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ABSTRACT

Time-dependent queue methods are extended to calculate variances of stochastic queues along
with their means, and thereby provide a tool for evaluation and better understanding of travel
time variability and reliability in congested traffic networks and other systems, including
through probability distributions estimated from moments. Objectives include developing
computationally efficient analytical methods, and achieving robustness by reflecting the
underlying structure of queuing systems rather than relying on statistical fitting,

New deterministic and equilibrium formulae for queue variance are developed, acting also as
constraints on estimating time-dependent queues generated by a range of processes, enabling
improved accuracy and reliability estimates. New methods for approximating equilibrium and
dynamic probability distributions use respectively doubly-nested geometric distributions and
exponentially-weighted combinations of exponential and Normal functions, avoiding the need
to rely on empirical functions, costly simulation, or equilibrium distributions inappropriate in

dynamic cases.

For growing queues, corrections are made to the popular sheared approximation, that combines
deterministic and Pollaczek-Khinchin equilibrium mean formulae in one time-dependent
function. For decaying queues, a new exponential approximation is found to give better results,
possibly through avoiding implicit quasi-static assumption in shearing. Predictions for M/M/1
(yield) and M/D/1 (signal) processes applied to 34 oversaturated peaks show good agreement

when tested against Markov simulations based on recurrence relations.

Looking to widen the range of queues amenable to time-dependent methods, dependence of
stochastic signal queues on green period capacity is confirmed by an extended M/D/1 process,
for which new formulae for equilibrium moments are obtained and compared with earlier
approximations. A simple formulation of queuing on multiple lanes with shared service is

developed, two-lane examples with turning movements showing fair match to simulation.

The main new methods are implemented in a spreadsheet demonstrator program,
incorporating a database of time-sliced peak cases together with a procedure for estimating

dynamic probability distributions from moments.



ACKNOWLEDGEMENTS

I wish to thank the following:

My Supervisor, Professor Benjamin G Heydecker

Dr Taku Fujiyama, my Second Supervisor and Upgrade Examiner

Dr Eugeny Buldakov, Upgrade Examiner

Neil H Spencer, who contributed to the development of the Markov simulation program

Dr Alan Stevens, Transportation Chief Scientist at the Transport Research Laboratory,
Professor Malachy Carey of Queens University Belfast, Professor Nick Hounsell of

Southampton University, and Dr Abdulai Dumbuya for their support.

Many researchers and authors in the field, whose work has provided the grounding and
inspiration of this research, including Professor Richard E Allsop of University College
London; Dr Rod Kimber, Dr Dennis Robertson, Professor Mike Maher, lan Summersgill, Erica
Hollis, David Leonard, Peter Gower and P D Whiting while at Transport Research Laboratory

or its precursors; A R Doherty and lan Catling.

The concept of an equilibrium is very useful. It allows us to focus on the final outcome rather
than on the process that leads up to it. But the concept is also very deceptive... Equilibrium has

rarely been observed in real life [George Soros 1987]

Dedicated to

My Parents, Sidney Beresford Taylor DFC, and Elizabeth Dobinson
Professor Sir James Dunbar-Nasmith CBE, (PP)RIAS, architect and mentor
and John A Kenward MChem (Oxon), friend, biotechnologist and high-flyer to the end



CONTENTS

ABSTRACT oottt s et e e e e et et et e e e re e e re e aeeanaaenrre s 3
ACKNOWLEDGEMENTS ...ttt 4
CHAPTER 1: INTRODUCTION AND REVIEW........ccccciieiieiieceece e 21
1.1. BACKGROUND AND CONTEXT ....ccoieiiiiiieeieesee st seesee e saa e 21
1.1.1  Link between variability and congestion in traffic networks and other
FACKIIEIES ..o e e e e reee s 21
1.1.2  Costs of road traffic CONGESTION.........coiiviiiiiiiiiiiieeeee e 22
1.1.3  Development of time-dependent queuing theory ..........cccccevvvernennnn. 23
1.1.4  Seeking IMProved ACCUIACY ........ccoreeiurereeeieesiiesree e siee e siee s 25
1.1.5  Existing approaches to calculating queue variance.................ccccovenee. 26
1.1.6 New expression for deterministic time-dependent variance................. 27
1.1.7  Approach to the problem of queue estimation ..............cccocevevivernnnnn. 28
1.1.8 Information available from standard works on queuing...................... 29
1.1.9  Gap-acceptance as an alternative capacity model ..............cccoceernrnnn. 30
1.1.10 Chaotic processes, heavy tails and adaptive systems .........cc.ccccvvennen. 31
1.2. CONGESTION AND RELIABILITY ...oiiiiiiieiiieiie e 32
1.2.1  The economic costs of congestion and unreliability ........................... 32
1.2.2  Recurrent and non-recurrent CONQGEStION .........ccuveevveeeriieeesireesiieesee 34
1.3. QUEUING IN NETWORK TRAFFIC MODELLING.........cccccovvviiiieninnnn 36
1.3.1  Modelling JOUMNEYS......ccciieieciie et 36
1.3.2  MOodelliNg QUEUES .......veeeiiee ettt 36
1.3.3  Modelling time-dependent traffic...........cccocvevviie i, 37
1.3.4  Probabilistic queues and probability distributions .............c...cccceeenee. 37
1.3.5  Estimating delay in real Nnetworks ............cccccoevveiiiie i, 38
1.3.6  Traffic simulation techniques and computational efficiency............... 39
1.4, OBJECTIVES AND METHODS.........cccoiiiiiiieiiienie et 40
I O o 1< ox Y 1RO SUPR 40
1.4.2  Scope and appliCation ...........cccveeiiiieiiiie e 40
1.4.3  Technical approach, methods and validation...............ccccccceeevivinenen. 41
1.4.4  Practical and computational considerations............c..cccccveevvveeiiveeeennen. 42
1.45  Wider appliCationS.........cccvieiiiieeiiie e 43
1.5. STRUCTURE AND CONTENT OF THE DISSERTATION...........c..cv.... 44
CHAPTER 2: QUEUING PROCESSES ........cooiiiiiiiiiiesiie e 47
2.1, INTRODUCTION ...ooiiiiiiiiiieciie ettt 47



2.2. CONVENTIONS AND DEFINITIONS ..ot 47

2.2.1  DEFINITIONS ....eiiiiiieecie ettt tee e 47
2.2.2  Conventions iN fOrMUIAE .........cooovieiiiiiiiie e 49
2.2.3  Conventional use OF terMS ........ccoviiiiiieiiie e 51
2.3. BASIC QUEUE PROPERTIES INCLUDING NEW VARIANCE RESULT
.................................................................................................................. 52
2.3.1  Motivation and approach ... 52
2.3.2  DeterminiStiC QUEUING ....cc.veevreiiiesiiieiie et 52
2.3.3  Steady-state eqUIlIDIIUM .......cooiiiiiii e 53
2.3.4  The simplest random queue, M/M/1/1, and the significance of
1 17 U o] oS URURRSPR 55
2.3.5  The simplest realistic traffic queue: M/M/1/oo ........ccocviiiiiiiiiiiininnn, 57
2.3.6  Derivation of the deterministic formula for time-dependent variance.. 59
2.3.7  Steady state invariants of M/M/L.........cccooooiiiiiiiiiiii e 60
2.3.8  Exact Series formulation of the time-dependent M/M/1/N queue........ 60
2.3.9  Characteristic relaxation times...........ccceviieiiie i 62
2.3.10  LagS and l0OPS .....coveeiiiieiieiiie it 63
2.3.11  The Pollaczek-Khinchin mean queue formula............ccccoccoviiiniennnn, 64
2.3.12  The determiniStic Mt .........ccoiiiiiiiii e 65
2.3.13 Accommodating hyper-exponential processes in the P-K statistics ..... 66
2.3.14 Limited applicability of equilibrium ...........ccoooe i 67
2.4. M/D/1 PROCESSES DERIVED USING RECURRENCE RELATIONS..68
2.4.1  Motivation and approach..........ccccueeeiieeiiieeiiiie e see e e 68
2.4.2  The basiC M/D/L PrOCESS ....ccvuieiieeeiiiieeeiee e et e e s e e e s e sbaeeaaeae s 68
2.4.3  MI/D/1[G] queue dependent on green period capacity ............ccceceeveennn 70
2.4.4  Allowing for different green period capacities...........cccccceveevivveeiinnrnnn 71
2.5.  BENCHMARKING METHODS........ccooiiiiiiiiiiieniee e 78
2.5.1  Peak cases used for benchmarking...........cccccooveiiiiiiiiii e 78
2.5.2  Accuracy of M/M/1 Series calculations.............cccceevveeevivee e 79
2.5.3  Markov SIMUIBLION ........oeiiiiiie i 80
2.5.4  Sensitivity of Markov method to maximum queue and step size ......... 81
2.5.5  Microscopic SIMUIALION ........ceeeiiuiiiiiii e 81
2.5.6  Comparison of actual results of different calculation methods............ 82
2.5.7  Deviation from equilibrium in queue development over time.............. 85
2.6. CONCLUSIONS ON QUEUING PROCESSES........ccccooiveiiieiieeiee s, 86
CHAPTER 3: MORE GENERAL EQUILIBRIUM QUEUES...........c.ccooeiiiiiinnnn. 87
3.1, INTRODUCTION. . ..ottt ittt 87
3.2. QUEUE PROCESSES WITH GENERAL STATISTICS .....c.ccoovviieiene 87
3.2.1  G/M/1 with modified variance of arrival headways ............ccccccceevvnee. 87

6



3.2.2  G/M/1 with scheduled arrivals ............ccccovviieiiiiiie e 88
3.2.3  M/G/1 process with Erlang-m Service .........cccooovevviiiieiiieniieiiesi, 89
3.2.4  Generalised notation for deriving moments of G/G/1 ..........cc..cccue....e. 89
3.25  G/M/1 with compound or batched arrivals ...........ccccoeeviieiineniinne, 90
3.2.6  Analysis of the P-K derivation and source of the unit-in-service factor ..
.......................................................................................................... 91
3.3. GENERALISING EQUILIBRIUM VARIANCE.........cccoeviiiiie e 94
3.3.1  Motivation and approach ..........ccceeiieiiiiiei 94
3.3.2  Variance of the G/G/1 process calculated from expectations .............. 94
3.3.3  Variance of M/G/1 process calculated from a generating function...... 97
3.3.4  Horizontal versus vertical queuing and the effect of mixed traffic ...... 99
3.4. CONSISTENT USE OF STATISTICAL PARAMETERS...........cc0eouve.e. 100
3.4.1  Coefficient of variation of arrivals as an alternative to dispersion index .
......................................................................................................... 100
3.4.2  Consistent use of the unit-in-service between mean and variance ......102
3.5. EQUILIBRIUM DISTRIBUTIONS OF SOME QUEUING PROCESSES....
................................................................................................................ 103
3.5.1  Motivation and approach .........ccccceiiiiiiiii i 103
352 MIMIL oo 103
353 MID/ Lo 104
3.5.4  Erlang-mM SEIVICE .......ccoiiieeciieeciie ettt e e e 104
3.5.6  Erlang-r arrivalS...........cccoeevviiiiiie et 106
3.5.6  Analternative interpretation of Erlang-r arrivals............c..ccccceevnnnnn 107
3.5.7  Performance of equilibrium moment formulae with Erlang processes ....
......................................................................................................... 108
3.5.8  Generalising Erlang ProCeSSES........ccuieiirieiiireiiieeesieeesieeesieeesieeens 108
3.5.9  Bulkarrivals MM/M/L ......cooiiiiiii e 109
3.5.10 BulK SErvice M/MITL ...ccviiiiiiiieiee e 110
3.5.11 Multi-channel queue M/M/N ........ccoiiiiiiiie e 112
3.6. USE OF NESTED GEOMETRIC PROBABILITY DISTRIBUTIONS....114
3.6.1  Singly-nested geometric distributions ..............ccccceeviveeiiiec e, 114
3.6.2  Doubly-nested geometric distributions..............ccccovvveeiiie e, 115
3.6.4  Maximum Entropy distributions............cccccocvveiiiie e 117
3.7 EMPIRICAL METHODS TO ACCOUNT FOR SIGNAL GREEN
CAPACITY ettt e et e et nees 120
3.7.1  Historical approaches to signal queue modelling............cc.cccoovveinnen. 120
3.7.2  Results of simulations with a range of parameters..............cccocevee.. 122
3.7.3  Behaviour and estimation 0f Po .......ccceeviieiiiii i 123
3.7.4  Attempts at direct approximation to mean queue Size....................... 125
3.75 Estimating mean queue using effective traffic intensity.................. 129

7



3.7.6 EStimating VarianCe .........ccuvieiiiriiieeciiie e 131
3.7.7  Accuracy of the results and discussion of the methods..................... 132
3.7.8  Feasibility of estimating M/D/1[G] with modified statistical parameters.
......................................................................................................... 133
3.7.9  Properties of M/D/1[G] probability distributions ..............cc.cceevvenne. 135
3.7.10 Anempirical approach to estimating M/D/1[G] probability
AISTFIDULIONS ... e e e e e e eeanees 137
3.8. CONCLUSIONS ON MORE GENERAL EQUILIBRIUM QUEUES..... 140
CHAPTER 4: TIME-DEPENDENT APPROXIMATION ......cccooiiiiiiiieee e 141
4.1, INTRODUCTION. ... oottt e e enneees 141
4.2. THE SHEARED QUEUE APPROXIMATION AND RELATED ISSUES...
................................................................................................................ 142
4.2.1  The shearing transformation .............ccoooeiiieiieienie e 142
4.2.2  Sheared queue solution with initial qUeUe.............cccevvieiiiiieniee, 143
4.2.3  Sheared queue solution with origin time shift ............ccccoooiinnnnen, 145
4.2.4  Relationship between queue size and delay and derived queue functions
......................................................................................................... 146
4.2.5 Effect on estimation accuracy of assumptions about the initial state . 148
4.2.6  Effect of time SliCiNg 0N 8CCUIACY.........cceviuiiiiieiiiiiie e 150
4.2.7  Practical issues of predicting queues at junctions...............ccceeevernnne. 152
4.3. CORRECTING THE SHEARED QUEUE APPROXIMATION FOR
IMIIIVITL ettt ettt ettt et 153
4.3.1 Extended sheared formula ..........ccccooeviiiiiiiiiiii e 153
4.3.2  Relationship between queue size and delay ..........cccccccvvevvveeinnnnne, 153
4.3.3  Basic corrections to delay..........ccovveiiireiiie e 156
4.3.5 Interpolative correction in basiC CaSeS ..........ccovvveevvreeiireeiiie e 162
4.3.6 Interpolative correction with general initial queue .............cc.ccve...e. 163
4.3.7 Interpolative correction for mean qUEUE SiZe..........ccccevvveevireeesiieeenne, 166
4.3.8  Calculation of initial Qo for undersaturated growth.................c......... 166
4.3.9  Definition of queue growth methods and labelling of combinations.. 172
4.4. OVERSATURATED GROWTH REGIME.........ccccociiiiiiieiiieiceie e 173
4.4.1 Behaviour relative to a deterministic asymptote...........ccccccccveevvnrnne. 173
4.4.2  Q-correction for oversaturated growth............ccccoovvveiiine e, 174
4.4.3  Transition through saturation and long-term growth ....................... 176
45. EXPONENTIAL DECAY METHOD BASED ON GENERAL
PROPERTIES ...ttt ettt et e e nnee s 178
4.5.1  Motivation and approach ...........cccceeeviieeiiie i 178
4.5.2  Structural properties of queue development — initial state................. 179
4.5.3  Structural properties of queue development — asymptotic state......... 181
4.5.4  Unsuitability of exponential method for growth............cccccoeviinnine 181

8



455 Relaxation behaviour of the characteristic time parameter-................. 181

45.6 A possible refinement to allow for non-monotonicity........................ 184
4.5.7  Testing various exponential interpolations ............c.cccceviiiieniicnnn, 184
45.8 Practical application of simple exponential interpolations of
CharaCteriStIC TIMES ... .eiiiiie et e e seee e 186
45.9 Comparative performance of decay estimates for run-out to equilibrium
......................................................................................................... 188
4.5.10 Accuracy of the time parameters and sources of uncertainty ............ 190
45.11 Estimating error in time parameters and potential for correction....... 193
4.5.12 Reality check on queue decay rate ..........cccceevieveiiine s 195
4.5.13 Random profile tESES........ccuuiiviiiieiiesee e 195
4.5.14 Conclusion on mixed exponential approximation.............c.ccccevvveninenn 197
4.6. TRANSITIONAL REGIMES AND COMBINED PERFORMANCE ON
o N S TR S 198
4.7. METHODS AND SUMMARY RESULTS FOR M/M/1 PEAK CASES..201
4.7.1 MethodS tESTEU. ......uveeeiiee ettt e 201
4.7.2 Comparative performance of methods in peak cases with M/M/1 process..
......................................................................................................... 202
4.7.3 Summary of performance in peak cases with M/M/1 process................. 203
4.8. MODIFICATION AND SUMMARY RESULTS FOR M/D/1 PEAK
CASES ..o 206
4.8.1 Modification of calculation for M/D/1 ........cccccccviiiiiiiniiieiien, 206
4.8.2 Comparative performance of methods in peak cases with M/D/1 process
......................................................................................................... 206
4.8.3  Summary of performance peak cases with M/D/1 process................. 207
4.9. CONCLUSIONS ON TIME-DEPENDENT APPROXIMATIONS ......... 210
CHAPTER 5: ESTIMATING PROBABILITY DISTRIBUTIONS...........ccoveinens 211
5 1. INTRODUCTION ...coiiiiiiiiiiieiii ettt 211
5.2. POTENTIAL OF CONTINUOUS APPROXIMATIONS TO
DISTRIBUTIONS ...ttt 211
5.3. TIME-DEPENDENT DIFFUSION SOLUTIONS FOR M/M/1................ 212
5.3.1  The diffusion equation ............cccceeeiiieeiiie e 212
5.3.2  Diffusion solutions combining exponential and Normal functions.....213
5.3.3  Equilibrium distributions with more general statistics ....................... 218
5.3.4  Consequences for variance of assuming Kobayashi's formula ........... 220
5.4. CONTINUUM APPROACHES FOR EQUILIBRIUM QUEUES............ 221
5.4.1 Exponential solution of the Fokker-Planck diffusion equation........... 221
5.4.2  Adding arrival and service statistics through Gamma approximation.224
5.4.3 M/D/1 growth test with Gamma approxXimation ..............ccecveerinnnn. 229
5.4.4  Other candidate distributions and their asymptotic properties............ 230

9



5.4.5  Fitting general time-dependent distributions.............cccceevveevieeennnen. 232
5.5. COMBINATION APPROACHES TO APPROXIMATING

