late filter estimates 

measured using 650-nm contrast-modulated flicker (see Figure 3) give the shapes of the missing 

parts of the early filter shown as large open symbols in Figure 2. Similarly, the logarithmic 

differences between the TCSFs measured using sinusoidal 560-nm flicker and the late filter estimates 

measured using 560-nm contrast-modulated flicker give the shapes of the missing parts of the early 

filter shown as black symbols in Figure 2. [The monochromatic 650- and 560-nm TCSFs used to 
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estimate the low frequency filter shapes are plotted in Figures 4 of Petrova, Henning and Stockman 

(2013a, 2013b).] 

The vertical alignment of the indirect measurements below 5 Hz with the directly-measured data 

above 5 Hz depends on the best-fit of a “subtractive model” model, which is shown by the 

continuous red lines and is discussed next. The agreement of the direct measurements above 5 Hz, 

and the indirect measurements below 5 Hz is very good and one model of the early filter fits both 

the hue-shift and the brightness-change data over the full frequency range. 

  

Determination of the late filter shapes 

The late filter shapes were also estimated using contrast-modulated flicker but now with a fixed 

fc of 30 Hz and variable fm. The observers’ task was again to find the threshold for the hue or 

brightness change at fm Hz by varying the overall modulation of the contrast-modulated stimulus, 

but this time as a function of fm Hz. Since all the stimuli have the same 30-Hz carrier frequency and fm 

<< fc, the three components of the contrast modulated stimulus are similarly affected—at least at 

low fm—by the early filter that precedes the nonlinearity. Consequently, any changes in sensitivity 

with are due mainly to the combined effects of the nonlinearity and the attenuation characteristics 

of the late filter.  

We have been able to ignore changes in the frequency content of the amplitude-modulated 

signal reaching the nonlinearity at higher fm. Although such changes might be expected to lead to an 

overestimation of the sensitivity loss, the contrast of the distortion product at fm is surprisingly 

resilient to the effects of the early filter. When fm is sufficiently large compared to fc, the early filter 

changes the waveform from one that is amplitude-modulated at fm (with two equal amplitude 

sidebands that are half the amplitude of the carrier in our 100% contrast-modulated flicker: 0.5(fc-fm) 

+ fc + 0.5(fc+fm) to one that beats at fm (dominated, after filtering by the roughly equal amplitude 

lower sideband and carrier: (fc-fm) + fc, which beat at their difference frequency). The distortion of 

these two waveforms in our model produces comparable distortion products at fm. 

To discount the effect of the nonlinearity (and thus estimate the characteristics of the late filter 

alone), we needed to know how changes in the modulation of the contrast-modulated flicker at the 

input to the nonlinearity alter the size of the distortion product at fm at its output. Petrova, Henning 

and Stockman (2013a, 2013b) determined the relation using side-by-side hue or brightness matching 

procedures. The observer was presented on one half of a bipartite matching field with contrast-

modulated 650 or 560-nm flicker (with fc= 30 Hz and fm = 0.5 Hz) and on the other half with a 

pedestal of the same wavelength and time-averaged radiance. Superimposed on the pedestal was a 
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560-nm light that was sinusoidally flickered at 0.5 Hz, the amplitude of which the observer varied to 

match the hue or brightness change produced by contrast-modulation in the other half-field. If the 

contrast-modulated flicker and pedestal were both 650-nm, sinusoidal variation of the 560-nm light 

was seen mainly as a change in hue, whereas if they were both 560 nm, the variation was seen 

mainly as a change in brightness. [The results of the matching experiment are plotted for 560-nm 

flicker in the left-hand panel of Figure 6 (from Figure 6 of Petrova et al., 2013b) and will be 

subsequently discussed in detail.] 

[Insert Figure 3 about here] 

Knowing the relation between the modulation and the magnitude of the distortion at fm Hz, we 

can correct the TCSFs for detecting the hue or brightness change as a function of at fm Hz and thus 

reveal the attenuation characteristics of the late filter. Figure 3 shows such estimates below 5 Hz for 

DJP (left column) and GBH (right column) based on detecting either the hue-shift (yellow and open 

symbols) or the brightness-change (smaller grey and black symbols). Log sensitivity is shown as a 

function of frequency (logarithmic scale); the four different radiance levels are the same as in Figure 

2, and the error bars indicate ± one standard error. The results for the different radiance levels have 

been shifted for visibility. As in Figure 2, the coloured and the grey symbols represent directly 

measured data (corrected for the effect of the non-linearity). For the late filter they all lie at or 

below 5 Hz, because changes of brightness or hue could be detected only up to an fm of about 5 Hz. 

The 560-nm brightness-change data (grey symbols) have been vertically aligned with the 650-nm 

hue-shift data (yellow symbols) at each level using a least squares fitting criterion. 

At frequencies above 5 Hz, we again inferred the shape of the late filter from other 

measurements by assuming, as before, that TCSFs conventionally measured with simple sinusoidal 

flicker reflect the multiplicative combination of the early and the late filters (but in the case of the 

late filter, the conventional TCSFs that we used were obtained using sinusoidal chromatic flicker). 

Thus, the logarithmic differences between the chromatic TCSFs and the early filter estimates of 

Figure 2 measured using 650-nm contrast-modulated flicker yield the indirect estimates of the 

shapes of the missing parts of the late hue-shift filter shown as large open symbols in Figure 3. 

Similarly, the logarithmic differences between the chromatic TCSFs and the early filter estimates of 

Figure 2 measured using 560-nm contrast-modulated flicker yield the indirect estimates of the 

shapes of the missing parts of the late brightness-change filter shown as black symbols in Figure 3. 

Their vertical alignment with the directly-measured data below 5-Hz is also not specified by the 

experimental results and the alignments shown in Figure 3 are based on the fits of the low-pass filter 

model shown by the red lines. [The chromatic 650- and 560-nm TCSFs used to derive filter shapes 

above 5 Hz are plotted in Figures 4 of Petrova, Henning and Stockman (2013a, 2013b).] 
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 Note, again, that a single model of the late filter fits both sets of data over the full range of 

frequencies. 

This is a summary of our previous results, which will be reanalysed in the following sections. For 

further details about the derivation of the early and late filters estimates, please see Petrova, 

Henning and Stockman (2013a) for the hue-change measurements, and Petrova, Henning and 

Stockman (2013b) for the brightness change measurements.  

 

THE EARLY FILTERS IN THE CHROMATIC AND BRIGHTNESS PATHWAYS COMPARED 

We begin by comparing the early filter estimates based on the 650-nm hue-shift and 560-nm 

brightness-change measurements shown in Figure 2. If the early processing of hue and brightness 

were by distinctly different visual pathways, then we might expect the early filter estimates obtained 

from hue shifts and brightness changes to be distinctly different. However, the estimates of the early 

filter shapes determined from the 650-nm hue-shift and the 560-nm brightness-change measure-

ments are similar apart from a slight suggestion that the high-frequency slopes of the early filters for 

GBH are marginally steeper for the detection of a brightness change than for the detection of a hue 

shift. Overall, though, there are no clear differences in shape that might indicate the involvement of 

distinctly different pathways as might have been expected if, for example, flicker were encoded in 

one case by the parvocellular stream and in the other by the magnocellular stream. The small 

differences that we find are more likely to be due to the L-cone-equated 560-nm and 650-nm 

flickering lights producing different M-cone adaptation levels and consequently different flicker 

strengths and phase delays and perhaps differences in surround antagonism (see, e.g., Stockman, 

Langendörfer, Smithson, & Sharpe, 2006). It is possible, of course, that the nonlinearities are in 

distinct pathways but that they are located before the stages at which any differences in attenuation 

arise. But since the late filters are also similar, this seems unlikely. 

Given the overall similarities, we will treat the hue and brightness based estimates of the early 

filter in common. 

Central to the our modelling of the early and late filters is the idea that the attenuation 

characteristics of stages in the visual pathway can be modelled by cascades of leaky integrating 

stages (or buffered RC circuits), the outputs of which decay exponentially after exposure to a brief 

pulse of light. The amplitude response, A(f), of n cascaded, identical,  leaky integrators as a function 

of frequency, f,  is:  

𝐴𝐴(𝑓𝑓) = 𝜏𝜏𝑛𝑛[(𝑓𝑓 𝑓𝑓0⁄ )2 + 1]
−𝑛𝑛
2 ,         [3] 
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where 𝑓𝑓0 (Hz)  is the “cut-off” or “corner frequency” and τ  is the time constant of each leaky 

integrator in seconds (𝜏𝜏 = 1/2𝜋𝜋𝑓𝑓0). The approach of modelling the eye in this way as a linear 

temporal filter has a long tradition (e.g., De Lange, 1952; Ives, 1922; Kelly, 1961; Roufs, 1972; 

Watson, 1986). 

In our previous papers, we used what we called the “divisive” model in which the band-pass 

shape of the early filter was modelled by dividing a “center” temporal response of a cascade of 

filters by a “surround” temporal response of another cascade of filters (see Equation A1 in the 

Appendix) and fitted the model separately to the hue (Petrova et al., 2013b) and brightness (Petrova 

et al., 2013a) data.  The simultaneous fits using the divisive model are shown in Figure A in the 

Appendix and described there.  

 Although the divisive model accounts well for the characteristics of the early filter for both hue 

shift and brightness enhancement (with an R2 = 0.997), it was created ad hoc without regard to the 

characteristics of the retina. Moreover, despite our claim that the early stage should be linear, the 

model is at least conceptually nonlinear in that it involves divisive interactions. We now develop a 

linear subtractive model more consistent with known retinal properties in which the “surround” 

signals subtract linearly from “center” signals.  As before, the signal from the center processor is 

assumed to be from a cascade of filters: 

𝐴𝐴𝑐𝑐(𝑓𝑓) = 𝜏𝜏𝑐𝑐𝑛𝑛𝑐𝑐[(𝑓𝑓 𝑓𝑓0𝑐𝑐⁄ )2 + 1]
−𝑛𝑛𝑐𝑐
2  ,         [4] 

and the signal from the surround is assumed to be identical to the center one but with additional 

stages of filtering, thus: 

𝐴𝐴𝑠𝑠(𝑓𝑓) = 𝐴𝐴𝑐𝑐(𝑓𝑓) 𝜏𝜏𝑠𝑠𝑛𝑛𝑠𝑠[(𝑓𝑓 𝑓𝑓0𝑠𝑠⁄ )2 + 1]
−𝑛𝑛𝑠𝑠
2 𝜏𝜏𝑠𝑠𝑛𝑛𝑠𝑠� .        [5] 

[Note that the surround, As(f), is written as the center, Ac(f) times the ns additional surround 

stages.] Dividing the right hand side of Equation [5] by 𝜏𝜏𝑠𝑠𝑛𝑛𝑠𝑠, scales As(f) for ease of comparison so 

that it has the same amplitude as Ac(f) at low frequencies. This also has the effect of balancing the 

center and surround signals at low frequencies. Consequently, w in the next equation represents the 

relative magnitude of the center and surround signals. 

