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ABSTRACT 

Introduction:  

Endothelin-1 (ET-1) contributes to growth and progression of solid cancers, mainly 

through ETA receptor (ETAR). Hence, ET receptor antagonism is emerging as a 

potential cancer treatment. We evaluated the efficacy of the specific ETAR antagonist 

zibotentan (ZD4054) in blocking ET-driven cellular and molecular effects in colorectal 

cancer (CRC).  

 

Aims: 

To determine the cellular response to ET-1 and effects of receptor antagonism on 

proliferation, migration and contraction of colonic fibroblasts and cancer cell lines. At 

the molecular level to identify novel genes that are regulated by ET-1 and whether 

antagonists including ZD4054 have potentially beneficial effects by blocking 

expression of these genes. Finally to determine ET-1 binding distribution by 

autoradiography in patient tumour sections and delineate binding characteristics of 

ET-1 and its receptor antagonists (Bmax, Kd and IC50). 

 

Material and Methods: 

To investigate ET-1 and its antagonistic effects at the cellular level, colorectal cancer 

cell lines (HT29;SW620) and colonic fibroblasts (isolated from patient colorectal 

cancer specimens: CF36; CF56; CF65; CF75) were studied. They were incubated 

with ET-1 with/without BQ123, zibotentan (ETAR antagonists) and/or BQ788 (ETBR 

antagonist). Growth was measured by methylene blue uptake; migration by scratch 

wound assay and contraction in collagen gels. 

 

To identify novel key genes regulated by ET-1, Illumina micro-arrays determined 

differential gene expression post-ET-1 stimulation of 3 colorectal cancer cell lines 

(HT29, SW480; SW620) and the 4 human colonic fibroblast strains.  To confirm 

expression of genes of interest, we examined time point induction mRNA levels 

(conventional RT-PCR; quantitative real-time RT-PCR).  ETA (Zibotentan, BQ123) 

and ETB (BQ788) antagonistic effects were measured at the mRNA and protein 

levels (Immunoblotting). Silencing (SiRNA) was also used to confirm receptor 

involvement in regulation of these key genes. 

 

ET-1 receptor distribution and binding characteristics (Kd; Bmax) were determined 

using in vitro autoradiography on patient sections, tissue homogenates, CRC cell 
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lines and colonic fibroblasts. Effects of the ETAR specific antagonist zibotentan 

(ZD4054) on ET-1 receptor binding (IC50) were evaluated against laboratory-standard 

compounds. Immunohistochemistry (IHC) was used to identify stromal structures and 

receptor distribution (vascular CD31; Thy-1 fibroblasts; collagen type XI; ETA and 

ETB).  Study was awarded ethical approval, REC No. 08/H0720/162, University 

College London Hospitals 

 

Results:  

ET-1 driven proliferation (26.2%-51.9%>control) was significantly inhibited (p<0.05) 

by ETAR (not ETBR) antagonism (BQ123=zibotentan; CRC & fibroblasts). ET-1 driven 

fibroblast migration and contraction were blocked by both ETAR & ETBR antagonism 

(zibotentan=BQ123). CRC cells did not demonstrate any migrate or contract. 

 

Four-hour ET-1 induction had a significant effect on gene up/down-regulation (p<0.01 

+ >1.5-fold) in all cancer cell lines (9 genes) and fibroblast strains (111 genes). We 

determined expression and effect of receptor antagonism of the following (table 1.1): 

(a) In cancer cells: (i) MT1X, maximum at 4hr, reversed by ETA antagonism; (ii) 

MMP7, late maximum induction (24hr) (undetectable by 4hr microarray), reversed by 

ETA antagonism; (iii)PPP2R5D, no significant up/down regulation, but levels were 

decreased by ETA antagonism. (b)  In fibroblasts:  (i) CTGF and (ii) ADM maximum at 

2-4hr, both  reversed by ETA & ETB antagonism; (iii) STC1, transient up-regulation 

(1hr) followed by down-regulation (4hrs in-line with 4hr microarray data), reversed by 

ETA & ETB antagonism.    

 

Gene 

 

Name/Role Peak Antagonist 

MT1X Metallothionein:                                
proliferation/migration/angiogenesis 

4h ETA 

MMP7 Metalloproteinase 7:                          
migration/invasion 

24h ETA 

PPP2R5D Phosphatase 2Reg5Delta:         
proliferation/migration 

NS ETA  

CTGF Connective Tissue Growth Factor: 
proliferation/adhesion/migration/ 
angiogenesis 

2-4h ETA/ETB 

ADM Adrenomedullin:                              
proliferation/survival/angiogenesis 

2-4h ETA /ETB 

STC1 Stanniocalcin 1: proliferation/survival 1h ETA /ETB 

       

Table 1.1 ET-1 regulated genes and their associated roles in tumourgenesis along with 

peak expression time and receptor antagonist that significantly affected expression 

levels. 
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ET-1 binding to cancer and normal colon tissue had similar characteristics. There 

was greater ETA than ETB binding in CRC sections. Both cancer and normal tissues 

had strongest binding to stromal cells, particularly fibroblasts (IHC). Furthermore, 

characterising CRC cell lines and primary fibroblasts revealed high density and 

affinity ET-1 binding (Bmax 1.11 fmol/1x106 cells; Kd 450.5 pmol/L and Bmax 3.03 

fmol/1x106 cells; Kd 213.6 pmol/L respectively). Inhibition studies showed ETA 

antagonists (BQ123; Zibotentan) more effectively reduced ET-1 binding (approximate 

IC50 values in CRC: 10μM, 0.1μM respectively; fibroblasts: 0.1μM, 10μM 

respectively) than ETB antagonism BQ788 (approximate IC50; 1mM in both).  

 
 

Conclusions: 

The specific ETAR antagonist zibotentan is at least as efficacious as BQ123 in 

blocking ET-1 driven growth, migration & contraction in CRC cell lines & colonic 

fibroblasts, which form the supporting tumour stroma.  

ET-1 stimulates CRC cell line and cancer-associated fibroblasts to produce signals 

that promote cancer growth and formation of tumour stroma.  ETA and ETB receptor 

antagonists block a number of these signals.   

ET-1 bound strongly to CRC stromal structures with high affinity and density 

(fibroblasts; endothelial cells), and is consistent with ET-1 signalling contributing to 

tumourigenesis. We further demonstrated that the orally active ETA antagonist 

Zibotentan reduces ET-1 binding to CRC tissues.  

This study provides new and further evidence for the potential therapeutic use of the 

specific ETA antagonist Zibotentan as an adjuvant treatment for CRC. 
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1.1 INTRODUCTION 

 

 

The work described in this thesis focuses on opposing the tumourigenic 

actions of the peptide Endothelin-1 in colorectal cancer, using Endothelin receptor 

antagonism. Endothelin-1 is a small vasoactive peptide which was first identified in 

1988. It is one of a family of three endothelins which exert their action through two G-

protein coupled receptors, ETA and ETB. This chapter reviews our knowledge of 

colorectal cancer and the evidence implicating ET-1 in tumorigenesis; In particular  

the role of ET-1 in mitogenesis, apoptosis, angiogenesis, tumour invasion and 

metastasis. Evidence relating to downstream effectors is presented, and trials 

relating to the potential for endothelin-system modulation as an adjuvant therapeutic 

strategy are reviewed. Aims and specific objectives of this work are described at the 

end of the chapter.  

 

1.2 Colorectal Cancer 

 

Colorectal cancer (CRC) is the third commonest cancer in the UK with about 36,000 

new cases every year.  Being one of the commonest malignancies in the developed 

world, it is the leading cause of morbidity and mortality worldwide due to cancer.  

According to Cancer Research UK in 2009, it is the second commonest cause of 

death in the UK, with a peak incidence in the sixth decade of life with over 80% 

arising in the over 60‟s.  Environmental factors play a major role in the aetiology of 

most cancers.  However there are inherited genetic factors that play a significant role 

in about 10-30% of cases.  A highly penetrant dominant or recessive inherited 

syndrome is associated with up to 5% of all CRC cases (Haque et al., 2008). 

 

Research has shown that a number of colorectal cancers develop following 

mutations in oncogenes and tumour-suppressor genes.  These mutations generally 

occur resulting in a well defined pathological sequence seen histologically.  Indeed 

mutations not only occur in familial cancers at a younger age such as in Familial 

Adenomatous Polyposis (FAP) and Hereditary Non-Polyposis Colon Cancer HNPCC, 

but also account for 80-85% of all sporadic colorectal cancers (Vasen et al., 2008).  
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Fearon and Vogelstein in 1990 had proposed sequential mutations occur in the 

development of colorectal cancers.  These mutations mainly target three main 

tumour suppressor mutations (APC, DCC and p53) and one oncogene (k-Ras) as 

described by Fodde et al., 2001. 

 

The staging of colorectal cancer is to determine prognosis and aid in the appropriate 

management of patients. The most widely used and accepted staging system used in 

the UK is the Duke‟s classification, providing a 5 year survival rate depending on 

extent of spread. With early detection, colorectal cancer is potentially curable with 

surgical intervention. However, up to 60% of patients will have regional or metastatic 

disease at initial presentation, limiting the potential for surgical resection. In 

advanced disease, and those with inoperable disease, management focuses on 

disease control with chemotherapeutic agents such as 5-Flurouracil, either 

individually or in combination with other agents.  

 

Despite our increased knowledge of molecular mechanisms in colorectal cancer, 

success of new chemotherapeutic drugs and monoclonal antibodies is still limited.  

We therefore need to develop novel therapeutic strategies for patients with advanced 

or unresectable disease that can be used in the adjuvant setting following surgery. 

Recent strategies which have shown promise including the targeting of growth factor 

and angiogenic receptors, thought to be important in the promotion of colorectal 

cancer development and progression. Another increasingly recognised potential 

target is Endothelin-1 (ET-1) which has important autocrine and paracrine actions in 

a number of human cancers (Rosano et al., 2005; Grant et al., 2007).  

 

 

1.3 Endothelin-1 

 

The potent vasoconstrictor peptide endothelin 1 (ET-1) is one of a family of 

three multifunctional peptides (ET-1, 2, and 3).  They comprise a 21 amino acid 

structure characterised by a single α-helix and 2 disulphide bridges, encoded on 

chromosomes 6, 1 and 20 respectively. Initially described in 1988 as a 

vasoconstrictive substance isolated from bovine aortic endothelial cells, ET-1 is the 

most extensively studied of the three peptides and the one most implicated in 

tumorigenesis (Sakurai et al., 1992).  

The ET physiological effect is exerted via ETA and ETB receptors, which are 

G-protein coupled trans-membrane receptors (GPCR) found in both vascular and 
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non-vascular tissues. The ETA receptor has varying affinities for each isoform (higher 

for ET-1 then ET-2, with a two-fold lower affinity for ET-3) whereas the ETB receptor 

shows no selective affinity for any of the ET subtypes (Sakamoto et al., 2001). 

The endothelins have been implicated in numerous pathological conditions 

including hypertension and cardiac failure. Interest in the role of ET-1 in cancer has 

grown over the last decades, and currently there is evidence that ET-1 can modulate 

mitogenesis, apoptosis, angiogenesis, tumor invasion, and development of 

metastases.  

 

1.3.1 ET-1 Associated Signal Transduction Pathways 

 

Translation of the ET-1 gene produces a number of precursors which 

eventually result in the production of Big-ET-1. This has negligible biological activity 

and is converted by the metalloproteinase Endothelin Converting Enzyme 1 (ECE-1) 

into the active ET-1 peptide. Production of ET-1 is stimulated by Interleukin (IL-1ß), 

tumour necrosis factor (TNFα), transforming growth factor (TGFß), platelet derived 

growth factor (PDGF), vasopressin, hypoxia and shear stress.  ET-1 inhibitory factors 

include nitric oxide, prostacyclins and atrial natriuretic peptide (ANP) (Nelson et al., 

2003).  

The consequences of ET-1 induced receptor stimulation are complex with 

many intracellular pathways being activated (figure 1.1).  ET-1 binding to its receptor 

results in dissociation of the  and  subunits of one of several possible associated 

G-proteins. The activated G-protein then phosphorylates one of several upstream 

pathway initiators, some of which include phospholipase C and D, phospholipase A2, 

adenylate cyclase, and guanylate cyclase (Shome et al., 2000). The former two 

initiators activate IP3 and Protein Kinase C (PKC) which ultimately result in mitogen 

activating protein kinase (MAPK) pathway activation.  This is achieved either directly 

by Ras activation through IP3 or indirectly via increased intracellular Ca2+ through 

PKC. Raf-1 (downstream in the MAPK pathway) is activated directly via PKC 

(Blaukat et al., 2000). Ultimately MAPK results in early response gene transcription of 

fos and jun. Resultant cellular effects include mitogenesis and motility.  

Transactivation of other cell surface receptors as a result of ET receptor 

stimulation has been demonstrated: in Rat-1 fibroblasts (Daud et al., 1996), ovarian 

cancer and colorectal cancer (CRC) cells. The Tyrosine Kinase Epidermal Growth 

Factor Receptor (EGFR) is trans-activated and induces MAPK activity (Grant et al., 

2007).  ET-1 has also been shown to potentiate the effects of platelet-derived growth 
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factor (PDGF) on human smooth muscle cells, suggesting interactions with other 

tyrosine kinase receptors (Yang et al., 1999). 

As ETB receptor binding affinity is equal for all isoforms, this suggests a role 

in the clearance pathway via lysosomal degradation following receptor up-take 

(Bremnes et al., 2000).  A second clearance pathway has been suggested involving 

catabolism by the extracellular neutral peptidase nepilysin (NEP). 

 

 

 

Figure 1.1  Schematic representation of the signal transduction pathways associated with 

stimulation of the Endothelin receptors.  Upstream transduction molecules activated 

(phosphorylated) by the G-Protein are shown at the top of each pathway and include the 

Epidermal Growth Factor Receptor (EGFR), Phospholipase A2, C, D (PLA2, PLC, PLD), Adenylate 

Cyclase (AC),Guanylate Cyclase (GC) and Phosphoinositide 3-Kinase (PI3K).  Downstream 

effectors include phosphatidyl inositol 3 kinase (IP3), diacylglycerol (DAG), phospholipase A 

(PA), cyclic GMP (cGMP), protein kinase A, C, G (PKA, PKC, PKG), Akt, mTOR, cyclooxygenase 

1, 2 (COX-1, COX-2) and prostaglandin E2 (PGE2).  

 

 

1.3.2 ET-1 Expression in Cancer 

 

Many human cancer cell lines have been shown to synthesize ET-1, including 

colonic, breast, stomach, prostate, and glioblastoma cells (Ali et al., 2000; Kusuhara 

et al., 1990). Similarly, in vivo, increased tissue immunoreactivity for ET-1 has been 
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demonstrated in several cancer types, including ovarian, breast and colorectal 

tumours (Bagnato et al., 1999). 

In normal colorectal tissue, low expression of ET-1 and ECE-1 was reported.   

However, these molecules were significantly up-regulated in 80% of primary CRCs 

and in the majority of metastatic disease.  Furthermore, ET-1 expression levels within 

tumour-adjacent stromal and endothelial cells were also raised in keeping with its 

known paracrine function (Asham et al., 2001; Shankar et al., 1998). Our group 

showed that plasma levels of ET-1 were increased in patients with both primary 

colorectal cancers with or without liver metastasis (Asham et al., 2001; Shankar et al., 

1998). Other studies have found that both pre-operative and intra-operative portal 

plasma levels were significantly higher in metastatic disease.  Elevated plasma levels 

of ET-1 have also been detected in patients with other various solid tumors, including 

gastric and prostate cancer, where levels are greatest in patients with metastastic, 

hormone refractory disease (Nelson et al., 1996). 

ET-1 dysregulation as an early event in colorectal tumourigenesis was 

suggested by the observation that pre-malignant colorectal adenomas showed 

increased expression of Big ET-1 and ECE-1 mRNA when compared to normal colon. 

ET-1 immunoreactivity in breast ductal carcinoma in situ (DCIS) specimens is also 

significantly higher (P<0.005) than that of normal breast tissue, suggesting that 

modulation of the endothelin system may be an early phenomenon in tumorigenesis. 

 

1.3.3 Endothelin Receptor Expression in Cancer 

 

Varied expression levels of ET receptor subtypes in different cancers have 

been investigated by using immunohistochemistry, autoradiography and mRNA 

studies. Expression of the ETA receptor is up-regulated predominately in colorectal, 

ovarian, renal and prostate cancers (Bagnato et al., 1999; Nelson et al., 1996; Ali et 

al., 2000), whilst ETB receptors are down-regulated. On the other hand not only are 

ETA receptors up-regulated, but ETB receptors are also reported as up-regulated or 

have varied expression levels in lung and breast carcinomas. The question remains 

on whether the variety of techniques used to look at levels may give conflicting or 

unrealistic results for ETB expression. 

Specifically within CRCs, our group previously demonstrated that 

pharmacologically functional ETA receptors were over-expressed in all colorectal 

cancer tissues, compared to normal. Most of this localisation was around blood 

vessels and fibroblasts, with less localisation to epithelial cancer cells.  In contrast 

ETB receptors were confirmed to be prominent in normal tissue with a marked down-
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regulation in cancer associated blood vessels, fibroblasts and cancer epithelial cells 

(Hoosein et al., 2007). In prostate tumours, levels of receptor expression have been 

found to correlate with the presence of metastases, similar to the findings in CRCs.  

Interestingly, relative hypermethylation of the ETB gene has been reported in 

prostate, bladder, and colon cancer cell lines. Furthermore, this has also been found 

to correlate with transcriptional down-regulation, providing a plausible mechanism for 

reduced ETB receptor expression in malignant tissue. 
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Figure 1.2.  Summary of the role of ET-1 in cancer spread. 

 

 

1.3.4 ET-1 as a Mitogen 

 

Effects on mitogenesis are the most intensely studied amongst all the 

different tumourigenic actions of ET-1 (figure 1.2); they are driven through a complex 

network of multiple pathways which have been presented earlier and involve the 

MAPK cascade.  For example in ovarian cancer cell lines, ETA receptor antagonism 

reduced EGFR transactivation, implicating this receptor in mitogenesis. ET-1 

stimulates growth of several human cancer cell lines. In CRC experimental models, 

ETA receptor antagonism significantly reduced proliferation not only in cancer cell 

lines but also in colonic fibroblasts (Ali et al., 2000; Knowles et al., 2011). In ovarian 

cancers, the use of ETA receptor antagonists ABT-627 and ZD4054 inhibited cell 
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proliferation and potentiated paclitaxel induced apoptosis (Rosano et al., 2007). The 

same receptor was associated with prostate and cervical cancer proliferation (Nelson 

et al., 2003; Nelson et al., 2008). In the later it was shown that atrasentan, an ETA 

receptor antagonist, inhibited growth in xenografts. Other tumours that demonstrate 

ET-1 mitogenic activity via the ETA receptor include lung, bladder and 

nasopharyngeal carcinomas.  In breast and Kaposi‟s sarcomas, both ETA and ETB 

receptors were shown to be over-expressed. The use of dual receptor antagonists, 

bosentan in breast and A-182086 in Kaposi‟s sarcomas, significantly inhibited tumour 

growth and vascularity in in vivo models (Dreau et al., 2006). Studies on human 

melanoma cells have demonstrated that the mitogenic effect of ET-1 is purely ETB 

receptor dependent. This has also been confirmed in vivo, where the specific ETB 

antagonist (BQ788) slowed down significantly melanoma tumour growth in nude mice 

(Lahav et al., 1999).  

The role of ET-1 as an autocrine growth factor has been demonstrated in 

human ovarian and colon cancer cell lines (Ali et al., 2000). A paracrine role for ET-1 

has also been elucidated in ovarian cancer, where ET-1 production by human 

ovarian cancer cells stimulated growth of carcinoma associated fibroblasts in co-

culture, an effect which was partially inhibited by both ETA and ETB antagonism.  

 

1.3.5 ET-1 and Apoptosis 

 

ET-1 also modulates apoptosis. Within rat colon carcinomas, Peduto-Eberl et 

al. demonstrated that ET-1 acted as a survival factor for rat colon carcinoma cells 

against FasL-induced apoptosis (Peduto-Eberl et al., 2003).  They also showed that 

dual endothelial receptor antagonism with bosentan resulted in human CRC 

sensitization to FasL-induced caspase mediated apoptosis. Protection from FasL 

induced apoptosis, through suppressed Bcl-2 phosphorylation and PI3K mediated 

Akt activation, was also observed in ovarian cancers (Peduto-Eberl et al., 2003).  

Furthermore in CRC, ET-1 (which is a direct target of β-Catenin) has been shown to 

rescue cells from growth arrest and apoptosis which were originally caused by beta-

Catenin inhibition (Kim et al., 2005). This suggests ET-1 having an oncogenic effect 

by interfering with the beta-Catenin pathway. 

In both melanocytes and melanoma cell lines, ET-1 has been shown to 

decrease basic apoptotic rates. Like the proliferative action of ET-1 in these cells, the 

effect on apoptosis is ETB dependent.  
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1.3.6 ET-1 and Angiogenesis 

 

Additional to the mitogenic actions of ET-1 on epithelial cancer cells, it 

stimulates growth of endothelial cells, vascular smooth muscle cells (VSMC), 

fibroblasts and pericytes. Furthermore, ET-1 potentiates the effect of several pro-

angiogenic factors in vitro, including PDGF and VEGF. ET-1 promotes cancer 

neovascularisation via ETA receptor stimulation on vascular smooth muscle cells and 

ETB receptor stimulation on endothelial cells. ET-1 has also been shown to stimulate 

various stages of neovascularisation, including protease production, tubular 

formation, endothelial cell proliferation, migration and invasion.  

There is significant correlation between microvascular density, ET-1 and 

VEGF expression in ovarian cancer specimens. From the in vitro studies described, 

both in an ovarian cancer cell line and vascular smooth muscle cells, ET-1 was able 

to promote transcription and protein expression of VEGF to a level similar to that 

stimulated following hypoxia. This effect was mediated through ET-1 binding to ETA 

receptors, stimulation of hypoxia inducible factor (HIF-1) production (or its 

stabilization in normoxic conditions), which then bound to hypoxia responsive 

elements and in turn increased VEGF production (Spinella et al., 2002). It has also 

been shown a reciprocal relationship exists where HIF-1 itself also stimulates ET-1 

production. Furthermore ET-1 acting via the ETA receptor, increased expression of 

COX-1 and COX-2 in ovarian cancer cells.  This resulted in increased prostaglandin 

signalling, particularly PGE2, and stimulation of several MAPK dependent signalling 

pathways, including p38 MAPK and p42/22 MAPK. This resulted in production of 

VEGF, MMP activation and angiogenic cellular invasion (Spinella et al., 2004). 

Invasive tumour cells, including melanomas, prostate, breast and ovarian 

carcinomas have been shown to form de novo extracellular matrix rich vascular 

channels expressing vascular associated molecules. Both MMP2 and MT1-MMP, 

which are expressed by invasive ovarian cancer cells, play a key role in developing 

vasculogenic-like networks and matrix remodelling. Interestingly, ETA receptor 

antagonism of these cells inhibits the formation of tumour like vascular channels.  

 In vivo studies looking at subcutaneous implants of matrigel impregnated 

with either ET-1 or VEGF confirmed increased vascular effects and vascularity above 

that of other angiogenic factors, e.g. bFGF.   

 In addition to an effect on tumour cells, ET-1 is known to protect human 

endothelial cells and VSMC‟s from serum deprivation induced apoptosis in vitro. This 

suggests that ET-1 could have a pro-angiogenic effect by acting as a survival factor 

for newly formed blood vessels.   
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1.3.7 ET-1 and Tumour Progression/Metastases 

 

Further to its pro-angiogenic role, ET-1 may also influence tumour invasion 

and metastases by stimulating secretion of matrix remodelling proteins. In colonic 

fibroblasts, our group reported that ET-1 increased TIMP-1 and MMP-2 protein 

expression which are known to be involved in key tumourigenic processes: matrix 

degradation, activation of growth factors and degrading enzymes and modulation of 

angiogenesis (Knowles et al., 2011). Expression of both these molecules was 

inhibited by predominantly ETA but also ETB receptor antagonism. Furthermore, ET-1 

stimulated expression of CTGF and Collagen Type XI mainly via the ETA receptor. 

CTGF is known to activate intracellular pathways resulting in increased migration, 

proliferation and MMP production, whilst Collagen Type XI is associated with colonic 

diseases. Our group conducted proliferation and desmoplastic activation studies in 

colonic fibroblast strains using the specific ETA receptor antagonist zibotentan: ETA 

receptor blockade inhibited growth, contraction, migration and MMP production by 

these cells. 

In ovarian cancer, ET-1 stimulated expression of several MMPs, particularly 

MMP-2 and MMP-9, and down-regulated tissue inhibitors of matrix 

metalloproteinases, TIMP1 and 2. Similar up-regulation of MMPs has also been 

shown in Kaposi‟s sarcoma cells. Furthermore, ET-1 can contribute to the creation of 

a „reactive‟ tumour stroma, by stimulating myofibroblast induction (via ETA), and the 

expression of matrix remodelling genes by these cells (Xu et al., 2004). Interestingly, 

tumour adherence to collagen is enhanced by integrin-linked kinase (ILK), a multi-

domain focal adhesion protein. Blockade of ET-1/ETA receptor induced ILK resulted 

in inhibition of MMP activation, as well as cell motility and invasiveness, indicating 

that the ET-1 axis is involved in aggressive cellular behaviour. 

In prostate cancer ET-1 may contribute to the growth of bony metastases. In 

vitro, ET-1 production by prostate cancer cells is enhanced by bone contact, which in 

turn blocks osteoclastic bone reabsorption. Similarly, in an in vivo osteoblastic 

tumour model, tumours transfected to over-express ET-1 produced significantly more 

bone growth in nude mice compared with vector only controls (Nelson et al., 1999).   

Furthermore, we have demonstrated increased ET-1 immunoreactivity in 

endothelial cells within colorectal liver metastases compared with surrounding 

vessels (Shankar et al., 1998), suggesting that ET-1 may be involved in modulation 

of tumour blood flow.  
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1.3.8 Endothelin Antagonism in Vivo 

 

Several in vivo models have been used to assess the role of endothelin 

antagonism in tumorigenesis. Work originating from our department using 

intraportally injected syngeneic MC28 cells in rats demonstrated that ETA antagonism 

with BQ123 significantly reduced hepatic tumour load compared with controls 

(Asham et al., 2001).  

The effect of bosentan, a dual receptor antagonist, on growth of peritoneal 

tumours derived from a syngeneic rat colonic adenocarcinoma cell line has been 

investigated. Although bosentan was not able to control tumour progression, tumours 

were generally of lower grade, and there were fewer spontaneous deaths in the 

treated versus the untreated groups. Egidy and colleagues used the same tumour 

model to assess histological differences between tumours of bosentan treated 

animals and controls (Egidy et al., 2000). They demonstrated that tumour cells were 

less densely packed, and there was less collagen matrix around tumour nodules in 

the treated compared to the untreated group.  

Using an osteoblastic tumour model in nude mice Nelson and colleagues 

have shown that ETA antagonism with A127722 significantly reduced the growth of 

new bone compared with vehicle treated controls (Nelson et al., 1999).  

Finally, Rosano and colleagues have combined targeting of the ETA and EGF 

receptors with promising results. They demonstrated co-administration of ZD4054 

and gefitinib lead to a partial (82%) or complete tumour regression on HEY ovarian 

carcinoma xenografts. This also resulted in decreased vascularisation, MMP2, VEGF, 

MAPK and EGFR, and enhanced E-Cadherin expression (Rosano et al., 2007).  

To date results from in vivo models are encouraging and warrant further 

investigation. 

 

1.4 Clinical Trials 

 

The availability of orally active bio-available endothelin receptor antagonists 

offers potential opportunities in adjuvant cancer treatment.  One example is the drug 

atrasentan which has a 1000-fold greater affinity for the ETA receptor then the ETB 

receptor. A phase II randomized, placebo-controlled trial in 288 patients with 

asymptomatic hormone-resistant metastatic prostate cancer evaluated three groups; 

placebo, 2.5mg, or 10mg atrasentan. Delayed time to progression (TTP) was 

observed in the 10mg group, and stabilization of biochemical markers, including 

prostate specific antigen and lactate dehydrogenase compared with controls.  In 
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phase III clinical trials involving 809 prostate cancer patients, 10mg of atrasentan 

daily was shown to delay time to disease progression when compared to placebo, 

albeit statistically non-significant, in men with metastatic hormone resistant prostate 

cancer (Carducci et al., 2007). However, secondary endpoint analysis demonstrated 

significantly delayed progression of bone acid phosphatase levels, and preserved 

prostate cancer-specific quality of life, particularly in terms of pain-related symptoms.  

Another phase III trial in non-metastatic prostate cancer once again showed 

statistically non-significant delay in disease progression (93 days) when compared to 

placebo with the same dosing of this drug (Nelson et al., 2008).  It has been 

suggested that the future use of atrasentan may lie in combining it with other drugs.  

This was demonstrated by a phase I-II trial in patients with resistant prostate cancer, 

where results from this drug combined with docetaxel were comparable to results 

produced by docetaxel and prednisolone (Armstrong et al., 2008).  

Another orally active ET receptor antagonist, currently used in pulmonary 

hypertension, is Bosentan. This is a non-selective ETA and ETB receptor antagonist.  

Promising preclinical results demonstrating inhibition of tumour progression were 

shown in in vitro and in vivo models of melanoma (Lahav et al., 1999).  However, a 

phase II clinical trial found that patients with stage 4 metastatic melanoma developed 

progressive disease despite receiving 500mg BD of Bosentan (Kefford et al., 2007). 

More recently the novel specific ETA receptor antagonist Zibotentan (trans, trans-2(4-

methoxydhenyl)-4-(1-3-benzodiazol-5-yl)-1-(dibutylaminocarbonylmethyl)-pyrrolidine-

3-carboxylic acid (ZD4054)), has been investigated in a number of clinical trials. In 

the clinical arena the original focus was within the field of prostate cancer.  A phase II 

double blinded clinical trial allocated a total of 312 patients with pain free or mildly 

symptomatic hormone resistant prostate cancer patients with bony metastases to 

either receive daily doses of ZD4054 (10mg-15mg) or placebo.  There was no 

significant difference seen for progression-free survival although there was a 

difference in the overall survival of these patients compared to the placebo group.  

Importantly this drug had an acceptable safety and tolerability profile (James et al., 

2009).  A recent Phase III clinical trial looked at ZD4054 in non-metastatic hormone 

resistant prostate cancer. This was terminated early in 2011 as it was unlikely that 

the trial would meet its primary efficacy end point of progression free survival and 

overall survival benefits. Due to the disappointment of monotherapy, interest has 

grown in its use as adjuvant therapy, for example the latest on-going phase II clinical 

trial (FOLFERA) which combines ZD4054 with chemotherapy agents irinotecan, 

fluorouracil and folinic acid (FOLFIRI) in patients with advanced colorectal cancer. 
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The endothelin axis is altered in cancer, aiding tumour growth and 

progression. It seems that selective ETA antagonism provides the most effective 

method of endothelin system inhibition in cancer. With generally acceptable side 

effects, and suggested anti-tumour activity, further clinical evaluation of these agents 

is warranted to determine possible therapeutic potential as an adjuvant anti-cancer 

strategy. 

 
 

1.5 AIMS 

 

The overall aim of this thesis was to investigate the effects of ET-1 and its ETA and 

ETB receptors on a number of cellular and molecular effects in colonic fibroblasts and 

cancer cell lines. Throughout this thesis the potential role of the specific ETA receptor 

antagonist ZD4054 (Zibotentan) was evaluated to determine its suitability for clinical 

use in the setting of colorectal cancers. Specific objectives were to: 

1. To determine the cellular response to ET-1 and effects of receptor 

antagonism on proliferation, migration and contraction of colonic fibroblasts 

and cancer cell lines. 

2. Identify novel genes that are regulated by ET-1 and determine whether 

antagonists including ZD4054 have potentially beneficial effects by blocking 

expression of these genes. 

3. Determine ET-1 binding distribution by autoradiography in patient tumour 

sections and delineate binding characteristics of ET-1 and its receptor 

antagonists (Bmax, Kd and IC50). 
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2 GENERAL MATERIALS AND METHODS 

 

This chapter describes general techniques used throughout the thesis. Experimental 

protocols specific to particular studies are outlined within each chapter.  

 

2.1 Cell Lines  

 

Primary cell strains from submucosal colonic fibroblasts were used throughout.  Fibroblast 

isolation work was previously carried out by Dr. Felicity Savage, UCL Division of Surgery 

and Interventional Science (cell isolation carried out pre-2003, with patient consent and UCH 

ethical approval).  In brief, fibroblasts were obtained from surgical specimens of colons from 

patients undergoing colorectal cancer resection between 2001 and 2003.  Once specimens 

were received, fibroblasts were extracted from macerated tissue adjacent to tumour, but 

macroscopically not part of the cancer itself.  Cell-type specific antibody coated magnetic 

beads were then used to remove epithelial and endothelial cells, with the remaining cells 

grown in fibroblast selective medium.  Fibroblast phenotype (-actin positive) was previously 

confirmed by IHC. Cell strains (untransformed fibroblasts propagated in culture) were 

labelled CF (Colorectal Fibroblast) along with the patient sample number.  Those used in this 

thesis were CF35, CF36, CF56, CF65, CF75 and CF78. Fibroblasts were used routinely 

between passages 4-14 and thereafter discarded due to loss of fibroblast phenotype 

(Kernochan et al., 2002).   

 

Four colorectal cancer cell lines were used throughout.  They were: HT29 (moderately 

differentiated colorectal adenocarinomas); SW480 (Primary Dukes B adenocarcinoma) and 

the line derived from its poorly differentiated Dukes C metastasis resected 18 months later 

from a lymph node, SW620 (all from ECACC, Salisbury, UK); and LIM1215, an immortalised 

line grown from an Hereditary Non Polyposis Colon Cancer (HNPCC) cancer (kindly donated 

from Professor Mike O’Hare, the Ludwig Institute, UK). 

 

2.2 Cell Maintenance 

 

Cells were routinely cultured in a humidified atmosphere, at 37oC, 5% CO2/air in Dulbecco’s 

Modified Eagle Medium (DMEM, Lonza, Basel, Switzerland) which was supplemented with 

10% Foetal Calf Serum, L-Glutamine (2mM) and Gentamycin (1mg/ml).  Once 80-90% 

confluence was reached, cells were disaggregated with trypsin (1mg/ml in 0.02% EDTA 
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PBS/PBS, Lonza) and passaged 1:2 or 1:3 into flasks for further stocks or for 

experimentation. 

 

2.3 Materials 

 

Experimental concentrations used for fibroblast and colorectal cancer cell protocols were 

previously determined by our laboratory and by collaborators within the Centre of 

Rheumatology, UCL Medical School (Ali et al., 2000; Grant et al., 2007, Shi-Wen et al., 

2004). Dilutions were generally made in serum free DMEM containing gentomycin; as 

appropriate bovine serum albumin was used in the serum free DMEM, particularly for 

fibroblast culture. 