DISTRIBUTIONS ...t e e r e e e e e e e e 233
5.6. MATCHING CONTINUOUS AND DISCRETE DISTRIBUTIONS....... 234
5.6.1 Motivation and approach.........ccceeeeiiieiiiiie e 234
5.6.2  Relating discrete probabilities to intervals of the continuous function.....
......................................................................................................... 234
5.6.3  Interpreting the origin of the continuous function ............c.cccccceeneee. 235
5.6.4  Effect of weighting on the Gamma distribution used as an equilibrium
L8] 10X (oo RSP SR 236
5.6.5  Using nested exponential/geometric distributions for the equilibrium
(010] 1010103 T=T o | PP PPUPR 236
5.7. LINEAR COMBINATION APPROACH ...t 239
5.8.  LOGNORMAL APPROACH. .. ..ottt 241
5.9. EXPONENTIALLY-WEIGHTED NORMAL APPROACH ................... 244
5.9.1 Formulation and itS CONSEQUENCES ........cccveerieeiiienirienieeeiee e niee s 244
5.9.2  Formulae for weighted exponential distribution as equilibrium
(010] 0010103 T=T o | PP PPPPRRP 245
5.9.3 Formulae for weighted Normal distribution as dynamic component . 246
5.9.4  Combining the diStribUtioNS ...........ccccveiiiie e 247
5.10. SOLVING EXPONENTIALLY-WEIGHTED DISTRIBUTION
COMBINATION . ...ttt ettt nbee s 248
5.10.1 Motivation and approach.........cccceeveeiiiie i 248
5.10.2 Practical problems affecting analytical solution methods.................. 248
5.10.3  Selecting initial parameter values and target criteria.............c.......... 249
5.10.4  Early unsuccessful attempts at efficient solution................ccccceeenne. 250
5.10.5 Solution results using EXcel SOIVEr............cccoveiiiieeiiie e, 251
5.11. CONCLUSIONS ON ESTIMATING PROBABILITY DISTRIBUTIONS
............................................................................................................ 257
CHAPTER 6: QUEUING ON MULTIPLE LANES. .......cccoiiiiiieieeiee e 258
6.1. INTRODUCTION.....ciiiiiiitiiiiieiie ittt 258
6.2. MULTI-LANE FORMULATION AND ANALYSIS OF TWO LANES. 258
6.2.1  Apparent problem with queuing on two lanes............ccccccoveevvveennn. 258
6.2.2  Simulation of multi-lane queues and their probability distributions... 260
6.2.3  Markov model of multi-lane qUEUINg...........ccoveiiireeiiiee e, 264
6.2.4  Queue size probability distributions from Markov simulation of 2 lanes.
......................................................................................................... 265
6.2.5 Interpretation of shared service as ‘borrowing’ of capacity between
JNIES ettt 268

6.2.6  Evolution of probabilities where arrivals select one queue at random 269

6.2.7  Estimation of two lane moments and probability distributions.......... 270
10



6.2.8  Evolution of probabilities where arrivals select shorter of two queues....

......................................................................................................... 274
6.3. EXTENDING TO ANY NUMBER OF LANES. .......cccccooviiieieecie i, 276
6.3.1  Relationship to multi-channel qUeUE ProCess.........cccocveviveiiieiiieeninnnn 276
6.3.2  Can multiple lanes be represented by P-K formula with modified
PATAMETEIS? ...ttt 277
6.3.3  Are Censored Poisson or Erlang processes relevant to multi-lane
QUBUES? ettt ettt e et et 278
6.3.4  Emergent patterns from simulation of two or more lanes................... 279
6.3.5 Conclusions on extension to any number of lanes ............ccccccooeeenenn 283
6.4. MULTI-LANE METHOD WITH TURNS BASED ON UTILISATIONS....
................................................................................................................ 284
6.4.1  Motivation and approach ... 284
6.4.2  Effect of service sharing and turning movements on utilisation......... 284
6.4.3  Space sharing inasingle 1ane ............cccooveiiiii i 288
6.4.4  Averaging capacities of streams sharing a lane..........c..c.ccccevvvvverinnennn 289
6.4.5  Effective capacity on each movemMeNt .........cccoovvviivveriienie e 290
6.5. EXTENSION TO TIME-DEPENDENCE............ccoceoiiiiieii e, 292
6.5.1 Time-dependent simulation with turning movements........................ 292
6.5.2  Time-dependent estimation using the shearing method ..................... 293
6.5.3  Practical algorithm for time-dependent lane queues with turning
MNOVEIMENTS ... et ettt e e s e e e e e e e e e e s e e e s e e e e s nnnre e e e 294
6.5.4  ReSUlts and diSCUSSION ......cccueeiiieiiiiiiie it 295
6.6. CONCLUSIONS ON QUEUING ON MULTIPLE LANES .................... 299
CHAPTER 7: COMPUTATIONAL ISSUES AND DEMONSTRATOR................ 300
7.1, INTRODUCTION ...ooiiiiiiiiiiesieesee ettt 300
7.2.  FIELD OF APPLICATION OF THE METHODS ........ccccoiiiiiiiniieniene, 300
7.3. DEMONSTRATOR... ..ottt 301
7.4. SUMMARY OF BENCHMARKING AND TEST PROGRAMS ............ 305
CHAPTER 8: SUMMARY AND CONCLUSIONS.......ccccoiiiiieniieiieeie i 306
8.1, ACHIEVEMENTS ...ttt 306
8.1.1 Extension and demonstration of tools for estimating time-dependent
UEBUEBS ettt ettt e e e e ettt et e e e e e ettt e e e e e e e ettt et e e e e e e e a e e e e e e e a s nnre e 306
8.1.2  Main INNOVALIONS .....ccvvieiiiiiie st siie ettt 306
8.1.3  Review of relevant past work and underlying isSues..............cc..cc...... 307
8.2, IIMPACTS ..ottt 308
8.2.1  More reliable traffic and assignment modelling............cccccoevvviveinnnnn 308
8.2.2  Better treatment of variability and unreliability ....................cc.oone. 308
8.3. POTENTIAL FUTURE WORK ......coiiiiiieiieiiiesice e 308
REFERENGCES ...ttt sttt nnaaennee s 309



APPENDIX A — DERIVATION OF MEAN AND VARIANCE FORMULAE .....324
Al TIME DERIVATIVE AND DETERMINISTIC MEAN OF THE M/M/1

QUEUE ..ottt e s e s e s e s ee s es et e s s e eerens 324
A.2 DETERMINISTIC VARIANCE OF THE M/M/1 QUEUE ........cooou..... 324
A3 TIME DERIVATIVE AND DETERMINISTIC MOMENTS OF THE
IMI/DIL QUEUE. .. ..o vooeveeeeeeeeeeee e e s s ee et es e e es e s ee s e s s aereeeseeees 325
A4 EQUILIBRIUM RECURRENCE RELATIONS OF THE M/D/1 QUEUE.....
................................................................................................................ 327
A5 EQUILIBRIUM MEAN OF THE M/D/1 QUEUE «...covvoveeveeereerreseenn, 328
A6 EQUILIBRIUM VARIANCE OF THE M/D/1 QUEUE.......cocovvrvvreeren, 328
A7 SPECULATION ON THE GENERALITY AND MEANING OF THE
VARIANCE RESULT oovoveeeeoeeeeseee e eseeeseee s eseeesseess s eeseeeseasssesseesseaseessens 329
APPENDIX B — M/M/1 PROBABILITY DISTRIBUTION ALGORITHM BASED
ON SERIES FORMULA ......oeoeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseesseeeseeeseessesseeaseesseeesesaseees 332
APPENDIX C — MARKOV PROBABILITY DISTRIBUTION ALGORITHM AND
EXAMPLES ..o eeeeee e ee e e esee s ee s ese s e s s s as s eeseeseee s es s eerens 336
APPENDIX D — HEIDEMANN’S SIGNAL QUEUE FORMULA..........cocoovveen... 343
APPENDIX E — COMPARISON OF SOME ALTERNATIVE TIME-DEPENDENT
QUEUE/DELAY FORMULATIONS ..o eeeeeeeeeseeeeeeesseeeseesseesseasees 347
E.1 CATLING’S FORMULATION OF SHEARING ......ooovvvrvverreesresres 347
E.2 VOLUME-DELAY AND CONICAL FUNCTIONS .....cocovverirmrrrreeanee. 348
E.3 THE HIGHWAY CAPACITY MANUAL DELAY FUNCTION........... 350
E.4 THE AUSTRALIAN FORMULATION......ovviiveeieeeeeeeeeeeeeseeeeereeneeee 351
E5 COMPARISON OF THE METHODS ..o 352
E.6 COMMON BEHAVIOUR AND UNDERLYING STRUCTURE ........... 354
E.7 ANALOGOUS FORMULATION OF M/D/1 SOLUTION .......ccoooeeen... 356
E.8 POSSIBILITY OF EXPONENTIAL APPROXIMATIONS .......ccoocen..... 356
E.9  SUMMARY ..ot ee e eeeeesee s seee s eereeseeee 358
APPENDIX F - STANDARD ERROR OF EQUILBRIUM MEAN QUEUE
ESTIMATE oottt s e s s e s e s eees e es e s ee e s 359

12



LIST OF FIGURES

Page
Figure 1.1.1 Original figure of Kimber and Daly (1986) showing observed queue 24
variability
Figure 1.1.2 Original figures of four authors illustrating shearing and its precursors 24
Figure 1.1.3 Growth/decay example using LR909 methods (time-advanced, not 25
time-sliced)
Figure 1.1.4 Original figure of Kimber et al (1986) showing bi-Gaussian fit to 27
variance data
Figure 1.2.1 A possible definition of congestion: vehicle-minutes marginal total 33
delay per additional demand in 1 and 2 hour peaks, as a function of demand/capacity
(Taylor 2012)
Figure 1.2.2 State and phase transitions 3.8km upstream of a flow breakdown, 35
showing clustering into ‘free flowing’ and ‘congested’ regimes with large short-term
variability and uncertain meaning of ‘capacity’.
Figure 1.2.3 MTV space/time plot with horizontal queue model superimposed on 35
queue caused by large slow moving vehicle.
Figure 1.3.1 lllustration of time-slicing applied to a traffic demand peak 37
Figure 1.5.1 Linkage of Chapters developing the technical argument 45
Figure 1.5.2 Work plan in terms of information flows from sources to objectives and | 46
impacts
Figure 1.5.3 Framework of the research in terms of technical components 46
Figure 2.3.1 Basic state transition diagram for M/M/1/1 ‘parking’ process 55
Figure 2.3.2 Completed state transition diagram for M/M/1/1 ‘parking’ process 57
Figure 2.3.3 Lag-loops generated by an oversaturated peak, with points every 9 64
minutes (left: mean queue against demand intensity; right: variance against mean
queue
Figure 2.3.4 Headway coefficient of variation for three-way hyper-exponential cases | 67
Figure 2.3.5 M/M/1 steady state queue L, and relaxation time 1 v. demand intensity | 67
Figure 2.5.1 -In(p;) and —In(In(pi)) (queue size probability) distributions for peak 79
case J2P4
Figure 2.5.2 Showing abrupt failure cases of otherwise consistent Markov models 82
Figure 2.5.3 Alternative probability distributions for J2P4 M/M/1 at maximum 83
variance
Figure 2.5.4 Series and Markov M/M/1 probability distributions compared for J2P4 | 83
for initial state and in 9-minute t/s through the peak. The graphs cannot be separated
(scales vary)
Figure 2.5.5 Markov M/D/1 probability distributions for J2P4 for initial state and in | 84
9-minute t/s through the peak - these differ from the Series M/M/1 graphs (scales
vary)
Figure 2.5.6 Simulated profiles for J2P4 peak case, showing p, L, D, V (not to same | 84
scale)
Figure 2.5.7 M/M/1 distribution sequence generated by Markov simulation 85

13




Figure 2.5.8 Deviation from equilibrium in M/M/1 queue development 85
Figure 3.2.1 Relationship between n and p for various Er/M/1 88
Figure 3.3.1 M/D/1 queue mean and variance calculated by different methods 99
Figure 3.5.1 Markov simulated M/Em/1 ‘raw’ probability distributions for several m | 105
Figure 3.5.2 Markov simulated M/Em/1 final probability distributions for several m | 106
Figure 3.5.3 Markov simulated Er/M/1 final probability distributions for several r 107
Figure 3.5.4 Calculated versus Markov simulated Erlang distribution moments 108
Figure 3.5.5 Markov simulated ‘raw’ Bulk arrivals probability distributions 109
Figure 3.5.6 Markov simulated ‘raw’ Bulk service probability distributions 110
Figure 3.5.7 Final Markov simulated Bulk service probability distributions 111
Figure 3.5.8 M/M/n equilibrium probability distributions for several values of n 113
Figure 3.6.1 Fit between doubly-nested model and exact calculated M/D/1 116
distributions

Figure 3.6.2 Fit between doubly-nested model and simulated M/D/1[G] distributions | 116
Figure 3.6.3 Doubly-nested model of M/M4/1 ‘bulk service’ case 117
Figure 3.6.4 Doubly-nested parameters for time slices in J2P4 peak case 118
Figure 3.6.5 Doubly-nested parameters for M/M/n queue with p = 0.8 119
Figure 3.6.6 Doubly-nested approximations to M/M/n queue distributions for p =0.8 | 119
Figure 3.7.1 Sketch of a signal queue, showing phase and stochastic components 120
Figure 3.7.2 Dependence of M/D/1[G] equilibrium mean queue on green period G 122
Figure 3.7.3 Markov simulated equilibrium pee for a range of M/D/1[G] processes 123
Figure 3.7.4 Markov-simulated po against the function z(p,G,2) (expanded scale at 124
right)

Figure 3.7.5 Performance of M/D/1[G] p, estimates compared to simulation 125
Figure 3.7.6 Relationship between normalised L, values and the function z 126
Figure 3.7.7 Cronjé log factor error dependence on p and G 127
Figure 3.7.8 Dependence on p of average slopes in Figure 3.7.7 128
Figure 3.7.9 Performance of normalised Cronjé-Newell and adjusted queue models 129
Figure 3.7.10 Best fit of n/p as function of z for estimating L.[G] 130
Figure 3.7.11 Exponential approximation to V.[G]/Ve[1] using link parameter { =-3 | 131
Figure 3.7.12 Results of M/D/1 estimations for 25 combinations of p and G 132
Figure 3.7.13 Fit between estimated and simulated extended M/D/1[G] moments 132
Figure 3.7.14 Arrivals dispersion I, needed to give estimated L.[G] 133
Figure 3.7.15 Function of dispersion I, needed to give estimated L.[G] 134
Figure 3.7.16 M/D/1[G] simulated extended distributions for p=0.8 and various G 135
Figure 3.7.17 Common trend component for variances of ‘notional’ parts of 136
distributions

Figure 3.7.18 Simulated M/D/1[G] equilibrium probability distributions 137

14




Figure 3.7.19 Normalised M/D/1[G] probability distributions 138
Figure 3.7.20 Simulated and estimated ratios between successive probabilities, G=5 | 138
Figure 4.2.1 Graphical interpretation of the shearing transformation 142
Figure 4.3.1 Markov simulated and sheared queue growth functions 154
Figure 4.3.2 Performance of various candidates for the o function 158
Figure 4.3.3 w3 function against ‘relaxed time’ (two points with ®> 2 omitted) 158
Figure 4.3.4 o3 function against absolute time (n=1) 159
Figure 4.3.5 w3 function against short actual times 160
Figure 4.3.6 Q function against ‘relaxed time’ (compare with Figure 4.3.3) 160
Figure 4.3.7 o function v. shifted ‘relaxed time’, model factor = 1.77, RMSE = 161
0.024

Figure 4.3.6 Q function v. shifted ‘relaxed time’, model factor = 0.85, RMSE = 161
0.018

Figure 4.3.7 RMS errors for D corrected by o and Q methods relative to Markov 162
simulated

Figure 4.3.8 Comparison of Markov and w/Q-corrected D equilibrating example 162
Figure 4.3.9 Markov and w/Q-modelled D functions for over-saturated growth 163
example

Figure 4.3.10 o function for non-zero initial queue 163
Figure 4.3.11 Queue and delay development for equilibrated or exact initial queue 164
Figure 4.3.12 Markov and w/Q-estimated D functions for equilibrated or exact L, 164
Figure 4.3.13 Optimal Q, for various p and initial states 165
Figure 4.3.14 Fit of Markov and w/Q-estimated L and V for various initial states 167
Figure 4.3.15 Q values for various initial states 169
Figure 4.3.16 Fit of calculated Q for various initial states 169
Figure 4.3.17 Qg versus variance ratio for various initial states 170
Figure 4.3.18 Linearised trend model for Q adjustment factor when p<1 171
Figure 4.3.19 Effect of Q) adjustment on variance estimates for p=0.9 cases 171
Figure 4.4.1 Difference from deterministic asymptote for various estimation methods | 174
Figure 4.4.2 Linearised trend estimate of Q ratio for p>1 174
Figure 4.4.3 Effect of Oy on variance estimates for p>1 growth test cases 175
Figure 4.4.4 Correction factors to Q, for p>1 time slices in peak cases 176
Figure 4.4.5 Oversaturated growth at p=1.3, u=1 from equilibrated initial queue size | 176
20 using two different calculation methods

Figure 4.4.6 Benefit of using method ‘k’ in the first oversaturated time slice only 177
Figure 4.5.1 Evolution of queue size for different traffic intensities and initial states | 182
Figure 4.5.2 Characteristic time values estimated from benchmark queue sequences | 183
Figure 4.5.3 J2P4 peak case: queue size profiles estimated by various models 185

15




Figure 4.5.4 J2P4 peak case: variance size profiles estimated by various models 185
Figure 4.5.5 Effect on queue of initial states and (alt) added term in equation (4.5.5) | 187
Figure 4.5.6 Results of run-out tests using methods ‘s’ (above) and ‘m’ (below) 189
Figure 4.5.7 Results of the four run-out tests using ‘ckt-m’ combination 189
Figure 4.5.8 Similarity of alternative t values back-calculated from Markov results | 190
Figure 4.5.9 Estimated t parameters versus t back-calculated from Markov results | 190
Figure 4.5.10 Behaviour of back-calculated < for three equilibrating queues 191
Figure 4.5.11 Predicted and Markov profiles for heavy peaks (p..=0.8086) 191
Figure 4.5.12 Factor to apply to T, to correct variance during decay in one peak case | 192
Figure 4.5.13 Probability distributions at start of J3P9 decay and 10 and 20 minutes | 193
later

Figure 4.5.14 Comparison of estimated 1., and ‘optimum’ based on L 194
Figure 4.5.15 Comparison of estimated t,, and ‘optimum’ based on V 194
Figure 4.5.16 Three ‘randomly generated’ traffic profiles: p above, p below 196
Figure 4.5.17 Modelled v. Markov mean queue, delay and variance for ‘random’ cases 196
Figure 4.6.1 Model of queue development regimes 198
Figure 4.6.2 Match of variance estimates in all peak cases, using exponential decay | 200
method

Figure 4.6.3 Estimation of variance in light, moderate and heavy M/M/1 peak cases | 200
Figure 4.7.1 Performance of optimal ‘ckt-m’ model on 34 M/M/1 peak cases (408 203
points)

Figure 4.7.2 Performance of basic (left) and origin-shifted sheared (right) M/M/1 204
methods

Figure 4.7.3 Performance on heavy peak case J3P6 (17 time slices), using M/M/1 205
process.

Figure 4.8.1 Performance of optimal ‘c-t-m’ model on 34 M/D/1 peak cases (408 208
points)

Figure 4.8.2 Performance of basic (left) and origin-shifted sheared (right) M/D/1 208
methods

Figure 4.8.3 Performance on heavy peak case J3P6 (17 time slices), using M/D/1 209
process.

Figure 5.2.1 Superimposed normalised probability distributions from J2P4 peak case | 211
Figure 5.3.1 Distributions generated by Gross et al diffusion approximation (5.3.5), | 214
respectively the full distribution, two LH terms and RH term (p values

unnormalised).