The phase delays between the center and surround signals (∆𝜃𝜃, degrees) are assumed have 

three components: the delay caused by the extra ns filters in the surround [which is 𝑛𝑛𝑠𝑠 tan−1(𝑓𝑓 𝑓𝑓0⁄ )], 

the delay caused by an additional surround delay of ∆t (seconds) [which is 360∆𝑡𝑡𝑡𝑡], and a phase 

inversion of -180 deg caused by surround antagonism—the three components add: 

∆𝜃𝜃(𝑓𝑓) = 𝑛𝑛𝑠𝑠 tan−1(𝑓𝑓 𝑓𝑓0⁄ ) + 360𝛥𝛥𝛥𝛥𝛥𝛥 − 180.       [6] 
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The resultant signal produced by adding together Ac(f) and As(f) at the angle determined by their 

relative phase difference is then: 

𝐴𝐴𝑟𝑟(𝑓𝑓) = �(𝐴𝐴𝑐𝑐(𝑓𝑓) +  𝑤𝑤𝑤𝑤𝑠𝑠(𝑓𝑓) cos[∆𝜃𝜃(𝑓𝑓)])2 + (𝑤𝑤𝐴𝐴𝑠𝑠(𝑓𝑓)sin[∆𝜃𝜃(𝑓𝑓)])2 .    [7] 

The value w is a surround scaling factor to make Ac(f) and As(f) have the same amplitude at low 

frequencies (f=0 Hz). This phase dependent (vector) addition is illustrated in Figure 4. 

[Insert Figure 4 about here] 

 The upper diagram of Figure 4 illustrates the vector addition of Ac (open arrow) and wAs (grey 

arrow), which have a relative phase delay of ∆𝜃𝜃(f) (red arc) to yield the resultant vector Ar (black 

arrow), which has a phase delay of φ relative to Ac (green arc).  (The component of wAs in the 

direction of Ac [wAscos(∆θ)] and the component at right angles to Ac [-wAssin(∆θ)] are also shown.) 

The lower panel of Figure 4 shows the overall phase delay as a function of frequency assumed in the 

final fit of the model (red lines). It is made up of the sum of the phase delays due to the extra 

surround filters (green line), the time delay (blue line), and the phase inversion or inhibition (black 

line). 

The fits were made simultaneously to the hue- and brightness-data for both observers using the 

logarithm of Equation [7]. As in the earlier divisive model (see Appendix), a logarithmic shift, k, was 

allowed to vary with target radiance level, and as before an extra arbitrary constant, v, was added to 

the low-frequency data for each level. The value of v was individually optimized for each set of data 

to determine the best-fitting vertical alignment of the low- and high-frequency data, thus: 

log[𝐴𝐴𝑟𝑟(𝑓𝑓)] = �
log[𝐴𝐴𝑟𝑟(𝑓𝑓low)] + 𝑘𝑘 + 𝑣𝑣,    low frequency estimates
log�𝐴𝐴𝑟𝑟�𝑓𝑓high��+ 𝑘𝑘,           high frequency estimates.     [8] 

Best-fitting versions of the model were obtained using a standard non-linear, least-squares 

curve-fitting algorithm (implemented in SigmaPlot, SPSS) to account for the data obtained for each 

observer at each of the four time-averaged radiances. The value of k is related to the frequency-

independent scaling illustrated by the adjustment dials within the representations of cones shown in 

Figure 5, below (for further details, see Stockman, Langendörfer, et al., 2006). 

Like the divisive model, the subtractive model was simplified by fixing those parameters that did 

not vary systematically with target radiances or across observers: the number of center filters, nc, 

the number of surround filters ns, the delay, Δt, the scaling of the surround relative to the center, w, 

and the common corner frequency of the center filters, f0s. Again, it was assumed the cut-off 

frequencies of all the center stages were identical. [If, as in preliminary fits, nc and ns are separately 
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allowed to take on non-integer values, the best fitting values were 4.01±1.07 and 0.92±0.89, 

respectively; but in the final fits we fixed them at the nearest integer values (nc = 4 and ns = 1).] A 

further simplification that had little effect on the fit was that f0s could be fixed across radiance levels. 

Further, the same surround weighting factor, w, was used for both observers. However, both scaling 

(the vertical logarithmic shift, k) and the center cut-off frequencies were allowed to vary between 

observers and between levels. 

Parameter DP GBH 

nc (fixed) 4 

ns (fixed) 1 

∆t (fixed) 16.84±0.98 ms 

w (fixed) 1.00±0.09 

f0s (fixed) 18.59±2.19 Hz 

 

 

 

f0c 9.10/8.26 22.31±1.62 Hz 16.10±0.98 Hz 

f0c 9.70/8.86 32.14±3.04 Hz 23.65±1.72 Hz 

f0c 10.33/9.51 46.46±5.96 Hz 32.98±2.85 Hz 

f0c 

 

44.08±4.47 Hz 37.23±3.60 Hz 

k 9.10/8.26 0.00±0.09 0.00±0.07 

k 9.70/8.86 0.13±0.13 0.01±0.09 

k 10.33/9.51 0.12±0.19 0.09±0.11 

k 10.93/10.11 0.82±0.14 0.58±0.13 

R2 0.996 

 

Figure 2 shows the center filters (blue lines), surround filters (black lines) and the resultants (red 

lines) that best-fit the combined hue-shift and brightness-change estimates of the early filter. Log10 

sensitivity is plotted as a function of frequency (logarithmic scale), for DP in the left-hand column, 

for GBH in the right-hand column. The early filter estimates and corresponding fits for the four 

different mean radiance levels have been displaced for clarity of presentation. The same filter shape 

characterizes the early filter from both the hue-shift and brightness-change experiments. The 

parameters from the fit are tabulated in Table 1.  (The values of v, which are arbitrary, are not given 

for reasons discussed above.) Like the divisive model described in the Appendix, the subtractive 
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model provides a highly plausible (R2 = 0.996) description of the attenuation characteristics of the 

early filter. 

 Reassuringly, the corner frequencies of the central filters estimated from fits of the subtractive 

model are consistent with other estimates. For example, the 4-filter estimates of Stockman et al. 

(2006), obtained by simultaneously modelling changes in modulation sensitivity and phase delay 

measurements between adaptation levels made in two protanopic observers, yield comparable 

corner frequencies. [See Figure 9 (triangles) of Stockman et al. (2006) in which they are plotted as 

time constants, 𝜏𝜏; to convert from 𝜏𝜏 in seconds to the corner frequency f0 in Hz: 𝑓𝑓0 = 1 (2𝜋𝜋𝜋𝜋)⁄ ]. 

Center-surround antagonism or lateral inhibition has been incorporated in various forms into 

several psychophysical and physiological models of early visual processing (e.g., Benardete & Kaplan, 

1999a ; 1999b; Furman, 1965; Kelly, 1971; Rashbass, 1970; Ratliff, Hartline, & Miller, 1963; Sperling 

& Sondhi, 1968; Victor, 1987; Watson & Nachmias, 1977). It is typically invoked to account for the 

increased attenuation of contrast sensitivity when a stimulus is low in both spatial and temporal 

frequency (e.g., Kelly, 1969; Nachmias, 1967; Ratliff, Knight, & Graham, 1969; Ratliff, Knight, Toyoda, 

& Hartline, 1967; Robson, 1966; Schober & Hilz, 1965). 

Our subtractive model is directly related to the working model proposed by Watson (1986) in his 

tutorial review chapter, but differs in some important respects: In a typical example of Watson’s 

model [fitted in his Fig. 6.5(a) to data from De Lange (1958a)] the center signal is shaped by a 9-stage 

low-pass filter (with each stage having a cut-off frequency of 32.22 Hz) and the surround signal by a 

10-stage low-pass filter (with each stage having a cut-off frequency of 24.22 Hz). No time delay is 

allowed between the two signals, so that the phase delays between the center and surround are due 

to a combination of opponency (180° at all frequencies) and the phase differences produced by the 

differences between the center and surround filters. In our model the center signal is shaped by a 4-

stage low-pass filter and the surround signal is shaped by the same filter with an additional stage, 

but we also allow a time delay that adds to the phase delays produced by the extra surround filter 

and by opponency. 

Somewhat surprisingly, both versions of the model produce band-pass filters that are very 

similar in shape—at least over the measurable range of frequencies. But how can such different 

numbers of stages and cutoff frequencies produce similar shapes? In both models, destructive 

interference between the center and surround signals causes low-frequency attenuation. But at 

intermediate and higher frequencies, the models shape the bandpass form in different ways:  In 

Watson’s model, the relative strength of the surround signals declines rapidly with frequency, and so 

has relatively little effect on the shape of the resultant sensitivity function above about 10 Hz. 
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Consequently, the high-frequency slope depends mainly upon the nine center filters. In our model 

(see Figures 2 and 4), the influence of the surround signals persists to much higher frequencies, and 

since a fixed time delay causes the phase delay to increase with frequency, their influence changes 

from antagonism at low frequencies (when center and surround signals are in opposite phase) to 

facilitation (when center and surround signals are in phase) to antagonism again at yet higher 

frequencies (when center and surround are again in opposite phase). 

Which version of these model is more likely to be correct?  We favour our own model, but with 

several caveats:  First, values in the model fits shown in Figure 2 are sensitive to the starting values 

of the parameters in the fitting procedure. What we show are the best fits, but other plausible 

solutions with less destructive interference at higher frequencies can be obtained. Second, had we 

allowed the cut-off frequencies and the numbers of center and surround filters to vary 

independently, we could have produced plausible fits with parameters similar to those adopted by 

Watson (1986). Third, the delays we propose between center and surround are larger than those 

typically found or inferred between parvocellular center and surround (e.g., Benardete & Kaplan, 

1997; Derrington, Krauskopf, & Lennie, 1984; Lee, Martin, & Valberg, 1989; Lee, Pokorny, Smith, & 

Kremers, 1994; Smith, Lee, Pokorny, Martin, & Valberg, 1992), but not always (Gouras & Zrenner, 

1979; Lankheet, Lennie, & Krauskopf, 1998). 