For fibroblasts, ET-1 (Bachem Ltd, St Helens, Merseyside, UK) was used at a concentration 

of 10-7M. The ETA receptor specific antagonist BQ123 and the ETB receptor specific 

antagonist BQ788 were used at 10-6M.  For colorectal cancer cells, ET-1 was used at 10-8M, 

whilst BQ123 and BQ788 were used at 10-7M.  Similarly, the specific ETA receptor antagonist 

ZD4054 (kindly donated by Astra Zeneca, Stanhope Gate, London, UK) was used at 10-6M 

for fibroblast and 10-7M for colorectal cancer experimentation.  These concentrations were in 

keeping with relevant publications which used receptor antagonist at a 10-fold lower levels 

then ET-1 ligands (Davenport, 2002).  All other reagents were purchased from Sigma-Aldrich 

Co, Irvine, Ayrshire, UK, unless otherwise stated. 

 

2.4 Statistics 

 

Data are presented as means with standard deviations or percentage of control values, as 

appropriate. Statistical testing was performed on the original values using one-way ANOVA 

followed by post–hoc analysis using Tukey’s honestly significant difference test.  As 6 or 

more independent repeats were used for each cell type or fibroblast strain, data was 

analysed as parametric data. Where n<6, the data was analysed as if they were non-

parametric: Kruskal-Wallis analysis was used with Dunn’s multiple comparison test 

performed on selected data sets and the data presented as a median with a range.  Further 

details of statistical analysis used are given at the beginning of each chapter. 
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3.1  INTRODUCTION 

 

This chapter describes the effects on ET-1 and ET receptor antagonism on the cellular 

behaviour of both colorectal cancer (CRC) cell lines and fibroblasts isolated from human 

colons. Specifically, the processes investigated were proliferation, migration and contraction.  

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Cell Culture and Pharmacological Agents 

 

Colorectal cancer cell lines SW620, HT29 and colonic fibroblast strains CF35, CF65, CF75 

and CF78 were used. For fibroblasts, ET-1 was used at 10-7M and receptor antagonists (for 

ETA: BQ123, ZD4054; for ETB: BQ788) were used at 10-6M.   For colorectal cancer cells, ET-

1 was used at 10-8M and receptor antagonists were used at 10-7M. Cells were maintained 

routinely in culture and appropriate cellular concentrations were prepared for the 

experiments described below.  

 

3.2.2 Proliferation Assay with ET-1 and/or ETA and ETB Receptor Antagonists 

 

Cell proliferation in response to ET-1 and receptor antagonists was measured by the 

colourimetric Methylene Blue (MB) assay. Mechanistically the MB dye is positively charged 

at pH 8.5 and therefore chelates to negatively charged nucleic acids within cells. Briefly, 

cells were formalin-fixed, and then incubated with 1% MB (1g in 100ml 0.01M Borate Buffer) 

for at least 30 minutes. MB that was bound to nucleic acids was then eluted with 0.1M HCl 

and absorbance was read at 630nm (plate reader, Anthos 2010, Biochrom Ltd, Cambridge, 

UK). Measurements in the linear scale are proportional to cell numbers (Oliver et al, 1989; 

optimization experiments previously carried out).  The initial proliferation technique used was 

the Alamar Blue Assay, based on the substrate reagent Resazurin metabolised by cellular 

mitochondria to produce a fluorescent signal. Readings correlate with cell growth. 

Unfortunately this assay produced variable readings (later transpired to be a plate reader 

error) and was abandoned (appendix 1 – both proliferation assays). 

 

Depending upon cell type, 96-well flat microtitre plates (Nunc A/S Kamstrupvej, Denmark) 

were seeded with 10,000 – 15,000 cells/well containing fully supplemented medium.  Plates 

were incubated routinely for 24 hours (CRC cells) or 24-36 hours (fibroblasts) to reach 60-

70% confluence.  Medium was changed to serum free medium for another 18-24 hours (BSA 
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containing media for fibroblasts).  Medium was then discarded and wells washed twice with 

PBS.  Wells were emptied using a pipette suction vacuum pump.  Solutions were made in 

serum free medium for CRC cell lines or DMEM with 0.5% BSA for fibroblasts.  ET-1 was 

used at 10-7M or 10-8M and receptor antagonists at 10-6M or 10-7M, for fibroblasts and CRC 

cells respectively.  Control wells contained media only.  Two plates were used for each 

individual repeat to accommodate all combinations of agents and solutions were added as 

shown below for 48 hours and growth assayed by MB (Figure 3.1). 

 

Control ET-1 ET-1 & 

BQ123 

BQ123 ET-1 & 

BQ788 

BQ788 

 

      

 

Figure 3.1. Schematic of 96 well plate rows used for proliferation experiments 

 

 

3.2.3 Migration Assay with ET-1 and/or ETA and ETB Receptor Antagonists 

 

The technique employed was based upon a modified ‘scratch wound’ migration assay 

(Kernochan et al, 2002; Tangkijvanich et al, 2001).  

 

Fibroblasts in fully supplemented DMEM were seeded at 100,000 cells/well into 12 well 

plates (Nunc).  Upon achieving near confluence, wells were emptied by vacuum pipetting 

and pre-incubated with the relevant antagonists in serum free medium for 1 hour.  A scratch 

wound was made across the centre of the well using a 100μl sterile pipette.  The medium 

was replaced with serum-free medium (containing mitomycin C, Sigma-Aldrich) to inhibit 

proliferation - 1µg/ml for fibroblasts; 0.5 µg/ml for colorectal cancer cells) and ET-1 or ET 

receptor antagonists (BQ123, ZD4054, BQ788) (Shi-Wen et al, 2004) were added to the 

wells according to the diagram below (figure 3.2) for 24 hours, with the control wells 

receiving fresh media alone.  

 

 

 

 

 

 

Control ET-1 ET-1 & 

BQ123 

BQ123 ET-1 & 

ZD4054 

ZD4054 
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Control 

 

Control ET-1 ET-1 

ET-1 & BQ123 

 

ET-1 & BQ123 ET-1 & BQ788 ET-1 & BQ788 

ET-1 & ZD4054 ET-1 & ZD4054 ET-1 & ZD4054 & 

BQ788 

ET-1 & ZD4054 & 

BQ788 

 

Figure 3.2. Schematic for migration experiment 

 

Confocal microscopy was employed to photograph wells at 0 hours then at 6 hourly intervals 

up to 24 hours. This study was repeated for the colorectal cancer cell lines, with 100,000 

cells seeded per well and with only 0.5 μg/ml mitomycin C in the media. 

 

Once the photographs were taken, the mean of 3 scratch-width measurements of each well 

were used to calculate migration.  Migrational response was shown in the form a percentage 

using the following formula: 

 

 

 

 

3.2.4 Contraction Assay with ET-1 and/or ETA and ETB Receptor Antagonists 

 

This technique involved growing cultured colonic fibroblast cells in three-dimensionally 

populated collagen type I lattices (FPCL; collagen from First Link, Birmingham, UK) 

(Ivarsson et al., 1993) (appendix 3). 

 

Each FPCL was impregnated with 100,000 cells and placed into 24 well plates (Nunc). The 

gel lattices were then pre-incubated for 1 hour with the relevant ET receptor antagonist for 

wells that were marked to receive either antagonist alone or ET-1 plus antagonist (BQ123, 

BQ788 and/or ZD4054).  Each FPCL was then floated within the well with 1ml of serum free 

DMEM medium containing ET-1.  The control gel was floated in DMEM medium alone.  

Following 72 hours of incubation at 37oC, they were fixed in 1ml of 10% formaldehyde.  Gels 

were removed and scanned using a flat-bed scanner and weighed in order to determine 

weight loss corresponding to degree of contraction. 
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3.2.5 Statistical Analysis 

 

Results are shown diagrammatically either as means and standard deviations of primary 

measurements (e.g., for fibroblast proliferation, means of 4 independent repeats for each cell 

strain are shown, n=4) or as percentages of control (100%), for ease of presentation. 

Analysis of cell proliferation experiments was carried out using a one-way ANOVA test.  If 

the results were significant, post-hoc analysis was undertaken using Tukey’s honestly 

significant difference test, set at p<0.05.  Where 4 or less independent repeats were used, 

Kruskall-Wallis analysis was performed with Dunn’s multiple comparison for post-hoc 

analysis.  All graphs are shown with standard deviations. 

Floating collagen gel contraction experiments and migration studies were also analysed 

using a one-way ANOVA test with Tukey’s honest significant difference test if n=6 or more.  

The data is presented as a mean with standard deviations.  In cases where 

migration/contraction was less than n<6, the data was analysed as if they were non-

parametric: Kruskal-Wallis analysis was again used (with Dunn’s multiple comparison test 

performed on selected data sets) and the data presented as a median with a range.
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3.3 RESULTS 

3.3.1 Colonic Fibroblast Proliferation 

The effect of ET-1 on cell growth was investigated in four colonic fibroblast strains (CF35, 

CF65, CF75 & CF78) whilst that of ET receptor antagonists was investigated in two (CF35 & 

CF78). Fibroblast strains were exposed to ET-1 alone, ET-1 and ETA or ETB receptor 

antagonists (BQ123/ZD4054, BQ788), and each receptor antagonist alone.  Fibroblasts 

exposed to 0.5% BSA medium were used as controls.  All strains showed a similar pattern of 

response with varying degrees of significance depending upon the receptor used. 

All individual strains showed a significant increase in growth, as determined by the MB 

assay, when exposed to ET-1 compared to controls (p<0.5, figure 3.3). Growth was 

stimulated to between 28 – 52% above control values, with an average increase of ~35%. 

Results (Figure 3.3) are presented as percentage changes from controls (table), or as 

normalized data with controls set at the value of 1 (graph) for ease of presentation and 

comparison. 

 

Cell Strain 
 

Control vs ET-1 (10-7) 

 % Change P value(<0.05) 

CF35 51.9 Yes 

CF65 26.9 Yes 

CF75 45.4 Yes 

CF78 28.8 Yes 

Mean 
 

34.8 
 

Yes 
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Figure 3.3. Relative change in colonic fibroblast proliferation on addition of ET-1.  Cells were 

incubated for 48 hours with ET-1 (10-7M) and proliferation determined by the MB assay 

(absorbance 630nm).  Results shown as A: percentage increase from controls (table) or B: 

normalised (graph); Statistical analysis carried out by 1-way ANOVA with post hoc analysis of 

raw absorbance readings. N=4 fibroblast strains; 4 independent repeats per strain. 
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The cell proliferative effect of ET-1 is demonstrated once again following the use of ET 

receptor antagonists in two fibroblast strains.  The contribution of receptor to the cell 

proliferative effect of ET-1 was investigated via the use of ETA and ETB antagonists. The 

specific ETA receptor antagonist BQ123 resulted in significant reduction of ET-1 stimulated 

fibroblast proliferation for both strains of between 20.3-49.3% (mean values generated by 4-

8 repeats for each strain; table 3.1). The addition of the specific ETA receptor antagonist 

ZD4054 to ET-1 resulted in a slightly greater inhibitory effect between 20.0-52.9%. 

Combining the specific ETB receptor antagonist with ET-1 resulted in a much smaller non-

significant reduction in cell proliferation compared to BQ123 or ZD4054. Interestingly, CF35 

was much more sensitive to both ET-1 stimulation and ET receptor antagonism than the 

other one (table 3.1). Results for each treatment are also shown in figure 3.4-3.5. 

 

Receptor Antagonism  

Plate 1 

Cells Control ET-1 ET-1 
+BQ123 

ET-1 
+BQ788 

ET-1 vs ET-1 + BQ123 ET-1 vs ET-1 + BQ788 

 Mean Normalised Absorbance (nm) % Change P Value % Change P Value 

CF35 1 1.437 1.222 1.323 -49.3% p<0.05 -26.1% NS 

CF78 1 1.311 1.231 1.287 -25.6% NS -7.7% NS 

Average 1 1.374 1.227 1.305 -37.5%  -16.9%  

 

Plate 2 

Cells Control ET-1 ET-1 
+BQ123 

ET-1 
+ZD4054 

ET-1 vs ET-1 + BQ123 ET-1 vs ET-1 + ZD4054 

 Mean Normalised Absorbance (nm) % Change P Value % Change P Value 

CF35 1 1.519 1.318 1.245 -38.7% NS -52.9% <0.05 

CF78 1 1.288 1.230 1.231 -20.3% <0.05 -20.0% <0.05 

Average 1 1.404 1.274 1.238 -29.5%  -36.5%  

 

Table 3.1. Relative change in ET-1 stimulated colonic fibroblast proliferation on addition of receptor 

antagonists.  Fibroblasts were exposed to ET-1 (10-7M) alone or ET-1 (10-7M) and either ETA 

(BQ123/ZD4054; 10-6M) or ETB (BQ788; 10-6M) receptor antagonists for 48 hours.  Cell numbers were 

determined by the MB assay and compared to untreated controls.  Mean normalised absorbance is 

equivalent to relative cell growth. With controls set at 1. Percentage change reflects the inhibition by 

ET receptor antagonists of ET-1 stimulated growth. Significant decreases in cell proliferation were 

observed on the addition of ETA receptor antagonists (ZD4054> BQ123), but not the ETB receptor 

antagonist BQ788.  Statistics are based on absorbance values of 4 independent repeats per strain. NS 

= Non Significant. 
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In addition fibroblasts were incubated with specific ETA or ETB receptor antagonists alone. 

Interestingly all the fibroblasts that were incubated with receptor antagonists alone showed a 

small but non-significant increase in proliferation above untreated controls (figure 3.4 & 3.5).  

Overall these experiments show that ETA receptor blockade inhibited significantly the 

stimulatory effect on fibroblast proliferation of exogenous ET-1. However, there were some 

strain-specific responses to both type of receptor antagonists, demonstrating the existence 

of individual responses. 

 

 

Figures 3.4 & 3.5.  ET-1 induced fibroblast proliferation for each strain. Fibroblasts were exposed to 

ET-1(10-7M), ET-1 & ETA receptor antagonists (BQ123 or ZD4054) or ETB receptor antagonist (BQ788) 

(10-6M), or antagonists alone for 48 hours.  Control groups were exposed to 0.5% BSA medium alone. 

Cell number was determined by the colorimetric MB assay.  Absorbance values (y-axis), 

corresponding to cell numbers, was measured at 630nm and compared to the untreated controls 

(100%).  Both fibroblast strains showed a similar response to ET-1 and its antagonists.  N=4 for each 

strain.  Significance is indicated by the following: 

 

- Control versus ET-1 

-  ET-1 versus ET1 + BQ123 

-  ET1  versus ET1 + BQ788 

-  ET1  versus ET1 + ZD4054 
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Figure 3.4.  Proliferation of CF35 cells incubated with ET-1 and/or ETA/B receptor antagonists.  A: ET-1 

vs ET-1+ETA antagonist BQ123 showed a 49.26% growth reduction (p<0.05) whilst ET-1 vs ET-1+ETB 

antagonist BQ788 showed a 26.07% reduction (NS). B: ET-1 vs ET-1 +ETA antagonist BQ123: 38.65% 

reduction in proliferation (NS).  ET-1 vs ET-1+ETA antagonist ZD4054: 52.91% reduction (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Proliferation of CF78 cells incubated with ET-1 and/or ETA/B receptor antagonists.  A: ET-1 

vs ET-1 + ETA antagonist BQ123 showed a 25.65% growth reduction (NS) whilst ET-1 vs ET-1 + ETB 

antagonist BQ788 showed a 7.76% reduction (NS). B: ET-1 vs ET-1 + ETA antagonist BQ123 caused a 

20.24% reduction in proliferation (p<0.05).  ET-1 vs ET-1 + ETA antagonist ZD4054 caused a 19.98% 

reduction (p<0.05). 
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3.3.2 Colorectal Cancer Cell Proliferation 

 

The effect of ET-1 and specific ET receptor blockade on proliferation was also investigated 

in colorectal cancer cell lines: HT29 and SW620.  In these experiments, cells were exposed 

to ET-1 (10-8M) alone, ET-1 combined with receptor antagonists (ETA receptor antagonists 

BQ123 or ZD4054; ETB receptor antagonist BQ788) (10-7M) or receptor antagonists alone.  

Controls were exposed to serum free medium alone. 

Both cell lines demonstrated a similar pattern of response.  The addition of ET-1 (10-8M) 

resulted in an increase in cell proliferation in both cell lines after 48 hours (figure 3.6).  This 

mean increase ranged from 26-29% compared to control groups and was significant in both 

cell lines (p<0.05). 

 

 

Cell Line 
 

Control vs ET-1 (10-8) 

 % Change P value(<0.05) 

HT29 26.2 Yes 

SW620 29.3 Yes 

Average 27.75 Yes 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.  

A: Relative change in CRC cell line 

proliferation resulting from addition of ET-

1.  Cells were incubated for 48 hours with 

ET-1 (10-8) and proliferation determined by 

MB assay (absorbance 630nm). Results 

shown as percentage increase above 

control. Statistical analysis carried out by 1-

way ANOVA with post hoc analysis of raw 

absorbance readings. 

B:  Relative change in proliferation of CRC cell lines depicted as histograms.  Control values do not 

have error bars as numbers were normalised to 1. (N=2 CRC cell lines; 4 independent repeats). 
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The receptor contribution to the cell proliferative effect of ET-1 is demonstrated following the 

use of ET receptor antagonists.  Antagonism of ET-1 with the addition of the specific ETA 

receptor antagonist BQ123 resulted in significant reduction of ET-1 stimulated proliferation in 

both cell lines of between 60.9-92.6% (mean values generated by 4-8 repeats for each 

strain; table 3.2). The addition of the specific ETA receptor antagonist ZD4054 to ET-1 

resulted in a similar inhibitory effect on cell proliferation of between 56.7-71.3%, being 

significant in both HT29 and SW620 cell lines.  Combining the specific ETB receptor 

antagonist resulted in a non-significant reduction in cell proliferation which was less then that 

seen by BQ123 or ZD4054 (table 3.2). 

 

Receptor Antagonism  

Plate 1 

Cells Control ET-1 ET-1 
+BQ123 

ET-1 
+BQ788 

ET-1 vs ET-1 + BQ123 ET-1 vs ET-1 + BQ788 

 Mean Normalised Absorbance (nm) % Change P Value % Change P Value 

HT29 1 1.197 1.015 1.127 -92.6% p<0.05 -35.3% NS 

SW620 1 1.111 1.035 1.084 -68.1% p<0.05 -23.9% NS 

Average 1 1.154 1.025 1.106 -80.3%  -29.6%  

 

Plate 2 

Cells Control ET-1 ET-1 
+BQ123 

ET-1 
+ZD4054 

ET-1 vs ET-1 + BQ123 ET-1 vs ET-1 + ZD4054 

 Mean Normalised Absorbance (nm) % Change P Value % Change P Value 

HT29 1 1.171 1.079 1.049 -60.9% P<0.05 -71.3% p<0.05 

SW620 1 1.441 1.170 1.191 -61.3% p<0.05 -56.7% p<0.05 

Average 1 1.306 1.125 1.120 -61.1%  -64%  

 

Table 3.2. Relative change in ET-1 stimulated colorectal cancer cell line proliferation on addition of 

receptor antagonists.  Cells were exposed to ET-1 (10-8M) alone or ET-1 (10-8M) and either ETA 

(BQ123/ZD4054; 10-7M) or ETB (BQ788; 10-7M) receptor antagonists for 48 hours.  Cell numbers were 

determined by the MB assay and compared to untreated controls.  Mean normalised absorbance is 

equivalent to relative cell growth. With controls set at 1. Percentage change reflects the inhibition by 

ET receptor antagonists of ET-1 stimulated growth. Significant decreases in cell proliferation were 

observed on the addition of ETA receptor antagonists (ZD4054> BQ123), but not the ETB receptor 

antagonist BQ788.  Statistics are based on absorbance values of 3 independent repeats per cell line. 

NS = Non Significant. 
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Overall these experiments show that ETA receptor blockade significantly reduced cell 

proliferation of cancer cell lines which were stimulated by exogenous ET-1.  Results for 

individual cancer cell lines are shown in figure 3.5-3.6. 

 

Figures 3.7 & 3.8.  ET-1 induced proliferation for each cancer cell line. Cancer cell lines were exposed 

to ET-1(10-8M), ET-1 & ETA receptor antagonists (BQ123 or ZD4054) or ETB receptor antagonist 

(BQ788) (10-7M), or antagonists alone for 48 hours.  Control groups were exposed to serum free 

medium alone.  Cell number was determined by colorimetric MB assay.  Absorbance values (y-axis), 

corresponding to cell numbers, was measured at 630nm and compared to the untreated controls 

(100%).  Both cell lines showed a similar response to ET-1 and its antagonists.  N=5 for HT29 ETA 

receptor antagonists; N=3 for SW620 ETA receptor and N=3 for each HT29 and SW620 when 

comparing ETA and ETB receptor antagonists.  Significance is indicated by the following: 

 

- Control versus ET-1 

-  ET-1 versus ET1 + BQ123 

-  ET1  versus ET1 + BQ788 

-  ET1  versus ET1 + ZD4054 
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Figure 3.7.  Proliferation of HT29 cells incubated with ET-1 and/or ETA/B receptor antagonists.  This graphical 

representation is produced by five and three independent repeats of this cell line using Methylene Blue assay 

(graphs A&B respectively).  Values are represented using ratios to control. A: ET-1 vs ET-1+ETA antagonist 

BQ123 showed a 92% growth reduction (p<0.05) whilst ET-1 vs ET-1+ETB antagonist BQ788 showed a 35% 

reduction compared to ET-1 induced growth (NS). B: ET-1 vs ET-1 +ETA antagonist BQ123: 46% reduction in 

proliferation (p<0.05).  ET-1 vs ET-1+ETA antagonist ZD4054: 57% reduction (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Colonic Fibroblast and CRC Cell Migration 
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Figure 3.8.  Proliferation of SW620 cells incubated with ET-1 and/or ETA/B receptor antagonists.  This 

graphical representation is produced by three independent repeats of this cancer cell lines using Methylene 

Blue assay.  Values are represented using ratios to control. A: ET-1 vs ET-1 + ETA antagonist BQ123 showed 

a 68% growth reduction (p<0.05) whilst ET-1 vs ET-1 + ETB antagonist BQ788 showed 23% reduction (NS). B: 

ET-1 vs ET-1 + ETA antagonist BQ123 caused a 61% reduction in proliferation (p<0.05).  ET-1 vs ET-1 + ETA 

antagonist ZD4054 caused a 57% reduction (p<0.05). 
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3.3.3 Fibroblast and CRC Cell Migration 

 

The effect of ET-1 and ET receptor blockade with antagonists was investigated in five 

fibroblast strains and two colorectal cancer cell lines.  Migration was recorded by light 

microscopy up to 24 hours after the initial scratch was created through confluent wells (two 

of five fibroblasts shown in Figure 3.9; combined results in figure 3.10).  For fibroblasts, the 

migration pattern was similar in all of the fibroblast strains: the scratch wound was 

completely obscured with fibroblasts by 18-24 hours in wells incubated with ET-1 (100% 

migration), whilst untreated cells only migrated by 13%.  ETB blockade with BQ788 produced 

the greatest inhibition of ET-1 induced migration (of 71%), with cells migrating into less than 

a third of the initial scratch width. ET-1 induced migration was partially inhibited by ETA 

blockade with ZD4054 and BQ123 by 47-51%, resulting in the cells migrating across half the 

initial scratch width.  However, combined blockade of ETA and ETB receptors with ZD4054 

and BQ788 produced an effect in-between that seen with either antagonists individually 

(inhibition by 58.8%, resulting in 41.2% migration). Migration experiments with colorectal 

cancer cells were negative, since after 24 hours, only minimal migration could be seen in the 

wells incubated with ET-1.  Compared to fibroblasts, colorectal cancer cell lines displayed 

incredibly limited response to ET-1.  

Graphical representation of individual fibroblast strain response to ET-1 and ETA/B receptor 

antagonism is shown in figures 3.9, with combined results shown in figure 3.10.  

Photographs showing migratory response in two of the fibroblast strains (CF35 & CF78) and 

the HT29 cancer cell line are shown in figures 3.11 – 3.13.  SW620 behaved very similarly to 

HT29 cells and results are not shown. 
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Figure 3.9.  Fibroblast migration following 24 hour exposure to ET-1 and/or ETA/B receptor antagonists.  A: 

CF35 cells. B: CF78 cells.  Each graphical representation is for 6 independent repeats of each fibroblast 

strain.  Twenty-four hours of ET-1 exposure resulted in 100% migration of fibroblasts.  All receptor 

antagonists, alone or in combination, resulted in statistically significant reduction in migration (p<0.05).   

The greatest decrease in migration was seen with BQ788 antagonism.  
 

=significance versus ET-1 
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Figure 3.10.  A:  Graphical representation of 

migration for all five fibroblast strains combined, 

each with 6 independent repeats, following 24 

hours of exposure to ET-1 (10-7M) or ET-1 + 

receptor antagonists (BQ123, BQ788 and 

ZD4054, 10-6M).  B: Table showing percentage 

decrease in migration from ET-1 induced 

migration set at 100%.  ETA blockade with BQ123 

and ZD4054 produced a 50% and 47% decrease 

in migration respectively (p<0.05).   

Antagonist  Migrational Reduction c.f. 
ET-1 alone 

% Decrease Significance 

BQ123 49.8 p<0.05 

BQ788 70.1 p<0.05 

ZD4054 46.9 p<0.05 

ZD4054+BQ788 58.8 p<0.05 

 

B 

Most inhibition was produced with ETB blockade of 70% with BQ788 (p<0.05).  Combined ETA and ETB 

blockade with ZD4054 and BQ788 resulted in a 59% reduction in migration (p<0.05). n=6. 
 

=significance versus ET-1 
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Figure 3.11.  Migration of CF35 fibroblast strains in response to ET-1 and ET receptor antagonists 

(BQ123, BQ788 and ZD4054) following 24 hours of exposure.  Fibroblasts were grown to confluence 

then scratch wounds made through the wells.  Cells were then exposed to ET-1 (10-7M) alone or ET-1 

and ETA/B receptor antagonists (BQ123, ZD4054,BQ788; 10-6M). Photographs were taken at 0 and 24 

hours.  Complete fibroblast migration was seen in ET-1 exposed cells alone.  Marked inhibition was 

observed through ETB receptor blockade, with a lesser extent of blockade through ETA and combined 

receptor blockade. 
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Figure 3.12.  Migration of CF78 fibroblast strains in response to ET-1 and ET receptor antagonists 

(BQ123, BQ788 and ZD4054) following 24 hours of exposure.  Fibroblasts were grown to confluence 

then scratch wounds made through the wells.  Cells were then exposed to ET-1 (10-7M) alone or ET-1 

and ETA/B receptor antagonists (BQ123, ZD4054,BQ788; 10-6M). Photographs were taken at 0 and 24 

hours.  Complete fibroblast migration was seen in ET-1 exposed cells alone.  Marked inhibition was 

observed through ETB receptor blockade, with a lesser extent of blockade through ETA and combined 

receptor blockade. 
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Figure 3.13.  Migration of HT29 colorectal cancer cell line in response to ET-1 and ET receptor 

antagonists (BQ123, BQ788 and ZD4054) following 24 hours of exposure.  Cancer cell lines were 

grown to confluence then scratch wounds made through the wells.  Cells were then exposed to ET-1 

(10-8M) alone or ET-1 and ETA/B receptor antagonists (BQ123, ZD4054,BQ788; 10-7M). Photographs 

were taken at 0 and 24 hours. Following 24 hours of exposure, minimal migration was observed in all 

wells. 
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3.3.4 Colonic Fibroblast and CRC Cell Contraction 

 

The effect of ET-1 and its receptor antagonists on contraction was investigated in rat 

collagen gels containing either colonic fibroblasts or HT29 colorectal cancer cells. 

Contraction over 72 hours was recorded photographically and concomitant reduction in gel 

weight was measured with control gels set at 100%.  ET-1 caused gel contraction in both 

fibroblast strains investigated, with a relative gel weight of 56.55%. Therefore ET-1 reduced 

gel weights by ~43% (mean range varying from 41-45%) (Table 3.3). 

 

 

 

 

 

 

 

 

 

The addition of receptor antagonists, either against ETA or ETB, opposed ET-1 induced 

contraction to varying degrees. All three antagonists separately reversed contraction 

significantly.  The ETB receptor antagonist (BQ788) was most effective at reversing ET-1 

induced contraction in the CF65 fibroblasts, whilst the ETA receptor antagonist (BQ123) was 

most effective in the CF75 fibroblasts (77.49% and 80.58% respectively). ZD4054 showed 

the least inhibition of contraction following ET-1 exposure with a relative weight from control 

of 68.33% and 68.11% in CF65 and CF75 fibroblasts respectively. In both fibroblast strains, 

combined ETA and ETB receptor antagonism (ZD4054 plus BQ788) resulted in the most 

marked blockade of gel contraction, returning gel weights to 89.27%.  Contraction studies 

were also performed using HT29 colorectal cancer cells. ET-1 did not stimulate gel 

contraction and no significant changes in gel weight were seen with addition of individual 

antagonists or in combination.   

 

 

Cell strain Control vs ET-1 10-7 M 

% Decrease P Value 

CF65 45.3 <0.05 

CF75 41.8 <0.05 

Average 43.5  

Table 3.3.  Contraction of fibroblast- 

impregnated collagen gels in response to 

ET-1 (10-7M) over 24-72 hours.  Extent of 

contraction was determined by reduction in 

gel weight when compared to controls 

(taken as 100%).   
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All with ET-1 
present 

%Contraction of control 
size gel* 

(*Control gel set at 100%) 

%  Significance 

ET-1 54.7 P<0.05** 

BQ123 71.7 P<0.05* 

BQ788 77.5 P<0.05* 

ZD4054 68.3 P<0.05* 

BQ788+ZD4054 89.9 P<0.05* 
** =  contraction compared to control            
*   = inhibition compared to ET-1 induced contraction  

B 

  

        

C 

Control ET-1 ET-1 + 

BQ123 

ET-1 + 

BQ788 

ET-1 + 

ZD4054 

ET-1 + 

ZD4054 + 

BQ788 

Figure 3.14. Contraction of CF65 fibroblast impregnated gels in response to ET-1 and ET receptor 

antagonists (BQ123, BQ788 and ZD4054).  Following fibroblast impregnation and 1 hour preconditioning 

with relevant antagonists, they were exposed to ET-1 (10-7M) alone or combined with ETA (BQ123/ZD4054) 

or ETB (BQ788) receptor antagonists (10-6M).  Controls were left untreated.  Following 72 hours, collagen 

lattice gels were removed from wells and weighed. A: Weight of each of the collagen gels following 

exposure to their relevant reagents and correspond to level of contraction. B:  Percentage contraction of 

collagen lattices compared to control following exposure to ET-1 and relevant antagonists. C: Photographs 

of fibroblast impregnated collagen lattices following 48 hours of exposure, placed on glass slides. ET-1 

cause marked contraction of collagen gels resulting in reduced gel diameter, which was significantly 

inhibited by all antagonists. N=3. 
 

= significant vs. control values      = significant vs. ET-1 values   
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All with ET-1 
present 

%Contraction of control 
size gel* 

(*Control gel set at 100%) 

%  Significance 

ET-1 58.2 P<0.05** 

BQ123 80.6 P<0.05* 

BQ788 73.3 P<0.05* 

ZD4054 68.1 P<0.05* 

BQ788+ZD4054 88.6 P<0.05* 
** =  contraction compared to control            
*   = inhibition compared to ET-1 induced contraction  
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C 

Control ET-1 ET-1 + 

BQ123 

ET-1 + 

BQ788 

ET-1 + 

ZD4054 

ET-1 + 

ZD4054 + 

BQ788 

Figure 3.15. Contraction of CF75 fibroblast impregnated gels in response to ET-1 and ET receptor 

antagonists (BQ123, BQ788 and ZD4054).  Following fibroblast impregnation and 1 hour preconditioning 

with relevant antagonists, they were exposed to ET-1 (10-7M) alone or combined with ETA (BQ123/ZD4054) 

or ETB (BQ788) receptor antagonists (10-6M).  Controls were left untreated.  Following 72 hours, collagen 

lattice gels were removed from wells and weighted. A: Weight of each of the collagen gels following 

exposure to their relevant reagents and correspond to level of contraction. B:  Percentage contraction of 

collagen lattices compared to control following exposure to ET-1 and relevant antagonists. C: Photographs 

of fibroblast impregnated collagen lattices following 48 hours of exposure, placed on glass slides. ET-1 

cause marked contraction of collagen gels resulting in reduced gel diameter, which was significantly 

inhibited by all antagonists. N=3.  
 

= significant vs. control values      = significant vs. ET-1 values   
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Figure 3.16. Combined CF65 and CF75 fibroblast strain data for response to ET-1 and its 

receptor antagonists.  Relative weight change compared to controls (100% weight) were 

calculated for each strain then combined for the above graph (y-axis).  ET-1 stimulation induced 

a 44% reduction in gel weight (p<0.05).  This effect was significantly inhibited by both ETA and 

ETB receptor antagonists (BQ123, ZD4054, BQ788; p<0.05), with the most marked effect seen 

with combined receptor blockade (p<0.05). 

 
 

= significant vs. control values      = significant vs. ET-1 values   
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3.4 DISCUSSION 

3.4.1 Proliferation Studies 

In the in vitro studies presented, both colonic fibroblasts and colorectal cell lines 

demonstrated significant growth compared to control groups when treated with ET-1.  

Previous work from our group has shown similar results with fibroblast strains, but only one 

out of six strains demonstrated a significant increase in growth compared to controls 

(Knowles et al, 2011). In this study only two of the previously tested fibroblasts strains were 

used – the strain that responded to ET-1 and one other.  Also, the protocol was changed to 

include a 24 hour period of starvation of cells prior to addition of exogenous ET-1, to 

maximize any potential stimulus. This resulted in a significant growth effect. The only other 

study that examined growth of colonic fibroblasts in response to ET-1 found small non-

significant increases in cell numbers compared to control groups (Kernochan et al., 2002). 

Differences may be explained both by the different protocols employed and also by the 

nature of the fibroblasts: ours where isolated from adult colons, while the previous study 

employed a cell line (No Co18) isolated from a 2.5 month old (Kernochan et al., 2002).  The 

effect of ET-1 on fibroblasts taken from patients with different tumours has also been 

investigated, although there has only been two published study to date.  In the first, ET-1 

stimulated significant growth increases of three ovarian fibroblast cell lines at concentrations 

ranging from 10-12 M to 10-7 M (Moraitis et al, 1999). The most recent study demonstrated 

ET-1 induced proliferation in primary oral fibroblasts (Hinsley et al., 2012). Furthermore, 

fibroblasts isolated from non-tumour sites such as human dermal and rat cardiac fibroblasts 

also demonstrated a proliferative effect from ET-1 via the ETA receptor (Piacentini et al., 

2000; Xu et al., 1998). 

The mitogenic role of ET-1 on colorectal cancer cell lines has been well documented and the 

present results using HT29 and SW620 cells are consistent with previous work by our group 

which also published similar results with the LIM1215 cell line (Ali et al., 2000a; Grant et al., 

2007).  ET-1 was reported to stimulate growth in various different cell lines including those 

from ovarian and prostate cancer, via activation of the ETA receptor (Bagnato et al., 1999; 

Nelson 1996). Furthermore, ET-1 can propagate its signal via EGFR transactivation when 

the receptor is present on colorectal cancer cells (Grant et al., 2007). The striking exception 

is within melanomas, where ET-1-stimulated growth of melanocytes occurs via activation of 

the ETB receptor (Lahav et al., 2004).  