Figure 5.3.2 Time-development of moments of approximations for M/M/1, p=0.95, | 216
Lo=10

Figure 5.3.3 Distributions generated by Kobayashi diffusion approximation (5.3.6) 217
Figure 5.3.4 Time-development of sums of probabilities in diffusion approximation | 217
Figure 5.3.5 Time-development of approximations to M/D/1, p=0.95, Lo=5, c,=0 218
Figure 5.3.6 Comparison of nested discrete and continuous equilibrium distributions | 219

16




Figure 5.4.1 Comparison of discrete M/M/1 and continuous equilibrium queue 222
distributions

Figure 5.4.2 Linking of transformed maxima of Gamma distributions and estimates | 226
Figure 5.4.3 Optimum k and v parameters for Gamma distributions 226
Figure 5.4.4 Optimum x and 1 adjustments for Gamma distributions 226
Figure 5.4.5 Percent RMS error of Gamma distribution fits for various values of p 227
Figure 5.4.6 Fit of Gamma distributions to simulated M/D/1[G] distributions 227
Figure 5.4.7 Simulated extended M/D/1[G] and adjusted Gamma distributions 228
Figure 5.4.8 Match of true average P, with Gamma approximation 229
Figure 5.4.9 Comparison of growth to equilibrium with Gamma approximation 229
Figure 5.4.10 Simulated M/D/1[G] and LogNormal for p=0.9, mean and variance 231
matched

Figure 5.4.11 Simulated M/D/1[G] and Poisson for p=0.9, mean matched 231
Figure 5.6.1 Fitting exponential functions to parts of doubly-nested geometric 237
distribution

Figure 5.8.1 Exponential and LogNormal distribution fit results for J3P9 243
Figure 5.8.2 Simulated and exponential+LogNormal distributions for J3P9 post-peak | 243
Figure 5.10.1 Verification of distribution fit by time-slice for J2P4 moderate peak 251
Figure 5.10.2 Verification of distribution fit by time-slice for J3P9 heavy peak 251
Figure 5.10.3 Intrinsic distribution fit errors by time-slice for J2P4 moderate peak 252
Figure 5.10.4 Intrinsic distribution fit errors by time-slice for J3P9 heavy peak 252
Figure 5.10.5 Intrinsic distribution fits in four time slices of J2P4 moderate peak 253
Figure 5.10.6 Intrinsic distribution fits in four time slices of J3P9 heavy peak 253
Figure 5.10.7 Distribution fit errors through time-slices for J2P4 moderate peak 254
Figure 5.10.8 Distribution fit errors through time-slices for J3P9 heavy peak 254
Figure 5.10.9 Example distribution fits in four time slices of J2P4 moderate peak 255
Figure 5.10.10 Example distribution fits in four time slices of J3P9 heavy peak 255
Figure 6.2.1 Two lane approach with possibility of lane choice and service sharing 259
Figure 6.2.2 Sample queue size distributions for 4 lanes (p=0.9, u=1.0, 9000 events) | 263
Figure 6.2.3 Equilibriated distributions for 4 lane cases (p=0.9, u=1.0, 1M events) 263
Figure 6.2.4 Comparing queue moments based on estimated p with simulation 264
Figure 6.2.5 Markov simulated queue size distributions for some two-lane cases 265
Figure 6.2.6 State transition diagram for two lanes 268
Figure 6.2.7 Estimates of Pq for two lanes and a range of traffic intensities 272
Figure 6.2.8 Simulated and estimated py; probability distributions, two lanes, p=0.8 273
Figure 6.2.9 Calculated lane queue variances for two lanes and range of p values 274
Figure 6.3.1 Variation of M/M/n quantities with number of channels n, p=0.8 277
Figure 6.3.2 Markov multi-lane distributions against transformed state variable 280

17




Figure 6.3.3 Performance of formula estimation percentage error in Py 282
Figure 6.3.4 Fit of adjusted estimates of Py and mean queue to simulated values 283
Figure 6.4.1 Two lanes with turning movements and shared service 282
Figure 6.5.1 Average of event simulations of oversaturated queues on four streams 292
Figure 6.5.2 Detail of one of the event simulations for the above case showing 293
variability

Figure 6.5.3 Verification of exponential generator in simulation (100,000 events) 293
Figure 6.5.4 Total queues in test cases simulated and calculated from simulation data | 296
Figure 6.5.5 Test cases calculated from specification v. simulated component queues | 297
Figure 6.5.6 Standard deviations of simulated component queues between runs 297
Figure 7.3.1 Part of Case worksheet for J3P9 (M/M/1) (time-slices in columns) 302
Figure 7.3.2 Part of Demo worksheet for J3P9 (M/M/1) (time-slices in rows) 302
Figure 7.3.3 Distribution worksheet example for J3P9 (M/M/1, Ts 12) 302
Figure C.1 Qsim condensed help listing 340
Figure C.2 Qsim command and data file for simple growth problem 340
Figure C.3 Markov calculation of M/M/1 growth from zero over increasing time 340
periods

Figure C.4 M/M/1 growth in successive time slices of increasing duration 341
Figure C.5 Markov calculation of M/D/1 queue growth, note larger po, smaller L, 341
same po(ave)

Figure C.6 Markov calculation of M/D/1 [G=10] growth. Time points and step size | 341
must be reduced by factor of G to compensate for lengthened service intervals.

Figure C.7 Data for a peak case J2P4, (p, u, t), where the first time slice is 341
equilibrated

Figure C.8 Development of Markov-simulated distributions for M/M/1 queue 342
growth

Figure C.9 Development of Markov-simulated distributions for M/D/1 queue growth | 342
Figure C.10 Development of Markov-simulated distributions for M/D/1 [G=10] 342
growth

Figure D.1 Comparison with Webster-Cobbe queue for cases based on Heidemann’s | 345
Figs. 3 and 4, using (D.11) and estimated formula for M/D/1[G] mean queue

Figure E.1 Original Figure 2 from Catling (1977), relating to Doherty’s method 348
Figure E.2 Sketch of conical volume-delay function 349
Figure E.3 Akgelik (A) and M/D/1[G] (M) equilibrium stochastic queues compared | 352
Figure E.4 Different methods compared for theoretical minimum green case 353
Figure E.5 Different methods compared for a case with a long green time 353
Figure E.6 Behaviour of utilisations of the different methods 354
Figure E.7 Effective versus quasi-static utilisations for HCM queue function 355
Figure E.8 Exponential alternatives to the M/D/1 function 356
Figure F.1 Standard error of mean queue estimate as function of no. of events 361

18




LIST OF TABLES

Page
Table 2.4.1 Construction of recurrence formula (2.4.4) for p; 69
Table 2.4.2 Conditions for getting given final queue in green period of capacity G | 71
Table 2.4.3 Charts relating final to initial state for different green capacities 72
Table 2.4.4 Construction of recurrence relation for p, in the case G=1 73
Table 2.4.5 Construction of recurrence relations for states in the case G=5 74
Table 2.5.1 Definition and properties of peak case J2P4 as used here 78
Table 3.2.1 Expansion of terms in equation (3.2.17) (m represents any integer > 1) | 92
Table 3.7.1 Accuracies of the M/D/1[G] queue size models (limited to 1 X Ley) 127
Table 3.7.2 Accuracies of the M/D/1[G] queue size estimates (> 1 X Lepy) 130
Table 4.3.1 Experimental/estimated values of Q, and calculated values of Q... In 165
each group: limit Q values (left), ‘optimum’ values (middle), and theoretical values
if known (right)
Table 4.3.2 RMS errors with Q-corrected models, p=0.9 171
Table 4.3.3 Definition of approximation methods for queue growth 172
Table 4.5.1 Calculated relaxation and characteristic times (Lo~ 19, u=1) 182
Table 4.5.2 Best interpolation methods for J2P4 — second best in brackets where 186
error <2x
Table 4.5.3 Definition of decay run-out cases 188
Table 4.5.4 Average errors in decay run-out tests 188
Table 4.6.1 Summary performance of best method combinations in all peak cases 199
Table 4.7.1 Definitions of approximation methods 201
Table 4.7.2 Methods used in different regimes of queue development 201
Table 4.7.3 Errors for method combinations on M/M/1 peak cases 202
Table 4.8.1 Errors for method combinations on M/D/1 peak cases 207
Table 5.10.1 Excel Solver estimation schemes for distribution parameters 251
Table 5.10.2 Throughput parameters for the peak cases tested 256
Table 6.2.1 Queue sizes in multi-lane simulations (p=0.9, u=1.0, 1M events) 261
Table 6.2.2 Arrival and service intervals in simulations (p=0.9, u=1.0 shared, 1M 261
events)
Table 6.2.3 Probability of zero queue in simulations (p=0.9, u=1.0, 1M events) 261
Table 6.2.4 Standard deviation of queue size in multi-lane cases (p=0.9, u=1.0, 1M | 262
events)
Table 6.2.5 Geometric ratio in probability distribution (p=0.9, u=1.0, 1M events) 262
Table 6.2.6 Probability distributions in whole system or each of 2 lanes, p=0.8 266
Table 6.2.7 Invariant values for the Markov simulated two-lane cases 266
Table 6.2.8 Markov simulated elementary and lane state probabilities, random 267

selection

19




Table 6.2.9a Rho-factored (arrival) components of dp;/dt=0 269
Table 6.2.9b Unit-factored (departure) components of dp;;/dt=0 269
Table 6.2.10a Rho-factored (arrival) components of dp;/dt=0 275
Table 6.2.10b Unit-factored (departure) components of dp;/dt=0 275
Table 6.3.1 Queue size in each lane predicted by equation (6.3.8) 279
Table 6.3.2 Comparison of ‘Effective rho’ values for M/M/1 multi-lane 281
approximation

Table 6.3.3 Pg values estimated by M/M/1 approximation and their errors 281
Table 6.3.4 Pq values and errors based on adjusted estimates 282
Table 6.4.1 Grouping of elementary probabilities for two lanes with shared service | 285
Table 6.4.2 Utilisation construction for three lanes with shared service 285
Table 6.5.1 Results using specified arrival and capacity rates, with y estimated 296
iteratively

Table 7.4.1 Summary of simulation and other programs 305
Table D.1 Glossary of variables 343
Table D.2 Parameters used to generate cases in Figure D.1 346
Table F.1 Queue sizes in earlier multi-lane simulations (p=0.9, u=1.0, 10,000 362

events)

20




CHAPTER 1: INTRODUCTION AND REVIEW

The thesis of this dissertation is that general expressions for deterministic time-dependent and
equilibrium queue variance can be derived, and when combined with corresponding
expressions for the mean queue, including existing methods modified for accuracy, enable both
mean and variance of queues to be estimated with improved accuracy. The results can be used
to estimate general time-dependent profiles of queue mean and variance under transient
oversaturation. Dynamic probability distributions can be estimated from queue moments,

giving more detailed information about the reliability of facilities under congested conditions.

1.1. BACKGROUND AND CONTEXT

1.1.1 Link between variability and congestion in traffic networks and other facilities

Origins and destinations of journeys are distributed in space, so any traffic that does not have
total freedom of movement tends to move through a network linking these points. All network
links, generators and attractors are subject to capacity limitations and hence to delay and
congestion when demand exceeds their capacity, and delay rises steeply when capacity is
approached. Journeys tend to be constrained in time as well as route choice, so options to
redirect demand may be limited. Where capacities are inflexible’ and demand is not
manageable at source?, as is typical of roads, hospitals and other health services, call-centres,
over-counter services etc, there is risk of congestion, leading to disruption and dissatisfaction.
Variability of demand and service makes congestion to a degree unpredictable, while
nonlinearity and sensitivity around saturation further complicate prediction. Where scope for
new ‘provision’ is limited, reliability becomes a primary objective. In the quest for improved
reliability, a first step is to understand how variability affects the network, and where queuing is
the main effect the natural way to describe this is in terms of the variance of queue size. Direct
simulation is costly. For some processes, deterministic® and analytical* methods are well
developed for calculating mean queue sizes or waiting times in equilibrium, as well as some
transient behaviour, and approximations are available for more general time-dependent
behaviour. However, calculation of variance is limited to equilibrium values for a few
processes, or empirical methods for particular scenarios. No general time-dependent method

has been available for calculating variances or dynamic queue size probability distributions.

Counter-examples of service with some flexibility include supermarket check-outs and airline check-in desks.
2Examples of demand controlled at source could include pre-booked airline or train seats.
3Deterministic’ is used here broadly to mean an expression which does not require or depend directly on
randomness, though it can include invariants of random processes.
* Analytical' is used here loosely to mean closed-form formulae embodying the structure (analysis) of a problem,
not just an empirical or statistical fit to data.
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1.1.2 Costs of road traffic congestion

While not the only area of interest, road traffic is a convenient, as well as intensively studied,
paradigm. Road traffic congestion seems to increase relentlessly throughout the world. There is
a view, summarised as ‘peak car’, that road traffic in the UK (and elsewhere) may have peaked
and now be in decline (Goodwin 2010, Metz 2009,2010). However, this is not universally
accepted, and spectacular extreme congestion and delay events occur particularly in the
‘developing’ world (e.g. Global Times 2010), while in ‘developed’ countries a high proportion
of congestion is associated with recurrent demand (65% in the UK, 55% in the USA), as
opposed to temporary loss of capacity through incidents, works or weather, and is therefore
likely to recur at times and places where the network is most sensitive to variability. The annual
cost of congestion in the UK has been estimated by Eddington (2006) as £8B, while a recent
opinion survey (LTT 2012) produced estimates as high as £30B per annum. Apart from the
question what constitutes ‘congestion’ as distinct from unavoidable delay (Lay 2011, Taylor
2012), the inability economically or politically, or even theoretically, to build a way out of
congestion (‘predict and provide’) has led to a focus on reliability. Reliability is defined
formally as the probability of a system performing its intended function during a given time
period, but this is unhelpful for roads whose performance is not under the full control of
operators. Therefore it tends to be measured in terms of journey time variability, which may be

valued differently from average time (Gordon et al 2001, Fosgerau and Karlstrém 2010).

The UK Department for Transport has used two measures of journey time reliability in its
published statistics: from July 2005 to March 2010 average delay on the 10% most delayed
journeys on a set of routes; from April 2010 the average percentage of journeys arriving ‘on
time’ set against reference speeds. These apply to strategic routes, where delays result mostly
from transient overload or flow breakdown, or loss of capacity through incidents and road
works. Speed/flow/density relationships are often used to describe local traffic conditions and

to characterise level of service, though the latter is problematic (see e.g. Taylor 2012).

In urban road networks, delays may arise from random fluctuations in demand or capacity as
well as overload. When average demand is below average capacity, some capacity remains
unused, so upward fluctuations sufficient to cause a queue to form are not compensated by
downward fluctuations, resulting in a net average queue that increases with variability. There
are ongoing studies of macroscopic speed/flow/density relationships (MFD) for urban
networks, analogous to those associated with motorways, that may lead to a concept of level of
service for urban networks (B G Heydecker, personal communication). The present work is
concerned only with delay arising from explicit queuing rather than from reductions in average

speed. Some delay is an inevitable price of mobility, because the economic cost of relieving it
22



completely could not be justified (Miller 1969, and other references in Taylor 2012). In the
absence of control over demand and capacity, reliability implies keeping delay within tolerable
limits by managing or allowing for variability. A first step towards this is to be able to predict
variability of delay, which requires an understanding of the variance of queuing processes.

1.1.3 Development of time-dependent queuing theory

Queuing theory applied to all kinds of communication networks and service facilities has a long
history going back to the work of Agner Krarup Erlang at the Copenhagen Telephone Company
(Erlang 1909). In the 1930s interest developed in the performance of freeways in the USA, but
this focused on continuous flow rather than queuing (Greenshields 1935). Application to road
traffic began in earnest in relation to uncontrolled junctions and traffic signals in the late 1950s
and 1960s (Webster 1958, Tanner 1962, Webster and Cobbe 1966), and later to the design of
priority junctions and roundabouts. Allsop (1971) focused on the optimisation of signal timings

to minimise total delay, as an alternative to Webster’s principle of equal saturation on all arms.

In the 1970s and 1980s observations and track experiments led to empirical models of junction
capacity and development of approximate formulae. Work funded over several years by the UK
Department for Transport (DfT) used the multi-disciplinary staff and special track facilities at
the Transport Research Laboratory (TRL)® to set up repeatable controlled experiments, as well
as direct observations. In the late 1970s P D Whiting®, Robertson and Gower (1977), Doherty
(1977) and Catling (1977), working at the DfT or at TRL, developed coordinate transformed or
‘sheared’ methods, subsequently refined by Kimber and Hollis (1979). These methods combine
deterministic queue development with random equilibrium queuing theory to give an
approximation to time-dependent queues, including growth through saturation that neither
component can handle separately. Akcelik (1980, 1998a,b) describes analogous methods

developed in the 1980s for priority and signal junctions.

These results contributed to the development of several computer programs to assist priority
and signal junction and network design including TRANSYT, CONTRAM, ARCADY,
PICADY and OSCADY (Robertson and Gower 1977, Kimber et al 1985,1986, (Semmens
1985a,b), Burrow 1987, Leonard, Gower and Taylor 1989, Taylor 1990,2003). During this
period, Kimber and Daly (1986) explored the variability of queues under consistent conditions.
They found that predicted queue size matched the real average well, but individual observed

gueue sizes covered a range up to more than twice the average, as shown in Figure 1.1.1.

*“TRL may be taken to include all its previous manifestations, including RRL or TRRL as it was known until
1990 while still the research arm of the UK Department of Transport, and up to and after privatisation in 1996.
SWhiting left computer code but no documentation, but is also referenced with Hillier for optimum route search.
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In the USA, Gordon F Newell (1960,1968a,b,c,1971,1982) was a pioneer of queuing theory
applied to road traffic in the late 1960s, and may have been the first to suggest combining
deterministic and quasi-static equilibrium functions, in his case using a diffusion
approximation, but did not go so far as to develop a practical time-dependent analytical closed
formula applicable to transient over-saturated queues. Figure 1.1.2 (a-c) reproduces some of the
original figures of these authors, showing the common theme in their ideas and the idea of
‘shearing’ the equilibrium function into the time-dependent function. Figure 1.1.2 (d) shows

that unlike the mean queue, variance does not ‘shear’ naturally.

60

50 |- —e—e— Average queus length over days : observed
~O——O——Average queue length over days : predicted {method I1)

= — — —  Average queue length over days : predicted (method I)

40 — Approximate envelope of day-specific
observed queue langths

4.00 5.00 6.00
Time(hr:min, pm)

Figure 1.1.1 Original figure of Kimber and Daly (1986) showing observed queue variability

Figure 1.1.2 Original figures of four authors illustrating shearing and its precursors
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1.1.4 Seeking improved accuracy

As will be discussed later, the sheared queue approximation contains a source of inaccuracy in
its implicit assumption that a dynamically developing queue behaves as quasi-static or locally
in equilibrium. Dissatisfied with its accuracy, Kimber and Hollis (1979) modified the sheared
formula for growth by replacing the initial queue by a shift in the time origin. By so doing they
hoped to avoid indeterminacy of the initial queue state (equivalent to an unspecified probability
distribution) by making it the result of the growth process. For a decaying queue, they assumed
that an initial queue greater than twice the equilibrium value (at the current level of demand)
decays linearly to that value, after which it behaves like a mirror image of the growth function
as it falls to its equilibrium value. Queue development profiles estimated by alternative methods
are compared in Figure 1.1.3, where the subscript ‘0’ indicates the initial state at t=0, and
subscript ‘e’ indicates the equilibrium state. This particular example does not support the idea
that the origin-shifted/mirror-image method delivers better accuracy compared to benchmark
Markov simulations (using step size 0.1 unit), and maintaining the initial rate of decay for an

extended period tends to overestimate the rate at which the queue falls.

Lo=5, growth @ £=0.9524 (Le=20), decay @ p=0.8333 (Le=5)
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Figure 1.1.3 Growth/decay example using LR909 methods (time-advanced, not time-sliced)

While the origin-shifted/mirror-image method is ingenious, requires no additional empirical
parameters or constants, and plays a part in this research, it appears to rely on graphical rather
than physical arguments, and the accuracy of its approximation was not investigated further.
This work aims to improve accuracy systematically by incorporating additional natural

structural constraints including that imposed by variance.
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1.1.5 Existing approaches to calculating queue variance

While the size of a queue is governed by conservation (what enters must either leave or stay),
estimation of variance is inseparable from a probabilistic description. Queue variance can be
estimated by repeated simulations, but this is not always a practical option. While queuing
theory can provide formulae for the equilibrium variance along with the mean size of some
queuing processes, there has been no efficient closed-form method available for calculating
time-dependent variance, nor equilibrium variance for more general processes, nor specific
probability distributions. This would for example enable estimation of the likelihood of
occasional long tailbacks, or how likely it is that a queue will spill back across a junction or

other facility upstream, a situation that can exacerbate congestion or lead to gridlock.