 We speculate that the time delays in our measurements are relatively large because they arise 

in a recursive network of lateral connections (perhaps at the horizontal cell layer) produced by our 

flicker stimulation over a relatively large retinal area (in neural terms) of 4° in diameter.  Indeed, 

similarly large delays are found in many other experiments using L-, M- and S-cone flicker using 

similarly sized fields  (Stockman, Montag, & Plummer, 2006; Stockman & Plummer, 2005a, 2005b; 

Stockman, Plummer, & Montag, 2005; Stockman, Sharpe, Zrenner, & Nordby, 1991; Stromeyer et al., 

2000). This a topic we will return to in future papers. Recursive network inhibition producing 

attenuation at low frequencies and facilitation at higher frequencies was of course demonstrated 

and modelled in Limulus eye by Ratliff and colleagues, and linked to visual phenomena in human 

vision (Kelly, 1969; Ratliff et al., 1969; Ratliff et al., 1967).  The characteristic changes in the shapes 

of TCSFs due to surround antagonism and facilitation suggested by our model can be clearly seen in 

Figure 1 of Kelly (1969), in which TCSFs for 3° and 16° targets are compared. The comparisons shown 

in Figure 9 below are also highly suggestive, if, as we have suggested below, the S-cone early filter is 

mainly the central filter, and therefore more comparable to the photoreceptor response (Stockman 

& Plummer, 1998). Conceivably, however, the large delays might arise from surround signals from 

large non-classical receptive fields with “silent” surrounds (Series, Lorenceau, & Fregnac, 2003). 
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THE LATE FILTERS IN THE CHROMATIC AND BRIGHTNESS PATHWAYS COMPARED 

The estimates of the late filter shapes determined from the 650-nm hue-shift (yellow symbols) 

and the 560-nm brightness-change measurements (grey symbols) shown in Figure 3 are clearly very 

similar for both observers.  As for the early filters, there are no marked differences in shape that 

would indicate that distinctly different pathways are involved. Given also the similarities between 

the early filter shapes estimated from the hue-shift and brightness-change measurements, these 

results suggest strongly that the detection of the hue-shift and brightness-change is mediated either 

by a single pathway or by pathways with very similar characteristics. Given these similarities, we 

have treated the hue- and brightness-based estimates of the late filter in common and fitted the 

low-pass filter model defined by Equation [3] to both sets of data simultaneously. [Separate fits can 

be found in Petrova, Henning and Stockman (2013a, 2013b).] The fits were made using the logarithm 

of Equation [3] with a logarithmic shift, k, that varied with target radiance level. In terms of the 

model, k represents a frequency-independent sensitivity loss that is in addition to any losses 

resulting from the changing corner frequencies of the filters. Again, an extra arbitrary constant, v, 

was added to the high-frequency data for each level, the value of which was individually optimized 

for each set of data to determine the best-fitting vertical alignment of the low- and high-frequency 

data, thus: 

log[𝐴𝐴(𝑓𝑓)] = �
log[𝐴𝐴(𝑓𝑓low)] + 𝑘𝑘 ,                 low frequency estimates
log�𝐴𝐴�𝑓𝑓high��+ 𝑘𝑘 + 𝑣𝑣 ,        high frequency estimates.    [9] 

The model was simplified by fixing the number of stages, n, and their common corner frequency 

f0 because those parameters did not vary systematically with target radiance or across observers. 

The number of stages and the cut-off frequency were assumed to be the same for both observers 

and were fixed across levels.  The number of stages (n) was allowed to take on non-integer values in 

preliminary fits, but in the final fits we fixed it at the nearest integer values (n = 2).  (If n is allowed to 

take on non-integer values the best fitting value is 1.98±0.06.) Only the scaling (the vertical 

logarithmic shift, k) was allowed to vary between observers and between radiance levels. 

The fits of the low-pass filter model to the late filter estimates are shown in Figure 3 as the 

continuous red lines. Again, the same filter shape characterizes the late filter from both the hue-shift 

and brightness-change experiments at all four radiance levels. The parameters from the fit are 

tabulated in Table 2.  (The values of v, which are arbitrary, are not given.) The low-pass filter model 

provides an excellent (R2 = 0.996) description of the attenuation characteristics of the late filter. The 

poorest fits are those to the high-frequency estimates for GBH at the lowest mean radiance level 

(bottom right-hand panel).  
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We might have expected the late filter to be approximately independent of radiance level since, 

presumably, as a late filter, it operates after adaptation to the different radiance levels and is 

consequently operating at a similar input level in all four cases. 

The agreement between the filter shapes obtained from the hue-shift and the brightness-change 

measurements suggests that chromatic and brightness information is transmitted either in a 

common pathway or in two pathways with strikingly similar characteristics. The data do not support 

our original supposition that the chromatic information is transmitted by a chromatic pathway, 

whereas the brightness information is transmitted by a faster luminance pathway (e.g., Boynton, 

1979; De Lange, 1958b; Eisner & MacLeod, 1980; Guth, Alexander, Chumbly, Gillman, & Patterson, 

1968; Luther, 1927; Schrödinger, 1925; Smith & Pokorny, 1975; Walls, 1955). 

The late filter is comparable to the chromatic TCSFs measured by Wisowaty (1981), who asked 

observers to set the threshold for perceiving the chromatic red-green alternation produced by 

alternating 546 and 656-nm lights (rather than setting the threshold for seeing flicker of any type) 

and to the filter that limits brightness and colour changes induced into a steady light by a flickering 

surround (Christiansen et al., 2009; D'Antona & Shevell, 2006; De Valois, Webster, & De Valois, 

1986). 

Parameter DP GBH 

n (fixed) 2 

 

 

f0 (fixed) 3.15±0.10 Hz 

 k 9.10/8.26 0.00±0.03 0.00±0.03 

k 9.70/8.86 0.54±0.03 0.55±0.03 

k 10.33/9.51 1.22±0.03 1.22±0.03 

k 10.93/10.11 1.84±0.03 1.96±0.03 

R2 0.996 
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A MODEL OF THE CHROMATIC AND BRIGHTNESS PATHWAYS 

The early filter from the subtractive model and the two-stage low-pass late filter model provide 

the two starting components for an overall model of the chromatic and brightness pathways. The 

other components of the model, illustrated in Figure 5, will be examined justified in this section. 

The early filter is represented on the left by two clusters of cones (truncated triangles) and their 

connections. The L- and M-cones are represented by red and green truncated triangles, respectively. 

The two larger cones, the upper one L and the lower M one, are “central” cones and the three 

smaller cones around each large cone symbolize a network of “surround” cones in the ratio of two L-

cones to one M-cone. Within each cone there are two components: The first is a 4-stage low-pass 

filter pictured within the triangles as an exponential decay assigned the number 4. The second is a 

sensitivity adjustment pictured within each triangle as an adjustment dial.  This adjustment is not 

explicitly used in the present paper, but is important for modelling adaptive changes that do not 

depend on changes in the time constants of the filters and are frequency-independent (Stockman, 

Langendörfer, et al., 2006). 

Consistent with our subtractive model, the feedback from the surround cones to each central 

cone incorporates a 1-stage filter depicted in grey diamonds as an exponential decay with the 

number 1—this is the additional “surround” filter. There is also a time delay (depicted within the 

grey diamonds by “∆t”). [The recursive characteristics of the network (interconnections between 

many cones) are not included in this model but will be considered in subsequent papers.] The ratio 

of L- to M-cone numbers in both surrounds is 2:1, approximately the mean L:M cone ratio found in 

human retina (e.g., Carroll, Neitz, & Neitz, 2002; Cicerone & Nerger, 1989; Hofer, Carroll, Neitz, 

Neitz, & Williams, 2005; Sharpe, Stockman, Jagla, & Jägle, 2011; Vimal, Smith, Pokorny, & Shevell, 

1989). It is this network that determines the early (pre-nonlinearity) filter characteristics. 

[Insert Figure 5 about here] 

The two cone clusters both branch into ON- and OFF-CENTER types, which are approximately 

half-wave rectified before being re-combined into unipolar “Red”, “Green”, “Bright” and “Dark” 

channels. Each unipolar channel incorporates a smoothly compressive nonlinearity and is preceded 

by similar late two-stage low-pass filters represented within the square boxes by an exponential 

decay and the number 2. We now consider the parts of the model in addition to the early and late 

filters, and the evidence we have in support of each component. 

If we accept the idea that hue and brightness as we measure them are encoded within the same 

pathway, then we must somehow incorporate within that single pathway both an expansive filter to 
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produce brightness enhancement and a compressive one to produce hue shifts from red or green 

towards yellow. 

Consistent with known retinal physiology, we assume that there are four classes of center-

surround postreceptoral mechanisms with L-ON, L-OFF, M-ON and M-OFF center responses and an 

opposing surround response derived from random connections, probably via horizontal cells, to 

nearby L- and M- cones (e.g., Dacey, 2000; Field & Chichilnisky, 2007; Rodieck, 1998; Wässle, 2004). 

 

The expansive nonlinearity 

We propose that the expansive nonlinearity is the result of the partial half-wave rectification 

that occurs separately within ON and OFF visual pathways.  The half-wave rectification is only partial 

in the sense that ON and OFF neurons can respond slightly below their resting potential or 

spontaneous firing rate (e.g., Kuffler, 1953), as illustrated by the input-output functions represented 

in the red or green squares after the initial cone interactions in each of the four pathways in Figure 

5. The coordinate systems of the input-output functions show the mean adaptation level at the 

origin and the black line plots the hypothetical response to a wavelength shift towards the preferred 

wavelengths of the central cone (positive direction) or away from it (negative direction).  

Psychophysical support for half-wave rectification comes initially from a reanalysis of the results 

of experiments carried out to reveal the characteristics of the late filter in which side-by-side 

brightness matching was used to find the contrast of a low-frequency sinusoid that matched the 

appearance of a flicker-induced brightness change (Petrova et al., 2013b).  The matches for 560-nm 

contrast-modulated are replotted in the left-hand column of Figure 6 for DP (upper panel) and GBH 

(lower panel). The contrast of a 0.5-Hz sinusoid that matched the peak brightness of a contrast-

modulated waveform that had a carrier frequency of 30 Hz and a modulation frequency of 0.5 Hz is 

plotted as a function of the overall modulation of the contrast-modulated waveform. Both axes are 

linear and the error bars indicate ± one standard error (based on three observations) and data for 

the four radiance levels (log10 quanta s-1 deg-2) are shown as different symbols. 

