Cascading Verification:
An Integrated Method for Domain-Specific Model Checking

by
Fokion Zervoudakis
Submitted for the degree of Doctor of Philosophy at
UNIVERSITY COLLEGE LONDON
February 2014
I, Fokion Zervoudakis, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.
Abstract

Model checking is an established formal method for verifying the desired behavioral properties of system models. But popular model checkers tend to support low-level modeling languages that require intricate models to represent even the simplest systems. Modeling complexity arises in part from the need to encode domain knowledge—including domain objects and concepts, and their relationships—at relatively low levels of abstraction. We will demonstrate that, once formalized, domain knowledge can be reused to enhance the abstraction level of model and property specifications, and the effectiveness of probabilistic model checking.

This thesis describes a novel method for domain-specific model checking called cascading verification. The method uses composite reasoning over high-level system specifications and formalized domain knowledge to synthesize both low-level system models and the behavioral properties that need to be verified with respect to those models. In particular, model builders use a high-level domain-specific language (DSL) to encode system specifications that can be analyzed with model checking. Domain knowledge is encoded in the Web Ontology Language (OWL), the Semantic Web Rule Language (SWRL) and Prolog, which are combined to overcome their individual limitations. Synthesized models and properties are analyzed with the probabilistic model checker PRISM. Cascading verification is illustrated with a prototype system that verifies the correctness of uninhabited aerial vehicle (UAV) mission plans. An evaluation of this prototype reveals non-trivial reductions in the size and complexity of input system specifications compared to the artifacts synthesized for PRISM.
Acknowledgments

First and foremost, I would like to thank my supervisors, David S. Rosenblum and Anthony Finkelstein, for their support during the past three years. I am indebted to David for his help and patience; for providing me the freedom to pursue interesting research; and for considering with me over long Skype calls the finer points of OWL-LP integration in the context of domain-specific and probabilistic model checking. Anthony’s advice on authoring compelling narratives that clarify complex research, and his encouragement and strategic guidance, have been invaluable for my development as a researcher.

I have been fortunate to visit the Nebraska Intelligent MoBile Unmanned Systems (NIMBUS) Lab at the University of Nebraska-Lincoln (UNL). I would like to thank Sebastian Elbaum, co-founder of NIMBUS, for working with me to focus the research in this thesis, and for his contribution throughout my PhD.

I would also like to thank Emmanuel Letier for his insightful feedback during my first and second year vivas. And I would like to thank faculty and staff at the Department of Computer Science at University College London (UCL) for providing me with the resources to develop this thesis. In particular, I would like to thank Dean Mohamedally, Donald Lawrence, Graham Roberts, Jens Krinke, John Dowell, Mark Harman, Philip Treleaven and Westley Weimer for numerous valuable conversations. Last but not least, I have had the pleasure of working with talented colleagues including Jan Grochmalicki, Michal Galas and Panagiotis Papakos at UCL, and Charlie Lucas at UNL.

Research for this thesis was sponsored by the European Office of Aerospace Research & Development (EOARD), a detachment of the Air Force Office of Scientific Research (AFOSR), under agreement number FA8655-10-1-3007. Any conclusions, findings, opinions and recommendations expressed in this thesis are those of the author and do not necessarily reflect the views of AFOSR or EOARD.
Contents

1 Introduction .. 12
 1.1 Research Problem and Scope 13
 1.2 Thesis Contributions 14
 1.2.1 Cascading Verification 14
 1.2.2 Domain-Specific Modeling for the UAV Domain 15
 1.2.3 Prototype Design and Implementation 16
 1.2.4 Prototype Evaluation 16
 1.3 Thesis Outline ... 17

2 Background .. 19
 2.1 OWL+SWRL and Prolog 19
 2.2 Probabilistic Model Checking 21
 2.3 UAV Missions ... 23
 2.3.1 UAV Performance Specifications 23
 2.3.2 UAV Mission Hierarchy 27
 2.3.3 DARPA Mission Scenario 30
 2.3.4 DRDC Mission Scenario 32
 2.4 Summary ... 33

3 Method Overview ... 34
 3.1 An Example Mission ... 34
 3.2 From Specification to Verification 36

4 Domain Modeling ... 38
 4.1 Semantic Modeling .. 38
 4.1.1 Building an OWL Ontology 38
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A discrete-time Markov chain example</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Transition matrix and initial distribution vector examples</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>UAV autonomy hierarchy</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>DARPA’s UAVForge mission scenario</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Method and prototype schematic</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>A UAV mission example</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>CEMO’s class hierarchy</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Transitive properties</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Inverse properties</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Tactical-CEMO’s class hierarchy</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Primitive classes</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>Defined classes</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Asymmetric and irreflexive properties</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>Traffic-CEMO’s class hierarchy</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Semantic verification</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Composite reasoning</td>
<td>75</td>
</tr>
<tr>
<td>6.1</td>
<td>Mission 3g</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Mission 2d</td>
<td>92</td>
</tr>
<tr>
<td>6.3</td>
<td>Mission simulation</td>
<td>93</td>
</tr>
</tbody>
</table>
List of Tables

2.1 UAV performance specifications ... 25
2.2 UAV performance specification categories 26
2.3 UAV classifications .. 27
2.4 UAV mission hierarchy ... 29

4.1 Asset survivability truth table .. 57
4.2 Risk acceptability truth table .. 60

5.1 Kinetic action classifications for DTMC and PCTL constructs 76
5.2 Kinetic action classifications for Mission A 79

6.1 Mission plan metric values ... 85
6.2 Mission plan parameters ... 94
Listings

3.1 YAML code for Mission A ... 35
4.1 OWL code for class Asset .. 39
4.2 OWL code for class Hummingbird 40
4.3 OWL code for the object property hasPrecondition 40
4.4 OWL code for class TraversePathSegmentAction 41
4.5 OWL code for class PhotoSurveillanceAction 41
4.6 OWL code for class ThreatAreaWaypoint 43
4.7 OWL code for class ValidAsset .. 44
4.8 OWL code for the object property hasSibling 45
4.9 OWL code for class HighVulnerabilityAsset 46
4.10 OWL code for class Vulnerability 46
4.11 OWL code for the individual HighVulnerability 46
4.12 OWL code for class LowVulnerabilityAsset 47
4.13 OWL code for class FreewaySection 48
4.14 OWL code for class LaneClassification 49
4.15 OWL code for class TwoLaneClassification 49
4.16 OWL code for class HighSpeedFreewaySection 50
4.17 OWL code for class LidarAction 50
4.18 OWL code for class HighSpeedLidarAction 51
4.19 OWL code for class LowSpeedLidarAction 51
4.20 OWL code for class CrossCuttingKineticAction 52
4.21 OWL+SWRL code for rule CrossCuttingKineticAction 53
4.22 OWL+SWRL code for rule monitors 53
4.23 Prolog code for rule terminal 53
4.24 OWL code for the object property isPreconditionTo 54
4.25 DTMC template for asset modules .. 55
4.26 PCTL template for action duration 56
4.27 DTMC template for asset survivability 57
4.28 PCTL template for asset survivability 58
4.29 DTMC template for risk acceptability 59
4.30 PCTL template for risk acceptability 61
4.31 DTMC template for traffic surveillance 63
4.32 PCTL template for traffic surveillance 65
5.1 Partial schema definition for the YAML DSL 71
5.2 Schema definition for the DSL element Hummingbird 72
5.3 OWL code for the individual H1 ... 73
5.4 OWL code for the individuals TPSA1 and TPSA2 73
5.5 Prolog code for rule terminal_constrained_observer 74
5.6 Prolog code for rule primary_asset 77
5.7 OWL+SWRL code for class ObserverAsset 78
5.8 OWL+SWRL code for the object property observes 78
5.9 PRISM asset module code ... 80
5.10 PRISM asset survivability code 80
5.11 PRISM risk acceptability code 80
5.12 PRISM mission property code 81
6.1 Disjoint class statements specified in OWL 87
6.2 Existential restriction statements specified in OWL 88
6.3 Existential restrictions encompassed in Prolog rules 89
6.4 Data property statements specified in OWL 89
6.5 Data properties specified in OWL 90
6.6 Object properties specified in OWL 91
6.7 OWL code for class ThreatenedAsset 91
Chapter 1

Introduction

The increasing complexity of uninhabited aerial vehicle (UAV) missions, which may involve the execution of sophisticated (swarming) tactics by semi- or even fully-autonomous UAVs, is overwhelming mission development personnel. The development process is supported technologically by advanced, academic and commercially-oriented, mission planning systems and simulation environments. Orbit Logic’s UAV Planner, for example, is a commercial simulation environment that provides resource, and task order, definition and management; manual and automated planning; and interactive visualizations [1]. In the academic space, MissionLab from Georgia Tech is a tool for specifying and controlling multi-agent missions [2]. Nowak et al. have developed a system named SWARMFARE, which executes self-organizing swarm-based simulations to test search and destroy scenarios [3]. Multi-agent self-organization has also been used to model UAV swarms and thereby facilitate solutions to problems of multi-objective optimization [4, 5].

Mission optimization constitutes a multi-objective problem because UAV missions are characterized by multiple and conflicting properties that form complex, and poorly understood, associations. The problem of multi-objective optimization has been studied extensively with evolutionary algorithms [6]. With respect to UAV missions, evolutionary algorithms are used to form robust UAV-based air-to-ground communication networks [7], and to generate a set of optimized and coordinated flight routes for surveillance missions [8]. The weight configurations that prioritize self-organizing rules in SWARMFARE are evolved with a genetic algorithm [3]. Rosenberg et al. use a simulation environment to evaluate optimized air campaign mission plans generated by a multi-objective evolutionary algorithm (MOEA) [9]. Pohl and Lamont use a MOEA to optimize the concurrent routing of multiple UAVs to multiple targets [10].

The problem of UAV scheduling/routing has also been modeled as a minimum cost network flow problem [11]; a traveling salesman problem; and a dynamic programming problem [12]. Alver et al. implement a route planning algorithm based on the time-oriented nearest neighbor heuristic [13]. Kamrani and Ayani use a special-purpose simulation tool named S2-Simulator to generate flight routes for the surveillance of moving targets [14]. In other simulation-related research, Corner and Lamont use a parallel discrete event simulation to explore emergence in UAV swarms [15]. Lian and Deshmukh use Markov decision processes (MDPs) to model UAVs in a dynamic multi-agent system.
where agents have to manage constraints, negotiate flight paths and avoid enemy positions in order to execute a set of goals [16]. Hamilton et al. emphasize the importance of valid simulation models, and propose a testbed to empirically validate simulations against historical data [17].

When integrated, planning and simulation software should ideally provide information superiority and, ultimately, competitive advantage [18]. But these systems are currently challenged by the size and complexity of the UAV domain [19, 20, 21]. The state space of any given mission is potentially enormous. Mission correctness is contingent on multiple factors including UAV flight trajectories, interoperability and conflict resolution capabilities; and a dynamic environment that encompasses variable terrain, unpredictable weather and moving targets. In this context, mission plans may contain errors that compromise mission correctness. We propose to support mission developers by analyzing UAV mission plans with software verification methods—and in particular, probabilistic model checking—that can detect mission-critical errors before real-world execution. To this end, the following thesis describes a novel method for domain-specific model checking called cascading verification [22], and the application of that method to the probabilistic verification of complex UAV mission plans.

1.1 Research Problem and Scope

Model checking is an established formal verification method whereby a model checker systematically explores the state space of a system model to verify that each state satisfies a set of desired behavioral properties [23].

Research in model checking has focused on enhancing the efficiency and scalability of verification by employing partial order reduction, and by exploiting symmetries and other state space properties. This research is important because it mitigates the complexity of model checking algorithms, thereby enabling model builders to verify larger, more elaborate models. But the complexity associated with model and property specification has yet to be sufficiently addressed. Popular model checkers tend to support low-level modeling languages that require intricate models to represent even the simplest systems. For example, PROMELA, the modeling language used by the model checker Spin, is essentially a dialect of the relatively low-level programming language C. Due to lack of appropriate control structures, the modeling language used by the probabilistic model checker PRISM forces model builders to pollute model components with variables that act as counters. These variables are manipulated at runtime to achieve desirable control flow from otherwise unordered commands.

Modeling complexity arises in part from the need to encode domain knowledge—including domain objects and concepts, and their relationships—at relatively low levels of abstraction. We will demonstrate that, once formalized, domain knowledge can be reused to enhance the abstraction level of model and property specifications, and the effectiveness of probabilistic model checking.

Leveraged appropriately, formal domain knowledge can decrease specification and
verification costs. On the verification side, the model checking framework Bogor achieves significant state space reductions in model checking of program code by exploiting characteristics of the program code’s deployment platform [24]. On the specification side, semantic model checking supplements model checking with semantic reasoning over domain knowledge encoded in the Web Ontology Language (OWL). Semantic model checking has been used to verify Web services [25, 26]; Web service security requirements [27]; probabilistic Web services [28]; Web service interaction protocols [29]; and Web service flow [30]. Additionally, multi-agent model checking has been used to verify OWL-S process models [31].

OWL is a powerful knowledge representation formalism, but expressive and reasoning limitations constrain its utility in the context of semantic model checking; for example, OWL cannot reason about triangular or self-referential relationships. As a W3C-approved OWL extension, the Semantic Web Rule Language (SWRL) addresses some of these limitations by integrating OWL with Horn-like rules. But OWL+SWRL cannot reason effectively with negation. The logic programming (LP) language Prolog can be used to overcome problems that are intractable in OWL+SWRL. Prolog, however, lacks several of the expressive features afforded by OWL including support for equivalence and disjointness.

In summary, model checking is a prominent formal verification method. Contemporary modeling languages induce modeling complexity, which is exacerbated by the need to encode domain knowledge at relatively low levels of abstraction. Semantic model checking uses semantic reasoning over domain knowledge encoded in OWL to supplement model checking and thereby decrease specification costs. But expressive and reasoning limitations constrain OWL and, by extension, the potential of semantic model checking.

1.2 Thesis Contributions

This thesis presents four research contributions. First, we describe a novel model checking method that leverages domain knowledge to realize a non-trivial reduction in the effort required to specify system models and behavioral properties. The method uses a composite inference mechanism to reason about high-level system specifications and thereby synthesize low-level PRISM code for probabilistic model checking.

Second, we use domain-specific software development to structure formal verification for the UAV domain. Third, we implement a prototype system that exploits our method to verify mission plans. Fourth, we evaluate our prototype to demonstrate the utility of cascading verification in the context of a significant and novel application domain. The following sections elaborate these contributions.

1.2.1 Cascading Verification

We have designed a novel method for domain-specific model checking called cascading verification. Our method uses composite reasoning over high-level system specifications
and formalized domain knowledge to synthesize both low-level system models and the behavioral properties that need to be verified with respect to those models. In particular, model builders use a high-level domain-specific language (DSL) to encode system specifications that can be analyzed with model checking. A compiler uses automated reasoning to verify the consistency between each specification and domain knowledge encoded in OWL+SWRL and Prolog, which are combined to overcome their individual limitations. If consistency is deduced, then explicit and inferred domain knowledge is used by the compiler to synthesize a discrete-time Markov chain (DTMC) model and probabilistic computation tree logic (PCTL) properties from template code. PRISM subsequently verifies the model against the properties. Thus, verification cascades through several stages of reasoning and analysis.

Our method gains significant functionality from each of its constituent technologies. OWL supports expressive knowledge representation and efficient reasoning; SWRL extends OWL with Horn-like rules that can model complex relational structures and self-referential relationships; Prolog extends OWL+SWRL with the ability to reason effectively with negation; DTMC introduces the ability to formalize probabilistic behavior; and PCTL supports the elegant expression of probabilistic properties.

Cascading verification is illustrated with a prototype system that verifies the correctness of UAV missions. We use the prototype to analyze 58 mission plans, which are based on real-world mission scenarios developed independently by the Defense Advanced Research Projects Agency (DARPA) [32] and the Defence Research and Development Canada (DRDC) agency [33]. UAVs are contextualized by a particularly interesting and important experimental domain. The stochastic nature of UAV missions led us to select probabilistic model checking, and in particular the popular tool PRISM [34], for the verification of UAV mission plans.

As an implementation of cascading verification, our prototype realizes a non-trivial reduction in the effort required to specify system models and behavioral properties. For example, from 23 lines of YAML code comprising 92 tokens, cascading verification synthesizes 104 lines of PRISM code comprising 744 tokens and three behavioral properties (with our prototype, model builders encode mission specifications in a domain-specific dialect of the human-readable YAML format [35]).

1.2.2 Domain-Specific Modeling for the UAV Domain

When compared with general-purpose programming languages, DSLs provide increased expressivity and usability for software development in the context of specific application domains [36]. A DSL is defined by concrete syntax and an abstract syntax metamodel [37]. Abstract syntax specifies language concepts and their relationships, while concrete syntax specifies the notation that represents those concepts. Domain-specific modeling (DSM) is a model-driven software development process that uses DSLs to encode system aspects. Syntax-oriented DSM avoids the behavioral properties of DSL models and metamodels. Several proposals attempt to specify these properties and
thereby enable the verification of DSL-based systems with model checking and other formal analysis techniques.

OWL supports the development of domain-specific languages and systems by representing knowledge in a manner that is unambiguous for humans and computers [38, 39]. For example, OWL can be used to formalize domain knowledge that constitutes the DSL metamodel [39]. By encompassing OWL ontologies, cascading verification is a method with the facility to support (probabilistic) model checking for DSL-based systems. In this context, we exploit OWL to formalize a subset of the UAV domain. The resulting ontology underpins, and thereby constrains and structures, the concrete syntax of a YAML DSL. For each DSL-based mission specification, consistency between concrete syntax and the abstract syntax metamodel is enforced by a compiler prior to the synthesis of PRISM code.

Cascading verification encompasses a DSL to enhance the abstraction level of model and property specifications. Model builders use this DSL to encode system specifications for probabilistic model checking. If UAV mission specifications encoded with the YAML DSL are also scheduled for real-world execution (via some process that is outside the scope of our method), then our prototype implementation of cascading verification will in essence be supporting DSM for the UAV domain. This observation implies a link between mission and software development, thereby justifying to some extent our motivation to analyze complex missions with software verification methods.

1.2.3 Prototype Design and Implementation

To investigate the feasibility of cascading verification, we designed and implemented a prototype that uses our method to verify UAV missions. DSM structured the development of 58 mission plans that underpin both our research effort and the evaluation of our method and prototype. Mission plans are encoded with the concrete syntax of a bespoke YAML DSL, which was established for this project. The abstract syntax metamodel of that DSL forms part of a knowledge base that ultimately comprises semantic, rule-based and behavioral models, and a set of behavioral properties. Models and properties, which describe different aspects of the UAV domain, are encoded with OWL+SWRL, Prolog, and PRISM DTMC and PCTL templates. The reasoning methods supported by OWL, SWRL and Prolog are combined to form a composite inference mechanism that achieves OWL-LP integration.

1.2.4 Prototype Evaluation

With the evaluation of our prototype, we aim to demonstrate the utility of cascading verification in the context of a non-trivial application domain. To this end, the evaluation is primarily concerned with abstraction and effectiveness. Abstraction is analyzed by comparing the lines of code (LOC) and numbers of lexical tokens required to specify UAV missions in YAML against the LOC and tokens that constitute synthesized PRISM code. We analyze effectiveness by presenting errors that can only be effectively eliminated with
the automated synthesis of PRISM artifacts. We also consider the utility of the DTMC and PCTL artifacts synthesized by our prototype. Finally, we discuss the portability of cascading verification. While the evaluation presented in this thesis is preliminary, it is also a substantive analysis supported by two case studies (involving tactical and traffic surveillance missions) and 58 mission plans (involving mission characteristics borrowed from DARPA and DRDC).

1.3 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 presents background material on the technologies—including OWL+SWRL, Prolog, DTMC and PCTL—that constitute cascading verification. This chapter also provides an overview of the UAV domain and complex UAV missions.

Chapter 3 presents a high-level overview of cascading verification. This chapter also specifies Mission A, an example UAV mission that underpins the discussion in subsequent chapters.

Chapter 4 describes how domain knowledge can be encoded in OWL+SWRL, Prolog, and DTMC and PCTL templates. The application of these technologies is illustrated with respect to a running example (Mission A) and two case studies.

Chapter 5 describes our prototype implementation of cascading verification for the UAV domain by tracing verification from high-level system specifications, which are encoded in a domain-specific YAML dialect, to probabilistic model checking with PRISM. This chapter also presents the technologies and implemented components that constitute our prototype.

Chapter 6 evaluates the benefits afforded by our prototype, and the utility and portability of cascading verification.

Chapter 7 summarizes our contributions to semantic model checking and discusses directions for future work.

Appendix A presents a framework of equations for establishing the occurrence, and calculating the duration, of threat area incursions committed by UAVs.

Appendix B contains an ontology encoded in OWL+SWRL that formalizes a subset of the UAV domain. This ontology encompasses both generic mission concepts and specialized knowledge related to tactical and traffic surveillance missions.

Appendix C contains Prolog rules that augment the ontological domain knowledge encoded in OWL+SWRL.

Appendix D contains DTMC and PCTL templates encoded in the programming language Ruby that formalize probabilistic behavioral knowledge.

Appendix E contains a schema definition for the YAML DSL presented in this thesis.
Appendix F contains verification artifacts—including system specifications encoded in YAML, synthesized DTMC and PCTL artifacts, and PRISM output—for representative UAV mission plans.

Source code for the software presented in this thesis is available online at: https://github.com/fokionzervoudakis/mission-verification-framework
Chapter 2

Background

The research problem outlined in Section 1.1 cannot be addressed with a single technology. Our solution was to develop a method that integrates OWL+SWRL, Prolog and DTMC and PCTL. OWL was chosen because it is an established knowledge representation formalism, and the ontology specification language recommended by the W3C [40]. OWL limitations motivate several contending extensions including SWRL, CARIN, \mathcal{AL}-log, DL-safe rules, \mathcal{DL}+log, and many others [41]. Hybrid knowledge representation systems that integrate OWL+SWRL and Prolog have also been proposed [42, 43, 44, 45, 46, 47, 48]. We chose to address OWL limitations with SWRL and Prolog; the former is an OWL extension approved by the W3C, while the latter is one of the most prominent logic-based knowledge representation languages.

Probabilistic model checking is supported by various software tools including ProbVerus and FMurψ, which analyze DTMC models; ETMCC and MRMC (the successor of ETMCC), which analyze DTMC and CTMC models; and LiQuor and Rapture, which analyze MDP models [23]. But PRISM is, in our opinion, preferable because it supports both model types, thereby extending the potential of our method and prototype. PRISM also supports PCTL, a formalism that can express a large class of properties in an elegant manner.

The remainder of this chapter is structured as follows. Section 2.1 investigates the formal logics underpinning OWL+SWRL and Prolog to determine the advantages and limitations of each formalism, and their compatibility with each other. Section 2.2 presents model checking, probabilistic model checking, and the DTMC and PCTL formalisms. Section 2.3 provides an overview of the UAV domain and complex UAV missions with a focus on UAV performance specifications, mission aspects and mission scenarios. This chapter is summarized in Section 2.4.

2.1 OWL+SWRL and Prolog

Description logics (DLs) are a family of knowledge representation languages based on first-order logic (FOL) that can be used to construct logically valid knowledge bases. DLs describe a domain in terms of concepts or classes (specified as axioms in a TBox), individuals (specified as assertions in an ABox) and properties or roles [40]. DL concepts
and individuals are roughly comparable to classes and objects, respectively, in object-oriented programming, while roles are comparable to UML associations.

An interpretation \mathcal{I} is a model of a TBox \mathcal{T} and an ABox \mathcal{A} iff \mathcal{I} satisfies all axioms and assertions in \mathcal{T} and \mathcal{A}, respectively. More formally, an interpretation $\mathcal{I} = (\Delta^I, \cdot^I)$ comprises a non-empty set Δ^I (the domain of \mathcal{I}) and a function \cdot^I that maps:

- every concept A_i to a subset A_i^I of Δ^I ($A_i^I \subseteq \Delta^I$);
- every role R_i to a binary relation R_i^I over Δ^I ($R_i^I \subseteq \Delta^I \times \Delta^I$);
- and every individual a_i to an element a_i^I of Δ^I ($a_i^I \in \Delta^I$).

DLs support inferences that deduce the logical implications of ontological axioms with respect to concept satisfiability, subsumption, equivalence and disjointness [49]. TBox-supported inference services can be formalized as follows:

- a concept C is satisfiable with respect to a TBox \mathcal{T} iff there exists some model \mathcal{I} of \mathcal{T} such that $C^I \neq \emptyset$;
- C is subsumed by a concept B with respect to \mathcal{T} iff $C^I \subseteq B^I$ for all \mathcal{I} of \mathcal{T};
- C is equivalent to B with respect to \mathcal{T} iff $C^I = B^I$ for all \mathcal{I} of \mathcal{T};
- C is disjoint from B with respect to \mathcal{T} iff $C^I \cap B^I = \emptyset$ for all \mathcal{I} of \mathcal{T}.

OWL is an ontology specification language based on the modern description logic $SHOIN(D)$ [40]. The OWL language structures, and thereby supports the automated processing of, formalized knowledge. But OWL is constrained by the expressive and reasoning limitations inherent in $SHOIN(D)$. For example, OWL can be used to model object relations that form tree-like patterns, but not the triangular relationship that exists between a child, the child’s father, and the father’s brother [41]; nor the self-referential relationship that references an individual to itself [50]. SWRL addresses some of these limitations by extending OWL with Horn-like rules [51]. But OWL+SWRL cannot reason effectively with negation [41, 52]. Problems that are intractable in OWL+SWRL can be addressed with the programming language Prolog [41, 53].

Prolog is based on a FOL subset, which is expressed with first-order Horn clauses comprising facts, queries and rules. Unlike OWL+SWRL, Prolog can reason effectively with negation. But Prolog is not without limitations: OWL can be translated into formulas of a general FOL subset, but this subset overlaps only partially with the FOL subset underpinning Prolog. Consequently, some OWL primitives cannot be expressed efficiently in Prolog. For example, Prolog does not provide an equivalence predicate; Prolog’s native syntax cannot encode the OWL primitives disjointWith and differentIndividualFrom, which denote concept and individual disjointness, respectively; and Prolog cannot encode the OWL primitive oneOf, which defines a concept by enumerating all individuals belonging to that concept.
The decision to augment OWL+SWRL with Prolog is in part a consequence of Prolog’s ability to support negation as failure, an inference rule that deduces falsity from the absence of truth. Negation as failure is related to the closed world assumption (CWA), which presumes a statement to be false unless that statement is known to be true. CWA is seemingly incompatible with the open world assumption (OWA) underpinning OWL+SWRL [41]. Contrary to CWA, OWA presumes a statement to be true unless that statement is known to be false. OWL+SWRL deficiencies with respect to negation derive from OWA, which is closely related to FOL. As described in the preceding paragraph, FOL underpins both OWL+SWRL and Prolog. The mechanism that enables Prolog to support CWA reasoning in the context of FOL is beyond the scope of our research.

This thesis does not propose a definitive or optimal OWL-LP integration framework. Nor do we attempt to take sides in the ongoing debate regarding OWL-LP integration [41]. Our exclusive objective is to support domain-specific probabilistic model checking by combining well established logic systems [41, 54]. We propose to achieve this objective via loose integration, whereby DL and LP components are connected through a minimal interface [55].

2.2 Probabilistic Model Checking

As an established formal verification method, model checking has been applied to the analysis of hardware—including self-timed sequential circuits, a synchronous pipeline circuit and a bus adapter—and software [23]. Software analysis with model checking encompasses communication protocols including the ISDN User Part protocol, the IEEE Futurebus+ standard and the Needham-Schroeder protocol; and safety-critical systems including NASA’s Mars Pathfinder and Deep Space 1 spacecraft. Traditional model checking is extended by probabilistic model checking, a method that verifies the behavioral properties of systems affected by stochastic processes [23, 56]. The verification of these probabilistic systems accommodates a flexible notion of correctness that contrasts with the absolute correctness verified by traditional model checking [23].

In order to model stochastic processes, which may include message delays, failure rates and other phenomena, finite-state transition systems are enriched with probabilities. Markov chains are transition systems where the successor of each state is chosen probabilistically and independently of preceding events (i.e., Markov chains are memoryless). DTMCs are Markov chains that represent time in discrete time-steps. One of several formal models for probabilistic model checking, a DTMC can be formalized as a tuple $M = (S, P, t_{init}, AP, L)$ where:

- S is a countable set of states;
- $P : S \times S \rightarrow [0, 1]$ is the transition probability function, such that for all states s: $\sum_{s' \in S} P(s, s') = 1$;
- $t_{init} : S \rightarrow [0, 1]$ is the initial state distribution, such that $\sum_{s' \in S} t_{init}(s) = 1$;
and \(L : S \rightarrow 2^{AP} \) is a labeling function that maps each state to a subset of \(AP \), a set of atomic propositions that abstract key characteristics from modeled systems.

Figure 2.1 uses a directed graph, or digraph, to illustrate the (discrete-time) Markov chain for a six-sided die simulated via a fair coin. Nodes and edges in the digraph represent states and transitions between those states, respectively. Edges from states \(s \) to \(s' \) are labeled with transition probabilities in the interval \([0, 1]\) if and only if \(P(s, s') > 0 \). Reflexive edges indicate terminating states.

![Figure 2.1: The (discrete-time) Markov chain for a six-sided die simulated via a fair coin [23].](image)

The DTMC in Figure 2.1 comprises an initial node \(s_0 \) such that \(\tau_{\text{init}}(s_0) = 1 \) and \(\forall s \neq s_0 : \tau_{\text{init}}(s) = 0 \) —and twelve states \(S = \{s_1, \ldots, s_{12}\} \). Six inner states \(\{s_1, \ldots, s_6\} \) and six terminating states \(\{s_7, \ldots, s_{12}\} \) represent the tossing of a coin and possible die outcomes, respectively. A Markov chain path, which can be rendered as a directed path in the underlying digraph, is a non-empty sequence of states \(\pi = s_0 s_1 s_2 \cdots \in S^\omega \) such that \(\forall i \geq 0 : P(s_i, s_{i+1}) > 0 \).

For a given DTMC, the transition probability function \(P \) and the initial distribution \(\tau_{\text{init}} \) can be represented, respectively, by a transition matrix \((P(s, s'))_{s \in S} \) and an initial distribution vector \((\tau_{\text{init}}(s))_{s \in S} \). The matrix specifies for each state \(s \in S \) the probability \(P(s, s') \) of transitioning from \(s \) to \(s' \) in a discrete time-step. The vector specifies for each state \(s \in S \) the probability \(\tau_{\text{init}}(s) \) that the system evolution begins in \(s \). Figure 2.2 provides a partial transition matrix and a partial initial distribution vector for the DTMC in Figure 2.1.

Probabilistic model checking can be used to verify both quantitative and qualitative DTMC properties. The former constrain probabilities to specific thresholds, while the
Chapter 2. Background 2.3. UAV Missions

The latter associate desirable and undesirable behavior with probabilities of one and zero, respectively. PCTL is an extension of the branching-time computation tree logic (CTL), and a prominent formalism for expressing probabilistic properties. PCTL supports the probabilistic operator $\mathbb{P}_J(\varphi)$, where φ specifies a constraint over the set of paths that constitute a Markov chain, and J specifies a closed interval between one and zero that bounds the probability of satisfying φ.

2.3 UAV Missions

UAVs, or uninhabited aerial systems (UASs), are aircraft capable of either autonomous or remote controlled flight. Primarily oriented toward (dull, dirty and dangerous) military missions, UAVs are increasingly relied upon to perform agricultural, scientific, industrial and law-enforcement tasks over civilian airspace [57, 58, 59].

The UAV domain exhibits complexity at different levels of granularity. UAVs incorporate sophisticated payloads, multiple sensors and increasing computational power. These capabilities could, in time, enable UAV swarms to execute complex multi-task missions with reduced human supervision [60]. Figure 2.3 illustrates various levels of UAV autonomy, ranging from remotely guided drones to fully autonomous swarms, which correspond to levels of automation originally proposed by Sheridan and Verplank [3]. For any given mission, autonomous UAVs may be required to execute tasks synchronously and in real-time; with local, incomplete and/or noisy knowledge; and in the context of a dynamic environment [61]. These factors combine to form a complex stochastic state space that motivates the probabilistic verification of UAV mission plans.

This section provides a concise overview of what is an expansive application domain. Chapter 4 explores a subset of that domain in greater detail.

2.3.1 UAV Performance Specifications

UAVs can be classified with respect to their performance specifications, and the mission requirements that those specifications are meant to address [63]. UAV performance specifications include the following:

Figure 2.2: The partial transition matrix and partial initial distribution vector for a six-sided die simulated via a fair coin, as illustrated in Figure 2.1.
• *ceiling* (measured in meters), “an aircraft’s maximum pressure height” [64];

• *cost*;

• *endurance* (hours), “the length of time an aircraft can stay in the air without refueling” [64];

• *engine type*;

• *payload* (kilograms), “the load carried by an aircraft” [64];

• *power* (kilowatt), “the propulsive power needed to produce thrust” [64];

• *range* (kilometers), “the maximum distance an aircraft can fly on a given amount of fuel” [64];

• *speed* (kilometers per hour);

• *weight* (kilograms);

• *wing loading* (kg/m\(^2\)), “the weight of an aircraft per unit wing area” [64];

• *wing span* (meters), “a measurement from the tip of one wing to the tip of the other wing” [64].

Table 2.1 lists the performance specifications for various active (at the time of writing) military- and commercial-grade UAVs [63, 65, 66, 67]. The range of values encompassed
Table 2.1: Performance specifications for various military- and commercial-grade UAVs (top and bottom, respectively) including the established MQ-1 Predator and MQ-9 Reaper from General Atomics; and the MQ-8 Fire Scout helicopter from Northrop Grumman.
Table 2.2: Performance specification categories with their respective ranges, and illustrative UAV classifications.

<table>
<thead>
<tr>
<th>specification</th>
<th>category</th>
<th>range</th>
<th>UAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ceiling (m)</td>
<td>low</td>
<td><1000</td>
<td>RQ-14 Dragon Eye</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1000–10,000</td>
<td>MQ-1 Predator</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>>10,000</td>
<td>RQ-4 Global Hawk</td>
</tr>
<tr>
<td>endurance (hr)</td>
<td>low</td>
<td><5</td>
<td>RQ-14 Dragon Eye</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>5–24</td>
<td>MQ-1 Predator</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>>24</td>
<td>RQ-4 Global Hawk</td>
</tr>
<tr>
<td>range (km)</td>
<td>low</td>
<td><100</td>
<td>RQ-14 Dragon Eye</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>100–1500</td>
<td>MQ-1 Predator</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>>1500</td>
<td>RQ-4 Global Hawk</td>
</tr>
<tr>
<td>weight (kg)</td>
<td>micro</td>
<td><5</td>
<td>RQ-14 Dragon Eye</td>
</tr>
<tr>
<td></td>
<td>light</td>
<td>5–50</td>
<td>RQ-15 Neptune</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>50–200</td>
<td>RQ-11 Raven</td>
</tr>
<tr>
<td></td>
<td>heavy</td>
<td>200–2000</td>
<td>MQ-1 Predator</td>
</tr>
<tr>
<td></td>
<td>super heavy</td>
<td>>2000</td>
<td>RQ-4 Global Hawk</td>
</tr>
<tr>
<td>wing loading (kg/m²)</td>
<td>low</td>
<td><50</td>
<td>RQ-14 Dragon Eye</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>50–100</td>
<td>MQ-1 Predator</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>>100</td>
<td>RQ-4 Global Hawk</td>
</tr>
</tbody>
</table>

by each performance specification can be divided into categories [63]. Table 2.2 uses these categories to classify a subset of the UAVs listed in Table 2.1.

UAVs can also be classified with respect to the following mission aspects, which categorize mission requirements.

- **Aerial delivery and resupply** requires UAVs to supply special forces teams covertly and precisely with small quantities of cargo including batteries, water and leaflets for psychological operations [62].

- **Combat** requires highly maneuverable *unmanned combat aerial vehicles* (UCAVs) to engage in both air-to-air and air-to-surface combat [63].

- **Intelligence, surveillance, target acquisition and reconnaissance** (ISTAR) requires UAVs to enhance situational awareness by collecting battlefield information.

- **Multi-purpose** requires UAVs to conduct armed reconnaissance against critical and perishable targets.

- **Radar and communication relay** requires *airborne communication nodes* (ACNs) to ensure information superiority by extending and enhancing tactical intra-theater communications [62].
Vertical take-off and landing (VTOL) requires UAVs to generate sufficient downward thrust to takeoff, hover and land within very limited space.