Exact descriptions of or close approximations to time-dependent queues exist for some simpler
processes (e.g. Morse 1955,1958, Clarke 1956, Cantrell and Beall 1988). Morse (1955) gives
the earliest known exact transient solution to queue development, which is limited to the
simplest M/M/1 random queue, whose computation is demanding and subject to precision
problems. The M/M/1 solution has been extended by Griffiths et al (2005) to M/Ek/1 systems’,
representing staged service, effectively with reduced dispersion, and also multi-channel systems
(Morse 1955). Markov simulation, evolving queue state probabilities in small steps, is more
efficient than direct calculation and can be applied to any queue type describable in terms of
recurrence relations or transition probabilities, but it too is computation-intensive. Microscopic
event or ‘Monte Carlo’ simulation can represent any arbitrary process, but is the least efficient
of all. These methods are useful as benchmarks, but are too burdensome for use in most
practical predictions, unless compromised. For example, microscopic simulations of networks
may require many randomised repeat runs to get an accurate assessment of the reliability of

results, but these are seldom performed because of the cost (Wood 2012).

To the author’s knowledge, estimation of queue variance has been addressed in three ways:

e Steady state equilibrium variance of waiting time or queue size, plus some analysis of
transients (examples in most standard reference works). Addison and Heydecker (2006)
extend this by expressing the rate of change of variance in terms of other moments;

e Regression models of symmetrical peaks calibrated from the results of simulations
(Kimber et al 1986, and Figure 1.1.4), or statistical methods (Eliasson 2006);

e Dynamic relationships between observed or simulated variance and mean, giving loop-
like graphs because variance lags mean (Arup, Bates et al 2004, Addison and
Heydecker 2006, Fosgerau 2010).

" The author is grateful to the Examiners for drawing his attention to this result.
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Kimber et al (1986), using 34 synthetic symmetrical peak cases representing idealised priority
junctions with Gaussian demand profiles, fitted parameters of a ‘low definition’ model of queue
variance to simulation results using empirical power functions of peak duration and average
demand intensity. Variance was approximated by ‘stitching together’ two half-Gaussian
functions fitted respectively to the growth and decay regimes of the variance, as shown in
Figure 1.1.4. Used with the sheared or a low definition queue approximation, this enabled both
gueue mean and variance to be estimated, but only for symmetrical uni-modal peaks. Kimber et

al (1986) proposed the regression formula (1.1.1), where T _ is the time of the maximum

variance Vy, and the B; are the estimated scale parameters of the half-Gaussian fitting functions:

V(t)=V, exp (— t-T, )Z/Bf) 0 <t<Tn,

=V_exp (_ (t-T Y/B? ) Ta<t<T, (1.1.1)

1000 b=V

e Simulation
Least squares fit
-=—=— Model prediction

500 -

Variance of queue length (vehicles?)

Time (minutes)

Figure 1.1.4 Original figure of Kimber et al (1986) showing bi-Gaussian fit to variance data

Low-definition methods cannot predict the development of a queue produced by arbitrary
demand and capacity profiles, limiting their application compared with analytical time-
dependent approximations like shearing. Conversely, analytical mean queue methods do not

provide sufficient information to enable variances or probability distributions to be estimated.
1.1.6 New expression for deterministic time-dependent variance

This work establishes a basis for efficient extended approximations by deriving a new
deterministic formula for the variance of a queue and extending equilibrium formulae to
embrace a wider range of queue processes. The deterministic variance formula, given by
equation (1.1.3) below and first published in Taylor (2005a), has a structural resemblance to the

well-known deterministic mean queue formula (1.1.2) reflecting conservation of queuing units
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or customers, where L is the initial queue at time t=0, p is demand intensity (demand/capacity),
and x is the average utilisation of capacity p. L. is the equilibrium queue size of the random

process, and D(t) is the average queue size or delay per unit time over the period [0,1].
L(t)=L, +(p—x)ut  where x=x(t)>min(pl) ast -  (1.1.2)
V(t)=V, + Ly(Ly +1)+ 21— p)L, —DJut —L(L+1)  where (1.1.3)

L, =L.(p, process)  =limL(t)_inthecasep<l and  (1.1.4)

[ L(y)y (1.1.5)
0

The variance formula is believed to be general, and conjectured to represent conservation of
some higher quantity, though the physical interpretation is unclear. An equilibrium queue exists
only for demand less than capacity, i.e. p<1. However, all equilibrium queue formulae include

the divisor (1-p), so the product (1-p)L. and hence equation (1.1.3) are defined for all p.
1.1.7 Approach to the problem of queue estimation

Wherever possible this research exploits precise relationships, some of which are new and
many of which are well known, but it does not aim to repeat what has already been explored
exhaustively, nor to achieve absolute mathematical rigour in its final results. It aims rather to
enable approximate but robust and efficient computational methods to produce more
complete and accurate predictions, and in particular to estimate reliability on a sound
analytical basis rather than broad assumptions like equilibrium that are seldom tenable in
reality. Problems in traffic as posed practically are approximations to situations that are not
precisely known, either as a result of their complexity or uncertainties of measurement. A
valuable property of an approximate solution is that it reflect the underlying structure and
behaviour of a physical system, rather than just achieving a good empirical or statistical fit in
particular cases. Such a solution is more likely to make useful predictions for cases not
already encountered. This allows that there may be varying degrees of structural affinity

between the model and original problems.

Any mathematical formula is inherently precise, but few practical problems in network and

queuing analysis admit exact solutions like the M/M/1 formula of Clarke (1956) and Morse
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(1955,1958), and they can be hard to use®. Therefore, for many practical applications robust
accuracy may be preferable to fragile precision®. Precise but somewhat idealised formulae
include the deterministic queue formula (1.1.2), reflecting conservation of units/customers,
and the Pollaczek-Khinchin equilibrium queue formula relating to random processes, and
may now be considered to include the deterministic variance formula (1.1.3). The sheared
queue approximation has the advantage of elegantly fusing two mutually incompatible
formulae, capturing gross properties of time-dependent queuing with a degree of accuracy,
without the need for additional behavioural assumptions or calibration constants, and
providing a convenient basis for further development. Some superficially similar methods,
such as those reviewed in Appendix E, add empirical terms and calibration constants in

pursuit of greater accuracy, but this is felt to be undesirable in the present research.

1.1.8 Information available from standard works on queuing

Much standard material on queuing theory is concerned with steady-state equilibrium and
average waiting times, e.g. Kleinrock (1975), Newell (1982), Medhi (2003), Gross et al (2008).
Since equilibrium is seldom achieved in reality, and exact time-dependent analysis tends to be
intractable, transient response to change in inputs may be analysed. Although queuing is
naturally a discrete process, fluid diffusion approximations using continuous functions have
been exploited, e.g. by Newell (1982), Kleinrock (1976). Continuous models can be easier to
work with and can provide useful insights. Variances are derived mostly for queues in
equilibrium. Useful techniques for obtaining equilibrium probability distributions and moments
are given by Kleinrock (1975) and Bunday (1996). Such results can be of limited relevance to
dynamic traffic queues in oversaturated peak periods, where for example arrival and capacity
profiles may be quite variable and inter-dependent. Sustained peaks are common in road traffic,
so that predicting the course of queue growth and decay is more important than analysing
transients, whose causes are likely to be events separate from recurrent queuing. Long road
queues are often unavoidable because of limited control over demand and service facilities,
while in some other contexts capacity and delay may be managed more readily. Networks of
gueues are addressed in the literature, though in an industrial or telecommunications context the
networks may be simpler than in the road context, as flows may not interact and conditions be
more controllable. In road traffic networks, despite the inter-dependence of their elements, the
statistics of queuing processes are normally assumed to be those of isolated systems. Little
research has been done to verify that such approximation is valid, with the exception of Kimber
et al (1986), although the open-ended nature of such traffic problems argues against the

likelihood of building manageable comprehensive solutions.

8Kleinrock (1975) describes the complexity of the M/M/1 solution given by Morse (1958) as “most disheartening”
despite its describing the “simplest interesting queuing system”.
®This distinction is also associated with certain quotations of John Tukey (~1958).
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In practical traffic modelling, simulation is increasingly preferred to analysis. The essential
difference between competing traffic modelling approaches - microscopic, mesoscopic and
macroscopic - lies in the level at which simulation takes place (e.g. Taylor 2003). In
microscopic modelling, the statistical properties of queues arise from the behaviour of
individual customers. In meso/macroscopic modelling, the statistics of queues at different
points of a network are characterised in general terms, that can be based on general principles
or calculated progressively by considering the competing effects of platooning, dispersion and
mixing of streams, green waves etc, as addressed in the context of optimising coordinated
signals by for example Robertson and Gower (1977). Stochastic User Equilibrium (SUE)
assignments attempt to take account of the uncertainty or variance of demand and network
variables, but tend to make simplifying assumptions about their distributions in order to be able

to create global objective functions or closed-form solutions (e.g. Maher 1992,1998).

1.1.9 Gap-acceptance as an alternative capacity model

In many practical situations, the capacity of a traffic movement depends on the presence of
other traffic, for example in the road context at priority junctions, roundabouts and also at
opposed turns at signal junctions. Because of the complexity of possible movements,
additional factors of flare lanes and visibility, and typically a large amount of scatter in data
with a relative paucity of observations at extreme points compared to average conditions,
linear regression models have been developed to calibrate empirical relationships between
each movement capacity and opposing flows. Once the capacity of each movement is
determined, standard queuing theory can be applied. A good example of this approach is
PICADY (Semmens 1985b), using research and experiments at the Transport Research

Laboratory by G F Maycock, R M Kimber and | Summersgill inter alia.

Gap acceptance is an alternative approach, which by-passes the capacity stage by directly
estimating the waiting time in service based on the probabilistic distribution of gaps, and of
accepting gaps, in opposing traffic or when overtaking, and the behavioural characteristics of
individuals in service. An early use of the term is by Miller (1961) and similar problems are
addressed by Tanner (1961,1962) and Hawkes (1968). The gap distribution is commonly
assumed to be negative exponential, giving non-linear relationships between unblocked time and
opposing flow, and between other pairs of variables (see for example review by Akgelik 2007).
The gap acceptance approach can in principle deal explicitly with bunched arrivals, realistic
minimum headways in opposing traffic, details of pedestrian behaviour at crossings (e.g.
Griffiths 1981), etc. A dichotomy has arisen since capacity-based methods were developed as a
response to a need for experimentally verified and calibrated computational tools. Zhang and

Excell (2013) report a play-off between the two approaches illustrating the difficulties of
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matching methodology to reality in the practical case of a complex junction, as well as the
emphasis on functionality as opposed to method. The concept of capacity allows a modular
approach to traffic modelling which is relatively easy to generalise. The present research falls
naturally into the capacity-based camp, with properties of arrivals and service being represented
by simple statistics that can be accommodated within the methodology.

1.1.10 Chaotic processes, heavy tails and adaptive systems

As transportation systems become increasingly pressured, the effect of disruptions becomes
more critical. This applies not only to road networks, where the nature of disruptions can be
depressingly predictable even if their magnitude and timing is not, but to high-value services
like airports. These are particularly prone to disruption because of knock-on delays, both
within and between airports, heavily bunched movements of passengers, and ‘banks’ of
flights by competing airlines at peak times (Peterson et al 1995). Arrivals in such cases can
be bunched and highly variable, so that common random processes are considered

inapplicable, and the arrival pattern may be better described as arising from a chaotic process.

Chow (2013) proposes that chaotic functions can be used to reproduce the statistical
characteristics of queues resulting from transient events such as incidents, and in particular
queue length distributions with ‘heavy tails’, where extreme events are much more probable
than would be expected from exponential or Poisson processes. He points out that chaotic
maps are deterministic, though they may mimic stochastic processes. Surges of scheduled
arrivals at an airport could be considered deterministic, although some dispersion and
randomness is likely to creep in between aircraft and exit. Mirchandani and Zou (2007) focus

on analysis of adaptive signal control, which also leads to more complex statistics.

The focus of this research is on analytical methods that can be applied to time-dependent
scenarios in a piecewise continuous manner, regardless of whether parameters change
regularly and smoothly, or randomly and abruptly. This is for partly for reasons of
computational efficiency and partly in order to produce repeatable average results.
Microscopic and Markov simulation are used here only for creating benchmarks for verifying
the analytical methods. However, beyond some level of system complexity, microscopic or
event-based simulation may be the only option for getting usefully realistic results®, although
even such methods have limitations (Wood 2012). Establishing how far practically efficient

analytical methods can be taken in traffic modelling is left for future research.

10 Examples could include weather forecasting, nuclear and molecular physics, galaxy formation and collision.
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1.2. CONGESTION AND RELIABILITY

1.2.1 The economic costs of congestion and unreliability

The theoretical cost of congestion and delay in road traffic is almost incalculable. It has been
estimated by the Automobile Association as £20 billion per annum in the UK (AA 2009), while
Eddington (2006) quotes the Department for Transport’s more conservative estimate that
eliminating congestion would be worth £7-8 billion of GDP. Recent less formal estimates are as
high as £30B (LTT 2012). The cost of congestion in the USA has been estimated as $63.1B in
2005, “larger than the GNP of most countries in the world” (Prashker 2008, Schrank et al
2010), and by the US Department of Transportation as $1 trillion per annum in total on all
roads, equal to the total cash amount spent on road transportation, plus $200M cost of accidents

and fatalities (NCTIM 2002). Much of this cost is associated with queuing delay.

However, it is arguable that some delay is an unavoidable price for a cost-effective transport
system. Miller (1969) said “The only objective criterion for deciding what is a tolerable level of
congestion is an economic one in which the cost of increasing the capacity is matched against
the benefits so achieved”. The cost of providing more capacity is high and increasing, but it is
difficult to put a numerical value on this macro-economic criterion because it seeks to
internalise so many factors. Cost-Benefit Analysis (CBA) as used in transport scheme appraisal
attempts to do this, although its focus on saving journey time at the expense of pollution, social
severance etc has attracted criticism (Kelly 2012). Fundamental questions are now being asked

about the sustainability of a lifestyle dependent on motorised transport.

Congestion is often measured pragmatically in terms of the ‘Congestion Index’ (ClI), the ratio
of average to minimum travel time. This measure seems to be increasing in popularity, but has
certain drawbacks. A more consistent measure would be marginal delay caused to a body of
traffic by the addition of one traveller (Taylor 2012). Figure 1.2.1 shows that this is relatively
insensitive to the standard and capacity of road considered, and independent of section length,

unlike the CI which is ‘diluted’ on longer sections.

The UK Department for Transport (DfT) has found that a majority of road users do not consider
recurrent congestion a serious problem for them personally, and have various tactics for coping
with it, but do become frustrated by unanticipated congestion (DfT 2005). Figure 1.2.1 shows
that sensitivity of delay is greatest around saturation. Variability or unreliability is potentially
more amenable to control than absolute congestion, because in principle this can be achieved

by improved management of an existing system without changing demand or capacity.
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Figure 1.2.1 A possible definition of congestion: vehicle-minutes marginal total delay per

additional demand in 1 and 2 hour peaks, as a function of demand/capacity (Taylor 2012)

Value can be ascribed to the reliability of travel time, or the variability of waiting or queuing
time. This is more controversial than placing a value on delay, though the latter is arguably
more subjective since it depends on the reference ‘undelayed’ travel time. It was once held that
the value of travel time uncertainty should be absorbed into the average value of time, all time
savings being valued equally. However, the perceived value of uncertainty has been found to
vary greatly, 0.55-3.22 times that of average travel time (Gordon et al 2001). The ‘value’ of
travel time really reflects opportunity cost, that can be very non-linear for critical journeys such

as to an airport or hospital, and this could have a bearing on the valuation of reliability.

The DfT regards journey time reliability as a policy objective. Under the Public Services
Agreement (PSA) in the period 2004-2008, it defined the PSA1 measure and target for
‘Average Vehicle Delay’ (AVD) as the average delay incurred on the most delayed 10% of
synthetic journeys on a spanning set of around 100 routes constructed from the around 2,500
links and 4,200 km of the English primary road network managed by the Highways Agency
(the HATRIS network). In April 2011, AVD was replaced by an ‘On Time Reliability’ measure
that calculates the percentage of journeys ‘on-time’ on a link-by-link basis, by comparing
average speed with a reference speed. The reference speeds are essentially the same as those
used to calculate delay under PSAL, but the new measure is considered easier to relate to the
percentage on-time measures used by the rail and air industries. Various other definitions of
reliability have been used or proposed, including one based on the assumption that journey time
distributions are approximately LogNormal, implying that there is a significant chance of

journey times being very much longer than average (Kaparias et al 2008).
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1.2.2 Recurrent and non-recurrent congestion

Much attention has been and is being focused on preventing or managing incidents, because of
their avoidability. While incidents are the largest single cause of journey time unreliability, they
are responsible for only 10-25% of congestion across Europe (CEDR 2009,2011), while
another 10% is estimated to result from road works (construction) and planned events, implying
that at least 65% is ascribable to recurrent congestion'. Non-recurrent congestion tends to
involve a sharp drop in capacity, so can be treated by deterministic methods, where the queue
size depends essentially on the difference between demand and capacity. Sources of incidental
variability tend to be independent of the traffic demand, for example depending on the severity

of an incident or the number of lanes closed by road works.

Recurrent congestion tends to recur at the same places. On motorways/freeways these are
usually, though not invariably, near junctions, merges or diverges, collectively known as ‘seed
points’. Capacity drop may be associated with spontaneous flow breakdown (Kerner and
Klenov 2003), although spontaneity has been disputed (Daganzo et al 1999). The drop may be
only in the range 5-15% (Bertini et al 2005), but high demand flows mean large queues can
develop. Deterministic methods are therefore applicable, although random queuing theory
might help to explain why flow breaks down in the first place (Kihne and Ludtke 2013). Figure
1.2.2 shows a trajectory of flow and speed measurements at a site upstream of a motorway
bottleneck, with typical bent-back appearance (e.g. Carey and Bowers 2011, Heydecker and
Verlander 1998, Taylor et al 2008 and references therein). A less common cause of non-
recurrent congestion is a moving bottleneck, such as a large or slow abnormal load, see Figure
1.2.3 overleaf. Analysis is more complex than for fixed bottlenecks, requiring ‘horizontal’
modelling of queues that are both in motion and extended in space, and involving the use of at
least basic speed/flow/density relationships (Taylor 2005b,2009 and references therein). Indeed,
where traffic is moving at considerable speed, a ‘queue’ in the common sense may not be

discernible by an observer.

In contrast to motorways/freeways, urban networks are characterised by: (a) the relatively
predictable nature of average delays and the filtering effect of junctions upstream, tending to
hold traffic volumes around the saturation level where random variability has the greatest
impact; (b) low speeds, high densities and mostly stationary queues, so physical queue lengths
are closely related to queue size and ‘horizontal’ methods are not essential; (c) traffic often
building up and decaying according to recurrent peak profiles. Since it considers arbitrary
profiles, the present work is not limited to such cases, and should be applicable to more

complex cases such as traffic flows to or from special events or airports.

These figures originate from 1999 and may have changed, but no more recent figures appear to be available.
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Figure 1.2.3 MTV* space/time plot with horizontal queue model superimposed on queue
caused by large slow moving vehicle. Low speed traffic is indicated by lighter areas in thin
dark bands. Wide blank areas are where loops were disconnected from data network because

of limited capacity (no better original is available). See also Taylor (2005a,2009).