[Insert Figure 6 about here] 

A striking feature of these data is that the curves for different radiances differ by only a scaling 

factor. This fact is illustrated in the right-hand panels where the data in each panel of the left-hand 

column have been scaled to align with the data obtained at the 9.51 log10 quanta s-1deg-2 level (green 

diamonds). After scaling, all four functions for each observer agree remarkably well. Moreover, 

except for a few data points, the functions are well described by the best fitting (least squares) 
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straight line fitted to the aligned data (red lines).  For DP the slope of the best-fitting line is 

0.46±0.02 with an R2 value of 0.95; for GBH the slope is 0.44±0.04 with an R2 value of 0.87. 

 The approximately linear input modulation versus output distortion functions that scale with 

target radiance of Figure 6 severely constrain the types of nonlinearity that could be responsible for 

brightness enhancement. We have modelled the behaviour of a range of nonlinearities in an 

attempt to predict the data of Figure 6 using MatLab and Simulink (Mathworks). We had previously 

suggested that the data in the left-hand panel were consistent with a nonlinearity that was initially 

expansive but with a hard limit at the highest input levels (Petrova et al., 2013b). However, the 

reanalysis shown in the right-hand panels of Figure 6 suggests a better hypothesis. 

We propose that brightness enhancement is due primarily to signal rectification in the 

segregated ON and OFF channels. The half-wave rectifier used in the simulation has the form: 

      𝑦𝑦 = � 𝑥𝑥,          𝑥𝑥 > offset
offset, 𝑥𝑥 ≤ offset,           [10] 

where x is the input to the nonlinearity, y is the output, and offset is the mean level at the input to 

the nonlinearity each radiance level—the level just above that at which the signal is half-wave 

rectified. In the model we allow the output level of the stages before the nonlinearity to rise as the 

time-averaged target radiance (DC) increases, thus increasing the level at which the signal is half-

wave rectified. In the simulation, we varied this offset level from 0.0 to 2.5 (the units are arbitrary), 

and at each value varied the modulation of the contrast-modulated input from 0 to 100%, where 

100% was the maximum modulation possible (without going below 0 before rectification) at any 

given offset value (for example, at an offset value of 1, the minimum and maximum of the contrast-

modulated input signal after rectification are 1 and 2, respectively, whereas for one of 2.5, they are 

2.5 and 5). (Graphs of this form of rectified output as a function of input are shown for three 

arbitrarily chosen offsets in the panels at the top of Figure 7.)  At each combination of offset and 

modulation, we calculated the contrast of the distortion product at fm; that is, the ratio of the 

amplitude of the distortion product at fm to the mean of the output after the nonlinearity. And this 

mean includes a distortion component from the non-linearity as well as the response to the non-

time-varying component of the input. A three-dimensional plot of the simulated contrast of the 

signal at fm as a function of the offset and input modulation is shown in the lower panel of Figure 7. 

[Insert Figure 7 about here] 

The surface of Figure 7 depends very little on offset level and, except for very low input 

modulation, is effectively planar. Clearly, the predictions shown in Figure 7 can account for the main 

features of Figure 6: The output contrasts are linear functions of the input modulation for input 
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modulation exceeding about 10%, and are independent of the offset level. Moreover, changes in the 

input modulation, caused by radiance-dependent changes in the sensitivity to the 30-Hz carrier, will 

simply scale the input modulation versus output contrast functions along the input modulation axis 

while maintaining the linear slope. Other types of nonlinearity that we modelled did not possess 

these simple properties. Comparable predictions for a compressive nonlinearity and an expansive 

nonlinearity (both with clipping at high input levels) are shown, respectively, in Figure 12 of Petrova, 

Henning and Stockman (2013a) and in Figure 11 of Petrova, Henning and Stockman (2013b). 

However, nonlinearities that are smoothly compressive or expansive (with or without clipping at 

high input levels) and nonlinearities that are smoothly expansive at low input levels and smoothly 

compressive at high levels, produce accelerating functions of output contrast versus input 

modulation and are thus inconsistent with the linear characteristics of the scaled matching functions 

shown in the right-hand panels of Figure 6; half-wave rectification in the segregated  ON and OFF 

signals can account for the approximately linear output contrast versus input modulation functions. 

The scaling factors required to align the data for different radiances in Figure 6 are important. 

The reciprocals of the scaling factors are directly related to the magnitude of the contrast out of the 

nonlinearity, and are plotted on semi-logarithmic coordinates in Figure 8 for DP (red diamonds) and 

GBH (dark-red squares).  

[Insert Figure 8 about here] 

 The increase of scaling with target radiance can be very simply accounted for by light adaptation 

shortening the temporal integration time of the early filter; that is, decreasing τc in Equation [4] 

(and, since 𝑓𝑓0 = 1/2𝜋𝜋𝜏𝜏𝑐𝑐, increasing  f0). A consequence of the shortening time constant is that the 

sensitivity of the system to the 30-Hz carrier frequency will increase as the mean radiance increases 

(see, for review and data, Stockman, Langendörfer, et al., 2006), so that the contrast-modulated 30-

Hz signal reaching the nonlinear site, and its corresponding output distortion, will also increase. 

Fortunately, we can estimate the effect of mean input radiance on sensitivity to 30-Hz flicker 

using 30-Hz modulation-sensitivity data measured separately in two protanopes, ML and MM 

(Stockman, Langendörfer, et al., 2006) as part of a series of modulation-sensitivity and phase-delay 

measurements carried out to model light adaptation (measured using a 4O diameter, flickering 540-

nm target on a 9O, 610-nm background). The results for ML (green triangles) and MM (inverted dark 

green triangles) are shown in Figure 9 scaled to align with the relative sensitivities for DP and GBH 

below 9.5 log10 quanta s-1 deg-2. With the exception of the data point at the highest mean radiance 

for GBH, the relative increase in 30-Hz cone modulation sensitivity for ML and MM predicts the 

increase in output distortion remarkably well, strongly supporting our model. Moreover, the data of 
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for ML and MM, which peak and then fall, suggest that the scaling for DP (but not for GBH) 

decreases at the highest mean radiance not because of clipping, as we previously proposed (Petrova 

et al., 2013a), but because the 30-Hz signal becomes attenuated at the highest radiances. 

 To return to the remaining features of the model shown in Figure 5, we first need to consider 

how hue and brightness are determined. 

 

Extracting hue and brightness 

 The linear nature of the input modulation versus output contrast functions for brightness 

enhancement suggests that the brightness signal (and thus the 560-nm flicker signal) is relatively 

unaffected by the compressive nonlinearity that gives the hue shift. Thus, we can reasonably assume 

that the compressive nonlinearity occurs later than the rectification stage. Furthermore, the 

compressive nonlinearity seems to be specific to the red-green chromatic signal, leaving the bright-

dark signal relatively unaffected. Thus, returning to Figure 5, we separate the chromatic and 

brightness information from the spatially- and chromatically-opponent postreceptoral signals using 

the decoding scheme illustrated in the model diagram. 

As a consequence of being chromatically-opponent and spatially-opponent, cells in the 

parvocellular stream carry luminance and/or brightness information as well as colour information 

(e.g., Ingling & Drum, 1973; Ingling & Martinez-Uriegas, 1985; Ingling & Martinez, 1983; Ingling & 

Tsou, 1988; Kelly, 1983; Lennie & D'Zmura, 1988; Merigan & Eskin, 1986; Schiller, Logothetis, & 

Charles, 1990). Simple mechanisms for decoding the luminance and chromatic signals from 

multiplexed signals have been proposed that difference or sum center-surround chromatically- and 

spatially-opponent neurons (e.g., Billock, 1991; Lennie, 1984; Lennie & D'Zmura, 1988; Martinez-

Uriegas, 1985; Stockman & Brainard, 2009). After the L-ON, L-OFF, M-ON and M-OFF signals are 

formed, the signals can be combined in different ways to produce non-spatially opponent red and 

green mechanisms and spatially-opponent bright and dark mechanisms: Summing the L-ON and M-

OFF signals produces a spatially non-antagonistic “RED” signal and the summing the L-OFF and M-ON 

signals produces a spatially non-antagonistic “GREEN” signal. In Figure 5, these RED and GREEN 

signals form the basis of separate unipolar red and green chromatic mechanisms. By contrast, 

summing the L-ON and M-ON signals produces a spatially antagonistic achromatic “BRIGHT” signal, 

and summing the L-OFF and M-OFF signals produces a spatially antagonistic achromatic “DARK” 

signal. The BRIGHT and DARK signals form the basis of separate unipolar bright and dark brightness 

mechanisms. 
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Our model does not require that red, green, bright and dark mechanisms be unipolar rather than 

red-green and bright-dark bipolar mechanisms, but we prefer them. Evidence in support of unipolar 

mechanisms is discussed by Eskew (2008).  

 

The compressive nonlinearity and the position of the late filter 

 The position of the late filter with respect to the compressive nonlinearities in the red and green 

channels is crucial to the final form of the model. In our first paper on hue-shifts (Petrova et al., 

2013a), we assumed that the late filter followed the compressive nonlinearity. Thus, an amplitude-

modulated flicker signal that modulates the red or green channels will be compressed by this 

nonlinearity to produce shifts in hue at the amplitude-modulation frequency. Yet, because of the 

similarities found between the early and late filter shapes for detecting the hue-shift and brightness-

change, we now suppose that the compressive nonlinearity that generates the hue-shift and the 

expansive nonlinearity that generates the brightness-change must be in the same pathway. This 

juxtaposition of compressive and expansive nonlinearities, however, complicates our previously 

simple hue and brightness models (Petrova et al., 2013a, 2013b). One complication is that the 

similarities between the two early filter shapes requires that the expansive and compressive 

nonlinearities must be at a similar position in the common pathway with little or no filtering 

between them, which we think is unlikely. Another complication is that amplitude-modulated flicker 

(e.g., 650 nm) that produces a hue-shift is distorted by both the expansive and the compressive 

nonlinearities, yet amplitude-modulated flicker (e.g., 560 nm) that produces only a brightness-

change is distorted by only the expansive nonlinearity; and despite these substantial differences, 

both types of flicker yield nearly identical estimates of the early and late filter shapes. 