The performance specification categories that classify each UAV address a particular set of mission aspects [63]. For example, the MQ-1 Predator is classified as a medium altitude (1000–10,000 meters), medium endurance (5–24 hours), medium range (100–400 km) and heavy weight (200–2000 kg) UAV. These classifications determine the Predator to be highly-desirable for ISTAR and multi-purpose missions, and unsuitable for all remaining mission aspects. Table 2.3 classifies the military-grade UAVs listed in Table 2.1 with a rating scale of zero to four, where zero indicates the inability of a UAV to perform a specific mission aspect; and values in the range of one to four indicate the degree of compatibility, from lowest to highest, respectively, between performance specifications that parameterize UAVs and the performance specifications required by mission aspects.

<table>
<thead>
<tr>
<th></th>
<th>delivery</th>
<th>UCAV</th>
<th>ISTAR</th>
<th>multi-purpose</th>
<th>ACN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQM-147 Dragon</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crecerelle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heron (Machatz-1)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Luna X-2000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MQ-1 Predator</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MQ-8 Fire Scout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MQ-9 Reaper</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RQ-2 Pioneer</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RQ-4 Global Hawk</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RQ-7 Shadow</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RQ-11 Raven</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RQ-14 Dragon Eye</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RQ-15 Neptune</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.3: UAV classifications with respect to the degree of compatibility between performance specifications that parameterize UAVs and the performance specifications required by (abbreviated) mission aspects. Compatibility is rated with a scale of zero to four, where zero indicates the inability of a UAV to perform a specific mission aspect.

2.3.2 UAV Mission Hierarchy

We distinguish mission aspect from mission; the former is a conceptualization of related mission requirements, the latter a structured collection of interrelated tasks. Table 2.4 presents a tabular hierarchy of military and commercial UAV missions [68]. High-level missions, which correspond partially to the mission aspects presented in Section 2.3.1, include the following:

- **communication**, the relay of voice and data between units, and from units to a higher command;

- **drones**, the imitation of fighter aircraft or other objects for the purposes of training or (enemy) deception;

- **extraction**, the removal (including search and rescue) of personnel and cargo from a specified target;

- **insertion**, the delivery of lethal and non-lethal payloads (for example, emergency supplies) to a specified target;

- **intelligence**, the accumulation, analysis and dissemination of enemy, terrain and weather information in areas of interest or operation;

- **reconnaissance**, the exploration or inspection of a specific area for the purpose of information gathering;

- **surveillance**, the (often clandestine) monitoring of behavior and activities;

- **transport**, the movement or transfer of personnel and cargo between two locations.

Table 2.4 divides the **intelligence, surveillance, and reconnaissance** (ISR) mission space, which is itself a subset of the ISTAR mission aspect, into **intelligence/reconnaissance** and **surveillance** missions. When considered from a different perspective, airborne ISR missions can also be divided into mutually exclusive mission segments including **standoff**, which requires ISR platforms to respect the sovereign airspace of other nations; **over flight**, which authorizes ISR platforms to perform low-risk violations of sovereign airspace, with or without consent from the nation whose airspace is being violated; and **denied**, which exposes ISR platforms to a potentially hostile airspace [62].

UAV missions in general can be divided into planning, management, and re-planning segments to identify functions that will be assumed by human operators [68]. For example, drone mission segments comprise the following tasks:

- **mission planning**, the use of 1) a scheduling mechanism to plan health and status reports, 2) threat area and no-fly zone information to designate the area of deployment, and 3) a decision support mechanism to designate loiter locations;

- **mission management**, the use of indicators to monitor the health, status and progress of a UAV;

- **mission re-planning**, the use of path planning to re-designate deployment areas.

Given these tasks, drone missions require human operators to supervise path planning, and to monitor the health and status of UAVs. Transport missions extend drone missions by requiring operators to monitor the health and status of passengers. Insertion missions, which are more demanding, require operators to supervise path planning;
Table 2.4: A tabular UAV mission hierarchy, which includes battle damage assessment (BDA) and nuclear, biological and chemical (NBC) sensing missions.

<table>
<thead>
<tr>
<th>level 1</th>
<th>level 2</th>
<th>level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>drones</td>
<td>decoy</td>
<td>target practice</td>
</tr>
<tr>
<td>communication</td>
<td>electronic warfare</td>
<td>electronic attack</td>
</tr>
<tr>
<td>extraction</td>
<td></td>
<td>electronic protection</td>
</tr>
<tr>
<td>insertion</td>
<td>payload delivery</td>
<td>lethal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>non-lethal</td>
</tr>
<tr>
<td>intelligence/reconnaissance</td>
<td>BDA</td>
<td>dynamic target</td>
</tr>
<tr>
<td></td>
<td>mapping</td>
<td>static target</td>
</tr>
<tr>
<td></td>
<td>target acquisition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>target designation</td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td>cargo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>passengers</td>
<td></td>
</tr>
<tr>
<td>surveillance</td>
<td>geospatial surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dynamic target</td>
<td></td>
</tr>
<tr>
<td></td>
<td>static target</td>
<td></td>
</tr>
<tr>
<td></td>
<td>listening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBC sensing</td>
<td></td>
</tr>
</tbody>
</table>

monitor the health and status of the UAV; monitor the status of weapons; identify targets; allocate and schedule resources; and negotiate with, and notify, other stakeholders. Nehme et al. provide a comprehensive discussion on UAV missions, and the function of human operators with respect to those missions [68].

We have presented UAV missions from multiple perspectives, which support the analysis of mission scenarios at different levels of granularity (from high-level mission objectives with tactical and political implications to low-level tasks performed by human
operators). Section 2.3.3 and Section 2.3.4 introduce two illustrative mission scenarios.

2.3.3 DARPA Mission Scenario

UAVForge was a collaborative initiative by DARPA and the Space and Naval Warfare Systems Center Atlantic (SSC Atlantic) [32]. The aim of the initiative was to crowdsource the design and development of a remotely operated micro-UAV that could be transported in a rucksack by a single person traveling on foot. Submitted UAVs were evaluated in the context of a mission scenario, which involved the observation of suspicious activities occurring in the vicinity of two nondescript urban buildings. Total mission time did not exceed five and a half hours including three hours for the observation task. UAVs were required to demonstrate the following capabilities:

- vertical take-off(s) from, and landing(s) to, different stationary locations;
- safe flight within an altitude window of 5–1000 feet, with up to 15 mile per hour winds and 40–100°F temperatures;
- point-to-point navigation within 500 feet of defined flight corridors;
- operation within an assigned airspace and avoidance of defined no-fly zones;
- (preferably autonomous) avoidance of static and (potentially) dynamic obstacles—including buildings, water towers, and trees—during approach into an observation area;
- landing in an area similar to a rooftop structure containing heating, ventilation, and air conditioning (HVAC) equipment, communications gear, satellite dishes and poles;
- identification of a vantage point—up to 2.0 miles beyond line-of-sight from the starting location—from which to conduct the observation task
- observation by landing on, adhering to, hanging over, and/or hovering above or below physical structures;
- real-time transmission of images or video depicting static and mobile items of interest located up to 100 feet from the observing UAV;
- data link frequency management and data transmission in compliance with rules and authorized frequencies stipulated, respectively, by the Academy of Model Aeronautics (AMA) and the U.S. Federal Communications Commission (FCC).

Figure 2.4 illustrates the UAVForge mission scenario, which underpins, and thereby lends credibility to, the 58 UAV mission plans developed for this project. These plans in turn support the development and evaluation of our method and prototype.
Figure 2.4: An illustration of DARPA's UAVForge mission scenario [32].
2.3.4 DRDC Mission Scenario

The DRDC produces mission scenarios to further knowledge on the intersection of UAV/UCAV devices and intelligent adaptive interfaces (IAIs), which are technologies for enhancing performance in complex socio-technical environments such as multi-UAV operations [69, 70]. Mission scenarios employ a suite of UAV platforms—including medium altitude long endurance (MALE) UAVs (for example, the MQ-1 Predator\(^1\)), VTOL Tactical UAVs (VTUAVs), and mini UAVs—to evaluate the impact of IAI constructs on operations within the UAV domain in Canada [33]. We will focus on a mission scenario involving a fishery patrol (FISHPAT) and a counter-drug operation (CD OP), which are representative of domestic ISR missions undertaken by Canadian Forces in peacetime (additional domestic operations include disaster recovery, homeland security, long-duration law enforcement surveillance, and search and rescue).

The CD OP is coordinated from the Maritime Forces Atlantic (MARLANT) Headquarters at Canadian Forces Base (CFB) Halifax with support from HMCS Winnipeg. A ship of interest (SOI) is initially tracked by US Customs aircraft and a US Coast Guard vessel. In conjunction with this activity, HMCS Montreal, which carries four VTUAVs, is conducting a FISHPAT approximately 180 nautical miles south of Burin in Newfoundland; and HMCS Kingston, which carries two mini UAVs, is conducting a coastal patrol 150 nautical miles southwest of Burin. Mission correctness is complicated by several factors. Tasked assets operate remotely and at great distances from their home bases. Extended transit times and accurate, timely intelligence reports are therefore critical to mission planning, and asset positioning and availability. In addition, the area of operation (AOO) experiences weather conditions—including frequent and extensive fog, low cloud cover and precipitation—that limit the utility of electro-optical (EO) and infrared (IR) sensors.

A timeline of major mission events is divided into seven segments, which are deemed conducive to IAI experimentation. These segments identify periods of excessive operator workload resulting from “the simultaneous receipt of sensor data ... [transmitted by] multiple UAVs; dynamic re-tasking of UAVs; transfer of UAV control between agencies; and concurrent control of multiple UAVs.” [33] Mission segments include the following (all times are Eastern Standard):

0210–0232 hrs: HMCS Montreal and Viper 01 (a MALE UAV) are re-tasked from a FISHPAT and a training exercise, respectively, to the CD OP. Viper 01 is vectored into position by a mission control element (MCE) located at CFB Greenwood. Alpha 51, a manned patrol aircraft, is also re-tasked from a training exercise in order to track the SOI.

0325–0702 hrs: HMCS Montreal maintains simultaneous control of two VTUAVs (Bingo 61 and Bingo 62) and receives synthetic aperture radar (SAR) imagery from Viper 01.

\(^1\)In contrast to Youngson et al., Arjomandi classifies the MQ-1 Predator as a medium endurance UAV (see Table 2.2).
Chapter 2. Background

2.4 Summary

0750–0812 hrs: Ship board and airborne MCEs—for example, HMCS Kingston and Alpha 52, respectively—execute multiple UAV payload (i.e., EO, IR, and SAR) control transfers.

1110–1140 hrs: Alpha 52 controls, dynamically re-tasks and monitors sensor data from two UAVs (Mike 91 and Mike 92) while receiving SAR imagery from Viper 01. This involves Alpha 52 launching Mike 91, and assuming control of Mike 92 from HMCS Kingston.

1200–1432 hrs: HMCS Montreal controls and monitors sensor data from three UAVs (Bingo 63, Bingo 64 and Mike 92) while receiving SAR imagery from Viper 01. This involves HMCS Montreal launching Bingo 64 to replace Bingo 63, and assuming control of Mike 92 from Alpha 52.

1440–1525 hrs: Alpha 52, HMCS Kingston and HMCS Montreal transfer control of UAVs in conjunction with the surveillance of multiple targets.

1620–1700 hrs: UAV sensor operations and frequency of reporting accelerate in response to an increased operational tempo.

As with UAVForge, the DRDC scenario underpins mission plans that in turn support the development and evaluation of our method and prototype.

2.4 Summary

This chapter presents background material on the technologies that constitute cascading verification. We also provide a broad, concise overview of the UAV domain to contextualize, and convey the inherent complexity of, UAV missions. Some of the information in this overview is never exploited by our work; for example, our prototype implementation of cascading verification does not incorporate the performance specifications and mission hierarchy presented in Section 2.3.1 and Section 2.3.2, respectively. But this information is nevertheless pertinent because it has informed our research and development efforts. The scope of our prototype with respect to its application domain will be elaborated in subsequent chapters.
Chapter 3

Method Overview

Figure 3.1 illustrates a high-level, domain-agnostic schematic of our method and prototype. Domain experts, who are the method’s primary stakeholders, use OWL to define domain concepts and their relationships; SWRL and Prolog to define rules; and PRISM’s modeling and property specification languages to define, respectively, DTMC and PCTL templates. Model builders, who are also primary stakeholders, use a high-level DSL to encode system specifications for model checking. We note that domain knowledge is formalized once and subsequently reused to support the verification of multiple system specifications.

3.1 An Example Mission

With our prototype, model builders use a domain-specific YAML dialect to encode mission plans comprising UAV assets and the action workflows assigned to those assets. The YAML code in Listing 3.1 specifies Mission A, an example mission that is representative of the 58 mission plans developed for this project.

Mission A, which is illustrated in Figure 3.2, comprises two Hummingbird assets (lines 24–28 in Listing 3.1); a single photo surveillance action (lines 19–22), which is a type of sensor action; and four path segment traversal actions (lines 2–18), which are kinetic actions. A path segment traversal action instructs the executing UAV to traverse
a path between two waypoints. For each such action, the latitudes and longitudes of the delineating waypoints are stored in an array and indexed in succession; in other words, the latitude of waypoint one is followed by the longitude of waypoint one, which is in turn followed by the latitude of waypoint two, etc. We note that the end coordinates of an action a constitute the start coordinates of an action b if a precedes b, and both a and b are assigned to the same asset; for example, the end coordinates of action TPSA1 (line 6) constitute the implied start coordinates of action TPSA2, which succeeds TPSA1 in the sequence of kinetic actions assigned to asset H1 (line 26).

With the exception of asset endurance, mission concepts specified in Listing 3.1 correspond directly to the elements illustrated in Figure 3.2. Asset endurance can be optionally omitted from mission specifications, and was therefore omitted for assets H1 and H2 in Mission A, because the default endurance for Hummingbird assets is specified in an OWL+SWRL ontology, which will be presented in Chapter 4. The following section describes the mechanism that integrates mission specifications with ontological knowledge.
3.2 From Specification to Verification

For any given mission specification, a cascading verification compiler (CVC) synthesizes both the DTMC and PCTL artifacts corresponding to that specification. Artifacts are synthesized as follows:

1. Mission specifications encoded in YAML are transformed by the CVC into ABox assertions. During this preprocessing phase, the CVC uses geographic coordinates from mission specifications, and data (pertaining to operational environments) from external sources, to perform geodetic calculations. The equations that support these calculations are hard-coded in the CVC; for example, the compiler comprises geodesic equations that establish the occurrence, and calculate the duration, of threat area incursions committed by UAVs (these equations will be presented in Appendix A). Geographic information resulting from preprocessing is integrated with the generated ABox.

2. We use Pellet, a sound and complete semantic reasoner [71], to verify the generated ABox against the TBox defined by domain experts. In doing so, the reasoner ensures that mission constructs encoded in YAML are consistent with OWL+SWRL axioms. Inconsistencies between TBox and ABox signify an invalid mission specification, which causes the compilation process to terminate with an error. If

1. Geodetics is a branch of applied mathematics that deals with the size and shape of the Earth.
consistency is deduced, then the reasoner proceeds to generate inferences from explicitly encoded domain knowledge; for example, if geodetic calculations establish the occurrence of a threat area incursion, then the asset committing that incursion is inferred to be a \textit{threatened asset}.

3. Inferred ontological knowledge is transformed by the CVC into Prolog facts. The compiler for SWI-Prolog—an open source implementation of Prolog [72]—inputs the generated fact-base, and the Prolog rule-base defined by domain experts, and proceeds to generate inferences; for example, the last kinetic action in an action workflow is inferred to be a \textit{default terminal action}. The CVC uses Prolog inferences, in conjunction with explicit and inferred ontological knowledge, to synthesize DTMC and PCTL artifacts from predefined templates.

PRISM inputs the synthesized artifacts, verifies the system model against its desired behavioral properties, and returns logical and probabilistic results from the verification. If the results are deemed acceptable by the model builder(s), then the mission can be scheduled for real-world execution (via some process that is outside the scope of our method).

In summary, cascading verification is a formal method that abstracts model checking for specific application domains. For a given domain of interest, experts in that domain implement a bespoke CVC once; and model builders use the implemented CVC to easily verify multiple system specifications.

We proceed to elaborate a subset of the UAV domain, which encompasses the concepts that constitute Mission A.
Chapter 4

Domain Modeling

This chapter describes the process of encoding domain knowledge in OWL+SWRL, Prolog, and DTMC and PCTL templates. The application of these technologies is illustrated with respect to the UAV domain and, in particular, Mission A, the example mission presented in Section 3.1.

The remainder of this chapter is structured as follows. Section 4.1 uses OWL to formalize a subset of the UAV domain. The discussion is contextualized by case studies involving tactical and traffic surveillance missions, which are presented in Section 4.1.2 and Section 4.1.3, respectively. Section 4.2 uses SWRL to integrate complex relational structures into OWL, and Prolog to encode knowledge that can support effective reasoning with negation. Section 4.3 uses DTMC and PCTL formalisms to encode, respectively, probabilistic behavior and properties. DTMC and PCTL code is abstracted and presented in templates that support the synthesis of PRISM artifacts. Section 4.4 and Section 4.5 present related work and a summary of this chapter, respectively.

4.1 Semantic Modeling

With cascading verification, domain experts use OWL+SWRL ontologies to formally define domain concepts and their relationships. For our prototype, we have developed a complex missions ontology (CEMO) that formalizes a subset of the UAV domain. Domain concepts are integrated into a modular ontology architecture that supports flexible development and reuse [73, 74]. The ontology development process utilized prominent Semantic Web technologies including the Protégé ontology editor, the Pellet reasoner and the Semantic Web Stack, which comprises OWL+SWRL.

4.1.1 Building an OWL Ontology

Figure 4.1 illustrates CEMO’s class hierarchy, where each OWL class represents a grouping of individuals with similar characteristics [75]. Five classes—Action, Area, Asset, Mission and Waypoint—inherit directly from the built-in OWL class Thing, which represents the set of all individuals. (The built-in OWL class Nothing represents the empty set.) These concepts are accessible to all ontology modules that extend CEMO.
Chapter 4. Domain Modeling

4.1. Semantic Modeling

Figure 4.1: CEMO’s class hierarchy as presented by the Protégé ontology editor.

The OWL code in Listing 4.1 uses Manchester OWL syntax—a human-friendly ontology representation language [76]—to formally defines class Asset, which is comprised in Mission A. Lines 2–5 specify four OWL properties, which are constructs for describing relationships. In particular, an OWL property with specified domain and range links individuals from the domain to individuals or data values from the range. The two main OWL property types are object properties and datatype properties. The former describe relationships between two individuals while the latter describe relationships between individuals and data values.

Listing 4.1: OWL code for class Asset

```owl
Class Asset
  SubClassOf hasAction some KineticAction,
  hasCostValue some xsd:integer,
  hasEnduranceInSeconds some xsd:integer,
  hasSpeedInKilometersPerHour some xsd:integer
```

Lines 1 and 2 in Listing 4.1 specify that every member of class Asset (the domain) must be associated with a member of class KineticAction (the range) via an instance of the object property hasAction. (For brevity, the reminder of this thesis will refer to property instances simply as properties.) Members of class Asset are also associated with datatype properties describing asset cost, endurance and speed (lines 3–5).

Class Asset is extended by class NamedAsset, which is in turn extended by classes ARDrone and Hummingbird. The latter classes represent quadcopter UAVs manufactured by Parrot USA and Ascending Technologies, respectively, that have informed our research. The OWL code in Listing 4.2 formally defines class Hummingbird, which is comprised in Mission A.

Lines 3–5 in Listing 4.2 associate members of class Hummingbird with three datatype properties—hasCostValue, hasEnduranceInSeconds and hasSpeedInKilometersPerHour. These properties are inherited from classes NamedAsset and, ultimately, Asset. Unlike class Asset, the ranges of the datatype properties that parameterize members of
Listing 4.2: OWL code for class Hummingbird

```
Class: Hummingbird
SubClassOf: NamedAsset,
   hasCostValue some xsd:integer[>= 5000],
   hasEnduranceInSeconds some xsd:integer[<= 120],
   hasSpeedInKilometersPerHour some xsd:integer[<= 50]
DisjointWith: ARDrone
```

class Hummingbird restrict possible data values. Line 6 specifies that classes ARDrone and Hummingbird constitute disjoint sets of individuals. Consequently, and appropriately, a member of class ARDrone cannot also be a member of class Hummingbird.

During a mission, assets execute actions that may be associated with other actions via preconditions. An action a is a precondition to an action b if the end of a must precede the beginning of b in the sequence of actions that constitute an action workflow. Mission A comprises three preconditions (lines 10, 18 and 22 in Listing 3.1), where each precondition relates actions assigned to the same asset. A fourth precondition (line 10) associates action TPSA2 with action TPSA3, thereby coupling the behavior of the assets to which those actions are assigned (H_1 and H_2, respectively). CEMO encodes preconditions with the object property hasPrecondition, which is formally defined in Listing 4.3.

Listing 4.3: OWL code for the object property hasPrecondition

```
ObjectProperty: hasPrecondition
Characteristics: Transitive
Domain: Action
Range: Action
InverseOf: isPreconditionTo
```

Line 2 in Listing 4.3 declares the object property hasPrecondition to be transitive. Transitivity is one of several property characteristics that can be used to qualify object properties. Given transitivity, if an action a is related via hasPrecondition to an action b, and b is related to an action c via the same property, then we can infer that a is related via hasPrecondition to c. In addition, hasPrecondition is inverted by the object property isPreconditionTo (line 5). The inverse relation between hasPrecondition and isPreconditionTo implies that if an action a is related via hasPrecondition to an action b, then b is related to a via isPreconditionTo. Figure 4.2 and Figure 4.3 illustrate transitivity and inversion, respectively.

Because preconditions associate actions with other actions, class Action constitutes both the domain and range of the object property hasPrecondition (lines 3 and 4, respectively, in Listing 4.3). Class Action is extended by class KineticAction, whose members are associated with a data property describing action duration. Class KineticAction is in turn extended by classes HoverAction and TraversePathSegmentAction. The OWL code in Listing 4.4 formally defines class TraversePathSegmentAction, which is comprised in Mission A. Lines 3–4 in Listing 4.4 specify that every
Figure 4.2: An example of the transitive property characteristic that qualifies the object property hasPrecondition. The dashed line represents an inferred relationship.

Figure 4.3: An example of inversion with respect to the object properties hasPrecondition and isPreconditionTo. The dashed line represents an inferred relationship.

member of class TraversePathSegmentAction must be associated via the object properties hasStartPoint and hasEndpoint with Waypoint individuals that designate the geographical start points and endpoints, respectively, of path segment traversal actions (hover actions are also designated geographically by waypoints).

Listing 4.4: OWL code for class TraversePathSegmentAction

```
Class: TraversePathSegmentAction
SubClassOf: KineticAction,
  hasStartPoint some Waypoint,
  hasEndpoint some Waypoint
DisjointWith: HoverAction
```

Class Action is also extended by class SensorAction, which is in turn extended by class PhotoSurveillanceAction. The OWL code in Listing 4.5 formally defines class PhotoSurveillanceAction, which is comprised in Mission A.

Listing 4.5: OWL code for class PhotoSurveillanceAction

```
Class: PhotoSurveillanceAction
SubClassOf: SensorAction,
  hasDurationInSeconds some xsd:integer,
  hasPrecondition only Action
```

The preceding code contains the keywords some (line 3) and only (line 4), which represent, respectively, existential and universal restrictions in OWL. With regard to object properties:
• Existential restrictions describe classes of individuals that must participate in at least one relationship, along a specified property, with individuals that are members of a specified class [77].

• Universal restrictions describe classes of individuals that may, and can only, participate in relationships along a specified property with individuals that are members of a specified class.

Existential and universal restrictions, which can also be applied to datatype properties, are denoted in predicate logic by the existential (\exists) and universal (\forall) quantifiers, respectively.

4.1.2 Modeling Tactical Missions

During tactical missions, assets may be required to commit threat area incursions, thereby compelling mission developers to consider the impact of asset survivability on the probability of mission success. The United States Department of Defense (USDOD) defines survivability as “the capability of a system . . . to avoid or withstand a man-made hostile environment without suffering an abortive impairment in its ability to accomplish its designated mission.” [78] To accommodate tactical mission requirements, we have developed a complex tactical missions ontology (Tactical-CEMO) that extends CEMO.

Figure 4.4 illustrates Tactical-CEMO’s multiple inheritance class hierarchy; for example, class DirectThreatAreaHoverAction extends classes HoverAction and ThreatAreaAction. Classes describing tactical missions are highlighted in bold and thereby differentiate from classes encoded in CEMO. Used exclusively to support automated reasoning, tactical concepts are not available to mission developers via the YAML DSL.

We define class ThreatArea in Tactical-CEMO and specify that any waypoint related to a threat area be inferred, by Pellet or other semantic reasoners, a member of class ThreatAreaWaypoint. (The geographic information that relates waypoints to threat areas is determined by the CVC during preprocessing, as described in Chapter 3.) To enable the inference of class membership, class ThreatAreaWaypoint must be defined by domain experts using necessary and sufficient conditions [77]. We contrast necessary and sufficient conditions with necessary conditions, which describe all classes encoded in CEMO (as described in Section 4.1.1). These classes are known as primitive, and cannot be used to infer class membership. For example, because class Asset is described using only necessary conditions, an individual that is a member of class Asset must satisfy those conditions. However, class membership cannot be inferred for any (random) individual that satisfies the conditions describing class Asset. Figure 4.5 illustrates the type of reasoning supported by necessary conditions.

Unlike primitive classes, a defined class, which is a class comprising necessary and sufficient conditions, can be used to infer class membership. For example, because class ThreatAreaWaypoint is defined using necessary and sufficient conditions, class membership can be inferred for any (random) individual that satisfies those conditions. As
with primitive classes, the conditions comprised by class ThreatAreaWaypoint must be satisfied by its members. In other words, class ThreatAreaWaypoint is defined using conditions that are necessary for, and sufficient to infer, class membership. Figure 4.6 illustrates the type of reasoning supported by necessary and sufficient conditions. The OWL code in Listing 4.6 formally defines class ThreatAreaWaypoint, with the keyword EquivalentTo establishing necessary and sufficient conditions for that class.

Listing 4.6: OWL code for class ThreatAreaWaypoint

```owl
Class: ThreatAreaWaypoint
  EquivalentTo: Waypoint
  and (isWaypointOf some ThreatArea)
```

Since members of class Waypoint are associated with HoverAction and TraversePathSegmentAction individuals (see Section 4.1.1), we specify that any kinetic action related to a threat area waypoint be inferred a member of class ThreatAreaAction. We assert the qualitative difference between threat area actions that initiate or prolong an incursion and threat area actions that terminate an incursion, and specify that the former be inferred members of class DirectThreatAreaAction. We further assert the qualitative difference between direct threat area actions (DTAAs) that execute exclusively,
thereby endangering an asset seemingly without purpose, and those DTAAs that execute concurrently with one or more sensor actions. Given these assertions, we specify that assets with at least one assigned DTAA be inferred members of class `ThreatenedAsset`. We also specify that a threatened asset with assigned DTAAs be inferred a member of class `ValidAsset`, if at least one of those DTAAs executes concurrently with at least one sensor action assigned to the same asset. The OWL code in Listing 4.7 formally defines class `ValidAsset`.

Listing 4.7: OWL code for class ValidAsset

```owl
Class: ValidAsset
  EquivalentTo: ThreatenedAsset
  and (hasAction some
      (SensorAction
        and (hasSibling some DirectThreatAreaAction)))
```

The preceding code contains a nested class expression that is disambiguated with parentheses. This class expression can be understood as follows: A member of class `ValidAsset` is equivalent to a threatened asset associated, via the object property `hasAction`, to a member of class `SensorAction` that is in turn associated, via the object property `hasSibling`, to a member of class `DirectThreatAreaAction`. The OWL code in Listing 4.8 formally defines `hasSibling`.

Lines 2 and 3 in Listing 4.8 qualify the object property `hasSibling` with the asymmetric and irreflexive property characteristics, respectively (the transitive property char-
characteristic was introduced in Section 4.1.1). Because hasSibling is asymmetric\(^1\), if an action \(a\) is related via hasSibling to an action \(b\), then \(b\) cannot be related to \(a\) via the same property. Because hasSibling is irreflexive, if an action \(a\) is related via hasSibling to an action \(b\), then \(a\) and \(b\) cannot be the same action. Figure 4.7 illustrates the asymmetric and irreflexive property characteristics that qualify hasSibling.

![Figure 4.7: An example of the asymmetric (left) and irreflexive (right) property characteristics that qualify the object property hasSibling. The dashed lines represent inferred relationships.](image)

Classes ThreatenedAsset and ValidAsset provide an initial mission verification mechanism in the context of our method. Specifically, a mission specification is inconsistent if it contains threatened assets that are not also valid assets. Once the validity of threatened assets has been inferred, the CVC synthesizes DTMC models that enable PRISM to compute the probability of survival for those assets. Accordingly, synthesized models encompass probabilities describing the vulnerability of real-world assets. The USDOD defines vulnerability as “the characteristic of a system that causes it to suffer a definite degradation ... [resulting from exposure] to a defined level of effects in a man-made hostile environment.” \cite{USDOD} Vulnerability probabilities are derived from classes HighVulnerabilityAsset and LowVulnerabilityAsset, which extend class Asset. The OWL code in Listing 4.9 formally defines class HighVulnerabilityAsset.

Similar to class Hummingbird, the ranges of the datatype properties that parameterize members of class HighVulnerabilityAsset, including hasCostValue and hasSpeedInKilometersPerHour (lines 3 and 4, respectively, in Listing 4.9), restrict possible datatype values. The datatype property hasEnduranceInSeconds, which is inherited from class Asset (line 2), is not calibrated in a similar manner. The decision to calibrate two of the three inherited datatype properties implies that the calibrated properties are more likely to impact asset vulnerability. We note that, unlike class Hummingbird, the datatype properties in Listing 4.9 establish necessary and sufficient conditions (lines 1–4), and

\(^1\)While potentially counterintuitive, an asymmetric sibling relationship is nevertheless consistent in the context of our domain model.

Listing 4.8: OWL code for the object property hasSibling

```owl
ObjectProperty: hasSibling
Characteristics: Asymmetric, Irreflexive
Domain: SensorAction
Range: KineticAction
```
thereby support the inference of membership for class `HighVulnerabilityAsset`.

Lines 6 and 7 in Listing 4.9 use the keyword `value` to declare `hasValue` restrictions, which describe classes of individuals that must participate in at least one relationship, along a specified property, with a specific individual [77]. In particular, line 6 specifies that every member of class `HighVulnerabilityAsset` must be associated with the individual `HighRiskAcceptabilityFactor` via the object property `hasRiskAcceptabilityFactor` (the concept of risk acceptability will be elaborated in Section 4.3.2). Line 7 specifies that every member of class `HighVulnerabilityAsset` must be associated with the individual `HighVulnerability` via the object property `hasVulnerability`. The individuals `HighRiskAcceptabilityFactor` and `HighVulnerability` belong, respectively, to the enumerated classes `RiskAcceptabilityFactor` and `Vulnerability`, which extend the generic class `DomainConcept`. An enumerated class is defined by listing precisely the individuals that are members of that class. The OWL code in Listing 4.10 formally defines class `Vulnerability`.

```
Listing 4.10: OWL code for class Vulnerability

1  Class: Vulnerability
2  EquivalentTo: DomainConcept
3    and ( (HighVulnerability , LowVulnerability))
4  DisjointWith: RiskAcceptabilityFactor
```

Line 3 in Listing 4.10 specifies two individuals—`HighVulnerability` and `LowVulnerability`—that constitute class `Vulnerability`. The OWL code in Listing 4.11 formally defines the individual `HighVulnerability`, which is associated with a datatype property describing a double-precision number (line 3). The value of this number is used by the CVC to calculate probabilities that are ultimately integrated into DTMC models representing high vulnerability assets. These modules enable PRISM to compute the probability of survival for high vulnerability assets during threat area incursions. The synthesis process will be elaborated in Section 4.3.

```
Listing 4.11: OWL code for the individual HighVulnerability

1  Individual: HighVulnerability
2    Types: Vulnerability
3    Facts: hasDoubleValue 0.1
```
The double-precision number encapsulated by the individual `HighVulnerability` is the raison d’être for that individual’s existence in our ontology. In other words, because datatype properties link classes to data ranges (for example, class `Hummingbird`) and individuals to data values, we were compelled to create classes of *individuals* that could encapsulate risk acceptability and asset vulnerability values. And because the number of individuals per class was finite, enumeration enabled us to explicitly declare the completeness of those classes, and thereby create a finite set of risk acceptability and asset vulnerability grades.

The preceding discussion regarding class `HighVulnerabilityAsset` applies equally to class `LowVulnerabilityAsset`, which is formally defined in Listing 4.12. Datatype and object property ranges differentiate the two classes.

Listing 4.12: OWL code for class `LowVulnerabilityAsset`

```
Class: LowVulnerabilityAsset
EquivalentTo: Asset
  and (hasCostValue some xsd:integer[ >= 3000])
  and (hasSpeedInKilometersPerHour some xsd:integer[ <= 60])
SubClassOf:
  hasRiskAcceptabilityFactor value LowRiskAcceptabilityFactor
  hasVulnerability value LowVulnerability,
DisjointWith: HighVulnerabilityAsset
```

4.1.3 Modeling Traffic Surveillance Missions

Having investigated tactical missions comprising threat area incursions, we considered a second case study involving traffic surveillance missions. In this scenario, which is conceptually similar to work presented by Heintz et al. [59], deployed UAVs are required to monitor freeway traffic and notify subscribers if traffic speeds exceed minimum and nominal thresholds. To accommodate traffic surveillance mission requirements, we have developed a *complex traffic surveillance missions ontology* (Traffic-CEMO) that extends CEMO.

Figure 4.8 illustrates Traffic-CEMO’s class hierarchy. Classes describing traffic surveillance missions are highlighted in bold, and thereby differentiate from classes encoded in CEMO. Also highlighted in bold are classes defined in CEMO that have been declared disjoint from classes defined in Traffic-CEMO. Used mainly to support automated reasoning, traffic surveillance concepts are generally not available to mission developers via the YAML DSL. Concepts available to mission developers will be highlighted in the analysis that follows.

We define class `FreewaySection` in Traffic-CEMO and specify that two-lane freeway sections with high access ramp frequency be inferred, by Pellet or other semantic reasoners, members of `FreewaySection` subclass `LowSpeedFreewaySection`. We also specify that three-lane freeway sections with low access ramp frequency be inferred members of `FreewaySection` subclass `HighSpeedFreewaySection`. These inferred relationships
formalize the correlation between off-ramp over-saturation and freeway bottlenecks that disrupt traffic discharge rates [79]. The OWL code in Listing 4.13 formally defines class FreewaySection.

```
Class: FreewaySection
  SubClassOf: Road,
  approachesMinimumSpeed some xsd:double,
  exceedMinimumSpeed some xsd:double,
  exceedNominalSpeed some xsd:double,
  hasLaneClassification some LaneClassification,
  hasRampFrequency some RampFrequency
```

Line 3 in Listing 4.13 associates members of class FreewaySection with the datatype property approachesMinimumSpeed, which describes the potential for minimum traffic speeds to be approached during the operation of freeway sections. The datatype properties exceedMinimumSpeed (line 4) and exceedNominalSpeed (line 5) likewise describe the potential for minimum and nominal traffic speeds, respectively, to be exceeded during the operation of freeway sections. Lines 6 and 7 specify that every member of class FreewaySection must be associated, via the object properties hasLaneClassification and hasRampFrequency, with members of classes LaneClassification and RampFre-
frequency, respectively. These classes extend class `ValuePartition`, which represents the `value partition` design pattern [77].

We use value partitions to describe the concepts of `lane classification` and `on/off ramp frequency`, and to restrict the range of possible values for those concepts to an exhaustive list of mutually exclusive choices. For example, class `LaneClassification` restricts the range of the object property `hasLaneClassification` to classes `TwoLaneClassification` and `ThreeLaneClassification`. The OWL code in Listing 4.14 formally defines class `LaneClassification`.