Interestingly the observed extent of proliferation, although significant, varied between cell 

lines. This may be related to varying endogenous levels of ET-1 in different cell lines 
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affecting their response to exogenous stimulation.  In colorectal cancer cell lines, HT29 cells 

produced the highest levels of endogenous ET-1 with 41.7 fmol/ml/106 cells, whilst SW620 

had moderate expression levels at 8.4 fmol/ml/106 cells (Ali et al., 2000a).  Same order of 

magnitude figures were reported in other publications with HT29 producing 23 fmol/ml/106 

cells (Kusahara et al., 1990) and ovarian cell lines around 56 – 74 fmol/ml/106 cells (Bagnato 

et al., 1995).  However, a systematic investigation to determine response to ET-1 should 

include both determination of endogenous ET-1 production and also quantification of the ET 

receptors on the cell surface. 

Cell growth was reduced by the ETA receptor antagonists BQ123 and ZD4054 in both 

fibroblast strains. Also when combined, both BQ123 and ZD4054 demonstrated significant 

reductions in cell growth compared to ET-1 treated cells.  Overall, the effects of these two 

ETA antagonists were similar, indicating that ZD4054 is as efficacious in blocking ETA-

receptor mediated-growth of colonic fibroblasts.  The ETB receptor antagonist BQ788 

produced a lesser reduction in cell growth, which was not significant in individual strains or 

when combined.  Other studies from our department have shown occasionally that the ETB 

receptor antagonist does produce a significant inhibitory effect on proliferation (unpublished; 

Bhalla, 2008; Heetun, 2009). This may be explained by some ETA receptor blockade by 

BQ788.  The affinity of BQ788 for ETB receptors is only tenfold greater than its affinity for 

ETA receptors and therefore it cannot be considered a highly specific ETB antagonist.  In 

contrast, the ETA receptor antagonist BQ123 has 1000-10,000 times greater affinity for the 

ETA receptor than the ETB receptor (Davenport, 2002).  No studies have been published 

documenting the effect of ZD4054 on colonic fibroblasts, but in the Moraitis study (1999) ET-

1-induced growth of fibroblasts from patients with ovarian cancer was inhibited by the ETA 

receptor antagonist BQ123 and ETB receptor antagonist BQ788.  Interestingly, this suggests 

that ET-1 stimulates the growth of these cells via both receptors. 

A similar pattern of results was seen with the colorectal cancer cell lines.  Both individual and 

combined results from HT29 and SW620 cells, demonstrated ETA receptor antagonists 

BQ123 and ZD4054 significantly reduced cell growth compared to those cells incubated with 

ET-1 only.  Other cell lines such as prostate and ovarian have been shown to be similarly 

affected by ETA antagonism.  Furthermore, some of the ET-1 proliferative signal appears to 

be promoted through transactivation of EGF receptors (Grant et al., 2007; Rosano et al., 

2007). 

Both fibroblasts and colorectal cancer cell lines were also incubated with receptor 

antagonists alone.  The rationale for this was based on previous work in the department, 
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which found that endogenously produced ET-1 was an important mitogenic stimulus for 

fibroblast growth that was not greatly increased by the addition of exogenous ET-1.  In this 

study (Knowles et al., 2011), the use of the ETA receptor antagonist BQ123 significantly 

reduced fibroblast growth compared to controls.  The author suggested that this showed that 

there were a finite number of receptors on the fibroblasts which appeared to be almost totally 

occupied by endogenous ET-1.  The results in this thesis appear to oppose this as addition 

of ET-1 to both fibroblasts and colorectal cell lines significantly increased cell growth above 

control levels.  Furthermore, use of ETA receptor antagonists did not reduce cell growth 

below those of the control group, as would be expected if endogenous ET-1 was the more 

important mitogenic stimulus.  Consequently, although these cells continued to express ET 

receptors, exogenous ET-1 appeared to be more important in stimulating the growth of both 

these cell groups.  Most likely this discrepancy is related to the altered protocol of serum 

starving the cells prior to adding exogenous ET-1, unlike in the previous publication.  

Another plausible explanation may be related to the higher passage numbers of cells used in 

this experiment which may have had an effect on endogenous ET-1 expression, but with 

little effect on ET receptor expression.  Indeed, primary cell strains are known to change 

morphology and biochemistry with increased passage (Valentich et al., 1997) and 

unpublished data from our laboratory shows a similar pattern.   

Overall, the cell growth studies suggest that ZD4054 is as efficacious at antagonising the 

ETA receptor in both fibroblasts and colorectal cancer cells as BQ123.  To date, there have 

been no studies investigating the effect of ZD4054 on colonic fibroblasts and colorectal 

cancer cells.  One group reported on the inhibition of ET-1-induced cell growth of ovarian 

cancer cell lines by ZD4054 with a reduction in ETA-mediated angiogenesis and the 

generation of invasive mediators such as VEGF and MMPs. (Rosano et al., 2005, 2007).    

ZD4054 has also been shown to enhance the pro-apoptotic activity of existing 

chemotherapeutic agents such as Paclitaxel (in an in vitro and in vivo model of ovarian 

cancer (Rosano et al., 2007), indicating a possible role for combination therapy with other 

agents.   

 

3.4.2 Migration Studies  

Migration of fibroblasts is thought to be a defining characteristic of this cell type and also an 

integral part of a number of physiological and pathological responses, mostly on wound 

healing. However, in laboratory settings, migration is not always observed. Fibroblast 

migration is a complex process involving alterations in cell shape and adhesion, which are 
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differentially controlled at the leading and trailing edge of the cell (Lauffenburger and 

Horwitz, 1996).   Here, five fibroblast strains were investigated in terms of their migratory 

response to ET-1 and its receptor antagonists.  All strains migrated rapidly when incubated 

with ET-1 alone and this effect was blocked by all three receptor antagonists to varying 

degrees.  The most marked inhibition of migration was caused by the addition of the ETB 

receptor antagonist BQ788.  Combined ETA and ETB receptor blockade with ZD4054 and 

BQ788 produced a migratory effect in-between that seen for the ETA and ETB receptor 

antagonists individually.  Taken together, these results suggest that ET-1-induced fibroblast 

migration is mediated via both receptors, but perhaps the greatest effect occurs at the ETB 

receptor.  When the results are combined from each strain, it can be seen that ZD4054 

produces a very similar inhibitory effect on fibroblast migration to BQ123 overall. 

The only previous study involving human colonic fibroblasts showed that ET-1 stimulated 

migration predominantly via the ETB receptor and this was blocked significantly by the ETB 

antagonist BQ788; in contrast, ETA blockade resulted in minimal effects (Kernochan et al., 

2002).  Previous unpublished work in the department showed a similar pattern of response 

with ETB receptor antagonism generating the greatest inhibition of migration followed by ETA 

receptor antagonism, but combined receptor blockade inhibited migration more markedly 

(Knowles et al., 2006; Bhalla et al., 2008). This is consistent with both ETA and ETB 

receptors being important in the migratory response, with the authors suggesting that 

perhaps different aspects of the migration process are controlled by the different ET 

receptors.  The work presented here is generally consistent with these previous findings, 

except that combined receptor blockade did not elicit the greatest inhibitory effect on 

migration as would have been expected if both receptors affected different aspects of the 

migration process. 

Work has been done to look at different fibroblast responses to other stimuli. Jiang et al., 

(2008) looked at dermal foreskin fibroblasts and the response to PDGF, serum 

lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P) and endothelin-1. They found 

that PDGF promoted a strong migratory effect through activation of Rac causing protrusion 

of fibroblast dendritic extensions. The latter three peptides, including ET-1, were Rho 

activators which resulted in retraction of dendritic extensions and contraction. Similarly, 

Kinnman et al., (2000) found that PDGF had a 3 fold increase in hepatic stellate cell 

migration while ET-1 only had a 1.7 fold increase. They found that anti-PDGF antibodies and 

PDGF receptor tyrosine kinase inhibitors resulting in significant migratory inhibition (60% and 

80% respectively), whilst dual receptor antagonism with Bosentan had non-significant 

inhibitory effects. Of interest, in chapter 4 of this thesis, gene array data shows that ET-1 
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stimulated PDGF expression by over 1.5 fold. This may lead us to hypothesis that the 

migratory response may be a result of ET-1, second messengers and other regulated 

peptides such as PDGF. In keeping with this hypothesis, Shlyonsky et al., (2011) showed 

that ET-1 increased α-smooth muscle actin and cell migration in lung fibroblasts. They also 

found that BMP-2, which inhibits PKC in a dose dependent manner, inhibited ET-1 ability to 

increase α-smooth muscle actin and migration.  

The HT29 cancer cell line did not display any migratory response. No research group had 

specifically published on ET-1 effects on HT29 cells. However, these and other CRC cell 

lines have been extensively studied in other settings. Colorectal cancer cell lines are known 

to express increased levels of CXCR4 that are required for migration, whilst decreasing 

expression of CXCL12. Rubie et al., (2011) examined the response of HT29, SW480 and 

CaCo2 cell lines in response to increased CXCL12. They found that migration was increased 

in all cell lines examined however to a much lesser extent in HT-29 cell lines as CXCR4 

expression was less. This may be one reason why migration was not observed in this 

particular cell line. HT29 cell lines also express MMP7 and LN5 (Laminin-5/Laminin-332), the 

latter which causes firm adhesion and hemi-desmosome formation. Remy et al., (2006) 

found that increasing MMP7 concentrations cleaved LN5 and therefore increased cell 

motility. In chapter 4, MMP7 was seen to be significantly up-regulated in cancer cell lines on 

gene arrays and time point induction experiments that were carried out. However, significant 

increased levels were only seen at 24 hours which was the maximum time point observed in 

these migration studies. It is possible that extending the time of these experiments may have 

yielded better migratory responses. In keeping with this Banning et al., (2008) described how 

Glutathione Peroxidase 2 which is up-regulated in CRC cell lines inhibited COX2 (which ET-

1 also acts via down-stream) mediated HT29 migration. Silencing of this selenoprotein 

resulted in increased HT29 migration on scratch wound assays. Most of this was observed 

after 24 hours and up to 72 hours. Other experimental factors may have accounted for these 

observations. For example some other research groups that looked specifically at cancer cell 

lines used 1% BSA whereas we used 10% FCS, and where we used Mitomycin C some 

other groups used Cycloheximide to inhibit cell proliferation.   

 

3.4.3 Contraction Studies 

In the Kernochan study (2002), ET-1 was shown to stimulate colonic subepithelial fibroblast 

contraction via both ETA and ETB receptors and this was associated with an increase in 

cytosolic calcium and myosin phosphorylation. The authors used the same receptor 
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antagonists (BQ123, BQ788) and found they both significantly inhibited ET-1 stimulated 

contraction by similar levels, whilst incubation with both antagonists together completely 

abolished ET-1 stimulated contraction. Here, similar results were achieved with the 

fibroblasts used.  Incubation with ET-1 resulted in significant contraction, with both ETA and 

ETB antagonists inhibiting contraction similarly.  Combined ETA and ETB receptor blockade 

produced the greatest inhibition of contraction compared to those cells incubated with 

antagonists alone, although the contractile response was not completely abolished.  These 

findings support previous reports from within our department. Although ZD4054 was able to 

inhibit ETA-mediated fibroblast contraction individually, it did so to a lesser degree than both 

the ETA receptor antagonist BQ123 and the ETB receptor antagonist BQ788. One possible 

explanation is that contraction may be a response to stimulating both receptors. BQ123 and 

BQ788 do partially act by blocking both receptors whilst ZD4054 is so highly specific that it 

only blocks the ETA receptor. In other tissues, ET-1 has been reported to cause contraction 

of primary lung fibroblasts, although this response appeared to be mediated by the ETA 

receptor predominantly, rather than both receptors (Shi-Wen., 2004).  

A large volume of publications exist on the contractile abilities and stimuli of fibroblasts, 

since contraction is an integral step of connective tissue diseases and cancer invasion.  

Several growth factors have been shown to promote matrix contraction, namely TGF-β 

(Tingstrom et al., 1992), Sphingosine-1-phosphate (S1P; Cooke et al., 2000), EGF (Smith et 

al., 2006), bFGF (Abe et al., 2007) and ET-1 (Guidry et al.,1991). ET-1 and ET-2 have been 

shown to bind to high affinity receptors (mostly ETA) on human fibroblast cell surfaces rapidly 

increasing free calcium and stimulating PLC and PKC (Takuwa et al., 1989). Endothelins 

also act synergistically to amplify fibroblast response to growth factors such as PDGF, bFGF 

and insulin like growth factors (Takuwa et al., 1989). Mechanistically, Guidry et al., (1991) 

used cycloheximide to inhibit 35S-methionine to establish that ET-1 was a type B contraction 

promoter therefore requiring protein synthesis to establish cell contraction. This group also 

suggested that the delay in contraction may have indicated that ET-1, PDGF and TGF-β 

may also act via second messengers or multiple systems.  Furthermore withdrawal of ET-1 

did not reverse collagen gel contraction immediately but took over 1 hour, indicating that it 

promotes contraction via an effector protein or ET-1 acts as a co-factor.  ET-1 is also over-

expressed in fibrotic fibroblasts isolated from patients with connective tissue diseases where 

it enhanced adhesion to and contraction of matrix by this cell type (Shi-Wen et al., 2004, 

2006, 2007). 
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3.5 Studies to date looking at ET-1 and its effect on ET receptors 

         
Cancer Type ET-1 Effect Receptor Involvement Receptor Antagonism Effect & Clinical 

Effects 
Reference 

Prostate Growth, inhibits apoptosis High ETAR, decreased/absent ETBR. 
Frequent methylation of ETBR gene 

Pain relief via ETAR & clinical and 
biochemical progression.   
 

Nelson et al.  
Antonarakis et al. 2010 
James et al. 2010 
 

Ovarian Cell proliferation, survival, 
angiogenesis, invasion & EMT 
via ETAR 

ETAR mRNA in 84% of Ca. & ETBR in 
only 40%.  ETAR mediates all effects 

Antitumor effect in xenografts via ETAR; 
Zibotentan+cisplatinum+paclitaxel effective 
for epithelial ovarian cancers 
 

Bagnato et al. 2005 
Rosano et al. 2007a, 2007b 

Melanoma ET-1 (& ET-3) promotes 
proliferation and invasion 

ETAR decrease & ETBR increase 
compared to benign nevi 

ETBR inhibited growth in cell lines & 
reduced tumour growth in nude mice; ET-1 
inhibits prolyl hydroxylase domain 2 to 
activate HIF-1α in melanoma cells.  
Bosentan has benefits in disease stable 
disease. 
 

Spinella et al. 2010 
Guise et al. 2004 
Kefford et al. 2007 

Osteosarcoma/ 
Bone 
malignancies 

Increased osteocalcin & new 
bone formation; MMP 
induction via NFkB 

Mostly ETAR expression but also ETBR ETAR antagonists block ET-1 effects & 
MMP; inhibits progression of prostate 
cancer metastasis 
 

Grimshaw et al. 2007 
Guise et al. 2004, 2006 

Breast Increased invasiveness; levels 
inversely correlate with tumour 
cell differentiation  

Elevated ETAR correlates with 
invasiveness  

Blocks invasive effect; MMP/cytokine 
cross-talk; ZD4054 exhibit additive effects 
with aromatase inhibitors & fulvestrant  in 
cancer therapy. Improved in vivo efficacy of 
anastrozole 
 

Grimshaw et al. 2005 
Binder et al. 2009 
Smollich et al. 2010 
Smollich and Wulfing 2007 

Renal Opposes paclitaxel induced 
apoptosis in renal carcinoma 
cell lines 
 

All express ETAR Blocks invasive effect Pflug et al. 2007 
Antonarakis et al. 2010 
 

Lung  Detected in most squamous 
cell & adenocarcinomas 

ETAR & ETBR are expressed ETAR antagonists combined with EGFR 
show promise in treatment of non-small cell 
lung cancer 
 

Boldrini et al. 2005 
Campbell et al. 2010 

Cervical Proliferation of HPV positive Express both receptors; increase in Inhibition of tumour growth in xenografts Bagnato et al. 2002 
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cervical cancer cell lines ETAR on HPV- positive cells and additive effect when combined with 
taxanes;  
 

Guise et al. 2004 

Kaposi’s 
Sarcoma 

ET-1 (& ET-3) induces 
proliferation, migration and 
invasion 

Both ETA/BR expression Dual antagonists block proliferation & 
invasion; inhibits tumour growth in nude 
mice 
 

Guise et al. 2004 
Rosano et al. 2003 

Glioblastoma Proliferation ETA/BR expression ETBR antagonists block proliferation and 
induce apoptosis in glioma cells.  Bosentan 
induce apoptosis in glioblastoma cell lines 
 

Paolillo et al. 2010 
Egidy et al. 2000 

Neuroblastoma Proliferation ETA/BR expression Cells express ECE-1; BQ123 blocks 
proliferation in vitro; statins induce Bcl-2 via 
ET-1 and NFATc3 in SH-SY5Y cells 
 

Grimshaw et al. 2007 

Nasopharyngeal  Three quarters over-express ETARs ETAR antagonist inhibits tumour growth and 
metastasis, showing synergic effects with 
cytotoxic drugs 
 

Mai et al. 2006 
Guise et al. 2004 

Colorectal  Proliferation, anti-apoptosis, & 
invasion. Stromal tissue 
invasion and migration  

Increased ETAR (80% primary CRCs 
and majority of metastasis); decreased 
ETBR expression 

Blocks proliferation & tumourogenic and 
neovascularisation effects on adjacent 
stroma. Altered MAPK pathway,  EGFR 
signalling &  FasL induced apoptosis.  
Pre-clinical studies:  ETAR and ZD4054 
blocks desmoplastic activation of colorectal 
fibroblasts and CRC proliferation. 

Asham et al.  2001 
Shankar et al. 1998 
Ali et al. 2000a, 2000b 
Hoosein et al. 2007 
Eberl et al. 2000, 2003 
Knowles et al. 2011 
Haque et al. 2009a, 2009b, 
2012 
 

          

Table 3.4 This table outlines the effects of ET-1 in different cancers along with the receptors involved, the effect of antagonising them and relevant 

publications to date in each field. 
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4.1 INTRODUCTION 

This chapter considers novel genes regulated by ET-1 that were identified by gene array.  

Time point inductions confirmed their induced expression at the mRNA and protein levels. 

The effects of ET receptor antagonists on selected genes were evaluated at the mRNA and 

protein level whilst silencing with siRNA confirmed each receptor’s role.  

 

4.2 MATERIALS AND METHODS 

 

4.2.1 Gene Arrays and Time Point Inductions 

 

Fibroblasts or CRC cell lines were seeded at 200,000 – 300,000 cells/35mm cell culture dish 

containing fully supplemented DMEM medium. Plates were incubated routinely for 24 hours 

(CRC cells) or 24-36 hours (fibroblasts) to reach 60-70% confluence.  Media were then 

changed to serum free for another 18-24 hours (0.5% BSA containing medium for 

fibroblasts) to growth-arrest cells. Wells were emptied using a pipette suction vacuum pump. 

Solutions were made in serum free medium for CRC cell lines or DMEM with 0.5% BSA for 

fibroblasts.  ET-1 was used at 10-7M or 10-8M and receptor antagonists at 10-6M or 10-7M, for 

fibroblasts and CRC cells respectively.  Control wells contained medium only.  Total RNA 

was extracted at 4 hours for gene array analysis (Illumina Ref 8, Cambridge) and at time 

points 0, 30 minutes, 1, 2, 4, 8 and 24 hours for mRNA gene analysis following ET-1 

exposure.  Total RNA was extracted from control dishes at 0 and 24 hours. 

 

4.2.2 RNA & Protein Assay with ET-1 and/or ETA and ETB Receptor Antagonists 

 

Six-well plates (Nunc A/S Kamstrupvej, Denmark) were seeded with fibroblasts or CRC cell 

lines at 200,000 – 300,000 cells/well containing fully supplemented DMEM medium.  Plates 

were incubated routinely for 24-48 hours until 60-70% confluent.  Medium was changed to 

serum free medium for another 18-24 hours (0.5% BSA containing media for fibroblasts).  

Medium was then discarded and wells washed twice with PBS. Media were removed by 

aspiration and replaced by solutions containing ET-1 and receptor antagonists as previously 

described above. Control wells contained medium only. For the first hour, cells were 
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exposed to relevant antagonists alone with control and ET-1 wells incubated with serum free 

media only. Wells were then aspirated and treatment wells replaced with antagonists and/or 

ET-1. RNA was extracted at 4 hours and protein extracted following 24 hours of treatment. 

Plates were laid out as follows: 

 

A 

Plate 1 

Control BQ123 BQ788 
 

ET-1 ET-1 + BQ123 ET-1 + BQ788 
 

 

Plate 2 

Control ZD4054 
 

ET-1 + BQ123 + BQ788 

 ET-1 + ZD4054 
 

ET-1 + ZD4054 + BQ788 

 

B 

Control ET-1 ET-1  + BQ123 
 

ET-1  + ZD4054 ET-1 + BQ788 ET-1 + ZD4054 + BQ788 
 

 

Figure 4.1. Layout A (top) and Layout B (bottom). Schematic for layout of 6 well plates to investigate 

RNA and protein expression following ET-1 and ETA/B receptor antagonists. 
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Expression Analysis Following RNAi (RNA Interference): 

4.2.3 RNA & Protein Assays with ET-1 and/or ETA and ETB SiRNA (Small Interfering 

RNA Transfections/Gene Silencing) 

 

Following methodological development optimal conditions and concentrations were 

established. RNA interference (RNAi) was accomplished by transfecting cells with ON-

TARGET plus SMART pool small interfering RNA from Dharmacon Inc. (Lafayette, CO). 

Silencing RNA for human ET-1 (EDN;NM_001955), ETA receptors (EDNRA;NM_001957) 

and ETB receptors (EDNRB;NM_003991) were used. Transfections were performed using 

oligofectamine reagent (Invitrogen). Briefly, six well plates (Nunc) were seeded with 

fibroblasts or CRC cell lines at 50,000 – 200,000 cells/well with antibiotic free DMEM. When 

30-40% confluent, medium was changed to serum free DMEM for 24 hours, cell were then 

transfected with 4μl Oligofectamine and siRNA at a final concentration of 25nM. Medium 

was then discarded and cells re-incubated with fully supplemented 10% FCS DMEM for a 

further 24 hours followed by serum starvation for 12-18 hours to arrest growth.  Fibroblasts 

and CRC cell lines were then stimulated with ET-1 at 10-7M or 10-8M respectively. Controls 

and ET-1 only stimulated cells were transfected with scrambled non-targeting pooled SiRNA 

(siControl) (Dharmacon Inc.). Total RNA was extracted and expression levels of specific 

genes of interest were examined following 4 hours of ET-1 stimulation. Protein expression 

levels were examined at 24 hours.  Plates were laid out as follows: 

 

Scrambled Scrambled  
+ ET-1 

 

ETAR SiRNA 
 + ET-1 

ETBR SiRNA  
+ ET-1  

ETAR SiRNA + ETBR SiRNA 
 + ET-1 

 

 

Figure 4.2. Schematic for layout of 6 well plates for silencing experiments. 

 

4.2.4 Protein Expression Analysis 

Plates were transferred onto ice: cells washed twice with PBS and lysed with 200μl RIPA 

Buffer (Sigma-Aldrich, Dorset, UK). The resulting lysate was gently scraped from wells, 

centrifuged at 4 C̊ for 5 minutes and the protein supernatant removed and stored at -70 C̊ 
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until required for dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). (Shi-

Wen et al., 2004). 

When required, each supernatant was thawed and the protein concentration determined by 

Lowry assay. 50μg of protein concentration was loaded on each lane. Following method 

development, for each 20μl sample, 5μl Laemmli Buffer (x4), 2μl β-Mecaptoethanol and 5μl 

Urea (8M; for CTGF) was added. Samples were heated to 95 C̊ (Tectine, Dri-Block DB.2A) 

for 5 minutes.  Polyacrylamide electrophoresis gels were made (appendix 7) or SDS-PAGE 

gels were used for protein electrophoresis. 15μl protein ladder (SeeBlue Plus, Invitrogen Ltd) 

and 25μl of protein were added to wells (appendix 8). Gels were run at 125V for 90 minutes 

and proteins transferred to nitrocellulose membrane (Hybond-C, Amersham, UK) at 35V for 

90 minutes (appendix 8). 

Membranes were blocked with 5% milk (Marvel) for 1 hour, washed in PBS three times for 

10 minutes each, then incubated with primary antibodies [ETA receptors (dilution 1:400); ETB 

receptor (1:400); CTGF (1:500); COL11A1 (1:250); AML-1 (1:250); GAPDH (1:1000)]. 

Following further PBS washes, secondary antibodies [anti-mouse/anti-rabbit/anti-goat 

(1:1000)] were added for 1–2 hours, washed again in PBS then visualised by adding ECL 

and exposing to film (appendix 8) or by exposure to super-signal West (Thermo-Scientific, 

UK) and viewed using Chemi-Doc System and software (Bio-Rad, Hertfordshire, UK). 

Molecular weights were confirmed with reference to the protein ladder. Equal loading of 

protein concentration was confirmed using GAPDH as the internal control. 

 

4.2.5 RNA Extraction  

 

Following treatment, cells were washed twice with PBS then total RNA extracted by one of 

two methods, either: the RNeasy ‘mini’ kit (Qiagen, Crawley, UK) or TRIzol, (InvitrogenTM) 

according to the manufacturer’s guidelines (appendix 9).  Once extracted, samples were 

stored at -20C̊. Purity and concentration were assessed using a NanoDrop 8000 8-Sample 

Micro-Volume UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, USA).  
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4.2.6 Conventional RT-PCR 

 

‘Conventional’ RT-PCR was carried out using OneStep (QiagenTM) (appendix 11).  To 

reduce pipetting errors and contamination, three separate ‘master mixes’ were prepared: 

briefly, the first aliquot contained 0.9µl of sense primer (10mM), 0.9µl of antisense primer 

(10mM) and 3.2µl of Amplification Grade water (Promega, Madison, USA) for each reaction. 

The Mastermix aliquot contained 3µl of OneStep® RT-PCR Buffer (Qiagen), 0.6µl of dNTP 

mix (Qiagen), 0.6µl of OneStep® RT-PCR Enzyme Mix (Qiagen) and 0.8µl of molecular 

grade water (Promega) per reaction. The enzyme mix was the last component to be added. 

The third aliquot contained a final concentration of 100ng of RNA template made up to a 

volume of 5µl with molecular grade water. Reaction mixtures were pipetted into thin walled 

0.2ml PCR tubes and loaded into a Flexigene Thermal cycler (Techne, Staffordshire, UK). 

Primers (Table 4.1) were as follows: CTGF, ADM, STC-1, MT1X, MMP7, PPP2R5D, EGFR, 

ET-1, EDNAR, EDNBR and GAPDH. 

Products were visualised using 2% agrose gels (made as per Appendix 10). Samples were 

supplemented with 2µl of Blue/orange 6x loading dye (Promega, Madison, USA) and loaded 

into gels within a Horizon 11.14 Horizontal Gel Electrophoresis Apparatus (Life 

Technologies, California, USA). Samples were run for approximately 30-60 minutes at 50-

125 volts to create sufficiently separated bandings. Gels were visualised using Gel Doc 2000 

transilluminator (BioRad, Philadelphia, USA) and accompanying program Quantity One 

(BioRad).  

 

4.2.7 Real Time Quantitative qRT-PCR 

 

Real time quantitative RT-PCR (qRT-PCR) was carried out using the QuantiTect SYBR 

Green RT-PCR Kit (Qiagen).  This included a ready-made mastermix (with polymerase), 

buffer dNTPs and SYBR green dye. Detailed volumes and calculations are described in 

appendix 12.  Briefly, 10μl of Mastermix, 2μl of sense and 2μl of anti-sense primers (final 

concentration 1μM), 0.2μl of enzyme and 100ng of total RNA template made to a volume of 

5.8μl were used per reaction. Samples were loaded into glass capillaries then into the 

LightCycler® 1.5 instrument and analysed using LightCycler® Software 3.5.3 (Both Roche 

Diagnostics Ltd, Burgess Hill, UK).  GAPDH was used as a standard.  Primers were 
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designed and through method development optimum conditions were obtained (appendix 

13). Primers for genes whose expressions were examined are as follows: CTGF, ADM, 

STC-1, MT1X, MMP7, PPP2R5D, EGFR, ET-1, EDNAR, EDNBR and GAPDH. Gene 

expression is shown as a fold change in transcript expression in treated fibroblasts and CRC 

cell lines compared to untreated, or ET-1 induced cells only, using the ΔCt method, per 

manufacturer’s instructions (Applied Biosystems).  

 

Primer/Oligo Name Sense Sequence (5’→3’) Anti-Sense Sequence(3’→5’) 

ET-1 (QETs/QETas) GCTCGTCCCTGATGGATAAAG CCATACGGAACAACGTGCT 

ETAR (QETAs/QETAas) CTCAACCTCTGCGCTCTTAGT AGCCAATCGCTTCAGGAATGG 

ETBR (TBR1s/TBR1as) GCTTTAAGGCTGGGCCA GCTCTTTCTTTCTGGCCACA 

CTGF (CT1s/CT1as) GTTCCAAGACCTGTGGGAT GCCCTTCTTAATGTTCTCTTCC 

ADM (ADM1s/ADM1as) GAGGGAACTGCGGATGT GCTGTCTTCGGGGCTT 

STC-1 (STC1s/STC1as) GGAGCAGAATGACTCTGTGA CGAACCACTTCAGCTGAGTT 

MT1X (MT1Xs/MT1Xas) TCTCCTTGCCTCGAAATGGAC GGGCACACTTGGCACAGC 

MMP7 (MMP7s/MMP7as) GGGAGGCATGAGTGAGCTAC TCTCCTTGAGTTTGGCTTCTAAA 

PPP2R5D (PPP2s/PPP2as) GCTGCCCGAGTCCTCCCCATCAT AACCGGCCCTTCTGCTTCTCTGC 

EGFR (EGR2s/EGR2as) CATGCAGAAGGAGGCAAAGT CAAAGGTCATCAACTCCCAA 

GAPDH AGATCATCAGCAATGCCTCC AGTGATGGCATGGACTGTGGT 

 

Table 4.1. This table shows the primer sequences that were designed to investigate mRNA expression 

levels for conventional and real-time PCR. 
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4.3 RESULTS SECTION 

 

 

 

 

 

 

 

 

SECTION A: 

 

Genes Regulated by Endothelin-1 in 

 Colorectal Fibroblasts and Cancer Cell Lines & the Effect of  

Receptor Antagonism on Expression of Selected Genes 
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4.3.1 Colonic Fibroblasts: 

Genes Regulated in Fibroblasts by Endothelin-1 

The effect of ET-1 on the regulation of genes in fibroblasts was investigated in four fibroblast 

strains (CF35, CF56, CF65 & CF75).  Fibroblasts were grown to 60% confluence; then 

following exposure to ET-1 (10-7M) for 4 hours, mRNA was extracted using the Mini-RNeasy 

Kit (Quigen).  Samples were analysed using Illumina gene array analysis. Fibroblasts 

exposed to 0.5% BSA containing medium were used as controls. 

All fibroblasts strains behaved in a similar manner but with a slight variation in fold change 

between control and treatment groups. Illumina Gene Array resulted in data for 11,193 

genes, of which 70 genes were up-regulated by over 1.5 fold when combining all fibroblast 

results. Of these, 13 genes were up-regulated by over 2 fold and showed significance 

(p<0.05). There were only 5 genes that were down regulated by over 1.5 fold, of which 4 

were significant (p<0.05). The full dataset is included in a supplementary file (see 

supplementary data CD). 

Two of the significantly up-regulated genes following ET-1 exposure belong to the same 

CCN family of genes.  Both CYR61 (cystein rich 61; CCN1) and CTGF (connective tissue 

growth factor; CCN2) are growth factors with known roles in cell proliferation, adhesion, 

migration and angiogenesis in the setting of fibroblast actions and cancer progression. 

Another significantly up-regulated gene was Adrenomedullin (ADM/AM), a vasodilator 

peptide linked to tumourigenic roles of cell proliferation, angiogenesis and inhibition of 

apoptosis.  Thus CTGF and ADM were chosen for further investigation to look at their 

regulation and possible roles in response to ET-1.  

The most significantly down regulated gene was Stanniocalcin-1 (STC-1). It is a glycoprotein 

involved in calcium/phosphate homeostasis and normally induced by BRCA1 tumour 

suppressor gene in breast tissue. It has both positive and negative correlations with a 

number of malignancies, and therefore was a gene chosen to be investigated as significantly 

down regulated by ET-1. 

In an earlier study within the Department of Surgery, UCL, a gene array study (Affymatrix) 

was carried out with different colonic fibroblast strains. Two significantly regulated genes 

identified in this study were Collagen Type XI (COL11A1) and Acute Myeloid Leukaemia-1 

(AML-1). Both these genes were up-regulated on the gene arrays in this study, however 

non-significantly.  These genes were therefore investigated at the protein expression level in 

addition to the chosen genes above.  
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A. Fibroblast Up-Regulated Genes 

Gene Name Accession No. CF36 CF56 CF65 CF75 Combined P Value  
Genes up-regulated over 2 fold  

ANKRD1 NM_014391.2 3.6142 2.7002 1.6994 5.7644 3.423187 3E-08 Transcription Factor 

CYR61 NM_001554.3 2.7574 3.1903 1.9979 4.5921 3.283528 5E-08 Growth Factor 

TNFRSF12A NM_016639.1 2.9545 3.1154 2.7227 4.1563 3.265402 0.0003 TNF Receptor (↑IL8/MCP-1) 

CTGF NM_001901.2 2.5737 2.8009 2.6684 3.3257 2.768337 0.0087 Growth Factor 

ADM NM_001124.1 2.0292 2.5114 2.3809 3.4979 2.680695 0.0042 Angiogenesis/Mitogen/Hypoxic survival (↑HIF/VEGF) 

MGC4677 NM_052871.3 2.2045 2.0136 2.2273 2.4342 2.265645 0.0215  

SHRM NM_020859.1 2.9439 2.4214 1.5035 2.1243 2.227831 0.002  

PTRF NM_012232.3 2.2069 1.5385 2.2973 2.7358 2.201301 0.0017  

SLN NM_003063.2 1.8826 1.8557 2.1725 3.5994 2.174202 0.1794  

EMP1 NM_001423.1 2.502 1.5433 2.7389 1.5897 2.101444 0.0709 Associated myc signalling 

CCL2 NM_002982.3 2.0298 1.644 2.789 2.2631 2.099299 0.0023 Survival Cytokine 

ANXA1 NM_000700.1 2.0336 1.495 2.3484 2.1608 2.021314 0.0039 Anti-inflam. Poor prognosis in CRC 

TNNT2 NM_000364.2 1.6669 1.4507 1.9012 3.0091 1.981131 0.0131 Troponin type 2 

TNNC1 NM_003280.1 1.8789 1.3594 1.8033 2.8157 1.950142 0.0156 Troponin type 1 

Genes up-regulated over 1.5 fold with significant p-value  

AXUD1 NM_033027.2 1.7896 1.5944 1.9232 1.8811 1.785487 4E-05 Nuclear Protein 

KLF2 NM_016270.2 1.7448 1.4246 1.6739 1.4538 1.572457 6E-05 Transcription Factor 

STX11 NM_003764.2 1.4552 1.4514 1.4273 1.64 1.501461 4E-11 Cell invasion and metastasis?? 