A simple resolution of these and other difficulties is to place the late filter before the 

compressive nonlinearities in the chromatic and brightness pathways as shown in Figure 5. The 

distortion of the amplitude-modulated flicker signal that generates the brightness-change (with 560-

nm flicker) and the hue-shift (with 650-nm flicker) can then be assumed to occur primarily at the 

early half-wave rectifying nonlinearities. As a result, the early filters for both the brightness-change 

and the hue-shift measurements should be the same—as we find. The late filters then attenuate the 

high-frequency components of the amplitude-modulated signal, which consequently have little 

effect at the compressive nonlinearity. By contrast, the low-frequency distortion products generated 

by the early nonlinearity are passed by the late filter and so reach the late nonlinearities, where, if 

the signals are large enough, they will be significantly compressed. For example, amplitude-

modulated flicker of 650-nm will be distorted by the early nonlinearity to produce a larger red signal 
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than green signal at the amplitude-modulation frequency (since the L-cone modulation at 650 nm is 

greater than M).  At the compressive nonlinearities, the larger red signal will be more compressed 

than the green signal and thus the hue at the peak of the amplitude-modulation will shift towards 

yellow—as we find. Amplitude-modulated 520-nm flicker will produce larger green signals than red, 

as a result of which the green signal will be more compressed, and the hue at the peak of the 

amplitude-modulation will again shift towards yellow—as we find. In contrast, amplitude-modulated 

560-nm flicker, will produce roughly equal red and green signals, which will be equally compressed 

to produce no change in hue (and be seen as a change in brightness). 

Our measurements suggest that the four unipolar pathways contain the same late filters. The 

purpose of these may be to extract the slowly changing, mean brightness and mean chromatic 

signals from the multiplexed chromatically- and spatially opponent input signal.  

Compressive nonlinearities are also hypothesized within the bright and dark channels as shown 

by the dashed lines in Figure 5.  Given that the inputs to these non-linearities are still spatially-

opponent, large fields, such as the 4Ο diameter targets used in our experiments, are unlikely to drive 

the bright or dark channels into their compressive range (except, possibly, at the edges of the 

target), because for large stimuli, the center and surround signals will be approximately balanced. 

However these nonlinearities would be expected to affect small targets or high-frequency gratings 

since with them, the output would be driven into the compressive range. And brightness 

enhancement is indeed reduced for small flickering spots (van der Horst & Muis, 1969). Given that 

there are late compressive nonlinearities in both the hue and the brightness channels, having spatial 

antagonism for brightness but not for hue may be key in producing the different types of distortion 

seen for 560 and 650-nm flicker. 

  

THE EARLY L- AND M-CONE FILTERS AND S-CONE FILTERS COMPARED 

Stockman & Plummer (1998) used the distortion of contrast-modulated 440-nm, S-cone-

detected flicker to measure the characteristics of the early filter in the S-cone pathway.  The 

distortion was seen as a yellowing of the 440-nm target when the contrast modulation was high. As 

discussed in their paper, the estimate of the early filter was consistent with the cone visual response 

measured photo-voltaically (Schneeweis & Schnapf, 1995; Schneeweis & Schnapf, 1999).  See Figure 

12 of Stockman and Plummer (1998). 

The mean 440-nm target radiance used in the S-cone isolating experiments was 9.53 log10 

quanta s-1 deg-2. If we assume pre-receptoral (lens plus macular) filtering of 0.63 log unit at 440 nm 

(the mean values for a 2-deg field, see Stockman & Sharpe, 2000a), the effective radiance at 440 nm 
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is reduced from 9.53 to 8.90 log10 quanta s-1 deg-2. Given that 440- and 560-nm, respectively, are 

near to the S- and L-cone corneal  λmax wavelengths (Stockman & Sharpe, 2000a), the closest level 

for L-cones in our experiments is the 560-nm mean radiance of 8.86 log10 quanta s-1 deg-2 level (or 

9.70 log10 quanta s-1 deg-2 at 650 nm). Figure 9 shows a comparison of the early filter estimates for 

the DP and GBH using L- and M-cone contrast-modulated flicker at the 560/650-nm mean radiances 

of 8.86/9.70 log10 quanta s-1 deg-2 and the data of the observers from Stockman & Plummer (1998):  

AS (dark blue circles) and DJP (blue squares) measured using S-cone contrast-modulated flicker and 

plotted in both panels. The estimates for the hue and brightness changes for DP (upper panel) and 

GBH (lower panel) have been replotted from Figure 2 using the same symbols, alignment and 

sensitivity scale. The continuous red lines shows the fits of the subtractive filter model also from 

Figure 2. To emphasise the differences, the S-cone estimates for AS and DJP have been vertically 

aligned with the L- and M-cone estimates at the highest temporal frequencies. 

[Insert Figure 9 about here] 

It is clear the early S-cone filter declines with a much shallower high-frequency slope than the L- 

and M-cone filters and exhibits a much smaller level of low-frequency attenuation.  Largely as a 

result, the L- and M-cone estimates appear more bandpass than the S-cone estimates; they also 

have their peak sensitivity shifted to higher temporal frequencies. 

The shallower high-frequency slope of the S-cone filter is consistent with the nonlinearity in the 

S-cone pathway being much earlier in the visual processing stream than the nonlinearities in the L- 

and M-cone pathways, so that the early S-cone filter is subject to fewer stages of temporal filtering 

(and consequently is more similar to the attenuation characteristics of the photoreceptor). However, 

the difference in low-frequency attenuation, which suggests that there is less surround inhibition for 

S-cone signals, suggests an alternative explanation that is consistent with our version of the 

subtractive model. 

Also shown in Figure 9 as the continuous blue lines, again from Figure 2, are the estimates of the 

attenuation characteristics of the “center” response predicted by the subtractive model. These have 

been vertically aligned with the S-cone estimates at 2 Hz and above.  As can be seen, the agreement 

for DP is remarkably good above 2 Hz.  The agreement for GBH is less good, but given the diverse 

nature of the two filter estimates, the agreement is nonetheless impressive. 

We conclude that the principal nonlinearities in the S-cone and L- and M-cone pathways 

revealed by flicker may all be soon after the photoreceptor. The L- and M-cone early-filter estimates 

appear to be very different from the S-cone estimate, and unlike the photoreceptor response, simply 

because they reflect antagonistic interactions with signals from the surround that cause destructive 
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interference at both low and high frequencies and constructive interference at intermediate 

frequencies. In contrast, the S-cone early filter estimates reflect mainly the “center” response with 

relatively little surround interference. The lack of S-cone surround inhibition (for S-cone isolating 

stimuli) is consistent with the S-cone’s being relatively sparse (e.g., Ahnelt, Kolb, & Pflug, 1987; 

Curcio et al., 1991; Szél, Diamantstein, & Röhlich, 1988), and with the possibility that S-cones may 

not feedback through the H2 horizontal cells to which they are connected (Dacey, Lee, Stafford, 

Pokorny, & Smith, 1996), since S-cone feedback responses are not seen in L- or M-cones (p. 189, 

Dacey & Lee, 1999). 

The model we propose, then, consists of an early bandpass filter common to a, probably 

parvocellular, pathway that signals both hue and brightness. The principal effect of radiance on the 

early filter is a shortening of its time constant with increasing radiance. The shape of the early 

bandpass filter is consistent with antagonism between “center” signals and more sluggish and 

delayed “surround” signals. The brightness-change and hue-shift may be caused initially by the half-

wave rectification and partition of signals into ON and OFF components. A common late filter, 

unaffected by radiance, is a simple 2-stage low-pass filter. The hue-shift is additionally due to the 

effects of a subsequent nonlinearity that compresses chromatic “red” and “green” signals more than 

the balanced signals.  Plausible sites for the rectifying nonlinearity are soon after surround 

antagonism possibly from horizontal cells. Plausible sites for the compressive nonlinearity, since it 

follows the late filter, may be much later. According to the model, the distortion of the amplitude-

modulated signals for both hue and brightness occurs primarily at the early half-wave rectifying 

nonlinearity, but the hue change depends also on the effect of that distortion at the later 

compressive nonlinearity.  

We note that the early expansive nonlinearity that we attribute to signal rectification is probably 

distinct from the compressive nonlinearity revealed using high spatial frequency laser interference 

gratings by MacLeod, Williams & Makous (1992), which they attributed to local adaptation within 

single cones. In our experiments, the mean adaptation level is held constant. 

 

SUPPLEMENTARY EXPERIMENTS: THE EARLY FILTER ESTIMATED FROM HUE SHIFTS AND 

BRIGHTNESS CHANGES OF PURE M-CONE OR PURE L-CONE FLICKER 

Introduction 

In a supplementary series of experiments, the early filter shapes were estimated this time using 

contrast-modulated stimuli that excited either only M-cones or only L-cones. Cone isolation was 
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achieved using the method of silent substitution (e.g., Estevez & Cavonius, 1975; Estévez & 

Spekreijse, 1974, 1982; Rushton, Powell, & White, 1973a, 1973b) between a pair of superimposed 

650-nm and 529-nm lights that flickered in opposite phase and were equated in sensitivity either for 

the L-cones to produce M-cone flicker, or for the M-cones to produce L-cone flicker. These stimuli 

are useful because as well as producing cone-isolating flicker they also, unlike the monochromatic 

flickering lights we have used previously, produce chromatic flicker. 

If the nonlinearity had been at the cone level, then these measurements would have allowed us, 

in principle, to measure separately the temporal characteristics of the M- and the L-cones. However, 

this goal was thwarted by the results reported above demonstrating that the nonlinearity 

responsible for the hue and brightness changes follows a substantial stage of surround antagonism, 

which places it at least at or after the horizontal-cell feedback onto cones, and perhaps later. This 

conclusion was also reached by Christiansen et al. (2009). [Note here that by using steady state 

adaptation, we minimize the effects of nonlinearities in the photoreceptors that are associated with 

receptor adaptation (see for a discussion of photoreceptor adaptation, Stockman, Langendörfer, et 

al., 2006)]. Nonetheless, the cone-isolating stimuli are particularly useful, because unlike the 

monochromatic 560- and 650-nm flicker used previously, they generate chromatic flicker at the 

carrier frequency, fc. 

Our results suggest that at low carrier frequencies, chromatic flicker at fc is directly detected, 

but at higher frequencies, the hue-change at fm is detected. 

 

Methods 

Apparatus.  The stimuli were produced using a 5-channel, computer-controlled Maxwellian-view 

optical system.  The experimental details, including descriptions of the experimental system used to 

make the measurements, and the calibration procedures, can be found in our companion papers 

(Petrova et al., 2013a, 2013b).  We describe here only the essential characteristics of the methods in 

this set of supplementary experiments. 

Observers.  The same observers participated in the experiments for all papers. Both were authors, 

one male (GBH) and one female (DP), and both were experienced psychophysical observers with 

normal colour vision and normal (DP) or corrected to normal (GBH) spatial acuity. Observers used 

the method of adjustment and in each condition and the mean and s.e.m. of three settings are 

reported. 
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Stimuli.  Visual stimuli were centrally-fixated target discs of 4° diameter. As described above, the 

discs were flickered and the flicker was “contrast-modulated” with the temporal waveform given in 

Equation [1], above. The modulation frequency, fm, was fixed at 0.5 Hz and fc was varied. The “overall 

modulation”, m, or Michelson contrast: 

𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

   ,          [11] 

where Imax and Imin are the maximum and minimum radiances of the stimulus, respectively, was 

varied to find the hue and/or brightness change threshold using the method of adjustment. 