Listing 4.14: OWL code for class LaneClassification

```
1 Class: LaneClassification
2   EquivalentTo: TwoLaneClassification
3   or ThreeLaneClassification
4   SubClassOf: ValuePartition
5   DisjointWith: RampFrequency
```

Lines 1–3 in Listing 4.14 specify a `covering axiom`. This type of axiom comprises a set of classes that `cover` a common superclass by virtue of their union; for example, `LaneClassification` subtypes `TwoLaneClassification` and `ThreeLaneClassification` form a union (lines 2 and 3) that covers their common superclass. We note that the union of classes `TwoLaneClassification` and `ThreeLaneClassification` establishes necessary and sufficient conditions for class `LaneClassification` (necessary and sufficient conditions were described in Section 4.1.2). The OWL code in Listing 4.15 formally defines class `TwoLaneClassification`.

Listing 4.15: OWL code for class TwoLaneClassification

```
1 Class: TwoLaneClassification
2   SubClassOf: LaneClassification
3   DisjointWith: ThreeLaneClassification
```

Line 3 in Listing 4.15 specifies that classes `TwoLaneClassification` and `ThreeLaneClassification` constitute disjoint sets of individuals. Because class `LaneClassification` is `covered` by the union of its two subclasses, and because those subclasses are disjoint, a member of class `LaneClassification` must also be a member of either `TwoLaneClassification` or `ThreeLaneClassification`. As with enumeration, which was described in Section 4.1.2, value partitions enabled us to create a finite set of possible values (in this case, lane classification and ramp frequency grades). The value partitions that describe lane classification and ramp frequency are used to parameterize `FreewaySection` subtypes including classes `LowSpeedFreewaySection` and `HighSpeedFreewaySection`. The OWL code in Listing 4.16 formally defines the latter class.

Listing 4.16: OWL code for class HighSpeedFreewaySection

```
1 Class: HighSpeedFreewaySection
2   SubClassOf: FreewaySection
3   DisjointWith: LowSpeedFreewaySection
```

Lines 1–4 in Listing 4.16 use value partitions to establish necessary and sufficient conditions, and thereby support the inference of membership for class `HighSpeedFreewaySection`. Unlike class `FreewaySection`, the ranges of the datatype properties that parameterize members of class `HighSpeedFreewaySection` (lines 5–7) restrict possible data
values. These data values specify probabilities for traffic speed fluctuations during the operation of high-speed freeway sections. Traffic speed fluctuations affect the optimal surveillance of freeway traffic by airborne light detection and ranging (LIDAR) systems.

LIDAR is an optical remote sensing technology that can observe targets from a distance of 15 kilometers (in air) with sub-millimeter resolution [80]. The integration of LIDAR systems into rotary wing UAV platforms could enable, for example, a single hovering UAV with a five kilometer altitude ceiling to monitor traffic over an area spanning approximately 630 square kilometers. In the context of an urban environment, LIDAR-equipped UAVs offer a flexible and optimizable alternative to land-based cameras for the simultaneous surveillance of multiple freeway sections. The OWL code in Listing 4.17 models the concept of LIDAR systems by formally defining class LidarAction as a sensor action subtype.

Listing 4.17: OWL code for class LidarAction

```owl
Class: LidarAction
SubClassOf: SensorAction,
  hasIntervalInSeconds some xsd:integer,
  hasIntervalCalibrationFactor some IntervalCalibrationFactor,
  isConcurrentWith some HoverAction
DisjointWith: PhotoSurveillanceAction
```

The object property hasIntervalCalibrationFactor (line 4 in Listing 4.17) links LIDAR actions with the individuals HighIntervalCalibrationFactor and LowIntervalCalibrationFactor, which constitute the enumerated class IntervalCalibrationFactor. Members of class IntervalCalibrationFactor are associated with a datatype property describing an integer. The value of this integer, which is ultimately integrated into DTMC models that simulate LIDAR actions, calibrates intervals between LIDAR readings. LIDAR intervals are specified by mission developers with a construct from our DSL; the interval type that verifies mission plans is specified by the datatype property hasIntervalInSeconds (line 5). Every member of class LidarAction is also associated, via the object property isConcurrentWith (line 3), with a HoverAction individual. This relationship is specified by mission developers via the YAML DSL.

Class LidarAction is extended by class HighSpeedLidarAction, which is formally defined by the OWL code in Listing 4.18. LidarAction subtype individuals are associ-
ated with members of class `HighSpeedFreewaySection` via the object property `monitors` (line 3). Given the necessary and sufficient conditions established in Listing 4.18 (lines 1–3), LIDAR actions that monitor *high-speed freeway sections* are inferred members of class `HighSpeedLidarAction`. Thus `FreewaySection` subtypes support inferences that determine the classification of `LidarAction` individuals. The object property `monitors`, which encompasses the concurrency relationship specified by mission developers, will be elaborated in Section 4.2.

Listing 4.18: OWL code for class `HighSpeedLidarAction`

```
1 Class: HighSpeedLidarAction
2 EquivalentTo: LidarAction
3 and (monitors some HighSpeedFreewaySection)
4 SubClassOf: hasIntervalCalibrationFactor value HighIntervalCalibrationFactor
5 DisjointWith: LowSpeedLidarAction
```

Line 4 in Listing 4.18 links `HighSpeedLidarAction` individuals with a *high interval calibration factor*, which is integrated into DTMC models representing *high-speed LIDAR actions*. Thus `LidarAction` classifications support the synthesis of DTMC artifacts that model the behavior of LIDAR action individuals. The discussion regarding class `HighSpeedLidarAction` applies equally to class `LowSpeedLidarAction`, which is formally defined in Listing 4.19. Object property ranges differentiate the two classes.

Listing 4.19: OWL code for class `LowSpeedLidarAction`

```
1 Class: LowSpeedLidarAction
2 EquivalentTo: LidarAction
3 and (monitors some LowSpeedFreewaySection)
4 SubClassOf: hasIntervalCalibrationFactor value LowIntervalCalibrationFactor
5 DisjointWith: HighSpeedLidarAction
```

Appendix B presents CEMO, Tactical-CEMO and Traffic-CEMO in their entirety.

4.1.4 An Overview

Section 4.1 exploits OWL to formalize a subset of the UAV domain. With respect to the OWL constructs presented in Section 2.1: Listing 4.6 uses the equivalence predicate `EquivalentTo` to establish necessary and sufficient conditions for class `ThreatAreaWaypoint`. Listing 4.2 uses the primitive `DisjointWith` to specify that classes `ARDrone` and `Hummingbird` constitute disjoint sets. And Listing 4.10 uses enumeration to describe class `Vulnerability`. These and other OWL-based modeling methods described throughout Section 4.1 support the expressive representation of knowledge by domain experts.
Chapter 4. Domain Modeling 4.2. Rule-Based Modeling

OWL also supports the efficient reasoning afforded by Pellet. Two strands of reasoning are particularly compelling because they span multiple classes and relationships. Tactical-CEMO comprises the inferred concepts DirectThreatAreaAction and ValidAsset; these concepts support the synthesis or PRISM code from templates, which will be presented in Section 4.3.1 and Section 4.3.2. Traffic-CEMO also comprises inferred concepts including HighSpeedFreewaySection and HighSpeedLidarAction, which support the synthesis of PRISM code from templates presented in Section 4.3.3. The OWL-based inferences described throughout Section 4.1 enable the CVC to generate low-level system models and their desired behavioral properties from high-level system specifications encoded by model builders.

4.2 Rule-Based Modeling

OWL is a powerful knowledge representation formalism, but expressive and reasoning limitations constrain its utility; for example, OWL cannot model cross-cutting actions. We consider an action \(a \) to be cross-cutting if \(a \) is a precondition to an action \(b \), and \(b \) is assigned to an asset that is different from the asset to which \(a \) is assigned. By this definition, action TP5A3 in Mission A is a cross-cutting kinetic action. The OWL code in Listing 4.20 presents an incomplete definition of class CrossCuttingKineticAction.

Listing 4.20: OWL code for class CrossCuttingKineticAction

```owl
Class: CrossCuttingKineticAction
EquivalentTo: KineticAction
and (isActionOf some Asset)
and (hasPrecondition some (Action
  and (isActionOf some Asset)))
```

The definition in Listing 4.20 is lacking because the asset in line 3 cannot be differentiated from the asset in line 6. The SWRL code in Listing 4.21 uses the built-in OWL property differentFrom to appropriately define class CrossCuttingKineticAction (question mark prefixes denote variables). The OWL code in line 1 provides a rudimentary definition for the CrossCuttingKineticAction concept, which is augmented by the rule in lines 3–12.

The SWRL rule in Listing 4.21 augments the definition of an OWL class. Listing 4.22 uses a SWRL rule to augment the OWL object property monitors, which supports inferences described in Section 4.1.3. Lines 1–5 formally define monitors as an asymmetric and irreflexive object property with domain and range the classes LidarAction and FreewaySection, respectively (similar definitions have been introduced throughout this chapter). Line 14 specifies that a LIDAR action \(?l\) (defined in line 10) monitors a freeway section \(?f\) (defined in line 8) if the hover action \(?h\) (defined in line 9) that executes concurrently with \(?l\) (as specified in line 13) is associated with a waypoint \(?w\) (as specified in line 11) that also delineates \(?f\) (as specified in line 12).
Listing 4.21: OWL+SWRL code for rule CrossCuttingKineticAction

```prolog
Class: CrossCuttingKineticAction

Rule:
KineticAction(?a),
KineticAction(?b),
Asset(?x),
Asset(?y),
hasAction(?x, ?a),
hasAction(?y, ?b),
hasPrecondition(?b, ?a),
DifferentFrom(?x, ?y)
-> CrossCuttingKineticAction(?a)
```

Listing 4.22: OWL+SWRL code for rule monitors

```prolog
ObjectProperty: monitors
Characteristics: Asymmetric, Irreflexive
Domain: LidarAction
Range: FreewaySection

Rule:
FreewaySection(?f),
HoverAction(?h),
LidarAction(?l),
hasWaypoint(?f, ?w),
hasWaypoint(?h, ?w),
isConcurrentWith(?l, ?h)
-> monitors(?l, ?f)
```

SWRL rules extend the expressive power of OWL; but like OWL, SWRL cannot reason effectively with negation. Rules that must reason with negation are therefore encoded in Prolog. Domain knowledge is negated during the ontology development process if Pellet reasoning with respect to that knowledge is deemed unattainable. The Prolog code in Listing 4.23 formally defines rule terminal, which comprises three negated atoms (an atom is the basic building block of a Prolog rule). Rule terminal encapsulates both explicit and inferred ontological knowledge; explicit knowledge is encoded with the atom has_action (line 2), while the three negated atoms (lines 3–5) encode knowledge inferred by Pellet.

Listing 4.23: Prolog code for rule terminal

```prolog
terminal(X) :-
has_action(A, X),
not(is_precondition_to(X, _)),
not(single_action_asset(A)),
not(zero_action_asset(A)).
```
The transition of inferred knowledge from OWL to Prolog can be illustrated with the atom \texttt{is_precondition_to} (line 3 in Listing 4.23). The OWL code in Listing 4.24 formally defines the object property \texttt{isPreconditionTo}, a relationship that inverts the object property \texttt{hasPrecondition}. This inversion constitutes a Pellet inference (as described in Section 4.1).

\begin{verbatim}
Listing 4.24: OWL code for the object property isPreconditionTo
1 ObjectProperty: isPreconditionTo
2 InverseOf: hasPrecondition
3 ...
\end{verbatim}

Mission A comprises several instances of the DSL construct \textit{preconditions} (lines 10, 18 and 22 in Listing 3.1). The CVC transforms knowledge contained in this construct into knowledge encoded as property \texttt{hasPrecondition}. Knowledge inferred by Pellet with respect to \texttt{hasPrecondition}, via the inverted property \texttt{isPreconditionTo}, is transformed by the CVC into knowledge encoded with the atom \texttt{is_precondition_to}, which in turn supports SWI-Prolog inferences.

Appendix B and Appendix C present, respectively, the SWRL and Prolog rule-bases in their entirety.

4.2.1 An Overview

Section 4.2 exploits SWRL to overcome OWL limitations and encode complex relational structures. SWRL rules in Listing 4.21 and Listing 4.22 augment class \textit{CrossCuttingKineticAction} and the object property \texttt{monitors}, respectively. The inferred concept \textit{CrossCuttingKineticAction} supports PRISM code synthesis via a process that will be described in Chapter 5. In conjunction with several inferred concepts, including \textit{HighSpeedFreewaySection} and \textit{HighSpeedLidarAction}, the object property \texttt{monitors} supports the synthesis of PRISM code from templates, which will be presented in Section 4.3.3.

Prolog is used to overcome OWL+SWRL limitations and encode knowledge that can support effective reasoning with negation. Listing 4.23 and Listing 4.24 illustrate composite FOL reasoning, which is reasoning supported by multiple and integrated FOL-based systems, with the transition of inferred knowledge from OWL to Prolog. The process that leverages composite reasoning to synthesize PRISM code will be described in Chapter 5.

4.3 Behavioral Modeling

OWL+SWRL and Prolog are appropriate formalisms for encoding semantic and rule-based knowledge. Likewise, the state-based PRISM modeling language is an appropriate formalism for encoding behavioral knowledge as DTMC models. The PRISM language can thus form the basis for reusable DTMC templates.
The code in Listing 4.25 uses string interpolation, which is denoted by the code snippet `#{ ... }`, to encapsulate parameters in the context of a DTMC template for asset modules. The module is a fundamental PRISM language construct. The asset module template encodes knowledge that describes the behavior of the Asset concept encoded in CEMO.

Listing 4.25: DTMC template for asset modules

```
module #{asset.class}#{asset.id}
e#{asset.id} : [0..#{asset.endurance}] init #{asset.endurance};
FOR action IN asset.kinetic_actions DO
  [#(action.type)] e#{asset.id}>0 & d#{action.id}>0
  -> (e#{asset.id}'=e#{asset.id}-1);
END
[#{asset.last_action.type}] e#{asset.id}=0 | d#{asset.last_action.id}=0
  -> true;
endmodule
```

A module definition contains variables and commands. Asset module states are stored in variable e#{asset.id} (lines 2, 4, 5 and 7 in Listing 4.25), which represents asset endurance. Line 2 declares e#{asset.id} to be an integer variable with range [0..#{asset.endurance}]. The upper limit for the range is derived from asset.endurance, which also initializes e#{asset.id} (as denoted by the keyword init).

Asset behavior is formalized with two or more commands, where each command assumes the form:

\[\text{[action] guard } \rightarrow P(\text{update}_1) : \text{update}_1 + \ldots + P(\text{update}_n) : \text{update}_n;\]

A command becomes enabled for execution when its guard is satisfied by a specific model state; for example, lines 4 and 5 in Listing 4.25 specify a command that becomes enabled when action duration, which is denoted by variable d#{action.id}, and asset endurance exceed zero. Commands encompass one or more updates, where each update transitions a module, with a given probability, from one state to the next. A probability of one is assumed, and can therefore be omitted, for commands with single updates. Each command may be labeled with an action, which forces two or more modules to transition states simultaneously (i.e., to synchronize).

Lines 3 and 6 in Listing 4.25 use meta-code, which is highlighted with yellow background, to define a for loop. The form assumed by each for loop is

```
FOR var IN collection DO body END
```

where var denotes a variable and collection denotes a collection of objects. Each asset module command generated by the for loop in Listing 4.25 represents the execution of a kinetic action. The true keyword in the last command (line 8) denotes the end of
execution for a specific module. This type of command prevents deadlocks that are inconsequential to mission correctness from terminating the verification process with an error.

Arguments for the parameters in Listing 4.25 are derived from explicit and inferred domain knowledge. Specifically, arguments for `asset.class` (line 1) and `asset.id` (lines 1, 2, 4, 5 and 7) are derived from mission plans; arguments for `asset.endurance` (line 2) are derived from explicit domain knowledge encoded in CEMO; and arguments for `action.type` (line 4), `asset.last_action.type` (line 7) and `asset.last_action.id` (line 7) are derived from knowledge inferred by Pellet and the Prolog compiler (via a process that will be described in Chapter 5). Listing 4.25 uses blue text to highlight parameters that receive as arguments domain-specific knowledge encoded by domain experts and derived from inferences. Purple text highlights parameters that receive as arguments mission-specific knowledge encoded by mission developers and also derived from inferences. This color coding scheme will be used for the remainder of Chapter 4.

Mission properties are encoded in PRISM’s property specification language, which subsumes several probabilistic temporal logics including PCTL, CSL and LTL. The code in Listing 4.26 formally defines a mission property template. This generic property queries the probability that an action with identifier `action.id` will deplete its duration—as denoted by the assertion `d#{action.id}=0`—and thereby complete its execution. An ellipsis indicates the potential for synthesized properties to comprise multiple assertions. Arguments for the parameter `action.id` are derived from knowledge inferred by Pellet and the Prolog compiler (via a process that will be described in Chapter 5).

Listing 4.26: PCTL template for action duration

```plaintext
P=? [ F d#{action.id}=0 ... ]
```

4.3.1 Modeling Survivability

Asset module commands comprise single updates that omit probabilities. The code in Listing 4.27 formally defines a template for asset survivability modules, which contain commands with multiple updates. Survivability modules enable PRISM to calculate the probability of survival for `ValidAsset` individuals with respect to the threat area actions executed by each asset (valid assets were described in Section 4.1.2). Module states are stored in the boolean variable `a#{asset.id}` (defined in line 9 and used in lines 11–14), which represents the destruction of the asset with identifier `asset.id`. Command updates transition survivability modules from one state to the next. The probability of execution for each update is derived from the parameter `asset.vulnerability` (lines 12 and 13). Current vulnerability values are arbitrary, and should eventually be calculated from real-world data related to asset capabilities, terrain types and weather conditions.

Lines 1 and 6 in Listing 4.27 use meta-code to define a for loop that generates one formula with identifier `actn#{action.id}_tai` (defined in line 4 and used in lines 11 and 14) per each action assigned to the asset in the loop header (the formula is a PRISM
language construct used to avoid code duplication). Each formula specifies an overlap between the prosecution of a threat area incursion and the execution of a threat area action with identifier action.id (threat area actions were described in Section 4.1.2). This overlap is delineated by variables start#{action.id} and finish#{action.id} (defined in lines 2 and 3, respectively), which are assigned geographic information calculated by the CVC during preprocessing (as described in Chapter 3).

The constructs a#{asset.id}d and actn#{action.id}_tai combine to form logical expressions, including a logical conjunction and disjunction (lines 11 and 14, respectively), that constitute the guards in the asset survivability module. When these expressions are considered in union, their logical truth values, which are highlighted in Table 4.1, clarify asset behavior and susceptibility during threat area incursions. Specifically, a valid asset exists in one of the following disjoint states:

- *not* destroyed and prosecuting a threat area incursion, whereby the logical conjunction is true;

- destroyed, as a consequence of prosecuting a threat area incursion, or *not* prosecuting a threat area incursion, whereby the logical disjunction is true.

<table>
<thead>
<tr>
<th>d</th>
<th>tai</th>
<th>!d ∧ tai</th>
<th>d ∨ ¬tai</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Table 4.1: A truth table for asset survivability guards, with variables a#{asset.id}d and actn#{action.id}_tai in Listing 4.27 represented by variables d and tai, respectively.
Arguments for the parameters in Listing 4.27 are derived from explicit and inferred domain knowledge. Specifically, arguments for `action.id` (lines 4, 5, 11 and 14), `asset.class` (line 8) and `asset.id` (lines 8, 9 and 11–14) are derived from mission plans; arguments for `asset.vulnerability` (lines 12 and 13) are derived from knowledge inferred by Pellet; arguments for `action.start` (line 2), `action.finish` (line 3) are derived from geodetic calculations and knowledge inferred by Pellet; and arguments for `action.type` (lines 11 and 14) are derived from knowledge inferred by Pellet and the Prolog compiler.

The generic property in Listing 4.28 queries the probability that an asset with identifier `asset.id` will not be destroyed during its prosecution of threat area incursions. This mission property makes explicit the intuitive correlation between asset survivability and mission correctness.

Listing 4.28: PCTL template for asset survivability

```plaintext
P=?[ F !a#{asset.id}d ... ]
```

4.3.2 Modeling Risk Acceptability

We assert that, during threat area incursions, mission correctness is contingent on asset survivability and risk acceptability. As described in Section 4.1.2, a threat area action that initiates or prolongs an incursion is inferred a member of class `DirectThreatAreaAction`. This inference triggers the synthesis of PRISM code that calculates a risk acceptability factor (RAF) for the threat area incursion comprising the inferred DTAA. Each RAF value quantifies the risk for a specific threat area incursion, with RAF values of zero and one indicating high- and low-risk incursions, respectively. A RAF numerator represents the duration of concurrent execution between sensor actions and DTAAAs during a threat area incursion; the denominator represents the aggregate duration of DTAA executions during that incursion.

The code in Listing 4.29 formally defines a template that enables PRISM to calculate risk acceptability with respect to the threat area incursions prosecuted by a `ValidAsset` individual. For a given asset, RAF values quantifying the incursions prosecuted by that asset are aggregated by the formula with identifier `raf#{asset.id}` (line 39). Numerator and denominator for this formula are derived, respectively, from the constructs `sad#{asset.id}` and `tkad#{asset.id}`.

Listing 4.29 uses a sensor action counter module (lines 16–37) to calculate the duration of concurrent execution between sensor actions and DTAAAs during threat area incursions prosecuted by an asset with identifier `asset.id`. Module states are stored in variable `sad#{asset.id}` (defined in line 17 and used in lines 26, 27 and 39), which is incremented by command updates. Lines 18 and 36 use meta-code to define an outer for loop that generates two commands per each DTAA assigned to the asset in the loop header. Guards for these commands encapsulate the constructs `actn#{action.id}_tai` and `r#{sensor_action.id}`.
The formula identifier \texttt{actn\{action.id\}_tai} in Listing 4.29 (defined in line 4 and used in lines 19 and 28) represents the execution of a kinetic action during the prosecution of a threat area incursion. In the context of a sensor action counter module, the scope of formula \texttt{actn\{action.id\}_tai} is limited by the outer for loop. Specifically, the outer loop generates only those identifiers associated with the execution of DTAAs (as dictated by the loop header), which constitute a subset of threat area actions assigned to the asset in the loop header.

Variable \texttt{r\{sensor.action.id\}} (lines 22 and 31 in Listing 4.29) couples the behavior of each sensor action counter module to the state of a sensor action module representing the execution of a sensor action with identifier \texttt{action.id}. Each counter module command is associated with a for loop (lines 21–24 and 30–33) that generates

```
FOR action IN asset.direct_threat_area_actions DO
const int start#{action.id} = #{action.start};
const int finish#{action.id} = #{action.finish};
formula actn#{action.id}_tai = d#{action.id} > finish#{action.id} &
d#{action.id} <= start#{action.id};
formula duration#{action.id} = start#{action.id} - finish#{action.id};
END

formula tkad#{asset.id} =
    FOR action IN asset.direct_threat_area_actions DO
        duration#{action.id}
    ; IF action != asset.direct_threat_area_actions.last
        ELSE IF action == asset.direct_threat_area_actions.last
    END

module SensorActionCounter#{asset.id}
    sad#{asset.id} : [0.. tkad#{asset.id}] init 0;
    FOR action IN asset.direct_threat_area_actions DO
        \[#{action.type}\] actn#{action.id}_tai &
        (FOR sensor_action IN asset.sensor_actions DO
            \r#{sensor_action.id}\n            | IF sensor_action != asset.sensor_actions.last
        END
        ) &
        sad#{asset.id}<tkad#{asset.id}
        -> \{sad#{asset.id}"'=sad#{asset.id}+1\};
        [#{action.type}] \!actn#{action.id}_tai |
    !(FOR sensor_action IN asset.sensor_actions DO
        \r#{sensor.action.id}\n        | IF sensor_action != asset.sensor_actions.last
    END
    )
    -> true;
END
endmodule

formula raf#{asset.id} = sad#{asset.id} / tkad#{asset.id};
```
one such variable per each sensor action assigned to the asset in the loop header. Two or more variables form a logical disjunction with operands generated by an if statement (lines 23 and 32). The form assumed by each if statement is

\[
\text{code} \quad \text{IF expression}
\]

where the code is executed if (and only if) the expression evaluates to something other than false or nil.

The constructs `actn#{action.id}_tai` and `r#{sensor_action.id}` combine to form logical expressions, including a logical conjunction and disjunction (lines 19–25 and 28–34, respectively, in Listing 4.29), that constitute the guards in the sensor action counter module. When these expressions are considered in union, their logical truth values, which are highlighted in Table 4.2, clarify the conditions that increment variable `sad#{asset.id}`. Specifically, and in accordance with its specification as described above, the RAF numerator is incremented during the prosecution of a threat area incursion, and the concurrent execution of a direct threat area action and at least one sensor action, whereby the logical conjunction is true. The execution of the update in the second command prevents inconsequential deadlocks (as described in Section 4.3), whereby the logical disjunction is true. We note that the expression in line 26 prevents variable `sad#{asset.id}` from exceeding its upper limit. This expression, which is required by the PRISM language, does not alter the essence of the logical truth values presented in Table 4.2.

<table>
<thead>
<tr>
<th>tai</th>
<th>r</th>
<th>tai ∧ r</th>
<th>!tai∨!r</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Table 4.2: A truth table for sensor action counter guards, with variables `actn#{action.id}_tai` and `r#{sensor_action.id}` in Listing 4.29 represented by variables `tai` and `r`, respectively. Variable `r` may also subsume a logical disjunction comprising two or more instances of variable `r#{sensor_action.id}`.

Lines 1 and 7 in Listing 4.29 use meta-code to define a for loop that generates one formula with identifier `duration#{action.id}` (line 6) per each action assigned to the asset in the loop header. Each formula uses variables `start#{action.id}` and `finish#{action.id}` (lines 2 and 3, respectively) to calculate the duration of overlap between the execution of a DTAA with identifier `action.id` and the prosecution of a threat area incursion by the asset to which that DTAA is assigned. Given its function as the RAF denominator, the formula identifier `tkad#{asset.id}` represents the aggregate duration of DTAA executions during incursions prosecuted by the asset with identifier `asset.id`. Formula `tkad#{asset.id}` (lines 9–14) comprises a for loop that increments
the RAF denominator by generating the formula identifier duration#{action.id} as an addition operand once per each action executed by the asset in the loop header.

RAF values resulting from the execution of synthesized PRISM code are verified against a RAF threshold value, which is specified in Tactical-CEMO and integrated by the CVC into synthesized mission properties. The generic property in Listing 4.30 queries the probability that the specified RAF value exceeds 60 percent. This threshold is encapsulated by the individual LowRiskAcceptabilityFactor, which belongs to the enumerated class RiskAcceptabilityFactor described in Section 4.1.2. Current threshold values are arbitrary, and should eventually be calculated from real-world data related to operational assessments.

Listing 4.30: PCTL template for risk acceptability

| P=? [F raf#{asset.id}>0.6 ...] |

Arguments for the parameters in Listing 4.29 are derived from explicit and inferred domain knowledge. Specifically, arguments for action.id (lines 2–6, 11, 19 and 28), asset.id (lines 9, 16, 17, 26, 27 and 39) and sensor_action.id (lines 22 and 31) are derived from mission plans; arguments for action.start (line 2), action.finish (line 3) are derived from geodetic calculations and knowledge inferred by Pellet; and arguments for action.type (lines 19 and 28) are derived from knowledge inferred by Pellet and the Prolog compiler.

4.3.3 Modeling Traffic Surveillance

Section 4.1.3 describes a case study whereby LIDAR-equipped UAVs monitor freeway traffic and notify subscribers if traffic speed exceeds specified thresholds. Traffic speed fluctuations in turn affect the optimal surveillance of freeway traffic by monitoring assets. Specifically, when traffic speed descends below the nominal speed threshold, and thereby approaches the minimum speed threshold, of a freeway section fs, the sample rate of the LIDAR action la monitoring fs is increased by a factor equal to the calibration value associated with the conjunction of la and fs. Increased LIDAR sample rates afford fine-grained traffic control (via some process that is outside the scope of our method), which is assumed to be an appropriate mechanism for mitigating traffic congestion and bottlenecks.

Conversely, when traffic speed ascends above the nominal speed threshold, and is thereby distanced from the minimum speed threshold, of freeway section fs, the sample rate of la is decreased by a factor equal to the calibration value associated with the conjunction of la and fs. Decreased LIDAR sample rates afford coarse-grained traffic control, which is assumed to be acceptable during periods of decreased freeway traffic. LIDAR calibration can thus optimize the surveillance of multiple freeway sections by a single UAV.

In this context, we consider the following mission scenario:
1. Traffic speed exceeds the nominal speed threshold of freeway section fs.

2. The system optimizes its surveillance operation by decreasing the sample rate of la with respect to fs.

3. Subsequently, and during what is now a prolonged la interval, traffic speed descends rapidly below the minimum speed threshold of fs.

Steps 2 and 3 in this scenario highlight potentially conflicting mission requirements. The system must achieve optimized performance with limited resources. Concurrently, to manage freeway traffic in real-time, the system must disseminate timely (and potentially low-latency) information from ISR assets to human and software traffic control agents. The latter requirement could presumably be compromised if la remains inactive for a considerable period of time following the occurrence of step 3.

Listing 4.31 formally defines a template that enables PRISM to quantify probabilistically the correlation between decreased LIDAR sample rates and increased latency in the dissemination of information related to traffic speed fluctuations. Lines 27 and 41 use meta-code to define a for loop that generates one freeway section module with identifier $\text{FreewaySection}\{\text{section.id}\}$ (line 28) per each freeway section assigned to the asset in the loop header (freeway sections are assigned to specific assets via inferences supported by the object property monitors, which was described in Section 4.1.3 and Section 4.2). Freeway section modules enable PRISM to simulate traffic speed fluctuations for high- and low-speed freeways. Module states representing disjoint traffic speed intervals are stored in variable $\text{spd}\{\text{section.id}\}$ (defined in line 29 and used in lines 14, 19 and 30–39). Three intervals describe minimum (denoted by the integer 0), nominal (1) and greater than nominal (2) traffic speeds.

Command updates transition freeway section modules from one state to the next as follows: The first command derives the probability of transitioning from minimum to nominal speed via the parameter $\text{section.exceeds_minimum_speed}$ (line 32 in Listing 4.31). The negation of this parameter determines the probability of maintaining minimum speed (line 31).

The second command derives the probability of transitioning from nominal to minimum speed via the parameter $\text{section.approaches_minimum_speed}$ (line 34 in Listing 4.31); the probability of transitioning from nominal to greater than nominal speed is derived via the parameter $\text{section.exceeds_nominal_speed}$ (line 36). The sum of these parameters is negated to determine the probability of maintaining nominal speed (line 35).

The third command derives the probability of maintaining greater than nominal speed via the parameter $\text{section.exceeds_nominal_speed}$ (line 39 in Listing 4.31). The negation of this parameter determines the probability of transitioning from greater than nominal to nominal speed (line 38). Arguments for $\text{section.approaches_minimum_speed}$, $\text{section.exceeds_minimum_speed}$ and $\text{section.exceeds_nominal_speed}$ are derived via inferences from explicit domain knowledge encoded in CEMO (as described in Sec-
Listing 4.31: DTMC template for traffic surveillance

```plaintext
FOR action IN asset.lidar_actions DO
  const int i#{action.id} = #{action.interval};
  const int icf#{action.id} = #{action.interval_calibration_factor};
  formula ci#{action.id} = nse#{action.id} ? i#{action.id} * icf#{action.id} : i#{action.id};

module LidarAction#{action.id}
  r#{action.id} : [0..#{action.concurrent_action.duration}] init 0;
  nse#{action.id} : bool init false;
  [#{action.concurrent_action.type}]
    mod(d#{action.concurrent_action.id}, ci#{action.id})=0 & r#{action.id}<#{action.concurrent_action.duration} &
    spd#{action.section.id}=1 -> (r#{action.id} ‘=r#{action.id}+1) & (nse#{action.id} ‘=true);
  [#{action.concurrent_action.type}]
    mod(d#{action.concurrent_action.id}, ci#{action.id})=0 & r#{action.id}<#{action.concurrent_action.duration} &
    !spd#{action.section.id}=2 -> (r#{action.id} ‘=r#{action.id}+1) & (nse#{action.id} ‘=false);
  [#{action.concurrent_action.type}]
    !mod(d#{action.concurrent_action.id}, ci#{action.id})=0 -> true;
endmodule

END

FOR section IN asset.freeway_sections DO
  module FreewaySection#{section.id}
    spd#{section.id} : [0..2] init 1;
    [#{section.action.concurrent_action.type}]
      spd#{section.id}=0
      -> [{1-section.exceeds_minimum_speed}:(spd#{section.id} ‘=0) +
        {section.exceeds_minimum_speed}:(spd#{section.id} ‘=1)];
    [#{section.action.concurrent_action.type}]
      spd#{section.id}=1
      -> [{section.approaches_minimum_speed}:(spd#{section.id} ‘=0) +
        {1-(section.exceeds_nominal_speed + section.approaches_minimum_speed)}:(
          spd#{section.id} ‘=1) +
        {section.exceeds_nominal_speed}:(spd#{section.id} ‘=2)];
    [#{section.action.concurrent_action.type}]
      spd#{section.id}=2
      -> [{1-section.exceeds_nominal_speed}:(spd#{section.id} ‘=1) +
        {section.exceeds_nominal_speed}:(spd#{section.id} ‘=2)];
endmodule
END
```

Current probabilities are arbitrary, and should eventually be calculated from real-world data related to freeway surveillance operations.

Lines 1 and 25 in Listing 4.31 use meta-code to define a for loop that generates one LIDAR action module with identifier LidarAction#{action.id} (line 8) per each LIDAR action assigned to the asset in the loop header. Module states are stored in variables r#{action.id} (defined in line 9 and used in lines 13, 15, 18 and 20) and nse#{action.id} (defined in line 10 and used in lines 4, 15 and 20). The former variable represents LIDAR readings; for any given LIDAR action, the latter variable represents a transition to greater than nominal traffic speed for the freeway section monitored by
that action.

Line 9 in Listing 4.31 declares r#{action.id} to be an integer variable with range [0..#{action.concurrent_action.duration}]. This variable is incremented by updates in two commands (lines 11–20), which represent the execution of LIDAR actions; a third command uses the true keyword (line 23) to represent execution intervals. Each command is enabled, either primarily or exclusively, by a modulo operation (lines 12, 17 and 22) between the constructs d#{action.concurrent_action.id} and ci#{action.id}.

Variable d#{action.concurrent_action.id} (lines 12, 17 and 22 in Listing 4.31) represents the duration of the hover action that executes concurrently with the LIDAR action represented by variable action; formula ci#{action.id} (lines 4–6) calibrates the sample rate of this LIDAR action with variables i#{action.id} (defined in line 2 and used in lines 5 and 6) and icf#{action.id} (defined in line 3 and used in line 5). Specifically, the LIDAR action interval i#{action.id} is calibrated by the interval calibration factor icf#{action.id} (as described in Section 4.1.3) when nse#{action.id}==true, i.e., when traffic speed exceeds the nominal speed threshold of the freeway section monitored by the LIDAR action with identifier action.id. Variable nse#{action.id} is updated, by the same commands that update r#{action.id}, when variable spd#{section.id} transitions between values representing minimum/nominal and greater than nominal traffic speeds. The commands that update variables r#{action.id} and nse#{action.id} comprise expressions to prevent r#{action.id} from exceeding its upper limit (lines 13 and 18). These expressions, which are required by the PRISM language, do not alter the essence of the functionality afforded by LIDAR action modules.

Listing 4.31 labels all commands with actions that synchronize the execution of PRISM modules. Synchronization has been used throughout Section 4.3 to accurately model tightly-coupled units of behavior including LIDAR actions and the freeway sections monitored by those actions. The relationship between modeling accuracy and synchronization will be elaborated in Chapter 5.

Arguments for the parameters in Listing 4.31 are derived from explicit and inferred domain knowledge. Specifically, arguments for action.id (lines 2–6, 8–10, 12, 13, 15, 17, 18, 20 and 22), action.interval (line 2), action.concurrent_action.duration (lines 9, 13 and 18) and action.concurrent_action.id (lines 12, 17 and 22) are derived from mission plans; arguments for action.interval_calibration_factor (line 3), action.section.id (lines 14 and 19), section.exceeds_minimum_speed (lines 31 and 32), section.approaches_minimum_speed (lines 34 and 35) and section.exceeds_nominal_speed (lines 35, 36, 38 and 39) are derived from knowledge inferred by Pellet; arguments for action.concurrent_action.type (lines 11, 16 and 21) and section.action.concurrent_action.type (lines 30, 33 and 37) are derived from knowledge inferred by Pellet and the Prolog compiler; and arguments for section.id (lines 28–39) are derived from explicit domain knowledge encoded in Traffic-CEMO.