2 MTV and the plots above were developed by Dr Brian Williams and Peter Still at TRL.
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1.3. QUEUING IN NETWORK TRAFFIC MODELLING

1.3.1 Modelling journeys

Where traffic has a choice of routes available, prediction usually requires a traffic modelling
computer program, ideally with the ability to assign routes according to a principle such as
minimum perceived cost, although this surely oversimplifies real route choice if it ignores
knowledge, preferences and inertia. Where delay is a monotonic function of volume, the User
Equilibrium (UE) principle, as described by Wardrop (1952) and formulated as an optimisation
problem by Beckmann (1952), is frequently applied, according to which journeys between the

same origin and destination distribute themselves so all used routes have equal cost.

A tree-building computer algorithm for finding minimum cost routes was developed
independently by Dijkstra (1959) and Whiting and Hillier (1960). This has since been improved
through focusing effort on more productive directions (e.g. Hart, Nilsson and Raphael 1968,
van Vliet 1977, Taylor 1989), and recently by origin-based assignment (Bar-Gera 2002, Bar-
Gera and Boyce 2003), which greatly improves convergence by calculating routes in terms of
whole trees based on origins. The User Equilibrium principle is an idealisation, but alternatives
that seek more realism by accepting uncertainty (Stochastic User Equilibrium) or limited
information or unwillingness to change routes unless there is a clear advantage (bounded
rationality) can be seen and formulated as extensions to the equilibrium concept (Sheffi and
Powell 1982, Mahmassani and Chang 1987, Maher 1998).

1.3.2 Modelling queues

Assighment methods need to estimate delays in order to find minimum time or cost routes.
Queues occur where the demand for a service approaches or exceeds the effective capacity of
the service. Over-saturation is necessarily transient, otherwise queues and delays would
increase indefinitely. The diurnal cycle of peaks and rests tends to ensure this, and the ability of
traffic to adjust over time justifies the concept of network equilibrium. On short time scales,
random fluctuations in demand and service result in a net queue whose mean value in theory
tends to a steady-state equilibrium value provided average demand is below average capacity.
On medium time scales queuing occurs because of demand peaks, which while varying greatly
in duration, magnitude and steepness are generally limited to a few hours during a day.
Catastrophic events, such as serious incidents, severe weather or major disruptions, can lead to
gueuing on a time scale of days or even weeks (e.g. Global Times 2010) but could be mitigated
by adaptation of underlying behaviour and expectations. On the time scale of years we move

onto the socio-economic level of land use, investment, policy and ultimately sustainability.
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1.3.3 Modelling time-dependent traffic

Understanding time-dependent queuing is essential for accurate journey time prediction in
conditions of near-saturation and transient over-saturation. Instantaneous time-dependent
functions describing queuing processes accurately can be intractable to integrate or impractical
to evaluate numerically. Gradual changes in demand or capacity can be approximated, and step
changes accommodated directly, by formulating the problem in terms of appropriate time
slices, giving a piecewise continuous profile as in Figure 1.3.1. Any resulting queue, being
cumulative, is necessarily continuous. Heydecker and Verlander (1998) point out theoretical
inaccuracies associated with this type of approach, in particular non-transitivity, though it is

unclear how severely this could affect traffic predictions or economic appraisal.
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Figure 1.3.1 lllustration of time-slicing applied to a traffic demand peak
1.3.4 Probabilistic queues and probability distributions

Arrivals and service at a queue tend to have an element of randomness, so if the same average
profiles of mean arrival and service are repeated each day, the queue size at a given time on a
given day will be described by a probability distribution (see Figure 1.1.1 earlier). The simplest
case is where either or both of the inter-arrival and inter-service intervals is exponentially
distributed (variance ~ mean®). The number of events in a given period is then Poisson
distributed (variance ~ mean). Variations include uniform service, an idealisation of the effect
of a traffic signal, and Erlang-k interval distributions where the ratio of variance to mean is

modified by a parameter representing arrivals or service in bunches or over several stages.

When calculating queue development from one time slice to the next, ideally a whole
probability distribution should be carried over, but in typical modelling only the mean value is

available to be passed. The probability distribution of a queue in equilibrium can be quite
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simple (e.g. geometric), but in a dynamic process it need not be either simple to describe or
easy to calculate. In fact, this work will show that most queue size probability distributions
during a demand peak are nowhere near an equilibrium form. Having a value for the variance
as well as the mean makes it possible in principle to estimate the true shape of the probability
distribution, which has not previously been generally possible.

1.3.5 Estimating delay in real networks

Several factors tend to confound the purity of queuing processes in traffic networks:

e Time-varying arrival and service patterns seldom persist long enough or recur
consistently enough for their probability distributions to be precisely defined; and

granularity of traffic also limits the precision with which distributions can be defined:;

o Capacities cannot be calibrated exactly because of the variability of traffic, indeed the
definition of capacity is somewhat circular, since it is a theoretical or empirical

estimate of whatever maximum thoughput can actually be achieved;

e In mixed traffic, different vehicles use capacity differently, an effect that can be
approximated by using PCU factors, that are only indirectly related to vehicle size; e.g.
Kimber, McDonald and Hounsell (1985), with references to work by Heydecker (1982)

and earlier studies going back to 1964;

e Turning and opposing movements result in complicated local interactions;

e Signals incur ‘lost time’ caused by finite reaction times and acceleration rates;

e ‘Non-separability’ occurs where conditions affecting one traffic movement depend on
other movements. Road network traffic is highly interactive in both space and time,

although Bar-Gera (2002) claims this is not an issue with origin-based assignment.

As a result, there is a degree of reliance on regression or calibration of parameters of capacity,
delay or gap-acceptance models, using experimental data either from observation of actual
traffic or from track experiments, e.g. Kimber, McDonald and Hounsell (1986). This work does
not aim to deal with these practical issues, except in a highly idealised form in the case of
multi-lane queues, but takes as given the queue process statistics that have been established

either theoretically or empirically and are widely accepted.
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1.3.6 Traffic simulation techniques and computational efficiency

Since around 1990, microscopic simulation of individual events, agents, persons, vehicles etc,
has grown in capability and popularity. In principle it is capable of simulating in full detail the
behaviour and interactions of individual agents in an environment of arbitrary complexity and
realism, and is therefore used extensively in simulations of complex systems in climate,
weather, physics and structures. It is particularly valuable where complexity or chaotic
behaviour mean that outcomes are emergent rather than analysable. However, in relation to
road traffic, microsimulation has been criticised on several grounds. While most of these
criticisms can be answered (Wood 2012), persistent ones are that methodology is obscure or
proprietary, and that inputs must be varied randomly to generate a representative spread of

outputs, while cost constraints may limit the number of repeat runs that can be performed.

Macroscopic, including stochastic, equilibrium methods subsume any randomness into closed
formulae and hence produce a single ‘typical’ result. New equilibrium assignment methods,
such as the origin-based method of Bar-Gera (2002), have achieved exceptional levels of
convergence as measured by the gap between the solution and the theoretical ideal where
alternative used routes have equal cost (Slavin 2012). However, as Wood (2012) points out, and
as expressed in a wider economic context by Soros (1987), equilibrium seldom occurs in
reality, raising the question whether consistency is a sufficient guarantee of realism. Markovian
simulation, which develops a probabilistic description by evaluating all the possible state
probabilities over time in small steps, can be applied effectively to a one-dimensional problem
like queuing, but could lead to an exponential explosion of calculations in a network unless

results are pruned or aggregated to remove contributions of low probability.

At the present time, neither microscopic nor macroscopic method has been declared the
‘winner’, but microscopic simulation will surely continue to gain ground, thanks to ever
increasing computing power and ability to accommodate incremental advances in behavioural
modelling. However, an ability to simulate detail need not lead to a proportionately better
understanding of whole systems. Even if the present research is not exploited by macroscopic
traffic models, it can provide more complete information about how queuing systems can be
expected to behave on aggregate, which could be lost in the detail of microscopic simulations.
This may particularly apply where the probability distribution of results has an extended or

complex shape.
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1.4. OBJECTIVES AND METHODS

1.4.1 Objectives

The main objective of this work is to develop an efficient method of predicting the most
characteristic queue moments, mean and variance, and the probability of zero queue, for
arbitrary time-profiles of demand and capacity, and a range of queuing processes of practical
importance. Thereby to provide a tool for evaluation and better understanding of travel time
variability and reliability in congested traffic networks and other systems, where equilibrium is
inappropriate, with the wider motivation of making time-dependent queuing methods more
complete and internally consistent. Benefits will include better understanding of network
performance and sensitivities to demand and capacity, and hence better design and management

of networks and policies for sustainability. Specific objectives are to:

Acquire a sufficient understanding of existing methods relevant to the main objective,

through reviewing and interpreting relevant past work;

e Implement benchmark programs to validate new methods against established theory

and new analytical approximations against simulations;

o Develop a theoretical and computational approach to calculating the time-dependent

variance of queues for arbitrary traffic profiles;

o Apply the results of the above to enhance time-dependent closed-form queue
estimation methods by improving the accuracy of estimation of the mean, estimating

variance, and providing a way to estimate time-dependent probability distributions;

e Produce a computational implementation for the purpose of demonstration;

e In the light of potential applications, pursue simplicity, efficiency, robustness and

repeatability, once the basis of the approximations is considered sound.

1.4.2 Scope and application

Equilibrium queue properties tend to depend on the ratio of demand to capacity, not on absolute
traffic levels. So in channels of high capacity, queuing tends to be dominated by deterministic
effects, making this work most relevant to systems like urban road networks where elements

have moderate capacity, there is significant randomness, and long queues can develop on a few
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channels. However, apart from assuming the standard results of random queuing theory the
methods do not presuppose any particular system and so may be more widely applicable.

A typical application could be similar to that addressed by existing traffic modelling methods,
an oversaturated peak acting on a junction in a network, made tractable by approximating by a
sequence of time slices each characterised by basic parameters of arrival and service rates and
statistical properties, that are assumed to remain constant within each time slice. If better
resolution is required, more and shorter time slices can be used. Heydecker and Verlander
(1998) point out the errors that can occur through time-slicing, yet it not only simplifies
computations but arguably reflects the fact that data are often available only as average values
in finite time periods. Since queues are cumulative in nature, conservation of quantities and
realistic continuity of queue profiles are maintained. The methods developed promise greater
accuracy and information about variability and reliability within this context, but are not

restricted to it any more than are existing methods of queue and traffic modelling.

1.4.3 Technical approach, methods and validation

The main lines of the technical approach can be summarised as:

e Development or verification of certain basic results, in particular new results for

deterministic and equilibrium queue variance, and feasible approximations to

probability distributions;

e Integration of mean and variance into a single internally consistent description;

e Heuristic rules or corrections to further reduce estimation error, avoiding the use of

empirical parameters as far as possible; and

e Markov chain simulations based on recurrence relations, used to provide time-
dependent and equilibrium benchmarks to verify methods and validate them against
theory. Experimental validation is outside the scope of this ‘desktop’ research, but

reference is made to past experimental verification of some existing methods.

Three methods that could be applied independently are also developed:

e Fitting equilibrium probability distributions to three moments using a doubly-nested

geometric template, providing a simple approximation for a range of queue processes;
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o Approximate formulae for the mean, variance and other properties of stochastic queues
at signals taking account of green period capacity, a factor ignored in some signal
calculations, extending the scope of earlier work by various authors;

e Estimating queues on multiple lanes with shared service, or lanes shared by different
movements. The case of two lanes with turning movements where ahead streams can
use either lane is considered in some detail. Analysis is limited to priority-controlled

movements but could be extended to other situations in future research.

Several queue processes are subjected to critical analysis to establish some common principles
that help to extend the range of processes that can be approximated. Where new types of
function are introduced, they are constrained as far as possible to depend only on natural
properties of the system. With two moments, plus the probability of the queue being zero, it is
possible to estimate the queue size probability distribution, providing a tool to address detailed
questions of reliability and overspill. Mathematical tractability is a criterion, for example for
probability functions, tempered by compatibility with realistic constraints and tests of

performance compared to alternatives. A demonstrator program is described in Chapter 7.

1.4.4 Practical and computational considerations

Network-wide time-dependent traffic modelling involves simulating typically hundreds of
thousands or even millions of trips, and even more transits of links and junctions making up
assigned routes, so function evaluations need to be computationally efficient and kept to the
minimum necessary for realism. Methods should be resistant to approximation error to the

extent that they in some sense conform structurally to the system being modelled.

Road traffic queues have their own particular complexities. They tend to form on a few lanes or
channels where there may be some initial choice of lane and possibly opportunity for swapping
between lanes (‘jockeying’) while queuing. Queues can become long and probability
distributions consequently extended. Other types of service facility may be designed to avoid
this precisely because of the reliability and predictability issues it creates, for example by
opening extras service channels according to demand at airport check-ins and supermarket
check-outs (airports somehow manage to process most long queues in time for flights!). This
kind of adaptability is seldom possible in geographically or service-constrained facilities where

demand is difficult to manage, such as road networks and hospitals.

The complicating effect of turning movements has already been referred to. Signal control
tends to cause platooning, mitigated somewhat by dispersion, so the statistics of arrival
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processes can be complex. Variability of individual behaviour and demand, and
unpredictability of circumstances affecting supply, favour the use of relatively simple and
flexible methods with parameters that can be related readily to data.

1.45 Wider applications

Queuing theory has applications in any field in which a service facility has capacity with
limited flexibility and may be subject to unpredictable or excess demand. This includes most
forms of transportation, health and other services, hospital management, airport operations,
telecommunications, call-centres, retail facilities, scheduling and industrial production lines.
In addition to time profiles that do not conform to a classic AM/PM peak pattern, these can
involve special configurations such as multiple service channels, the possibility of ‘defection’
or systematic ‘censoring’ of customers, addition or removal of servers according to demand,

and bunching of customers in arrival or service.

Road networks are further complicated by interactions between different movements and
routes. The methods described may be applied to these cases to the extent that they can be

described in terms of the available parameters.

Some aspects may merit further investigation by researchers, including the deeper meaning of
the variance formula, and further development of estimation methods for multi-lane systems
and probability distributions. A feature of all the systems studied is that they are ‘well-behaved’
in the sense that even if unpredictable at the microscopic level, their degree of unpredictability

is predictable.

In the real world, many processes appear to be highly sensitive to initial conditions, or conform
to higher principles such as the ‘power law’ in which the probability of an event is roughly
inversely proportional to its magnitude, or involve extreme and unpredictable (‘black swan’)
events which overwhelm rational analysis, though it could be argued that these arise from
correlations that have not been taken into account, so it may be the problem that is mis-
specified. In the last decade or so the study of ‘heavy tails’ and rare events has become a
discipline in itself. While the present research will not address these cases, knowing the

boundaries of ‘good behaviour’ may help to identify cases where it does not apply.
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1.5. STRUCTURE AND CONTENT OF THE DISSERTATION

This dissertation is arranged in several main Chapters. Chapter 1 is this introduction. Chapters
2-4 describe the main work and results in queuing theory and approximation. Chapter 5
addresses methods of estimating probability distributions based on the moments calculated by
the modelling methods described earlier. Chapter 6 explores certain aspects of queuing on
multiple lanes, Chapter 7 covers computational issues and Chapter 8 concludes. More fully:

Chapter 1 Has addressed the motivation of the research and its historical background,
scope and applications, and reviewed current traffic and queue modelling methods in general
terms. Further references to previous work and existing methods are made at appropriate points

in the following Chapters.

Chapter 2 Reviews the core queue models commonly associated with transportation, in
particular random-and-oversaturation queues at give-way/yield or signalised junctions, to give
coverage. From this basis a new formula for the deterministic variance of queue size is derived.
Finally, benchmark methods for modelling arbitrary traffic profiles in time-dependent queuing

are described, against which the approximate methods developed later are tested.

Chapter 3 Extends steady-state mean and variance formulae to more general arrival and
service processes, with the primary objective of establishing the appropriate parameterisations
of the Pollaczek-Khinchin mean queue formula to allow exploitation by efficient time-
dependent approximations. A method of fitting doubly-nested geometric probability
distributions to known queue moments is described. Dependence of the stochastic signal queue

on the green period capacity is discussed and approximations to equilibrium moments derived.

Chapter 4 Develops time-dependent approximations incorporating extensions of the
sheared approximation and a new exponential model of queue decay, constrained so as to
reproduce the correct equilibrium variance where defined. The method is tested by comparing
with Markov simulations of a set of peak profiles with periods of oversaturation against

benchmark simulations, for both priority (M/M/1) and signal-type (M/D/1) queuing processes.

Chapter 5 Starting with the example of diffusion approximations, this Chapter develops
simplified methods that can be used to estimate queue size probability distributions from
known time-dependent queue moments (while a distribution can be estimated at any time in a

queue’s development the approximating functions are not themselves time-dependent).
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Chapter 6 Explores an approach to modelling queuing on multiple lanes, where there may
be a choice of lane and sharing of the service processes between lanes, and different turning
movements may share a lane. While somewhat detached from the main argument, this differs

from multi-channel queuing, and may give additional insight into relevant queuing processes.

Chapter 7 Summarises computational tools and issues associated with exploiting results,
specifically to predict the evolution of queue mean, variance and probability distributions
together, for arbitrary traffic profiles. A demonstration software tool is described.

Chapter 8 Summarises the results and discusses potential impacts and future work.

Appendices A-F contain derivations, discussions or examples linked to the main text.

Chapters are divided into Sections, the first of which introduces the Chapter and the last of
which summarises the main conclusions. Within each Section there can be a number of sub-
sections, the first of which can be a form of introduction where this is thought useful, titled

‘Motivation and approach’ to avoid confusion with the main Introduction Section.

Figure 1.5.1 illustrates the logical links between the Chapters.

Figure 1.5.2 visualises the work plan in terms of the flow of information from
methodological sources to results and applications.

Figure 1.5.3 pictures the framework of the research in terms of its technical components,
arranged in three parallel streams, the main thrust being the time-dependent approximation,
with gueue processes feeding into it, and producing output that can be post-analysed to estimate
probability distributions. Some special cases are brought within the scope to fill perceived gaps
in existing methods. To avoid unnecessary fragmentation of topics, some Review is embedded

in the sections in which it is relevant, or in Appendices.
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Figure 1.5.1 Linkage of Chapters developing the technical argument
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CHAPTER 2: QUEUING PROCESSES

2.1. INTRODUCTION

The core queuing processes relevant to transportation are derived or reviewed, in particular the
M/M/1 model relevant to give-way/yield processes and the M/D/1 model relevant to signalised
junctions, the deterministic queue formula representing conservation, and the Pollaczek-
Khinchin (P-K) formula describing the mean equilibrium queue that takes account of
randomness. Recurrence relations between queue states are derived from first principles. In the
process, a formula for the deterministic variance of queue size is derived, which is believed to
be new. Variations in the statistics of arrivals and service found in many standard works on
queuing theory are discussed and linked to statistical parameters in the P-K formula.
Benchmark methods are described for modelling arbitrary traffic profiles in time-dependent
queuing, using Morse’s series formula or Markov simulation, that reveal the details of queue

size probability distributions and against which the methods developed later will be tested.

2.2. CONVENTIONS AND DEFINITIONS

Usage related to queuing varies between authors and particular subject areas. A conscious effort
has been made to keep to a consistent use of symbols throughout the document. Conventions
and variables used are given below, with referenced formulae being ‘translated” where
necessary. The notation for variables is similar to that used by Kleinrock (1975), Kimber and

Hollis (1979) and Bunday (1996). Use of subscripts may vary locally.