Silent-cone substitution was produced by superimposing a 4°, 650-nm light and a 4°, 529-nm 

light.  The two lights were contrast-modulated at the same carrier frequency of fc Hz and at the same 

fixed fm of 0.5 Hz. Although the contrast-modulation (at fm) of the two lights was in phase, the flicker 

at fc was in opposite phase. For L-cone isolating flicker, the four 650/529 nm mean radiances were 

9.37/7.51, 9.95/8.08, 10.58/8.71 and 11.20/9.34 log10 quanta s-1 deg-2. In terms of L-cone excitation, 

these lights are 0.3 log10 unit brighter than the comparable 560-nm lights and in terms of luminance 

0.15 log10 unit brighter, and the modulation was reduced from the system maximum of 92% to one 

of 79% (Sharpe et al., 2011; Stockman & Sharpe, 2000b). (Ideally, these lights should have been 

equated in luminance, but the differences are small.) For M-cone isolating flicker, the four 529/650 

nm radiances were 8.10/8.85, 8.65/9.40, 9.22/9.98, 9.90/10.66, and 10.50/11.25 log10 quanta s-1 

deg-2.  In terms of M-cone excitation, these lights are about 0.13 log10 unit dimmer than the 

comparable 560-nm lights and in terms of luminance approximately equal, and the modulation was 

reduced from the system maximum of 92% to one of 79% (Sharpe et al., 2011; Stockman & Sharpe, 

2000b). 

This research adhered to the tenets of the Declaration of Helsinki. 

 

Results 

The observers reported that the contrast-modulated flicker changed in hue at fm from orange-

red to yellow for L-cone stimuli and from yellow-green to yellow for M-cone stimuli. Thus, the most 

pronounced change for these stimuli was a hue shift rather than a brightness change. They also 

reported that for fc < 10 Hz, flicker at the carrier frequency appeared to change in hue from red to 

green, which is consistent with the cone-isolating flicker’s generating a chromatic signal. 

 [Insert Figure 10 about here] 
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Figure 10 shows the estimates of the attenuation characteristics of the early filter obtained with 

L-cone contrast-modulated flicker (red symbols) for DP (left-hand panel) and GBH (right-hand panel) 

compared with the estimates obtained with monochromatic 650-nm (yellow symbols) and 560-nm 

(black symbols) contrast-modulated flicker. Mean radiance increases from top to bottom. The 

alignments of the 650- and 560-nm data and the predictions of the subtractive surround model 

(continuous red lines) are from Figure 5. The L-cone data have been vertically aligned with 650- and 

560-nm data at frequencies ≥ 15 Hz, a range over which all three estimates agree extremely well.  

At lower frequencies, however, the L-cone estimates for DP deviate substantially from the other 

estimates, showing marked increases in sensitivity at 5, 7.5 and, at the two highest radiance levels, 

also at 10 Hz. Those for GBH deviate only at 5 Hz and/or 7.5 Hz at the two highest levels. 

[Insert Figure 11 about here] 

Figure 11 shows the estimates of the attenuation characteristics of the early filter obtained using 

M-cone contrast-modulated flicker (green symbols) for DP (left-hand panel) and GBH (right-hand 

panel). Again, the cone data have been vertically aligned with 650- and 560-nm data at frequencies ≥ 

15 Hz, a range over which all three (and by extension all four) estimates agree. At lower frequencies, 

the M-cone estimates for both observers are consistently higher in sensitivity at 5 and 7.5 Hz than 

the other estimates. 

 

Discussion 

For both observers, the estimates of the early filter using cone-isolating flicker consistently show 

less low-frequency attenuation than the estimates obtained using either 560- or 650-nm 

monochromatic flicker.  These deviations are large and suggest that a different mechanism 

generates the hue change for cone-isolating flicker at low fm.  The likely nature of this mechanism is 

suggested by the observers’ observations that for fc < 10 Hz, flicker at the carrier frequency appears 

chromatic. [Similar effects are also seen with S-cone flicker below 10 Hz (Stockman, MacLeod, & 

DePriest, 1991; Stockman & Plummer, 1998).] If we compare the low-frequency portions of early 

filter estimates obtained with cone-isolating flicker with directly measured chromatic TCSFs with 

sinusoidal stimuli from Petrova, Henning and Stockman (2013a), the agreement is remarkably good. 

The blue symbols plotted in Figures 10 and 11 are directly measured chromatic TCSFs obtained using 

luminance-equated 650- and 530-nm alternating sinusoidal flicker previously plotted as grey symbols 

from Figure 3 of Petrova, Henning and Stockman (2013a). The chromatic functions have been 

vertically aligned using a least squares fitting procedure with the L-cone data at low frequencies 

where they clearly deviate from the subtractive model (continuous red lines). So aligned, the 
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directly-measured chromatic TCSFs capture the details of the cone isolating data of figures 10 and 

11. 

Such good agreement is surprising. If the detection of the hue change for low-frequency cone-

isolating flicker depends on distortion at fm, then according to the sandwich model, the 

measurements at low frequencies should reveal the shape of the filter before the nonlinearity. How 

can the early filter have the same shape at low frequencies as the overall chromatic TCSFs? The 

simplest explanation is that at low fc, observers base their responses on the chromatic appearance of 

the carrier at fc Hz rather than on the distortion signal varying at fm Hz. In that case, the relevant 

chromatic detection mechanism for cone-isolating flicker at low fc may follow both the early and the 

late filters and be after the compressive red and green nonlinearities shown in Figure 5. This 

arrangement is supported by the observation that at low carrier frequencies, cone-isolating flicker is 

seen as a variation in hue from red to green at the carrier frequency, which suggests that individual 

flicker cycles are resolved by the chromatic system.  Consequently, at low fc, observers may base 

their responses on the chromatic appearance of the carrier at fc Hz rather than on the distortion 

signal varying at fm Hz, a task which may be mediated central to the late filter.  The effective 

nonlinearity for the hue change is then after the extraction of the perceptual colour signal (i.e., after 

both the early and the late filters), and therefore results in data similar in shape to that produced by 

the chromatic TCSFs, which are also affected by both filters. 

 

COMPARISONS BETWEEN THE L- AND M-CONE EARLY FILTER ESTIMATES AND 

PHYSIOLOGICAL DATA 

We can gain some insight into the likely location of the nonlinearity by comparing the early filter 

shapes estimated psychophysically with comparable physiological recordings from monkey retinal 

ganglion cells and LGN cells. 

The smooth curves in Figure 12 shows the early filters shapes predicted by the subtractive model 

for the four mean 560/650-nm radiance levels, which, for the 560-nm targets, equate to 2.16 (black 

lines), 2.76 (brown lines), 3.41 (orange lines) and 4.01 (red lines) log10 trolands (as indicated in the 

lower panel). The upper panel shows the early filters for DP, the lower, for GBH; in both panels 

numbers proportional to log10 sensitivity are plotted as a function of frequency (Hz, logarithmic 

scale).We have converted our radiance measurements to trolands here to allow easy comparisons 

with the monkey data. Further, to make the comparisons clearer, we have aligned the 

psychophysical estimates at low frequencies, where they all have similar slopes. 
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[Insert Figure 12 about here] 

The replotted physiological data shown in Figure 12 were all obtained with “luminance” rather 

than “chromatic” flicker, since the luminance data are more comparable with the psychophysical 

data we obtained with 560- and 650-nm monochromatic flicker. The log troland values in the key at 

the top of Figure 12 are the values from each paper plus 0.13 log10 unit to account for differences 

between monkey and human eye (see Virsu & Lee, 1983). The physiological ganglion cell data 

include one set of parvocellular (Pa) data measured at 2.43 log td (orange triangles) and three sets 

measured at 3.43 log td (yellow triangles, yellow circles and yellow diamonds); and one set of 

magnocellular (Ma) ganglion cell data also measured at 3.43 log td (grey circles).  The LGN data 

include one set of parvocellular data (red squares) and one set of magnocellular data (white squares) 

both measured at 3.13 log td.  To facilitate comparison, the various physiological estimates have 

been aligned with the psychophysical data between 1 and 5 Hz in each panel. 

The physiological data and early filter estimates in Figure 12 agree plausibly between 1 and 5 Hz.  

The agreement suggests that the indirect method of estimating the early filter at low frequencies is 

reasonably robust, and also supports the subtractive model of surround antagonism at low 

frequencies (see also, for example, Benardete & Kaplan, 1999a; Benardete & Kaplan, 1999b). The 

consistent underestimate of the monkey data at 0.5 Hz suggests that the low-pass model of the 

center filter (i.e., the photoreceptor response) response should, in fact, be slightly bandpass, which 

is also suggested by the S-cone data plotted in Figure 9 and by biphasic suction electrode recordings 

cone responses (e.g., Baylor, Nunn, & Schnapf, 1987; Schnapf, Kraft, & Baylor, 1987). 

The agreement between the psychophysical and physiological data at higher frequencies is 

clearly worse. Most of the physiological data were measured at either 3.13 or 3.43 log td, so they 

should be compared with the early filter estimate for the 3.41 log td level (orange lines). In general, 

the early filter estimate at this level falls off more steeply than the retinal ganglion cell data and less 

steeply than the LGN cell data, particularly in the case of the parvocellular cells. However, a relative 

loss of high-frequency sensitivity for the psychophysical data relative to monkey data should be 

expected because the signal-to-noise ratio rapidly decreases with increasing frequency (e.g., Lee, 

Sun, & Zucchini, 2007). Consequently, psychophysical measurements in which the observer has to 

discriminate a threshold signal from noise will suffer greater losses of sensitivity with increasing 

frequency than physiological measurements in which, typically, some moderately-high modulation 

of the firing rate is used as the criterion cell response for defining the cell “sensitivity”. Thus, these 

comparisons are not at all inconsistent with the notion that the early filter is before the LGN, and 

therefore in the retina. 



30 
 

Although the low-frequency attenuation suggested by our early filter shapes is consistent with 

the ganglion cell data shown in Figure 12, it remains a possibility that the nonlinearity is much later 

in the visual pathway and that the early filter shapes also reflect cortical feedback to the LGN (e.g., 

Sherman & Koch, 1986) and/or inhibition within the primary visual cortex (e.g. Priebe & Ferster, 

2008).    