Lines 1 and 5 in Listing 4.32 use meta-code to define a for loop that generates one
property per each LIDAR action assigned to the asset in the loop header. Each property comprises a conjunction of three assertions, which verify the mission scenario described in the beginning of this section and reproduced below.

1. According to the assertion in line 2, traffic speed exceeds the nominal speed threshold of a freeway section that is monitored by the LIDAR action with identifier `action.id`.

2. Given the assertion in line 2, the system optimizes its surveillance operation by decreasing the sample rate of the monitoring LIDAR action.

3. The assertion in line 3 denotes that traffic speed descends below the minimum speed threshold of the freeway section with identifier `action.section.id`; in conjunction, the assertion in line 4 denotes that traffic speed decent occurs while the monitoring LIDAR action is in the process of what is now a prolonged (as a consequence of step 2) interval.

Listing 4.32: PCTL template for traffic surveillance

```
FOR action IN asset.lidar_actions DO
P=? [ F nse#{action.id} &
    spd#{action.section.id}=0 &
    !mod(d#{action.concurrent.action.id}, ci#{action.id})=0 ]
END
```

We note that the generic property encoded in Listing 4.32 is the raison d’être for the existence of variable `nse#{action.id}`. The DTMC template in Listing 4.31 declares and updates several occurrences of `nse#{action.id}`, which is used by the formula `ci#{action.id}`. In this context, `nse#{action.id}` duplicates data stored in, and could therefore be replaced by, variable `spd#{section.id}`. But the PCTL template uses `nse#{action.id}` (as an assertion) to verify the sequence of steps that constitute the traffic surveillance mission scenario. In particular, `nse#{action.id}` is used in conjunction with the assertion `spd#{action.section.id}=0` to verify that traffic speed exceeds the nominal speed threshold, and `subsequently` descends below the minimum speed threshold, of a specific freeway section.

The artifacts presented in this section enable PRISM to verify the occurrence of what is presumably a compromising scenario for traffic surveillance missions. This scenario is underpinned by three assertions, which signify failure of a LIDAR-based surveillance system to disseminate traffic speed data in a timely manner. Two assertions (lines 3 and 4 in Listing 4.32) verify the occurrence of the scenario unless traffic speed decent and reaction to that descent by the monitoring LIDAR action occur simultaneously (i.e., in the same time-step). Future work could extend PRISM artifacts to verify the occurrence of the scenario unless reaction to traffic speed decent by the monitoring LIDAR action occurs within a specified timeframe, whereby, for example, reaction time after calibration does not exceed reaction time before calibration. This type of analysis will probably
afford more valuable and pertinent insight into the impact of the compromising scenario on mission correctness. Future work could also develop models and properties to analyze the surveillance of multiple freeway sections by a single LIDAR action. Additional limitations and potential for future work will be considered in Chapter 7.

These considerations do not diminish the utility of the current model: PRISM uses artifacts that encode Mission 5b, one of the 58 mission plans supporting the evaluation in Chapter 6, to verify the occurrence of the scenario described above with probabilities of approximately 0.651 and 0.625 for high- and low-speed freeway sections, respectively. PRISM verifies the occurrence of a similar scenario, but one that does not calibrate LIDAR actions, with probabilities of approximately 0.468 and 0.525 for high- and low-speed freeway sections, respectively. These results quantify the intuitive correlation between decreased LIDAR sample rates and increased latency in the dissemination of information related to traffic speed fluctuations. Latency resulting from calibration is on average 1.391 and 1.19 times greater than latency sans calibration for high- and low-speed freeway sections, respectively. Assessing the impact of increased latency on traffic control and traffic discharge rates is beyond the scope of this thesis.

Appendix D presents DTMC and PCTL templates in their entirety. Output from these templates, and additional probabilistic results, will be presented in Chapter 5.

4.3.4 An Overview

Section 4.3 exploits PRISM’s model and property specification languages to formally define DTMC and PCTL templates, respectively. PRISM templates support the synthesis of system models and the behavioral properties that need to be verified with respect to those models. The synthesis process receives data from a variety of heterogeneous sources including system specifications; explicit knowledge formalized in CEMO, and Tactical- and Traffic-CEMO; inferred knowledge derived exclusively from Pellet-based reasoning; and inferred knowledge derived from composite, Pellet- and Prolog-based, reasoning. Inferences are generated from domain- and mission-specific knowledge encoded by domain experts and mission developers, respectively.

Templates presented in Section 4.3.1 enable PRISM to calculate the probability of survival for valid assets. Each valid asset executes one or more direct threat area actions during the prosecution of a threat area incursion. PRISM quantifies the inherent risk for each incursion with synthesized code from the templates presented in Section 4.3.2. The synthesis of PRISM code from survivability and risk acceptability templates is supported, in part, by the inferred concepts `DirectThreatAreaAction` and `ValidAsset`, which are formalized in Tactical-CEMO.

Section 4.3.3 presents templates that enable PRISM to quantify the dynamic relationship between LIDAR actions and the freeway sections monitored by those actions. The synthesis of PRISM code from traffic surveillance templates is supported, in part, by the inferred concepts `HighSpeedFreewaySection` and `HighSpeedLidarAction`, and the inferred object property `monitors`, which are formalized in Traffic-CEMO.
4.4 Related Work

The work presented thus far has been broadly concerned with the (loose) integration of OWL+SWRL and Prolog, and with multi-dimensional, i.e., semantic, rule-based and behavioral, modeling in the context of the UAV domain. The following sections describe related work for each activity.

4.4.1 Integrating OWL and Prolog

Şensoy et al. integrate DL- and LP-based reasoning by embedding ontological terms—including classes, properties and individuals—in logic programs; the interpretation of ontological axioms is delegated to a semantic reasoner during the execution of those programs [42]. The resulting method, which retains the expressivity of both OWL and Prolog, has been used to support resource determination and allocation by intelligent agents [81]. With respect to the UAV domain, the method has been used by de Mel et al. to develop a solution for sensor assignment during ISTAR missions [82].

Matzner and Hitzler achieve DL-LP integration with a Prolog extension based on any-world semantics that uses special atoms to query the DL-reasoner KAON2 [43]. Programs written in this language are transformed to standard LP programs encoded in SWI-Prolog. Papadakis et al. transform OWL ontologies to SWI-Prolog code via subject-predicate-object triplets [44]. Samuel et al. achieve a similar transformation—from OWL+SWRL to Prolog—via a combination of XSLT templates and Prolog rules, which are used to enforce OWL primitives [45]. With their work, Samuel et al. claim to address OWL-LP integration issues related to, for example, class disjointness and enumeration that are considered unsolvable by Volz et al [53]. Obrst et al. use the resulting method to rapidly integrate command-and-control (C2) systems with new sources of information [83].

The algorithm presented by Zombori transforms a TBox encoded with the description logic $SHIQ$ to a set of first-order clauses [84]. Lukácsy and Széredi incorporate this algorithm into a reasoning system named DLog, which generates Prolog programs from first-order clauses [46]. Extensions to DLog introduce optimization techniques including partial evaluation, which avoids the execution of unary predicates with uninstantiated arguments [85]; and parallel query execution [86].

Almendros-Jiménez uses Prolog as a query language for OWL [47]. Each query, which is encoded as a Prolog goal, retrieves data and meta-data from a given ontology. Conversely, Elenius uses OWL+SWRL to generate queries for XSB Prolog, an open source implementation of the Prolog language [48]. Both approaches are limited to a subset of OWL.

As mentioned in Chapter 2, this thesis does not claim a contribution to the state of the art in OWL-LP integration. We have nevertheless developed a composite inference mechanism that is distinct from related work. This mechanism is perhaps most compatible with the method presented by Şensoy et al. Similarities include the delineation
of OWL and Prolog with respect to the syntactic features and reasoning capabilities afforded by each language. But our mechanism executes semantic and Prolog-based reasoning in strict succession while Şensoy et al. interlace semantic reasoning with the execution of Prolog programs. Related work that either transforms ontological axioms to Prolog code [44, 45, 46], or uses ontological axioms to query Prolog (or vice versa) [47, 48], is even further removed from our implementation of composite reasoning.

4.4.2 Modeling the UAV Domain

The technologies presented throughout this chapter have been used in related work to model aspects of the UAV domain. De Mel et al. and Preece et al. describe ontologies for UAV-based ISTAR missions [82, 87]. Schumann et al. use OWL to formalize civilian-oriented UAV missions comprising a combination of three possible goals: loitering, path traversal and search [88]. Valente et al. exploit OpenCyc, a general purpose knowledge base, to create ontologies for military UAV missions [89]. Schlenoff and Messina have developed a robot ontology that supports urban search and rescue (S&R) efforts by the U.S. Department of Homeland Security (DHS). The ontology encodes concepts that model aerial robots including high altitude loiter robots, ledge access robots and rooftop payload drop robots [90].

In a more general context of robotics, Amigoni and Arrigoni Neri use an ontology to achieve resource determination and allocation with respect to a multi-robot system and its assigned tasks [91]. Chella et al. describe a spatial ontology that models robotic knowledge regarding indoor office environments [92]. Ontologies are exploited by Schlenoff et al. to enhance the navigation capabilities of autonomous vehicles [93]. Gavshin and Shumik transform ontological knowledge into executable robot control code [94].

Bohn models search and destroy missions as a pursuer-evader game, where pursuing UAVs attempt to locate evasive targets [95]. Model checking is subsequently used to generate strategies that are favorable for pursuers, when those strategies exist. Webster et al. apply model checking to the verification of high-level decision making by autonomous UASs in civilian airspace [96]. Basic and more advanced UAS control systems are modeled with PROMELA and the autonomous agent language Gwendolen, respectively. The models are verified by Spin and the agent model checker AJPF against air traffic regulations issued by the UK Civil Aviation Authority.

Jeyaraman et al. use Kripke semantics to model cooperative search underpinned by Dubins paths\(^2\) [97]. Kripke semantics are also used by Sirigineedi et al. to model UAV behavior during the execution of a distributed control strategy, where assets cooperate to monitor a road network [98]. The latter model is verified by the model checker SMV against mission properties expressed in CTL.

Our modeling effort overlaps, to some extent, with related work presented in this section. CEMO formally defines hover and path segment traversal actions, which are

\(^2\) A Dubins path is the shortest path with bounded curvature between two points in the Euclidean plane.
similar (if not equivalent) to the loitering and path traversal goals described by Schumann et al. Tactical- and Traffic-CEMO encode military- and civilian-oriented mission concepts, respectively, and thereby resemble ontologies that formalize ISTAR and S&R missions [82, 87, 90]. But unlike related work aimed at enhancing UAV capabilities [93, 95], we use semantic and behavioral models to verify the correctness of UAV mission plans. And unlike Gavshin and Shumik, we transform ontological (and other) knowledge into PRISM code.

Ultimately, the divergence between our work and that of others is most compelling at the intersection of semantic and behavioral modeling. This divergence will be highlighted in Chapter 5.

4.5 Summary

This chapter is necessarily extensive. We exploit five formalisms—including knowledge representation languages (OWL and SWRL), a logic programming language (Prolog), a behavioral modeling language (PRISM DTMC), and a property specification language (PRISM PCTL)—to model a non-trivial application domain; in doing so, a subset of that domain is encoded precisely and from multiple perspectives. Syntactic and semantic features of each formalism, and the inherent limitations of OWL+SWRL, are described in the context of two case studies (involving tactical and traffic surveillance missions) and a running example (Mission A).

When encoded with different technologies, domain concepts serve to integrate those technologies and thereby highlight a core thesis contribution. Integrated technologies form the stack that constitutes our prototype implementation of the cascading verification method. This stack can be demarcated into three principal groups: OWL+SWRL, Prolog, and PRISM DTMC and PCTL. A loose integration of OWL+SWRL and Prolog produces strands of composite reasoning that are traced throughout this chapter. Composite inferences, and explicit knowledge encoded by domain experts and mission developers, converge to support the synthesis of system models and behavioral properties for probabilistic model checking.

The formalisms and modeling techniques that constitute our method and prototype are involved and diverse. At present, model builders are forced to develop system models with relatively low-level modeling languages. Model builders must also engage with at least some aspects of semantic modeling as they endeavor to integrate complex domain knowledge into the model checking process. The intersection of low-level modeling languages and complex domain knowledge is evidently a formidable challenge in the development of system models and their desired behavioral properties. This challenge can be mitigated with cascading verification, which leverages formal domain knowledge to support the probabilistic analysis of multiple system specifications. We proceed to elaborate our method.
Chapter 5

Cascading Verification

Cascading verification combines the technologies described in Chapter 4 to enhance the abstraction level of model and property specifications, and the effectiveness of probabilistic model checking; our prototype implementation of cascading verification combines these technologies to support the probabilistic verification of UAV mission plans. This chapter describes the prototype by tracing verification from high-level mission specifications to probabilistic model checking with PRISM. As with Chapter 4, cascading verification is illustrated with respect to Mission A, the example mission presented in Section 3.1.

The remainder of this chapter is structured as follows. Section 5.1 presents the YAML DSL used by model builders to encode mission plans and the geographic data associated with those plans. Section 5.2 describes the transformation of mission specifications into ABox assertions, and the verification of those assertions via automated semantic reasoning. Section 5.2 also describes inferred ontological knowledge, which is generated via automated reasoning from explicitly encoded domain knowledge. Section 5.3 describes the transformation of explicit and inferred ontological knowledge into Prolog facts, and the Prolog inferences resulting from those facts. Explicit domain knowledge—encoded in OWL+SWRL and Prolog—and knowledge inferred via composite reasoning is used by our prototype to synthesize DTMC and PCTL artifacts, which are presented in Section 5.4. This section also presents results from the probabilistic model checking underpinned by synthesized artifacts. The technologies and implemented components that constitute our prototype are presented in Section 5.5. Our work is related to semantic model checking, which is presented in Section 5.6. This chapter is summarized in Section 5.7.

5.1 High-Level Specifications in YAML

With cascading verification, model builders use a DSL to encode high-level system specifications. In the context of our prototype, model builders use YAML to encode mission plans and the geographic data associated with those plans. The prototype comprises a domain-specific YAML dialect that is consistent with the domain concepts formalized in CEMO. Consistency is enforced when mission specifications are transformed by the
CVC into ABox assertions, and verified via semantic reasoning with respect to the TBox defined by domain experts.

To better illustrate the YAML DSL, which specifies Mission A, we have encoded a schema definition in the Kwalify schema language [99]. This schema is partially defined in Listing 5.1.

Listing 5.1: Partial schema definition for the YAML DSL

```
  type: map
  required: yes
  mapping:
    "Action":
      type: map
      required: yes
      mapping:
        "HoverAction":
          ...
        "LidarAction":
          ...
        "PhotoSurveillanceAction":
          ...
        "TraversePathSegmentAction":
          ...
    "Asset":
      type: map
      required: yes
      mapping:
        "ARDrone":
          ...
        "Hummingbird":
          ...
```

The Kwalify schema language is itself a dialect of YAML. Lines 1–3 in Listing 5.1 declare a YAML mapping, which is a primary logical structure in a YAML document (lines 5–7 and 17–19 declare similar data structures). The Kwalify keyword `required` is used in lines 2, 6 and 18 to denote constraints on each of the declared mappings.

According to Listing 5.1, the YAML DSL affords mission developers two top-level elements—`Action` and `Asset` (declared in lines 4 and 16, respectively)—that must be specified for each mission. The former contains four optional elements—`HoverAction`, `LidarAction`, `PhotoSurveillanceAction` and `TraversePathSegmentAction` (declared in lines 8–14)—while the latter contains optional elements `ARDrone` and `Hummingbird` (declared in lines 20 and 22, respectively). The YAML code in Listing 5.2 specifies the DSL element `Hummingbird`.

Lines 2 and 3 in Listing 5.2 declare a YAML sequence, which is a primary logical structure in a YAML document (lines 13–15 declare a similar data structure). According to Listing 5.2, the element `Hummingbird` contains the required element `id` and the optional element `endurance` (declared in lines 7 and 10, respectively), both of which assume values of type `int`. The element `Hummingbird` also contains the required element `actions` (declared in line 12), which is a sequence of `int` values that identify
actions assigned to a specific Hummingbird asset. The elements actions and endurance correspond, respectively, to the object property hasAction and the datatype property hasEnduranceInSeconds encoded in Listing 4.1.

Appendix E presents a complete schema definition for the YAML DSL.

5.2 Verification with Semantic Reasoning

Mission specifications encoded in YAML are transformed by the CVC into ABox assertions. During this preprocessing phase, geodesic equations use geographic coordinates (described in Section 3.1) and threat area data from external sources to calculate supplementary geographic information. For example, if the boundary of a threat area is intersected by a flightpath, then the traverse path segment action corresponding to that flightpath is classified as a threat area action. Geodesic equations can be used to establish threat area incursions in this manner because both flightpath and threat area boundary are defined by great circles.\(^1\)

Pellet verifies the generated ABox against the TBox defined by domain experts. Inconsistencies between TBox and ABox signify an invalid mission specification; for example, an asset that does not execute at least one kinetic action would be inconsistent with respect to the definition of class Asset presented in Section 4.1. The OWL code in Listing 5.3 formally defines a valid ABox individual with identifier H1, which corresponds to the identifier of the Hummingbird asset specified in Mission A.

Asset H1 is related via the object property hasAction to actions TPSA1 and TPSA2 (lines 3 and 4, respectively, in Listing 5.3). Mission A specifies that action TPSA1 is a precondition to action TPSA2 (line 10 in Listing 3.1). Because preconditions associate actions with other actions, a precondition would be inconsistent, with respect to the

\(^1\)A great circle is the intersection of the Earth’s surface with a plane passing through the center of the Earth. The concepts that underpin geodesic equations will be elaborated in Appendix A.
Chapter 5. Cascading Verification

5.2. Verification with Semantic Reasoning

Listing 5.3: OWL code for the individual H1

```owl
Individual: H1
Types: Hummingbird
Facts: hasAction TPSA1, hasAction TPSA2
```

definition of the object property `hasPrecondition` presented in Section 4.1, if it associated individuals that were not members of class `Action`. The OWL code in Listing 5.4 specifies two valid ABox individuals with identifiers TPSA1 and TPSA2, where TPSA2 is related to TPSA1 via `hasPrecondition` (line 6). Figure 5.1 illustrates elements of semantic verification with respect to the actions TPSA1 and TPSA2, and the object property `hasPrecondition`. As a valid ABox individual, action TPSA2 inherits from the built-in OWL class `Thing`, which is highlighted with red text (an invalid individual would inherit from the built-in OWL class `Nothing`).

Listing 5.4: OWL code for the individuals TPSA1 and TPSA2

```owl
Individual: TPSA1
Types: TraversePathSegmentAction

Individual: TPSA2
Types: TraversePathSegmentAction
Facts: hasPrecondition TPSA1
```

Figure 5.1: Elements of semantic verification with respect to the actions TPSA1 and TPSA2, and the object property `hasPrecondition`.

With ABox consistency deduced, Pellet proceeds to generate inferences by, for example, reasoning about `realization`, which determines the direct types of each individual. Realization-based inferences were described in Section 4.1.2 with the classification of a specific kinetic action as a DTAA, and the resultant classification of the asset to which
that action was assigned as a valid asset. As an example of realization with respect to Mission A, let us assume a threat area action classification for action TPSA4 (via the preprocessing phase described above). Given this assumption, Pellet would infer action TPSA4 to be a DTAA because start point and endpoint of TPSA4 are members of classes Waypoint (the start point of action TPSA4 is the endpoint of action TPSA3, which is not a threat area action) and ThreatAreaWaypoint, respectively. Asset H2 would consequently be inferred a valid asset (since H2 executes at least one sensor action, namely PSA5, during the incursion).

Appendix B presents the generated ABox for Mission A.

5.3 Classification with Prolog

Some Pellet inferences are transformed by the CVC into Prolog rules; for example, the Prolog rule terminal comprises knowledge inferred by Pellet (as described in Section 4.2). The Prolog code in Listing 5.5 formally defines rule terminal_constrained_observer, which encapsulates the atom terminal.

<table>
<thead>
<tr>
<th>Listing 5.5: Prolog code for rule terminal_constrained_observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminal_constrained_observer(X) :-</td>
</tr>
<tr>
<td>constrained_observer(X),</td>
</tr>
<tr>
<td>terminal(X).</td>
</tr>
</tbody>
</table>

SWI-Prolog classifies each kinetic action with respect to the relationships that exist between it and other kinetic actions. For example, an action that is the last kinetic action to be executed by an asset, and has as precondition at least one cross-cutting kinetic action, is classified by SWI-Prolog as a terminal_constrained_observer (cross-cutting actions were introduced in Section 4.2). Figure 5.2 illustrates elements of composite semantic- and Prolog-based reasoning with respect to the actions TPSA1 and TPSA2; the inferred object property isPreconditionTo presented in Section 4.2; and the rule terminal_constrained_observer.

The classification of a kinetic action affects the composition of the PRISM module for the asset to which that action is assigned; for example, the classification of action TPSA2 in Mission A as a terminal_constrained_observer affects the PRISM module corresponding to asset H1. Affected asset module constructs include the action label of the command associated with TPSA2 (recall that each asset module command is associated with a specific kinetic action) and, potentially, the action label of the last module command (see inferred arguments in Section 4.3). Kinetic action classifications also generate mission properties; for example, as the last kinetic action to be executed by an asset, the successful execution of a terminal_constrained_observer is a desired mission property because it guarantees the successful execution of all preceding actions.

Table 5.1 highlights the impact of kinetic action classifications with respect to synthesized DTMC and PCTL constructs. For example, the action label of the asset mod-
rule command associated with a default classification would assume the value of the identifier assigned to the classified action (as denoted by the dot notation); the action label of the command associated with a terminal_constrained_observer classification would assume the identifier of the asset to which the classified action is assigned; and, given the notation in Listing 4.26, the identifier of the property associated with a terminal_constrained_observer classification would assume the value of the identifier assigned to the classified action. Not applicable (n/a) and null values in Table 5.1 denote classifications that either do not affect the synthesis of a specific action label, or synthesize an empty action label, respectively. Thus Prolog inferences affect the synthesis of action labels, which in turn impact module synchronization (as described in Section 4.3) and, ultimately, the verification results returned by PRISM.

For several kinetic action classifications, action labels assume the identifier of a primary asset (as illustrated in Table 5.1), which may be different from the asset to which a classified action is assigned. The behavioral modeling process described in Section 4.3 was guided by two concerns. Our primary goal was to develop template models and properties that could support the verification of multiple and variable UAV mission plans. It was also our intention to accurately model domain processes and thereby achieve the greatest possible confidence in the resulting verification process. To mimic real-world asset behavior, module executions were loosely coupled and synchronizations limited to occur on an as-needed basis. But this approach is not appropriate for modeling cross-cutting actions, which must be verified with temporal precision to ensure kinetic action workflow continuity during asset operations (this issue will be elaborated in Chapter 6).

The conflict between modeling and analytical accuracy occurs because enabled DTMC commands are executed by PRISM with equal probability [100]. Lack of native scheduling precision necessitates the synchronization of all modules representing concepts related to cross-cutting actions. The required synchronization is achieved with the designation,
<table>
<thead>
<tr>
<th>kinetic action classification</th>
<th>DTMC asset module</th>
<th>PCTL property id</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>action.id</td>
<td>n/a</td>
</tr>
<tr>
<td>default_singleton</td>
<td>action.id</td>
<td>null</td>
</tr>
<tr>
<td>default_terminal</td>
<td>action.id</td>
<td>null</td>
</tr>
<tr>
<td>subject_precondition</td>
<td>primary_asset.id</td>
<td>n/a</td>
</tr>
<tr>
<td>observer_precondition</td>
<td>primary_asset.id</td>
<td>n/a</td>
</tr>
<tr>
<td>constrained_subject</td>
<td>primary_asset.id</td>
<td>n/a</td>
</tr>
<tr>
<td>leading_subject</td>
<td>action.id</td>
<td>n/a</td>
</tr>
<tr>
<td>singleton_subject</td>
<td>primary_asset.id</td>
<td>primary_asset.id</td>
</tr>
<tr>
<td>terminal_subject</td>
<td>primary_asset.id</td>
<td>primary_asset.id</td>
</tr>
<tr>
<td>default_observer</td>
<td>action.id</td>
<td>n/a</td>
</tr>
<tr>
<td>terminal_observer</td>
<td>action.id</td>
<td>null</td>
</tr>
<tr>
<td>terminal_constrained_observer</td>
<td>action.asset.id</td>
<td>action.asset.id</td>
</tr>
<tr>
<td>observer_and_constrained_subject</td>
<td>primary_asset.id</td>
<td>n/a</td>
</tr>
<tr>
<td>observer_and_singleton_subject</td>
<td>primary_asset.id</td>
<td>primary_asset.id</td>
</tr>
<tr>
<td>observer_and_terminal_subject</td>
<td>primary_asset.id</td>
<td>primary_asset.id</td>
</tr>
<tr>
<td>subject_constraint</td>
<td>primary_asset.id</td>
<td>n/a</td>
</tr>
<tr>
<td>terminal_subject_constraint</td>
<td>primary_asset.id</td>
<td>primary_asset.id</td>
</tr>
</tbody>
</table>

Table 5.1: Kinetic action classifications, which are ultimately derived via Prolog inferences, and their impact on synthesized DTMC and PCTL constructs associated with classified actions.
via Prolog inferences, of a single primary asset whose identifier is assumed by the action labels associated with cross-cutting actions.

The Prolog code in Listing 5.6 formally defines rule `primary_asset`, which encapsulates inferred ontological knowledge encoded with the atoms `observer_asset` (line 2), `observed_asset` (line 4) and `observes` (lines 6 and 7). Rule `primary_asset` formalizes the concept of a primary asset as an `observer asset` (i.e., an asset observing other assets) that is either not itself observed by, or participates in a symmetric observer relationship with, another asset (a symmetric relationship is the opposite of the asymmetric relationship described in Section 4.1.2).

```
primary_asset(A) :-
    observer_asset(A),
    ( not(observed_asset(A));
    observes(A, B),
    observes(B, A)
).
```

Lines 1–3 in Listing 5.7 formally define class `ObserverAsset`, which extends class `Asset`. Every member of class `ObserverAsset` must be associated via the object property `hasAction` with a member of class `Observer`. Lines 5 and 6 formally define the OWL class `Observer`, which is augmented by a synonymous SWRL rule (lines 8–13). Rule `Observer` formalizes the concept of an `observer action` as an action that observes cross-cutting actions via preconditions. Given the domain knowledge encoded in Listing 5.7, an observer asset can be described more precisely as an asset that observes other assets via an assigned action that has as precondition a cross-cutting action. Conversely, an `observed asset` is an asset observed by other assets via an assigned cross-cutting action. Class `ObservedAsset`, which formalizes the observed asset concept, is encoded in a similar manner to class `ObserverAsset`. Knowledge inferred by Pellet with respect to `ObserverAsset` and `ObservedAsset` is transformed by the CVC into knowledge encoded with the Prolog atoms `observer_asset` and `observed_asset`, respectively.

Listing 5.8 formally defines the object property `observes` (lines 1–5), which is augmented by a synonymous SWRL rule (lines 7–12). Rule `observes` uses the cross-cutting action relationship (lines 8–11) to underpin an asset-oriented subject-observer relationship. Knowledge inferred by Pellet with respect to the OWL concept `observes` is transformed by the CVC into knowledge encoded with the Prolog atom `observes`, which is used in the context of rule `primary_asset` to formalize a symmetric observer relationship. In conjunction with the observed and observer asset concepts, the `observes` concept supports SWI-Prolog inferences with respect to `primary_asset`, which in turn supports kinetic action classifications.

Rule `primary_asset` enables Prolog to discover the assets with assigned cross-cutting
actions that have temporal precedence in a workflow of related actions. Such a workflow may comprise one or, given the symmetric observer relationship encapsulated in primary_asset, multiple primary assets. The action label identifier resulting from a single primary asset guarantees the synchronization of all modules representing concepts related to cross-cutting actions. Synchronization is also guaranteed with multiple primary assets when a single identifier is chosen randomly from the candidate set. We note that a single mission plan comprising multiple independent action workflows could be verified by PRISM without the need for synchronization between the actions that constitute those workflows.

The primary asset mechanism may be perceived as an obfuscated method for achieving what is in essence a random result, at least with respect to a subset of the mission space. But primary assets support an inference-based selection process that is conceptually compatible with the methods that derive the remaining action- and asset-based identifiers in Table 5.1. And while this mechanism fails to eliminate randomness during the identifier selection process, it performs better than random by eliminating and minimizing randomness for mission plans comprising one or more primary assets, respectively. It is of course entirely possible for the primary asset concept, and the reasoning that it affords, to be extended or repurposed in subsequent versions of our prototype. In
any case, these concerns apply neither to our method nor our prototype as a whole, but rather to a small subset of the domain model that constitutes our prototype.

As a prelude to the following section, which presents synthesized PRISM artifacts, Table 5.2 lists kinetic action classifications for the path segment traversal actions specified in Mission A (top), and the impact of each classification on the synthesized DTMC and PCTL constructs associated with the classified action (bottom).

<table>
<thead>
<tr>
<th></th>
<th>TPSA1</th>
<th>TPSA2</th>
<th>TPSA3</th>
<th>TPSA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>default_singleton</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>default_terminal</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>subject_precondition</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>observer_precondition</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>constrained_subject</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>leading_subject</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>singleton_subject</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>terminal_subject</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>default_observer</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>terminal_observer</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>terminal_constrained_observer</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>observer_and_constrained_subject</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>observer_and_singleton_subject</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>observer_and_terminal_subject</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>subject_constraint</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>terminal_subject_constraint</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Table 5.2: Kinetic action classifications for the path segment traversal actions specified in Mission A (top), and the impact of each classification on the synthesized DTMC and PCTL constructs associated with the classified action (bottom).

5.4 Synthesized Models and Properties

The CVC uses explicit and inferred domain knowledge to synthesize DTMC and PCTL artifacts from predefined templates; for example, the asset module template presented in Section 4.3 underpins the synthesis of one module per each asset in Mission A. The PRISM code in Listing 5.9 specifies a synthesized asset module corresponding to asset H2, where the commands in lines 3 and 4 represent, respectively, the execution of actions TPSA3 and TPSA4 assigned to H2.
As a consequence of the realization-based inferences described in Section 5.2, the CVC synthesizes an asset survivability module to calculate the probability of survival for H2 (as described in Section 4.3.1). The PRISM code in Listing 5.10 specifies the synthesized survivability module corresponding to asset H2, where variable a2d (lines 6–8) represents the asset’s destruction.

The CVC also synthesizes PRISM code to calculate a RAF value for the threat area incursion prosecuted by asset H2 (as described in Section 4.3.2). The PRISM code in Listing 5.11 specifies the synthesized sensor action counter module corresponding to asset H2. Variables start4, finish4 and actn4_tai in Listing 5.11 are declared in Listing 5.10.

At the conclusion of the synthesis process, the DTMC artifact that models Mission A is verified against a set of synthesized PCTL properties. The PRISM code in Listing 5.12 specifies a synthesized property for Mission A. This property comprises

Listing 5.9: PRISM asset module code

```plaintext
module Hummingbird2
  e2 : [0..120] init 120;
  [H1] e2>0 & d3>0 -> (e2'=e2-1);
  [H1] e2>0 & d4>0 -> (e2'=e2-1);
  [H1] e2=0 | d4=0 -> true;
endmodule
```

Listing 5.10: PRISM asset survivability code

```plaintext
const int start4 = 60;
const int finish4 = 0;
formula actn4_tai = d4 > finish4 & d4 <= start4;

module Hummingbird2_Survivability
  a2d : bool init false;
  [H1] !a2d & actn4_tai -> 0.99:(a2d'=false) + 0.01:(a2d'=true);
  [H1] a2d | !actn4_tai -> true;
endmodule
```

Listing 5.11: PRISM risk acceptability code

```plaintext
formula duration4 = start4 - finish4;
formula tkad2 = duration4;

module SensorActionCounter2
  sad2 : [0..tkad2] init 0;
  [H1] actn4_tai & (r5) & sad2<tkad2 -> (sad2'=sad2+1);
  [H1] !actn4_tai | ! (r5) -> true;
endmodule

formula raf2 = sad2 / tkad2;
```

Listing 5.12: PRISM risk acceptability code

```plaintext
formula duration4 = start4 - finish4;
formula tkad2 = duration4;

module SensorActionCounter2
  sad2 : [0..tkad2] init 0;
  [H1] actn4_tai & (r5) & sad2<tkad2 -> (sad2'=sad2+1);
  [H1] !actn4_tai | ! (r5) -> true;
endmodule

formula raf2 = sad2 / tkad2;
```
variables \(d_2\) and \(d_4\), which represent the durations of TPSA2 and TPSA4, respectively; variable \(a_2d\), described above; and variable \(raf_2\), which represents the RAF value for the threat area incursion committed by asset H2. The property need not comprise variables to represent the durations of TPSA1 and TPSA3 because these actions precede TPSA2 and TPSA4, respectively. In other words, the successful execution of TPSA1 is implied by the successful execution of TPSA2 (this implication is denoted by the classification of TPSA2 as a terminal_constrained_observer), etc.

Listing 5.12: PRISM mission property code

```
P=? [ F d2=0 & d4=0 & !a2d & raf2 >0.6 ]
```

Given the property in Listing 5.12, the probability of success for Mission A is calculated by PRISM to be approximately 0.299. In particular, the verification of Mission A assigns variables \(d_2\) and \(d_4\) with values of zero; variable \(!a_2d\) is assigned a probability of approximately 0.299; and variable \(raf_2\) is assigned a value of approximately 0.833.

5.5 Implementation

We have implemented several of the components that constitute our prototype. The ontology described in Section 4.1 and Section 4.2 was implemented in OWL+SWRL. The Prolog rule-base described in Section 4.2 was implemented in SWI-Prolog. The DTMC and PCTL templates presented in Section 4.3 were implemented in the programming language Ruby (version 1.9.3). And the DSL described in Section 5.1 was implemented in YAML, which is particularly compatible with Ruby. Because of its powerful reflective and meta-programming capabilities, Ruby affords our prototype flexibility to substitute the current YAML DSL with a more expressive mission specification language, if so required [101, 102].

In developing the prototype, we leveraged open source software including Pellet 2.2.0, PRISM 4.1 and the Protégé ontology editor (version 4.1.0). While integration, testing and extension of implemented components is currently ongoing, completed work was sufficient to support an evaluation, which is presented in Chapter 6.

5.6 Related Work

Cascading verification can be considered a form of semantic model checking, which has been studied exclusively in the context of the Web service domain.

Narayanan and McIlraith encode Web service capability descriptions and behavioral properties with DAML-S and Petri net formalisms, respectively [25]. DAML-S is a DAML+OIL ontology for describing Web services. For any given Web service, an implemented system generates the Petri net corresponding to the DAML-S description of that service. The resulting net is used by KarmaSIM, a modeling and simulation en-
environment, to perform various analysis techniques including reachability analysis and deadlock detection.

The model checking algorithm presented by Di Pietro et al. uses a DL-based ontology to formalize the Web service domain [26]. The behavior of each Web service is modeled as a state transition system (STS), while behavioral requirements are encoded with CTL. Both STS and CTL formalisms are extended with semantic annotations. For any given Web service, the algorithm generates a finite STS corresponding to the annotated description of that service. The resulting model is verified with model checking. The same algorithm is used by Boaro et al. to verify Web service security requirements [27].

Oghabi et al. use OWL-S, an OWL ontology that supersedes DAML-S, to describe Web service behavior [28]. For any given Web service, an implemented system generates a PRISM model corresponding to the OWL-S description of that service. The resulting model is verified with PRISM. Ankolekar et al. translate OWL-S process models to equivalent PROMELA models, which are verified with the SPIN model checker [29]. Liu et al. extend OWL-S with multiple annotation layers for specifying Web service flow properties including temporal constraints [30]. Annotated OWL-S models are transformed to corresponding time constraint Petri net (TCPN) models, which are verified with model checking. Lomuscio and Solanki express OWL-S process models with the interpreted systems programming language (ISPL) [31]. ISPL is the system description language for MCMAS, a symbolic model checker tailored to the verification of multi-agent systems. In this context, Web services and Web service compositions are viewed as agents and multi-agent systems, respectively.