Genes of significance on previous gene arrays   

COL11A1 NM_001854.3 1.1941 1.1019 1.4964 0.9013 1.182965 0.6608 Colorectal Pathology 

AML1  1.1127 1.1618 1.3238 0.9641 1.136460 0.1086  
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B. Fibroblast Down-Regulated Genes 

Gene Name Accession No. CF36 CF56 CF65 CF75 Combined P Value  
Genes down-regulated over 2 fold  

FGD3 NM_033086.2 1.7718 1.5325 1.2529 1.5693 1.497354 0.0147  
LMO4 NM_006769.2 1.4152 1.4972 1.6751 1.4653 1.512204 0.0003  

SYTL3 
NM_00100999
1.2 1.5311 1.1817 1.6292 1.9389 1.526359 0.0042  

GPER 
NM_00103996
6.1 1.3065 1.7889 1.5524 1.5549 1.535269 0.0557  

STC1 NM_003155.2 1.5651 1.3037 1.9398 1.9229 1.630137 0.0038 Death and prolif. Inhib. Resistance. 

Figure 4.3. Gene array data showing up and down regulation of selected genes in fibroblasts following ET-1 exposure. Cells were incubated with ET-1 (10-7) for 4 

hours then RNA extracted and prepared using the Mini-RNeasy Kit. Altered gene expression was examined with Illumina gene array analysis (Cambridge). Tables 

show significantly A: up-regulated genes and B: down-regulated genes with p-values <0.05 and either 1.5 or 2 fold changes in gene expression.  Significantly 

altered genes previously investigated within the department are also shown. Green highlighted rows are genes that were selected for further evaluation. 
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To investigate mRNA expression of these selected genes, primers were designed to each of 

the genes (appendix 13 & Table 4.1). Conventional PCR was carried out up to 35 cycles to 

confirm expression of these genes within fibroblasts. Colorectal cancer cell lines were also 

included in the panel of cells for completion (figure 4.4). 

CTGF and ADM were expressed throughout all four fibroblasts and CRC cell lines. ADM 

seemed to be expressed to a slightly lower level throughout the panel of cells. STC-1 was 

specific for fibroblasts with an extremely low expression seen in the SW480 cell line. GAPDH 

confirmed that the template loading concentrations were the same throughout all cells that 

were investigated. 

Confirming Expression of Genes of Interest 

 

 

 

 

 

 

 

 

 

                                                             

 

 

 

 

 

 

 

 

 

 

CTGF 

ADM 

STC-1 

GAPDH 

Figure 4.4. RT-PCR showing expression levels of genes in both fibroblasts and colorectal cancer cell 

lines.  Primers for selected genes from gene array data were designed with annealing 

temperatures of 58 ̊C and flanking introns to be RNA specific. RT-PCR was carried out as per 

standard conventional-PCR protocol using a Mastercycler Gradient thermal cycler (Eppendorf) for 

35 cycles. All genes were expressed in both fibroblasts and cancer cell lines except STC-1 which was 

expressed in fibroblasts alone. 
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To confirm that gene induction or suppression resulted from ET-1 exposure, time point 

inductions were carried out using conventional and real-time RT-PCR.  

Quantitative real-time RT-PCR of CTGF revealed an up-regulation reaching a peak at 

around 1-2 hours with a 3.5-3.8 fold increase. This then tapered off to below control levels 

up to 24 hours (figure 4.5B). Conventional PCR was carried out to demonstrate these 

findings on ethidium bromide gels, which showed a similar trend with a peak expression 

reached at 30 minutes to 1 hour before tapering off. GAPDH confirmed equal loading in all 

experiments (figure 4.5A). 
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Time Induction Assays: CTGF 

A: Conventional RT-PCR 

 

 

 

 

                                                                                        

B: Real-Time RT-PCR  

 

 

 

 

 

 

 

 

 

 

 

 

 

Same protocols were used to investigate ADM and STC-1 changes in gene expression 

following exposure to ET-1. Up-regulation of ADM was confirmed with a peak expression 

level seen at 2 to 4 hours with a maximum 2.6 fold increase (figure 4.6A). STC-1 had shown 

  

 

CTGF 

 
GADPH 

 
CTGF  

Figure 4.5. Time point gene induction of CTGF demonstrated using A: conventional and B: qRT-

PCR. CF75 fibroblasts were exposed to ET-1 (10-7) for 0, 30 minutes, 1, 2, 4, 8 and 24 hours followed 

by RNA extraction using the Mini-RNeasy Kit. Conventional RT-PCR was carried out using the 

OneStep® RT-PCR kit (Qiagen) and qRT-PCR was carried out using a QuantiTect SYBR Green RT-PCR 

Kit (Qiagen). RT-PCR images are generated by stopping the PCR reaction at 23 cycles.  Graph of 

qRT-PCR gene expression is shown as a fold change in transcript expression in treated fibroblasts 

compared to untreated cells using the ΔCt method, as per manufacturer’s instructions (Applied 

Biosystems).  CTGF induction is seen at between 1-4 hours with a maximum fold change of 3.8. 

N=2 independent repeats. 
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a decreased expression level at 4 hours according to the gene array. However, time point 

inductions surprisingly showed an up-regulation at 30 minutes to 1 hour of between 3.4 and 

3.8 fold above control expression levels (figure 4.6B). This indicates that STC-1 may act as 

an early response gene. As GAPDH was used to ensure equal loading and that template 

concentrations were used throughout experiments, a qRT-PCR was carried out to confirm 

that this gene was not affected by ET-1 exposure. Indeed a maximum fold increase of only 

1.18 was observed indicating this to be a suitable marker to use. GAPDH was used to 

confirm equal loading in all experiments and used for normalisation when calculating delta 

CT values. 

Real Time PCR Time Induction Assays in CF75 Fibroblasts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

A: ADM  B: STC-1  

C: GAPDH  

Figure 4.6. Real time RT-PCR showing time point 

inductions of A: ADM, B: STC-1 and C: GAPDH. CF75 

fibroblasts were exposed to ET-1 (10-7) for 0, 30 

minutes, 1, 2, 4, 8 and 24 hours followed by RNA 

extraction using the Mini-RNeasy Kit. Real time RT-

PCR was carried out using a QuantiTect SYBR Green 

RT-PCR Kit (Qiagen).  Graph of qRT-PCR gene 

expression is shown as a fold change in transcript 

expression in treated fibroblasts compared to 

untreated cells using the ΔCt method, as per 

manufacturer’s instructions (Applied Biosystems).  A 

2.6 fold increase in ADM was seen at 2 hours, 3.8 

fold increase in STC-1 at 1 hour and no significant 

change in GAPDH expression seen at any time point. 

N=2 independent repeats for each gene. 
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The effect of receptor antagonism on the expression of selected genes was investigated in 

CF56, CF65 and CF75 cell strains. Fibroblasts were exposed to ET-1 alone, ET-1 and ETA 

and/or ETB receptor antagonists (BQ123/ZD4054, BQ788). Fibroblasts incubated with 0.5% 

BSA medium were used as controls (figure 4.7).   

In general ETA receptor blockade appeared to oppose ET-1 actions and of the three 

antagonists used, the specific ETA receptor antagonist ZD4054 was the most effective in 

reversing ET-1 actions. Graphical results show trends for the three fibroblast strains 

combined (figure 4.7). 

BQ123 did not result in significant alterations in gene expression levels (mean reduction of 

expression for CTGF: 44.6% & ADM: 41.7%; mean inhibition of STC-1: 31.2%; figure 4.7D). 

However, there was significant gene expression changes in two of the three fibroblast strains 

used (p<0.05).  In comparison ZD4054 resulted in greater inhibition than that of BQ123 

(CTFG: 96.8%; ADM: 91.9%; STC-1: 60.0%). This was significant for CTGF and ADM 

(p<0.05). Significant inhibition with ZD4054 was reached in two of the three fibroblast strains 

carried out for STC-1. 

The ETB receptor antagonist BQ788 resulted in significant inhibition of CTGF when data was 

combined for all fibroblast strains (84.6%; p<0.05). Despite significant inhibition with BQ788 

being reached in 2 of the 3 fibroblast experiments for ADM and STC-1, when combined they 

lost this significance (inhibition of ADM: 47.7% and STC-1: 86.4%).  Combined results are 

shown graphically in figure 4.7 A-C and as a table in D). 

When combined, receptor antagonists gave mixed results. Generally combinations seem to 

partly reverse single agent action, suggesting complex actions and cross talk between the 

two receptors. 
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ETA and ETB Receptor Antagonist Effect on Gene Expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Antagonist 
 
  

Change in CTGF expression  

% Decrease Significance 

BQ123 44.6 NS 

BQ788 84.6 p<0.05 

ZD4054 96.8 p<0.05 

ZD4054+BQ788 32.5 NS 

Antagonist  Change in ADM expression  

% Decrease Significance 

BQ123 41.7 NS 

BQ788 47.7 NS 

ZD4054 91.9 p<0.05 

ZD4054+BQ788 46.7 NS 

Antagonist  Change in STC1 expression  

%Inhibition Significance 

BQ123 31.2 NS 

BQ788 86.4 NS 

ZD4054 60.0 NS 

ZD4054+BQ788 29.2 NS 
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Figure 4.7.  mRNA expression levels of A: CTGF, B: ADM and C: STC-1 in the presence of ET-1(10-7M) 

and/or ETA/B receptor antagonists (10-6M) following 4 hours of exposure.  This graphical 

representation is produced by three independent repeats. Graph of qRT-PCR gene expression is 

shown as a fold change in transcript expression in treated fibroblasts compared to untreated cells.  

D: Table showing percentage decrease/inhibition of ET-1 induced gene expression. 
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To further confirm specific receptor subtypes involved in altering expression of selected 

genes, we silenced individual receptors using ETA and/or ETB SiRNA in the presence of ET-

1. Fibroblasts exposed to scrambled SiRNA alone were used as controls (figure 4.8). 

The ET-1 induction or suppression of genes was clearly demonstrated once again. ETA 

receptor silencing resulted in a near return to control levels in the presence of ET-1 for all 

three genes (inhibition of CTGF: 93.1%; ADM: 95.6%; STC-1: 98.7%; p<0.05). ETB receptor 

silencing did not have a significant effect on altering gene expression of ADM and STC-1 

(4.3% and 0.01% respectively). There was a smaller significant reduction in CTGF 

expression (23.3%). Combined ETA and ETB receptor silencing demonstrated similar results 

to that of ETA receptor silencing alone (inhibition of CTGF: 95.3%; ADM: 89.6%; STC-1: 

88.9%; p<0.05). 
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SiRNA of ETA and ETB Receptors 
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Figure 4.8. mRNA expression levels of A: 

CTGF, B: ADM and C: STC-1 in the presence of 

scrambled SiRNA and/or ET-1 (10-7M) and/or 

SiRNA ETA/B receptor (25nM) following 4 

hours of exposure.  This graphical 

representation is produced by three 

independent repeats. Graph of qRT-PCR gene 

expression is shown as a fold change in 

transcript expression in treated fibroblasts 

compared to scrambled control.  ET-1 

significantly increased expression of all genes 

of interest. A: Silencing both ETA and ETB 

receptors significantly inhibited CTGF 

expression (ETA>ETB). B & C: ETA receptor 

silencing inhibited ADM and STC-1 expression 

significantly.  
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Most cell signalling occurs at the protein level, therefore CTFG was further investigated to 

see if ET-1 and its receptors had an influence on protein expression of this gene. 

Fibroblasts were grown to 60% confluence then exposed to ET-1 (10-7M) for 24 hours before 

protein was extracted. In the three colonic fibroblast strains examined (CF36, CF56 and 

CF65), all showed a significant increase in protein expression (figure 4.9). 

The effect of receptor antagonism on protein expression of CTGF was investigated in CF35, 

CF56, CF75 and CF78 cell lines. Fibroblast strains were exposed to ET-1 alone, ET-1 and 

ETA (BQ123/ZD4054) and/or ETB (BQ788) receptor antagonists. Fibroblasts exposed to 

0.5% BSA medium were used as controls (figure 4.10-4.11). 

The greatest inhibitory effect on protein expression of CTGF was seen with the ETA receptor 

antagonist ZD4054 where expression was returned back to control levels or below control 

levels. This was significant in all fibroblast strains investigated. Both ETA receptor (BQ123) 

and ETB receptor (BQ788) antagonists also resulted in a significant inhibition of CTGF 

protein expression in all fibroblast strains, with BQ788 being marginally better than BQ123. 

Combined ETA (ZD4054) and ETB (BQ788) receptor antagonists produced similar protein 

expression levels as ZD4054 alone. Interestingly, the CF78 fibroblast strain responded less 

to antagonists than the other fibroblast strains used. Figure 4.10 shows examples of 2 

Western blots. Figure 4.11 (A-D) demonstrates graphically the CTGF protein expression 

levels of individual fibroblast strains. Combined results are shown as graphical 

representation in figure 4.12A and in a table as percentage decrease in figure 4.12B. 
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CTGF: Control versus ET-1 
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Figure 4.9.  CTGF protein expression on exposure to ET-1 in fibroblasts. Cells were exposed to control 

medium alone or ET-1 (10-7M) then protein extracted after 24 hours.  A: Western blotting images of 

three fibroblasts demonstrating ET-1 induced protein expression. B: Combined graphical 

representation of ET-1 induced protein expression in 3 independent repeats. 

CTGF 

 

GAPDH 

 

CF78 

CF75 

Figure 4.10. Western blotting showing protein 

expression of CTGF on exposure to ET-1 and/or 

antagonists. Fibroblasts were exposed to ET-1 

(10-7M) alone or ET-1 and ETA/B receptor 

antagonists (BQ123, ZD4054, BQ788; 10-6M). 

Increased expression of CTGF is shown when 

exposed to ET-1 only.  Both ETA receptor 

antagonists inhibited expression 

(ZD4054>BQ123), but ETB blockade with BQ788 

produced greater inhibition.  The most marked 

inhibition is seen with combined ETA and ETB 

receptor blockade. 
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CTGF:  Protein Expression and Receptor Antagonism  
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Figure 4.11.  CTGF protein expression in A: CF35, B: CF56, C: CF75 and D: CF78. Fibroblasts 

were incubated with ET-1 and/or ETA/B receptor antagonists.  This graphical representation is 

produced by four independent repeats of each fibroblast strains using Western blotting with 

antibodies to CTGF.  Values were normalised by using ratios to control to aid comparison of 

strains. In all strains both ETA and ETB receptor antagonists significantly reduced protein 

expression of CTGF.  There was a less marked difference seen in the CF78 fibroblast strain. 
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Figure 4.12.  Combined results of CTGF protein 

expression for all colonic fibroblasts. A:  Graphical 

representation of protein expression for all four 

fibroblast strains combined, each with 4 

independent repeats, following 24 hours of 

exposure to ET-1 (10-7M) or ET-1 + receptor 

antagonists (BQ123, BQ788 and ZD4054, 10-6M).  

B: Table showing percentage decrease in protein 

expression with ET-1 induced expression set at 

100%.  ETA blockade with BQ123 and ZD4054 

produced a 33% and 75% decrease in protein 

expression respectively (ZD4054 being the most 

efficacious at reducing CTGF expression). ETB 

blockade with BQ788 produced a 59% decrease.  

.  

 

Reagents % Decrease 

BQ123 + ET-1 33.4 

ZD4054 + ET-1 74.8 

BQ788 + ET-1 59.0 

ZD4054 + BQ788 + ET-1 72.1 
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4.3.2 Colorectal Cancer Cell Lines: 

 

Genes regulated in cancer cell lines by Endothelin-1 

 

The effect of ET-1 on the regulation of genes in CRC cells was investigated in four lines 

(HT29, SW480, SW620 & LIM1215).  Cancer cell lines were grown to 60% confluence then 

following exposure to ET-1 (10-8M) for 4 hours, mRNA was extracted.  Samples were 

analysed using Illumina gene array analysis. Cells exposed to serum free medium were 

used as controls. 

Three of the cell lines (HT29, SW480 & SW620) behaved in a similar manner but with a 

slight variation in fold change between control and treatment groups. Illumina gene array 

gave data on 11,505 genes, of which 6 genes were up-regulated by over 1.5 fold and 36 

genes down regulated by over 1.5 fold when all cell line data were combined. The LIM1215 

cell line behaved differently to the others, with a 2.8 fold maximum increase and 32 fold 

decrease in gene expression on exposure to ET-1. Because of this great difference in 

behaviour and sometimes opposite response to ET-1 (i.e. LIM1215 had a 32 fold decrease 

in MT1G gene expression whilst near maximum gene induction reaching a 4 fold increase 

was observed in the other three cancer cell lines) this cell line was omitted when combining 

gene fold changes to decide on genes to investigate. All further work was carried out 

excluding this cancer cell line.  

The Metallothionein (MT) proteins were the most up-regulated genes when combining the 

fold change increases of the HT29, SW480 and SW620 cells (range 2.49 – 1.43 fold 

increases). These cysteine-rich physiological and xenobiotic heavy metal binding proteins 

have positive correlations with increased malignancy in a number of cancers including 

colorectal. Their expression is associated with poorer prognosis, increased migration, 

invasion and angiogenesis. As antibodies were readily available for MT1X, this was the gene 

chosen for further investigations. 

PPP2R5D is a gene encoding a tumour suppressor serine/threonine kinase enzyme. This 

was down-regulated in all cancer cell lines with a combined 1.23 fold decrease (significance: 

1x10-10; range: 1.14 – 1.29 fold decrease). Matrix Metalloproteinase (MMP7) was also down-

regulated with a combined fold change of 1.43.  However, this resulted from a significant 

down regulation of 1.52 fold in the HT29 cell line, whilst a small but insignificant up 
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regulation was seen in SW480 and SW620 cell lines. Decreased PPP2R5D and increased 

MMP7 expression are associated with increased malignancy in colorectal cancers.  

Figure 4.13 shows genes that were up or down regulated after 4-hour exposure to ET (10-8 

M). 
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A: Colorectal Cancer Cell Lines: Up-Regulated Genes 

Gene Name Accession No. HT29 SW620 SW480 LIM1215 Combined   
Genes up-regulated over 2 fold  

MT1G NM_005950.1 1.9987 4.0312 1.043 0.0311 2.49161231 
 

Migration/ Invasion/ Angiogenesis 
Poor prognosis, advanced cancer  
Drug resistance 

MT1X NM_005952.2 1.5474 3.3982 1.3503 0.0710 2.12512458 

 

Migration/ Invasion/ Angiogenesis 
Poor prognosis, advanced cancer  
Drug resistance 

Genes up-regulated over 1.5 fold with significant p-value  

MT1H NM_005951.2 1.5843 2.6793 1.0789 0.0975 1.79125883 
  

MT1E NM_175617.3 1.3452 3.6994 1.3627 0.0332 1.73884663 
  

MT1A NM_005946.2 1.5131 1.9369 1.1773 0.0748 1.62909643 
  

MTE NM_175621.2 1.3987 2.2133 1.2478 0.0947 1.58343753 
  

MT2A NM_005953.2 1.3078 1.8599 1.1802 0.0853 1.56506175 
  

MT1F NM_005949.2 1.3591 2.3747 1.0208 0.2834 1.43490337 
  

 

B: Colorectal Cancer Cell Line: Down-Regulated Genes 

Gene Name Accession No. HT29 SW620 SW480 LIM1215 Combined   
Genes down-regulated ~1.5 fold  

MMP7 NM_002423.3 1.5146 0.9237 0.8837 2.298 1.43832838 
 Invasion and Migration  

PPP2R5D NM_180977.1 0.8772 0.7848 0.7779 1.025 1.23346136 
 Tumour Suppressor , Neg. growth and division  

Figure 4.13. Gene array data showing up and down regulation of selected genes in CRC cell lines following ET-1 exposure. Cells were incubated with ET-1 (10-

8M) for 4 hours then RNA extracted and prepared using the Mini-RNeasy Kit. Altered gene expression was examined with Illumina gene array analysis 

(Cambridge). Tables show significantly A: up-regulated genes and B: down-regulated genes with p-values <0.05 and either 1.5 or 2 fold changes in gene 

expression.  Green highlighted rows are genes that were selected for further evaluation. 
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To investigate mRNA expression of these selected genes, primers were designed to each of 

the genes (appendix 13 & Table 4.1). Conventional RT-PCR was carried out up to 35 cycles 

to confirm expression of these genes within all cancer cell lines. Fibroblasts were also 

included within the panel of cells out of interest (figure 4.14).  

MT1X and PPP2R5D appeared to be expressed throughout all four CRC cell lines and 

colonic fibroblasts. MMP7 was specific for CRC cell lines with no expression seen in the 

fibroblasts. GAPDH confirmed that the template loading concentrations were the same 

throughout all cells that were investigated. 

 

Confirming Expression of Genes of Interest 
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Figure 4.14. RT-PCR showing expression levels of genes in both fibroblasts and colorectal cancer 

cell lines.  Primers for selected genes from gene array data were designed with annealing 

temperatures of 58 ̊C and that flanked introns to be RNA specific. RT-PCR was carried out as per 

standard conventional RT-PCR protocol using a Mastercycler Gradient thermal cycler (Eppendorf) 

up to 35 cycles. All genes were expressed in both fibroblasts and cancer cell lines except MMP7 

which was expressed in cancer cell lines alone. 
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Time point inductions were similarly carried out to confirm changes in gene expression 

resulting from ET-1 exposure, time point inductions were carried out using quantitative real-

time RT-PCR. The HT29 cancer cell line was grown to 50-60% confluence, starved in serum 

free medium, then exposed to ET-1 for 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours and 24 

hours. At these time points, mRNA was extracted and conventional or quantitative real-time 

RT-PCR carried out for the relevant genes. Controls were incubated with serum free medium 

alone and expression levels of relevant genes examined at 0 and 24 hours (figure 4.15). 

qRT-PCR of MT1X had shown an up regulation of 12 fold as early as 1 hour after ET-1 

exposure, reaching a peak at 4 hours with a 300 fold increase. Contrary to gene array data 

findings, MMP7 showed a 1.6 fold increase at 4 hours, rising to 5 fold at 24 hours. No 

significant changes were observed following ET-1 exposure in regards to PPP2R5D 

expression. As GAPDH was used to ensure equal loading and template concentrations were 

used throughout experiments, a qRT-PCR was carried out to confirm that this gene was not 

affected by ET-1 exposure. GAPDH was used to confirm equal loading in all experiments 

and used for normalisation when calculating delta CT values. 
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Quantitative Real Time RT-PCR Time Induction Assays in HT29 Cancer Cell Lines 
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Figure 4.15. Real-time RT-PCR showing time point inductions of A: MT1X, B: MMP7, C: PPP2R5D and D: 

GAPDH. Cancer cell lines were exposed to ET-1 (10-8M) for 0, 30 minutes, 1, 2, 4, 8 and 24 hours followed by 

RNA extraction using the Mini-RNeasy Kit. Real time RT-PCR was carried out using a QuantiTect SYBR Green 

RT-PCR Kit (Qiagen).  Graph of qRT-PCR gene expression is shown as a fold change in transcript expression 

in treated cancer cell lines compared to untreated cells using the ΔCt method, as per manufacturer’s 

instructions (Applied Biosystems).  A 300 fold increase in MT1X was seen at 4 hours, 5 fold increase in 

MMP7 at 24 hours and no significant change in PPP2R5D expression seen at any time point although a 

fluctuating increase in expression between 0.8 – 1.5 fold was seen. 
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The effect of receptor antagonism on the expression of selected genes was investigated in 

HT29 and SW620 cell lines. Cells were exposed to ET-1 alone, ET-1 and ETA and/or ETB 

receptor antagonists (BQ123/ZD4054, BQ788) and compared with controls (figure 4.16).    

The effect of ET-1 on gene induction of MT1X was demonstrated with a 9.8 fold increase 

seen at 4 hours following ET-1 exposure (range: 7.4 to 11.5 fold). Interestingly ET-1 also 

induced the expression of MMP7 by an average of 3 fold (range: 1.8 to 4.9 fold) despite the 

observed down regulation on the gene array data for this cell line. Greater variability was 

seen with the PPP2R5D, showing an average 1.26 fold increase (HT29 showed 1.05 and 

1.06 fold change whilst SW620 showed a 1.67 fold increase).  

The contribution of receptors to gene regulation was investigated via the use of ETA and ETB 

antagonists. The ETA receptor antagonist ZD4054 was most efficacious at inhibiting the ET-1 

induced gene expression of MT1X and MMP7 (89.5% and 85.0% respectively; significance 

p<0.05). Both the ETA (BQ123) and ETB (BQ788) receptor antagonists inhibited expression 

of both MT1X and MMP7 to a similarly significant extent (BQ123: 59.5% and 53.0% 

respectively; BQ788: 47% and 60.5% respectively; all significantly with p<0.05). Combined 

receptor antagonism with ZD4054 and BQ788 had the least inhibitory effect (MT1X: 44.2%; 

MMP7: 15.7%) reaching significant inhibition of MT1X only. 

PPP2R5D did not show any significant inhibition of ET-1 induced changes, using any of the 

receptor antagonists. Expression levels of this gene stayed around control and were non-

significant. Combined results are shown graphically in figure 4.16 (A-C) and as a table in 

figure 4.16 (D). 
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ETA and ETB Receptor Antagonist Effect on Gene Expression 
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Change in MT1X 
expression  

% Decrease Significance 

BQ123 59.5 p<0.05 

BQ788 47.0 p<0.05 

ZD4054 89.5 p<0.05 

ZD4054+BQ788 44.2 P<0.05 

Antagonist  Change in MMP7 
expression  

% Decrease Significance 

BQ123 53.0 P<0.05 

BQ788 60.5 P<0.05 

ZD4054 85.0 P<0.05 

ZD4054+BQ788 15.7 NS 

Antagonist  Change in PPP2R5D 
expression  

%Inhibition Significance 

BQ123 69.0 NS 

BQ788 86.5 NS 

ZD4054 110.2 NS 

ZD4054+BQ788 89.6 NS 
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Figure 4.16. mRNA expression levels of A: MT1X, B: MMP7 and C: PPP2R5D in the presence of 

ET-1(10-8M) and/or ETA/B receptor antagonists (10-7M) following 4 hours of exposure.  This 

graphical representation is produced by three independent repeats. Graph of qRT-PCR gene 

expression is shown as a fold change in transcript expression in treated cell lines compared to 

untreated cells.  D: Table showing percentage inhibition of ET-1 induced gene expression. 

 

D 



90 

 

Gene silencing was used to identify specific receptor subtypes involved in altering gene 

expression of selected genes (figure 4.17). 

ET-1 induction of MT1X was also demonstrated but with limited response seen in MMP7 and 

PPP2R5D. In the MT1X experimental repeats, silencing the ETA receptor appeared to 

increase MT1X gene expression above ET-1/scrambled exposure alone (mean increase of 

68.7%), whilst ETB receptor silencing demonstrated similar expression levels to ET-

1/scrambled exposure alone (decrease of 5.1%). Combined silencing showed an increase in 

MT1X expression. All results were non-significant.  

Both ETA and ETB receptor silencing resulted in a reduction of MMP7 expression. ETA 

receptor and combined ETA/B receptor silencing resulted in significantly decreased 

expression of this gene (40.5% and 42.5% respectively; p<0.05). ETB receptor silencing was 

non-significant (decrease of 31.8%).  

No significant changes were seen with expression levels of PPP2R5D. 
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SiRNA Silencing of ETA and ETB Receptors 
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Figure 4.17. mRNA expression levels of A: 

MT1X, B: MMP7 and C: PPP2R5D in the 

presence of scrambled SiRNA and/or ET-1 

(10-8M) and/or SiRNA ETA/B receptor (25nM) 

following 4 hours of exposure.  This graphical 

representation is produced by three 

independent repeats. Graph of qRT-PCR gene 

expression is shown as a fold change in 

transcript expression in treated cancer cell 

lines compared to scrambled control.  ET-1 

significantly increased expression of MT1X. A 

and C: Silencing of the ETA receptor increased 

expression of MT1X and PPP2R5D genes 

whilst ETB receptor silencing has little effect. 

B: ETA and ETB receptor silencing inhibited 

MMP7 expression significantly. 
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4.4 RESULTS SECTION 

 

 

 

 

 

 

SECTION B: 

 

The Effect of Endothelin Receptor Antagonists at the Protein Level  

Of Previously Identified Genes Altered by ET-1 
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4.4.1 Collagen Type XI (COL11A1) 

Collagen Type XI was shown to be significantly up-regulated in previous work done within 

the department. The present experimental conditions and fibroblast strains used 

demonstrated a similar up-regulation on gene arrays, although less marked (CF36: 1.2 fold; 

CF56: 1.1 fold; CF65: 1.5 fold; combined: 1.2 fold) (figure 4.3). This section investigated 

whether ET-1 and its receptors had an influence on protein expression of this gene. 

Fibroblasts were grown to 60% confluence then exposed to ET-1 (10-7M) for 24 hours before 

protein was extracted (appendix 5). All 4 colonic fibroblast strains examined (CF36, CF56, 

CF65 and CF75) showed a significant increase in protein expression (figure 4.18). 

The effect of receptor antagonism on protein expression of Collagen Type XI was 

investigated in these same 4 fibroblast strains. Fibroblasts were exposed to ET-1 alone, ET-

1 and ETA (BQ123/ZD4054) and/or ETB (BQ788) receptor antagonists. Fibroblasts incubated 

with 0.5% BSA medium were used as controls (figure 4.19 – 4.20). 

The greatest inhibitory effect on protein expression of collagen Type XI was seen with the 

ETA receptor antagonist ZD4054 where expression was reduced to control levels or below 

control levels (p<0.05 significance; combined decrease 65.1%). Combined ETA (ZD4054) 

and ETB (BQ788) receptor antagonists also demonstrated significant inhibition of expression 

(combined decrease 67.5%; p<0.05). This was significant in all fibroblast strains investigated 

except CF75 strains which demonstrated greater variability. Interestingly, the CF75 fibroblast 

strain responded less to antagonists than the other fibroblast strains used. Figure 4.19 

presents examples of 2 Western blots used. Graphical representation of four independent 

repeats of these fibroblast strains is shown in figure 4.20 (A-D). Combined results are 

graphically represented in figure 4.21 (A) and in a table as percentage decrease in figure 

4.21 (B).   
 

= significant vs. control values      = significant vs. ET-1 values   
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Collagen Type XI:  Control versus ET-1 
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Figure 4.18. Collagen Type XI protein 

expression on exposure to ET-1 in 

fibroblasts. Cells were exposed to control 

medium alone or ET-1 (10-7M) then protein 

extracted after 24 hours.  A: Western 

blotting images of two fibroblast strains 

demonstrating ET-1 induced protein 

expression. B: Combined graphical 

representation of ET-1 induced protein 

expression in 4 fibroblast strains. 

A 

Figure 4.19. Western blotting showing 

fibroblast protein expression of collagen 

type XI on exposure to ET-1 and/or 

antagonists. Cells were exposed to ET-1 (10-

7M) alone or ET-1 and ETA/B receptor 

antagonists (BQ123, ZD4054,BQ788; 10-

6M). Increased expression of collagen type 

XI is seen when exposed to ET-1 only.  Both 

ETA receptor antagonists inhibited 

expression (ZD4054>BQ123) with a less 

marked effect seen with ETB blockade 

(BQ788) produced greater inhibition.  

Marked inhibition is seen with combined ETA 

and ETB receptor blockade. 
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Collagen XI Protein Expression and Receptor Antagonism 
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Figure 4.20.  Collagen type XI protein expression in A: CF35, B: CF56, C: CF65 and D: CF75. Cells 

were incubated with ET-1 and/or ETA/B receptor antagonists.  This graphical representation is 

produced by four independent repeats of these fibroblast strains using Western Blotting with 

antibodies to collagen type XI.  Values were normalised by using ratios to control for aiding 

comparison of strains. In all strains the ETA receptor antagonist ZD4054 significantly reduced 

protein expression of collagen type XI.   
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Figure 4.21.  Combined results of collagen type XI 

protein expression for all colonic fibroblasts. A:  

Graphical representation of protein expression for 

all four fibroblast strains combined, each with 4 

independent repeats, following 24 hours of 

exposure to ET-1 (10-7M) or ET-1 + receptor 

antagonists (BQ123, BQ788 and ZD4054, 10-6M).  

B: Table showing percentage decrease in protein 

expression from ET-1 induced expression set at 

100%.  ETA blockade with BQ123 and ZD4054 

produced a 20.3% and 65.1% decrease in protein 

expression respectively (ZD4054 being the most 

efficacious at reducing collagen type XI 

expression). ETB blockade with BQ788 produced a 

22.3% decrease.  

.  



97 

 

4.4.2 Acute Myeloid Leukaemia-1 (AML-1) 

AML-1 was another significantly up-regulated gene, previously demonstrated within the 

department. Under present experimental conditions only slight up regulation was observed 

by gene array at 4 hours (CF36: 1.11 fold; CF56: 1.16 fold; CF65: 1.32 fold; combined: 1.14 

fold) (figure 4.3). 

Fibroblasts were grown to 60% confluence then exposed to ET-1 (10-7M) for 24 hours before 

protein was extracted ET-1 resulted in a significant increase in AML-1 protein expression in 

all fibroblast strains following 24 hours of exposure. The effect of receptor antagonism on 

protein expression of AML-1 was investigated in 3 fibroblast strains (CF65, CF75 and CF78). 

They were exposed to ET-1 alone, ET-1 and ETA (BQ123/ZD4054) and/or ETB (BQ788) 

receptor antagonists. Fibroblasts exposed to 0.5% BSA medium were used as controls 

(figure 4.22). 

The greatest inhibitory effect on protein expression was observed with both ETA receptor 

antagonists BQ123 and ZD4054, where expression was reduced to control levels. This was 

significant in the CF65 and CF78 strains (combined decreased in all fibroblasts with BQ123: 

75.1% and ZD4054 77.1%; p<0.05). Combined ZD4054 and BQ788 antagonists also 

demonstrated inhibition of AML-1 expression, reaching significance in the CF78 fibroblast 

strain (CF78: 56.9% decrease; combined decrease 63.3%; p<0.05). BQ788 did not induce 

significant inhibition in any of the fibroblast strains examined (combined inhibition of 16%). 

Interestingly, the variability previously observed in the CF75 fibroblast strains was repeated 

here. The great variability of protein expression unfortunately meant that statistical 

significance in response to ET-1 exposure could not be achieved. Figure 4.22 (A) shows 

examples of 3 Western blots used whilst figure 4.22 (B-D) demonstrates graphically the 

protein expression in individual fibroblast strains following densitometry analysis. Combined 

results are shown graphically in figure 4.23 (A) and in a table as percentage decrease in 

figure 4.23 (B).   
 