2.2.1 Definitions
(2.2.1)
a is a generic symbol for the arrival process, a(t) = arrival time distribution
b is a generic symbol for the service process, b(t) = service time distribution, where
t =time
a and b subscripts will identify quantities associated with arrivals or service
E(X) = the expectation value of any variate X, var(X) = variance of X
A = the mean arrival®® rate or demand (constant or function of t)
u = the mean service rate or capacity (constant or function of t)

s = saturation flow, or conventionally a variable associated with Laplace transformation

B general queuing or ‘renewal’ theory, ‘arrivals’ are often referred to as ‘renewals’. This term is particularly
appropriate to cyclic processes, but less so to traffic processes where each arrival is a new individual.
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p = A/u the demand intensity™

Tre = stochastic relaxation time towards equilibrium (1/p)(1-Vp)? =" (1/u)t e,

I, = index of dispersion of arrivals (after Kendall, Heydecker) = 1/r (r>1)

I, = index of dispersion of service (in quoted formulae only)

¢, = coefficient of variation of service = 1/Ym (m>1)

where r and m are used to represent Erlang parameters of arrivals and service
distributions respectively, rather than the usual k

C= %(1+ CE) is the ‘randomness coefficient’

c, = coefficient of variation of arrivals (seldom used)

I = unit-in-service parameter, normally 0 or 1

1" =g 1+3(1,-2)

u = instantaneous utilisation (time dependent)

X = average utilisation or degree of saturation over a time period (time dependent)
L = mean queue size (time dependent)

D = average queue or delay per unit time over a time period
V = gueue variance (time dependent)

W = variable related to second moment: V+L(L+38) where 8<1
Lo, Vo, W = initial values of the above

Le, Ve, W, = equilibrium (steady-state) values of the above

Ly, Dy, Vi, Wy = specific forms or estimates of the above

0, ¢, s, G=gs, A=g/c: signal green, cycle time, saturation flow, green capacity, ratio
N~

p; = probability that a queue is in discrete state i, so Z p; =1
i=0

p(x) = probability density of continuous variate x, where J:Op(y)dy =1

7; may be used to represent the ith term of the Poisson distribution

YExcept in a steady state, the term‘traffic intensity’ is ambiguous, as ‘traffic’ could be interpreted as throughput.
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2.2.2 Conventions in formulae

The symbol p is sometimes used to represent service time interval, but here it is reserved for
capacity (service rate) which turns up more often in the transportation context. Likewise A is
reserved for arrival rate, because this often appears with p in the above context, so A is used
to represent the ratio of signal green to cycle time. Time can be expressed in any convenient
units, such as mean service interval, since results never depend on time t per se but on

throughput or throughput capacity ut. However, capacity p is left explicit for two reasons.

First, it is not common practice to express time in units of the service interval. Doing so could
cause confusion when comparing results with other sources. Second, the instantaneous
capacity rate is a meaningful property that can depend on instantaneous and material (e.g.
geometric) factors rather than merely reflecting throughput over a particular time period. This
does not normally affect results, since the rate of change of capacity is not normally involved
in formulae, but it could cause confusion where a time-sliced problem is being evaluated. In
some calculations, however, it may be convenient to set u=1 so that t is effectively expressed
in units of service interval and is numerically equivalent to throughput capacity. It may also

sometimes be convenient work in multiples of the stochastic relaxation time ze.

D G Kendall in 1953 invented a notation for labelling queue processes, employed here in a

simplified and slightly extended form:
Ar/Bm/n/N[G] where A and B can be (2.2.2)
M = Markovian, random memoryless process
D = Deterministic, or uniform process

E = Erlang, a random process with a modified shape parameter

r, m are respectively Erlang parameters of the arrival and service processes, omitted if equal to

1 (see definitions);

n is the number of parallel independent service channels;

N is the maximum size of the queue, omitted if effectively infinite (see Section 2.5 later);

G is the author’s addition, omitted if equal to 1, representing green phase capacity in a signal

queue (see definitions) and used to identify an extended form of M/D/1 (see Section 2.4 later).
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‘Ek’ is interpreted as Erlang-k, where the distribution of intervals between arrival or service
events is given by equation (2.2.3), A representing the event rate and k is the shape parameter
(particularlised to r or m as above). If k is allowed to be non-integral this generalises to the
Gamma distribution (2.2.4):

kn(kat)< e

Erlang(k,A,t) = 2.2.3
k=" (223)
k-1 | —kat
Gammak, i, t) = krkat) e (2.2.4)
r(k)
Both distributions have mean interval=1/x, variance=1/(k\?) (2.2.5)

The Erlang distribution can be interpreted as arrival or service passing through k stages each
with rate parameter ki. Staged arrivals/service can alternatively be represented as ‘bulk’
service/arrivals, where the ‘customers’ arrive or are served simultaneously, represented by ‘"MK’
in Kleinrock (1975). Newell (1982), Medhi (2003) and Gross et al (2008) also discuss these

processes. The alternative scale parameter 0=(kA)™ may be used, in which case:

o
Gammak, 6,t) ZGGFT (2.2.6)

For which:

k-1
Mean = k6, Variance = k87, Mode = (k —1)9, Maximum= [(—2)e]™ (2.2.7)

or(k)

When k=1, the Gamma distribution reduces to its simplest form, the exponential distribution,

that results in a Poisson distribution of the number of events i in a given time interval t:

Exponentid (), t) = e ™ (2.2.8)

Poisson(i,t,i)= (7”i+)ie“ (2.2.9)
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2.2.3 Conventional use of terms

Following advice, ‘model’ is as far as posssible used more strictly than is common, to imply an
exact, or at least accepted, mathematical description of a process. For implementations the
terms ‘approximation’ and ‘method’ are preferred, even where these are thought to reflect the
structure of a process as well as predicting its results to some degree of accuracy.

Following the usage of others, ‘deterministic’ is used here to mean a formula that depends on
average quantities independent of their statistics, rather than a formula that does not involve
randomness in any way. Hence the ‘deterministic queue formula’ does not exclude the
possibility that it depends implicitly on random behaviour, but does represent conservation of a

quantity, which is necessarily exact.
Generally ‘equilibrium’ is preferred to ‘steady state’ since it is not restricted to the absence of

change, but includes dynamic conditions resulting from balance of forces. In practical queuing

each tends to imply the other, so it may be read as shorthand for ‘steady state equilibrium’.
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2.3. BASIC QUEUE PROPERTIES INCLUDING NEW VARIANCE RESULT
2.3.1 Motivation and approach

In a general queuing process, arrival and service rates can vary with time. This is helpful
conceptually but can be difficult to evaluate unless simplified. The simplest queue process is
one whose arrivals and service headways are random around known mean rates, i.e.
exponentially distributed inter-arrival and service times. Provided average demand is below
average capacity the queue tends to an equilibrium condition with a constant probability
distribution and moments (at any given moment the queue is not in a steady state). Time-
dependent (deterministic) and equilibrium properties of the queuing process, including a new
formula for time-dependent variance, can be derived from recurrence relations between queue

states, obtained using standard methods. Detailed derivations are given in Appendix A.
2.3.2  Deterministic queuing

Newell (1982) analyses the development of a deterministic queue through saturation and
through a mild (undersaturated) peak, using a fluid approximation. With modified notation, the

mean and variance are calculated by:

L(O)= Lo + [[1(y) - u(y)by (23.)

V() =Vy + [J12(y)+ tasa(y)by (23.2)

where A and p are arbitrary mean arrival rate and capacity functions and I, and I, are stated to
be the indices of dispersion of the arrival and service interval distributions. ‘Deterministic’ in
this context means the calculation involves only the means of the random variates, not that the

system does not involve randomness, and (2.3.1) at least represents conservation of number.

In principle these simple integral formulae allow moments of a queue to be calculated at any
time. However, the initial mean values raise an issue, hence the approximate equality signs. For
the queue, the single value L, disguises the possible role of an initial probability distribution,
that logically ought to affect the early development of the queue, though not the final value if
the distribution converges ergodically (forgetfully) to a steady-state equilibrium value. This is

possible because the negative sign within the integral allows it to both increase and decrease.
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In reality, particularly in under-saturated conditions, the throughput rate depends on the queue
size, because random variation means there can be periods when the queue is empty, during
which capacity is unutilised. Unless this is the case it is not possible for the integral in (2.3.1) to
converge naturally to a finite steady-state value. Therefore, (2.3.1) is replaced by the modified
equation (2.3.3) where u(t) is the utilisation of capacity or the degree of saturation, which lies in
the range [0,1]. Equality now holds because u can absorb the effect of the initial probability

distribution as well as modulating convergence to equilibrium:

L(D)= Lo + [[H(y) - u(yhu(y)y (233

However, there is a problem with the variance (2.3.2), since this can only increase, regardless
of the form of u(t) and u(t). So while (2.3.1) can form the basis of a realistic time-dependent

model of the mean queue, (2.3.2) cannot do the same for the variance.

If X and p are constant, then the only variable function on the RHS is u. Defining the function

X(t) to represent the average value of u over [0,t], (2.3.3) can be rewritten as:

L(t)= L, + (p — x(t))ut where (2.3.4)

[ u(y)ay

x(t) =2 t (2.3.5)

2.3.3 Steady-state equilibrium

This possibility of convergence is essential to equilibrium theory. Ergodicity is normally
assumed, meaning loosely that the queue converges to an equilibrium value independent of its
early states. For computational simplicity it is now assumed that the arrival and service capacity
rates A and p are constant over finite time slices, and that these can be cascaded to approximate

time-variation, although Heydecker and Verlander (1998) point out the errors inherent in this.

M/M/1 is the simplest queuing process, in which units/customers arrive and are served in a
single channel randomly according to exponential distributions of inter-arrival and inter-service
times at constant mean rates, and Poisson distributions of the number of arrivals or service
opportunities in a given period. It is ergodic and ‘forgets’ its initial state but only as O(1/t), a
fact that can be exploited. It is ‘Markovian’ in that the probability of a state change depends
only on the current state, not on what has gone before. It is also a ‘Birth-Death process’, in

which only movements from the current state to its immediate neighbours need be considered.
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Another property that applies to all queues of practical interest in traffic is ‘Chapman-
Kolmogorov homogeneity’ where the probability of any current state can be calculated by
multiplying the probabilities of initial states by the transition probabilities along all paths
between them. This ensures that distributions can be developed progressively.

Standard works usually draw a distinction between the number in the system and the number in
the queue, or total time in the system and waiting time for service. Mean waiting time is often

calculated rather than queue size. Most sources use the convention:

Total_time_in_system = Waiting_time + Time_in_service (2.3.6)

This is reflected in decomposition of the queue into two components:

Total_queue = Waiting_queue + Unit_in_service_component (2.3.7)

The two are related by Little’s formula (Little 1961), which says:

Total_queue = Total_time_in_system * Departure_rate (2.3.8)

Note that in the steady state: Departure_rate = Arrival_rate = Service_rate * Traffic_Intensity

In traffic modelling the ‘in service’ distinction is mostly academic, because waiting time and
time in service are equally unproductive, and the concerns are presence of queues and total
delay. Service time is likely to increase in importance where it is highly variable, as at toll
plazas and other borders, bank/post-office counters, airport check-ins and loading facilities etc.
At traffic signals time in service tends to be ignored or subsumed in a parameter adjustment,
because saturation flow is much greater than the average capacity over the cycle. Generally,

therefore, the total number and total time in the system are of primary interest.

Symmetry with a change of state viewpoint implies that far enough away from the empty state
the probability distribution of a queue process in equilibrium should be independent of its state
apart from a scaling factor, so that its gradient should be proportional to its value, implying an
exponential (geometric if discrete) form. Ergodic and Markovian properties imply that to
approach equilibrium, the difference between the mean system state and the steady state must
eventually decrease with time. Independence of scaling with a shift in time viewpoint implies
that its rate of change should also be proportional to its value®. Therefore, the long-term

behaviour of the system is likely to resemble exponential relaxation to equilibrium.

"This will not hold for non-equilibrium states, as seen later with drift/diffusion models where the rate of change
depends on gradients of the probability distribution.
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2.3.4 The simplest random queue, M/M/1/1, and the significance of utilisation

The simplest random equilibrating queue problem is the ‘parking space’*® where there are
only two possible states — unoccupied (0) and occupied (1). Its value is in illustrating the
relaxation process, and also revealing the nature of utilisation. Assuming constant arrival and

service rates the process can be visualised through the state transition diagram, Figure 2.3.1.

po p1

2pi=1

4l

Figure 2.3.1 Basic state transition diagram for M/M/1/1 ‘parking’ process

The rate of change of py is the difference between the rate of transitions out of state 0, and the

rate of transitions back into state O that equals the rate of transitions out of state 1, so:

dp
d_tO:le — AP, (2.3.9)

Since the {p;} sumto 1, p; can be eliminated giving:

198 1 (14 p)p, (2.3.10)
pu dt
If some function f satisfies:
Do = f(t)+i (2.3.11)
1+p

18] am grateful to Prof. B G Heydecker for suggesting that this example be included.

55



then equation (2.3.10) becomes (2.3.12) whose solution is (2.3.13):

1O, i) where (2.3.12)
n dt

J (for some constant K) (2.3.13)

The mean occupancy of the system is just ps, so after some manipulation:

- - Wt | P | _ et
B 0= L= LOR M o 2 oo 2310

where L(0)<[0,1], so the equilibrium value when t—o is:

. 1
L. = P =ﬁ with  pg, = T+p (2.3.15)

Equation (2.3.14) shows that the system relaxes exponentially from its initial value to its
equilibrium value with a time constant equal to p*(1+p)™, and provided that arrivals do not

exceed capacity it achieves a maximum mean occupancy of %2 when p=1.

However, there is something wrong with this model since it is inconsistent with (2.3.4), which
in order to remain finite as t—oo requires that u.=x.=p at equilibrium. Since the utilisation
represents the proportion of time capacity u is fully used, capacity being instantaneously
unutilised if the queue is zero and fully utilised if the queue is occupied”, the average

probability of the queue being empty can be identified with the complement of the utilisation:
Po=1-u Poe =1-U, =1-Xx,=1-p (2.3.16)

Equation (2.3.15) is incompatible with this. The explanation is that Figure 2.3.1 has left out
those customers who arrive to find the parking space full, and depart without contributing to the
‘queue’, which in this case represents occupancy of a single parking space. Figure 2.3.2 allows
for this.

7 «Occupied’ means a customer at the front of the queue. It is a frequent cause of frustration that the stop line
serves only the first customer in line so any behind it have no influence.
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Figure 2.3.2 Completed state transition diagram for M/M/1/1 ‘parking’ process

Customers who arrive when the parking space is inconveniently occupied are said to ‘defect’.
They could also be systematically ‘censored’ by some external influence, such as by excluding
every other arrival, but it assumed here that they simply react to availability of parking. In this

completed system (2.3.9) is replaced by (2.3.17) or in terms of demand intensity (2.3.18):

d

% = (=2)p, 2y (2.3.17)
L8P _(_p)-p, (23.18)
pn dt

The solution is got by substitution and integration in a similar way to (2.3.11-13):
p.(t)=L(t)=LOk™ +pll-e™) 50 letting t—sc0 (2.3.19)
Le =P =p Poe =1-p (2.3.20)

Hence (2.3.4) is satisfied. The wrong solution (2.3.15) was the result of mis-specification, but in
other systems the value of pg. can disagree with (2.3.16) through difference of interpretation
(see M/D/1 later). Be that as it may, no description of a queuing process that obeys (2.3.4) can
be considered realistic unless it also satisfies (2.3.16), so this acts as a ‘reality check’ on any

practical formulation, and any different result calls for explanation and resolution.
2.3.5 The simplest realistic traffic queue: M/M/1/o

Given that mixing and dispersion tend to randomise traffic at least at the microscopic level,

M/M/1 is one of the most useful processes in traffic modelling, where arrivals and service are

random as at an idealised priority junction. Although roads often have more than one lane, as
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long as it is possible to switch lanes freely a single server model can be assumed (a multi-lane
model is considered in Chapter 6). Real road sections have finite storage capacity, but as long
as a queue is unlikely to exceed this, infinite storage can be assumed, so the ‘w0’ is usually
dropped. As this is a ‘birth-death’ process with a theoretically infinite number of states a
general recurrence relation between adjacent states is set up, and as there is no particular time
scale (such as a finite green period) transitions can be evaluated for an infinitesimal interval:

p; (t +dt)= p;,, (tY1—Adt)udt + p, (t)(xludt2 +(1—adt)1- pdt))+ P, (t)hdt(l - udt)
(2.3.21)

Terms in infinitesimal dt? vanish, and introducing p=A/p as before, the relations reduce to the

following, noting that there is no state below the absorbing zero state:

1d

=% 5 op, (2.3.22)
u dt

1 dp

—— = Pia — (1+ P)pi + PPy (2.3.23)
u dt

Where i is limited to some finite N, the formula for dpy/dt is truncated, but this is not relevant
to the present argument. When summed, terms cancel between successive expressions, and

since the probabilities sum to 1, equations (2.3.22-23) add up to zero on both sides.

The rate of change of the mean queue is calculated by taking the first moment of equations

(2.3.22-23), with some cancellation of terms and utilisation defined as before:

N
LAt _1509P g p)=p-u(t) (2.3.24)
pdt pds dt

When this is integrated, the deterministic mean queue formula (2.3.4-5) is obtained:

t

L(t)=Lo + u[pt -| u(y)dy} = Lo +(p = x(t)ut (2.3.25)

0

Equation (2.3.25) expresses conservation of units/customers/vehicles and so will be inherent in
any correctly formulated queuing process. In the parking place model in section 2.3.2,
conservation was violated as long as p was interpreted as the true demand intensity because

customers who defected were not recorded.
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2.3.6  Derivation of the deterministic formula for time-dependent variance

In a similar way to the foregoing, evaluating the rate of change of the second moment of
equations (2.3.22-23) gives initially (see Appendix A for derivations):

( ):ﬁZIdeFT[I =2(p—1)L(t)+p+1— py(t)—p(2N +1)p, (2.3.26)

’:Il—\

Letting N—oo, using (2.3.24) to eliminate po in favour of dL/dt, integrating, and using the

definition of variance V=S-L? the following expression for variance results:

V=V, +Ly(L, +1)+ 20— p)L, — D)ut — L(L +1) where (2.3.27)

t
D(t):%j L(y)dy is the average mean queue or delay over [0,t] (2.3.28)

0

L, D and V all being functions of time, and Lo, V, being initial values at t=0. On making the

natural definition W =V + L(L +1) (sum of first two moments), a tidier formula results:
W =W, +2(1-p)L, — D)ut (2.3.29)

Equations (2.3.27-29) constitute the key new result that will be exploited here. As the structural

similarity to (2.3.4-5) is immediate, one is tempted to conjecture that:

@ The result applies to all queues, not just M/M/1
2 Some property of traffic is conserved, though not simple units of traffic

3 Analogous formulae for higher moments may exist.

Conjecture (1) will be reinforced later when it is shown that the variance formula is also
satisfied by the M/D/1 process and can be derived from diffusion models (see Chapter 5).
Conjecture (2) does not affect the present discussion but is touched on informally in Appendix
A. The purpose here is to explore the implications for calculating queue variance and hence
reliability. The exact shape and tail of a probability distribution depends also on higher
moments (3), in particular skewness and kurtosis, but the natural asymmetry of a queue
distribution means that large skewness is likely to be associated with large variance. Kurtosis
might have a stronger association with ‘heavy tails’, but these and ‘rare events’ may more
usefully be approached directly. However, it is conceivable that a formula for skewness might

be used to constrain queue development. This could be a topic for further research.
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2.3.7 Steady state invariants of M/M/1

Steady-state moments can be got from the recurrence relations by setting the rate of change of
the next highest moment to zero. Equation (2.3.24) yields the utilisation immediately:

Uy =1— P =p (2.3.30)
Using (2.3.22-23) inductively with (2.3.30) gives the steady-state probability distribution:
P =(1-p)p' (2:3.31)

Setting the rate of change of the second moment to zero in (2.3.26) and substituting for po. from
(2.3.30) yields the equilibrium mean queue size:

L =

e P (2.3.32)
1-p

To get the equilibrium variance it is necessary to evaluate the rate of change of the third

moment, whence using substitutions from (2.3.30-32):

v, =_P (2.3.33)

These are all well-known results, and there are other ways of extracting them for more general
queue processes (e.g. Kleinrock 1975, Bunday 1996), but they are not obtainable from the
deterministic formulae of the same order. This is not surprising since the deterministic formulae

have to apply equally to all queuing processes.