Our method is perhaps most compatible with the work presented by Oghabi et al. Similarities include the motivation to verify stochastic behavior and the development of a system that synthesizes PRISM models from OWL knowledge. But unlike our prototype, the system developed by Oghabi et al. does not synthesize behavioral properties, nor does it exploit inferred knowledge to support the synthesis of DTMC artifacts. Inferred knowledge is utilized in other work including that of Narayanan and McIlraith, Di Pietro et al. and Boaro et al. But existing work is exclusively concerned with the verification of Web services, and does not address the expressive and reasoning limitations that constrain OWL. The work presented in this thesis is (to our knowledge) unique because it addresses semantic model checking limitations, and applies the resulting method to a novel domain.

5.7 Summary

Chapter 4 describes the technologies and modeling methods that underpin cascading verification; in this chapter, we describe the actual verification process, which involves several stages of reasoning and analysis. The process begins when model builders use a high-level DSL to encode system specifications. A compiler uses automated reasoning to verify the consistency between each specification and formalized domain knowledge encoded in OWL+SWRL and Prolog. If consistency is deduced, then explicit and inferred
domain knowledge is used by the compiler to synthesize a system model and behavioral properties from template code. PRISM subsequently verifies the model against the properties.

At its core, this chapter exposes the composite inference mechanism that underpins our method and prototype. Composite reasoning encompasses Pellet- and Prolog-based inference services; the former include consistency checking and realization with respect to an OWL+SWRL ontology, while the latter involve query resolution with respect to a knowledge base comprising rules and facts. Prolog-based inferences enable our prototype to classify kinetic actions, and thereby calibrate the synthesis of PRISM modules related to those actions. Our implementation of composite reasoning is illustrated with several examples in the context of Mission A, which is assumed to involve the prosecution of a threat area incursion. The discussion in this chapter thus utilizes the tactical case study introduced in Section 4.1.2.

By tracing cascading verification from system specifications to probabilistic model checking, we describe a prototype greater than the sum of its parts, i.e., a prototype that integrates technologies presented in Chapter 4 to improve the correctness of UAV mission plans. The following chapter quantifies this improvement.
Chapter 6

Evaluation

We assert that by enhancing the abstraction level of model and property specifications, cascading verification also enhances the effectiveness of probabilistic model checking. To validate this assertion, we will demonstrate that, as an implementation of cascading verification for the UAV domain, the prototype presented in this thesis benefits mission developers by simplifying the verification of UAV mission plans, and by augmenting PRISM’s verification capabilities. Ultimately, we aim to show that our prototype benefits mission developers by improving the correctness of UAV mission specifications. We will also evaluate the portability of cascading verification, i.e., the usability of our method in the context of different application domains.

The remainder of this chapter is structured as follows. Section 6.1 describes the methodologies and metrics that underpin the evaluation of our method and prototype. Limitations and threats to the validity of the evaluation are presented in Section 6.2. This chapter is summarized in Section 6.3.

6.1 Evaluation Methods and Metrics

This evaluation focuses on a single project, and assesses the effects of change prior to large-scale implementation and deployment. Case studies therefore constitute an appropriate evaluation method [103]. Importantly, case studies 1) avoid scalability issues associated with the evaluation of software-engineering tools and methods, and 2) support high-level assessments, which are desirable for wide-ranging process changes. The evaluation was not affected by ancillary budgetary, scheduling and staffing issues.

6.1.1 Abstraction

Because it was unfeasible to involve practitioners in the evaluation of our prototype’s utility, we opted instead for a metrics-based analysis of 58 mission plans. These plans were based on real-world mission scenarios developed independently by DARPA and DRDC [32, 33]. We evaluated our approach by comparing the LOC and numbers of lexical tokens required to specify missions in YAML against the LOC and tokens in the combined DTMC and PCTL code synthesized by the CVC. On average, our prototype
Chapter 6. Evaluation

6.1. Evaluation Methods and Metrics

synthesizes PRISM code that is 3.127 and 4.490 times greater than the size of YAML input with regard to LOC and tokens, respectively. (The standard deviations were 52.4% and 95.4%, respectively.) These results provide preliminary evidence of non-trivial reduction in the effort required to produce mission models and properties.

Table 6.1 lists metric values for a subset of the 58 mission plans. This subset represents the full range of observed PRISM-to-YAML ratios. (Appendix F contains verification artifacts—including mission specifications encoded in YAML, synthesized DTMC and PCTL artifacts, and PRISM results—for the mission plans presented in Table 6.1.)

<table>
<thead>
<tr>
<th>id</th>
<th>YAML LOC</th>
<th>YAML tokens</th>
<th>PRISM LOC</th>
<th>PRISM tokens</th>
<th>PRISM-to-YAML ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>9</td>
<td>31</td>
<td>22</td>
<td>104</td>
<td>244.4% 335.5%</td>
</tr>
<tr>
<td>1d</td>
<td>12</td>
<td>45</td>
<td>32</td>
<td>169</td>
<td>266.7% 375.6%</td>
</tr>
<tr>
<td>1g</td>
<td>15</td>
<td>59</td>
<td>36</td>
<td>218</td>
<td>240.0% 369.5%</td>
</tr>
<tr>
<td>2a</td>
<td>18</td>
<td>70</td>
<td>45</td>
<td>255</td>
<td>250.0% 364.3%</td>
</tr>
<tr>
<td>2b</td>
<td>18</td>
<td>72</td>
<td>52</td>
<td>277</td>
<td>288.9% 384.7%</td>
</tr>
<tr>
<td>2e</td>
<td>23</td>
<td>97</td>
<td>57</td>
<td>331</td>
<td>247.8% 341.2%</td>
</tr>
<tr>
<td>2g</td>
<td>25</td>
<td>105</td>
<td>77</td>
<td>457</td>
<td>308.0% 435.2%</td>
</tr>
<tr>
<td>2j</td>
<td>23</td>
<td>98</td>
<td>76</td>
<td>443</td>
<td>330.4% 452.0%</td>
</tr>
<tr>
<td>2m</td>
<td>26</td>
<td>112</td>
<td>91</td>
<td>558</td>
<td>350.0% 498.2%</td>
</tr>
<tr>
<td>2p</td>
<td>26</td>
<td>114</td>
<td>91</td>
<td>562</td>
<td>350.0% 493.0%</td>
</tr>
<tr>
<td>2r</td>
<td>25</td>
<td>109</td>
<td>84</td>
<td>468</td>
<td>336.0% 429.4%</td>
</tr>
<tr>
<td>2u</td>
<td>28</td>
<td>123</td>
<td>94</td>
<td>533</td>
<td>335.7% 433.3%</td>
</tr>
<tr>
<td>2v</td>
<td>28</td>
<td>123</td>
<td>99</td>
<td>583</td>
<td>353.6% 474.0%</td>
</tr>
<tr>
<td>2w</td>
<td>31</td>
<td>137</td>
<td>111</td>
<td>666</td>
<td>358.1% 486.1%</td>
</tr>
<tr>
<td>2x</td>
<td>31</td>
<td>137</td>
<td>111</td>
<td>666</td>
<td>358.1% 486.1%</td>
</tr>
<tr>
<td>3a</td>
<td>12</td>
<td>42</td>
<td>32</td>
<td>158</td>
<td>266.7% 376.2%</td>
</tr>
<tr>
<td>3e</td>
<td>15</td>
<td>56</td>
<td>45</td>
<td>252</td>
<td>300.0% 450.0%</td>
</tr>
<tr>
<td>3h</td>
<td>16</td>
<td>61</td>
<td>42</td>
<td>227</td>
<td>262.5% 372.1%</td>
</tr>
<tr>
<td>3k</td>
<td>18</td>
<td>70</td>
<td>60</td>
<td>357</td>
<td>333.3% 510.0%</td>
</tr>
<tr>
<td>3o</td>
<td>18</td>
<td>72</td>
<td>60</td>
<td>373</td>
<td>333.3% 518.1%</td>
</tr>
<tr>
<td>4a</td>
<td>21</td>
<td>94</td>
<td>39</td>
<td>267</td>
<td>185.7% 284.0%</td>
</tr>
<tr>
<td>4b</td>
<td>21</td>
<td>94</td>
<td>73</td>
<td>513</td>
<td>347.6% 545.7%</td>
</tr>
<tr>
<td>4d</td>
<td>25</td>
<td>110</td>
<td>100</td>
<td>707</td>
<td>400.0% 642.7%</td>
</tr>
<tr>
<td>4f</td>
<td>28</td>
<td>124</td>
<td>111</td>
<td>788</td>
<td>396.4% 635.5%</td>
</tr>
<tr>
<td>5a</td>
<td>23</td>
<td>92</td>
<td>58</td>
<td>329</td>
<td>252.2% 357.6%</td>
</tr>
<tr>
<td>5b</td>
<td>23</td>
<td>92</td>
<td>104</td>
<td>744</td>
<td>452.2% 808.7%</td>
</tr>
</tbody>
</table>

Table 6.1: Metric values for representative mission plans.

We observe that tactical missions (4b, 4d and 4f in Table 6.1) and traffic surveillance missions (5a and 5b) generate more LOC and tokens than standalone mission plans,
which are mission plans underpinned exclusively by CEMO and thereby not associated with the more specialized subdomains encoded in Tactical- and Traffic-CEMO. Specifically, tactical mission plans generate PRISM code that is on average 3.933 and 5.992 times greater than the size of YAML input with regard to LOC and tokens, respectively. (The standard deviations were 24.0% and 59.2%, respectively.) Mission 5b generates PRISM code that is 4.522 and 8.087 times greater than the size of YAML input with regard to LOC and tokens, respectively. Because the effort required to synthesize PRISM code is proportional to the effort required to synthesize the LOC and tokens that constitute the code, tactical and traffic surveillance mission plans result in added value for mission developers. This observation suggests that, with respect to tactical missions, the utility of our prototype is proportional to the threat level associated with any given mission plan. More broadly, increased LOC and token output suggests that the utility of cascading verification may be proportional to the amount of automated reasoning required to synthesize pertinent artifacts, a conclusion that justifies our motivation to augment model checking with formalized domain knowledge.

6.1.2 Effectiveness

Because it cannot account for the intricate syntax of the PRISM language, a LOC- and token-based analysis offers limited insight into the inherent complexity of model and property specifications. We investigate complexity further by considering behavioral modeling errors specific to the PRISM language that can be eliminated with the automated synthesis of PRISM artifacts (at least for the segment of the mission space that we have explored thus far). These errors are significant, perhaps more so than the errors uncovered during the model checking process, because they can mislead mission developers by causing PRISM to verify erroneous mission plans.

In the context of the PRISM language and the PRISM models created for this project:

- **Inconsistent variable errors** occur when PRISM variables are inconsistent in value with corresponding variables in mission specifications; for example, the duration of an action specified in YAML should be consistent in value with the local variable of the PRISM module corresponding to that action.\(^1\)

- **Command action errors** occur when command actions, which affect module synchronization, are incorrect across two or more modules.

- **Command probability errors** occur when commands are annotated with probabilities that fail to accurately reflect the system being modeled; for example, the probabilities encapsulated in an asset survivability module should accurately reflect the vulnerability of the asset corresponding to that module.\(^2\)

- **Command update errors** occur when command updates, which affect module behavior, are incomplete or incorrect. For example, an incomplete update could fail

\(^1\) Action duration in the context of behavioral modeling was described in Section 4.3.

\(^2\) Asset survivability was described in Section 4.1.2.
to couple the modules corresponding to an asset and the action assigned to that asset; an incorrect update could couple modules corresponding to an asset and an action assigned to a different asset.

We also consider mission specification errors that are beyond the scope of PRISM’s verification capabilities. These domain-specific errors are detected by either Pellet or the SWI-Prolog compiler during the synthesis process. We have identified 28 domain-specific errors, across six error classes, that impact the correctness of UAV missions. In the context of the OWL language and CEMO:

Disjoint class errors occur when individuals are declared in system specifications to be instances of incompatible classes; for example, a hover action can also be a kinetic action, but not a sensor action. This error type affects mission correctness by ambiguating mission constructs for humans and, potentially, computers. Construct ambiguity could, for example, cause humans to confuse action subtypes and thereby develop mission plans comprising one or more sensor actions and zero kinetic actions; without appropriate verification, automated processes could subsequently attempt to deploy erroneous missions that violate asset constraints related to the execution of kinetic actions (as described in Section 4.1). The OWL statements in Listing 6.1 formally define disjoint classes that can cause domain-specific errors.

Listing 6.1: Disjoint class statements specified in OWL

1. Action DisjointWith Asset
2. ARDrone DisjointWith Hummingbird
3. HoverAction DisjointWith TraversePathSegmentAction
4. HoverAction DisjointWith LidarAction
5. HoverAction DisjointWith PhotoSurveillanceAction
6. TraversePathSegmentAction DisjointWith LidarAction
7. TraversePathSegmentAction DisjointWith PhotoSurveillanceAction
8. LidarAction DisjointWith PhotoSurveillanceAction

Existential restriction errors occur when individuals fail to participate in mandatory relationships, as specified by the OWL keyword `some`; for example, every asset must execute at least one kinetic action. The OWL statements in Listing 6.2 formally define existential restrictions that can cause domain-specific errors. Because of OWA, which was described in Section 2.1, OWL-based reasoning cannot conclude the absence of a mandatory relationship from the absence of knowledge about that relationship. Consequently, existential restriction errors are detected exclusively by the SWI-Prolog compiler. The Prolog rules in Listing 6.3 encompass atoms that correspond to the existential restrictions in Listing 6.2.

Data property value errors occur when data property values declared in system specifications fall outside the ranges of corresponding data properties encoded in CEMO; for example, the endurance of a Hummingbird is 1200 time-steps. The OWL statements in Listing 6.4 formally define data properties that can cause domain-specific errors.
Listing 6.2: Existential restriction statements specified in OWL

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asset hasAction some KineticAction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Asset hasEnduranceInSeconds some int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HoverAction hasWaypoint some Waypoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>KineticAction hasDurationInSeconds some int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LidarAction hasIntervalInSeconds some int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LidarAction isConcurrentWith some HoverAction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mission hasAsset some Asset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PhotoSurveillanceAction hasDurationInSeconds some int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TraversePathSegmentAction hasEndpoint some Waypoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TraversePathSegmentAction hasStartPoint some Waypoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data property domain and range errors occur when data property domain and range types declared in system specifications are inconsistent with the domain and range types of the corresponding data properties encoded in CEMO; for example, CEMO specifies that every Hummingbird individual must be associated with a datatype property hasCostValue of type int. The OWL code in Listing 6.5 formally defines data properties that can cause domain-specific errors.

Object property domain and range errors occur when object property domain and range types declared in system specifications are inconsistent with the domain and range types of the corresponding object properties encoded in CEMO; for example, CEMO specifies that the object property hasAction associates every member of class Asset (the domain of hasAction) with a member of class KineticAction (the range). The OWL code in Listing 6.6 formally defines object properties that can cause domain-specific errors.

Threatened asset errors occur when mission plans comprise a threatened asset that is not also a valid asset.\(^3\) With the exception of this UAV-related error class, domain-specific errors are caused by inconsistencies between a mission specification and the underlying domain model. Given adequate documentation of the YAML DSL, these inconsistencies could, in theory, be eliminated by mission developers during the design and implementation of mission plans (in practice, software bugs elude extinction). But threatened and valid assets can only be discovered with geometric calculations and subsequent formal reasoning, as described in Section 3.2 and Section 4.1.2, respectively. The OWL code in Listing 6.7 formally defines class ThreatenedAsset.

Mission correctness can clearly be compromised by domain-specific and behavioral modeling errors, which occur during the design/implementation and verification phases, respectively, of the mission development process. Our prototype augments PRISM’s effectiveness by preventing both of these error types.

\(^3\)Threatened and valid assets were described in Section 4.1.2.
Listing 6.3: Existential restrictions encompassed in Prolog rules

```prolog
invalid_asset(A) :-
    zero_action_asset(A);
    not (has_endurance_in_seconds(A, _)).

invalid_hover_action(H) :-
    invalid_kinetic_action(H);
    not (has_waypoint(H, _)).

invalid_kinetic_action(K) :-
    not (has_duration_in_seconds(K, _)).

invalid_lidar_action(L) :-
    not (has_interval_in_seconds(L, _));
    not (is_concurrent_with(L, _)).

invalid_mission(M) :-
    not (has_asset(M, _)).

invalid_photo_surveillance_action(P) :-
    not (has_duration_in_seconds(P, _)).

invalid_traverse_path_segmentAction(T) :-
    invalid_kinetic_action(T);
    not (has_endpoint(T, _));
    not (has_start_point(T, _)).
```

Listing 6.4: Data property statements specified in OWL

```prolog
ARDrone hasEnduranceInSeconds some int [<= 70]
Hummingbird hasEnduranceInSeconds some int [<= 120]
```

6.1.3 Probabilistic Verification

Finally, we consider PRISM’s ability to meaningfully verify UAV mission plans (or rather, we consider the utility of the DTMC and PCTL artifacts synthesized by our prototype). For this part of the evaluation, eighteen of the 58 mission plans described above were seeded with errors, including deadlock and non-reachable states, that violated desirable behavioral properties. One mission plan failed (i.e., contained errors that resulted in a 0.0 probability of success) because of an unacceptably low RAF value.\(^4\)

Nine mission plans failed because kinetic or sensor action workflow durations exceeded the endurances of the assets to which those workflows were assigned. Figure 6.1 illustrates this type of error with Mission 3g, one of the 58 mission plans supporting our evaluation. Mission 3g comprises one asset with identifier ARD1, two hover actions with identifiers HA1 and HA2, and one photo surveillance action with identifier PSA3. The mission fails because the duration of PSA3 exceeds the endurance of ARD1, to which PSA3 is assigned.

Finally, eight mission plans contained action workflow errors that resulted in deadlock. Figure 6.2 illustrates this type of error with Mission 2d, which also belongs to

\(^4\)The RAF value was described in Section 5.2.
the set of missions supporting our evaluation. Mission 2d comprises two assets with identifiers ARD1 and H1, and three hover actions with identifiers HA1–HA3. The mission becomes deadlocked, and consequently fails, when the action workflow comprising HA1 and HA2 is disrupted. This disruption occurs because:

- HA1 and HA2 are kinetic actions assigned to asset ARD1;
- HA1 and the cross-cutting action HA3, which is assigned to asset H1, are preconditions to HA2;
- the duration of HA3 is greater than the duration of HA1.

The propensity for cross-cutting actions to produce deadlock and thereby compromise mission correctness is associated with the degree of coupling between kinetic actions assigned to the same asset. The type of deadlock observed in Mission 2d is, to some extent, a consequence of tight coupling between the actions HA1 and HA2, which are required by our behavioral model to execute continuously during the operation of ARD1. By eliminating the requirement for continuity, a looser coupling could permit HA2 to begin its execution after the end of HA3. But missions comprising loosely coupled kinetic actions would still have to account for side effects resulting from potential workflow disruptions. For example, a loose coupling between HA1 and HA2 would enable the execution of HA3 to impose a hiatus on the workflow assigned to ARD1, with implications for the operation of that asset. We have chosen to avoid these implications, whose resolution would not have been straightforward, by establishing the deadlock in Mission 2d as a mission specification error.

The errors presented in this section were successfully identified by our prototype. While the correctness of some mission plans was absolute (with a 0.0 or 1.0 probability of success) several mission plans, including plans comprising threat area incursions, were associated with variable probabilities of success. For example, the probability of success for Mission A is approximately 0.299 (as described in Section 5.4).
Chapter 6. Evaluation

6.2. Threats to Validity

Listing 6.6: Object properties specified in OWL

```plaintext
ObjectProperty: hasAction
   Characteristics: Asymmetric, Irreflexive, InverseFunctional
   Domain: Asset
   Range: Action
   InverseOf: isActionOf

ObjectProperty: hasAsset
   Characteristics: Asymmetric, Irreflexive, InverseFunctional
   Domain: Mission
   Range: Asset

ObjectProperty: hasPrecondition
   Characteristics: Transitive
   Domain: Action
   Range: Action
   InverseOf: isPreconditionTo

ObjectProperty: isConcurrentWith
   Characteristics: Asymmetric, Irreflexive
   Domain: LidarAction
   Range: HoverAction
```

Listing 6.7: OWL code for class ThreatenedAsset

```plaintext
Class: ThreatenedAsset
  EquivalentTo: Asset
  and (hasAction some DirectThreatAreaHoverAction)
  DisjointWith: DirectThreatAreaTPSA
```

6.1.4 Proof of Correctness

Given the broad range of disparate techniques described throughout this thesis, a formal proof of correctness for cascading verification may not be feasible. But correctness can be evaluated against simulations carried out during the behavioral modeling process. To this end, simulations were carried out during the development of the 58 mission plans. Simulated model executions are facilitated by the PRISM simulator, a tool that generates sample paths through PRISM models. Partial simulation results for Mission A are plotted by the graph in Figure 6.3, where x-axis and y-axis represent variable values and time during specific executions, respectively; and plotted values represent endurance for asset H1 (variable e1) and duration for the actions assigned to that asset (variables d1 and d2).

6.2 Threats to Validity

This evaluation has thus far been concerned with the abstraction and effectiveness afforded by our method and prototype. Research can be evaluated further by considering threats to its validity. Threat types applicable to our research include conclusion validity,
internal validity, construct validity and external validity [104, 105].

Conclusion validity addresses the issue of correlation between the functionality afforded by our prototype and the correctness of UAV mission specifications, whereby correctness is determined with respect to specific properties of interest. We believe this correlation to be established by the results presented in Section 6.1. To recap, in conjunction with the verification provided by PRISM, reduced LOC, tokens and potential (domain-specific and behavioral modeling) errors demonstrate that our method and prototype have a significant and positive effect on the correctness of UAV mission specifications.

Figure 6.1: An illustration of Mission 3g, with red arrows representing preconditions and horizontal lines representing the passage of time. The x mark denotes a point of failure for the mission.

Figure 6.2: An illustration of Mission 2d, with red arrows representing preconditions and horizontal lines representing the passage of time. The x mark denotes a point of failure for the mission. Color coded circles delineate the operation and execution of assets and actions, respectively, and group actions and the assets to which those actions are assigned.
Chapter 6. Evaluation

6.2. Threats to Validity

Figure 6.3: Partial simulation results for Mission A. The x-axis and y-axis represent variable values and time during specific executions, respectively; and plotted values depict endurance for asset H1 (variable e_1) and duration for the actions assigned to that asset (variables d_1 and d_2).

6.2.1 Internal Validity

Having established correlation, we proceed to establish internal validity, which addresses the issue of causation between the functionality afforded by our prototype and the correctness of UAV mission specifications. For correlated variables x and y, it can be claimed that x causes y if x precedes y in the absence of confounding factors [106]. We will not elaborate on the issue of precedence except to mention that our prototype’s functionality precedes verification results returned by PRISM. The problem of confounding is somewhat more challenging.

Confounding can occur when unknown or extraneous factors affect the relationship between correlated variables. With well defined input and output interfaces, our prototype is not likely to be influenced by unknown factors. But the 58 mission plans that act as input to the prototype, and thereby generate the established correlation, could constitute an extraneous factor if they fail to 1) be grounded in the real-world, or 2) sample a sufficiently large subset of the UAV mission state space. The former concern is mitigated by the real-world mission scenarios underpinning our mission plans. The latter concern is related to the issue of variability.

We do not attempt to achieve variability with, for example, randomized mission parameters. Nevertheless, mission plans vary with respect to LOC and token values, as indicated in Table 6.1. Mission plans also vary along several parameters, which are listed in Table 6.2 for a subset of the 58 mission plans. These parameters include numbers of assets; kinetic, sensor and cross-cutting actions; and preconditions and concurrencies. Concerns regarding the potential for mission plans to act as a confounding factor are therefore mitigated by the observed variability in both metric values and mission parameters.

The size of DTMC and PCTL templates could constitute a second extraneous factor if PRISM-to-YAML ratios are affected by poor template design rather than the functionality afforded by our prototype. But this is not the case: our templates are not

93
Chapter 6. Evaluation

6.2. Threats to Validity

Table 6.2: Parameters—including number of assets, actions and action dependencies—for the representative mission plans listed in Table 6.1.

designed to create code bloat, but rather to generate PRISM code that is intelligible to a human model builder. We also note that metric values in Table 6.1 do not account for programmer-readable comments.

6.2.2 Construct Validity

Construct validity addresses the metrics, including LOC and token count, used to quantify model and property specification complexity. These are widely applicable, language independent software metrics that ignore logic structure and control flow. The abil-
ity to bypass control flow is useful when evaluating complexity in the context of the PRISM language, a somewhat unconventional formalism that lacks appropriate control structures.

We do acknowledge that a LOC- and token-based analysis cannot in and of itself account for the intricate syntax of the PRISM language. To address this limitation, we propose a multidimensional complexity model [107], which encompasses domain-specific and behavioral modeling errors prevented by our prototype. The (potentially bidirectional) correlation between error rates and software complexity suggests that software errors can be used as descriptors of complexity [108, 109]. By considering complexity from multiple dimensions, our metric- and error-based analysis provides a more complete understanding of PRISM artifact complexity, which in turn increases confidence in the resulting evaluation.

6.2.3 External Validity

Finally, we consider external validity, which addresses the issue of transferability/portability. In conjunction with the complexity of the UAV domain, and the real-world DARPA and DRDC mission scenarios underpinning this evaluation, the results presented in Section 6.1 suggest that cascading verification can be ported to different application domains. The portability of our method is supported by the general purpose of its constituent technologies including OWL+SWRL, Prolog, and DTMC and PCTL. Presently, we cannot make the same argument for the connections that link those technologies in the context of the method. But cascading verification is an extension of semantic model checking methods with identical or comparable constituent technologies (similarities to semantic model checking were presented in Section 5.6). The successful application of these methods to the Web service domain further supports the portability of cascading verification.

6.3 Summary

By automating the synthesis of PRISM artifacts, and by providing multiple stages of reasoning and analysis, our prototype enhances the abstraction level of model and property specifications, and the effectiveness of probabilistic model checking, respectively. This cascading approach to verification improves mission correctness to a degree that is evidently unattainable by the individual components that constitute the prototype.

We note that this evaluation is preliminary. Further work is required to determine the utility of our prototype in the context of a more sophisticated mission specification language and domain model; and the ability of cascading verification to support probabilistic model checking in the context of other non-trivial domains.
Chapter 7

Conclusions and Future Work

This thesis describes a novel cascading verification method that uses composite reasoning over high-level system specifications and formalized domain knowledge to synthesize both system models and their desired behavioral properties. With cascading verification, model builders use a high-level DSL to encode system specifications that can be analyzed with model checking. Domain knowledge is encoded in OWL+SWRL and Prolog, which are combined to overcome their individual limitations. Synthesized DTMC models and PCTL properties are analyzed with the probabilistic model checker PRISM. Cascading verification was illustrated with a prototype system that verified the correctness of UAV mission plans. An evaluation of this prototype revealed non-trivial reductions in the size and complexity of input system specifications compared to the artifacts synthesized for PRISM.

The remainder of this chapter is structured as follows. Section 7.1 reiterates our contributions to the state of the art in semantic model checking. Section 7.2 discusses directions for future work. Two specific areas of research, involving network centric and annotation-guided model checking, are described in Section 7.2.1 and Section 7.2.2, respectively.

7.1 Contributions

With cascading verification, we claim several contributions to semantic model checking, a method that leverages semantic reasoning over domain knowledge to augment the model checking process. Unlike related work, our method synthesizes both system models and behavioral properties for probabilistic model checking. Cascading verification is underpinned by a composite DL- and LP-based inference mechanism that overcomes expressive and reasoning limitations in the ontology language OWL. By using our method to verify UAV missions, we highlight the potential portability of cascading verification and, ultimately, semantic model checking, which has thus far been applied exclusively to the Web services domain.

We illustrate cascading verification with a prototype system that verifies the correctness of 58 UAV mission plans; the development of those plans is structured with DSM. On average, our prototype synthesizes PRISM code that is 3.127 and 4.490 times
greater than the size of YAML input with regard to LOC and tokens, respectively. For traffic-surveillance missions, the prototype realizes even bigger reductions with synthesized PRISM code that is 4.522 and 8.087 times greater than the size of YAML input with regard to LOC and tokens, respectively. These results provide preliminary evidence of non-trivial reduction in the effort required to produce mission models and properties.

LOC- and token-based metrics are used to evaluate the abstraction, i.e., the reduction in modeling complexity, afforded by our prototype. In addition to enhanced abstraction, the prototype augments PRISM’s verification capabilities and thereby enhances the effectiveness of probabilistic model checking. We evaluate effectiveness by presenting errors that can only be effectively eliminated with the automated synthesis of PRISM artifacts. We also evaluate the utility of the DTMC and PCTL artifacts synthesized by our prototype.

7.2 Future Work

We have identified several promising directions for future work. Composite CVC inferences are currently unidirectional, with Prolog facts derived from knowledge encoded in OWL+SWRL. The effects of this pipeline architecture were particularly pronounced in Section 5.3, where semantic reasoning underpinned Prolog-based classifications, which subsequently impacted the synthesis of DTMC and PCTL artifacts. While conceptually and practically appealing, an inference pipeline constrains the reasoning process from refining Prolog inferences with ontological knowledge, and increases the potential for knowledge duplication. We aim to address these limitations by developing a knowledge representation framework that can support more flexible, iterative reasoning.

A second issue pertains to the artifacts that constitute the CVC knowledge base including CEMO, the Prolog rule-base, and the DTMC and PCTL templates. These artifacts should be extensible to reflect changes in domain knowledge. Extensions should in turn be verifiable to ensure that domain knowledge remains consistent across the entire knowledge base. This requirement provides impetus for the development of a mechanism that will automate the consistency management process.

We also intend to further the evaluation of our method and prototype by enhancing the sophistication of the mission specification language and domain model presented in this thesis. And we intend to confirm the portability of cascading verification by applying our method to other significant application domains. We expect a more robust evaluation process to facilitate the abstraction and formal specification of the connections that link different technologies in the context of our method. Once formalized, these connections will likely support the consistency management process described in the preceding paragraph, and the development of a domain-agnostic compiler. Such a compiler would receive as input the artifacts and connections that constitute a domain-specific knowledge base and thereby eliminate the current de facto requirement for bespoke implementations of the CVC.

Our work has yet to address the problem of tracing PRISM results back to the un-
derlying system specifications. Without traceability, the analysis provided by PRISM may be incomprehensible to model builders [110]. In the context of the YAML DSL, traceability would serve to disambiguate the relationship between syntactic rules and operational semantics, which are defined with OWL and the PRISM language, respectively. Once formalized, elements of this relationship will likely parallel the connections described in the preceding paragraph.

Future work discussed thus far is closely related to the research, development, evaluation and outcomes presented in this thesis. The following sections present research directions that are more expansive in scope.

7.2.1 Network-Centric Model Checking

Network-Centric Operations (NCO) is a doctrine that leverages information technology to improve the effectiveness and efficiency of military operations [111]. NCO is underpinned by contemporary socio-technological advancements, and enabled by “a high-performance information grid, access to all appropriate information sources, weapons reach and maneuver with precision and speed of response, value-adding C2 processes—to include high-speed automated assignment of resources to need—and integrated sensor grids closely coupled in time to shooters and C2 processes.” [18] When combined, these elements support speed of command, the process by which superior information is turned into competitive advantage. Speed of command can be substantially enhanced when command-and-control processes are automated. Enhanced speed of command accelerates the observe, orient, decide and act (OODA) loop, which denies the enemy operational pause. Regaining this time amplifies the effects associated with speed of command, resulting in an accelerated rate of change that leads to enemy lock-out.

By automating the organization and utilization of complex operational knowledge, cascading verification could support the analysis and deployment of mission plans comprising asset configurations derived from real-time operational data including asset location, fuel and weapon statuses. Near real-time coupling of mission verification and deployment has the potential to yield a near real-time OODA loop, which will inevitably be susceptible to network and processing speed latencies. Addressing the impact of latency on mission correctness in the context of NCO constitutes an interesting research direction.

7.2.2 Annotation-Guided Model Checking

With our prototype implementation of cascading verification, model builders encode mission specifications in a YAML DSL. Notwithstanding the inherent advantages of YAML, the introduction of a novel declarative formalism can be associated with potential disadvantages. Declarative programming that is based on first-order or higher-order logics does not cope well with temporal systems [112]. This limitation, which derives from the static model theory that defines standard logics, impacts the level of expressivity afforded to mission developers. Furthermore, the novelty of our formalism increases the
complexity for potential adopters, and distances the project from real-world grounding, thereby potentially compromising the utility and evaluation of our prototype.

URBI and the Robot Operating System (ROS) are sophisticated, cross-platform and open-source frameworks that support robotic software development. Both frameworks are interoperable with established programming languages, including C++ and Java, that mitigate the aforementioned limitations. With Java-encoded missions, Java annotations could be used by model builders to embed domain knowledge in executable code, and thereby guide the automated synthesis of verification artifacts. Annotation-based verification frameworks and other related work indicate this to be a promising direction for future work [113, 114, 115]. Development and evaluation of the proposed annotation framework would be informed by, and thereby benefit from, our experience with the existing YAML DSL.
References

Appendix A

Threat Area Calculations

Threat area incursions have been considered throughout this thesis. The CVC uses hard-coded geodesic equations to establish the occurrence, and calculate the duration, of threat area incursions committed by UAVs (as described in Chapter 3). The equations employed by the CVC are underpinned by a spherical Earth with a two-dimensional surface. This rudimentary mission environment enables our prototype to avoid complexities associated with three-dimensional topographies. (Because the shape of the Earth is approximately ellipsoidal, geodetic calculations that assume a spherical geometry result in errors ranging between 0.3% and 0.5%).

In this context, a direct flightpath between two waypoints can be delineated by the minor arc of a great circle. A waypoint is a zero-dimensional spherical point designated by latitude and longitude; a great circle is the intersection of a sphere and a plane passing through the center of that sphere. The minor arc of a great circle, which we will refer to as a great circle arc, is the shortest path between two points on the surface of a sphere.

Since great circle arcs can also be used to delineate threat area boundaries, an asset enters and exits a threat area at the intersection of two great circle arcs. We therefore use great circle intersections to establish the occurrence of threat area incursions.

A.1 Establishing Threat Area Incursions

Following from the definition of a great circle, a great circle arc lies on a plane that passes through the center of a sphere. Two great circles intersect when their respective planes intersect (the only other possibility being that the planes overlap), thereby forming a straight line that crosses the surface of the underlying sphere at two points. Consequently, the intersection of two great circle arcs must occur at one of the spherical points resulting from the intersection of the great circles underpinning those arcs.

We consider great circle arcs a and b defined by points a_1, a_2 and b_1, b_2, respectively. The latitude and longitude coordinates that designate these points are converted to Cartesian coordinates using Equation A.1, where R is the Earth’s mean radius (6371 kilometers).