= significant vs. control values      = significant vs. ET-1 values   
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AML-1 Protein Expression:  ET-1 & Receptor Antagonism 

 

 

 

  

          

 A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
ontr

ol

E
T-1

B
Q
12

3 
+ 

E
T-1

ZD
40

54

B
Q
78

8 
+ 

E
T-1

ZD
40

54
 +

 B
Q
78

8 
+ 

ET-1

0

1

2

3

4

Reagents: ET-1 (10
-7

) and Antagonists (10
-6

)
N

o
rm

a
li
s
e
d

 A
b

s
o

rb
a
n

c
e
 (

n
m

)

B 

 

C
ontr

ol

E
T-1

B
Q
12

3 
+ 

E
T-1

ZD
40

54

B
Q
78

8 
+ 

E
T-1

ZD
40

54
 +

 B
Q
78

8 
+ 

ET-1

0

5

10

15

20

25

Reagents: ET-1 (10
-7

) and Antagonists (10
-6

)

N
o

rm
a
li
s
e
d

 A
b

s
o

rb
a
n

c
e
 (

n
m

)

C 

C
ontr

ol

E
T-1

B
Q
12

3 
+ 

E
T-1

ZD
40

54

B
Q
78

8 
+ 

E
T-1

ZD
40

54
 +

 B
Q
78

8 
+ 

ET-1

0

1

2

3

Reagents: ET-1 (10
-7

) and Antagonists (10
-6

)

N
o

rm
a
li
s
e
d

 A
b

s
o

rb
a
n

c
e
 (

n
m

)

D 

CF78 

 

CF75 

 

CF65 

Figure 4.22.  AML-1 protein expression in B: CF65, C: CF75 and D: CF78 fibroblasts. Cells were 

incubated with ET-1 and/or ETA/B receptor antagonists.  This graphical representation is 

produced by four independent repeats of these fibroblast strains using Western blotting with 

antibodies to AML-1.  Values were normalised by using ratios to control for aiding comparison 

of strains. In CF65 and CF78 strains the ETA receptor antagonist ZD4054 significantly reduced 

protein expression of AML-1.  A: shows examples of Western blotting images for each of the 

fibroblast strains.  The ETA receptor demonstrated a significant inhibition of AML-1 protein 

expression with a much more variable ETB receptor blockade response. 
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BQ123 + ET-1 75.1 

ZD4054 + ET-1 77.1 
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Figure 4.23. Combined results of AML-1 protein expression for all colorectal fibroblasts. A:  

Graphical representation of protein expression for all 3 fibroblast strains combined, each with 4 

independent repeats, following 24 hours of exposure to ET-1 (10-7M) or ET-1 + receptor 

antagonists (BQ123, BQ788 and ZD4054, 10-6M).  B: Table showing percentage decrease in 

protein expression from ET-1 induced expression set at 100%.  ETA blockade with BQ123 and 

ZD4054 produced a 75.1% and 77.1% decrease in protein expression respectively (ZD4054 being 

the most efficacious at reducing AML-1 expression). ETB blockade with BQ788 produced a 16% 

decrease.  

.  
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4.5.1 Expression of Epidermal Growth Factor Receptor and the Endothelin Axis in 

Colonic Fibroblasts and Cancer Cell Lines 

Fibroblasts and cancer cells showed slight variations in responses to ET-1 and its receptor 

antagonists at the mRNA level. Therefore conventional RT-PCR was carried out to look at 

mRNA expression levels in continuously growing colonic fibroblasts and cancer cell lines 

(figure 4.24) 

Cells were grown in 10cm dishes supplemented with 0.5% BSA for fibroblasts or 10% FCS 

for cancer cell lines in DMEM.  Cells were grown to 60% confluence then mRNA extracted 

Conventional RT-PCR was carried out using primers designed to anneal at 58C̊ (appendix 

11). 

mRNA for ET-1 was only observed in the cancer cell lines and to a similarly weak extent. 

The ETA receptor was equally expressed in the fibroblasts but variability was seen in the 

cancer cell lines. The highest levels of ETA receptor mRNA were seen in the SW480 cells, 

followed by HT29 then LIM1215, with little expression seen in the SW620 cells. The ETB 

receptor had varying levels of mRNA expression in fibroblasts with most seen in the CF65 

and CF75 strains. Higher levels were seen in the cancer cell lines with the exception of 

SW620 which showed a low expression level. Epidermal Growth Factor Receptor (EGFR) 

mRNA levels were seen throughout the panel of cells with the lowest expression seen in the 

SW620 and LIM1215 cancer cell lines. GAPDH confirmed equal loading of all templates for 

the purpose of carrying out conventional PCR. Figure 4.24 shows mRNA expression levels 

as visualised on gels following conventional RT-PCR. 

Two fibroblast and two cancer cell lines were also grown in the same conditions to evaluate 

protein expression, which may be either intracellular or on the cell surface (figure 4.25). The 

fibroblasts showed equal levels of both ETA and ETB receptors. The cancer cell lines showed 

greater ETA receptor expression and little to moderate amounts of ETB receptor expression. 

GAPDH confirmed equal loading of protein. 
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Expression at mRNA Level of ET-1, ET Receptors and EGF Receptor 

 

 

 

 

 

 

 

 

                    

 

                                                   

 

 

 

 

 

Expression at protein level 

 

 

 

 

 

 

                                     

 
ET-1 

 
ETAR 

 

 

EGFR 

 

GAPDH 

 
ETBR 

 

 

 

ETAR 

ETBR 

GAPDH 

Figure 4.24. Conventional RT-PCR showing expression levels of the EGR receptor and key genes 

within the Endothelin axis in both fibroblasts and colorectal cancer cell lines.  Primers were 

designed to flank introns and with annealing temperatures of 58 ̊C to be mRNA specific. 

Conventional RT-PCR was carried out as per standard conventional RT-PCR protocol using a 

Mastercycler Gradient thermal cycler (Eppendorf) up to 35 cycles. ET-1 was expressed in cancer cell 

lines and not in fibroblasts at the mRNA level. Varying degrees of ETA, ETB and EGF receptors were 

seen in both fibroblasts and cancer cell lines. 

Figure 4.25. Western blotting showing 

fibroblast (CF36 & CF56) and cancer cell line 

(HT29 & SW620) protein expression of ETA 

and ETB receptors. Cells were continuously 

grown in 3.5cm dishes containing 10% FCS in 

DMEM. Protein was extracted using RIPA 

Buffer.  Fibroblasts showed similar expression 

levels of both receptor subtypes. Cancer cell 

lines showed more ETA receptor protein 

expression with less ETB receptors present. 
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As the EGFR and ETA receptors are associated with colorectal cancer progression, the 

response of these receptors to ET-1 was examined at the mRNA level. Fibroblasts were 

grown to 50-60% confluence, serum starved in 0.5% BSA, then exposed to ET-1 for 30 

minutes, 1 hour, 2 hours, 4 hours, 8 hours and 24 hours. At these time points, mRNA was 

extracted and qRT-PCR carried out for each receptor. Controls (at 0 and 24 hours) were 

exposed to 0.5% BSA alone (figure 4.26). 

Quantitative real-time PCR showed a biphasic response to ET-1 in both receptors. The ETA 

receptor demonstrated a 2.5 fold increase as early as 30 minutes, followed by a second 

peak of 2.5 fold at 4 hours. The EGF receptor showed a gradual increase in mRNA 

expression with a first peak seen at 4 hours (3.8 fold increase) followed by a 4.5 fold 

increase at 24 hours. 

 

Induction of ETA and EGF Receptors 
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Figure 4.26. Real-time RT-PCR showing time point inductions of A: ETA receptors and B: EGF receptors. 

Fibroblast strains were exposed to ET-1 (10-7) for 0, 30 minutes, 1, 2, 4, 8 and 24 hours followed by RNA 

extraction using the Mini-RNeasy Kit. Real time RT-PCR was carried out using a QuantiTect SYBR Green RT-

PCR Kit (Qiagen).  Graph of qRT-PCR gene expression is shown as a fold change in transcript expression in 

treated fibroblasts compared to untreated cells using the ΔCt method, as per manufacturer’s instructions 

(Applied Biosystems).  The ETA receptor demonstrated a biphasic response to ET-1 exposure with a 2.5 fold 

increase as early as 30 minutes followed by a second 2.5 fold increase at 4 hours. The EGF receptor again 

showed a peak at 4 hours with a 3.8 fold increase and a 4.5 fold increase at 24 hours. 
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SiRNA was used to knockdown the ETA and/or ETB receptor expression following 

optimization of this protocol: silencing of the ETA receptor demonstrated 89% knockdown 

with a minor effect on the ETB receptor (17% knockdown), whilst silencing of the ETB 

receptor produced only 25.3% knockdown with a 10.5% knockdown of the ETA receptor. 

Combined silencing produced 86.1% knockdown of the ETA receptor and 36.8% knockdown 

of the ETB receptor (figure 4.27A & 4.27B). 

The effect on the EGF receptor was also evaluated, since this is known to be heavily 

involved in colorectal cancer progression. Interestingly the ETA receptor silencing inhibited 

any ET-1 stimulated gene induction of the EGF receptor, maintaining it at control levels.  

Silencing the ETB receptor had no effect on EGF receptor expression at the mRNA level 

(figure 4.27C). 
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Silencing of the ETA and ETB Receptors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
cr

am
ble

d 

S
cr

am
ble

d+ET1

S
IR

N
A
 E

TA
R
 +

 E
T-1

S
iR

N
A
 E

TB
R
 +

 E
T-1

S
iR

N
A
 E

TA
R
 &

 E
TB

R
 +

 E
T-1

0.0

0.5

1.0

1.5

Regents: SiRNA (25nM) and ET-1 (10
-7

)

2
-


C

t 
(f

o
ld

 c
h

a
n

g
e
)

A (ETAR) 

S
cr

am
ble

d 

S
cr

am
ble

d+ET1

S
IR

N
A
 E

TA
R
 +

 E
T-1

S
iR

N
A
 E

TB
R
 +

 E
T-1

S
iR

N
A
 E

TA
R
 &

 E
TB

R
 +

 E
T-1

0.0

0.5

1.0

1.5

Regents: SiRNA (25nM) and ET-1 (10
-7

)
2

-

C

t 
(f

o
ld

 c
h

a
n

g
e
)

B (ETBR) 

 

S
cr

am
ble

d 

S
cr

am
ble

d+ET1

S
IR

N
A
 E

TA
R
 +

 E
T-1

S
iR

N
A
 E

TB
R
 +

 E
T-1

S
iR

N
A
 E

TA
R
 &

 E
TB

R
 +

 E
T-1

0.0

0.5

1.0

1.5

Regents: SiRNA (25nM) and ET-1 (10
-7

)

2
-


C

t 
(f

o
ld

 c
h

a
n

g
e
)

C (EGFR) 

Figure 4.27. Fibroblast mRNA expression 

levels of A: ETAR, B: ETBR and C: EGFR in the 

presence of ET-1(10-7M) and ETA/B receptor 

SiRNA (25nM) following 4 hours of ET-1 

exposure.  This graphical representation is 

produced by two independent repeats. Graph 

of qRT-PCR gene expression is shown as a fold 

change in transcript expression in treated 

fibroblasts compared to untreated cells. The 

SIRNA for the ETAR demonstrated an 89% 

knockdown from ET-1 exposure alone, ETBR 

showed a 25.3% knockdown whilst the EGF 

receptor responded solely to ETAR SIRNA with 

a 26.7% reduced expression at the mRNA level 

bringing this to control levels. 
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4.6 DISCUSSION 

4.6.1 Selected Genes Stimulated by ET-1 in Fibroblasts 

 

4.6.1.1 CTGF and CYR61 

 
The immediate early response genes connective tissue growth factor (CTGF; CCN2) and 

Cysteine-Rich 61 (CYR61; CCN1) were shown to be significantly up-regulated by ET-1. 

They are stimulated primarily by TGF-, share 90% structure homology and belong to the 

CCN family of proteins. Structurally they all comprise 4 domains with differing functions: IGF 

binding (module 1), oligomerization (module 2), cell attachment (module 3) and dimerization 

(module 4).  They are produced by and act on numerous cells including epithelial, 

endothelial, fibroblasts, myofibroblasts, smooth muscle and neural cells (Latinkic et al. 1991; 

Moussad et al. 2000).  The CCN family collectively have numerous regulatory cellular 

functions involving cell cycle progression, division, differentiation, apoptosis, adhesion, 

chemotaxis, gene regulation and ion transport (Perbal 2001).  They are therefore implicated 

in differentiation, embryological development, angiogenesis, tumour growth, wound healing 

and fibrosis.  (Bornstein et al. 2002). 

 

CTGF was up-regulated by ET-1 in all colonic fibroblast strains, as demonstrated by gene 

array analysis.  This was confirmed by time-point induction studies with maximum 

expression reached between 1-2 hours. Further work showed that the ETA receptor 

antagonist ZD4054 was most efficacious at inhibiting CTGF mRNA expression following ET-

1 exposure, whereas a more variable non-significant response was seen with BQ123. A 

discussion of why this may be the case is found later in this chapter. The ETB receptor 

antagonist BQ788 also significantly inhibited CTGF mRNA expression. Use of siRNA 

confirmed the dominant role of the ETA receptor in CTGF regulation, as silencing almost 

completely inhibited its expression. Silencing the ETB receptor also significantly inhibited 

CTGF expression, but to a much lesser extent. The greater inhibitory effect of the ETB 

receptor antagonist BQ788 compared to ETB receptor silencing can be explained by the 

specificity of the antagonist. As discussed previously (chapter 3) the affinity of BQ788 for 

ETB receptors is only tenfold greater than its affinity for ETA receptors. Therefore BQ788 will 

have some antagonistic action at the ETA receptor which we have demonstrated significantly 

inhibits CTGF expression. In contrast, the ETA receptor antagonist BQ123 has 1000-10,000 

times greater affinity for the ETA receptor than the ETB receptor (Davenport, 2002). Inhibition 

of CTGF expression was also confirmed at the protein level, with ZD4054 having the 

greatest effect, followed by BQ788 and BQ123.  
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There are very few published reports on the role of CTGF in colorectal cancer development 

and progression. Knowles et al. (2011) is the only published study to date that mapped 

colonic fibroblast expression of CTGF and suggested a potential role in colorectal cancer 

development. Another recent study demonstrated increased overall cytoplasmic CTGF (and 

Cyr61) mRNA and protein expression in colorectal cancer specimens (Ladwa et al., 2011). 

Interestingly they found Duke’s A and B tumours had higher mRNA expression levels then 

Duke’s C tumours.  Furthermore, higher CTGF levels were associated with better prognosis 

in colorectal cancers in two studies (Chang et al., 2006; Lin et al., 2005).  However, this may 

correlate with findings of higher CTGF expression in early stage cancers with a decreased 

expression seen in more advanced tumours. Over-expression of CTGF was also observed in 

gliomas, oesophageal and pancreatic cancer (Koliopanos et al., 2002; Hartel et al., 2004; 

Xie et al., 2004). Conversely, in oesophageal and breast cancers, higher levels of CTGF 

were associated with more advanced disease (Koliopanos et al., 2002; Xie et al., 2001).   

It has been suggested that CTGF plays an important role in angiogenesis. Human breast 

cancer (MDA-MB-231) and fibrosarcoma (HT-1080) cells showed high levels of CTGF 

expression. Xenographs in BALB/c nude mice showed high levels of neovascularisation, 

strongly correlating with CTGF levels.  Furthermore, neutralising CTGF specif ic antibodies 

blocked tumour angiogenesis on chicken chorioallantoic membrane, producing a similar 

effect as anti-VEGF and anti-bFGF antibodies (Shimo et al., 2001). Breast cancer cells also 

increased levels of CTGF in response to hypoxia; it was suggested that tumour hypoxia 

promotes increase CTGF levels with subsequent MMP up-regulation and TIMP down-

regulation (Chen et al. 2001).  Increased MMP results in ECM degradation and facilitate 

endothelial migration and vascularity.  Indeed HUVEC cells exposed to CTGF increased 

transcription of MMP1/2/3/7/9, MI1-MMP and decreased TIMP 1 and 2.  In regards to related 

proteins, human fibroblasts exposed to CYR61 increased MMP1 and 3 expression, whilst 

CYR61 injected into RF-1 gastric adenocarcinomas and MCF-7 breast cancer cells 

produced larger and more vascular tumours (Xie et al. 2001). 

 

CTGF and CYR61 may also promote angiogenesis indirectly. Ordinarily heparin sulphate 

proteoglycans (HSPGs) are bound to bFGF within the ECM. CTGF and CYR61 both bind to 

heparin sulphate proteoglycan (HSPGs) extracellularly via module 4 and therefore displace 

bFGF allowing it to bind to the FGF receptor, promoting an angiogenic response and 

mitogenic activity within fibroblasts (Koliopanos et al. 2002). Furthermore, adhesion of 

fibroblasts promoted by CYR61 or CTGF involve signalling events that include formation of 

filopodia and lamellipodia, formation of focal complexes containing integrin  α6β1, and 

activation of FAK, paxillin, Rac and MAPK (Chen et al. 2001). CYR61 and CTGF interact in a 
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dose-dependent manner with integrin αvβ3 to promote adhesion in endothelial cells and 

migration of cells. CYR61 also promotes chemotaxis, whilst CTGF promotes both 

chemotaxis and chemokinesis (Babic et al. 1998). 

 

CTGF is associated with numerous tumourigenic actions and with such far reaching effects 

within the tumour environment, it seems hugely beneficial to be able to modulate its activity. 

ZD4054 significantly inhibited its expression in fibroblasts at both the mRNA and protein 

levels via the ETA receptor. We would therefore expect this to decrease vascularity of 

tumours, inhibit its mitogenic effect on surrounding cells and reduce MMP production, 

thereby reducing metastatic ability of tumours.  Its adhesion, migratory and proliferative 

effects on fibroblasts should also be curtailed. As ETB receptor antagonists also had a small 

but significant effect, it is plausible that Bosentan, a dual ETA and ETB receptor antagonist 

may be of benefit. 

 

 

4.6.1.2 Adrenomedullin (ADM/AM) 

 

Adrenomedullin is a 52 amino acid peptide originally isolated from a human 

phaeochromocytoma and belongs to the calcitonin gene peptide superfamily (Poyner et al., 

2002; Nikitenko et al., 2006).  Similar to ET-1, it is a vasodilatory peptide with pleiotropic 

activities, such as: (1) a growth factor, (2) an angiogen both in vitro and in vivo, (3) an 

inhibitor of apoptosis in endothelium and isolated tumour cells, (4) a potent vasodilator, (5) 

regulator of endothelial permeability, as well as (6) contributing to adhesion and 

differentiation of bone marrow derived mononuclear cells into endothelial progenitor cells. 

(Hinson et al., 2000).   

 

ET-1 was seen to up-regulate ADM on gene array analysis. This was confirmed on time 

point induction studies with maximum mRNA expression at 2-4 hours with up to a 2.6 fold 

increase. 

 

Antagonistic studies showed that ZD4054 significantly inhibited ET-1 stimulated ADM 

induction (p<0.05). Both BQ123 and ZD4054 resulted in significant inhibition of expression in 

2 of the 3 fibroblast experiments. However, on combining all repeats, significance was lost. 

ETA receptor silencing demonstrated almost complete inhibition of ADM expression whereas 

the ETB receptor seemed not to play any role. 
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A large body of literature has investigated the role of ADM in cell proliferation, angiogenesis, 

apoptosis and tumourigenesis.  ADM is highly expressed in malignant tissues including lung, 

breast, colon, glioblastoma, pancreas and prostate with only a few reports on colorectal 

cancer. ADM has strong links with angiogenesis.  Within leiomyomas, ADM expression 

correlated with increased vascular density and endothelial proliferation (Hague et al., 2000).  

Kaafarani et al., (2009) carried out in vivo quantitative image analysis showing Matrigel plugs 

containing ADM demonstrating a 30-40% increase in endothelial and pericyte cells 

compared to VEGF treated plugs. In endometrial, breast and pancreatic xenograft tumours, 

vascular density or directed growth of blood vessels was increased in ADM over-expressing 

transfectants.  In HCT116 colon cancer cell lines, hypoxia induced HIF-1α resulted in 

increased JMJD1A protein expression, which in turn demethylated a H3K9 hypoxic promoter 

thus inducing expression of ADM and ET-1 (Krieg et al., 2009). 

 

ADM also stimulates growth and inhibits apoptosis.  In vitro studies using anti-ADM receptor 

antibodies demonstrated a dose dependent inhibition of proliferation in HT29 colorectal 

cancer cells of 30%, 62% and 75% respectively with increased doses (10, 20 & 40μg/ml). 

Furthermore, in HT29 xenografts anti-ADM receptor antibodies inhibited growth with 

markedly diminished vascularity, compared to controls. Anti-ADM antibodies also 

significantly decreased growth in vitro and in vivo of ADM expressing U87 glioblastoma 

models (Oufik et al., 2002). In terms of apoptosis, ADM over-expressing endometrial tumour 

cells showed resistance to hypoxia-induced apoptosis via a bcl-2 mediated mechanism 

(Oehler et al., 2002).  At the molecular level, ADM transfected tumour cells expressed higher 

levels of oncogenic proteins such as Ras, Raf, PKC and MAPKp49 and incorporated more 

bromodeoxiuridine, indicating increased proliferation (Martinez et al., 2002).  There was also 

an up-regulation of anti-apoptotic factors and down-regulation of pro-apoptotic factors that 

contributed to tumour cell survival (Oehler et al., 2002, Martinez et al., 2002; Zudaire et al., 

2003). 

 

Treatment with ZD4054 showed significant reversal of the ET-1 induction of ADM. Therefore 

potentially its angiogenic, proliferative and anti-apoptotic effects would be of huge benefit in 

treatment of cancers in the clinical setting. 
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4.6.1.3 Stanniocalcin-1 (STC1) 

 

STC1 is a glycoprotein that is expressed in numerous developmental and patho-

physiological processes including intestinal calcium transport, organogenesis and 

carcinogenesis. Its chromosomal location falls within the metastatic susceptibility locus, 8p. 

Loss of this locus is associated with disease advancement and metastasis in colorectal 

cancers (Chang et al., 1998). 

 

STC-1 was expressed in fibroblasts, with only a weak expression in SW620. Illumina data 

analysis showed up to a 1.9 fold down-regulation in STC-1 expression at 4 hours which was 

confirmed by time point induction experiments.  However, a large up-regulation was 

observed as early as 30 minutes to 1 hour (3.8 fold increase): this indicates STC-1 is an 

early response gene.  

 

Antagonistic studies were carried out at 4 hours and confirmed a down-regulation at this time 

point. All antagonists showed a trend to reverse the effects of ET-1. Two of the three 

experimental repeats carried out had shown significant return towards control levels for 

ZD4054 and BQ788, but when combined this significance was lost. When silencing the 

receptors, ETA silencing returned STC-1 levels to control whilst the ETB receptor SiRNA had 

no significant effect, indicating that ETA receptor plays the main role in STC-1 expression. 

 

STC1 has been linked to cell growth, apoptosis and angiogenesis. The first growth related 

properties were identified in fibroblasts on cDNA microarray analysis where STC-1 levels 

increased 6-8 fold in response to serum supplementation (Lyer et al., 1991). More recently 

knock-down of STC1 was shown to inhibit growth in breast cancer cells (Daniel and Lange, 

2009). STC1 was also suggested to be a downstream target of VEGF/Wnt2 and involved in 

angiogenic responses (Klein et al., 2009).  

 

Enhanced STC1 gene expression is seen in hepatocellular, colorectal, breast and medullary 

thyroid cancers (Fujiwara et al., 2000). Particularly for colorectal and hepatocellular cancers 

increased mRNA expression of STC1 was detected in all tissues compared to normal and 20 

of the 21 cancer cell lines examined . In contrast, down-regulation of STC1 is seen in some 

breast and ovarian cancer cell lines (Yeung et al., 2010). Some evidence has linked STC1 

expression to increased tumour vasculature and the use of its expression levels for the 

diagnosis of human breast, hepatocellular and colorectal cancers has been postulated 

(Fujiwara et al., 2000; Yeung et al., 2010). One of the few studies investigating STC1 in 
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fibroblasts was carried out in mouse embryo fibroblasts (MEF) by Nguyen et al., 2009.  This 

study gave a mixed picture to the role STC1 has in tumour development. Their results 

indicated STC1 has negative effect on pro-survival signalling pathways (ERK1/2) and/or a 

positive effect on cell death signalling. Thus, data relating to STC-1 appears conflicting. Loss 

of its locus in colorectal cancer points to it acting as a tumour suppressor, however, a 

number of cancers including colorectal cancers demonstrate increased levels. Some cancer 

cells may lose expression of STC-1, as illustrated here by conventional RT-PCR work, 

thereby contributing to pro-survival of cancer cells and fibroblasts, as suggested above. 

Other supporting cells such as fibroblasts may increase their expression which would explain 

the higher amounts seen in a number of tumour tissues and support tumour growth through 

increased vasculature. Differences seen in individual cells maybe as a result of the early up-

regulation then down-regulation, as observed by the time point induction studies. Further 

work is needed to delineate the exact contribution of STC-1 to cancer.  

 

 

4.6.1.4 Collagen Type XI (COLXI) 

 

Collagen Type XI was only investigated at the protein level as its differential expression 

following exposure to ET-1 was previously identified within the department (Knowles et al, 

2011). Protein expression in fibroblasts was seen to be increased following 24 hours of ET-1 

exposure. When combining 4 independent repeats for the 4 fibroblast strains examined, 

ZD4054 was the only antagonist that significantly inhibited collagen type XI expression 

(65.1%; p<0.05).  

 

COLXI has been identified in the connective tissues of colorectal pathologies (Fischer et al., 

2001a; Fischer et al., 2001b).  This same group linked the expression of COLXI to stromal 

regions and co-localised to fibroblasts in colorectal cancers.  A correlation between APC/β-

catenin pathway and COLXI expression has been demonstrated in patients with both 

sporadic colorectal cancer and FAP.  Our findings fit with the hypothesis that abnormal Wnt 

signalling induced ECM components such as WISP-1/CTGF that in-turn stimulate fibroblasts 

to secrete further WISP-1/CTGF and COLXI which aid tumourogensis. Furthermore, 

silencing COLXI affects the same extra-colonic tissues affected in FAP patients which have 

a dysregulated Wnt pathway.  Knowledge that ET-1 acts via the Wnt pathway and these 

observations provide further evidence for the potential tumourogenic effect that ET-1 has on 

the morphology of fibroblasts, and the potential anti-tumourogenic effect that altering ET-1 

may have in treating this condition. 
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4.6.1.5 Acute Myeloid Leaukaemia 1 (AML-1) 

 

Most research involving AML-1 (also known as RUNX1: Runt-related transcription factors) 

has been carried out in leukaemic cells.  However, increasing evidence is emerging that 

links it to numerous cancers and tumourogenic processes, either alone or when combined 

as a fusion protein with other transcription factors e.g. EVI-1 and ETS-1. 

 

Expression was determined only at the protein level as up-regulation was previously 

reported in our department (Knowles et al, 2011). A significant up-regulation was seen at 24 

hours following ET-1 exposure.  Both the ETA receptor antagonists (ZD4054 and BQ123) 

significantly inhibited protein expression in 2 fibroblast strains. Significance was not seen in 

the CF75 strain probably due to the huge variability of ET-1 induced expression. 

 

At a molecular level, AML-1 combined with EVI-1, interacts with a number of signalling 

pathways. This fusion protein is linked to inhibition of c-Jun N-terminal kinase which is linked 

to apoptosis. Rat1 fibroblast cells that over-express EVI-1 show a down-regulation of JNK. 

Similar results are seen in human endometrial carcinoma cell lines HEC1B (Mitani, 2004).  

Proliferative effect of AML-1/EVI-1 has also been investigated in Rat1 fibroblasts by 

transfecting them with cDNA AML-1/EVI-1 (Kurokawa et al., 1995). Transfected cells formed 

macroscopic colonies whereas mock-transfected ones barely formed any. Within the TGFβ 

signalling pathway, over-expression of AML-1/EVI-1 binds to Smad3 resulting in inhibition of 

growth suppression (Mitani, 2004). A study looking at primary murine embryonic fibroblasts 

lacking functional p53 found that RUNX1 had pro-oncogenic effects on cell growth that 

included cytoskeletal re-organisation, reduced contact inhibition and accelerated tumour 

expansion in vivo (Wotton et al., 2004). 

 

The only published study to date strongly linking AML-1/RUNX1 to colorectal cancer 

involved a population based study of 1555 patients (Slattery et al., 2011). They looked at 

genetic variations (tagSNPs) in RUNX1-3, MAPK1 and eIF4E transcription factors to 

determine association with colorectal cancers. There was statistically significant association 

of AML-1/RUNX1 with colon and rectal cancers and therefore important in the aetiology of 

both these cancers as well as abnormal TGFβ signalling. 

 

With the role of AML-1 in TGFβ signalling, known to be dysregulated in colorectal cancer, 

the fact that ET receptor antagonism alters its expression is potentially exciting. By inhibiting 

AML-1 expression, Smad 3 would be able to propagate its signalling to inhibit cell growth. 
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There seems to be evidence that the apoptotic pathway may be enhanced and therefore use 

of ZD4054 in combination with other therapies may be of benefit too. 

 

 

4.6.2 Selected Genes in Colorectal Cancer Cell Lines 

 

4.6.2.1 Metallothioneins (MT1X) 

 

Metallothioneins (MTs) are cysteine-rich low molecular weight protein localised to the Golgi 

apparatus membrane. They bind both physiological (zinc, copper, selenium) and xenobiotic 

(mercury, silver, cadmium) heavy metals, therefore providing protection from metal toxicity 

and oxidative stress, whilst playing a homeostatic role in the cell. MT genes can be induced 

by metal ions via metal responsive elements and controlled by glucocorticoids, various 

cytokines and growth factors. Elevated levels of MTs in rapidly proliferating cells have been 

attributed to increased Cu and Zn demand therefore potentially affecting genes associated 

with cell cycle regulation.  Indeed Nagel et al., (1995) studied MT levels in HT29 cells using 

immunocytochemistry. Levels were higher in sub-confluent proliferating cells relative to 

growth inhibited confluent cells. They also found oscillating MT levels during the cell cycle 

reaching a maximum near G1/S transition, at the onset of DNA synthesis. Since cell growth 

and proliferation are closely related to Zn, they postulated the functions of Zn are mediated 

via MT for the use of cellular actions, including Zn requiring transcription factors. This 

correlates with observations that MTs localise to the nucleus around the G1/S phase of the 

cell cycle. 

 

The Metallothioneins family of genes, most significantly MT1G and MT1X, were up-regulated 

following exposure to ET-1.  MTX1 was chosen for further investigations due to the 

availability of primer sequences and antibodies. As early as 1 hour following ET-1 exposure, 

MT1X mRNA expression had increased by 12 fold; and to over 300 fold at 4 hours.  

 

Both ETA and ETB receptor antagonists significantly inhibited expression of MT1X. The most 

efficacious of these was ZD4054 with 89.5% inhibition. Interestingly the response to receptor 

silencing was much more variable. ETA receptor silencing actually increased MT1X 

expression whereas ETB receptor silencing seemed to have no effect. One possibility for this 

unusual result may be due to sub-optimal experimental conditions as this was optimized for 

fibroblasts but not specifically for the cancer cell lines. It is possible that SiRNA 

concentration of 25nM was not high enough or the Oligofectamine concentration too low. 
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Even if silencing conditions were optimal, the timeline for the clearance of ET receptors from 

the cell surface membrane is unknown and therefore may confound the present results: 

mRNA expression for receptors may be inhibited, but the protein may still be present. 

 

MT seems to relate to advanced and highly malignant tumours (Jasani et al., 1998). MT 

expression is associated with poorer prognosis in breast (Oyama et al., 1996), hepatic, 

pancreatic, gastric and oesophageal cancers (Hishikawa et al., 2001). It has been reported 

that MT over-expression can also occur in somatic mutations as a result of cis-activating 

mutations in the MT gene or trans-activating mutations in MT controlling genes (Jasani et al., 

1998). Over-expression of MTs is reported to correlate with resistance to chemotherapeutic 

agents such as cisplatin and alkylating agents (Hishikawa et al., 2001). There is some 

limited information on the role of MTs in pathogenesis in colorectal cancer and drug 

resistance (Ofner et al., 1994; Giuffre et al., 1996; Sutoh et al., 2000).  It has been 

suggested that MT expression neutralises many heavy metal chemotherapeutic drugs which 

aids in drug resistance. Another mechanism linking MTs to tumourogenesis involves p53. 

MTs induce a reversible conformation changes to the wild-type p53 protein, resulting in a 

mutant type unable to binding zinc needed for its stabilization. P53 also requires zinc for its 

DNA binding, and since MTs act as an intracellular scavenger for zinc, depletion of this 

would inactivate p53, leading to a proliferative advantage (Fan et al., 2002). 

 

In colorectal tissue, Yoshitaka et al., (2001) used IHC to show MT positive expression in 

primary tumours in 7 out of 34 patients, with no expression in liver metastatic sites. MT 

positive expression was associated with higher degrees of lymph node involvement 

(p=0.0122). Survival rates were significantly better in MT negative tumours then MT positive 

ones (p=0.0198). Interestingly a similar down-regulation of MT expression in metastatic 

lymph nodes from breast cancers and metastatic adenocarcinomas was reported in other 

studies (Deng et al., 1998). This phenotypic change may be due to a change in the tumour 

environment. Bruewer et al., (2002) looked at patients with advanced ulcerative colitis and 

demonstrated an increased expression of MTs, suggesting abnormal expression may 

represent one of the first steps in the development of ulcerative colitis associated colorectal 

cancer.  

 

The beneficial effect of using ZD4054 to reduce the expression of MTs seems 

overwhelming.  With its range of activities affecting cell cycling, proliferation and p53 activity, 

it seems logical that reduced levels would be of benefit. Furthermore, increased evidence 
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suggesting its neutralising ability of chemotherapeutic drugs would support a role of ZD4054 

as adjuvant treatment in colorectal cancer alongside 5-FU. 

 

4.6.2.2 Matrix Metalloproteinase 7 (MMP7) 

 

MMP7 is a zinc dependent enzyme with pro-metastatic functions relating to tumour 

development (Egeblad et al., 2002), metastatic potential (Kurokawa et al., 2005) and clinical 

outcome (Wang et al., 2006). It is also an independent prognostic factor for shorter survival 

in colorectal cancers (Maurel et al., 2007). It is not only implicated in ECM degradation and 

metastasis promotion, but also plays a role in Fas/FasL system regulation and in apoptosis 

responsiveness of tumour cells. MMP7 modulates Fas expression and activation, generates 

soluble FasL by cleaving its membrance form, and cleaving Fas receptors itself, blocking the 

induction of apoptosis (Almendro et al., 2009). 

 

MMP7 expression was down-regulated in the HT29 cancer cell line and marginally up-

regulated in SW480, SW620 and significantly in LIM1215 (even though this cell line was not 

further investigated) cell lines. Time point induction experiments showed a slight decreased 

expression at 30 minutes followed by a biphasic response to ET-1 in the HT29 cell line, with 

a 1.6 fold increase at 4 hours followed by a 5 fold increase at 24 hours. This indicates that it 

is a late responder gene, and rather than being down-regulated, is almost certainly up-

regulated.  