2.3.8 Exact Series formulation of the time-dependent M/M/1/N queue

To describe a queue process completely, the transient queue size probability distribution must
be specified for all time from any starting condition. The M/M/1 queue was the first queue
process for which a closed-form solution for the transient probability distribution was derived
(Morse 1955, Clarke 1956, Morse 1958), in various but equivalent forms involving exponential,
trigonometric or Bessel functions, and later Generalised Q-functions (e.g. Cantrell 1986,
Cantrell and Ojha 1987, Cantrell and Beall 1988). Sharma (1990) gives an alternative formula

involving binomial coefficients. More recently, Griffiths et al (2005) have described the
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transient solution to the M/EK/1 process, where service is generalised to the Erlang-k
distribution. Kleinrock (1975) finds the complexity of the transient solution “most
disheartening”, despite its representing the “simplest interesting queuing system”. For present
purposes, the following discrete form quoted by Kimber and Hollis (1979), using only standard
exponential and trigonometric functions, is found computationally convenient. If the maximum

queue size is N, the probability p, that a queue initially of size exactly m has size n at time t is:

(1_p)pn P N SimSin
t)= expl— X;ut 2.3.34
n Pat) v TN Zl‘, X p= X;ut) (2:3.34)
where
Xi=1+p—2\/BCO{ T J (i,jel..N) (2.3.35)
N +1

Siij =sin(%)—ﬁsin[wj (2.3.36)

N +1

The queue size probability distribution at time t, given that at to, is obtained by convolution of

the transition probabilities with the initial distribution:

N
)= Pt —to)pn(to) (2.3.37)

m=0

The first term in (2.3.34) represents the equilibrium distribution. Although equilibrium is
undefined for p>1, the formula as a whole remains valid, although the maximum N needed for
accuracy is no longer bounded. As in simple cases (2.3.14, 2.3.19) the description involves
exponential relaxation, but (2.3.34) behaves like a linear superimposition of processes with
different time scales, as if each queue state evolves independently of all the others, like waves
propagating in a linear medium. As in (2.3.14), there is effective censoring/defection of arrivals

if the queue is already ‘full’, so (2.3.4) is not exactly satisfied for finite N.
Efficiency and accuracy of calculation depends on the choice of N in equations (2.3.34-37), as
well as restraint in the value of t when p>1. For p>1 the highest possible resolution is advisable,

subject to powers of p not exceeding the available computational range. For p<1 an adequate

minimum value for N is found empirically to be:

N+1> L, +7/f—p) when p< 1 (2.3.38)
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In (2.3.34-36) all terms apart from the exponentials are independent of t, so can be
precalculated for p, while the sin and cos functions depend only on N. If (N+1) is chosen to be a
power of 2, with N sufficiently large that py is expected to be negligible, the sin and cos terms
can be precalculated and stored for all i and j. Values for smaller N can then be interpolated by
selecting from the array. Calculation of p, can be suppressed once the probability falls below
some lower limit, and the remaining probabilities normalised to sum to 1. For example, if the
lower limit is set at 0.0000001, and this occurs before i reaches a maximum (N+1) of 1024,
then the maximum error introduced by truncation is 0.01%.

2.3.9 Characteristic relaxation times
Relaxation times are useful for making approximations that have the right dynamic or transient
behaviour. When N—co, or the cos term approaches 1, (2.3.35) simplifies to the inverse of the

commonly quoted relaxation time of a random queue towards the steady-state, which also

happens to be the longest time scale:

e ==-p)” (2.3.39)

=

Morse (1955) quotes a value twice this, but the practical difference is small where 1, is used
as a time scale indicator on a logarithmic scale. In the early stages of development the
shortest time scale dominates, got by setting the cos term to zero, being already familiar from

the ‘censored’ parking place model (2.3.14):
1 =)
T,0=—[1+p) (2.3.40)
u

Otherwise, (2.3.35) ranges in value between these two, which diverge as p approaches 1. For
Erlang-m service, equation (2.2.3), where the variance of the service time is divided by a factor
m as a result for example of bunching, (2.3.40) generalises to (2.3.41), although this breaks

down in the case m=co representing uniform service:

1 -1
rro(m):—(erBj (2.3.41)
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2.3.10 Lags and loops

It is observed that the variance of travel time or delay tends to lag the mean. Addison (2006)
demonstrates this behaviour through a diffusion approximation (see later in Chapter 5). This
effect leads to relationships between the variabilities and means of travel times that resemble
anti-clockwise loops, as illustrated by Arup, Bates et al (2004), and Fosgerau (2010). It is also
observed that the peak of a queue lags that of the demand profile causing it. This is intuitively
obvious because a deterministic queue caused by transient oversaturation will go on rising as
long as the demand exceeds the capacity, including a period while the demand is falling from
its peak. Equation (2.3.24) expresses this formally. The rate of change of the queue is positive
as long as the demand intensity p exceeds the utilisation. If p>1, since u<l always,

oversaturation will cause the queue to grow even while the demand is falling.

The variance equation (2.3.27) or (2.3.29) has a similar general structure to (2.3.25). The
derivative of (2.3.27), making use of (2.3.24) and (2.3.28), is:

O(']I—\t/zzu(l—p)(l_e —L)-p(2L+1)p —u) (2.3.42)

This can also be written as (2.3.43), which for the M/M/1 queue simplifies to (2.3.44):

dv L+5)1-u
dv L+.5)1-u
o= n(d+ p)[l— ( L SJ(EH (M/M/1) (2.3.44)

Pre-peak, when the queue is rising, u<p and L must be less than L., but this need not be a
problem if the queue has not had time to approach equilibrium. Within the peak, where p>1,
dV/dt>0 certainly. Post-peak, where p<1 and the queue is falling then necessarily u>p, so the
second inner bracket <1, and dV/dt>0 as long as in the first inner bracket L is not so large
compared to L. that it overwhelms the second inner bracket making the whole expression to
go negative. Considering the state produced during the peak, L. is unbounded as p is in lower
neigbourhood of 1, whereas L is bounded by some value less than the cumulative arrivals, so
there must be a period after demand falls below capacity when L is less than L.. Hence the
peak variance lags the peak mean. The same conclusion is reached for other queue types

since their equilibrium formulae invariably include the divisor (1-p) ensuring the multiplier
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in (2.3.43) is >0. Figure 2.3.3 shows hysteresis loops of L against p, and V against L, taken
from one of a number of over-saturated symmetrical peak cases (J2P4, see Table 2.5.1 later),
that lasts 108 minutes including 36 minutes over-capacity and is divided into 9-minute time
slices. Addison and Heydecker (2006) prove this effect in theory, and Arup, Bates et al
(2004) show that it extends to whole networks.
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Figure 2.3.3 Lag-loops generated by an oversaturated peak, with points every 9 minutes.

Left: mean queue against demand intensity; Right: variance against mean queue.

2.3.11 The Pollaczek-Khinchin mean queue formula

The Pollaczek-Khinchin'®**?(P-K) mean queue formula (2.3.45) is the simplest form of a

generalisation of the steady-state mean queue formulae given earlier.

2
L, - |p+1CL where C=1(1+c?) (2.3.45)
-p

This is a standard result in text books and extensively used although necessarily an idealisation
of real processes. It is derivable either by considering a queuing process with general (or at
least Erlang) arrival and service distributions (see later in Chapter 3 where an extended form is
derived), or via a Laplace transform approach developed by the same authors and found in most
standard works. The parameters | and C are as defined in (2.2.1). C is nominally 1 for M/M/1
where ¢,=1 and 0.5 for M/D/1 where ¢,=0, but in practical signal models an empirical value in
the range 0.5-0.6, such as 0.55, is used (Catling 1977, Branston 1978, Kimber and Hollis 1979,

Burrow 1987), reflecting that the service is not perfectly uniform. The form of C in equation

'8 We use the modern English transliteration of the Russian name rather than the French Khintchine.

19 Félix Pollaczek and Aleksandr Khinchin developed their formula for G/G/1 (‘General’) queues independently in
1930-32, though this has also been credited to Harald Cramér in 1930.

2 The convention adopted here is consistently to use subscript a for arrivals, and b for departures or service.
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(2.3.45) takes account of the service process through its coefficient of variation cp, but does not
involve the arrival process (see later in Chapter 3). However, Kimber, Summersgill and Burrow
(1986) proposed the alternative (2.3.46) that is trivially valid when p and the index of

dispersion of arrivals are close to 1:
C=C =1(2+c?) (2.3.46)

The unit-in-service coefficient | does not appear in standard texts and is believed to have been
introduced by Kimber, Hollis and/or Summersgill to reflect the contribution of the average time
in service at a priority junction. This is neglected at a signal. | is conventionally 1 for the
M/M/1 queue and O for the M/D/1 queue.

2.3.12 The deterministic limit
Equation (2.3.24) contains the time-variable degree of saturation x(t). In equilibrium this
converges to p so the shrinking of the bracket compensates for the unlimited growth of the time
multiplier. If service is assumed, somewhat simplistically, to be permanently saturated (x=1),
the queue formula reduces to:

L=Lo+(—pk where L =pp (2.3.47)
Since this is linear in t the delay-per-unit-time (average queue) function is simply:

D=L, +3(h—pk (2.3.48)

In the variance formula (2.3.27), since L. always has (1-p) in the denominator, the first term in
the central bracket 2(1-p)L. is always defined. In the case of M/M/1 it is just 2p, so using
(2.3.47-48), noting that all the terms in L, cancel:

V=V + L5+ Ly + (20— (u=2)2Ly +(h — )k
—Lg 2L (== (=)' t? — Lo — (b -k (2.3.49)
=V + (L +plt

The final expression in equation (2.3.49) is well known and demonstrates its consistency and

that of the more general equation (2.3.2) with the variance formula (2.3.27).
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The constant multipliers of time in (2.3.47) and (2.3.49) feature in simple diffusion
approximations considered later in Chapter 5 as respectively measures of drift (bodily
movement) and diffusion (spreading) of the probability distribution. When more general
process statistics are introduced as in the P-K formula (2.3.45), the form of (2.3.47-48) is not
affected, but that of L. is. Rewriting (2.3.45) as:

* 2
L, =|p+1(+l)p where 1" =1+1(1,-1) (2.3.50)

where 1, is the index of dispersion of arrivals. Using 1" has advantages that will be apparent

later (see Chapter 3), and dropping terms in L, that cancel anyway, (2.3.49) is modified to:

e L D A A T S (T S

=V, + (21" =1+ 2(C = 1)p . + o
So the net effect is to apply a factor to the arrival rate A, but this depends on the service process
as well as the arrival process. For an M/D/1 signal-type queue (1"=0, C=0.5) the factor on time
reduces to (p-1). This is positive since the assumption of deterministic growth implies p>1.
However, the significance of (2.3.51) is unclear since neither the factor on time nor the

equation as a whole seems to correspond to anything familiar.
2.3.13 Accommodating hyper-exponential processes in the P-K statistics

Real processes can involve hyper-exponential headway distributions. For example, arrivals
might be drawn from several different streams with different headways, and service might be
affected by intermittent blocking of several exit routes with different capacities. This research is
aimed specifically at exploiting and enhancing the P-K formula as it is used in many traffic
modelling tools, so hyper-exponential technically falls outside the scope. However, it is
possible to estimate how parameters of the P-K formula could represent the average effect of a
hyper-exponential headway distribution. Figure 2.3.4 shows how the average coefficient of
variation (c.v.) of headways, i.e. ¢, of arrivals, or ¢, in the P-K randomness coefficient, is
affected by varying the spread of three rate parameters {A,} expressed in terms of their c.v.
from 0 to 0.75, with mean headway normalised to 1, and various permutations of mixture
probabilities {h.,}, again with c.v. in the range 0 to 0.75. In addition to the average value, the
distribution of results assuming each permutation to be equally probable is indicated. All
process headway c.vs are greater than 1 and less than 3, so effective randomness is always

increased but might potentially be accommodated approximately in the P-K model.
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Figure 2.3.4 Headway coefficient of variation for three-way hyper-exponential cases

2.3.14 Limited applicability of equilibrium

Figure 2.3.5 shows that the practical range of traffic intensities where equilibrium conditions
can be considered to apply is quite limited. This graphs the M/M/1 equilibrium queue (2.3.31)
and the relaxation time (2.3.37), assuming throughput capacity of 3600 units/hour, equivalent to
two average lanes. A lower throughput would increase the relaxation time in proportion,
making the region of interest even smaller, although in some networks reassignment might tend

to maintain traffic levels in this region. ‘Heavy traffic’ generally refers to 0.95<p< 1.
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Figure 2.3.5 M/M/1 steady state queue L. and relaxation time t,. v. demand intensity

In practical problems such as modelling traffic peaks with transient oversaturation, the traffic
levels are often either too low to produce interesting results, or too high for the system to get
anywhere near equilibrium in the time available. The latter time-dependent case is of the
greatest interest because predictions for any particular time can depend sensitively on past

development, and calculations become correspondingly more complicated.
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2.4. M/D/1 PROCESSES DERIVED USING RECURRENCE RELATIONS

2.4.1 Motivation and approach

M/D/1 with ‘Markovian’ (random) arrivals and ‘Deterministic’ (uniform) service idealises the
gueue remaining stochastically at the end of an intermittent short period of throughput like
green at a signal, where traffic can be either stopped (red) or flowing freely (green), sometimes
referred to as the ‘overflow’ queue. The service interval is notional in that it is based on average
capacity and does not explicitly reflect a signal cycle. A separate phase queue formula accounts
for the linear build up of queue in the red phase and its discharge in the green phase (e.g.
Webster and Cobbe 1966). The derivation of M/D/1 differs from M/M/1 in that instead of a
single arrival in an infinitesimal time interval, multiple arrivals can occur during the finite
service interval. Derivations of the basic M/D/1 moments including variance formulae are
given in Appendix A. However, it allows for only one customer to be serviced in its notional
service period. Furthermore, like M/M/1, the M/D/1 equilibrium queue depends only on the

traffic intensity, which in turn depends only on the ratio of green to cycle time.

An extended formulation is therefore required to represent the actual capacity of signal green
periods. This has been recognised since signal gueues began to be analysed, which can be
traced to A J H Clayton in 1940 (see Allsop / Hutchinson 1972). Various formulae have been
developed that take account of the green period capacity (Appendices D, E), but the importance
of M/D/1 is that it is a special case of the Pollaczek-Khinchin equilibrium queue formula, and
so can be incorporated in time-dependent methods like shearing (see later in Chapter 4). It is
therefore advantageous to have an extension of M/D/1 that can account for green period
capacity. In practice, unlike the basic M/D/1, exact closed formulae for the extended moments
do not appear to be available, so empirical approximations to them are required, which will be

discussed later in Chapter 3, along with other derivations of equilibrium formulae.
2.4.2 The basic M/D/1 process
The basic M/D/1 process can be interpreted as one in which customers are served singly in

fixed service time intervals, during which more than one random arrival can take place. The

probability of j arrivals in a unit time period is Poisson distributed:

_— (2.4.1)
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The probability of i units in the queue at the point after ut+1 service periods (cumulative
throughput capacity) is the sum of the probabilities of i+1 in the queue at ut and no arrivals in

[ut, ut +1), i at ut and one arrival, i-1 at pt with 2 arrivals, and so on, hence:
i+1 i+1 pje—p
pi(ut +1) = znj Piiij (ut) = ZT Piiaj (ut) and (24.2)
j=0 =0
Ap;(t)=p;(ut +1)— p,(ut) infinite differential form (2.4.3)

In the steady state Ap, (t)=0 for all i, so rearranging (2.4.2), and in calculating p, allowing that

the initial queue may be zero and there are no arrivals, i.e. the service is not utilised:
p, = (e" -p —1)p0 (2.4.4)

b (i>1) (2.4.5)

The derivation of (2.4.4) for the final state i=0 in (2.4.2) can be visualised as follows:

Table 2.4.1 Construction of recurrence formula (2.4.4) for p;

Initial state Arrivals  Departures Finalstate jin(2.4.2) Factor  pi.j

1 0 1 0 0 e’ P1
0 1 1 0 1 pe”® Po
0 0 0 0 0 e’ Po

The first two terms contribute to a notional p( as calculated from (2.4.2), which is incomplete
as the final zero state, and the third term is a notional p.;) term, again as calculated from (2.4.2).
These two notional probabilities must be added to give the probability of the real zero state, so

using brackets around the indices to indicate notional states:
Po = Po) + Py =€ " (P + (P +1)py) (2.4.6)

Multiplying this through by e” and rearranging yields (2.4.4). The significance of this procedure
is twofold: first, it formalises the working of the absorbing boundary at zero; second, it is a
prototype for more general use of notional non-positive states later. Equation (2.4.5) is derived

in a similar way but without needing a notional term: i.e. setting i=1 yields p, etc.

As in M/M/1, moments of the steady-state distribution can now be got from (2.4.4-5) (see

Appendix A for derivation):
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by evaluating > ip;: Poe =€°(1-p) (2.4.7)

2

by evaluating > i°p;: L, =% (M/D/1 without u.i.s.) (2.4.8)
i -p
_ 3 p’(6-2p-p?)
by evaluating » i p; : V, = ) (2.4.9)
i 12(1-p)

Equation (2.4.8) is the idealised form of random queue at a signalised stop line (1'=0, C=0.5 in
equation (2.3.50)), although Kimber and Hollis (1979) and references therein, and Burrow
(1987), find that setting C=0.55 gives a better match to observation. It represents a queue
without ‘unit in service’ because departures from the queue can proceed at saturation flow
without having to wait for a gap. While queue size probabilities sum to unity as expected,
equation (2.4.7) is inconsistent with equilibrium utilisation, which as long as L remains finite
must equal p to satisfy (2.3.4), as explained in the previous Section. So average p, should equal
(1-p). In fact, po in (2.4.7) applies at the end of the service period, whereas average po takes into
account queues that exist transiently during the green period but discharge before the end of it.
The final value is greater than average po by a factor €”>1, consistent with this interpretation.

This important distinction will be justified later.

2.4.3 M/D/1[G] queue dependent on green period capacity

Olszewski (1990) reports an observation made by Miller (1969) and previously by Newell,
subsequently picked up by Cronjé (1983a) who quotes the relevant formulae, that the mean size
of the stochastic (‘overflow”) queue at a signal tends to fall with increasing throughput capacity
in the green period G. He develops transition probabilities for a signal-like process with general
arrival distribution and variable service period, and using Markov simulation shows that the
mean queue size does indeed decrease in a manner very similar to Newell’s model?. Miller’s
and Newell’s formulae include dispersion of arrivals 1, as a multiplying factor, the logic

presumably being that removing all randomness should eliminate the stochastic queue.

According to equation (2.3.50), where I, enters differently, the queue is zero when 1,=(1-p), so
apparently it is not necessary to eliminate arrivals dispersion to make the queue zero, but the
gueue can still be reduced by any required factor. At a real signal the randomness of stop-line
arrivals during green could be less than that of a distant demand source because some short-

term randomness in arrivals is absorbed during red.