Equation A.2 calculates vectors v_a and v_b from points a_1, a_2 and b_1, b_2, respectively, where each vector defines a plane containing the points used to calculate that vector.
A.2. Calculating Threat Area Durations

Having established the occurrence of a threat area incursion, we proceed to calculate its duration. The duration of travel between two points is a function of distance and speed.
Appendix A. Threat Area Calculations

A.2. Calculating Threat Area Durations

\[d = \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix} = \begin{bmatrix} u_{1y} \cdot u_{2z} - u_{2y} \cdot u_{1z} \\ u_{2x} \cdot u_{1z} - u_{1x} \cdot u_{2z} \\ u_{1x} \cdot u_{2y} - u_{2x} \cdot u_{1y} \end{bmatrix} \] \hspace{1cm} (A.5)

\[p_1 = \begin{bmatrix} p_{1x} \\ p_{1y} \\ p_{1z} \end{bmatrix} = \begin{bmatrix} \frac{d_x}{\sqrt{d_x^2 + d_y^2 + d_z^2}} \\ \frac{d_y}{\sqrt{d_x^2 + d_y^2 + d_z^2}} \\ \frac{d_z}{\sqrt{d_x^2 + d_y^2 + d_z^2}} \end{bmatrix} \] \hspace{1cm} (A.6)

\[p_2 = \begin{bmatrix} p_{2x} \\ p_{2y} \\ p_{2z} \end{bmatrix} = \begin{bmatrix} -\frac{d_x}{\sqrt{d_x^2 + d_y^2 + d_z^2}} \\ -\frac{d_y}{\sqrt{d_x^2 + d_y^2 + d_z^2}} \\ -\frac{d_z}{\sqrt{d_x^2 + d_y^2 + d_z^2}} \end{bmatrix} \] \hspace{1cm} (A.7)

\[\text{lat} = \arcsin \left(\frac{z}{R} \right) \] \hspace{1cm} (A.8)

\[\text{lon} = \arctan(y, x) \] \hspace{1cm} (A.9)

A.2.1 Distance

A great circle distance is the shortest distance between two points along a path on the surface of a sphere. The great circle distance \(d \) between points \(p_1 \) and \(p_2 \) with coordinates \(\text{lat}_1, \text{lon}_1 \) and \(\text{lat}_2, \text{lon}_2 \), respectively, can be calculated using the Haversine formula in Equation A.10, where \(R \) is the Earth’s mean radius [116]. (All values passed to trigonometric functions are assumed radians.)

\[a = \sin^2 \frac{\text{lat}_2 - \text{lat}_1}{2} + \sin^2 \frac{\text{lon}_2 - \text{lon}_1}{2} \cdot \cos \text{lat}_1 \cdot \cos \text{lat}_2 \]

\[c = 2 \cdot \arctan(\sqrt{a}, \sqrt{1 - a}) \]

\[d = R \cdot c \] \hspace{1cm} (A.10)

A.2.2 Speed

The velocity of a UAV at any given moment during flight is a function of four parameters including the velocity of the UAV in still air; the UAV’s direction of travel; and the velocity and direction of the wind. Consider a UAV with velocity vector \(v_a \), which has magnitude \(|v_a| \) and direction \(\theta_a \). The UAV flies in a wind with velocity vector \(v_w \), which has magnitude \(|v_w| \) and direction \(\theta_w \). Let \(i \) and \(j \) be \(1 \text{ms}^{-1} \) (meters per second) East and \(1 \text{ms}^{-1} \) North, respectively. The component form for each velocity vector can be calculated using Equation A.11 and Equation A.12; velocity can be calculated using Equation A.13; and the speed of the UAV in \(\text{ms}^{-1} \) can be calculated using Equation A.14.
Appendix A. Threat Area Calculations

A.2. Calculating Threat Area Durations

\[
v_a = |v_a| \cos \theta_a i + |v_a| \sin \theta_a j \tag{A.11}
\]

\[
v_w = |v_w| \cos \theta_w i + |v_w| \sin \theta_w j \tag{A.12}
\]

\[
v = v_a + v_w \tag{A.13}
\]

\[
s = |v| \approx \sqrt{v_a^2 + v_w^2} \tag{A.14}
\]

A.2.3 Bearing

The direction of travel along a great circle arc is defined by initial and final bearings. The initial bearing \(\theta \) from point \(p_1 \) to point \(p_2 \) is calculated using Equation A.15. Because the range of \(\arctan \) is the interval \([-180^\circ, 180^\circ]\), the initial bearing is normalized to a compass bearing \(\theta_{in} \) using Equation A.16. The range of \(\theta_{in} \) is the interval \([0, 360^\circ]\). The normalized final bearing \(\theta_{fn} \) is calculated by reversing the initial bearing from \(p_2 \) to \(p_1 \) using Equation A.17.

\[
y = \sin(lon_2 - lon_1) \cdot \cos(lat_2)
\]

\[
x = \cos(lat_1) \cdot \sin(lat_2) - \sin(lat_1) \cdot \cos(lat_2) \cdot \cos(lon_2 - lon_1)
\]

\[
\theta = \arctan(y, x) \tag{A.15}
\]

\[
\theta_{in} = (\theta_{(p_1,p_2)} \cdot \frac{360}{2\pi} + 360) \mod 360 \tag{A.16}
\]

\[
\theta_{fn} = (\theta_{(p_2,p_1)} \cdot \frac{360}{2\pi} + 180) \mod 360 \tag{A.17}
\]

Each bearing is applied to a specific route segment. The initial bearing defines the direction of travel from \(p_1 \) to midpoint \(p_m \) between \(p_1 \) and \(p_2 \). The final bearing defines the direction of travel from \(p_m \) to \(p_2 \). The latitude and longitude coordinates for \(p_m \) are calculated using Equation A.18 and Equation A.19, respectively.

\[
Bx = \cos(lat_2) \cdot \cos(lon_2 - lon_1)
\]

\[
By = \cos(lat_2) \cdot \sin(lon_2 - lon_1)
\]

\[
lat_m = \arctan(\sin(lat_1) + \sin(lat_2), \sqrt{(\cos(lat_1 + Bx)^2 + By^2)}) \tag{A.18}
\]

\[
lon_m = lon_1 + \arctan(By, cos(lat_1 + Bx)) \tag{A.19}
\]

A.2.4 Duration

The duration of travel along a great circle arc defined by initial and final bearings requires calculations for two speeds and two distances. Equation A.20 generalizes this requirement.
by calculating the duration of travel along a path delineated by n waypoints, where $d(p_i,p_{i+1})$ is the distance in kilometers between sequential points p_i and p_{i+1}; and $s(p_i,p_{i+1})$ is the speed of travel in ms^{-1} from p_i to p_{i+1}. Because Equation A.10 calculates distance in kilometers and Equation A.14 calculates speed in meters per second, Equation A.20 converts distances to meters in order to calculate duration in seconds.

$$
\text{duration} := \sum_{i=1}^{n} \frac{d(p_i,p_{i+1})}{s(p_i,p_{i+1})} \cdot 1000 \quad (A.20)
$$
Appendix B

Ontology

Listing B.1: OWL code for CEMO.

```owl
Ontology: complex_missions

Datatype: xsd:integer

Class: owl:Nothing

Class: Action

Class: ARDrone
  SubClassOf: NamedAsset,
  hasCostValue some xsd:integer[<= 500],
  hasEnduranceInSeconds some xsd:integer[<= 70],
  hasSpeedInKilometersPerHour some xsd:integer[<= 18]
  DisjointWith: Hummingbird

Class: Area
  SubClassOf: hasWaypoint some Waypoint

Class: Asset
  SubClassOf: hasAction some KineticAction,
  hasCostValue some xsd:integer,
  hasEnduranceInSeconds some xsd:integer,
  hasSpeedInKilometersPerHour some xsd:integer

Class: HoverAction
  SubClassOf: KineticAction,
  hasWaypoint some Waypoint
  DisjointWith: TraversePathSegmentAction

Class: Hummingbird
  SubClassOf: NamedAsset,
  hasCostValue some xsd:integer[>= 5000],
  hasEnduranceInSeconds some xsd:integer[<= 120],
  hasSpeedInKilometersPerHour some xsd:integer[<= 50]
  DisjointWith: ARDrone

Class: KineticAction
  SubClassOf: Action,
  hasDurationInSeconds some xsd:integer,
  hasPrecondition only Action
  DisjointWith: SensorAction

Class: Mission
  SubClassOf: hasAsset some Asset

Class: NamedAsset
  SubClassOf: Asset

Class: PhotoSurveillanceAction
  SubClassOf: SensorAction,
  hasDurationInSeconds some xsd:integer,
  hasPrecondition only Action

Class: SensorAction
```

115
Appendix B. Ontology

SubClassOf: Action
DisjointWith: KineticAction

Class: TraversePathSegmentAction
SubClassOf: KineticAction,
 hasStartPoint some Waypoint,
 hasEndpoint some Waypoint
DisjointWith: HoverAction

Class: Waypoint

DisjointClasses: Action, Area, Asset, Mission, Waypoint

DataProperty: hasCostValue
 Characteristics: Functional
 Domain: Asset
 Range: xsd:integer

DataProperty: hasDurationInSeconds
 Characteristics: Functional
 Domain: Action
 Range: xsd:integer

DataProperty: hasEnduranceInSeconds
 Characteristics: Functional
 Domain: Asset
 Range: xsd:integer

DataProperty: hasSpeedInKilometersPerHour
 Characteristics: Functional
 Domain: Asset
 Range: xsd:integer

ObjectProperty: hasAction
 Characteristics: Asymmetric, Irreflexive, InverseFunctional
 Domain: Asset
 Range: Action
 InverseOf: isActionOf

ObjectProperty: hasAsset
 Characteristics: Asymmetric, Irreflexive, InverseFunctional
 Domain: Mission
 Range: Asset

ObjectProperty: hasEndPoint
 SubPropertyOf: hasWaypoint
 Characteristics: Asymmetric, Irreflexive, Functional
 Domain: TraversePathSegmentAction
 Range: Waypoint

ObjectProperty: hasPrecondition
 Characteristics: Transitive
 Domain: Action
 Range: Action
 InverseOf: isPreconditionTo

ObjectProperty: hasSibling
 Characteristics: Asymmetric, Irreflexive
 Domain: SensorAction
 Range: KineticAction

ObjectProperty: hasStartPoint
 SubPropertyOf: hasWaypoint
 Characteristics: Asymmetric, Irreflexive, Functional

116
Appendix B. Ontology

Domain: TraversePathSegmentAction
Range: Waypoint

ObjectProperty: hasWaypoint
Characteristics: Asymmetric, Irreflexive
Range: Waypoint
InverseOf: isWaypointOf

ObjectProperty: isActionOf
Characteristics: Asymmetric, Irreflexive, Functional
Domain: Action
Range: Asset
InverseOf: hasAction

ObjectProperty: isPreconditionTo
Characteristics: Transitive
Domain: Action
Range: Action
InverseOf: hasPrecondition

ObjectProperty: isWaypointOf
Characteristics: Asymmetric, Irreflexive
Domain: Waypoint
InverseOf: hasWaypoint

Rule:
KineticAction(?x),
KineticAction(?y),
SensorAction(?z),
hasAction(?a, ?x),
hasAction(?a, ?y),
hasPrecondition(?x, ?y),
hasPrecondition(?z, ?y)
-> hasSibling(?z, ?x)

Rule:
KineticAction(?x),
KineticAction(?y),
SensorAction(?z),
hasAction(?a, ?x),
hasAction(?a, ?y),
hasPrecondition(?x, ?y),
hasPrecondition(?z, ?y)
-> hasSibling(?z, ?y)

Rule:
SensorAction(?y),
hasAction(?a, ?x),
hasAction(?b, ?y),
hasPrecondition(?x, ?y),
DifferentFrom (?a, ?b)
-> owl:Nothing(?y)

Listing B.2: OWL code for Tactical-CEMO.

Ontology: complex_tactical_missions

Import: complex_missions
Class: Action
Class: Area
Class: Asset
Class: HoverAction
Class: KineticAction
Class: Mission
Class: SensorAction
Class: TraversePathSegmentAction
Appendix B. Ontology

Class: Waypoint
DataProperty: hasCostValue
DataProperty: hasSpeedInKilometersPerHour
ObjectProperty: hasAction
ObjectProperty: hasEndpoint
ObjectProperty: hasSibling
ObjectProperty: hasWaypoint
ObjectProperty: isWaypointOf

Datatype: xsd:double
Datatype: xsd:integer

Class: DirectThreatAreaAction
EquivalentTo: ThreatAreaAction
and (DirectThreatAreaHoverAction or DirectThreatAreaTPSA)

Class: DirectThreatAreaHoverAction
EquivalentTo: ThreatAreaAction
and (HoverAction
and (hasWaypoint some ThreatAreaWaypoint))
DisjointWith: DirectThreatAreaTPSA

Class: DirectThreatAreaTPSA
EquivalentTo: ThreatAreaAction
and (TraversePathSegmentAction
and (hasEndpoint some ThreatAreaWaypoint))
DisjointWith: DirectThreatAreaHoverAction

Class: DomainConcept

Class: HighVulnerabilityAsset
EquivalentTo: Asset
and (hasCostValue some xsd:integer[<= 1000])
and (hasSpeedInKilometersPerHour some xsd:integer[<= 20])
SubClassOf: hasRiskAcceptabilityFactor value HighRiskAcceptabilityFactor,
hasVulnerability value HighVulnerability
DisjointWith: LowVulnerabilityAsset

Class: LowVulnerabilityAsset
EquivalentTo: Asset
and (hasCostValue some xsd:integer[>= 3000])
and (hasSpeedInKilometersPerHour some xsd:integer[<= 60])
SubClassOf: hasRiskAcceptabilityFactor value LowRiskAcceptabilityFactor
hasVulnerability value LowVulnerability
DisjointWith: HighVulnerabilityAsset

Class: RiskAcceptabilityFactor
EquivalentTo: DomainConcept
and ((HighRiskAcceptabilityFactor, LowRiskAcceptabilityFactor))
DisjointWith: Vulnerability

Class: ThreatArea
EquivalentTo: Area
and (hasWaypoint some ThreatAreaWaypoint)

Class: ThreatAreaAction
EquivalentTo: KineticAction
and (hasWaypoint some ThreatAreaWaypoint)

Class: ThreatAreaWaypoint
EquivalentTo: Waypoint
and (isWaypointOf some ThreatArea)

Class: ThreatenedAsset
EquivalentTo: Asset
and (hasAction some DirectThreatAreaAction)

Class: ValidAsset
EquivalentTo: ThreatenedAsset
and (hasAction some (SensorAction
and (hasSibling some DirectThreatAreaAction)))

Class: Vulnerability

118
Appendix B. Ontology

EquivalentTo: DomainConcept
and ((HighVulnerability, LowVulnerability))
DisjointWith: RiskAcceptabilityFactor
DisjointClasses: Action, Area, Asset, DomainConcept, Mission, Waypoint

DataProperty: hasDoubleValue
Characteristics: Functional
Domain: DomainConcept
Range: xsd:double

Individual: HighRiskAcceptabilityFactor
Types: RiskAcceptabilityFactor
Facts: hasDoubleValue 0.8

Individual: HighVulnerability
Types: Vulnerability
Facts: hasDoubleValue 0.1

Individual: LowRiskAcceptabilityFactor
Types: RiskAcceptabilityFactor
Facts: hasDoubleValue 0.6

Individual: LowVulnerability
Types: Vulnerability
Facts: hasDoubleValue 0.01

ObjectProperty: hasRiskAcceptabilityFactor
Characteristics: Asymmetric, Irreflexive, Functional
Domain: Asset
Range: RiskAcceptabilityFactor

ObjectProperty: hasVulnerability
Characteristics: Asymmetric, Irreflexive, Functional
Domain: Asset
Range: Vulnerability

ObjectProperty: invades
Characteristics: Asymmetric, Irreflexive, Functional
Domain: DirectThreatAreaTPSA
Range:ThreatArea

Rule:

\[
\text{ThreatArea}(?a), \\
\text{hasEndpoint}(?x, ?w), \\
\text{isWaypointOf}(?w, ?a) \\
\rightarrow \text{invades}(?x, ?a)
\]

Listing B.3: OWL code for Traffic-CSEO.

```
Ontology: complex_traffic_surveillance_missions

Import: complex_missions
Class: owl:Nothing
Class: Action
Class: Area
Class: Asset
Class: HoverAction
Class: Mission
Class: SensorAction
Class: Waypoint
ObjectProperty: hasAction
ObjectProperty: hasWaypoint

Datatype: xsd:double
Datatype: xsd:integer
```
Class: DomainConcept

Class: FreewaySection
SubClassOf: Road,
approachesMinimumSpeed some xsd:double,
exceedsMinimumSpeed some xsd:double,
exceedsNominalSpeed some xsd:double,
hasLaneClassification some LaneClassification,
hasRampFrequency some RampFrequency

Class: HighRampFrequency
SubClassOf: RampFrequency
DisjointWith: LowRampFrequency

Class: HighSpeedFreewaySection
EquivalentTo: FreewaySection
and (hasLaneClassification some ThreeLaneClassification)
and (hasRampFrequency some LowRampFrequency)
SubClassOf: approachesMinimumSpeed some xsd:double[>= 0.2],
exceedsMinimumSpeed some xsd:double[>= 0.9],
exceedsNominalSpeed some xsd:double[>= 0.5]
DisjointWith: LowSpeedFreewaySection

Class: HighSpeedLidarAction
EquivalentTo: LidarAction
and (monitors some HighSpeedFreewaySection)
SubClassOf: hasIntervalCalibrationFactor value HighIntervalCalibrationFactor
DisjointWith: LowSpeedLidarAction

Class: IntervalCalibrationFactor
EquivalentTo: DomainConcept
and ((HighIntervalCalibrationFactor, LowIntervalCalibrationFactor))

Class: LaneClassification
EquivalentTo: ThreeLaneClassification
or TwoLaneClassification
SubClassOf: ValuePartition
DisjointWith: RampFrequency

Class: LidarAction
SubClassOf: SensorAction,
hasIntervalCalibrationFactor some IntervalCalibrationFactor,
hasIntervalInSeconds some xsd:integer,
isConcurrentWith some HoverAction
DisjointWith: PhotoSurveillanceAction

Class: LowRampFrequency
SubClassOf: RampFrequency
DisjointWith: HighRampFrequency

Class: LowSpeedFreewaySection
EquivalentTo: FreewaySection
and (hasLaneClassification some TwoLaneClassification)
and (hasRampFrequency some HighRampFrequency)
SubClassOf: approachesMinimumSpeed some xsd:double[>= 0.3],
exceedsMinimumSpeed some xsd:double[>= 0.7],
exceedsNominalSpeed some xsd:double[>= 0.4]
DisjointWith: HighSpeedFreewaySection

Class: LowSpeedLidarAction
EquivalentTo: LidarAction
and (monitors some LowSpeedFreewaySection)
SubClassOf: hasIntervalCalibrationFactor value LowIntervalCalibrationFactor
DisjointWith: HighSpeedLidarAction

Class: PhotoSurveillanceAction
DisjointWith: LidarAction

Class: RampFrequency
EquivalentTo: HighRampFrequency
or LowRampFrequency
SubClassOf: ValuePartition
Appendix B. Ontology

DisjointWith: LaneClassification

Class: Road
 SubClassOf: hasWaypoint some Waypoint

Class: ThreeLaneClassification
 SubClassOf: LaneClassification
 DisjointWith: TwoLaneClassification

Class: TwoLaneClassification
 SubClassOf: LaneClassification
 DisjointWith: ThreeLaneClassification

Class: ValuePartition

DisjointClasses: Action, Area, Asset, DomainConcept, Mission, Road, ValuePartition, Waypoint

DataProperty: approachesMinimumSpeed
 Characteristics: Functional
 Domain: FreewaySection
 Range: xsd:double

DataProperty: exceedsMinimumSpeed
 Characteristics: Functional
 Domain: FreewaySection
 Range: xsd:double

DataProperty: exceedsNominalSpeed
 Characteristics: Functional
 Domain: FreewaySection
 Range: xsd:double

DataProperty: hasDoubleValue
 Characteristics: Functional
 Domain: DomainConcept
 Range: xsd:double

DataProperty: hasIntegerValue
 Characteristics: Functional
 Domain: DomainConcept
 Range: xsd:integer

DataProperty: hasIntervalInSeconds
 Characteristics: Functional
 Domain: LidarAction
 Range: xsd:integer

Individual: HighIntervalCalibrationFactor
 Types: IntervalCalibrationFactor
 Facts: hasIntegerValue 3

Individual: LowIntervalCalibrationFactor
 Types: IntervalCalibrationFactor
 Facts: hasIntegerValue 2

ObjectProperty: hasIntervalCalibrationFactor
 Characteristics: Asymmetric, Irreflexive, Functional
 Domain: LidarAction
 Range: IntervalCalibrationFactor

ObjectProperty: hasLaneClassification
 Characteristics: Asymmetric, Irreflexive, Functional
 Domain: FreewaySection
 Range: LaneClassification

ObjectProperty: hasRampFrequency
 Characteristics: Asymmetric, Irreflexive,
Appendix B. Ontology

Functional
Domain: FreewaySection
Range: RampFrequency

ObjectProperty: isConcurrentWith
Characteristics: Asymmetric, Irreflexive
Domain: LidarAction
Range: HoverAction

ObjectProperty: monitors
Characteristics: Asymmetric, Irreflexive
Domain: LidarAction
Range: FreewaySection

Rule:
 hasAction(?a, ?x),
 isConcurrentWith(?y, ?x)
 -> hasAction(?a, ?y)

Rule:
 HoverAction(?h),
 FreewaySection(?f),
 LidarAction(?l),
 hasWaypoint(?f, ?w),
 hasWaypoint(?h, ?w),
 isConcurrentWith(?l, ?h)
 -> monitors(?l, ?f)

Rule:
 hasAction(?a, ?x),
 hasAction(?b, ?y),
 isConcurrentWith(?x, ?y),
 DifferentFrom (?a, ?b)
 -> owl:Nothing(?x)

Listing B.4: OWL code for Mission A.

Ontology: Mission_A
Import: complex_tactical_missions
Class: Hummingbird
Class: PhotoSurveillanceAction
Class: ThreatArea
Class: TraversePathSegmentAction
Class: Waypoint
ObjectProperty: hasAction
ObjectProperty: hasEndpoint
ObjectProperty: hasPrecondition
ObjectProperty: hasStartPoint
ObjectProperty: hasWaypoint

Individual: Hummingbird1
 Types: Hummingbird
 Facts: hasAction TraversePathSegmentAction1, hasAction TraversePathSegmentAction2

Individual: Hummingbird2
 Types: Hummingbird
 Facts: hasAction TraversePathSegmentAction3, hasAction TraversePathSegmentAction4, hasAction PhotoSurveillanceAction5

Individual: PhotoSurveillanceAction5
 Types: PhotoSurveillanceAction
 Facts: hasPrecondition TraversePathSegmentAction3

Individual: ThreatArea1
 Types: ThreatArea
 Facts: hasWaypoint Waypoint6
Appendix B. Ontology

Individual: TraversePathSegmentAction1
Types: TraversePathSegmentAction
Facts: hasStartPoint Waypoint1, hasEndpoint Waypoint2

Individual: TraversePathSegmentAction2
Types: TraversePathSegmentAction
Facts: hasPrecondition TraversePathSegmentAction1, hasStartPoint Waypoint2, hasEndpoint Waypoint3

Individual: TraversePathSegmentAction3
Types: TraversePathSegmentAction
Facts: hasStartPoint Waypoint4, hasEndpoint Waypoint5

Individual: TraversePathSegmentAction4
Types: TraversePathSegmentAction
Facts: hasPrecondition TraversePathSegmentAction3, hasStartPoint Waypoint5, hasEndpoint Waypoint6

Individual: Waypoint1
Types: Waypoint

Individual: Waypoint2
Types: Waypoint

Individual: Waypoint3
Types: Waypoint

Individual: Waypoint4
Types: Waypoint

Individual: Waypoint5
Types: Waypoint

Individual: Waypoint6
Types: Waypoint
Appendix C

Prolog Knowledge Base

Listing C.1: Prolog code for asset rules.

```prolog
/* OWL defined class */
single_action_asset(A) :-
    bagof(A, X^(has_action(A, X)), C),
    length(C, 1).

/* OWL defined class */
zero_action_asset(A) :-
    not(has_action(A, _)).

/* OWL defined class */
observer_asset(A) :-
    has_action(A, X),
    observer(X).

/* OWL defined class */
observed_asset(A) :-
    has_action(A, X),
    subject(X).

/* SWRL rule */
observes(A, B) :-
    crosscutting_precondition(A, _, B, _).

primary_asset(A) :-
    observer_asset(A),
    ( not(observed_asset(A));
      observes(A, B),
      observes(B, A) )
).
```

Listing C.2: Prolog code for utility rules.

```prolog
:- dynamic asset/1.
:- dynamic kinetic_action/1.
:- dynamic has_action/2.
:- dynamic has_precondition/2.

precondition_util(A, X, B, Y) :-
    has_action(A, X),
    has_action(B, Y),
    has_precondition(Y, X).

crosscutting_precondition(A, X, B, Y) :-
    precondition_util(A, X, B, Y),
    not(A = B).

sibling_precondition(A, X, B, Y) :-
    precondition_util(A, X, B, Y),
    A = B.
```
Appendix C. Prolog Knowledge Base

/* OWL property */
is_precondition_to(X, Y) :-
 has_action(A, X),
 has_action(A, Y),
 has_precondition(Y, X).

/* OWL defined class */
singleton(X) :-
 has_action(A, X),
 single_action_asset(A).
terminal(X) :-
 has_action(A, X),
 not(is_precondition_to(X, _)),
 not(single_action_asset(A)),
 not(zero_action_asset(A)).

Listing C.3: Prolog code for default rules.

default_util(X) :-
 not(constrained_observer(X)),
 not(observer(X)),
 not(observer_precondition(X)),
 not(subject(X)),
 not(subject_constraint(X)),
 not(subject_precondition(X)).
default(X) :-
 default_util(X),
 not(singleton(X)),
 not(terminal(X)).
default_singleton(X) :-
 default_util(X),
 singleton(X).
default_terminal(X) :-
 default_util(X),
 terminal(X).

Listing C.4: Prolog code for observer and subject rules.

/* OWL defined class */
observer_and_subject(X) :-
 observer(X),
 subject(X).
/* OWL defined class */
observer_and_constrained_subject(X) :-
 observer(X),
 constrained_subject(X).
/* OWL defined class */
observer_and_singleton_subject(X) :-
 observer(X),
 singleton_subject(X).
observer_and_terminal_subject(X) :-
 observer(X),
 terminal_subject(X).

Listing C.5: Prolog code for observer rules.

/* SWRL rule */
observer(Y) :-
 crosscutting_precondition(_, _, _, Y).
default_observer(X) :-
 observer(X),
 not(observer_precondition(X)).
Appendix C. Prolog Knowledge Base

/* SWRL rule */
constrained_observer(Y) :-
 constrained_subject(X),
 cutting_precondition(_, X, _, Y).

/* SWRL rule */
sibling_observer(Y) :-
 sibling_precondition(_, _, _, Y).

terminal_observer(X) :-
 observer(X),
 terminal(X).

terminal_constrained_observer(X) :-
 constrained_observer(X),
 terminal(X).

/* SWRL rule */
observer_precondition(X) :-
 sibling_precondition(_, X, _, Y),
 (observer(Y);
 observer_precondition(Y))
).

Listing C.6: Prolog code for subject rules.

/* SWRL rule */
subject(X) :-
 cutting_precondition(_, X, _, _).

/* OWL defined class */
constrained_subject(X) :-
 subject(X),
 is_precondition_to(X, _).

leading_subject(X) :-
 cutting_precondition(_, X, _, Y),
 not(sibling_observer(Y)).

/* OWL defined class */
singleton_subject(X) :-
 subject(X),
 singleton(X).

terminal_subject(X) :-
 subject(X),
 terminal(X).

/* SWRL rule */
subject_constraint(Y) :-
 sibling_precondition(_, X, _, Y),
 (constrained_subject(X);
 subject_constraint(X))
).

/* SWRL rule */
sibling_precondition(X) :-
 sibling_precondition(_, X, _, Y),
 (subject(Y);
 subject_precondition(Y))
).

terminal_subject_constraint(X) :-
 subject_constraint(X),
 terminal(X).
Listing C.7: Prolog code for existential quantification rules.

```prolog
:- include(asset_rules).
:- include(utility_rules).

:- dynamic has_asset/2.
:- dynamic has_duration_in_seconds/2.
:- dynamic has_endpoint/2.
:- dynamic has_endurance_in_seconds/2.
:- dynamic has_interval_in_seconds/2.
:- dynamic has_start_point/2.
:- dynamic has_waypoint/2.
:- dynamic is_concurrent_with/2.
:- dynamic lidar_action/1.
:- dynamic mission/1.
:- dynamic photo_surveillance_action/1.

invalid_kinetic_action(K) :-
    not(has_duration_in_seconds(K, _)).

invalid_hover_action(H) :-
    invalid_kinetic_action(H);
    not(has_waypoint(H, _)).

invalid_traverse_path_segmentAction(T) :-
    invalid_kinetic_action(T);
    not(has_endpoint(T, _));
    not(has_start_point(T, _)).

invalid_photo_surveillance_action(P) :-
    not(has_duration_in_seconds(P, _)).

invalid_asset(A) :-
    zero_action_asset(A);
    not(has_endurance_in_seconds(A, _)).

invalid_mission(M) :-
    not(has_asset(M, _)).

invalid_lidar_action(L) :-
    not(has_interval_in_seconds(L, _));
    not(is_concurrent_with(L, _)).
```

127
Appendix D

PRISM Templates

Listing D.1: Ruby code for the DTMC asset module template.

```ruby
require './template_util'

class Action; attr_accessor :asset end

class Asset
  alias :original_add :add_action
  def add_action(action)
    original_add(action)
    action.asset = self
  end

  def last
    @kinetic_actions.each { |action| return action if action.is_terminal? }
  end
end

class KineticAction < Action
  attr_reader :observers
  def is_terminal?
    @type.include?(:singleton) || @type.include?(:terminal)
  end
end

module AssetTemplate
  @primary_asset = lambda { |action|
    @asset ||= 
    if action.asset.type == :primary_asset
      @asset = action.asset
    else
      action.asset.kinetic_actions.each { |kinetic_action|
        kinetic_action.observers.each { |observer|
          return @primary_asset[observer] if observer.is_kinetic_action?
        }
      }
    end
  }

  def self.generate(asset)
    commands = String.new
    asset.kinetic_actions.each { |kinetic_action|
      action = "[$(action_name,kinetic_action)]"
      guard = "e$(asset.id)>0, d$(kinetic_action.id)>0"
      update = "(e$(asset.id)=-e$(asset.id)-1)"
      commands += "#$(action),#(guard),#(update):";
      commands += "\n#("s"+2)" unless kinetic_action == asset.kinetic_actions.
      last
    }
    puts <<-end.gsub(/ {6}/, '')
    module #$(asset.class)#$(asset.id)
      e$(asset.id) : [0..#$(asset.class.endurance)] init #$(asset.class.endurance)
    end
    #{commands}
  end
end
```

128
Listing D.2: Ruby code for the DTMC survivability template.

```ruby
require './template_util'

class Asset; attr_accessor :raf, :vulnerability end

class KineticAction < Action; attr_accessor :incursion end

class SensorAction < Action
  attr_reader :id

  def defensive_copy :siblings
    @siblings = siblings.collect { |item| item.to_s }
  end
end

class ThreatLoader < ClassLoader
  def initialize(operation)
    super(operation)
    load(:actions, :incursion, :siblings)
    load(:assets, :raf, :vulnerability)
  end
end

module SurvivabilityTemplate
  @command = lambda { |params, action|
    newline = "\n\n"("\n"*2)"

```
temp = "#{params[:action]}/uni2423#{params[:guard1]}/uni2423->/uni2423#{params[:update]};#{newline
" temp += "#{params[:action]}/uni2423#{params[:guard2]}/uni2423true;" temp += newline unless action == @asset.kinetic_actions.last temp }

def self.generate(asset)
 unless asset.vulnerability == nil
 @asset = asset
 generate_formulas
 generate_kinetic_action_modules(&@command)
 generate_sensor_action_modules(&@command) unless asset.sensor_actions.empty
 generate_properties
 end
end

private

def self.generate_formulas
 durations = String.new
 @asset.kinetic_actions.each { |action|
 unless action.incursion == nil
 action.incursion.each_pair { |key, value| puts "const/uni2423int/uni2423#{key}#{action.id}/uni2423=/uni2423#{value};
 start = "start#{action.id}"
 finish = "finish#{action.id}"
 duration = "duration#{action.id}"
 puts <<-end.gsub(/ {2}/, '')
 formula actn
 #{action.id}_tai = d#{action.id} >#{finish} & d#{action.id} <=#{start};
 formula
 #{duration} = #{start} - #{finish};
 end
 durations += durations.empty? ? duration : "+/uni2423#{duration}"
 }

 sad = @asset.sensor_actions.empty? ? 0 : "sad#{@asset.id}"
 puts <<-end.gsub(/ {8}/, '')
 formula tkad$@asset.id = #$durations;
 formula raf$@asset.id = $(sad) / tkad$@asset.id;
 end
end

end

def self.generate_kinetic_action_modules
 commands = String.new
 @asset.kinetic_actions.each { |action|
 unless action.incursion == nil
 params = {
 action: "[actn#{action.id}]",
 guard1: "!a#{@asset.id}d/uni2423&/uni2423/uni2423actn#{action.id}_tai",
 guard2: "/uni2423a#{@asset.id}d/uni2423|/uni2423!actn#{action.id}_tai",
 update: "#{1/uni2423-/uni2423@asset.vulnerability}:(a#{@asset.id}d'
 =false)/uni2423+/uni2423" +
 "#{@asset.vulnerability}:(a#{@asset.id}d'
 =true)"
 }
 commands += yield(params, action)
 end
 }
 puts <<-end.gsub(/ {8}/, '')
 module ${@asset.class}$@asset.id_Survivability
 a$@asset.id)d : bool init false;
 #{commands}
 endmodule
 end
end

end

def self.generate_sensor_action_modules
 commands = String.new
 @asset.kinetic_actions.each { |action|
 siblings = String.new
 @asset.sensor_actions.each { |sensor_action|
 if sensor_action.siblings.include?(action.id)
 siblings += (siblings.empty? ? 'r' : '|r') + sensor_action.id
 end
 }
Listing D.3: Ruby code for the PCTL property template.
Listing D.4: Ruby template utility code.

```ruby
require './util'
autoload :Asset, './asset'
autoload :ClassLoader, './class_loader'

module ActionUtil
  def self.respondent *method_names
    method_names.each { |name|
      define_method("is_#{name}_action?") { self.class.superclass.name == "#{name.caps}\Action" }
    }
  end

  respondent :kinetic, :sensor
end

module TypeUtil
  attr_reader :type

  def type=(type)
    @type = type.to_sym
  end
end

class Action; include ActionUtil end

class Asset; include TypeUtil

  def self.reader *method_names
    method_names.each { |name|
      temp = "#{name}_actions"
      define_method(temp) { unless instance_variable_defined?("@#{temp}")
        instance_variable_set("@#{temp}", Array.new(0).delete_if { |action|
          !action.send("is_#{name}_action?")
        })
        instance_variable_get("@#{temp}")
      }
    }
  end

  attr_reader :id
  reader :kinetic, :sensor
end

class KineticAction < Action
  include TypeUtil
  attr_reader :id
end

Listing D.5: Ruby code for module Mission.

```ruby
require './util'
autoload :ARDrone, './asset'
autoload :TraversePathSegmentAction, './action'

module Mission
 def self.execute(assets)
 while !assets.empty?
 assets.each { |asset|
 asset.execute
 assets.delete(asset) if asset.completed?
 }
 end
 end
end
```
execute { |operation|  
  puts "executing,#{operation}..."  
  Mission.execute(OpLoader.new(operation).assets)  
}

Listing D.6: Ruby utility code.

```
autoload :YAML, 'yaml'
autoload :HoverAction, './hover_action'
autoload :KineticAction, './action'
autoload :LidarAction, './lidar_action'
autoload :Observer, './observer'
autoload :OpLoader, './op_loader'
autoload :Subject, './subject'
Dir['./core/*'].each { |file| require file }
def execute
 Dir['./operations/operation_*'].each { |file|
 yield(File.basename(file, '.yaml'))
 }
end
```

Listing D.7: Ruby code for class `Asset`.

```
class Asset
 class << self; attr_accessor :endurance end
 def initialize(id)
 @id = id.to_s
 @endurance = self.class.endurance
 @actions = Array.new
 end
 def add_action(action)
 @actions.push(action)
 end
 def execute
 @actions.each { |action|
 action.execute
 @actions.delete(action) if action.completed?
 }
 @endurance -= 1
 end
 def completed?
 @endurance == 0 || @actions.empty?
 end
end
class ARDrone < Asset; end
class Hummingbird < Asset; end
```

Listing D.8: Ruby code for class `ClassLoader`.

```
class ClassLoader < OpLoader
 def initialize(operation)
 super(operation)
 @class_file = load_file(operation, :classifications)
 load(:actions, :type)
 load(:assets, :type)
 end
 private
 def load(name, *attributes)
 singular_name = name.capitalize.singularize
 if @class_file.include?(singular_name)
 @class_file.fetch(singular_name).each_value { |collection|
 collection
 }
 end
 end
end
```
collection.symbolize_keys!.each { |item|
  attributes.each { |attribute|
    if item.include?(attribute)
      instance_variable_get("@#{name}").fetch(item.fetch(:id)).send("#{attribute}=", item.fetch(attribute))
    end
  }
end
end
end

Listing D.9: Ruby code for class HoverAction.

class HoverAction < KineticAction
  def initialize(id, duration)
    super id, duration
    @concurrences = Array.new
  end

  def add_concurrency(action)
    @concurrences.push(action)
  end

  def execute
    if @subjects.empty?
      @concurrences.each { |action| action.execute }
      execute_naively
    end
  end
end

Listing D.10: Ruby code for class Action.

class Action
  include Subject
  include Observer

  def initialize(id, duration)
    super()
    @id = id.to_s
    @duration = duration
  end

  def add_precondition(action)
    add_subject(action)
  end

  def execute
    execute_naively if @subjects.empty?
  end

  def completed?
    @duration == 0
  end

  private
  def execute_naively
    @duration -= 1
    notify if completed?
  end
end

class KineticAction < Action; end
class SensorAction < Action; end
class PhotoSurveillanceAction < SensorAction; end
class TraversePathSegmentAction < KineticAction; end
Appendix D. PRISM Templates

Listing D.11: Ruby code for class LidarAction.