 

Both the ETA and ETB receptor antagonists significantly inhibited the expression of MMP7 

(p<0.05). ZD4054 was the most effective at inhibiting its expression by 85%. Additionally, 

silencing of either ET receptor significantly reduced levels of MMP7 expression to below that 

of the control level. Receptor silencing may be having this effect by reducing the actions of 

endogenously produced ET-1, shown to be expressed by conventional RT-PCR (figure 

4.24).  

 

In HT29 cells and colon cancer tissue, MMP7 expression correlated with increased β-catenin 

levels and Wnt signalling via the epidermal growth factor (EGF) receptor (Ametler er al., 

2011). Interestingly ET-1 is linked to both these pathways. Fang et al., (2009) also showed 

that oestrogen receptors (ER-β) in HT29 cells influenced apoptosis and MMP7 expression. 
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Both Tamoxifen and/or 5-FU down-regulated MMP7 and ER-β receptors, significantly 

inhibiting proliferation and migration whilst inducing apoptosis. 

 

MMP7 is expressed in approximately 90% of human colonic adenocarcinomas and in the 

majority of human colon tumour cancer cell lines (Fang et al., 2009). In patient studies, Fang 

et al., (2010) demonstrated in 423 patient samples that high MMP7 compared to low 

expression was related to decreased overall survival (72% vs. 90%; p=0.008) and 5 year 

survival (86.6% vs. 88.8%; p=0.005).  Kita et al., (2006) showed MMP7 was differentially 

expressed with higher levels on gene array, qRT-PCR and IHC in adenomas as compared to 

normal colon. Because a number of studies have shown its importance for transition from 

benign to malignant status, it is considered to be a biomarker of disease and prognosis 

(Nastase et al., 2011). MMP7 and its indication of prognosis may not only be related to 

increased malignancy, but also chemo-resistance. Almendro et al., (2009) compared HT29 

and oxaliplatin resistant RHT29 cell lines. They found increased MMP7 expression in the 

RHT29 cell line. Furthermore, silencing of MMP7 with SiRNA restored drug sensitivity to 

oxaliplatin-induced apoptosis. Interestingly Fas receptor expression at the cell membrane 

was 3.8 fold lower in RHT29 cell lines than the HT29 cell line. This decrease was restored to 

HT29 levels once MMP7 was silenced in RHT29 cell lines, indicating MMP7 to be 

responsible for this.  

 

There is overwhelming literature evidence that MMP7 is associated with colorectal cancers 

and similar pathways used by ET-1, namely EGF and Wnt signalling. Despite ZD4054 being 

the most efficacious at reducing its expression levels, both ETA and ETB receptor antagonist 

had a significant effect, suggesting drugs such as Bosentan may be of benefit in the clinical 

setting. Zibotentan (ZD4054) potentially could increase tumour sensitivity to drug induced 

apoptosis and possibly increase prognosis of patients.  

 
 

4.6.2.3 PPP2R5D 

 

Illumina gene array analysis demonstrated a 1.2 fold decrease in expression of this gene. 

Time induction studies showed a 1.2 fold decrease at 30 minutes followed by a 1.5 fold 

increase at 1 hour. Generally there was a non-significant fluctuation in expression levels. 

The use of antagonists demonstrated non-significant alterations in expression levels. This 

was partially due to the variable response to ET-1 in the triplicate repeat experiments. 
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Silencing the ETA receptor marginally increased expression of PPP2R5D, whereas ETB 

receptor silencing marginally decreased levels.  However this was non-significant. 

 

To date there is very limited information on the role of this protein. It is a 56kDa 

serine/threonine-protein phosphatase 2A regulatory subunit of the delta isoform. 

Phosphatase 2A (PP2A) consists of 3 subunits of which subunit A is a regulatory region and 

subunit C is an enzyme region. PPP2R5D is one of the regulatory subunit B families, which 

determines substrate specificity and sub-cellular localization (Ruediger et al., 2001). It is 

implicated in negative control of cell growth and division, therefore acting as a tumour 

suppressor (Sablina et al., 2010). All three regions together are termed a homoenzyme. 

Inactivation of a number of these subunit B phosphatase family members have been 

implicated in human cancers including colorectal (Wang et al., 1998) and suppression of 

these same PP2A components contribute to cell transformation. Deletion or alterations of 

other B subunit members (PPP2R1B) are observed in 30-50% of breast, lung, ovarian and 

cervical cancers (Calin et al., 2000). Within colon cancers, PP2A has not only been linked to 

the MAPK pathway, but also specifically the PPP2R5D subunit with PP2A has been linked 

with down-regulation of cellular β-catenin. Therefore decreased levels could be tumourigenic 

in the setting of colon, pancreatic, hepatic and skin cancers (Sparks et al., 1998; Seeling et 

al., 1999). Loss of Heterozygosity (LOH) of the B subunit region is seen in 29-34% of colon 

cancers (Takagi et al., 2000).  As its function in the colorectal cells is linked to down 

regulation of the MAPK cascade, cell cycle check points and nuclear telomerase activity 

inhibition, this supports a role for this enzyme in tumourogenesis (Takagi et al., 2000).  

 

Despite the links described above with the limited response to ET-1, it is difficult to assess 

the role that ET receptor antagonist would have in a tumour setting. Further experiments and 

optimizing conditions may be required before re-evaluating the ET receptor antagonists. 

 

 

4.6.3 ET-1 and its ETA and ETB Receptor Expression 

 

In continuously growing cells, there was a small endogenous expression of ET-1 seen within 

the colorectal cancer cell lines. Interestingly the colonic fibroblasts did not show any 

endogenous expression of ET-1. This differs from the finding of Knowles et al., (2011) where 

expression of ET-1 was demonstrated on cytospun colonic fibroblasts cells. One explanation 

for this difference is that the fibroblasts used in the present study were around passage 11-

14, whereas fibroblasts used in the Knowles paper were all below passage 8. It has been 
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shown that fibroblasts change their phenotype with increasing passage number (Kernochen 

et al., 2002). The present fibroblasts may have lost expression of ET-1 in a similar manner to 

MC28 cell lines that lose ET-1 expression at around passage 32-36 (unpublished 

departmental data). 

 

The mRNA expression of ETA receptors in fibroblasts seemed to be expressed to similarly 

high levels when conventional RT-PCR was carried out to 35 cycles.  More variability was 

seen in expression of the ETB receptors, with lower levels in the CF36 and CF56, and higher 

levels in CF65 and CF75. Variability was also seen in mRNA expression of both ETA and 

ETB receptors in the colorectal cancer cell lines. Interestingly we see a lower than expected 

level of ETA receptor mRNA expression considering this receptor subtype is expected to be 

up-regulated in colorectal cancer.  One explanation of this may be that high protein 

expression of this receptor is present on the surface, and with no binding and internalisation, 

basal mRNA expression would remain low. In support of this, Western blotting shows high 

protein expression of the ETA receptor in HT29 and SW620 cell lines, with a low expression 

of the ETB receptors as would be expected. Protein expressions of both receptors in the 

colorectal fibroblasts were similar. The difference in responses to ET-1 and its antagonists in 

our previous experiments may have resulted from the variable expression levels of each 

receptor. However, increasing evidence points to a more complex ligand-receptor interaction 

that may account for the variability seen.  

 

Recently studies on ET-1 have shown that it displays polyvalent binding to ETA receptors, 

requiring the C-terminal, amino acids at the N-terminal and its disulphide bonds for its action 

(De Mey et al., 2011). Structural analysis also indicates that it has 2 functional units, one 

responsible for binding to ETA receptor and the second for tighter binding and activation of a 

second orthosteric binding site (Lattig et al., 2009). This would explain why different ETA 

receptor antagonists have different effects and why the same antagonist may have different 

effects in different tissues. By competing at either the first orthosteric binding site (pre-

requisite for the second and tighter binding site), or the second orthosteric binding site 

(allowing partial signalling), this will alter competitive binding at the surface and signalling 

cascades downstream (neutral peptide or inverse agonist). This is supported by the 

observation that BQ123 is now known to promote receptor internalisation. Secondly, 

antagonist binding to an allosteric site separate from the orthosteric sites may modulate 

efficacy and affinity of binding. Some antagonists bind deeper in the ETA receptor clefts, 

therefore only partially overlapping binding sites. This means our antagonists may actually 
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be acting as receptor allosteric modulators as opposed to just antagonists (De Mey et al., 

2011).  

 

Conditions of dynamic equilibrium also govern theories of molecular pharmacology and are 

relevant to ET-1. ET-1 is an effective paracrine agent as it associates with the ETA receptor 

rapidly (like angiotensin II) but dissociates 100 times slower (0.0005/min). This is due to its 

tight binding which slows reversibility and dissociation. As a result, studies with agonists and 

antagonists become difficult as, for example, radiolabelled ET-1 and ETA receptor 

complexes cannot be displaced by cold agonists and show a half life of between 7-77 hours 

(De Mey et al., 2011). This same group exposed arterial walls to BQ123 one hour prior to 

ET-1 exposure and found the concentration-response curve shifted to much higher 

concentrations. This pharmaco-dynamics along with potential different binding sites within 

the receptor itself may account for the variability in results observed. 

 

 

4.6.4 Epidermal Growth Factor Receptor (EGFR) 

 

Briefly, conventional RT-PCR has shown expression of the EGF receptor in all fibroblasts 

and cancer cell lines with extremely low levels seen in SW620 and LIM1215. Earlier, studies 

showed that SW620 cell lines do not express the EGF receptor (Coffey et al., 1987). The 

findings for LIM1215 are different from the expected high concentrations (Grant et al., 2007), 

and may be due to loss of expression with increased passages.  

 

A biphasic increase in EGF receptor expression was demonstrated in colonic fibroblasts by 

3.8 and 4.5 fold at 4 and 24 hours respectively. Furthermore, ETA receptor silencing inhibited 

expression to that of the internal control (scrambled) levels. It is established that ET-1 

transactivates the EGF receptor promotor in addition to using pathways such as PI3K and 

PKC (Grant et al., 2007). Additionally, phosphorylation of the EGF receptor in the presence 

of ET-1, was ameliorated by ETA receptor blockade, suggesting ET-1 mitogenic signalling is 

propagated via the EGF receptor (Grant et al., 2007) similar to that of ovarian cancer (Vacca 

et al., 2000). Interestingly EGF receptor induced expression through the ET system has not 

been demonstrated before.  This complexity of interactions suggests that the future of 

treating and managing cancers may lay in the use of multi-therapy targeted drugs.  
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5.1 INTRODUCTION 

 

In this chapter ET-1 binding is characterised in normal and tumour patient sections with 

preserved cellular architecture, within homogenates and cytospun cells. The ET-1 receptor 

binding characteristics were analysed along with IC50 for ET receptor antagonists. 

 

5.2 MATERIALS AND METHODS 

 

5.2.1 Tissues 

 

Specimens were obtained from patients undergoing resection for colorectal cancer (2001-

2004); normal and cancer samples were snap frozen and stored in liquid N2 (n=6) and used 

for: (1) 5μm frozen sections on polylysine-coated slides (Leica CM3050 cryostat, Milton 

Keynes, UK); (2) Homogenates: Tissues were placed into a ball-bearing cage, dipped in 

liquid N2 and homogenised (2 minutes; Mikro-Dismembranator U, Braun Biotech, 

Melsungen, Germany). The resulting powder homogenates were diluted in water (2ml). All 

were stored at -70oC (Ethical approval, REC No 08/H0720/162, University College London 

Hospitals). 

 

5.2.2 Cytospins 

 

Fibroblast strains (CF35, CF56, CF65 & CF75) and cancer cell lines (HT29 & SW480; 2x106 

cells for gross autoradiography; 0.5x106 cells for microautoradiography) were loaded onto 

polylysine-coated slides, centrifuged, air dried and stored at -70oC (Shandon Cytospin3, 

WolfLabs Inc,Pocklington, York, UK). These were subsequently used for saturation and 

binding affinity analysis (Kd/Bmax), autoradiography and inhibitory studies to determine IC50. 

 

5.2.3 Saturation Analysis: Kd/Bmax Determination 

 

Receptor binding studies were performed as described previously (Ali et al., 2000). Briefly, 

unfixed cytospins and tissue homogenates were allowed to equilibrate to room temperature 

(~21oC, 20min).  A preliminary step was performed for cytospins, where slides were 

preincubated at room temperature in 50mM tris-HCl, pH7.4, 20min, to reduce endogenous 

ET-1 levels.  Cytospins and tissue homogenates were incubated with increasing 125I-ET-1 

concentrations (GE, Amersham, Bucks, UK, specific activity 2200 Ci/mmol: 3x10-12-10-9 M, 
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[total binding]) in 50mM tris HCl buffer, pH7.4, 5mM MgCl2, 0.2% bovine serum albumin, 100 

IU/ml aprotinin, 120min. This was followed by rinsing (2x10min) in 50mM tris-HCl, 4oC.  Non-

specific binding (NSB) was established by incubating in the presence of 1µM unlabelled ET-

1. After incubation: (1) slides were briefly dipped into distilled water, 4oC, to remove salts in 

the buffer, and dried under a stream of warm air (~15min) followed by cool air (15min) and 

stored overnight. Slides were post-fixed under vacuum in paraformaldehyde vapour, 2hrs, at 

80oC. (2) Homogenates were filtered and washed three times with buffer under vacuum 

through a cellulose GF/B filter attached to a 12-well manifold chambers (both Millipore, 

Watford, UK).    Homogenate bound 125I-ET-1 retained by the filter paper was measured to 

establish total and non-specific binding.  At the end of each set of incubations, 125I scales 

were prepared where 50μl aliquots of each of the serial dilutions of radioligand were spotted 

onto filter paper or cellulose filters and then attached to microscope slides that were co-

exposed to radio-sensitive film along with the cytospins.  (Appendix 14).  

 

5.2.4 Inhibition Analysis 

 

Relative affinities of receptor-selective antagonists were studied by comparing their ability to 

reduce 125I-ET-1 binding to cytospins and frozen slide-mounted tissues. The same 

incubation conditions were used as described for saturation analyses, with cytospins/tissues 

incubated in a fixed 125I-ET-1 concentration (150pM; ~Kd value determined initially in the 

saturation studies) in the presence of increasing concentrations (3x10 -9-3x10-6M) of the ETA 

receptor antagonists, BQ123, ZD4054, and the ETB receptor antagonist BQ788.  Two fixed 

concentrations (high=25μM; low=5μM) for each antagonist were used for autoradiographs 

that were produced as described below. (Appendix 15 and 16). 

 

5.2.5 Autoradiography 

 

(1) Low Resolution: Slide-mounted tissues and cytospins were placed in 24x30cm X-ray 

cassettes and apposed to Hyperfilm™MP (GE, Amersham) under dark-room conditions for 

7-21 days exposure, 4oC. Films were subsequently processed following manufactuer’s 

instructions (Appendix 15). Briefly, in a dark-room, they were immersed in undiluted D19 

developer (Kodak), 5min, followed by a brief rinse in tap water and 5min immersion in 

Hypam™ fixative (Ilford, 1:3 in distilled water). After washing in running tap water (~20min), 

films were dried and subsequently autoradiographs used for densitometry; representative 

images were photographed. (2) High Resolution: Selected slides were used for 

microscopic localisation of radioligand binding. Tissues/cytospins were dipped in molten 
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(42oC) K2 emulsion (Ilford; 1:1 in 2% glycerol/distilled water) and allowed to dry overnight 

(dark-room). Emulsion-coated slides were then placed in racks, stored in light-proof boxes 

containing silica gel dessicant (4oC, 7-21 days). For microautoradiographs, slides were 

immersed in D19 developer, 5min, briefly dipped in rapid stop solution (Ilford, 1:10 in distilled 

water), fixed in Hypam™ fixative (1:3 in distilled water, 10min) and rinsed (3x10min) in 

distilled water. Tissues/cells were stained with haematoxylin & eosin (H&E), dehydrated by 

immersion in increasing ethanol concentrations (dewatered).  Histo-clear™ (National 

Diagnostics, Hull, UK) was used as a clearing agent, then cover-slipped using DPX. Slides 

were viewed under an Olympus BX50 microscope (autoradiographs under dark-field 

illumination; staining under bright-field illumination), photographed using a Zeiss Axiocam™ 

digital camera and images stored on a KS400 imaging system (Imaging Associates, 

Bicester, UK). 

In addition to densitometric analysis, radioligand binding was also assessed using a Wizard 

1470 automatic gamma counter (Perkin Elmer, Cambridgeshire, UK).  Once film images of 

cytopins had been generated for densitometry, cells were removed from the slides by 

digesting in 100µl 4M NaOH (~10 minutes), scraped off with filter paper then radioactivity 

was measured in the gamma counter (disintegrations/min).  

 

5.2.6 Calculation of Binding Characteristics 

 

Densitometric analysis of autoradiographic images was performed on a Biospectrum® AC 

Imaging System (UltraViolet Products, UVP, Cambridge, UK) and analysed using 

VisionWorksLS Imaging software (version 6.4.3. UVP, 2007). Specific 125I-ET-1 binding was 

determined by subtracting non specific from total binding at each concentration used. 

Maximum receptor binding (Bmax) and affinity (Kd) were obtained using GraphPad Prism™ 

software (GraphPad, Santa Barbara, CA).The same approach was used for analysing data 

from cells removed from slides and measured in the gamma counter. 

 

5.2.7 Immunohistochemistry 

 

Standard immunohistochemistry was performed using the Vectastain alkaline phosphatase 

kit (Vector Labs, Peterborough, UK) as described previously (Ali et al., 2000; Hoosein et al., 

2007). Slides were allowed to equilibrate to room temperature (20min) and fixed in acetone 

(-20oC, 20min). Briefly, the protocol comprised the following steps (rinsing with phosphate 

buffered saline (PBS) in-between): Slides were blocked in 10% normal horse serum (NHS, in 

PBS, 10min), and incubated with primary antibody (1:200 in PBS, 30 min; AS02/Thy-1 for 
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fibroblasts, CD31 for vascular endothelial cells, anti-ETA receptor and anti-ETB receptor for 

ET receptors, ColXI for collagen Type XI), followed by universal secondary antibody (1:100 

in NHS/PBS, 10min). Slides were then exposed to Vectastain ABC/AP reagent (1:100, 

5min); followed by alkaline phosphatase (Vector red) substrate (1:50 in 200mM tris-HCL 

buffer, pH8) until colour developed (up to 30min). Slides were counterstained with 

haematoxylin, dehydrated in increasing alcohols, cleared in Histo-clearTM, mounted, viewed 

and photographed as above. H&E staining was performed on selected sections. 

 

 

5.2.8 ETA Receptor localisation with Quantum Dots 

 

ETA receptors were further imaged by fluorescence of quantum dot (QD) - coupled BQ123 

receptor antagonist (600nm emission). The water soluble QDs (manufactured in-house) 

were conjugated to BQ123 using the water soluble N-ethyl-N’-diaminopropyl-carbodiimide 

(EDC) method: Briefly, 200l of QDs (1mg/ml in borate buffer (pH 7.4), were mixed with 

EDC (1mg/ml) for 30 min at room temperature.   BQ123 (10-4M) was then added to the 

above solution at ~ 100ug/ml and mixed for 1h at room temperature. After this reaction 

procedure, BQ123-QDs and unconjugated QDs were separated using centrifugal filter 

(Millipore, Cork, Ireland) with a cut off value of 10 kD membrane. After repeated 

centrifugations, purified and concentrated BQ123-QDs were obtained. BQ 123-QDs 

bioconjugates were applied to slide mounted tissues (unfixed, frozen sections) overnight (at 

4oC), haematoxylin counterstained, and then observed under confocal microscopy.    
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5.3 RESULTS 

5.3.1 Localisation and Distribution of ET-1 Binding within Human Colonic Tissues 

 

In high resolution autoradiographs of both normal and tumour frozen tissue sections, 125I-ET-

1 exhibited intense binding which was evident as white grains when viewed under dark field 

illumination; this correlated mostly with stromal regions as defined by H&E staining of 

underlying tissue (Figure 5.1).  

 

        Tumour      Normal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  

  

  

  

Figure 5.1  ET-1 localisation on frozen sections in tumour (left panels) and normal tissue (right 

panels).  Briefly, sections were fixed in paraformaldehyde vapour (80  ̊C; 2 hours), dipped into 

molton (42oC) K2 emulsion, dried, stored at 4oC for 7 – 21 days in light proof boxes containing silica 

gel dessicant, and then processed, fixed and washed.  Underlying sections were H&E stained. 

Autoradiographs were visualised under dark-field illumination for radiolabelled 125I-ET-1 binding 

(left) and H&E stained tissue under bright-field illumination (right).  Highest density of binding is 

predominantly seen on connective tissues within both normal colon and tumour stroma. 
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To identify associated structures, consecutive sections were stained immunohistochemically 

for: ETA and ETB receptors; stromal fibroblasts (Thy-1); endothelial cells (CD31) and 

collagen type XI (connective tissue) (Figure 5.2 & 5.3). Normal colon tissue had preserved 

structural architecture with a well defined epithelial mucosal layer whereas that of tumours 

was disorganised. In normal colon specimens, microautoradiography revealed 125I-ET-1 

binding in the epithelial mucosa, submucosa and specific areas in the stroma; there was 

high ETA and ETB receptor immunostaining at regions of 125I-ET-1binding. 125I-ET-1 bound 

strongly to regions that stained positively for endothelial cells and fibroblasts.  In tumour 

tissue, both ETA and ETB receptors were present (ETA>ETB) and localised to areas of 125I-

ET-1 binding. Intense 125I-ET-1 binding once again correlated with both fibroblast and 

endothelial cell staining. Collagen type XI (Col XI), which was used to further define tumour 

stroma, which was only present in tumour sections and not normal tissue, confirming 

previous reports of its association with colorectal pathology (Fischer et al., 2001a; Fischer et 

al., 2001b).  

 

Figure 5.2 & 5.3 (following pages).  Immunohistochemistry to identify binding of ET-1 within normal 

and colonic tumour sections.  Frozen sections were prepared then stained for ETA receptor binding, 

ETB receptor binding, vascular endothelial cells (CD31 antibody), fibroblasts (Thy-1 antibody) and 

collagen type XI (Col11A1 antibody).  These sections were compared to the underlying regions of 

tissue that were exposed for autoradiography to identify binding regions.  
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Normal colonic tissue had preserved structural architecture with a clear mucosal layer 

whereas tumour sections were more disorganised.  Normal sections showed both ETA and 

ETB receptors to be distributed primarily within the mucosal and submucosal regions to a 

similar extent.  There were small amounts distributed within the stromal connective tissue 

regions (Figure 5.2).  The tumour sections showed both ETA and ETB receptor staining 

throughout the sections, however ETA staining was more prominent.  This correlates with our 

previous findings that ETA receptors are up-regulated in colorectal carcinomas.  All these 

binding regions closely matched the 125I-ET-1 binding regions seen on autoradiography 

(Figure 5.3). 

The distribution of blood vessel endothelial cells (CD31) and fibroblasts (Thy-1) were easier 

to correlate to ET-1 binding seen on autoradiographs within normal colonic sections (Figure 

5.4).  This was more difficult to correlate in tumour sections due to the architecture of the 

tissue.  However, extent of blood vessel formation and neovascularisation within the tumour 

sections was much more extensive than that seen in normal sections (Figures 5.2 & 5.3). 

Collagen type XI (Col XI) was only seen throughout tumour sections.  Literature has shown 

that collagen type XI (as well as collagen type V) is specifically expressed in colonic 

pathologies and not within normal bowel, which correlates with the present findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 5.4 Double panels showing dark 

field illumination of radiolabelled 125I-ET-

1 binding (left) with corresponding 

adjacent Haematoxylin stained frozen 

sections showing CD31 endothelial 

staining (red stain; top right) and Thy-

1/ASO2 fibroblast staining (red stain; 

bottom right).  Clear radiolabelled 125I-

ET-1 localization is seen to these regions.  
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ET-1 Binding Fibroblasts: 

Thy-1/ ASO2 

Endothelial Cells: 

CD31 

H&E: 

Figure 5.5  Triple panels showing dark field illumination of radiolabelled 125I-ET-1 

binding (left) and cell type specific staining of serial sections for fibroblasts (middle) and 

endothelial cells (right) of the same cancer tissue. Lowest panel shows tissue histology 

of section using H&E staining alone.  High binding density of 125I-ET-1 coincides with 

endothelial cells and fibroblasts mostly within the tissue stroma as previously 

demonstrated. 
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5.3.2 Receptor Subtype Distribution 

 

To study ETA and ETB receptor distribution within normal and tumour sections, we inhibited 

125I-ET-1 binding using specific receptor antagonists, thereby demonstrating indirectly the 

presence of ETA and ETB receptors (Figure 5.6 & 5.7). The ETA receptor antagonist, BQ123, 

in both normal and tumour sections, demonstrated a concentration dependent inhibitory 

effect with 25μM reducing 125I-ET-1 binding to a greater degree than 5μM.  Furthermore, the 

extent of inhibition was different between normal and tumour sections: more 125I-ET-1 

binding in normal tissue compared to tumour tissue with the use of BQ123 indicates more 

ETB receptors in normal tissue. The ETB receptor antagonist BQ788 also demonstrated a 

concentration dependent effect in both normal and tumour tissue with greater inhibition seen 

at 25μM compared to 5μM.  More 125I-ET-1 binding was inhibited in the tumour sections, 

consistent with a higher ETA receptor density in tumours compared to normal tissue. Greater 

inhibition of ETB receptor binding in normal colonic tissue suggests a higher ETB receptors 

expression in healthy tissue than cancer specimens.  An interesting observation is the 

receptor distribution in normal mucosa where ETA receptors appear localized closer to the 

luminal surface and ETB receptors closer to the basal region. The extent of ZD4054 

concentration dependent inhibition was not as great as either BQ123 or BQ788.  On 

densitometry analysis there was more inhibition observed in tumours than normal colonic 

tissue specimens, again consistent with a higher concentration of ETA receptors in cancer. 

ETA receptor over-expression in cancer tissues was corroborated by immunofluorescent 

detection of QD-conjugated BQ123 in patient specimens. Binding to ETA receptors 

presented as a punctate pattern evident mostly in stromal areas surrounding epithelial 

glands (Figure 5.8). 
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BQ123 

BQ788 

ZD4054 

High Concentration Low Concentration Antagonist 

H&E Staining ET-1 Total Binding ET-1 Non-Specific 

Patient Normal Colonic Tissue – ETA and ETB Receptor Inhibition 

Figure 5.6 Receptor selective antagonists ability to reduce 125I-ET-1 binding to slide-mounted tissue.  

Briefly, slide mounted normal tissue sections were incubated in 150pM 125I-ET-1 in the presence of BQ123, 

BQ788 or ZD4054 (high conc. 25μM; low conc. 5μM).  ET-1 total binding had no antagonist present.  The 

low resolution auto-radiographs were produced by opposing the slide mounted tissues to HyperfilmTM 

within cassettes for up to 21 days. Films were processed with developer, fixative and then washed.  H&E 

staining was done on underlying tissue sections.   
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H&E Staining ET-1 Total Binding ET-1 Non-Specific 

Patient Colonic Tumour Tissue - ETA and ETB Receptor Inhibition 

 

Figure 5.7 Receptor selective antagonists ability to reduce 125I-ET-1 binding to slide-mounted tissue.  

Briefly, slide mounted frozen tumour sections were incubated in 150pM 125I-ET-1 in the presence of BQ123, 

BQ788 or ZD4054 (high conc. 25μM; low conc. 5μM).  ET-1 total binding had no antagonist present.  The 

low resolution auto-radiographs were produced by opposing the slide mounted tissues to HyperfilmTM 

within cassettes for up to 21 days. Films were processed with developer, fixative and then washed.  H&E 

staining was done on underlying tissue sections.   
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Figure 5.8 Localisation of Quantum Dot - BQ-123 conjugates in patient sections from normal (A) and 

tumour (B) specimens. Frozen sections were incubated with QD-BQ123 overnight (4oC) and visualised by 

confocal microscopy. Punctate yellow-orange QD-BQ123 binding was more abundant in tumour versus 

normal sections. Green tissue autofluorescence is present. Bar=50 μm. 
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5.3.3 Binding Characteristics in Homogenate Tissue 

To examine the general binding characteristics of 125I-ET-1 in normal and tumour sections 

we used tissue homogenates (Figure 5.9).  The Kd demonstrates that binding affinity of 125I-

ET-1 was similar in both the normal and tumour specimens (203pmol/L and 204pmol/L 

respectively).  Maximum binding (Bmax) was also similar in both normal and tumour samples 

(57.83fmol/mg and 58.31fmol/mg respectively; mg of tissue protein).   
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Figure 5.9 Calculation of Kd and Bmax of radiolabelled 125I-ET-1 binding in human tissue 

homogenate samples.  Briefly, colonic normal and tumour tissue were snap frozen in liquid 

nitrogen, sonicated for 90 seconds, and then re-suspended in PBS.  Homogenate was then 

incubated with increasing concentrations of 125I-ET-1 at 3x10-12 to 10-9 M to determine total 

binding and 1µM unlabelled ET-1 for non-specific binding.  Resultant homogenates were filtered 

and radioactivity measured.  Specific 125I-ET-1 binding was determined by subtracting non-

specific binding from total binding.  Maximum receptor binding (Bmax) and affinity (Kd) were 

obtained using GraphPad Prism™ software.  Binding affinities and maximum saturation binding 

for radiolabelled 125I-ET-1 were similar for normal and cancer tissues.  
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Since these homogenate studies only indicate ET-1 binding to mixed receptors (ETAR or 

ETBR), we cannot gain information as to what the distribution of each respective receptor is 

in each of the tissue specimens.  Given that tissue homogenate contains a high degree of 

non-specific binding regions, subtle receptor density and affinity changes would be unlikely 

to be observed.  However, previous studies within our department have shown a change in 

receptors on the cell surface with an up-regulation of ETARs and down-regulation in ETBRs 

in cancer.  If this was the case, the overall number of receptors within the specimens may 

remain approximately the same with just a change in the type of receptors present 

(ETAR/ETBR).  In this case the Kd and Bmax would remain similar.  To determine if the type of 

receptors present have changed, we would need to use either individually labelled ETAR or 

ETBR antagonistic ligands, or inhibit 125I- ET-1 binding with unlabelled ETAR or ETBR 

antagonists.  The latter was carried out in patient sections. 

 

5.3.4 Binding Characteristics in Colonic Fibroblasts and Colorectal Cancer Cell Lines 

High resolution autoradiography showing overall 125I-ET-1 binding to receptors on cytospun 

fibroblasts and cancer cell lines are shown in figures 5.10 & 5.11, with calculations of Kd and 

Bmax in figures 5.12-5.17. The fibroblasts’ combined Kd value of 213.6pM (0.213nM) is 

regarded as high affinity (near 1nM or less = high affinity; 1μM or more = low affinity).  

Fibroblasts also demonstrated a relatively high maximal binding of 125I-ET-1 to its receptors 

(3.03 fmol/1x106 cells). The Kd and Bmax values for all fibroblasts were similar with only one 

strain (CF56) demonstrating lower values. The CRC cell lines HT29 and SW480 had a 

combined Bmax and Kd value of 2.43fmol/1x106 cells and 0.367nM respectively. Both cell 

lines had a similar Bmax to the fibroblasts with an 125I-ET-1 binding affinity which was 

marginally less (average HT29 & SW480: Bmax: 2.435fmol/1x106 cells; Kd: 0.367nM; average 

fiboblasts: Bmax: 3.03 fmol/1x106 cells; Kd: 0.213 nM). 
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Figure 5.10 Specific radiolabelled 
125I-ET-1 (100pM) localisation to 

colonic fibroblasts (CF75 shown).  

0.5 x 106 colonic fibroblast cells were 

cytospun onto slides.  Slides were 

fixed, dipped into molton (42oC) K2 

emulsion, dried, stored in silica gel 

dessicant at 4oC for 7 – 21 days, and 

then processed, and washed.  

Underlying tissue was H&E stained. 

 
A. Left panels show dark-field illumination and right show bright-field H&E stained cells.  

Both top panels demonstrate total ET-1 binding whilst non-specific is shown in the bottom 

panels. B. Magnification of ET-1 binding to colonic fibroblasts. 

 

A 

B 
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Specific binding of 125I-ET-1 to either ETA or ETB receptors above (Figure 5.10 & 5.11) 

demonstrated that the 125I- ET-1 used in this study does indeed bind to the cells of interest.  

The non-specific binding, which is produced by inhibiting 125I- ET-1 by unlabelled ET-1, 

demonstrates that binding is specific to the receptors.  The next step is to analyse binding 

characteristics in each cell line. 

 

 

 

 

DARK-FIELD BRIGHT-FIELD 

TOTAL 

NON- 

SPECIFIC 

Figure 5.11 Specific radiolabelled 125I-ET-1 (100pM) localisation to colorectal cancer cell lines 

(SW480 shown).  0.5 x 106 colorectal cancer cells were cytospun onto slides.  Slides were fixed, 

dipped into molton (42oC) K2 emulsion, dried, stored in silica gel dessicant at 4oC for 7 – 21 

days, and then processed, and washed.  Underlying tissue was H&E stained.  Left panels show 

dark-field illumination and right show bright-field H&E stained cells.  Both top panels 

demonstrate total ET-1 binding whilst non-specific is shown in the bottom panels. 
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Calculation of Kd and Bmax for Colonic Fibroblasts 
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Total Total Total Non-Specific Non-Specific Non-Specific 

Concentration: 1000pM Concentration: 300pM Concentration: 100pM 

Concentration: 30pM Concentration: 10pM Concentration: 3pM 

Figure 5.12  Calculation of Kd and Bmax of radiolabelled 125I-ET-1  on  fibroblast cytospins.  Briefly, 

cells were cytospun onto slides at a density of 2x106 cells then incubated with increasing 

concentrations of 125I-ET-1 at 3x10-12(3pM) to 10-9 M (1000pM or 1nM) to determine total binding 

and 1µM of unlabelled ET-1 to establish non-specific binding.  Radioactivity was measured with 2 

methods: slides exposed to film with densitometry quantification (above) and cell removal with 

NaOH then radioactivity counted in a gamma counter.  Specific 125I-ET-1 binding was determined 

by subtracting non specific binding from total binding at each concentration used.  Maximum 

receptor binding (Bmax) and affinity (Kd) were obtained using GraphPad Prism™ software 
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Figure 5.13 Graphical representation of total and non-specific (left) and specific (right) 125I-ET-1 

binding using two quantification methods; gamma counts (top graphs) and film densitometry 

(bottom graphs). Prism software was used to determine the Kd (gradient of graph) and Bmax 

(maximal binding). 
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Fibroblast Strain 

Radioisotope Count Readings Densitometry Readings 

Bmax 
(fmol/1x106 cells) 

Kd 

(pmol/L) 
Bmax 

(DPM/1x106 cells) 
Kd 

CF36 3.82 249.1 0.27 53.43 

CF56 1.46 88.54 0.20 41.19 

CF65 4.94 335.8 0.33 54.53 

CF75 2.60 243.2 0.28 63.12 

Combined 3.03 213.6 0.24 52.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14  A: Graphs showing combined 125I-ET-1 specific binding to fibroblasts calculated 

as shown previously.  Gamma radio-count in CPM shown on left and density readings 

shown on right.  B:  Table showing Kd and Bmax values for individual and combined 

fibroblast readings using both methods. 
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Calculation of Kd and Bmax for Colorectal Cell Lines 
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Concentration: 30pM Concentration: 10pM Concentration: 3pM 

Figure 5.15  Calculation of Kd and Bmax of radiolabelled 125I-ET-1  on  SW480 cancer cell line 

cytospins.  Briefly, cells were cytospun onto slides at a density of 2x106 cells then incubated with 

increasing concentrations of 125I-ET-1 at 3x10-12(3pM) to 10-9 M(1000pM or 1nM) to determine 

total binding and in the presence of 1µM of unlabelled ET-1 to establish non-specific binding.  