  

CONCLUSIONS 

The nonlinearities that cause 560-nm flickering lights to change in brightness and 650-nm 

flickering lights to shift in hue lie in pathways with very similar temporal attenuation characteristics 

before and after the nonlinearity that distorts the flicker signal. The early filter is a bandpass filter 

peaking at 10-15 Hz with substantial low-frequency attenuation, which we model in a subtractive 

scheme as antagonism between “center” signals shaped by 4-stage low-pass filter and subtractive 

“surround” signals shaped by the same filter with an extra low-pass stage and delayed by an extra 

time delay. The phase delays between the center and surround signals, which increase with 

frequency from being in opposite phase at 0 Hz, are important in producing the bandpass shape of 

the filter by causing destructive interference at low frequencies, constructive interference at 

intermediate frequencies and destructive interference again at high frequencies. We model the late 

filter as a two-stage low-pass filter with cut-off frequencies around 3 Hz.  

The similarity between the early and late filters in hue shifts and brightness changes suggests a 

common pathway for chromatic and brightness processing, which is most likely the parvocellular 

stream of processing.  Brightness in this context is therefore distinct from the second of the two 

“luminance” channels usually linked to the magnocellular stream (e.g., Ingling & Drum, 1973; Ingling 

& Martinez-Uriegas, 1983; Ingling & Martinez, 1983). 

 The bandpass filter attenuates mainly low temporal frequencies (and to a lesser extent higher 

frequencies), while relatively enhancing the temporal frequencies near its peak, thus accentuating 

its temporal tuning. The attenuation of low frequencies is an important mechanism of adaptation 

(for reviews, see Hood, 1998; Hood & Finkelstein, 1986). The purpose the low-pass late filter may be 

to extract the slowly changing, mean brightness and mean chromatic signals from the multiplexed 

chromatically- and spatially-opponent input signal. 

The initial distortion of the input signal in the model is caused by half-wave rectification, 

hypothesised to be due to the segregation of the visual signal into ON and OFF streams. The 

rectification encodes and enhances oppositely-signed time-varying signals at middle to high 

temporal frequencies after von Kries adaptation at low temporal frequencies—probably at the 
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photoreceptor level—has removed the mean (DC) signal (see for review and model Stockman, 

Langendörfer, et al., 2006).  We speculate that hue shifts are caused by smoothly compressive 

nonlinearities in unipolar red and green chromatic mechanisms that follow the late low-pass filters.  

The distortion of the amplitude-modulated 650-nm stimuli at the early half-wave rectifier produces a 

larger red signal than green signal at the amplitude-modulation frequency, which is consequently 

more compressed by the compressive nonlinearities, so producing a hue-shift towards yellow at the 

peak of the amplitude-modulation.  By contrast, the distortion of the amplitude-modulated 560-nm 

stimuli at the half-wave rectifier produces roughly equal red and green signals that are equally 

compressed by the later compressive nonlinearities, so producing no hue-shift and only a brightness-

change. We suggest that spatial antagonism may prevent the 560-nm flicker signal from being 

distorted by a late compressive nonlinearity in the brightness pathway. 

Plausible sites for the half-wave rectifying nonlinearity are soon after surround antagonism 

possibly from horizontal cells. Comparisons with physiological recordings show some consistency 

between the early filter shapes and primate ganglion cell data. The smoothly-compressive 

nonlinearity, which we suppose follows the late filter, could be relatively late in the processing 

stream. 
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APPENDIX 

The Divisive model 

The bandpass shape of the early filter revealed by our measurements was modelled by dividing a 

“center” temporal response of a cascade of filters by a “surround” temporal response of another 

cascade of filters, thus: 

𝐴𝐴(𝑓𝑓) = 𝜏𝜏𝑐𝑐𝑛𝑛𝑐𝑐[(𝑓𝑓 𝑓𝑓0𝑐𝑐⁄ )2 + 1]
−𝑛𝑛𝑐𝑐
2

𝜏𝜏𝑠𝑠𝑛𝑛𝑠𝑠[(𝑓𝑓 𝑓𝑓0𝑠𝑠⁄ )2 + 1]
−𝑛𝑛𝑠𝑠
2

�  ,      [A1] 

where the subscript “c” refers to the parameters of the central cascade of filters, and the subscript 

“s” refers to the parameters of the surround cascade (e.g., Foley, 1994). The fits were made 
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simultaneously to the hue change and brightness data for both observers, using the procedure 

described in Petrova, Henning & Stockman (2013a). Briefly, fits were made using the logarithm of 

Equation [A1] with a logarithmic scaling constant, k, that could vary with target radiance. In terms of 

the model, k represents a frequency-independent sensitivity loss that is in addition to any losses 

resulting from the changing corner frequencies of the filters; it could be attributed merely to 

increased adaptation as the radiance level increases. As an expedient in fitting low-frequency and 

high-frequency measurements derived from different procedures, an extra arbitrary constant, v, was 

added to the low-frequency data for each level, the value of which was individually optimized for 

each set of data. This constant simply determines the best-fitting vertical alignment of the directly 

and indirectly measured data, thus: 

log[𝐴𝐴(𝑓𝑓)] = �
  log[𝐴𝐴(𝑓𝑓low)] + 𝑘𝑘 + 𝑣𝑣, low frequency estimates

log�𝐴𝐴�𝑓𝑓high��+ 𝑘𝑘,        high frequency estimates.     [A2] 

Best-fitting versions of the model were obtained using a standard non-linear, least-squares 

curve-fitting algorithm (implemented in SigmaPlot, SPSS) to account for the data obtained for each 

observer at each of the four time-averaged radiances. Equations [A1] and [A2] were fitted 

simultaneously to the estimates of the functions for both DP and GBH. 

Parameter DP GBH 

nc (fixed) 6 

ns (fixed) 2 

f0s (fixed) 1.22±0.05 Hz 

 

 

 

f0c 9.10/8.26 13.52±0.35 Hz 11.45±0.31 Hz 

f0c 9.70/8.86 16.17±0.41 Hz 13.88±0.32 Hz 

f0c 10.33/9.51 18.86±0.47 Hz 16.37±0.37 Hz 

f0c 

 

18.22±0.42 Hz 17.44±0.41 Hz 

k 9.10/8.26 0.00±0.05 0.00±0.05 

k 9.70/8.86 0.35±0.05 0.21±0.04 

k 10.33/9.51 0.64±0.05 0.50±0.04 

k 10.93/10.11 1.31±0.04 1.05±0.04 

R2 0.997 

The model was readily simplified by fixing those parameters that did not vary systematically with 

target radiances or across observers, in this case number of center filters, nc, the number of 
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surround filters, ns, and the common corner frequency of the surround filters, f0s. Also implicit in the 

use of Equation [A1] is the simplification that at any target radiance, the cut-off frequencies of all 

centre stages (f0c) and all surround stages (f0s) are the same.  In preliminary fits the number of stages 

in both center and surround (nc and ns) were allowed to take on non-integer values but in the final 

fits, we fixed them at their nearest integer values (nc = 6 and ns = 2).  [If nc and ns are separately 

allowed to take on non-integer values the best fitting values are 6.26±0.25 and 1.82±0.25, 

respectively.] Both scaling (the vertical logarithmic shift, k) and the center cut-off frequencies were 

allowed to vary between observers and between levels.  

The results of the final fit of the model for the early filters are shown as the continuous red lines 

in Figure A.  

[Insert Figure A about here] 

The parameters from the fit are tabulated in Table A1.  [The values of v, which are arbitrary, are 

not given (these values are arbitrary because they depend on the relative sensitivities estimated at 

low and  high frequencies, one of which was measured directly and the other of which was obtained 

indirectly by logarithmically differencing other sensitivities measured in different units).]  The corner 

frequencies and sensitivity losses are slightly larger for DP than for GBH. 
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FIGURE LEGENDS 

Figure 1.  Amplitude versus time for one cycle of the modulation of contrast-modulated 650-nm 

flicker (upper panel) and one cycle of 560-nm flicker (lower panel). The icons above each waveform 

represent the approximate changes in hue or brightness coincident with the peaks and the troughs 

of the flicker.   

 

Figure 2. Estimates of the logarithmic sensitivities corresponding to the attenuation characteristics 

of the early filter for DP (left-hand panel) and GBH (right-hand panel) obtained from 650-nm hue 

shift measurements (open and yellow symbols) and from the 560-nm brightness change 

measurements (smaller black and grey symbols)—both plotted as a function of frequency (Hz, 

logarithmic scale).  Data are shown at each of the four L-cone equated, 650/560-nm time-averaged 

radiances: 9.10/8.26 (inverted triangles), 9.70/8.86 (circles), 10.33/9.51 (diamonds) and 10.93/10.11 

(squares) log10 quanta s-1 deg-2. Error bars indicate ±1 s.e.m. The directly-measured 560-nm 

brightness enhancement data (grey symbols) have been vertically aligned with the 650-nm hue shift 

data (yellow symbols) using a least-squares fitting criterion.  The vertical axis is correct for the 650-

nm hue change data measured at the lowest mean radiance plotted as amplitude sensitivities (top 

set) where the amplitudes are measured in quanta s-1 deg-2. For clarity, the amplitude sensitivities at 

the next three 650-nm mean radiances have been shifted down by an additional 1, 2 or 3 log10 units, 

respectively.  The vertical positions of the early filter estimates, inferred from differences between 

the hue change (open symbols) and brightness change (grey symbols) measurements and 

conventional TCSFs, were determined by the fit of the subtractive model, the final version of which 

is shown by the continuous red lines. The attenuation characteristics of the central and surround 

mechanisms assumed in the model are shown by blue and black lines, respectively.  The phase 
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delays between the “center” and “surround” signals as a function of frequency are shown as the red 

line in the lower panel of Figure 4. For further details, see text. For further details, see text. 

 

Figure 3. Estimates of the logarithmic sensitivities corresponding to the attenuation characteristics 

of the late filter for DP (left-hand panel) and GBH (right-hand panel) obtained from 650-nm hue shift 

measurements (yellow and open symbols) and from the 560-nm brightness change measurements 

(grey and black symbols)—all plotted as a function of frequency (Hz, logarithmic scale).  Data are 

shown at each of the four L-cone equated 650/560-nm time-averaged radiances: 9.10/8.26 (inverted 

triangles), 9.70/8.86 (circles), 10.33/9.51 (diamonds) and 10.93/10.11 (squares) log10 quanta s-1 

deg-2. Error bars indicate ±1 s.e.m. The directly-measured 560-nm brightness enhancement data 

(grey symbols) have been vertically aligned with the corresponding 650-nm hue change data (yellow 

symbols) using a least-squares fitting criterion. The vertical axis is correct for the 650-nm hue change 

data measured at the lowest mean radiance plotted as amplitude sensitivities (top set) where the 

amplitudes are measured in quanta s-1 deg-2. For clarity, the amplitude sensitivities at the next three 

650-nm mean radiances have been shifted down by an additional 1, 2 and 3 log10 units, respectively.    