```ruby
class LidarAction
 include Subject
 def initialize(id, interval)
 super()
 @id = id
 @interval = interval
 @readings = 0
 @timestep = 0
 end
 def execute
 @readings += 1 if @timestep % @interval == 0
 @timestep += 1
 end
end
```

Listing D.12: Ruby code for module Observer.

```ruby
module Observer
 def initialize
 super()
 @subjects = Array.new
 end
 protected
 def add_subject(obj)
 @subjects.push(obj)
 obj.attach(self)
 end
 def update(obj)
 @subjects.delete(obj)
 obj.detach(self)
 end
end
```

Listing D.13: Ruby code for class OpLoader.

```ruby
class OpLoader
 def self.loader *method_names
 method_names.each { |name|
 define_method("load_#{name}" Bow{name}) {
 instance_variable_get("@#{name}").each_pair { |observer_id, subject_ids|
 subject_ids.each { |subject_id|
 case name
 when :concurrencies then id_1, id_2 = subject_id, observer_id
 when :preconditions then id_1, id_2 = observer_id, subject_id
 end
 @actions.fetch(id_1).send("add_#{name.singularize}", @actions.fetch(id_2))
 }
 }
 }
 }
 end
 defensive_copy :assets
 loader :concurrencies, :preconditions
 def initialize(operation)
 @op_file = load_file operation
 collections = [:actions, :concurrencies, :preconditions, :assets]
 collections.each { |collection| instance_variable_set("@#{collection}", Hash.
 new) }
 collections.each { |collection| send("load_#{collection}") }
 end
 private
 def load_file(file, dir = :operations)
```
Listing D.14: Ruby code for module \texttt{Subject}.

```ruby
module Subject
 def initialize
 @observers = Array.new
 end

 protected
 def attach(obj)
 @observers.push(obj)
 end

 def detach(obj)
 @observers.delete(obj)
 end

 def notify
 @observers.each { |observer| observer.update(self) }
 end
end
```

Listing D.15: Code that modifies the Ruby core class \texttt{Array}.

```ruby
class Array
 def symbolize_keys!
 self.each { |item| item.symbolize_keys! if item.class == Hash }
 self
 end
end
```

Listing D.16: Code that modifies the Ruby core class \texttt{Hash}.

```ruby
class Hash
 def symbolize_keys!
 keys.each { |key| self[key] = delete(key) }
 values.each { |value| value.symbolize_keys! if value.class == Hash }
 self
 end
end
```
Listing D.17: Code that modifies the Ruby core class `Module`.

```ruby
class Module
 def defensive_copy *method_names
 method_names.each { |name|
 define_method(name) {
 var = instance_variable_get("@#{name}"")
 Array.new(var.class == Array ? var : var.values)
 }
 }
 end
end
```

Listing D.18: Code that modifies the Ruby core class `Symbol`.

```ruby
require 'active_support/inflector'
class Symbol
 def include?(sym)
 to_s.include?(sym.to_s)
 end

 def singularize
 to_s.singularize.intern
 end

 def to_c
 Kernel.const_get(self)
 end
end
```
Appendix E

DSL Schema

Listing E.1: A schema definition, encoded in the Kwalify schema language, for the YAML DSL presented in this thesis.

type: map
required: yes
mapping:
  "Action":
    type: map
required: yes
mapping:
  "HoverAction":
    type: seq
    sequence:
      - type: map
        required: yes
        mapping:
          "id":
            type: int
            required: yes
          "duration":
            type: int
            required: yes
          "preconditions":
            type: seq
            sequence:
              - type: int
              "coordinates":
                type: seq
                sequence:
                  - type: float
  "LidarAction":
    type: seq
    sequence:
      - type: map
        required: yes
        mapping:
          "id":
            type: int
            required: yes
          "interval":
            type: int
            required: yes
          "concurrency":
            type: seq
            required: yes
            sequence:
              - type: int
  "PhotoSurveillanceAction":
    type: seq
    sequence:
      - type: map
        required: yes
        mapping:
          "id":
            type: int
            required: yes
Appendix E. DSL Schema

"duration":
  type: int
  required: yes
"preconditions":
  type: seq
  sequence:
    - type: int
"TraversePathSegmentAction":
  type: seq
  sequence:
    - type: map
      required: yes
      mapping:
        "id":
          type: int
          required: yes
        "duration":
          type: int
          required: yes
        "preconditions":
          type: seq
          sequence:
            - type: int
        "coordinates":
          type: seq
          sequence:
            - type: float
"Asset":
  type: map
  required: yes
  mapping:
    "ARDrone":
      type: seq
      sequence:
        - type: map
          required: yes
          mapping:
            "id":
              type: int
              required: yes
            "endurance":
              type: int
            "actions":
              type: seq
              required: yes
              sequence:
                - type: int
    "Hummingbird":
      type: seq
      sequence:
        - type: map
          required: yes
          mapping:
            "id":
              type: int
              required: yes
            "endurance":
              type: int
            "actions":
              type: seq
              required: yes
              sequence:
                - type: int
Appendix F

Mission Verification Artifacts

Listing F.1: YAML input for Mission 1a.

```yaml
Action:
 HoverAction:
 - id: 1
 duration: 69
 coordinates: [-112.1334152514208, 36.08362433106716]
Asset:
 ARDrone:
 - id: 1
 actions: [1]
```

Listing F.2: DTMC output for Mission 1a.

```markdown
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 69; // maximum duration
module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [] e1=0 | d1=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
```

Listing F.3: PCTL output for Mission 1a.

```markdown
P=? [F d1=0]
```

Listing F.4: Log output for Mission 1a.

```markdown
Model checking: P=? \[F \ d1=0 \]
Building model...
Computing reachable states...
Reachability (BFS): 70 iterations in 0.01 seconds (average 0.000171, setup 0.00)
Time for model construction: 0.034 seconds.
Type: DTMC
```
Appendix F. Mission Verification Artifacts

States: 70 (1 initial)
Transitions: 70

Transition matrix: 720 nodes (2 terminal), 70 minterms, vars: 14r/14c

Prob0: 70 iterations in 0.01 seconds (average 0.000086, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)

yes = 70, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.0070 seconds.
Result: 1.0 (value in the initial state)

Listing F.5: YAML input for Mission 1d.

```
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 30
 preconditions: [1]
Asset:
 ARDrone:
 - id: 1
 actions: [1, 2]
```

Listing F.6: DTMC output for Mission 1d.

```
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [] e1=0 | d2=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module HoverAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
```

Listing F.7: PCTL output for Mission 1d.

```
P=? [F d2=0]
```
Listing F.8: Log output for Mission 1d.

Model checking: P=? [ F d2=0 ]

Building model...

Computing reachable states...

Reachability (BFS): 71 iterations in 0.01 seconds (average 0.000099, setup 0.00)

Time for model construction: 0.043 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 1031 nodes (2 terminal), 71 minterms, vars: 18r/18c

Prob0: 71 iterations in 0.01 seconds (average 0.000127, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.0090 seconds.

Result: 1.0 (value in the initial state)

Listing F.9: YAML input for Mission 1g.

Action:
HoverAction:
- id: 1
duration: 40
coordinates: [-112.1334152514208, 36.08362433106716]
- id: 2
duration: 40
preconditions: [1]
- id: 3
duration: 40
preconditions: [2]

Asset:
Hummingbird:
- id: 1
  actions: [1, 2, 3]

Listing F.10: DTMC output for Mission 1g.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration

module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance
  [actn1] e1>0 & d1>0 -> (e1'=e1-1);
  [actn2] e1>0 & d2>0 -> (e1'=e1-1);
  [actn3] e1>0 & d3>0 -> (e1'=e1-1);
  [] e1=0 | d3=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
Appendix F. Mission Verification Artifacts

```plaintext
[actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module HoverAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module HoverAction3 = HoverAction2[d2=d3, max_d2=max_d3, actn2=actn3, d1=d2]
 endmodule
```

**Listing F.11:** PCTL output for Mission 1g.

```
P=? [F d3=0]
```

**Listing F.12:** Log output for Mission 1g.

```
Model checking: P=? [F d3=0]
Building model...
Computing reachable states...
Reachability (BFS): 121 iterations in 0.03 seconds (average 0.000240, setup 0.00)
Time for model construction: 0.188 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121
Transition matrix: 2639 nodes (2 terminal), 121 minterms, vars: 25r/25c
Prob0: 121 iterations in 0.03 seconds (average 0.000281, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 121, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.033 seconds.
Result: 1.0 (value in the initial state)
```

**Listing F.13:** YAML input for Mission 2a.

```
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 29
 preconditions: [1]
 - id: 3
 duration: 39
 coordinates: [-112.1199316051625, 36.07823185748754]
Asset:
 ARDrone:
 - id: 1
 actions: [1, 2]
 Hummingbird:
 - id: 2
 actions: [3]
```

143
Listing F.14: DTMC output for Mission 2a.

```plaintext
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 29; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 39; // maximum duration

module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [] e1=0 | d2=0 -> true;
endmodule

module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module HoverAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module Hummingbird2
 e2 : [0..max_e2] init max_e2; // endurance
 [actn3] e2>0 & d3>0 -> (e2'=e2-1);
 [] e2=0 | d3=0 -> true;
endmodule

module HoverAction3 = HoverAction1[d1=d3, max_d1=max_d3, actn1=actn3, e1=e2]
endmodule
```

Listing F.15: PCTL output for Mission 2a.

```
P=? [F d2=0 & d3=0]
```

Listing F.16: Log output for Mission 2a.

```
Model checking: P=? [F d2=0 & d3=0]

Building model...

Computing reachable states...

Reachability (BFS): 109 iterations in 0.13 seconds (average 0.001220, setup 0.00)

Time for model construction: 0.204 seconds.

Type: DTMC
States: 2800 (1 initial)
Transitions: 5599

Transition matrix: 2541 nodes (3 terminal), 5599 minterms, vars: 31r/31c

Prob0: 109 iterations in 0.20 seconds (average 0.001789, setup 0.00)
```
Appendix F. Mission Verification Artifacts

Listing F.17: YAML input for Mission 2b.

```yaml
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 29
 preconditions: [1, 3]
 - id: 3
 duration: 39
 coordinates: [-112.1199316051625, 36.07823185748754]
Asset:
 ARDrone:
 - id: 1
 actions: [1, 2]
 Hummingbird:
 - id: 2
 actions: [3]
```


```plaintext
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 29; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 39; // maximum duration
module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [asst1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [] e1=0 | d2=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [asst1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module HoverAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d3=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
module Hummingbird2
 e2 : [0..max_e2] init max_e2; // endurance
```

Probl: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 2800, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.202 seconds.
Result: 1.0 (value in the initial state)
Appendix F. Mission Verification Artifacts

Listing F.19: PCTL output for Mission 2b.

\[ \text{P=? } [ F \ d2=0 ] \]

Listing F.20: Log output for Mission 2b.

Model checking: \[ \text{P=? } [ F \ d2=0 ] \]
Building model...
Computing reachable states...
Reachability (BFS): 70 iterations in 0.02 seconds (average 0.000300, setup 0.00)
Time for model construction: 0.101 seconds.

Type: DTMC
States: 70 (1 initial)
Transitions: 70

Transition matrix: 2456 nodes (2 terminal), 70 minterms, vars: 31r/31c

Prob0: 70 iterations in 0.02 seconds (average 0.000257, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)

yes = 70, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.018 seconds.
Result: 1.0 (value in the initial state)

Listing F.21: YAML input for Mission 2c.

Action:
HoverAction:
- id: 1
  duration: 40
  coordinates: [-112.1334152514208, 36.08362433106716]
- id: 2
  duration: 29
  preconditions: [1, 3, 4]
- id: 3
  duration: 40
  coordinates: [-112.1199316051625, 36.07823185748754]
- id: 4
  duration: 40
  coordinates: [-112.1075818315498, 36.08838518690878]

Asset:
ARDrone:
- id: 1
  actions: [1, 2]
Hummingbird:
- id: 2
Appendix F. Mission Verification Artifacts

actions: [3]
- id: 3
  actions: [4]

Listing F.22: DTMC output for Mission 2e.

dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 29; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 40; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration

module ARDrone1
  e1 : [0..max_e1] init max_e1; // endurance
  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [actn2] e1>0 & d2>0 -> (e1'=e1-1);
  [] e1=0 | d2=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
  [asst1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration
  [actn2] d1=0 & d3=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module Hummingbird2
  e2 : [0..max_e2] init max_e2; // endurance
  [asst1] e2>0 & d3>0 -> (e2'=e2-1);
  [asst1] e2=0 | d3=0 -> true;
endmodule

module HoverAction3
  d3 : [0..max_d3] init max_d3; // duration
  [asst1] d3>0 & e2>0 -> (d3'=d3-1);
  [asst1] d3=0 -> true;
endmodule

module Hummingbird3 = Hummingbird2[e2=e3, max_e2=max_e3, d3=d4] endmodule
module HoverAction4 = HoverAction3[d3=d4, max_d3=max_d4, e2=e3] endmodule

Listing F.23: PCTL output for Mission 2e.
P=? [ F d2=0 ]

Listing F.24: Log output for Mission 2e.
Model checking: P=? [ F d2=0 ]
Appendix F. Mission Verification Artifacts

Building model...
Computing reachable states...
Reachability (BFS): 70 iterations in 0.03 seconds (average 0.000457, setup 0.00)
Time for model construction: 0.192 seconds.
Type: DTMC
States: 70 (1 initial)
Transitions: 70
Transition matrix: 3539 nodes (2 terminal), 70 minterms, vars: 44r/44c
Prob0: 70 iterations in 0.02 seconds (average 0.000343, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 70, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.026 seconds.
Result: 1.0 (value in the initial state)

Listing F.25: YAML input for Mission 2g.

```yaml
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 40
 preconditions: [1]
 - id: 3
 duration: 39
 preconditions: [2, 4]
 - id: 4
 duration: 39
 preconditions: [1]
 coordinates: [-112.1199316051625, 36.07823185748754]
 - id: 5
 duration: 29
 preconditions: [4]
Asset:
 Hummingbird:
 - id: 1
 actions: [1, 2, 3]
 ARDrone:
 - id: 2
 actions: [4, 5]
```

Listing F.26: DTMC output for Mission 2g.

```c
const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 39; // maximum duration
const int max_e2 = 70; // maximum endurance
const int max_d4 = 39; // maximum duration
const int max_d5 = 29; // maximum duration

module Hummingbird1
 e1 : [0..max_e1] init max_e1; // endurance
```
Appendix F. Mission Verification Artifacts

Listing F.27: PCTL output for Mission 2g.

\[ P=? \ [ F d3=0 \& d5=0 ] \]

Listing F.28: Log output for Mission 2g.

Model checking: \( P=? \ [ F d3=0 \& d5=0 ] \)
Appendix F. Mission Verification Artifacts

Building model...
Computing reachable states...
Reachability (BFS): 120 iterations in 0.05 seconds (average 0.000442, setup 0.00)
Time for model construction: 0.325 seconds.
Type: DTMC
States: 120 (1 initial)
Transitions: 120
Transition matrix: 5292 nodes (2 terminal), 120 minterms, vars: 43r/43c
Prob0: 120 iterations in 0.07 seconds (average 0.000617, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 120, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.072 seconds.
Result: 1.0 (value in the initial state)

Listing F.29: YAML input for Mission 2j.

<table>
<thead>
<tr>
<th>Action: HoverAction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- id: 1</td>
</tr>
<tr>
<td>duration: 40</td>
</tr>
<tr>
<td>coordinates: [-112.1334152514208, 36.08362433106716]</td>
</tr>
<tr>
<td>- id: 2</td>
</tr>
<tr>
<td>duration: 40</td>
</tr>
<tr>
<td>preconditions: [1]</td>
</tr>
<tr>
<td>- id: 3</td>
</tr>
<tr>
<td>duration: 40</td>
</tr>
<tr>
<td>preconditions: [2, 5]</td>
</tr>
<tr>
<td>- id: 4</td>
</tr>
<tr>
<td>duration: 40</td>
</tr>
<tr>
<td>coordinates: [-112.1199316051625, 36.07823185748754]</td>
</tr>
<tr>
<td>- id: 5</td>
</tr>
<tr>
<td>duration: 39</td>
</tr>
<tr>
<td>preconditions: [4]</td>
</tr>
</tbody>
</table>

Asset: Hummingbird:
- id: 1
  actions: [1, 2, 3]
- id: 2
  actions: [4, 5]

Listing F.30: DTMC output for Mission 2j.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration
const int max_d5 = 39; // maximum duration
module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance
  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [asst1] e1>0 & d2>0 -> (e1'=e1-1);
  [actn3] e1>0 & d3>0 -> (e1'=e1-1);
Appendix F. Mission Verification Artifacts

Listing F.31: PCTL output for Mission 2j.

\[ P = ? \ [ F \ d3 = 0 ] \]

Listing F.32: Log output for Mission 2j.

Model checking: \( P = ? \ [ F \ d3 = 0 ] \)

Building model...

Computing reachable states...
Reachability (BFS): 121 iterations in 0.09 seconds (average 0.000752, setup 0.00)

Time for model construction: 0.445 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 6636 nodes (2 terminal), 121 minterms, vars: 44r/44c

Prob0: 121 iterations in 0.08 seconds (average 0.000645, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.001000, setup 0.00)
yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.077 seconds.

Result: 1.0 (value in the initial state)

Listing F.33: YAML input for Mission 2m.

```
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 40
 preconditions: [1]
 - id: 3
 duration: 40
 preconditions: [2, 5]
 - id: 4
 duration: 40
 coordinates: [-112.1199316051625, 36.07823185748754]
 - id: 5
 duration: 39
 preconditions: [4]
 - id: 6
 duration: 40
 preconditions: [5]

Asset:
 Hummingbird:
 - id: 1
 actions: [1, 2, 3]
 - id: 2
 actions: [4, 5, 6]
```

Listing F.34: DTMC output for Mission 2m.

```
dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration
const int max_d5 = 39; // maximum duration
const int max_d6 = 40; // maximum duration

module Hummingbird1

 e1 : [0..max_e1] init max_e1; // endurance

 [asst1] e1>0 & d1>0 -> (e1'=e1-1);
 [asst1] e1>0 & d2>0 -> (e1'=e1-1);
 [asst1] e1>0 & d3>0 -> (e1'=e1-1);

```

152
Appendix F. Mission Verification Artifacts

[asst1] \( e_1 = 0 \) \( \land \) \( d_3 = 0 \) \( \rightarrow \) true;

deendmodule

deodule HoverAction1

d1 : [0..max_d1] init max_d1; // duration

[asst1] \( d_1 > 0 \) \( \land \) \( e_1 > 0 \) \( \rightarrow \) \( (d_1' = d_1 - 1) \);
[asst1] \( d_1 = 0 \) \( \rightarrow \) true;
deendmodule

deodule HoverAction2

d2 : [0..max_d2] init max_d2; // duration

[asst1] \( d_1 > 0 \) \( \rightarrow \) true;
[asst1] \( d_1 = 0 \) \( \land \) \( d_2 > 0 \) \( \land \) \( e_1 > 0 \) \( \rightarrow \) \( (d_2' = d_2 - 1) \);
[asst1] \( d_2 = 0 \) \( \rightarrow \) true;
deendmodule

deodule HoverAction3

d3 : [0..max_d3] init max_d3; // duration

[asst1] \( d_2 > 0 \) \( \rightarrow \) true;
[asst1] \( d_2 = 0 \) \( \land \) \( d_5 > 0 \) \( \land \) \( d_3 > 0 \) \( \land \) \( e_1 > 0 \) \( \rightarrow \) \( (d_3' = d_3 - 1) \);
[asst1] \( d_3 = 0 \) \( \rightarrow \) true;
deendmodule

deodule Hummingbird2

e2 : [0..max_e2] init max_e2; // endurance

[asst1] \( e_2 > 0 \) \( \land \) \( d_4 > 0 \) \( \rightarrow \) \( (e_2' = e_2 - 1) \);
[asst1] \( e_2 > 0 \) \( \land \) \( d_5 > 0 \) \( \rightarrow \) \( (e_2' = e_2 - 1) \);
[asst1] \( e_2 > 0 \) \( \land \) \( d_6 > 0 \) \( \rightarrow \) \( (e_2' = e_2 - 1) \);
[asst1] \( e_2 = 0 \) \( \land \) \( d_6 = 0 \) \( \rightarrow \) true;
deendmodule

deodule HoverAction4

d4 : [0..max_d4] init max_d4; // duration

[asst1] \( d_4 > 0 \) \( \land \) \( e_2 > 0 \) \( \rightarrow \) \( (d_4' = d_4 - 1) \);
[asst1] \( d_4 = 0 \) \( \rightarrow \) true;
deendmodule

deodule HoverAction5

d5 : [0..max_d5] init max_d5; // duration

[asst1] \( d_4 > 0 \) \( \rightarrow \) true;
[asst1] \( d_4 = 0 \) \( \land \) \( d_5 > 0 \) \( \land \) \( e_2 > 0 \) \( \rightarrow \) \( (d_5' = d_5 - 1) \);
[asst1] \( d_5 = 0 \) \( \rightarrow \) true;
deendmodule

deodule HoverAction6

d6 : [0..max_d6] init max_d6; // duration

[asst1] \( d_5 > 0 \) \( \rightarrow \) true;
[asst1] \( d_5 = 0 \) \( \land \) \( d_6 > 0 \) \( \land \) \( e_2 > 0 \) \( \rightarrow \) \( (d_6' = d_6 - 1) \);
[asst1] \( d_6 = 0 \) \( \rightarrow \) true;
deendmodule
Listing F.35: PCTL output for Mission 2m.

\[ P=? \ [ F \ d3=0 \ & \ d6=0 ] \]

Listing F.36: Log output for Mission 2m.

```
Model checking: P=? [F d3=0 & d6=0]

Building model...

Computing reachable states...

Reachability (BFS): 121 iterations in 0.10 seconds (average 0.000843, setup 0.00)

Time for model construction: 0.554 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 8660 nodes (2 terminal), 121 minterms, vars: 50r/50c

Prob0: 121 iterations in 0.11 seconds (average 0.000876, setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.107 seconds.

Result: 1.0 (value in the initial state)
```


```
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 40
 preconditions: [1, 4]
 - id: 3
 duration: 40
 preconditions: [2, 5]
 - id: 4
 duration: 40
 coordinates: [-112.1199316051625, 36.07823185748754]
 - id: 5
 duration: 40
 preconditions: [4]
 - id: 6
 duration: 40
 preconditions: [5]

Asset:
 Hummingbird:
 - id: 1
 actions: [1, 2, 3]
 - id: 2
 actions: [4, 5, 6]
```


```
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration
```
const int max_e2 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration
const int max_d5 = 40; // maximum duration
const int max_d6 = 40; // maximum duration

module Hummingbird1
    e1 : [0..max_e1] init max_e1; // endurance
    [asst1] e1>0 & d1>0 -> (e1'=e1-1);
    [asst1] e1>0 & d2>0 -> (e1'=e1-1);
    [asst1] e1>0 & d3>0 -> (e1'=e1-1);
    [asst1] e1=0 | d3=0 -> true;
endmodule

module HoverAction1
    d1 : [0..max_d1] init max_d1; // duration
    [asst1] d1>0 & e1>0 -> (d1'=d1-1);
    [asst1] d1=0 -> true;
endmodule

module HoverAction2
    d2 : [0..max_d2] init max_d2; // duration
    [asst1] d2>0 -> true;
    [asst1] d1=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
    [asst1] d2=0 -> true;
endmodule

module HoverAction3
    d3 : [0..max_d3] init max_d3; // duration
    [asst1] d2>0 -> true;
    [asst1] d2=0 & d5=0 & d3>0 & e1>0 -> (d3'=d3-1);
    [asst1] d3=0 -> true;
endmodule

module Hummingbird2
    e2 : [0..max_e2] init max_e2; // endurance
    [asst1] e2>0 & d4>0 -> (e2'=e2-1);
    [asst1] e2>0 & d5>0 -> (e2'=e2-1);
    [asst1] e2>0 & d6>0 -> (e2'=e2-1);
    [asst1] e2=0 | d6=0 -> true;
endmodule

module HoverAction4
    d4 : [0..max_d4] init max_d4; // duration
    [asst1] d4>0 & e2>0 -> (d4'=d4-1);
    [asst1] d4=0 -> true;
endmodule

module HoverAction5
    d5 : [0..max_d5] init max_d5; // duration
    [asst1] d4>0 -> true;
    [asst1] d4=0 & d5>0 & e2>0 -> (d5'=d5-1);
    [asst1] d5=0 -> true;
endmodule

module HoverAction6
  d6 : [0..max_d6] init max_d6; // duration

  [asst1] d5>0 -> true;
  [asst1] d5=0 & d6>0 & e2>0 -> (d6'=d6-1);
  [asst1] d6=0 -> true;
endmodule


P=? [ F d3=0 & d6=0 ]


Model checking: P=? [ F d3=0 & d6=0 ]

Building model...

Computing reachable states...

Reachability (BFS): 121 iterations in 0.08 seconds (average 0.000694, setup 0.00)

Time for model construction: 0.611 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 8689 nodes (2 terminal), 121 minterms, vars: 50r/50c

Prob0: 121 iterations in 0.10 seconds (average 0.000810, setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000, setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.1 seconds.

Result: 1.0 (value in the initial state)

Listing F.41: YAML input for Mission 2r.

Action:
  HoverAction:
    - id: 1
      duration: 60
      coordinates: [-112.1334152514208, 36.08362433106716]
    - id: 2
      duration: 30
      preconditions: [1, 4]
    - id: 3
      duration: 30
      coordinates: [-112.1199316051625, 36.07823185748754]
    - id: 4
      duration: 30
      preconditions: [3, 5]
    - id: 5
      duration: 29
      coordinates: [-112.1075818315498, 36.08838518690878]

Asset:
  Hummingbird:
    - id: 1
      actions: [1, 2]
    - id: 2

156
Appendix F. Mission Verification Artifacts

actions: [3, 4]
- id: 3
  actions: [5]

Listing F.42: DTMC output for Mission 2r.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d5 = 29; // maximum duration

module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance

  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [actn2] e1>0 & d2>0 -> (e1'=e1-1);
  [] e1=0 | d2=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration

  [asst1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration

  [actn2] d1=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module Hummingbird2
  e2 : [0..max_e2] init max_e2; // endurance

  [asst1] e2>0 & d3>0 -> (e2'=e2-1);
  [asst1] e2>0 & d4>0 -> (e2'=e2-1);
  [asst1] e2=0 | d4=0 -> true;
endmodule

module HoverAction3
  d3 : [0..max_d3] init max_d3; // duration

  [asst1] d3>0 & e2>0 -> (d3'=d3-1);
  [asst1] d3=0 -> true;
endmodule

module HoverAction4
  d4 : [0..max_d4] init max_d4; // duration

  [asst1] d3>0 -> true;
  [asst1] d3=0 & d5=0 & d4>0 & e2>0 -> (d4'=d4-1);
  [asst1] d4=0 -> true;
endmodule
Appendix F. Mission Verification Artifacts

module Hummingbird3

    e3 : [0..max_e3] init max_e3; // endurance
    [asst1] e3>0 & d5>0 -> (e3'=e3-1);
    [asst1] e3=0 | d5=0 -> true;

endmodule

module HoverAction5

    d5 : [0..max_d5] init max_d5; // duration
    [asst1] d5>0 & e3>0 -> (d5'=d5-1);
    [asst1] d5=0 -> true;

endmodule

Listing F.43: PCTL output for Mission 2r.

P=? [ F d2=0 ]

Listing F.44: Log output for Mission 2r.

Model checking: P=? [ F d2=0 ]
Building model...
Computing reachable states...
Reachability (BFS): 91 iterations in 0.05 seconds (average 0.000571, setup 0.00)
Time for model construction: 0.392 seconds.
Type: DTMC
States: 91 (1 initial)
Transitions: 91
Transition matrix: 4675 nodes (2 terminal), 91 minterms, vars: 47r/47c
Prob0: 91 iterations in 0.04 seconds (average 0.000429, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 91, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.04 seconds.
Result: 1.0 (value in the initial state)

Listing F.45: YAML input for Mission 2u.

Action:
    HoverAction:
        - id: 1
          duration: 60
          coordinates: [-112.1334152514208, 36.08362433106716]
        - id: 2
          duration: 30
          preconditions: [1, 5]
        - id: 3
          duration: 30
          preconditions: [2]
        - id: 4
          duration: 30
          coordinates: [-112.1199316051625, 36.07823185748754]
        - id: 5
          duration: 30
Appendix F. Mission Verification Artifacts

preconditions: [4, 6]
- id: 6
duration: 30
coordinates: [-112.1075818315498, 36.08838518690878]

Asset:
Hummingbird:
- id: 1
  actions: [1, 2, 3]
- id: 2
  actions: [4, 5]
- id: 3
  actions: [6]

Listing F.46: DTMC output for Mission 2u.

dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d6 = 30; // maximum duration

module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance
  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [actn2] e1>0 & d2>0 -> (e1'=e1-1);
  [actn3] e1>0 & d3>0 -> (e1'=e1-1);
  [] e1=0 | d3=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
  [asst1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration
  [actn2] d1=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module HoverAction3
  d3 : [0..max_d3] init max_d3; // duration
  [actn3] d2=0 & d3>0 & e1>0 -> (d3'=d3-1);
endmodule

module Hummingbird2
  e2 : [0..max_e2] init max_e2; // endurance
  [asst1] e2>0 & d4>0 -> (e2'=e2-1);
  [asst1] e2>0 & d5>0 -> (e2'=e2-1);
  [asst1] e2=0 | d5=0 -> true;
endmodule
Appendix F. Mission Verification Artifacts

module HoverAction4
    d4 : [0..max_d4] init max_d4; // duration
    [asst1] d4>0 & e2>0 -> (d4'=d4-1);
    [asst1] d4=0 -> true;
endmodule

module HoverAction5
    d5 : [0..max_d5] init max_d5; // duration
    [asst1] d4>0 -> true;
    [asst1] d4=0 & d6=0 & d5>0 & e2>0 -> (d5'=d5-1);
    [asst1] d5=0 -> true;
endmodule

module Hummingbird3
    e3 : [0..max_e3] init max_e3; // endurance
    [asst1] e3>0 & d6>0 -> (e3'=e3-1);
    [asst1] e3=0 | d6=0 -> true;
endmodule

module HoverAction6
    d6 : [0..max_d6] init max_d6; // duration
    [asst1] d6>0 & e3>0 -> (d6'=d6-1);
    [asst1] d6=0 -> true;
endmodule

Listing F.47: PCTL output for Mission 2u.
P=? [ F d3=0 ]

Listing F.48: Log output for Mission 2u.

Model checking: P=? [ F d3=0 ]
Building model...
Computing reachable states...
Reachability (BFS): 121 iterations in 0.10 seconds (average 0.000785, setup 0.00)
Time for model construction: 0.54 seconds.
Type: DTMC
States: 121 (1 initial)
Transitions: 121
Transition matrix: 6210 nodes (2 terminal), 121 minterms, vars: 52r/52c
Prob0: 121 iterations in 0.07 seconds (average 0.000554, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 121, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.067 seconds.
Result: 1.0 (value in the initial state)
Appendix F. Mission Verification Artifacts

Listing F.49: YAML input for Mission 2v.

| Action: HoverAction: |
| - id: 1 duration: 60 coordinates: [-112.1334152514208, 36.08362433106716] |
| - id: 2 duration: 30 preconditions: [1, 4] |
| - id: 3 duration: 30 coordinates: [-112.1199316051625, 36.07823185748754] |
| - id: 4 duration: 30 preconditions: [3, 6] |
| - id: 5 duration: 30 preconditions: [4] |
| - id: 6 duration: 30 coordinates: [-112.1075818315498, 36.08838518690878] |

Asset: Hummingbird:
- id: 1 actions: [1, 2]
- id: 2 actions: [3, 4, 5]
- id: 3 actions: [6]

Listing F.50: DTMC output for Mission 2v.

dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d6 = 30; // maximum duration

module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance
  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [asst1] e1>0 & d2>0 -> (e1'=e1-1);
  [asst1] e1=0 | d2=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
  [asst1] d1>0 & e1>0 -> (d1'=d1-1);
  [asst1] d1=0 -> true;
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration
  [asst1] d1>0 -> true;
  [asst1] d1=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
  [asst1] d2=0 -> true;
endmodule
module Hummingbird2

e2 : [0..max_e2] init max_e2; // endurance

[asst1] e2>0 & d3>0 -> (e2’=e2-1);
[asst1] e2>0 & d4>0 -> (e2’=e2-1);
[asst1] e2>0 & d5>0 -> (e2’=e2-1);
[asst1] e2=0 | d5=0 -> true;

endmodule

module HoverAction3

d3 : [0..max_d3] init max_d3; // duration

[asst1] d3>0 & e2>0 -> (d3’=d3-1);
[asst1] d3=0 -> true;

endmodule

module HoverAction4

d4 : [0..max_d4] init max_d4; // duration

[asst1] d3>0 -> true;
[asst1] d3=0 & d6=0 & d4>0 & e2>0 -> (d4’=d4-1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0..max_d5] init max_d5; // duration

[asst1] d4>0 -> true;
[asst1] d4=0 & d5>0 & e2>0 -> (d5’=d5-1);
[asst1] d5=0 -> true;

endmodule

module Hummingbird3

e3 : [0..max_e3] init max_e3; // endurance

[asst1] e3>0 & d6>0 -> (e3’=e3-1);
[asst1] e3=0 | d6=0 -> true;

endmodule

module HoverAction6

d6 : [0..max_d6] init max_d6; // duration

[asst1] d6>0 & e3>0 -> (d6’=d6-1);
[asst1] d6=0 -> true;

endmodule

Listing F.51: PCTL output for Mission 2v.
P=? [ F d2=0 & d5=0 ]

Listing F.52: Log output for Mission 2v.
Model checking: P=? [ F d2=0 & d5=0 ]
Building model...
Computing reachable states...
Appendix F. Mission Verification Artifacts

Reachability (BFS): 91 iterations in 0.07 seconds (average 0.000714, setup 0.00)

Time for model construction: 0.455 seconds.

Type: DTMC
States: 91 (1 initial)
Transitions: 91

Transition matrix: 6332 nodes (2 terminal), 91 minterms, vars: 52r/52c

Prob0: 91 iterations in 0.06 seconds (average 0.000692, setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)

yes = 91, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.064 seconds.

Result: 1.0 (value in the initial state)

Listing F.53: YAML input for Mission 2w.

Action:
  HoverAction:
    - id: 1
duration: 60
coordinates: [-112.1334152514208, 36.08362433106716]
    - id: 2
duration: 30
preconditions: [1, 4]
    - id: 3
duration: 30
coordinates: [-112.1199316051625, 36.07823185748754]
    - id: 4
duration: 30
preconditions: [3, 7]
    - id: 5
duration: 30
preconditions: [4]
    - id: 6
duration: 30
preconditions: [5]
    - id: 7
duration: 30
coordinates: [-112.1075818315498, 36.08838518690878]

Asset:
  Hummingbird:
    - id: 1
actions: [1, 2]
    - id: 2
actions: [3, 4, 5, 6]
    - id: 3
actions: [7]

Listing F.54: DTMC output for Mission 2w.

dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_d6 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d7 = 30; // maximum duration
module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance
  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [asst1] e1>0 & d2>0 -> (e1'=e1-1);
  [asst1] e1=0 | d2=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
  [asst1] d1>0 & e1>0 -> (d1'=d1-1);
  [asst1] d1=0 -> true;
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration
  [asst1] d1>0 -> true;
  [asst1] d1=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
  [asst1] d2=0 -> true;
endmodule

module Hummingbird2
  e2 : [0..max_e2] init max_e2; // endurance
  [asst1] e2>0 & d3>0 -> (e2'=e2-1);
  [asst1] e2>0 & d4>0 -> (e2'=e2-1);
  [asst1] e2>0 & d5>0 -> (e2'=e2-1);
  [asst1] e2>0 & d6>0 -> (e2'=e2-1);
  [asst1] e2=0 | d6=0 -> true;
endmodule

module HoverAction3
  d3 : [0..max_d3] init max_d3; // duration
  [asst1] d3>0 & e2>0 -> (d3'=d3-1);
  [asst1] d3=0 -> true;
endmodule

module HoverAction4
  d4 : [0..max_d4] init max_d4; // duration
  [asst1] d3>0 -> true;
  [asst1] d3=0 & d7>0 & d4>0 & e2>0 -> (d4'=d4-1);
  [asst1] d4=0 -> true;
endmodule

module HoverAction5
  d5 : [0..max_d5] init max_d5; // duration
  [asst1] d4>0 -> true;
  [asst1] d4=0 & d5>0 & e2>0 -> (d5'=d5-1);
  [asst1] d5=0 -> true;
endmodule

module HoverAction6
  d6 : [0..max_d6] init max_d6; // duration
Appendix F. Mission Verification Artifacts

```plaintext
[asst1] d5>0 -> true;
[asst1] d5=0 & d6>0 & e2>0 -> (d6'=d6-1);
[asst1] d6=0 -> true;
endmodule

module Hummingbird3
 e3 : [0..max_e3] init max_e3; // endurance
 [asst1] e3>0 & d7>0 -> (e3'=e3-1);
 [asst1] e3=0 | d7=0 -> true;
endmodule

module HoverAction7
 d7 : [0..max_d7] init max_d7; // duration
 [asst1] d7>0 & e3>0 -> (d7'=d7-1);
 [asst1] d7=0 -> true;
endmodule

Listing F.55: PCTL output for Mission 2w.
P=? [F d2=0 & d6=0]

Listing F.56: Log output for Mission 2w.
Model checking: P=? [F d2=0 & d6=0]
Building model...
Computing reachable states...
Reachability (BFS): 121 iterations in 0.11 seconds (average 0.000893, setup 0.00)
Time for model construction: 0.676 seconds.
Type: DTMC
States: 121 (1 initial)
Transitions: 121
Transition matrix: 7789 nodes (2 terminal), 121 minterms, vars: 57r/57c
Prob0: 121 iterations in 0.09 seconds (average 0.000777, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 121, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.095 seconds.
Result: 1.0 (value in the initial state)

Listing F.57: YAML input for Mission 2x.
Action:
 HoverAction:
 - id: 1
 duration: 60
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 30
 preconditions: [1, 4]
 - id: 3
```

165
Appendix F. Mission Verification Artifacts

Listing F.58: DTMC output for Mission 2x.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_d6 = 30; // maximum duration
const int max_d7 = 90; // maximum duration

module Hummingbird1
  e1 : [0..max_e1] init max_e1; // endurance
  [asst1] e1>0 & d1>0 -> (e1'=e1-1);
  [asst1] e1>0 & d2>0 -> (e1'=e1-1);
  [asst1] e1=0 | d2=0 -> true;
endmodule

module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
  [asst1] d1>0 & e1>0 -> (d1'=d1-1);
  [asst1] d1=0 -> true;
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration
  [asst1] d1>0 -> true;
  [asst1] d1=0 & d4=0 & d2>0 & e1>0 -> (d2'=d2-1);
  [asst1] d2=0 -> true;
endmodule

module Hummingbird2
  e2 : [0..max_e2] init max_e2; // endurance
  [asst1] e2>0 & d3>0 -> (e2'=e2-1);
module HoverAction3

d3 : [0..max_d3] init max_d3; // duration

[asst1] d3>0 & e2>0 -> (d3'=d3-1);
[asst1] d3=0 -> true;
endmodule

module HoverAction4

d4 : [0..max_d4] init max_d4; // duration

[asst1] d4>0 -> true;
[asst1] d4=0 & d4>0 & e2>0 -> (d4'=d4-1);
[asst1] d4=0 -> true;
endmodule

module HoverAction5

d5 : [0..max_d5] init max_d5; // duration

[asst1] d4>0 -> true;
[asst1] d4=0 & d5>0 & e2>0 -> (d5'=d5-1);
[asst1] d5=0 -> true;
endmodule

module HoverAction6

d6 : [0..max_d6] init max_d6; // duration

[asst1] d5>0 -> true;
[asst1] d5=0 & d7>0 & d6>0 & e2>0 -> (d6'=d6-1);
[asst1] d6=0 -> true;
endmodule

module Hummingbird3

e3 : [0..max_e3] init max_e3; // endurance

[asst1] e3>0 & d7>0 -> (e3'=e3-1);
[asst1] e3=0 | d7=0 -> true;
endmodule

module HoverAction7

d7 : [0..max_d7] init max_d7; // duration

[asst1] d7>0 & e3>0 -> (d7'=d7-1);
[asst1] d7=0 -> true;
endmodule

Listing F.59: PCTL output for Mission 2x.
P=? [ F d2=0 & d6=0 ]

Listing F.60: Log output for Mission 2x.
Model checking: P=? [ F d2=0 & d6=0 ]
Appendix F. Mission Verification Artifacts

Building model...
Computing reachable states...
Reachability (BFS): 121 iterations in 0.11 seconds (average 0.000934, setup 0.00)
Time for model construction: 0.779 seconds.
Type: DTMC
States: 121 (1 initial)
Transitions: 121
Transition matrix: 10188 nodes (2 terminal), 121 minterms, vars: 59r/59c
Prob0: 121 iterations in 0.11 seconds (average 0.000876, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.001000, setup 0.00)
yes = 121, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.11 seconds.
Result: 1.0 (value in the initial state)

Listing F.61: YAML input for Mission 3a.