Radiocount activity was measured with 2 methods: slides exposed to film with densitometry 

quantification (above) and cell removal with NaOH then gamma counted.  Specific 125I-ET-1 

binding was determined by subtracting non specific binding from total binding at each 

concentration used.  Maximum receptor binding (Bmax) and affinity (Kd) were obtained using 

GraphPad Prism™ software. 
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Figure 5.16 Graphical representation of total and non-specific (left) and specific (right) 125I-ET-1 

binding using two quantification methods; gamma counts (top graphs) and film densitometry 

(bottom graphs). Prism software was used to determine the Kd (gradient of graph) and Bmax 

(maximal binding). 
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Cancer Cell Line 

Radioisotope Count Readings Densitometry Readings 

Bmax 
(fMol/1x106 cells) 

Kd 

(pmol/L) 
Bmax 

(DPM/1x106 cells) 
Kd 

HT29 2.02 335.8 0.33 54.53 

SW480 2.85 399.5 0.54 38.81 

Combined 2.43 367.7 0.44 46.64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 A: Graphs showing combined 125I-ET-1 specific binding to cancer cell lines 

calculated as shown previously.  Gamma radio-count in CPM shown on left and density 

readings shown on right.  B:  Table showing Kd and Bmax values for individual and combined 

fibroblast readings using both methods. 
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5.3.5 Receptor Antagonist Inhibition 

The IC50 was determined using two methods, the first measuring radioactivity bound (CPM) 

in a gamma counter and the second through exposure to radio-sensitive film and 

densitometric analysis, with readings categorised into high IC50 (<10μM), medium (10 – 100 

μM) and low (>100 μM).   Both methods gave similar IC50 results for colonic fibroblasts 

(BQ123: 0.1-2.2μM; zibotentan: 10-15.1 μM & BQ788: 0.96-1mM) (figure 5.19).  The 

laboratory compound ETA receptor antagonist BQ123 was ~10,000 fold more effective at 

inhibiting 125I-ET-1 binding than the ETB receptor antagonist BQ788.  ZD4054 was more 

effective at inhibiting 125I-ET-1 binding than BQ788 by ~1000 fold although ~1000 fold less 

effective than the ETA receptor antagonist BQ123.  The IC50 of CRC cell lines (figure 5.20) 

also indicated that ETA receptor antagonists more effectively inhibited 125I-ET-1 binding 

(BQ123: 4.43- 10μM; zibotentan: 0.1-1.01μM & BQ788: 0.013-1mM).  The orally active 

ZD4054 was shown to be 1000 fold more effective than BQ123 and 10,000 fold more 

effective at inhibiting 125I-ET-1 binding then BQ788.   
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Determining IC50 within Colonic Fibroblasts 
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Figure 5.18 Receptor selective antagonists’ ability to reduce 125I-ET-1 binding in slide-

mounted tissue.  Cytospun colonic fibroblasts were incubated in 100pM (approximately the 

Kd value determined initially by the saturation studies) 125I-ET-1 in the presence of increasing 

concentrations of BQ123, BQ788 or ZD4054 (3x10-9 to 3x10-6M). The above low resolution 

autoradiograph was then produced by opposing the slide mounted tissues to HyperfilmTM 

within cassettes for up to 21 days. Films were processed with developer, fixative and then 

washed.  They were photographed and quantified by densitometric analysis.  Slide mounted 

tissues were then removed with NaOH and radioactivity measured with a gamma counter.  

Both quantification methods were used to determine the IC50. 
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(A) Radioisotope determined IC50 graph of combined fibroblasts 

 

 

 

 

 

 

 

 

 

 

 

(B) Densitometry determined IC50 graph of combined fibroblasts 

 

 

 

 

Figure 5.19 Calculation of IC50 determined by (A) gamma counts and (B) densitometry 

analysis. Receptor selective antagonists ability to reduce 125I-ET-1 binding to slide-mounted 

cells were determined by incubating slide mounted  fibroblasts with 100pM 125I-ET-1 in the 

presence of increasing concentrations of BQ123, BQ788 or ZD4054. Graph shows 

radioactivity/densitometry plotted against inhibiting concentrations of each antagonist 

(sample points shown for illustration purposes). Both methods gave similar IC50 results for 

fibroblasts (BQ123: 0.1-2.2μM; zibotentan: 10-15.1 μM & BQ788: 0.96-1mM). 
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Determining IC50 within Colorectal Cancer Cell Lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Calculation of IC50 determined by densitometry analysis. Receptor selective 

antagonists ability to reduce 125I-ET-1 binding to slide-mounted cells was determined by 

incubating slide mounted cancer cell lines with 100pM 125I-ET-1 in the presence of increasing 

concentrations of BQ123, BQ788 or ZD4054. Graph shows densitometry plotted against 

inhibiting concentrations of each antagonist (sample points shown for illustration 

purposes). The IC50 of CRC lines also indicated that ETA receptor antagonists more effectively 

inhibited 125I-ET-1 binding (BQ123: 4.43- 10μM; zibotentan: 0.1-1.01μM & BQ788: 0.013-

1mM).   
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5.4 DISCUSSION 

 

To investigate the efficacy of ZD4054 against ET-1 binding we carried out studies using 

specimens from patients with colorectal cancer.  

 

5.4.1 ET-1 Binding within Patient Specimen Sections and Localisation by IHC 

Autoradiography demonstrated 125I-ET-1 binding to ET binding sites (ETA and ETB receptors) 

within normal colon and cancer tissues. Maximal binding was seen in stromal regions, which 

are densely populated by fibroblasts and blood vessels/endothelial cells, as demonstrated by 

immunohistochemistry (AS02, CD31). Positive staining for collagen XI confirmed the 

pathological state of the stroma associated with cancer lesions (Fisher et al., 2001a). This 

correlates with our previous work on human colonic specimens which showed that 

radiolabelled 125I-ET-1, ETA receptor antagonist (125I-PD151242) and ETB receptor agonist 

(125I-BQ3020) bound in a similar pattern within cancer and normal tissue (Hoosein et al., 

2007; Ali et al., 2000).  Other groups have also reported strong stromal binding of 125I-ET-1 

in intestinal tissues (Inagaki et al., 1992; Egidy et al., 2000). 

To investigate ET-1 binding in patient samples, we carried out experiments in (1) whole 

tissue homogenates and (2) tissue sections. 

 

5.4.2 ET-1 Binding Characteristics within Patient Tissue Homogenates 

Tissue homogenates were used to determine 125I-ET-1 binding characteristics. The binding 

affinity (Kd) and maximum saturable binding (Bmax) of 125I-ET-1 to its receptors were similar in 

both the normal and tumour specimens.  These figures are closely matched to previously 

published data regarding the characteristics of 125I-ET-1 binding in other tissues (Alexander 

et al., 2009).  

Since these homogenate studies only demonstrate 125I-ET-1 binding to receptors (ETA/B), we 

cannot gain information as to what the distribution of each respective receptor is in each of 

the tissue specimens.  Given that tissue homogenates contain many non-specific binding 

regions, subtle receptor density and affinity changes would be unlikely to be revealed or 

observed.  Previous studies within our department demonstrated a change in the ratio of 

receptor subtypes in colonic tissues, with up-regulation of ETA receptors and down-
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regulation of ETB receptors in cancer compared to normal colon (Ali et al., 2000; Hoossein et 

al., 2007).  Therefore, it is feasible that the overall number of ETA and ETB receptors within 

the specimens would remain constant with just a change in the proportions of receptors 

present (i.e. increase in ETA and decrease in ETB).  In this case Kd and Bmax would remain 

grossly similar and the main difference would result from individual receptor binding affinity 

differences for ET-1, which are known to exist (Ali et al., 2000; Hoosein et al., 2007). To 

determine changes in receptor subtypes in tissues, we inhibited 125I- ET-1 with unlabelled 

ETA or ETB receptor antagonists. 

 

5.4.3 ET-1 Binding Characteristics within Patient Tissue Sections 

In tissues, the ETA receptor antagonist BQ123, firstly demonstrated a concentration 

dependent inhibitory effect on 125I-ET-1 binding in both normal and tumour specimens, 

(25μM>5μM). Secondly, most inhibition of 125I-ET-1 binding with the use of BQ123 was 

observed in the tumour sections, consistent with a higher ETA receptor expression in 

cancers compared to normal colon tissues. This is in keeping with previous findings:  

Specifically, Hoosein et al. (2007) used the selective radiolabelled ETA receptor antagonist 

[125I]PD-151242 to identify ETA receptor binding sites and demonstrated that binding on 

cancer tissues was increased by 55.5% when compared to normal colon tissues.   

The ETB receptor antagonist BQ788 also inhibited 125I- ET-1 in a concentration dependent 

manner (25μM>5μM).  There was generally greater inhibition of 125I- ET-1 binding with the 

use of BQ788 in normal colon tissues than within tumour sections, consistent with higher 

ETB receptor expression in normal colon and a down-regulation observed in colorectal 

cancer (Ali et al., 2000; Hoosein et al., 2007). As BQ788 inhibits ETB receptor binding, the 

increased 125I-ET-1 binding in tumour tissue compared to normal tissue also indicates a 

higher ETA receptor expression in tumour. Hoosein et al., (2007) by using a specific ETB 

receptor agonist, [125I]BQ3020, demonstrated a 45% decrease in ETB receptor expression 

within cancer sections compared to normal tissues.  However, this is contrary to findings by 

Egidy and colleagues (Egidy et al., 2000) who demonstrated a quantitative increase in 

mRNA expression of both ETA and ETB receptors in colorectal cancer specimens. However, 

increases at the mRNA level are not necessarily followed by translation at the protein level.   

The ETA receptor antagonist ZD4054 did not display a concentration dependent inhibition to 

the extent observed with BQ123 and BQ788. There was overall more extensive inhibition 

observed in tumour specimens than normal tissues, in keeping with the over-expression of 



151 

 

ETA receptor in colorectal cancer.   The extent of inhibition of 125I- ET-1 binding may not have 

been as expected as ZD4054 is a specific ETA receptor antagonist whilst BQ123 and BQ788 

at higher concentrations are known to act on both receptor subtypes (loss of selectivity; 

Alexander et al., 2009).  Therefore use of these laboratory compounds may not be truly 

subtype-selective when used at high concentrations. 

   

5.4.4 Identifying ET-1 Localisation within Tissues using Immunohistochemistry 

125I-ET-1 binding to specific tissue structures is further clarified by the use of 

immunohistochemistry to localise ETA and ETB receptors, in addition to fibroblast, endothelial 

cell and collagen type XI mapping.  ETA and ETB immunostaining closely correlated to 125I-

ET-1 binding in underlying tissue sections, localising to mucosa, dense stromal regions and 

surrounding blood vessels.  CRC specimens demonstrated increased ETA receptor staining 

localised to epithelial cells and tumour stroma, and reduced ETB receptor staining on the 

epithelial cell surface compared to normal tissue specimens.  This altered receptor 

expression in CRC is consistent with our autoradiographic work, other CRC studies (Hoosein 

et al., 2000; Ali et al., 2000; Asham et al., 2001; Shankar et al., 1998) and studies in prostate 

and ovarian cancer (Nelson et al., 1996; Bagnato et al., 1999).  ETA receptor overexpression 

in cancer tissues was corroborated by immunofluorescent detection of QD-conjugated 

BQ123 in patient specimens. Binding to ETA receptors presented as a punctate pattern 

evident mostly in stromal areas surrounding epithelial glands. This is the first time that 

BQ123 has ever been conjugated to Quantum dots and have been used to visualise ETA 

receptor distribution in normal and tumour specimens. 

125I-ET-1 binding co-localised to CD31 immuno-positive vascular endothelial regions that 

were predominantly associated with the ETB receptor subtype, determined by both 

autoradiography and immunohistochemistry (Figure 5.2 & 5.3).  ETA binding was prominent 

on vascular smooth muscle cells as found in other studies (Sullivan et al., 2000; Hansen-

Schwartz et al., 2002). This receptor has been shown to be involved in cell proliferation, 

survival (Pedram et al., 1997; Shichiri et al., 2000) and down-stream signalling (VEGF, PKC; 

Alanen et al., 2000). This work confirms vascular in-growth and neovascularisation which is 

crucial for tumour development (Knowles et al., 2000) and highlights ET-1 angiogenic 

actions. 

Collagen Type XI was only seen throughout stromal regions of tumour sections and co-

localised to fibroblasts where 125I-ET-1 binding was predominantly to the ETA receptors. 
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These results are in agreement with previous studies linking its expression to CRC (Fisher et 

al., 2001a) and confirmed the nature of our specimens to be cancer.  Interestingly ET-1 

affects APC/β-catenin and Wnt signalling which is the pathway also involved in regulating 

COLXI and CTFG expression that are known to have potential tumourogenic effects on 

fibroblasts.   

Interestingly within normal mucosa, ETA receptors appeared closer to the luminal surface 

whereas ETB receptors were towards the muscularis mucosa and lamina propria 

(determined from Figure 5.6), a distribution pattern not previously reported. One possible 

reason for increased ETB receptors may be due to endothelial cell capillary networks that 

supply nutrients to the mucosa, although this is not fully supported due to lack of observed 

CD31 staining.  This leads us to consider possible trophic signalling roles for ET receptors. It 

is known that basal to apical cell movement in intestinal epithelium is accompanied by a 

change in cell signalling and receptors.  Stem cells give rise to progenitor cells which 

undergo growth arrest at the crypt-villus junction then turn into mature cells where most 

signalling to directed towards differentiation.  This movement is accompanied by an increase 

in multiple receptors including retinoid x receptor/retinoic acid receptors, vitamin D receptors, 

oestrogen receptor β (ERβ) and a decrease in others such as ERα found predominantly in 

basal regions.  Therefore it is possible that the ETB receptor is associated with growth arrest 

signalling whilst ETA receptor expression towards the apical regions are associated with 

differentiation signalling, an aspect where little research has been done.  

 

5.4.5 High Resolution Autoradiography of Colonic Fibroblasts and CRC Cell Lines 

High resolution autoradiography demonstrated that ET-1 binds to both fibroblast cell strains 

and colorectal cancer cell lines.  The importance of studying this by autoradiography is that 

we are actually visualising the binding of ET-1 to its receptors.  This is unlike Western 

Blotting that only shows that the receptor proteins are present but not indicating if on the 

surface or within the cytosol of the cells.  IHC would show us the presence of ETA and ETB 

receptors on the surface but would not necessarily indicate if ET-1 has the ability to bind to 

them since structural receptor variations may exist. 
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5.4.6 Characterisation of Colonic Fibroblasts and CRC Cell Lines (Kd and Bmax) 

The combined colonic fibroblasts’ Kd value of 213.6pM (0.213nM) is regarded as high affinity 

(<1nM) with these cells demonstrating a relatively high maximal 125I-ET-1 binding (3.03 

fmol/1x106 cells). The CRC cell lines exhibited a similar Bmax (2.43fmol/1x106 cells) and 

affinity that was marginally less than the fibroblasts (Kd: 0.367nM), suggesting that 

fibroblasts have more ET surface receptors than cancer cells and fibroblasts also had a 

higher binding affinity than cancer cells.   

The Kd and Bmax values for all fibroblasts were similar except within the CF56 strain which 

were lower.  A lower Bmax may have been caused by high non-specific binding (NSB), which 

would have lowered the calculated specific binding.  A similar result would occur if total 

binding was underestimated which may have resulted from inadequate removal of cells from 

slides before gamma counting. These would also lead to a falsely low Kd value.  Since Kd is 

defined as the concentration of ligand that occupies 50% of receptors, if there were less 

receptors calculated, a lower concentration would be needed to occupy these, and therefore 

result in a falsely low Kd value (falsely high affinity) as we observed.   

Looking at the two methods employed to determine the binding characteristics, both 

radioisotope and densitometry readings seemed to display similar trends in results within the 

population of cancer cell lines or fibroblasts investigated.  There was more variability seen 

within the densitometry reading data.  This can be explained by the huge number of 

variables encountered when using this technique.  These include time of exposure to 

radioactive sensitive film, differences between films, apposition variability between slide-film, 

cell density and surface area variability on slides, and difference in densitometry reading by 

software on different days. The studies measuring radioactivity of 125I-ET-1 binding (in a 

gamma counter) was the more accurate method of determining binding characteristics.   

Overall these results suggest that colonic fibroblasts have more ET surface receptors than 

CRC cell lines and this is supported by the high resolution autoradiographs (Figure 5.10).  

Fibroblasts also had a higher binding affinity than CRC cell lines with similar figures to 

previous studies using human colonic mucosa and human skin fibroblasts with Kd values of 

0.41nM and 0.4nM respectively (Inagaki et al., 1992; Inagaki et al., 1991; Kusuhara et al., 

1990).  This is the first time that individual cellular components of colonic tissue have been 

evaluated for ET-1 binding characteristics with the overall results suggesting a higher 

binding affinity and maximal binding within fibroblasts.   
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5.4.7 Determining Inhibitory Concentration of 50 (IC50) 

Competition studies were performed using both radioactivity measurements and film 

densitometry.  Both methods gave similar IC50 results for fibroblasts (BQ123: high; ZD4054: 

medium; BQ788: low range).  Only small sample numbers were used and, overall, the ETA 

receptor antagonists were much more effective at inhibiting 125I-ET-1 binding than ETB 

receptor antagonists.  The ETA receptor antagonist BQ123 was ~10,000 fold more effective 

than the ETB receptor antagonist BQ788 while the orally active drug, ZD4054, was more 

effective at inhibiting 125I-ET-1 binding than BQ788 by ~1000 fold although ~1000 fold less 

effective than BQ123.  This difference between ETA receptor affinity may once again be due 

to a loss of BQ123 receptor selectivity when used at higher concentrations. 

Colorectal cancer cells exhibited IC50 values similar to that of fibroblasts (ZD4054: high; 

BQ123: medium; BQ788: low range) with ETA receptor antagonists more effective at 

inhibiting 125I-ET-1 than the ETB receptor antagonist (BQ123 ~1,000 fold > BQ788).  BQ788 

IC50 results were the same as that seen in fibroblasts, suggesting they may have similar 

universal functions such as an involvement in the ET-1 ‘clearance pathway’.  When 

comparing the two ETA receptor antagonists, ZD4054 was the most effective at inhibiting 

125I-ET-1 binding in cancer cells. 

The only other published study to investigate selective binding of ZD4054 was by Morris et 

al., in 2005.  In this paper, human recombinant ETA or ETB receptors were expressed in 

mouse erythroleukaemic cells and competitive binding assessed using radioligand 125I-ET-1 

and ZD4054 (concentrations between 100pM and 100μM).  Experiments revealed ZD4054 

had high affinity for the ETA receptor (Ki=13nM) with a pIC50 of 8.27nM. There was minimal 

interaction at the ETB receptor (Ki=1.2nM) and none seen below 10μM. To assess 

specificity, the ability of ZD4054 to inhibit ETA receptor induced forearm vasoconstriction 

(using venous occlusion plethysmography) was used.  ZD4054 significantly inhibited 

vasoconstriction following oral administration of 10mg and 30mg by 18.8% and 23.7% 

respectively.  ETB receptor interaction was assessed by measuring plasma ET-1 levels in 

healthy individuals (as ETB is linked to ET-1 clearance pathway).  Following administration of 

between 2.5mg – 240mg, there was no significant difference in plasma ET-1 levels 

compared to placebo.  This paper once again demonstrates high ETA receptor specificity of 

ZD4054. The difference in the IC50 between our study and the Morris study could be due to 

the fact that the authors used recombinant ET expression and different cell lines.  
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Overall Discussion, Future Directions  

and Clinical Implications 
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6. OVERALL DISCUSSION AND FUTURE DIRECTIONS 

 
As described in chapter 3, ET-1 stimulated proliferation of both colonic fibroblasts and 

colorectal cancer cell lines. There have been a limited number of studies investigating the 

effect of ET-1 on  colonic fibroblasts, one study showing significance in growth of only one of 

six fibroblast strains (Knowles et al., 2011) while a second study on embryonic fibroblasts 

failed to demonstrate significance (Kernochan et al., 2002). The current study showed 

significant proliferation in all fibroblast strains used. Surveying the literature addressing 

fibroblasts from other organs, there have been only two studies on fibroblasts associated 

with tumours, one in ovarian cancer and the other in primary oral cancer, both of which 

reported a proliferative response to ET-1 (Moraitis, 1999; Hinsley et al., 2012). Fibroblasts 

from non-tumour sites such as human dermal and rat cardiac tissues also demonstrated ET-

1 stimulated growth (Piacentini et al., 2000; Xu et al., 1998). The proliferative effects of ET-1 

in colorectal cancer cell lines reported in this study were in line with previous findings and 

consistent with the extensively described stimulatory effects of ET-1 in epithelial cancers.  

This is the first time that ETA receptor antagonism using ZD4054 was investigated in 

colorectal cancer models.  ETA receptor antagonism significantly inhibited proliferation in 

both fibroblasts and cancer cell lines, with ZD4054 being the most efficacious of all receptor 

antagonists tested.  Due to the variation in response to ET-1, I propose future studies to 

correlate the ET-1 proliferative effect with levels of endogenous ET-1 and the number and 

affinity of cell surface receptors. This would generate a complete map of the above and 

determine the efficacy of anti-ETA receptor treatment. 

 

However, it is widely accepted that monotherapies are not appropriate for eradication of 

cancer in the clinical setting. As described in ovarian cancer models, and in line with our 

knowledge of how non-efficacious cancer chemotherapy can be, future work should also 

include combining chemotherapeutic agents with ZD4054 (Rosano et al., 2007a, 2007b). In 

regards to combination therapy a number of trials in other cancers have taken place. The 

availability of orally active bio-available endothelin receptor antagonists offers potential 

opportunities in adjuvant cancer treatment.  One example is Atrasentan with a 1000-fold 

greater affinity for the ETA receptor than the ETB receptor. A phase II randomized, placebo-

controlled trial (288 patients with asymptomatic hormone-resistant metastatic prostate 

cancer) evaluated three groups: placebo, 2.5mg, or 10mg Atrasentan. Delayed time to 

progression (TTP) was observed in the group that received 10mg and stabilization of 

biochemical markers (prostate specific antigen and lactate dehydrogenase) was compared 

to controls.  In two phase III clinical trials (809 prostate cancer patients) 10mg of Atrasentan 

daily was shown to delay TTP when compared to placebo metastatic hormone resistant 
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prostate cancer, albeit statistically non-significant (Carducci et al., 2007). However, 

secondary endpoint analysis demonstrated significant delayed progression of bone acid 

phosphatase levels and preserved prostate cancer-specific quality of life, particularly in 

terms of pain-related symptoms.  It was suggested that the future use of Atrasentan may lie 

in combining it with other drugs.  This was demonstrated by a phase I-II trial in patients with 

resistant prostate cancer, where results from this drug combined with docetaxel were 

comparable to results produced by docetaxel and prednisolone (Armstrong et al., 2008). 

More recently the novel specific ETA receptor antagonist Zibotentan (ZD4054) -which is the 

drug under investigation in this body of work - has also been investigated within the field of 

prostate cancer.  A phase II double blinded clinical trial allocated a total of 312 patients with 

pain free or mildly symptomatic hormone resistant prostate cancer patients with bony 

metastases to either receive daily doses of ZD4054 (10mg-15mg) or placebo.  There was no 

significant difference seen for progression-free survival although there was a difference in 

the overall survival of these patients compared to the placebo group.  Importantly this drug 

had an acceptable safety and tolerability profile (James et al., 2008 and 2009).  A recent 

Phase III clinical trial examined ZD4054 in non-metastatic hormone resistant prostate 

cancer, but was terminated early (in 2011) as it was unlikely that the trial would meet its 

primary efficacy end point of progression free survival and overall survival benefits. Due to 

the disappointment of monotherapy, interest has grown in its use as adjuvant therapy; for 

example the latest on-going phase II clinical trial (FOLFERA) which combines ZD4054 with 

chemotherapy agents Irinotecan, Fluorouracil and Folinic acid (FOLFIRI) in patients with 

advanced colorectal cancer. Hopefully results will be available in the near future. The 

endothelin axis is altered in cancer, aiding both tumour growth and progression and 

accumulating evidence supports selective ETA antagonism as an effective method to inhibit 

endothelin action in tumourigenesis.  The indicated anti-tumour activity, with generally 

acceptable side effects, warrant further clinical evaluation of these agents to determine 

therapeutic potential in an adjuvant setting. 

 

Further work in chapter 3 investigated migration of fibroblasts under the influence of ET-1 

which was detected in all fibroblasts strains tested. Migration was inhibited by both ETA and 

ETB receptor antagonists. Most inhibition appeared to be blocked via the ETB receptor, whilst 

similar inhibitory effects were seen by both ZD4054 and BQ123. The ETB receptor being 

predominantly involved in migration is in keeping with previous work looking at colonic 

fibroblast migration (Kernochan et al., 2002). The mixed effects of blocking different 

combinations of receptors leads us to hypothesize a more complex interaction of ET-1 with 

its receptors that involve second messengers and other regulatory peptides e.g. PDGF. This 

follows from other work that looked at fibroblast responses to regulatory peptides. Jiang et 
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al., (2008) and Kinnman et al., (2000) demonstrated that PDGF stimulated migration in 

dermal fibroblasts (through activation of Rac causing protrusion of fibroblast dendritic 

extensions) and stellate cells (3 fold increase). The work presented here demonstrated using 

gene arrays that PDGF was also stimulated in our fibroblasts in response to ET-1 which 

could have been via either receptor; this could account for some of the migratory response 

observed. Adding to the complexity of second messenger signalling, Jiang et al., (2008) 

reported that ET-1 was a Rho activator which resulted in retraction of dendritic extensions 

and contraction. Furthermore Shlyonsky et al., (2011) showed that ET-1 increased α-smooth 

muscle actin and cell migration in lung fibroblasts. They also found that BMP-2, which 

inhibits PKC in a dose dependent manner, inhibited ET-1 ability to increase α-smooth 

muscle actin and migration.  

 

The colorectal cancer cell lines did not demonstrate any migration in response to ET-1. 

Despite no published work demonstrating ET-1 induced migration in cancer cell lines, it has 

been shown that HT29 cell lines do have the ability to migrate (along with other CRC cell 

lines). Rubie et al., (2011) examined the response of HT29, SW480 and CaCo2 cell lines in 

response to increased exogenous CXCL12 (ligand for the G-protein receptor CXCR4 or 

stromal derived factor-1; SDF-1). They found that migration was increased in all cell lines 

examined however to a much lesser extent in HT-29 cells, as CXCR4 expression was less. 

HT29 cells also express MMP7 and LN5 (Laminin-5/Laminin-332), the latter causes firm 

adhesion and hemi-desmosome formation. Remy et al., (2006) found that increasing MMP7 

concentrations cleaved LN5 and therefore increased cell motility. The gene array data in 

chapter 4 showed significant MMP-7 up-regulation but only after 24 hours which was beyond 

the time scale used in this experiment. I therefore postulate that increasing the experimental 

time scale to 72 hours could reveal an observed migration response enhanced by MMP7 

expression. Furthermore changes in experimental conditions may be of benefit, as other 

studies had used 1% BSA rather than 10% FCS, and used Cycloheximide rather than 

Mitomycin C.  

 

Finally on contraction studies in chapter 3, ET-1 stimulated contraction of fibroblasts with 

both ETA and ETB receptor antagonists inhibiting its effects. Contraction seemed to be 

stimulated via both receptors and hence for this reason the highly specific ETA receptor 

antagonist ZD4054, although significantly inhibiting contraction, was least effective out of all 

three antagonists as it has little or no effect on the ETB receptor. Published work suggests 

that ET-1 acts synergistically with other factors such as PDGF, bFGF and insulin like growth 

factors for producing contractile effects (Takuwa et al., 1989). I have previously summarised 
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a large volume of literature that had studied the complexities and interactions of pathways 

for cell contraction (see chapter 3). 

 

In chapter 4 gene arrays were carried out to identify novel genes that were up or down 

regulated by ET-1. Significantly regulated genes identified in fibroblasts included CTGF, 

ADM and STC-1. Time point inductions confirmed ET-1 stimulation of the former two genes 

at between 1-2 hours and 2-4 hours respectively. Interestingly, time point inductions actually 

demonstrated an up-regulation of STC-1 at 30 minutes (not seen in the arrays which used 4 

hours as the snapshot time of investigation). Antagonistic work revealed the ETA receptor 

antagonist ZD4054 was the most efficacious at inhibiting induction of all these genes. This 

was confirmed as driven via the ETA receptor through experimental work I designed with 

silencing SiRNA. Furthermore the effects of silencing the ETA receptor on targets were 

confirmed at the protein level (on Western blotting of CTGF); similar results were found 

when using the receptor antagonist ZD4054. Studies have linked both CTGF and ADM to a 

number of cancers including colorectal (Ladwa et al., 2011; Koliopanos et al., 2002; 

Nikitenko et al., 2006), with only one other study mapping CTGF expression to colonic 

fibroblasts (Knowles et al., 2011). However, the majority of fibroblasts from various other 

sites do produce CTGF (Shi-Wen et al., 2004, 2006, 2007). With both CTGF and ADM linked 

to cell proliferation, angiogenesis, survival (anti-apoptosis) and tumourogenesis, the fact that 

ET-1 alters their expression is exciting and provides more specific information on the 

molecular pathways utilised to propagate the signal. Furthermore, STC-1 is linked to a 

number of cancers as well as tumourogenic processes (Fujiwara et al., 2000; Yeung et al., 

2010). However, there are conflicting roles of STC-1 (discussed in detail, chapter 4) ranging 

from the molecule acting as a tumour suppressor that is lost in colorectal cancer at locus 8p 

(Chang et al., 1998) to increasing tumour support through increased vascular formation. This 

is the first time that ZD4054 has been investigated in this setting and has been 

demonstrated to be effective in altering the expression of these key genes. Of interest would 

be carrying out further work in co-culture or 3D models to investigate whether ET-1 from 

tumour cells alter the expression of these genes in fibroblasts as a means to support tumour 

growth. 

 

Collagen type XI and AML-1 were previously shown within our department to be up –

regulated in response to ET-1 (Knowles et al., 2011). Here we confirmed this at the protein 

level using Western blotting. Furthermore, ZD4054 via the ETA receptor had significantly 

inhibited the protein expression of both genes. COLXI has only been shown to be expressed 

in colorectal pathologies within stromal regions and correlating with the APC/β-catenin 

pathway that is altered in colorectal cancers (Fischer et al., 2001a/b). On the other hand only 
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one population based study had linked AML-1 to colorectal cancer (Slattery et al., 2011); the 

majority of studies link this gene to leukaemia. This makes the current findings to be all the 

more exciting for both these proteins, especially as AML-1 seems to be linked to abnormal 

signalling of various molecular pathways including TGF-β signalling - which is deregulated 

within colorectal cancers. Future work in this field would therefore be novel and possibly 

open up new avenues to target cancers. With some common signalling pathways shared 

with leukaemia and lymphomas, drugs used in these fields may also warrant investigating in 

the field of colorectal cancer, either individually or in combination therapy. The more we 

explore the cross-reactivity and interconnectivity of molecular events and pathways, the 

smarter the design of multi-treatment pathways will become.  

 

While investigating colorectal cancer cell lines, gene array data revealed an up-regulation of 

MT1X and MMP7 following exposure to ET-1. Time point induction experiments showed a 

300 fold increase at 4 hours and 5 fold at 24 hours for both genes respectively. ETA and ETB 

receptor antagonists inhibited the expression of both of these genes, with ZD4054 being the 

most efficacious for both genes. Silencing of both ET receptors individually caused a 

reduction in MMP7 expression, confirming our antagonistic findings. Importantly MT1X was 

shown to be associated with poor prognosis in a number of cancers (Hishikawa et al., 2001), 

resistance to chemotherapeutic agents and inactivation of p53 via a number of mechanisms 

(Fan et al., 2002). MMP7 is also linked to a number of tumourogenic signalling pathways (β 

catenin, EGF and Wnt), decreased survival and chemo-resistance (Ametler et al., 2011; 

Wang et al., 2006; Maurel et al., 2007).  These, along with links to advanced colorectal 

cancer for both MT1X and MMP7, point to potential benefits in using ZD4054 as adjuvant or 

combined therapy to improve the effects of chemotherapeutic regimens.  

 

Expression of endogenous ET-1 was demonstrated in colorectal cancer cell lines but was 

absent in fibroblasts most likely due to the high passage number. Cancer cell lines 

demonstrated great variability in mRNA expression of both ETA and ETB receptors. At the 

protein level the high ETA and low ETB expression levels are consistent with previous studies 

including our chapter 5 results. Discrepancies between mRNA and protein levels were 

discussed and may be related to receptor internalisation and cycling. Fibroblasts had shown 

high protein expression levels of ETA and ETB receptors. I had discussed theories of 

allosteric and orthosteric binding sites and the way this affects binding and activation of 

various pathways (De Mey et al., 2011).  The faster association and slow dissociation of ET-

1 to the ETA receptor will also affect binding and effects of different antagonists. 
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Of major interest is the relationship of ET-1 with the EGF receptor. A previous study in our 

department had shown ET-1 mitogenic signalling propagates via the EGF receptor similar to 

ovarian cancer models (Grant et al., 2007; Vacca et al., 2000). The work carried out here 

reports for the first time that ET-1 induces a biphasic EGF receptor expression. Furthermore 

ETA receptor silencing had returned EGF expression to scrambled levels. Currently 

Cetuximab, an EGFR monoclonal antibody is used clinically in colorectal cancers. We also 

know that ZD4054, Zibotentan, has been used in clinical trials in prostate cancer with a good 

safety profile. Therefore there seems to be good clinical rationale for combining both 

treatments in a phase 1 clinical trial which should be easier to gain ethical approval for.  This 

is an area of great interest to pursue.  Relating this complex interaction between different 

pathways highlights the possible use of multi-therapy treatments for cancer. 

 

Chapter 5  characterises ET-1 binding in normal and tumour patient sections with preserved 

cellular architecture, homogenates and cytospun cells. Maximal binding was observed in 

stromal regions around vascular endothelial cells and fibroblasts. Immunohistochemistry 

confirmed this with staining for fibroblasts, CD31 endothelial cell and COLXI, the latter only 

seen in stroma of tumour sections. These observations fit with the increasingly important role 

of fibroblasts in cancer, the vascular role demonstrated in previous studies and specific 

COLXI expression seen in colorectal cancers (Hoosein et al., 2007; Fischer et al., 2001). 