The vertical positions of the late filter estimates inferred from differences between the hue change 

(open symbols) and brightness change (grey symbols) measurements and chromatic TCSFs were 

determined by the fit of the low-pass model, the final version of which is shown by the continuous 

red lines. For further details, see text. 

 

Figure 4. Upper diagram: Vector addition as required in the subtractive model. The “center” signal Ac 

(white arrow) and “surround” signal As (grey arrow), are added with a phase shift of ∆θ (red arc) to 

produce the resultant vector Ar (black arrow) with phase shift of φ (green arc). The components of 

the “surround” signal that are in phase and 90Ο out-of-phase with the “center” signal are also 

indicated. Lower panel: The phase delays as a function of frequency assumed in the subtractive 

model (red line) are the sum of: 1) the phase delays caused by the additional filter stage in the 

surround (green line), 2) a time delay (blue line) and 3) subtraction of the surround from the center 

(black line). The length of Ar depends on ∆θ (red line and the corresponding red arc in upper panel) 

and on the length of Ar. Their joint dependence on frequency is used to model the attenuation 

characteristics of the early filter.  See text for details. 

 

Figure 5. Model. Two networks of L- and M- cones are shown at the left —the upper one with an L-

cone driven center and the lower with an M-cone driven center. The characteristics of the centers 
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are those of a cascade of four identical low-pass filters with a radiance-dependant gain control. Each 

network has a subtractive surround mechanism with a ratio of 2:1 in favour of L-cone over M-cone 

inputs. Each element of the surround mechanism has an additional low-pass filter stage and a delay. 

The networks each drive two half-wave rectifying ON- and OFF-subsystems that are recombined in 

the ways shown to produce distinct Red and Green unipolar chromatic mechanisms and Bright and 

Dark unipolar brightness mechanisms, each of which is preceded by a two-stage lowpass filter.  Each 

unipolar mechanism is assumed to incorporate a smoothly compressive nonlinearity. See text for 

further details. 

 

Figure 6. The left-hand panels shows L- and M-cone contrasts of the 0.5-Hz sinusoidally flickering 

hemi-field that matches the appearance of 0.5-Hz contrast-modulated 30-Hz flicker in an adjacent 

hemi-field as a function of the overall modulation (m) of the contrast-modulated stimuli (both axes 

linear). The right-hand panels shows the corresponding data scaled (vertically shifted) to indicate the 

similarity of form across radiance. Upper panels for DP, lower panels for GBH. The time-averaged 

radiances were: 8.26- (inverted triangles), 8.86- (circles), 9.51- (diamonds) and 10.11- (squares) log10 

quanta s-1 deg-2. Error bars indicate ±1 s.e.m. Original data from Figure 6 of Petrova, Henning and 

Stockman (2013b). 

 

Figure 7. The upper three panels show the effect of half-wave rectification on the output contrast of 

the distortion product at the modulation frequency, fm, as a function of the contrast, m, of a 

contrast-modulated input at three different offset levels. The lower panel shows the contrast of the 

distortion product at fm as a joint function of the modulation, m, of a contrast-modulated input and 

offset level. For details, see text. 

 

Figure 8. Relative scaling of the output distortion versus input modulation functions required to align 

the data shown in the left-hand panels of Figure 6 with the 9.51 log log10 quanta s-1 deg-2 data: (DP, 

red diamonds, GBH, dark-red squares). The scale factors are compared with the relative 30-Hz M-

cone modulation sensitivities of two protanopes ML (green triangles) and MM (inverted dark green 

triangles) from Stockman et al. (2006). The horizontal “equivalent” position of the M-cone 

sensitivities was determined from mean M-cone radiance at the M-cone λmax for the protanopes 

relative to the mean L-cone radiance at 560-nm for normals (calculated using Stockman & Sharpe, 

2000a). The M-cone modulation sensitivities have been scaled to align with the mean relative scaling 

predictions for DP and GBH below 9.5 log10 quanta s-1 deg-2. 
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Figure 9. Estimates of the logarithmic sensitivities corresponding to the attenuation characteristics 

of the early filter for DP (upper panel) and GBH (lower panel) obtained from hue and/or brightness 

changes produced by 650-nm (yellow symbols) and 560-nm (filled symbols) contrast-modulated 

flicker at 560/650-nm mean radiances of 8.86/9.70 log10 quanta s-1 deg-2—as a function of frequency 

(Hz, logarithmic scale). The positions of the 650- and 560-nm data and model are as in Figure 4 and 

the continuous red line show the fit of the subtractive surround model. The error bars indicate ± one 

standard error.  The data are compared with comparable S-cone measurements for observers AS 

(dark blue circles) and DJP (blue squares) from Figure 12 of Stockman and Plummer (1998) made 

with 440-nm target with a mean radiance of 9.53 log10 quanta s-1 deg-2. The S-cone estimates have 

been vertically aligned with the L- and M-cone estimates at the highest temporal frequencies. The 

continuous blue line is the center filter assumed in the subtractive model vertically aligned with the 

S-cone data at 2 Hz and above using a least-squares fitting procedure. 

 

Figure 10. Estimates of the logarithmic sensitivities corresponding to the attenuation characteristics 

of the early filter for DP (left-hand panel) and GBH (right-hand panel) obtained from hue and/or 

brightness changes produced by L-cone (red symbols), 650-nm (yellow symbols) and 560-nm (filled 

symbols) contrast-modulated flicker all as a function of frequency (Hz, logarithmic scale).  Only 

directly measured data for frequencies at and above 5 Hz are shown. The continuous red lines show 

the fit of the subtractive model, shown previously in Figure 2. The alignments of the 650- and 560-

nm data are as in Figure 2. The L-cone data have been vertical aligned with the joint 560 and 650-nm 

data using a least squares fitting procedure at 15 Hz and above. The blue symbols are the chromatic 

TCSFs ≥ 4 Hz measured using luminance-equated 650- and 530-nm alternating sinusoidal 

(equiluminant) flicker previously plotted as grey symbols in Figure 3 of Petrova, Henning and 

Stockman (2013a). The chromatic data have been vertically aligned with the L-cone data at low 

frequencies (over the range where the least squares differences per fitted point are minimized) 

using a least squares fitting procedure. 

 

Figure 11. Estimates of the logarithmic sensitivities corresponding to the attenuation characteristics 

of the early filter for DP (left-hand panel) and GBH (right-hand panel) obtained from hue and/or 

brightness changes produced by M-cone (green symbols), 650-nm (yellow symbols) and 560-nm 

(filled symbols) contrast-modulated flicker as a function of frequency (Hz, logarithmic scale). The 
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continuous red lines show the predictions of the subtractive model. The M-cone data have been 

vertical aligned at 15 Hz and above with the joint 560 and 650-nm data using a least squares fitting 

procedure. The chromatic data (blue symbols) have been vertically aligned with the M-cone data at 

low frequencies using a least squares fitting procedure.  Other details as Figure 10. 

 

Figure 12. Comparisons between psychophysical estimates of the early filter for DP (upper panel) 

and GBH (lower panel) and physiological measurements. Log10 sensitivity is plotted as a function of 

frequency (Hz, logarithmic scale).  The early filters shapes predicted by the subtractive model are 

shown for each observer at the four mean 560/650-m, radiance levels of 8.26/9.10 (black lines), 

8.86/9.70 (brown lines), 9.51/10.33 (orange lines) and 10.11/10.93 (red lines) log10 quanta s-1 deg-2. 

The 560-nm radiances are equivalent to 2.16, 2.76, 3.41 and 4.01 log td, respectively. The 

psychophysical estimates and physiological data have then been vertically aligned between 1 and 5 

Hz. The logarithmic vertical scale has been arbitrarily set to zero at the peak of the early filter 

estimate at the highest experimental level. The physiological data are from four sources: (i) 

parvocellular  (Pa) ganglion cell data from Lee et al. (1990) measured at 2.43 log td (orange triangles) 

and 3.43 log td (yellow triangles) from the lower right panel of their Figure 3; (ii) parvocellular 

(yellow circles) and magnocellular (Ma)  (grey circles) ganglion cell data from Lee, Pokorny, Smith & 

Kremers (1994) measured at 3.43 log td from the upper middle and upper right panels, respectively, 

of their Figure 6; (iii) parvocellular ganglion cell data from Lee, Sun & Zucchini (2007) (yellow 

diamonds) measured at 3.43 log td from panel B of their Figure 3; and (iv) the parvocellular (red 

squares)  and magnocellular (white squares) LGN data from Derrington & Lennie (1984) measured at 

3.13 log td from averaged data from their Figures 7 and 12, respectively (in estimating the troland 

level for this work from cd/m2, we assumed a pupil diameter of 2.5 mm). 

 

Figure A. Estimates of the logarithmic sensitivities corresponding to the attenuation characteristics 

of the early filter for DP (left-hand panel) and GBH (right-hand panel) obtained from 650-nm hue 

shift measurements (open and yellow symbols) and from the 560-nm brightness change 

measurements (smaller black and grey symbols)—both plotted as a function of frequency (Hz, 

logarithmic scale).  Data are shown at each of the four L-cone equated, 650/560-nm time-averaged 

radiances: 9.10/8.26 (inverted triangles), 9.70/8.86 (circles), 10.33/9.51 (diamonds) and 10.93/10.11 

(squares) log10 quanta s-1 deg-2. Error bars indicate ±1 s.e.m. The directly-measured 560-nm 

brightness enhancement data (grey symbols) have been vertically aligned with the 650-nm hue shift 

data (yellow symbols) using a least-squares fitting criterion.  The vertical axis is correct for the 650-
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nm hue change data measured at the lowest mean radiance plotted as amplitude sensitivities (top 

set) where the amplitudes are measured in quanta s-1 deg-2. For clarity, the amplitude sensitivities at 

the next three 650-nm mean radiances have been shifted down by an additional 1, 2 or 3 log10 units, 

respectively.  The vertical positions of the early filter estimates, inferred from differences between 

the hue change (open symbols) and brightness change (grey symbols) measurements and 

conventional TCSFs, were determined by the fit of the divisive model, the final version of which is 

shown by the continuous red lines.  

 

 

TABLE LEGENDS 

 

Table 1.  Best-fitting parameters for the subtractive early filter model.  See text for details. 

 

Table 2.  Best-fitting parameters for the low-pass late filter model.  See text for details. 

 

Table A1.  Best-fitting parameters for the divisive early filter model.  See text for details. 
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