```
Action:
 HoverAction:
 - id: 1
 duration: 69
 coordinates: [-112.1334152514208, 36.08362433106716]
 PhotoSurveillanceAction:
 - id: 2
 duration: 68
Asset:
 ARDrone:
 - id: 1
 actions: [1, 2]
```

Listing F.62: DTMC output for Mission 3a.

```
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 69; // maximum duration
const int max_d2 = 68; // maximum duration
module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [] e1=0 | d1=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module PhotoSurveillanceAction2
 d2 : [0..max_d2] init max_d2; // duration
```
Appendix F. Mission Verification Artifacts

Listing F.63: PCTL output for Mission 3a.

P=? [ F d1=0 & d2=0 ]

Listing F.64: Log output for Mission 3a.

Model checking: P=? [ F d2=0 & d3=0 ]
Building model...
Computing reachable states...
Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000254, setup 0.00)
Time for model construction: 0.071 seconds.
Type: DTMC
States: 71 (1 initial)
Transitions: 71
Transition matrix: 2282 nodes (2 terminal), 71 minterms, vars: 25r/25c
Prob0: 71 iterations in 0.02 seconds (average 0.000254, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.001000, setup 0.00)
yes = 71, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.019 seconds.
Result: 1.0 (value in the initial state)

Listing F.65: YAML input for Mission 3e.

Action:
  HoverAction:
    - id: 1
      duration: 40
      coordinates: [-112.1334152514208, 36.08362433106716]
    - id: 2
      duration: 30
      preconditions: [1]
  PhotoSurveillanceAction:
    - id: 3
      duration: 69
Asset:
  ARDrone:
    - id: 1
      actions: [1, 2, 3]

Listing F.66: DTMC output for Mission 3e.

dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 69; // maximum duration
module ARDrone1
  e1 : [0..max_e1] init max_e1; // endurance
Appendix F. Mission Verification Artifacts

```plaintext
Listing F.67: PCTL output for Mission 3e.

P=? [F d2=0 & d3=0]

Listing F.68: Log output for Mission 3e.

Model checking: P=? [F d2=0 & d3=0]

Building model...
Computing reachable states...
Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000254, setup 0.00)
Time for model construction: 0.071 seconds.
Type: DTMC
States: 71 (1 initial)
Transitions: 71
Transition matrix: 2282 nodes (2 terminal), 71 minterms, vars: 25r/25c

Prob0: 71 iterations in 0.02 seconds (average 0.000254, setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000, setup 0.00)

yes = 71, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.019 seconds.
Result: 1.0 (value in the initial state)
```
Appendix F. Mission Verification Artifacts

Listing F.69: YAML input for Mission 3h.

```
Action:
 HoverAction:
 - id: 1
duration: 40
coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
duration: 30
preconditions: [1]
PhotoSurveillanceAction:
 - id: 3
duration: 29
preconditions: [1]
Asset:
 ARDrone:
 - id: 1
 actions: [1, 2, 3]
```

Listing F.70: DTMC output for Mission 3h.

```
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 29; // maximum duration
module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [] e1=0 | d2=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module HoverAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
module PhotoSurveillanceAction3
 d3 : [0..max_d3] init max_d3; // duration
 [actn2] d1=0 & d3>0 & e1>0 -> (d3'=d3-1);
 [actn2] d3=0 -> true;
endmodule
```

Listing F.71: PCTL output for Mission 3h.

```
P=? [F d2=0 & d3=0]
```

Listing F.72: Log output for Mission 3h.

```
Model checking: P=? [F d2=0 & d3=0]
```
Building model...
Computing reachable states...
Reachability (BFS): 71 iterations in 0.01 seconds (average 0.000127, setup 0.00)
Time for model construction: 0.054 seconds.
Type: DTMC
States: 71 (1 initial)
Transitions: 71
Transition matrix: 1349 nodes (2 terminal), 71 minterms, vars: 23r/23c
Prob0: 71 iterations in 0.01 seconds (average 0.000183, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 71, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.015 seconds.
Result: 1.0 (value in the initial state)

Listing F.73: YAML input for Mission 3k.

Action:
  HoverAction:
    - id: 1
duration: 40
coordinates: [-112.1334152514208, 36.08362433106716]
    - id: 2
duration: 30
preconditions: [1]
PhotoSurveillanceAction:
  - id: 3
duration: 39
  - id: 4
duration: 29
preconditions: [3]
Asset:
  ARDrone:
    - id: 1
      actions: [1, 2, 3, 4]

Listing F.74: DTMC output for Mission 3k.

dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 39; // maximum duration
const int max_d4 = 29; // maximum duration
module ARDrone1
  e1 : [0..max_e1] init max_e1; // endurance
  [actn1] e1>0 & d1>0 -> (e1'=e1-1);
  [actn2] e1>0 & d2>0 -> (e1'=e1-1);
  [] e1=0 | d2=0 -> true;
endmodule
module HoverAction1
  d1 : [0..max_d1] init max_d1; // duration
Appendix F. Mission Verification Artifacts

[actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module HoverAction2
  d2 : [0..max_d2] init max_d2; // duration
  [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module PhotoSurveillanceAction3
  d3 : [0..max_d3] init max_d3; // duration
  [actn1] d3>0 & e1>0 -> (d3'=d3-1);
  [actn1] d3=0 -> true;
  [actn2] d3>0 & e1>0 -> (d3'=d3-1);
  [actn2] d3=0 -> true;
endmodule

module PhotoSurveillanceAction4
  d4 : [0..max_d4] init max_d4; // duration
  [actn1] d3>0 -> true;
  [actn1] d3=0 & d4>0 & e1>0 -> (d4'=d4-1);
  [actn1] d4=0 -> true;
  [actn2] d3>0 -> true;
  [actn2] d3=0 & d4>0 & e1>0 -> (d4'=d4-1);
  [actn2] d4=0 -> true;
endmodule

Listing F.75: PCTL output for Mission 3k.
P=? [ F d2=0 & d4=0 ]

Listing F.76: Log output for Mission 3k.
Model checking: P=? [ F d2=0 & d4=0 ]
Building model...
Computing reachable states...
Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000282, setup 0.00)
Time for model construction: 0.076 seconds.
Type: DTMC
States: 71 (1 initial)
Transitions: 71
Transition matrix: 2577 nodes (2 terminal), 71 minterms, vars: 29r/29c
Prob0: 71 iterations in 0.02 seconds (average 0.000296, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 71, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.021 seconds.
Result: 1.0 (value in the initial state)
Listing F.77: YAML input for Mission 3o.

```
Action:
 HoverAction:
 - id: 1
 duration: 40
 coordinates: [-112.1334152514208, 36.08362433106716]
 - id: 2
 duration: 30
 preconditions: [1]
 PhotoSurveillanceAction:
 - id: 3
 duration: 39
 - id: 4
 duration: 29
 preconditions: [1, 3]
Asset:
 ARDrone:
 - id: 1
 actions: [1, 2, 3, 4]
```

Listing F.78: DTMC output for Mission 3o.

```
dtmc
const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 39; // maximum duration
const int max_d4 = 29; // maximum duration
module ARDrone1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [] e1=0 | d2=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module HoverAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
module PhotoSurveillanceAction3
 d3 : [0..max_d3] init max_d3; // duration
 [actn1] d3>0 & e1>0 -> (d3'=d3-1);
 [actn1] d3=0 -> true;
 [] e1=0 -> true;
endmodule
module PhotoSurveillanceAction4
 d4 : [0..max_d4] init max_d4; // duration
```

174
Listing F.79: PCTL output for Mission 3o.

\[ P=\? \ [ F \ d2=0 \ & \ d4=0 \ ] \]

Listing F.80: Log output for Mission 3o.

Model checking: \( P=? \ [ F \ d2=0\&d4=0 \ ] \)

Building model...

Computing reachable states...

Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000310, setup 0.00)

Time for model construction: 0.03 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 2588 nodes (2 terminal), 71 minterms, vars: 29r/29c

Prob0: 71 iterations in 0.02 seconds (average 0.000268, setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.02 seconds.

Result: 1.0 (value in the initial state)

Listing F.81: YAML input for Mission 4a.

```
Action:
 TraversePathSegmentAction:
 - id: 1
 duration: 30
 coordinates: [-112.1456898399667, 36.08223661335747, -112.1329057930546, 36.09138166778199]
 - id: 2
 duration: 30
 coordinates: [-112.1136958212283, 36.08434312651666]
 preconditions: [1]
 - id: 4
 duration: 30
 coordinates: [-112.086330390576, 36.09066857566722]
 preconditions: [3]
 HoverAction:
 - id: 3
 duration: 30
 preconditions: [2]
Asset:
 Hummingbird:
 - id: 1
 actions: [1, 2, 3, 4]
```
Listing F.82: DTMC output for Mission 4a.

```
dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration

module Hummingbird1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [actn3] e1>0 & d3>0 -> (e1'=e1-1);
 [actn4] e1>0 & d4>0 -> (e1'=e1-1);
 [] e1=0 | d4=0 -> true;
endmodule

module TraversePathSegmentAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module TraversePathSegmentAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module HoverAction3 = TraversePathSegmentAction2[d2=d3, max_d2=max_d3, actn2=actn3, d1=d2] endmodule

module TraversePathSegmentAction4 = HoverAction3[d3=d4, max_d3=max_d4, actn3=actn4, d2=d3] endmodule
```

Listing F.83: PCTL output for Mission 4a.

```
P=? [F d4=0]
```

Listing F.84: Log output for Mission 4a.

```
Model checking: P=? [F d4=0]

Building model...

Computing reachable states...

Reachability (BFS): 121 iterations in 0.02 seconds (average 0.000182, setup 0.00)

Time for model construction: 0.238 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 2880 nodes (2 terminal), 121 minterms, vars: 27r/27c

Probo: 121 iterations in 0.03 seconds (average 0.000273, setup 0.00)

Probi: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

176
Appendix F. Mission Verification Artifacts

Time for model checking: 0.034 seconds.
Result: 1.0 (value in the initial state)

Listing F.85: YAML input for Mission 4b.

Action:
- TraversePathSegmentAction:
 - id: 1
 duration: 30
 coordinates: [-112.1456898399667, 36.08223661335747, -112.1329057930546, 36.09138166778199]
 - id: 2
 duration: 30
 coordinates: [-112.1136958212283, 36.08434312651666]
 preconditions: [1]
 - id: 4
 duration: 30
 coordinates: [-112.086330390576, 36.09066857566722]
 preconditions: [3]
HoverAction:
- id: 3
 duration: 30
 preconditions: [2]
Asset:
- Hummingbird:
 - id: 1
 actions: [1, 2, 3, 4]

Listing F.86: DTMC output for Mission 4b.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
module Hummingbird1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [actn3] e1>0 & d3>0 -> (e1'=e1-1);
 [actn4] e1>0 & d4>0 -> (e1'=e1-1);
 [] e1=0 | d4=0 -> true;
endmodule
module TraversePathSegmentAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module TraversePathSegmentAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
module HoverAction3 = TraversePathSegmentAction2[d2=d3, max_d2=max_d3, actn2=actn3, d1=d2] endmodule
module TraversePathSegmentAction4 = HoverAction3[d3=d4, max_d3=max_d4, actn3=actn4, d2=d3] endmodule

const int start2 = 15; // threat area incursion start for TraversePathSegmentAction2
const int start3 = 30; // threat area incursion start for HoverAction1
const int start4 = 30; // threat area incursion start for TraversePathSegmentAction3
const int finish2 = 0; // threat area incursion end for TraversePathSegmentAction2
const int finish3 = 0; // threat area incursion end for HoverAction1
const int finish4 = 5; // threat area incursion end for TraversePathSegmentAction3

formula actn2_tai = d2>finish2 & d2<=start2; // threat area incursion during TraversePathSegmentAction2
formula actn3_tai = d3>finish3 & d3<=start3; // threat area incursion during HoverAction1
formula actn4_tai = d4>finish4 & d4<=start4; // threat area incursion during TraversePathSegmentAction3

module Hummingbird1_Survivability

a1d : bool init false; // Hummingbird 1 destroyed
[actn2] !a1d & actn2_tai -> 0.99:(a1d='false') + 0.01:(a1d='true');
[actn2] a1d | !actn2_tai -> true;
[actn3] !a1d & actn3_tai -> 0.99:(a1d='false') + 0.01:(a1d='true');
[actn3] a1d | !actn3_tai -> true;
[actn4] !a1d & actn4_tai -> 0.99:(a1d='false') + 0.01:(a1d='true');
[actn4] a1d | !actn4_tai -> true;
endmodule

formula duration2 = start2 - finish2;
formula duration3 = start3 - finish3;
formula duration4 = start4 - finish4;
formula tkad1 = duration2 + duration3 + duration4; // total threat area action durations
formula raf1 = 0 / tkad1; // risk acceptability factor

Listing F.87: PCTL output for Mission 4b.
P=? [F d4=0 & !a1d & raf1>0.6]

Listing F.88: Log output for Mission 4b.
Model checking: P=? [F d4=0 & !a1d & raf1>0.6]

Building model...
Computing reachable states...

Reachability (BFS): 121 iterations in 0.03 seconds (average 0.000207, setup 0.00)

Time for model construction: 0.225 seconds.

Type: DTMC
States: 196 (1 initial)
Transitions: 266

Transition matrix: 3024 nodes (4 terminal), 266 minterms, vars: 28r/28c

yes = 0, no = 196, maybe = 0

Value in the initial state: 0.0
Appendix F. Mission Verification Artifacts

Time for model checking: 0.0070 seconds.
Result: 0.0 (value in the initial state)

Listing F.89: YAML input for Mission 4d.

Action:
 TraversePathSegmentAction:
 - id: 1
 duration: 30
 coordinates: [-112.1456898399667, 36.08223661335747, -112.1329057930546, 36.09138166778199]
 - id: 2
 duration: 30
 coordinates: [-112.1136958212283, 36.08434312651666]
 preconditions: [1]
 - id: 4
 duration: 30
 coordinates: [-112.086330390576, 36.09066857566722]
 preconditions: [3]
 HoverAction:
 - id: 3
 duration: 30
 preconditions: [2]
 PhotoSurveillanceAction:
 - id: 5
 duration: 43
 preconditions: [2]

Asset:
 Hummingbird:
 - id: 1
 actions: [1, 2, 3, 4, 5]

Listing F.90: DTMC output for Mission 4d.

dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 43; // maximum duration

module Hummingbird1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [actn3] e1>0 & d3>0 -> (e1'=e1-1);
 [actn4] e1>0 & d4>0 -> (e1'=e1-1);
 [] e1=0 | d4=0 -> true;
endmodule

module TraversePathSegmentAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module TraversePathSegmentAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
module HoverAction3 = TraversePathSegmentAction2[d2=d3, max_d2=max_d3, actn2=actn3, d1=d2] endmodule
module TraversePathSegmentAction4 = HoverAction3[d3=d4, max_d3=max_d4, actn3=actn4, d2=d3] endmodule

module PhotoSurveillanceAction5
 d5 : [0..max_d5] init max_d5; // duration
 r5 : bool init false; // running
 [actn3] d2=0 & d5>0 & e1>0 -> (d5'=d5-1) & (r5'=true);
 [actn3] d5=0 -> (r5'=false);
 [actn4] d2=0 & d5>0 & e1>0 -> (d5'=d5-1) & (r5'=true);
 [actn4] d5=0 -> (r5'=false);
endmodule

//
const int start2 = 15; // threat area incursion start for TraversePathSegmentAction2
const int start3 = 30; // threat area incursion start for HoverAction1
const int start4 = 30; // threat area incursion start for TraversePathSegmentAction3
const int finish2 = 0; // threat area incursion end for TraversePathSegmentAction2
const int finish3 = 0; // threat area incursion end for HoverAction1
const int finish4 = 5; // threat area incursion end for TraversePathSegmentAction3
formula actn2_tai = d2>finish2 & d2<=start2; // threat area incursion during TraversePathSegmentAction2
formula actn3_tai = d3>finish3 & d3<=start3; // threat area incursion during HoverAction1
formula actn4_tai = d4>finish4 & d4<=start4; // threat area incursion during TraversePathSegmentAction3

module Hummingbird1_Survivability
 a1d : bool init false; // Hummingbird 1 destroyed
 [actn2] !a1d & actn2_tai -> 0.99:(a1d'=false) + 0.01:(a1d'=true);
 [actn2] a1d | !actn2_tai -> true;
 [actn3] !a1d & actn3_tai -> 0.99:(a1d'=false) + 0.01:(a1d'=true);
 [actn3] a1d | !actn3_tai -> true;
 [actn4] !a1d & actn4_tai -> 0.99:(a1d'=false) + 0.01:(a1d'=true);
 [actn4] a1d | !actn4_tai -> true;
endmodule

formula duration2 = start2 - finish2;
formula duration3 = start3 - finish3;
formula duration4 = start4 - finish4;
formula tkad1 = duration2 + duration3 + duration4; // total threat area action durations

module SensorActionCounter1
 sad1 : [0..tkad1] init 0; // sensor action duration
 [actn3] actn3_tai & r5 & sad1<tkad1 -> (sad1'=sad1+1);
 [actn3] !actn3_tai | !r5 -> true;
 [actn4] actn4_tai & r5 & sad1<tkad1 -> (sad1'=sad1+1);
 [actn4] !actn4_tai | !r5 -> true;
endmodule

formula raf1 = sad1 / tkad1; // risk acceptability factor

180
Appendix F. Mission Verification Artifacts

Listing F.91: PCTL output for Mission 4d.

\[
P=? \ [F \ d4=0 & \ !a1d & raf1>0.6 \]
\]

Listing F.92: Log output for Mission 4d.

Model checking: P=? \ [F \ d4=0&!a1d&raf1>0.6 \]

Building model...

Computing reachable states...

Reachability (BFS): 121 iterations in 0.04 seconds (average 0.000355, setup 0.00)

Time for model construction: 0.35 seconds.

Type: DTMC
States: 196 (1 initial)
Transitions: 266

Transition matrix: 5393 nodes (4 terminal), 266 minterms, vars: 42r/42c

Prob0: 121 iterations in 0.09 seconds (average 0.000702, setup 0.00)

Prob1: 47 iterations in 0.04 seconds (average 0.000872, setup 0.00)

yes = 6, no = 75, maybe = 115

Computing remaining probabilities...

Engine: Hybrid

Building hybrid MTBDD matrix... [levels=42, nodes=4775] [111.9 KB]

Adding explicit sparse matrices... [levels=42, num=1, compact] [0.9 KB]

Creating vector for RHS... [dist=2, compact] [0.4 KB]

Allocating iteration vectors... [2 x 1.5 KB]

TOTAL: [116.7 KB]

Starting iterations...

Jacobi: 116 iterations in 0.01 seconds (average 0.000009, setup 0.01)

Value in the initial state: 0.49483865960020695

Time for model checking: 0.158 seconds.

Result: 0.49483865960020695 (value in the initial state)

Listing F.93: YAML input for Mission 4f.

Action:

TraversePathSegmentAction:
- id: 1
 duration: 30
 coordinates: [-112.1456898399667, 36.08223661335747, -112.1329057930546, 36.09138166778199]
- id: 2
 duration: 30
 coordinates: [-112.1136958212283, 36.08434312651666]
 preconditions: [1]
- id: 4
 duration: 30
 coordinates: [-112.086330390576, 36.09066857566722]
 preconditions: [3]

HoverAction:
- id: 3
 duration: 30
 preconditions: [2]

PhotoSurveillanceAction:
- id: 5
 duration: 35
 preconditions: [2]
Appendix F. Mission Verification Artifacts

- id: 6
duration: 13
preconditions: [3]

Asset:
Hummingbird:
- id: 1
actions: [1, 2, 3, 4, 5, 6]

Listing F.94: DTMC output for Mission 4f.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_d6 = 13; // maximum duration
module Hummingbird1
e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [actn3] e1>0 & d3>0 -> (e1'=e1-1);
 [actn4] e1>0 & d4>0 -> (e1'=e1-1);
 [] e1=0 | d4=0 -> true;
endmodule
module TraversePathSegmentAction1
d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module TraversePathSegmentAction2
d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule
module HoverAction3 = TraversePathSegmentAction2[d2=d3, max_d2=max_d3, actn2=actn3, d1=d2] endmodule
module TraversePathSegmentAction4 = HoverAction3[d3=d4, max_d3=max_d4, actn3=actn4, d2=d3] endmodule
module PhotoSurveillanceAction5
d5 : [0..max_d5] init max_d5; // duration
 r5 : bool init false; // running
 [actn3] d2=0 & d5>0 & e1>0 -> (d5'=d5-1)&(r5'=true);
 [actn3] d5=0 -> (r5'=false);
 [actn4] d2=0 & d5>0 & e1>0 -> (d5'=d5-1)&(r5'=true);
 [actn4] d5=0 -> (r5'=false);
endmodule
module PhotoSurveillanceAction6
d6 : [0..max_d6] init max_d6; // duration
 r6 : bool init false; // running
 [actn4] d3=0 & d6>0 & e1>0 -> (d6'=d6-1)&(r6'=true);
Appendix F. Mission Verification Artifacts

Listing F.95: PCTL output for Mission 4f.

\[
\text{P}=? \left[F \ d4=0 \& \ !\text{aid} \& \ raf1>0.6 \right]
\]

Listing F.96: Log output for Mission 4f.

Model checking: \(P=? \left[F \ d4=0\&!\text{aid}\&raf1>0.6 \right] \)

Building model...

Computing reachable states...
Appendix F. Mission Verification Artifacts

Reachability (BFS): 121 iterations in 0.04 seconds (average 0.000364, setup 0.00)

Time for model construction: 0.383 seconds.

Type: DTMC
States: 196 (1 initial)
Transitions: 266

Transition matrix: 5873 nodes (4 terminal), 266 minterms, vars: 47r/47c

Prob0: 121 iterations in 0.09 seconds (average 0.000744, setup 0.00)

Prob1: 47 iterations in 0.04 seconds (average 0.000894, setup 0.00)

yes = 6, no = 75, maybe = 115

Computing remaining probabilities...

Engine: Hybrid

Building hybrid MTBDD matrix... [levels=47, nodes=5245] [122.9 KB]
Adding explicit sparse matrices... [levels=47, num=1, compact] [0.9 KB]
Creating vector for diagonals... [dist=1, compact] [0.4 KB]
Creating vector for RHS... [dist=2, compact] [0.4 KB]
Allocating iteration vectors... [2 x 1.5 KB]
TOTAL: [127.7 KB]

Starting iterations...

Jacobi: 116 iterations in 0.01 seconds (average 0.000009, setup 0.01)

Value in the initial state: 0.49483865960020695

Time for model checking: 0.158 seconds.

Result: 0.49483865960020695 (value in the initial state)

Listing F.97: YAML input for Mission 5a.

```yaml
Action:
  HoverAction:
    - id: 1
      duration: 30
    - id: 3
      duration: 30
    precondition: [2]
  TraversePathSegmentAction:
    - id: 2
      duration: 30
      coordinates: [-118.2738988072612, 34.03893526262756, -118.2710020707466, 34.03699573489515]
      precondition: [1]

LidarAction:
  - id: 4
    interval: 5
    concurrency: [1]
  - id: 5
    interval: 5
    concurrency: [3]

Asset:
  Hummingbird:
    - id: 1
      actions: [1, 2, 3]
```

Listing F.98: DTMC output for Mission 5a.

```c
.dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
```
module Hummingbird1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [actn3] e1>0 & d3>0 -> (e1'=e1-1);
 [] e1=0 | d3=0 -> true;
endmodule

module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule

module TraversePathSegmentAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module HoverAction3
 d3 : [0..max_d3] init max_d3; // duration
 [actn3] d2=0 & d3>0 & e1>0 -> (d3'=d3-1);
endmodule

//
const int i4 = 5; // interval
const int i5 = 5; // interval

module LidarAction4
 r4 : [0..max_d1] init 0; // readings
 [actn1] mod(d1, i4)=0 & r4<max_d1 -> (r4'=r4+1);
 [actn1] !mod(d1, i4)=0 -> true;
endmodule

module LidarAction5 = LidarAction4[r4=r5, max_d1=max_d3, actn1=actn3, d1=d3, i4= i5] endmodule

P=? [F d3=0]

Listing F.100: Log output for Mission 5a.

Model checking: P=? [F d3=0]
Building model...
Computing reachable states...
Reachability (BFS): 91 iterations in 0.02 seconds (average 0.000253, setup 0.00)
Time for model construction: 0.209 seconds.
Type: DTMC
States: 91 (1 initial)
Appendix F. Mission Verification Artifacts

Transitions: 91
Transition matrix: 2570 nodes (2 terminal), 91 minterms, vars: 32r/32c
Prob0: 91 iterations in 0.02 seconds (average 0.000242, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 91, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.023 seconds.
Result: 1.0 (value in the initial state)

Listing F.101: YAML input for Mission 5b.

Action:
 HoverAction:
 - id: 1
 duration: 30
 - id: 3
 duration: 30
 preconditions: [2]
 TraversePathSegmentAction:
 - id: 2
 duration: 30
 coordinates: [-118.2738988072612, 34.03893526262756, -118.2710020707466, 34.03699573489515]
 preconditions: [1]
 LidarAction:
 - id: 4
 interval: 5
 concurrencies: [1]
 - id: 5
 interval: 5
 concurrencies: [3]

Asset:
 Hummingbird:
 - id: 1
 actions: [1, 2, 3]

Listing F.102: DTMC output for Mission 5b.

dtmc
const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
module Hummingbird1
 e1 : [0..max_e1] init max_e1; // endurance
 [actn1] e1>0 & d1>0 -> (e1'=e1-1);
 [actn2] e1>0 & d2>0 -> (e1'=e1-1);
 [actn3] e1>0 & d3>0 -> (e1'=e1-1);
 [] e1=0 | d3=0 -> true;
endmodule
module HoverAction1
 d1 : [0..max_d1] init max_d1; // duration
 [actn1] d1>0 & e1>0 -> (d1'=d1-1);
endmodule
module TraversePathSegmentAction2
 d2 : [0..max_d2] init max_d2; // duration
 [actn2] d1=0 & d2>0 & e1>0 -> (d2'=d2-1);
endmodule

module HoverAction3
 d3 : [0..max_d3] init max_d3; // duration
 [actn3] d2=0 & d3>0 & e1>0 -> (d3'=d3-1);
endmodule

const int i4 = 5; // interval
const int icf4 = 2; // interval calibration factor
formula ci4 = nse4 ? i4 * icf4 : i4; // current interval

module LidarAction4
 r4 : [0..max_d1] init 0; // readings
 nse4 : bool init false; // nominal speed exceeded
 [actn1] mod(d1, ci4)=0 & r4<max_d1 & spd1=2 -> (r4'=r4+1) & (nse4'=true);
 [actn1] mod(d1, ci4)=0 & r4<max_d1 & !spd1=2 -> (r4'=r4+1) & (nse4'=false);
 [actn1] !mod(d1, ci4)=0 -> true;
endmodule

module FreewaySection1 // low speed freeway section
 spd1 : [0..2] init 1;
 [actn1] spd1=0 -> 0.3:(spd1'=0) + 0.7:(spd1'=1);
 [actn1] spd1=1 -> 0.3:(spd1'=0) + 0.3:(spd1'=1) + 0.4:(spd1'=2);
 [actn1] spd1=2 -> 0.6:(spd1'=1) + 0.4:(spd1'=2);
endmodule

const int i5 = 5; // interval
const int icf5 = 3; // interval calibration factor
formula ci5 = nse5 ? i5 * icf5 : i5; // current interval

module LidarAction5
 r5 : [0..max_d3] init 0; // readings
 nse5 : bool init false; // nominal speed exceeded
 [actn3] mod(d3, ci5)=0 & r5<max_d3 & spd2=2 -> (r5'=r5+1) & (nse5'=true);
 [actn3] mod(d3, ci5)=0 & r5<max_d3 & !spd2=2 -> (r5'=r5+1) & (nse5'=false);
 [actn3] !mod(d3, ci5)=0 -> true;
endmodule

module FreewaySection2 // high speed freeway section
 spd2 : [0..2] init 1;
 [actn3] spd2=0 -> 0.1:(spd2'=0) + 0.9:(spd2'=1);
 [actn3] spd2=1 -> 0.2:(spd2'=0) + 0.3:(spd2'=1) + 0.5:(spd2'=2);
 [actn3] spd2=2 -> 0.5:(spd2'=1) + 0.5:(spd2'=2);
Listing F.103: PCTL output for Mission 5b.

P=? [F d3=0]
P=? [F nse4 & spd1=0 & !mod(d1, ci4)=0]
P=? [F nse5 & spd2=0 & !mod(d3, ci5)=0]

Listing F.104: Log output for Mission 5b.

Model checking: P=? [F d3=0]
Building model...
Computing reachable states...
Reachability (BFS): 91 iterations in 0.02 seconds (average 0.000242, setup 0.00)
Time for model construction: 0.259 seconds.
Type: DTMC
States: 5335 (1 initial)
Transitions: 11531
Transition matrix: 3381 nodes (10 terminal), 11531 minterms, vars: 38r/38c
Prob0: 91 iterations in 0.03 seconds (average 0.000308, setup 0.00)
Prob1: 1 iterations in 0.00 seconds (average 0.000000, setup 0.00)
yes = 5335, no = 0, maybe = 0
Value in the initial state: 1.0
Time for model checking: 0.028 seconds.
Result: 1.0 (value in the initial state)

Model checking: P=? [F nse4&spd1=0&!mod(d1,ci4)=0]
Prob0: 9 iterations in 0.01 seconds (average 0.000667, setup 0.00)
Prob1: 25 iterations in 0.01 seconds (average 0.000520, setup 0.00)
yes = 33, no = 5139, maybe = 163
Computing remaining probabilities...
Engine: Hybrid
Building hybrid MTBDD matrix... [levels=38, nodes=1138] [53.2 KB]
Adding explicit sparse matrices... [levels=38, num=1, compact] [6.8 KB]
Creating vector for diagonals... [dist=1, compact] [10.4 KB]
Creating vector for RHS... [dist=2, compact] [10.4 KB]
Allocating iteration vectors... [2 x 41.7 KB]
TOTAL: [164.2 KB]
Starting iterations...
Jacobi: 30 iterations in 0.00 seconds (average 0.000067, setup 0.00)
Value in the initial state: 0.6250983112904365
Time for model checking: 0.048 seconds.
Result: 0.6250983112904365 (value in the initial state)
Appendix F. Mission Verification Artifacts

Model checking: $P=? \left[F \text{ nse5} \& \text{spd2}=0 \& \neg \text{mod(d3,ci5)}=0 \right]$

Prob0: 68 iterations in 0.04 seconds (average 0.000515, setup 0.00)

Prob1: 85 iterations in 0.04 seconds (average 0.000447, setup 0.00)

yes = 720, no = 900, maybe = 3715

Computing remaining probabilities...

Engine: Hybrid

Building hybrid MTBDD matrix... [levels=38, nodes=3464] [162.4 KB]
Adding explicit sparse matrices... [levels=38, num=1, compact] [37.9 KB]
Creating vector for diagonals... [dist=1, compact] [10.4 KB]
Creating vector for RHS... [dist=2, compact] [10.4 KB]
Allocating iteration vectors... [2 x 41.7 KB]
TOTAL: [304.5 KB]

Starting iterations...

Jacobi: 90 iterations in 0.01 seconds (average 0.000089, setup 0.01)

Value in the initial state: 0.6507381247299331

Time for model checking: 0.115 seconds.

Result: 0.6507381247299331 (value in the initial state)