Higher ETA expression was seen in colorectal cancer sections as demonstrated in previous 

studies compared with normal sections (55.5% increase). This was mostly around cancer 

epithelial, stroma and blood vessels. Higher ETB expression was seen in normal tissue with 

decreased levels in tumour sections, again consistent with expected observations for 

epithelial regions (45% decrease).  For the first time we have demonstrated normal mucosa 

expressing higher ETA levels at the luminal surface and more ETB towards the muscularis 

mucosa. Understanding of the physiology and changes within the mucosa, we hypothesise a 

possible trophic signalling role of ET receptors with ETB linked to growth arrest and ETA 

involved with differentiation. This would be interesting to investigate in the setting of 

regenerative medicine and colonic reconstruction. Autoradiography demonstrated that ET-1 

actually bound to receptors on the surface of cancer cell lines and fibroblasts. Fibroblasts 

demonstrated a higher maximal binding and affinity for ET-1 than cancer cell lines. This is 

the first time that individual colonic components have been evaluated and findings 

emphasise the importance of fibroblasts in colorectal cancer development and progression.  

 

Lastly it could be argued that the IC50 value and lack of concentration dependent inhibition of 

ZD4054 points to its specificity to the ETA receptor. ZD4054 acting via the ETA receptor has 

been shown to significantly inhibit proliferation, migration and contraction at the cellular level, 
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therefore inhibiting tumour progression. Its Inhibition of key genes (CTGF, ADM, STC-1, 

MT1X and MMP7) at the molecular level seem to inhibit progression of tumours by inhibiting 

proliferation, migration, invasion, stroma formation, neovascularisation and induce sensitivity 

to chemotherapeutic agents. Autoradiography has also demonstrated high expression levels 

of the ETA receptor in tumour sections, therefore being an abundant and probable key target. 

With ZD4054 (Zibotentan) being shown to be clinically safe in clinical trials and interacting 

with the EGFR pathway, currently used in colorectal cancer therapy, it is a promising agent 

to investigate in the clinical setting.  This may well be in an adjuvant chemotherapeutic 

setting. 

 

In summary, within this body of work, Zibotentan reduces tumourogenic effects in both 

epithelial and stromal environments. It has been shown at mRNA and protein levels in 

fibroblasts to block CTGF (heavily associated with angiogenesis, adhesion, migration, 

proliferation and anti-apoptosis), ADM (associated with proliferation, angiogenesis and 

vasodilatation) and to reverse effects of STC-1 (loss within MSL 8p in advanced CRC). 

Within CRC cells, MT1X is inhibited by Zibotentan. MT1X is heavily linked to cell proliferation 

and chemo-resistance via p53 inactivation and heavy metal chemotherapy scavenging. 

MMP7 which is highly specific for CRC cells (90% expression) is also inhibited, therefore 

reducing metastatic capabilities via ECM degradation and cleavage of Laminin 5 – the latter 

reducing cell adhesion, aiding cell migration. As MMP7 cleaves Fas receptors thereby 

inhibiting caspase apoptotic mechanisms, Zibotentan will also reduce chemoresistance and 

induce apoptosis in the presence of chemotherapeutic drugs. The tumour suppressor 

PPP2R5D is lost in CRC and effects reversed by Zibotentan. This leads to reduced MAPK 

signalling, increased cell cycle checkpoint activity and nuclear telomerase activity, all leading 

to decreased proliferation and potentially increasing apoptosis in hostile environments. It has 

also been shown in this thesis that Zibotentan is highly specific for the ETAR and binds on 

both CRC cells and fibroblasts, affecting both epithelial and stromal compartments of the 

tumour. 

 

As the safety profile has already been proven for Zibotentan via a number of clinical trials, 

there is no reason why it cannot be used in CRC patients. The work described here has 

demonstrated a considerable number of mechanisms by which Zibotentan acts to reduce 

CRC advancement, therefore it seems a hugely promising drug to use in the clinical setting. 

Furthermore, with its added anti-metastatic and anti-chemoresistant mechanisms, it would 

make sense for use at an earlier stage of treatment in CRC and as adjuvant therapy along 

with current treatment, whether chemotherapeutic or biological. It should be endeavoured to 

use this drug in phase 1-2 clinical trials as adjuvant to either FOLFOX/FOLFIRI or 
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Cetuximab. Further combination with nano-particles such as quantum dots may be an 

interesting step forward with potential for targeted combined therapy and imaging, but 

requires further research and evaluation.    
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APPENDIX 1: 

Alamar Blue Proliferation Colorimetric Assay 

 

Purpose:  Pilot experiments were carried out to determine optimal conditions (seeding cell 

concentration; time of incubation with the dye) for the Alamar Blue colorimetric assay for cell 

growth.  

Method: Cells at different concentrations made in serum containing medium were seeded in 

24 well plates and left overnight at 37oC, 5%CO2. Medium was replaced with serum free 

medium and growth assessed at 48 hours as described in the methods. Alamar Blue was 

incubated at either 1 hour or 4 hours to determine optimal incubation time. 

Results:  Incubation at either 1 hour or 4 hours gave near identical results (figure A.1) and 

therefore 1 hour incubation was chosen for subsequent experiments, for convenience. Cell 

seeding concentrations from 0.5 – 2.0 x 105 resulted in a linear growth curve which 

plateaued thereafter. Since the purpose of this assay is to determine further growth 

advantages or decreases stimulated by ET-1 and various antagonists, the dose of 1 x 105 

cells per well, which lies approximately half way up the linear growth curve, was deemed to 

be the most appropriate for further experimentation. 
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Figure A.1: Proliferation of HT29 colorectal cancer cells measured by Alamar Blue colorimetric assay. Cell 

growth at 48 hours for various cell concentrations seeded (X-axis) was determined by Alamar Blue and 

measured at 650nm absorbance (Y-axis). The dye was incubated for 1 hour. Similar results were produced at 4 

hours of incubation and therefore not shown here. The experiment was carried out twice using quadruplicate 

wells for each time point. 
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APPENDIX 2 

Methylene Blue Assay for Proliferation Assays 

Reagents 

1. Normal Saline: 8.5g NaCl in 1L of distilled water, Formal Saline: 10% formaldehyde 

in normal saline 

2. Methylene Blue: 1% methylene blue; 1g in 100mls of borate buffer 

3. Borate Buffer (0.01 M):  38.14g of disodium tetraborate in 5L of distilled water; 

pH adjusted with 1M HCL to a pH of 8.5 

4. Elutant: 0.1M HCL : Ethanol (1:1 ratio) 

Protocol: 

1. 96 well plates were thoroughly washed with normal saline and patted dry on tissue 

paper 

2. Cells were fixed with 100µl/well of 10% formal saline for a minimum of 30 minutes 

3. Formal saline was discarded and the plates patted dry on tissue paper. 

4. 100µl of filtered methylene blue was added to each well and left for at least 30 

minutes. 

5. Six baths were filled with borate buffer and the plates were washed in each bath in 

turn. 

6. Excess buffer was shaken off the plates and patted dry on tissue paper. 

7. To each well, 100µl of elutant was added and the plates placed on a plate shaker for 

1 hour 

8. The absorbance was read at 650nm on a plate reader. To determine background 

absorbance, one well was left with elutant only.  The absorbance level from this well 

was subtracted from the remaining plate readings. 
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APPENDIX 3 

Floating Collagen Gels 

Reagents 

1. 2% Bovine albumin (Sterile): 1g 98% bovine albumin (Sigma-Aldrich) in 50mls  

2. Type 1 collagen: Rat tail collagen, type 1 (First Link (UK) Ltd) 

3. HEPES buffer:  0.2m 4-(2hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES) 

buffer, adjusted to pH 8 with sodium hydroxide 

Protocol 

1. Using 24 well plates, 2mls of 2% bovine serum albumin were added to each well. 

2. The plates were incubated in a humidified incubator at 37°C for 24 hours. 

3. The albumin solution was discarded from the plates and the plates were washed 

three times with sterile PBS 

4. Collagen suspension was made using 40% collagen, 10% HEPES buffer and 50% 

serum free medium. 

5. 100,000 fibroblasts/ml were added to the solution. 

6. Anatagonists were added to collagen/cell suspension as necessary for pre-

incubation. 

7. 1ml of collagen solution was added to each well. 

8. The plates were incubated for 1 hour at 37°C or longer until the gel had solidified. 

9. The gels were floated by the addition of 1ml of ET-1 
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APPENDIX 4 

 
Protocol for Antagonistic work 

 
1. Grow cells in 6 well plates.  Cancer cell line seeding concentrations vary from 

150,000 to 300,000 cells per well. 
 

2. Cells grown until 50-60% confluent 
 

3. Serum starvation for 12-18 hours in serum free medium for cancer cell lines and 
0.5% BSA for fibroblasts. 
 

4. Cells are then pre-incubated with antagonists alone at the appropriate concentration 
for 1 hour in serum free medium 
 

5. Media is then removed and medium with antagonists and/or ET-1 are added to 
relevant wells.  Serum free media or 0.5% BSA medium is added to the control well. 
 

6. RNA extraction:  Follow protocol for RNA extraction at 4 hours. 
 

7. Protein extraction:  Follow protein extraction protocol at 24 hours. 
 

 
Protocol for Silencing (SiRNA) 

 
1. Grow cells in 6 well plates.  Cancer cell line seeding concentrations vary from 

150,000 to 300,000 cells per well.  Fibroblasts are grown at 20,000-50,000 cells per 
well.  All media is antibiotic free. 

 
2. Cells grown until 40% confluent. 

 
3. Change to serum free media containing 4μ oligofectanime and a final concentration 

of 25nM SiRNA is added to wells. 
 

4. Following 24 hours incubation, this is changed to 10% FCS containing medium for a 
further 24 hours. 
 

5. Cell are then serum starved for 12-18 hours 
 

6. ET-1 at the appropriate concentration for cancer cell lines or fibroblasts is then added 
to stimulate cells. 
 

8. RNA extraction:  Follow protocol for RNA extraction at 4 hours. 
 

9. Protein extraction:  Follow protein extraction protocol at 24 hours. 
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APPENDIX 5 

Total Protein Extraction 

Protocol: 

Once cells have grown within 6 well plates with their respective media, they are ready for 

trypsinization. 

1. Each well is washed with 5ml PBS then suctioned out from the corner of the well.  

They are then washed with 5mls PBS EDTA for 2 minutes followed again by suction. 

2. 500μl of Trypsin is added and incubated for 3 minutes at 37C.  This is then 

neutralised with 5mls DMEM containing 10% FCS.  Each well is transferred to a 

separate Universal Tube.  Each well is further washed with 5ml of media and 

transferred to their respective Universal Tube. 

3. Spin each tube at 1500rpm, brake 2 for 5 min.  The media is tipped out, cells re-

suspended 10mls PBS then spun down again, discarding the PBS after this. 

4. Cells are transferred to an eppendorf with 2x 500μl of PBS then spun down at 4C for 

5 minutes.  Pipette the PBS leaving the cells at the bottom. 

5. Add 200μl RIPA Buffer to each eppendorf. 

6. Vortex for 15 minutes with intermittent breaks. 

7. Centrifuge down for 15 minutes at 4C. 

8. Pipette 50μl of supernatant into each eppendorf (total of 4 for each sample) leaving 

pellet at bottom and freeze down for protein analysis at -20C. 

Protocol (Modified 1): 

Once cells have grown within 6 well plates with their respective media, they are ready for 

trypsinization. 

1. Each well is washed twice with 5ml PBS then suctioned out from the corner of the 

well. 

2. 300μl of RIPA buffer is added to each well and cells scrapped off using a cell 

scrapper.  This is pipette into an eppendorf for each well. 

3. Vortex for 15 minutes with intermittent breaks. 

4. Centrifuge down for 15 minutes at 4C. 

5. Pipette the supernatant into eppendorfs and store ready for Western blot analysis. 

Protocol (Modified 2): 

Once cells have grown within 6 well plates with their respective media, they are ready for 

trypsinization. 
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1. Each well is washed twice with 5ml PBS then suctioned out from the corner of the 

well. 

2. To each well is added between 100μl - 200μl (depending on confluence of cells) of 

solution containing: 60μl RIPA Buffer, 20μl Lamella Buffer (8x) and 20μl Urea (8M). 

3. Cells were scrapped off using a cell scrapper and pipette into an eppendorf for each 

well. 

4. Vortex for 15 minutes with intermittent breaks. 

5. Store at -20C to be used for Western blotting.  Samples will need spinning prior to 

running on gels. 
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APPENDIX 6 

Determining Protein Concentration 

Material/Reagents: 

1. Modified Lowry Protein Assay Kit 

2. PBS (1 tablet PBS (Sigma-P4417) in 200ml Distilled H2O 

3. Prepare 1X Folin-Ciocalteu reagent by mixing 1ml of the supplied 2X concentration in 

a 1:1 ratio with 1ml of ultra pure water. 

Protocol: 

1. Prepare the following eppendorfs: 

a. Label 10 eppendorfs A-J which will contain Standard Albumin Concentrations. 

b. Labelled eppendorfs A2-J2. 

c. Labelled eppendorfs for each  protein sample ‘S1x10, S2x10, S3x10....etc’ 

d. Labelled eppendorfs for each protein sample ‘S1x100, S2x100, S3x100...etc’ 

2. To the labelled eppendorfs A-J make up and add the Standard Albumin 

Concentrations (as below). 

3. To the S1x10, S2x10 etc. Tubes add: 20μl Protein sample for determination and 

180μl PBS. 

4. To the S1x100, S2x100 etc. Tubes add: 10μl Protein sample for determination and 

990μl of PBS. 

5. To the A2-J2 eppendorfs add: 1ml of the Modified Lowry Protein Assay Reagent and 

200μl of the corresponding A-J tube (containing Standards) to each A2-J2 eppendorf. 

6. Now add 200μl of the Modified Lowry Protein Reagent into each of the eppendorf 

tubes labelled S1x10 etc and S2x100 etc. 

7. Vortex all tubes for a few seconds and leave to incubate at room temperature for 10 

minutes. 

8. Add 100μl of 1X Folin-Ciocalteu reagent to each eppendorf A2-J2, all samples S1x10 

etc and all samples S2x100 etc. 

9. Vortex and incubate at room temperature for 30 minutes. 

10. Samples were then read using  the Spectrophotometer (read at 750nm) to determine 

the protein concentrations. 
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APPENDIX 7 

Polyacrylamide Gel for SDS-PAGE for Western Blotting 

Materials/Reagents: 

1. Distilled Water (dH2O) 

2. 30% Acrylamide Mix: Solution from ProtoFLOWGel (Flowgen, Findel House, 

Leicestershire) 

3. 1.5M Tris (pH 8.8): ProtoGel Resolving Buffer (National Diagnostics, 305 Patton 

Drive, Atlanta, 30336 USA) 

4. 10% SDS and 10% AP: 10g Sodium Dodecyl Sulphate in 100ml water with 10% 

Ammonium Persulphate 

5. TEMED: N,N,N,N-Tetramethylethylenediamine 

Protocol: 

Make up 30ml of 10% solution and 20ml of 6% solution for upper cassette. 

1. To make 30ml of 10% mix: 11.9ml dH2O, 10ml of 30% Acrylamide, 7.5ml Tris, 0.3ml 

SDS with AP and 0.012ml of TEMED just before pouring so gel not hardens before in 

cassette. 

2. Use manual pipette to pour into gel cassettes (Invitrogen Life Tech) up to ¾ level. 

3. Add 2ml Butanol with manual pipette to remove bubbles. 

4. Allow to stand for 1 hour to set. 

5. Tip out Butanol and wash upper cassette well with distilled water, tip out and dry with 

filter paper. 

6. To make 20ml of 6% mix: 10.6ml dH2O, 4ml of 30% Acrylamide, 5ml of Tris, 0.2ml of 

SDS and AP, and 0.016ml of TEMED (added just before pouring into cassettes. 

7. Fill to the upper limit then insert well comb at top and ensure no bubbles by adding 

additional mix with manual pipette. 

8. Then transfer to fridge 4 degrees Celsius  overnight. 
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APPENDIX 8 

Western Blotting : Electrophoresis of Protein in Polyacrylamide Gel (Samples used 

from modified protein extraction method 3) 

Materials/Reagents: 

1. Running Buffer (100mls TrisGlycine Gel (10X TGF) and 900mls dH2O) 

2. 2-Metacaptoethanol in a fume cupboard. 

Protocol: 

1. Take 200μl protein sample in eppendorfs and add 10μl of 2-Metacaptoethanol.  Then 

leave in water bath at 95 C for 5 min. 

2. Spin down samples for 5 minutes to remove cell debris so supernatant can be 

aspirated to load gel columns. 

3. Make up Running Buffer. 

4. Slightly remove well comb and remove white strip from cassette.  Assemble 

electrophoresis apparatus and insert cassette, finally removing the comb completely. 

5. Pour Running Buffer into middle compartment around cassette until filled to top and 

inside wells.  Pour distilled water to lower marker in outside compartments of 

apparatus. 

6. Add 10μl of ladder and 15μl of protein sample to wells. 

7. Run gels for 90 minutes at 125V, topping up buffer if needed. 

Western Blotting: Protein Transfer 

Materials/Reagents: 

1. Transfer Buffer (40ml TrisGlycine Transfer Buffer 25X (Novex, Invitrogen), 120ml 

Methanol (BDH) and dH2O up to 1 litre volume 

Protocol: 

1. Cut 1 nitrocellulose membrane and 2 filter papers per gel. 

2. Soak 4 sponges per gel in transfer buffer removing any bubbles from the sponges.  
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3. Remove the gel from the cassettes by incising the gel where the white tape was and 

opening the cassette around the edges. 

4. Stack from bottom to top as follows: Sponge, filter, nitrocellulose membrane, gel, 

filter paper then sponge.  Two gels per stack can be used in the same order as 

above. 

5. Pack into blotting module with membrane facing anteriorly.  

6. Cover with transfer buffer centrally. 

7. Surround central well with cold dH2O. 

8. Run at 30V for 90 minutes. 

 

Western Blot: Antibody Labelling Membranes 

Materials/Reagents: 

1. PBS-Tween: 20 tablets PBS in 2 Litres distilled water and 1ml Tween 20 

2. 5% Milk blocker: 20g dried milk powder (Marvel) and 400ml PBS-Tween (above). 

Protocol: 

1. Place nitrocellulose paper into a weighing boat and add 25ml milk blocking solution 

and rock for 1 hour. 

2. Wash 3x with PBS-Tween for 10 minutes each wash. 

3. Make Primary Antibody solution with 15μl antibody with 15ml milk solution (1:1000). 

4. Remove PBS-Tween and replace with antibody solutions.  Leave overnight in fridge 

4 C. 

5. Wash off primary antibody with PBS-Tween 3x over a total of 45-60 minutes. 

6. Make secondary biotinylated AB solution with 15μl antibody in 15ml milk solution.  

Rock at room temperature for 1 hour. 

7. Wash 3x with PBS-Tween for 45-60 minutes. 
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8. Add 2mls reagent A and 2mls Reagent B into universal tube and mix.  Drop mixture 

onto nitrocellulose membrane and leave to soak for 5 minutes at room temperature 

on rocker. 

 

Western Blotting: Development of Image 

Protocol 1: 

1. Place the nitrocellulose membrane in cling-film onto the Hyperfilm cassette hard 

surface and tape down ensuring no air pockets. 

2.  In dark room open cassette and place film with one side folded into cassette and 

expose for 20 seconds to 10 minutes. 

3. Develop film with exposure to developing medium, fixing medium and water washes.  

Then leave to dry. 

Protocol 2: 

1. Make up active Super-Signal (1ml bottle 1 and 1ml bottle 2) reagent. 

2. Apply to Western blotting membrane 

3. Visualise using Chemi-doc software 
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APPENDIX 9 

Total RNA Extraction 

Materials/Reagents: 

1. RLT Buffer (1ml RLT + 10μl β-Mercaptoethanol) 

2. RPE Buffer 

3. RW1 Buffer 

4. 2ml and 1.5ml collection tubes and RNAeasy columns 

5. RNAase-free water 

Protocol: 

Once cells have grown within 6 well plates with their respective media, they are ready for 

trypsinization. 

1. Each well is washed with 5ml PBS then suctioned out from the corner of the well.  

They are then washed with 5mls PBS EDTA for 2 minutes followed again by suction. 

2. 500μl of Trypsin is added and incubated for 3 minutes at 37C.  This is then 

neutralised with 5mls DMEM containing 10% FCS.  Each well is transferred to a 

separate Universal Tube.  Each well is further washed with 5ml of media and 

transferred to their respective Universal Tube. 

3. Spin each tube at 1500rpm, brake 2 for 5 min.  The media is tipped out, cells re-

suspended 10mls PBS then spun down again, discarding the PBS after this.  

4.  Cells are transferred to an eppendorf with 2x 500μl of PBS then spun down at 4C for 

5 minutes.  Pipette the PBS leaving the cells at the bottom. (At this stage the pellet 

can be frozen down at -20C if needed prior to completing extraction). 

5. Into the pellet, add RTL buffer according to the cell number (350μl if <5x106 cells or 

600μl if 0.5-1x107 cells).  Vortex the tubes then further homogenize with a 20 gauge 

needle in the same eppendorf. 

6. Add the same volume (as RTL buffer) of 70% Ethanol and vortex 

7. Pipette 700μl of the sample to an RNAeasy mini column placed in a 2ml collection 

tube  and vortex for 15 seconds at 10,000rpm.  The collection tube overflow is 

discarded and the if any sample remains, this process is repeated discarding the 

overflow once again. 

8. Add 700μl RW1 buffer to the RNAeasy column and vortexed for 15 seconds at 

10,000 rpm.  The overflow and collection tubes are discarded. 

9. The RNAeasy column is placed into a new 2ml collection tube.  Pipette 500μl RPE 

buffer into the column and discard the overflow.  Add another 500μl RPE buffer to the 

column and centrifuge for 2 minute at 10,000 rpm. 
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10. Transfer the RNAeasy column to a new 1.5ml collection tube; pipette 50μl RNAase-

free water onto the column silica-gel membrane.  Centrifuge for 1 minute at 

10,000rpm. Keeping the overflow, add 30μl of RNAase free water to the membrane 

and centrifuge for 5 minutes. 

11. Dispose of the RNAeasy column keeping the collection tube of the RNA.  This is now 

ready for analysis. 

The was analysed using the Gene Spec 1 Program . 

 

Protocol (Modified 1): 

Once cells have grown within 6 well plates with their respective media, they are ready for 

trypsinization. 

1. Each well is washed trice with 5ml PBS then suctioned out from the corner of the 

well.   

2. Directly into each well is added RTL buffer according to the cell number (350μl if 

<5x106 cells or 600μl if 0.5-1x107 cells).   

3. A cell scrapper is used to scrap off wells which are pipette into individual eppendorfs 

for each well. 

4. At this stage the samples can be stored at -80C before proceeding with total RNA 

extraction outlined below. 

5. Vortex the tubes then further homogenize with a 20 gauge needle in the same 

eppendorf. 

6. Add the same volume (as RTL buffer) of 70% Ethanol and vortex 

7. Pipette 700μl of the sample to an RNAeasy mini column placed in a 2ml collection 

tube  and vortex for 15 seconds at 10,000rpm.  The collection tube overflow is 

discarded and the if any sample remains, this process is repeated discarding the 

overflow once again. 

8. Add 700μl RW1 buffer to the RNAeasy column and vortexed for 15 seconds at 

10,000 rpm.  The overflow and collection tubes are discarded. 

9. The RNAeasy column is placed into a new 2ml collection tube.  Pipette 500μl RPE 

buffer into the column and discard the overflow.  Add another 500μl RPE buffer to the 

column and centrifuge for 2 minute at 10,000 rpm. 

10. Transfer the RNAeasy column to a new 1.5ml collection tube; pipette 50μl RNAase-

free water onto the column silica-gel membrane.  Centrifuge for 1 minute at 

10,000rpm. Keeping the overflow, add 30μl of RNAase free water to the membrane 

and centrifuge for 5 minutes. 
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11. Dispose of the RNAeasy column keeping the collection tube of the RNA.  This is now 

ready for analysis. 
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APPENDIX 10 

Making Conventional PCR Gels 

Apparatus: 

1.  Agarose Gel powder (A9539-500G) 

2. Ethidium Bromide in 1xTBE Buffer 

3. Cassette and comb to run samples  

4. 250ml Conical Flask and spoon 

5. Power supply and holder for Cassette 

 

Method: 

1. Make up running gel (1g Agarose powder; 70ml Ethidium Bromide and Buffer 1xTBE) 

in a 250ml conical flask. 

2. Place on a hot plate (temp. setting 8 and stir rate 8) until solution clear and bubble 

free. 

3. Securely apply tape to cassette ends and pour solution into the cassette.  Place a 

comb for the sample wells at one end.  

4. Cool for 30 minutes at room temp. then place in fridge for 30 minutes. 

5. Take RNA samples and thaw at room temperature 

6. Add colour dye to this in a ratio of just over 1/10 (i.e. 10μl sample add 1.2μl dye). 

7. Place cassette into electrophoryses unit  and top up with Ethidium Bromide to cover 

surface. 

8. Remove comb and add 11-15μl of samples into wells along with a marker ladder. 

9. Run gels at 50V. (Initially running at 100V to see bubbles in solution ensures circuit is 

running). 
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APPENDIX 11 

Conventional RT-PCR 

One step RT-PCR Qiagen kit (210212) 

Make up the Reactants and Primers in separate reaction tubes.  Total volume per reaction is 

15μl. 

  Components   Volume per Reaction Final 

Concentration 

Tube 1 (Reactants) 

  tRNA Template (e.g. HT29/CF56)  5μl   0.066μg/μl 

 40u/μl RNasin     0.375μl  1u/μl 

 5x Qiagen Buffer    3μl   x1 

 10mM dNTPs     0.6μl   400μM 

 RT-PCR     0.6μl   

 RNA Free Water    0.425μl Total Tube 1: 10μl 

Tube 2 (Primers) 

 10μM Sense Primer    0.9μl   0.6μM 

 10μM Anti-Sense Primer   0.9μl   0.6μM 

 RNA Free Water    3.2μl  Total Tube 2: 5μl 

If 6 reactions required then make up 7 times the above quantities so enough reactant 

mixture for all reactions. 

Protocol: 

1. In an eppendorf for each reaction, pipette 3.2μl into each. 

2. Pipette 0.9μl of Sense and 0.9μl of Anti-Sense Primers into each eppendorf. 

3. Now make up the Template tRNA and place onto ice. 

4. Make up the Core reagents (tube 1; except tRNA made in step 3 and the RNA Free 

Water). 

5. Add Template tRNA to the Core reagents. 
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6. Add Primers (Tube 2)  to the Core reagents. 

7. Now add RT-PCR enzyme to the Reactant mixture. 

8. The total Reactant mixture is placed into the PCR cycler. 

One completed then the Reactants and product can be run on a gel to analyse. 
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APPENDIX 12 

Real Time PCR Protocol 

Quantitect Real Time PCR Qiagen kit  

Make up the Reactants and Primers in separate reaction tubes.  Total volume per reaction is 

15μl. 

  Components   Volume per Reaction  

Tube 1 (Reactants and Primers) 

  PCR Mastermix    10μl    

 10μM Sense Primer    2μl   

 10μM Anti-Sense Primer   2μl   

 Quantitect Enzyme (added last)  0.2μl     

      

Tube 2 (Template and Water) 

 Require 100ng of template (e.g. HT29) made up to 5.8μl for each reactant. 

When calculating quantities, 10% excess should be calculating for each reactant. 

Protocol: 

1. Templates are made first in a reactant tube with water then stored on ice. 

2. All reactants in tube 1 can be made up with the exception of the Quantitect enzyme, 

then stored on ice. 

3. Reactants can be added to template tubes. 

4. BEFORE PROCEDING: set up the Light cycler ready to start. 

5. Quantitect enzyme can now be added to tubes when sitting on ice. 

6. All contents can be added to individual reaction capillaries to go into the Light cycler. 

7. All capillaries are added to the Light cycler carousel and the program started. 
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APPENDIX 13 

Initial Testing of All Primers 

 

 

 

 

 

 

                                                           

 

 

 

 

 

 

 

Appendix A.2. Conventional RT-PCR showing expression levels of all key genes within the Endothelin 

axis that were chosen to be examined in both fibroblasts and colorectal cancer cell lines.  Primers 

were designed with annealing temperatures of 58 ̊C and flanking introns to be RNA specific. 

Conventional RT-PCR was carried out as per standard conventional RT-PCR protocol using a 

Mastercycler Gradient thermal cycler (Eppendorf) up to 35 cycles. This confirmed the primers were 

working and enabled decision making as to which primers to use if more than one had been 

designed. 
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APPENDIX 14 

Saturation Analysis: Kd/Bmax Determination 

 

 

 

Appendix A.3. Schematic diagram showing the method used to calculate specific binding and 

determining Kd and Bmax. 

 

Procedure 

 

1. Unfixed cytospins and tissue homogenates were equilibrated to room temperature 

(~21oC, 20min).  A preliminary step was performed for cytospins, where slides were 

preincubated at room temperature in 50mM tris-HCl, pH7.4, 20 min, to reduce 

endogenous ET-1 levels.   

 

2. Both were incubated with increasing 125I-ET-1 concentrations (GE, Amersham, 

Bucks, UK, specific activity 2200 Ci/mmol: 3x10-12-10-9 M, [total binding]) in 50mM tris 

HCl buffer, pH7.4, 5mM MgCl2, 0.2% bovine serum albumin, 100 iu/ml aprotinin, 

120min. 

 

3. This was followed by rinsing (2x10min) in 50mM tris-HCl, 4oC.  
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4. Non-specific binding (NSB) was established by incubating in the presence of 1µM 

unlabelled ET-1.  

5. After incubation:  

 

(A) slides were briefly dipped into distilled water, 4oC, to remove salts in the 

buffer, and dried under a stream of warm air (~15min) followed by cool air 

(15min) and stored overnight. Slides were post-fixed under vacuum in 

paraformaldehyde vapour, 2h, at 80oC.  

(B) Homogenates were filtered and washed three times with buffer under vacuum 

through a cellulose GF/B filters attached to 12-well manifold chambers (both 

Millipore, Watford, UK).    Homogenate bound 125I-ET-1 retained by the filter 

paper was measured to establish total and non-specific binding.   

 

6. At the end of each set of incubations, 125I scales were prepared where 50μl aliquots 

of each of the serial dilutions of radioligand were spotted onto filter paper or cellulose 

filters and then attached to microscope slides that were co-exposed to radio-sensitive 

film along with the cytospins.   

 

7. Densitometric analysis of autoradiographic images was performed on a 

Biospectrum® AC Imaging System (UltraViolet Products, UVP, Cambridge, UK) and 

analysed using VisionWorksLS Imaging software (version 6.4.3. UVP, 2007). Specific 

125I-ET-1 binding was determined by subtracting non specific from total binding at 

each concentration used.  

 

8. Maximum receptor binding (Bmax) and affinity (Kd) were obtained using GraphPad 

Prism™ software (GraphPad, Santa Barbara, CA).The same approach was used for 

analysing data from cells removed from slides with filter paper and measured in the 

gamma counter. 
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APPENDIX 15 

Inhibition Analysis and Low Resolution Analysis 

 

Appendix A.4. Schematic diagram showing the method used to analyse inhibition and produce low 

resolution autoradiographs. 

 

 

Procedure 

 

1. Unfixed cytospins and tissue homogenates were equilibrated to room temperature 

(~21oC, 20min).  A preliminary step was performed for cytospins, where slides were 

preincubated at room temperature in 50mM tris-HCl, pH7.4, 20 min, to reduce 

endogenous ET-1 levels.   

 

2. Fixed 125I-ET-1 concentrations (150pM; ~Kd value determined initially in the 

saturation studies) (GE, Amersham, Bucks, UK, specific activity 2200 Ci/mmol: 3x10-

12-10-9 M, [total binding]) in 50mM tris HCl buffer, pH7.4, 5mM MgCl2, 0.2% bovine 

serum albumin, 100 iu/ml aprotinin, were made up and placed in individual tubes for 

increasing antagonist concentrations to be added. 
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3. Increasing concentrations (3x10-9-3x10-6M) of the ETA receptor antagonists, BQ123, 

ZD4054, and the ETB receptor antagonist BQ788 were made up and added to each 

tube containing 125I-ET-1. 

 

4. Solutions were added to Unfixed cytospins and tissue homogenates for 120 minutes. 

 

5. Two fixed concentrations (high=25μM; low=5μM) for each antagonist were used for 

autoradiographs that were produced as described below. 

 

6. Densitometric analysis of autoradiographic images was performed on a 

Biospectrum® AC Imaging System (UltraViolet Products, UVP, Cambridge, UK) and 

analysed using VisionWorksLS Imaging software (version 6.4.3. UVP, 2007). 

7. Cells were removed from slides (NaOH digestion) with filter paper and activity 

measured in a gamma counter. 

 

Low Resolution Autoradiographs: 

1. Slide-mounted tissues and cytospins were placed in 24x30cm X-ray cassettes and 

apposed to Hyperfilm™MP (GE, Amersham) under dark-room conditions and 

exposure for 7-21 days, 4oC.  

2. In a dark-room, films were immersed in undiluted D19 developer (Kodak), 5min,  

3. Briefly rinsed in tap water 

4. Immersed in Hypam™ fixative (Ilford, 1:3 in distilled water) for 5 minutes. 

5. Washed in running tap water (~20minutes). 

6. Films were dried and subsequently autoradiographs used for densitometry; 

representative images were photographed. 
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APPENDIX 16 

IC50 Determination and Producing High and Low Resolution Autoradiographs 

 

 

 

 

Appendix A.5. Schematic diagram showing the method used to analyse inhibition, IC50  and produce 

low and high resolution autoradiographs. 

 

 

Procedure: 

 

1. Calculation of IC50 was determined by carrying out the procedure as set out above for 

inhibition analysis.  

2. Densitometry and gamma counter analysis was carried out as previously stated. 

3. IC50 was determined by plotting graphs as set out in figures 5.18-5.19. 
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High Resolution Autoradiographs: 

 

1. Tissues/cytospins were dipped in molten (42oC) K2 emulsion (Ilford; 1:1 in 2% 

glycerol/distilled water) and allowed to dry overnight (dark-room).  

 

2. Emulsion-coated slides were then placed in racks, stored in light-proof boxes 

containing silica gel dessicant (4oC, 7-21 days).  

 

3. For microautoradiographs, slides were immersed in D19 developer for  5 minutes. 

 

4. Dipped in rapid stop solution (Ilford, 1:10 in distilled water). 

 

5. Fixed in Hypam™ fixative (1:3 in distilled water, 10 minutes) and  

 

6. Rinsed (3x10minutes) in distilled water.  

 

7. Tissues/cells were stained with haematoxylin & eosin (H&E), dehydrated by 

immersion in increasing ethanol concentrations, de-waxed in Histo-clear™ (National 

Diagnostics, Hull, UK) and cover-slipped using DPX. 

 

8. Slides were viewed under an Olympus BX50 microscope (autoradiographs under 

dark-field illumination; staining under bright-field illumination), photographed using a 

Zeiss Axiocam™ digital camera and images stored on a KS400 imaging system 

(Imaging Associates, Bicester, UK). 
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