?ISee Figure 3 in Olszewski (1990). G is used here in place of Olszewski’s B.
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However, if throughput capacity in the green should then increase, the uniform discharge flow
from any red queue should represent a smaller proportion of the throughput, so increasing the
dispersion of stop-line arrivals. This would tend to counteract any direct effect of I,0n the mean
queue size, so the mean queue reduction cannot be linked so directly to a change in the
dispersion of arrivals. Since the M/D/1 model assumes ¢,=0, changing the service statistics also
cannot reduce the mean queue size. Therefore the model needs radical modification beyond that
achievable within the P-K formula.

2.4.4  Allowing for different green period capacities

The basic M/D/1 model describes a system like a ramp meter where only one customer can be
served in each green period. A more realistic model allows for G customers to be serviced in
each green period, and the recurrence relations become more complicated. Queues of a

specified size at the end of the green period can be achieved by the following conditions:

Table 2.4.2 Conditions for getting given final queue in green period of capacity G

Initial state Number of arrivals in green period

Queue i = 0 at end of green period

Upto G
Up to G-1
Up to G-j
>G Not possible

—| | o

Queue i> 0 at end of green period

Exactly G+i
Exactly G+i-1
Exactly G+i-j
+i Not possible

0
1
j

G

>

Table 2.4.2 shows that development of p; with i>0 is similar to equation (2.4.2), while that for

po must be more complicated, and further that notional states down to -G must be considered:

p i +0)= 3 CLE ) (i>-) (2.4.10)

i=0

As a device for calculating an overflow queue probability distribution, Cronjé (1983a) (in his
Table 2) introduces notional negative overflow queue sizes, summing these terms to give the
real po at the end of the cycle, although he does not appear to pursue the concept further. Tables
2.4.3 visualise this approach for G = 1, 2, and 5 respectively, where the notional states are

represented by the rows with bracketed indices in the left column.
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Table 2.4.3 Charts relating final to initial state for different green capacities

G=1| Initial state

0 |1 |2 [3 |4 |5 |6 |7 |8 |9 |10 |11 |12
(1) | 0

0 |1 0 Numbers in interior cells are numbers of arrivals in period
1 2 1 0 Mean arrival rate = p

2 3 2 1 0 Departures in period = 1 exactly

3 4 3 2 1 0

4 5 4 3 2 1 0

) 6 5 4 3 2 1 0

G=2/| Initial state

0 |1 |2 [3 |4 |5 |6 |7 |8 |9 |10 |11 |12
(-2) | O

-1 |1 0 Numbers in interior cells are numbers of arrivals in period
) |2 1 0 Mean arrival rate = Gp = 2p

1 3 2 1 0 Departures in period = 1 exactly

2 4 3 2 1 0

3 5 4 3 2 1 0

4 6 5 4 3 2 1 0

) 7 6 5 4 3 2 1 0

G=5] Initial state

lef0 |1 [2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12
(-5) | 0

(-4) |1 0 Numbers in interior cells = numbers of arrivals in period
(-3) |2 1 0 Mean arrival rate = Gp= 5p

(-2) | 3 2 1 0 Departures in period = G exactly

(1) | 4 3 2 1 0

© |5 |4 |3 [2 |1 |o

1 6 5 4 3 2 1 0

2 7 6 5 4 3 2 1 0

3 8 7 6 5 4 3 2 1 0

4 9 8 7 6 5 4 3 2 1 0

5 10 |9 8 7 6 5 4 3 2 1 0
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Numbers in interior cells are arrivals, which translate into Poisson coefficients, in terms of Gp
rather than p, multiplying the initial probabilities (columns) as in equation (2.4.10). To convert
from these sequential relationships to steady-state recurrence relations, the final and initial state
probabilities are equated and terms rearranged as follows:

1) move the final state probability from the left-hand column to the right and combine it
with the corresponding initial state term (black-bordered cells)

2 move the highest state (always initial) to the equation LHS (red bordered cells)

3 divide through by coefficient of the new LHS (always e®")

(@) adjust indices as necessary.

This procedure is straightforward for G=1, yielding (2.4.4-5) from (2.4.2), but gives a more
complex result for G>1. However, the coefficient of the final-state probability is always the
G™ Poisson coefficient (content of black bordered cells), and the coefficient of the highest
state is always the 0™ Poisson coefficient (content of red bordered cells). At equilibrium steps
(1-2) produce equation (2.4.11) and steps (3-4) rearrange this to (2.4.12):

i+G i a—(Gp) .
e o0 &) _ pfe)—Z(Gp) j? peL | (i>0) (2.4.11)
= -
i j .
0(©) = (®) @) _Z(GJPI) o® (i>G) (2.4.12)
j=1

To get the recurrence relations for i<G consider the upper triangular parts of Tables 2.4.3. In
the case of G=1, the components of the recurrence relation can be constructed as in Table

2.4.4 (where m; represents the j™ Poisson coefficient):

Table 2.4.4 Construction of recurrence relation for p; in the case G=1

Target equilibrium state Components of recurrence relation
ToP1 = P -T1Po
ToPo = P

The real zeroth state at the end of green is given by (2.4.13), as earlier in (2.4.6):

Po = P-1) * P(o) (2.4.13)
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Adding the terms, moving the (unknown) p, target term to the RHS, applying (2.4.11) to
leave three terms, and dividing through by =, results in equation (2.4.4). In this case the

notional terms can be found explicitly:

p&) = (e -1)-p) (2.4.14)

In the case G=5, the structure is more complicated, as shown by Table 2.4.5. From this, an
expression for ps can be got in terms of lower states. However there seems no straightforward
way to determine the probabilities of states below 5. This might be possible if the p.; could be
evaluated independently, but there seems to be no way to do this.

Table 2.4.5 Construction of recurrence relations for states in the case G=5

Target Components of recurrence relation

ToPs = P -Tt1P4 -Ti2P3 -Ti3P2 -T4P1 -T5Po
ToP4 = P -T1Ps3 -T2P2 -T3P1 -Tt4Po

ToPs3 = P2 -T2 -Ti2P1 -Tt3Po

ToP2 = Py -T1P1 -T2Po

ToP1 = e -Tt1Po

ToPo = Pes)

Seeking a numerical method, a Markovian sequence can be set up that calculates iteratively
the raw probabilities, including notional final state probabilities (left hand column of Tables
2.4.3) from the previous ‘real’ state probabilities, then calculates the final real probabilities
from the raw probabilities. A Markov simulation program developed for benchmarking,
Qsim?, has been enhanced to calculate recurrence relations (2.4.10) for in principle any value
of G, in practice up to G=100 and p up to 0.95. It is difficult to guarantee accuracy at higher
values of G because the recurrence relations become increasingly complex, and convergence
becomes increasingly hard to achieve as p approaches 1. Some compensation for this

inaccuracy is possible by ensuring that the sum of probabilities is always normalised to 1.

In equations (2.4.13-14), pcy represents the probability that the queue remains zero
throughout the entire green service period, while p( represents the probability that one

arrival occurs and is served in the period. This logic can be extended to any value of G.

2The implementation of Qsim is discussed in the Section on benchmarking.
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Since all the notional probabilities contribute zero queue at the end of green, in general:
Po =D, P() (2.4.15)

Because it represents a queue present for a negligible part of the green period, p does not
contribute to the average probability of the queue being zero during the service period, that
determines the utilisation in practice. The notional probabilities contribute varying amounts

because some arrivals during the green period can have ‘disappeared’ by the end.
Imagining Table 2.4.3 extended to any values of G, evaluating the steady-state mean value of

the ‘triangles’ by initially treating the {p.i} as real probabilities of negative queue states, and

since all blank cells are identically zero, the k™ column mean is given by:

o i ,—Gp
K, = ;(Hk—G)% P =[Gp+k -Glp, (2.4.16)

The left-hand column total must equal the total of the right-hand columns, namely:

i K, =L, —G(1-p) hence (2.4.17)
0

0 G G
Dip = lipy =L, =D i) =L, —Gl-p) so finally

1 0 0

- . 1.
Lig) = D_ip) =G(L-p) or Ele(,i) =@1-p) (24.18)
0 0

Also: Ple) =€ P, (2.4.19)

Thus the average probability of the queue being zero during the service period is indeed
consistent with the definition of utilisation, that requires it to equal p at equilibrium as
discussed earlier in Section 2.3. It is seen now that the possibility to get result (2.4.7) in the
case G=1 depends on the fact that there are two equations, (2.4.13) and (2.4.18), that can be

solved for two unknowns. This apparently does not extend to G>1.
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From Table 2.4.3, the notional probabilities for G=2 can be expressed in terms of pg:

P2) = e p,
Py =20-p)—2e7"p,
(2.4.20)
oy ={L+e 7)oy~ 2(1-p)
Subsequently (2.4.12) leads to relations analogous to (2.4.4-5):

p, =€ P~ (2p)p, (2.4.21)
2 2

p, =e” Po) — (2p)p1 _% Po (2.4.22)

L (2p)] _

P =e”pi, —(2p)pis - ( T') pi.j (i>2) (2.4.23)

=2 I

Summing either {p;} or {ip;} using these equations yields an identity, and summing {i’pi}
gives a formula for the steady-state mean queue confirmed for G=2 by Markov simulation

(up to i=14), that depends on po:

B 2p? —2p+1-ep,

- 20 p)

(G=2 only) (2.4.24)

The formulae so far do not give an explicit value for po. If a formula corresponding to (2.4.18)
could be found for the variance of the notional probabilities, then this might yield po. The

results show at least that the variance of the notional terms satisfies:

var{p(_i)}[G] —>Gp in the limit when pp— 1 (2.4.25)

This is certainly true when p—0, and also when G is large. However, this gives no clue as to

the dependence on py in other cases.

From (2.4.15) and (2.4.20) in teh cases G=1 and G=2 respectively:

varip }[Gzl] =p(L-p) (2.4.26)
Vaf{P(—i) }[G:Z] =2(2p-1)1-p)+2e > p, (2.4.27)
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The presence of py in (2.4.20) and (2.4.27) when G=2, and its absence in (2.4.14) and (2.4.26)
when G=1, suggests there may be an inherent difficulty in extrapolating these equations, for
example those for G=3 may involve p; and so on. This would not invalidate (2.4.25) since in
the equilibrium distributions pi<p, for all i>0.

Although some useful results have been found for M/D/1[G], this Section has failed to
produce any definitive results for its important moments. Historically, researchers have
resorted to empirical approximations. These and some new empirical formulae are described

later in Chapter 3.
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2.5. BENCHMARKING METHODS

2.5.1 Peak cases used for benchmarking

A set of benchmark peak cases is available from Kimber et al (1986)* who approximated the
M/M/1 variance profiles for 34 symmetrical Gaussian peaks by gluing together half-Gaussian
functions. The cases represent queuing at several hypothetical give-way junctions ‘Jm’ with
peak profiles ‘Pn’ producing transient overloading up to various amplitudes, and durations
ranging from 45 to 120 minutes. For the purpose of simulation, the profiles have been divided
into at least 12 equal time slices, in each of which demand and capacity are assumed to be
constant. A similar time-sliced approach is used in respectively roundabout, T- and signal junction
models ARCADY (Semmens 1985a, Binning 1996), PICADY (Semmens 1985b), OSCADY
(Burrow 1987), and dynamic traffic assignment model CONTRAM (Taylor 1990,2003).

One of the test cases, J2P4, provides a useful test of ‘middle-weight’ symmetrical Gaussian
peak with substantial overload, pmax=1.1384, over a substantial but not excessive peak period
lasting 90 minutes. Because this case was originally formulated to represent a give-way

junction with opposing flow, capacity falls somewhat as demand increases, as in Table 2.5.1.

Table 2.5.1 Definition and properties of symmetrical peak case J2P4 as used here

Time Slice  End time (min) p u (veh/min) Po L \Y
0 0* 0.5717 15.906 0.4283 1.3348  3.1165
1 9 0.6472 15.492 0.3528 1.8343  5.1975
2 18 0.8032 14.694 0.1986 3.9755  19.0354
3 27 0.9520 14.004 0.0736  9.9567  76.6503
4 36 1.0711 13.494 0.0170 22.2552 213.1961
5 45 1.1384 13.224 0.0034 39.5938 416.7314
6 54 1.1384 13.224 0.0012 56.3156 647.6774
7 63 1.0711 13.494 0.0015 65.1355 876.5028
8 72 0.9520 14.004 0.0065 59.6147 1056.5750
9 81 0.8032 14.694 0.0498 37.2192 963.7484
10 90 0.6472 15.492 0.2465 10.4176 314.5935
11 99 0.5719 15.906 0.4148 1.9363  22.0238
12 108 0.5719 15.906 0.4276 1.3519  3.5187

2 This was joint work between the Transport Research Laboratory and Halcrow Fox and Associates, who also
investigated (unpublished) the use of Gamma Distributions to model queue size probability distributions.
#This represents an equilibrium initial state.
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2.5.2 Accuracy of M/M/1 Series calculations

Issues relating to the choice of maximum queue size N and the accuracy of the Series
calculation have been discussed earlier. The author first implemented the Series method in a
Fortran program. A Visual Basic pseudocode listing is given in Appendix B. Results of the
Series calculations are consistent for maximum resolutions (N+1) of 256 and above, but begin
to show errors at maximum resolution 128, that become significant at maximum resolution 64.
The errors become evident at p>1, where it is not possible to analyse equilibrium distributions.
In an attempt to determine the required resolution, which amounts to estimating where
probabilities become ‘insignificant’, probability distributions for each of the 12 time slices of
J2P4 have been compressed in Figures 2.5.1 using natural logarithms.
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Figure 2.5.1 -In(p;)and —In(In(p;))(queue size probability) distributions for peak case J2P4
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The maximum values plotted are determined by the arbitrary lower limit on p;. If the tail of the
distribution should approach a geometric equilibrium form, In(p;) should become linear with i.
However, in Figure 2.5.1 (left), where the actual -In(p;) are plotted against i for the initial
equilibrium distribution and, this appears not to be the case except in the first two time slices.
In practice, in most time slices, In(-In(p;)) appears to become almost linear against i as in Figure
2.5.1 (right). Why this should be the case is not clear, but it implies that most of the probability
distributions, including those post-peak, are nowhere near equilibrium, or nearer Gumbel than
exponential. This is not pursued as it has been possible to generate distributions at sufficient

resolution, and the results compare well with more efficient Markov simulations next.

2.5.3 Markov simulation

Markov simulation calculates the probability of each queue state at each point in time by
calculating all possible transitions from the possible states at the previous time point according
to transition probabilities. It can therefore be applied where only differential recurrence
relations are available, without explicit state formulae. The initial distribution at each cycle can
most readily be an exact state, e.g. zero, or an initial equilibrium state, or a distribution carried over
from the previous time point. As time t is advanced in small steps dt, the {p,(t)} are calculated at

successive points in time, using finite differential equations of the general linear form:

(2.5.1)

Specific recurrence relations exist for M/M/1 (2.3.22-23) and M/D/1 (2.4.2), (2.4.10). In
addition to its greater computational efficiency, Markov simulation’s ability to calculate M/D/1,
M/D/1[G] and other distributions lacking explicit formulae for state probabilities (see also
Chapter 3), gives it a significant advantage over Series calculation which is limited to M/M/1.
With Neil H Spencer, then a sandwich student at TRL, the author developed a Markov
algorithm implemented in a program ‘Qsim’. This uses the above method to develop a queue
length distribution stepping through consecutive time-slices in which the arrival and service rates
are assumed constant. The program has since been extended to include M/D/1[G], and queues
with Erlang-k arrival or service distributions (see Chapter 3 later). The effect of continuously
varying demand and capacity can in principle be simulated by using very short time-slices (e.g. 1
second). Alternatively, mean arrivals and capacity can be held constant over periods of several
minutes to allow comparison with time-sliced traffic models such as ARCADY (Semmens 1985a,
Binning 1996), PICADY (Semmens 1985h), OSCADY (Burrow 1987) and CONTRAM (Taylor
1990, 2003). A Basic pseudocode listing and example of output are given in Appendix C.
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2.5.4  Sensitivity of Markov method to maximum queue and step size

The step size ot needs to be chosen with care, since if it is too large the calculation risks becoming
unstable, whereas if it is too small computation time is increased without any useful gain in
accuracy. As with the Series method, practical calculations require a maximum queue length to be
set. The Series method is assumed to be exact provided that the maximum queue size (array
dimension) in the calculation is sufficient. For all the JmPn test cases, 1024 is considered more
than adequate, being over five times the largest mean queue expected. For the J2P4 peak case,
maximum queue size of 256 is sufficient, and reducing it to 128 has little effect. However, the
calculation fails when maximum queue size is reduced to 64, comparable with the maximum
mean queue size. Computation time can be reduced, without significant loss of accuracy, by not
suppressing calculating once pi(t) falls below 107, but this needs to be smaller than the cut-off
value for the Series probabilities to avoid accumulating error through many calculation steps. If the
calculation does reach the maximum queue size N then the results could be inaccurate. The last
calculated p, could be a guide to the degree of inaccuracy if the question of asymptotic

behaviour raised in section 2.5.3 were resolved, allowing the missing ‘tail’ to be estimated.

Step size needs to be smaller for the M/M/1 model, which is based on differential recurrence
relations, than for the M/D/1 model, which is based on finite recurrence relations. In both cases,
the calculation fails sharply if the step size is too large. Time steps of 1 second give consistent

results, though 0.1 second can be used for added security or as a check.

Results of using different maximum queue and step sizes are shown in the four panels of Figure
2.5.2. Run time appears to be little affected by step size but appears to be roughly proportional
to the logarithm of maximum queue size: e.g. if it is x1 for N=64, it is x2 for 128 and x3 for 256

etc.

25,5 Microscopic simulation

By simulating directly the random arrival and service at units, at given mean rates, probability
distributions can be built up empirically over a large number of trials. This leads one to
consider the practical interpretation of the probability distribution, usually seen somewhat
artificially as representing the state at a particular time when the same conditions are repeated
day after day. Being conceptually the simplest method and so the least prone to coding error,
random simulation is useful for checking the other methods and for verifying general features
of the probability distribution, but it is also the most time consuming, and can produce only a

ragged approximation to the underlying distribution.
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Figure 2.5.2 Showing abrupt failure cases of otherwise consistent Markov models. The lower

graph in each case relates to smallest N or largest step size. Other graphs cannot be separated

2.5.6  Comparison of actual results of different calculation methods

Figure 2.5.3 shows the probability distribution in the J2P4 case at the end of the time slice (Ts)
giving the greatest variance: Ts 8 at 72 minutes. Interesting features are the accuracy of the
Markov simulation even when using very large time slices, and the bimodal shape with a dip at
i=8, that arises in all cases. The lower left figure was generated using 1 second time slices, i.e.
each of the original 9 minute time slices was broken down into 540 consecutive time slices with

the same values of p and .

Figures 2.5.4-6 compare probability distributions and profiles for the case J2P4 calculated by
the M/M/1 Series, M/M/1 Markov and M/D/1 Markov methods. In Figure 2.5.6 the peak profile
p is shown together with the mean L and variance V of the queue at the end of each time slice,
and the delay D (time-average of the mean queue) over each time slice is also plotted. In each
case both the variance obtained directly from the probability distribution, V and that calculated
using D and the variance formula, V., are shown, but they are so close that broken lines have
been used to prove that both are shown. This confirms not only that the variance formula
(2.3.27) is correct but that it applies to M/D/1. Since its form does not appear specific to a
distribution, it is inferred that like (2.3.4) it should apply to any queue process, and while this is
not absolutely proved further evidence will be provided later. Note the lag of variance relative

to the mean, as well as the lag of mean relative to the demand peak, as remarked earlier.
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2.5.7 Deviation from equilibrium in queue development over time

The Markov simulation program can calculate development of a queue size probability
distribution over an extended time period leading to equilibrium. Figure 2.5.7 shows a sequence
of distributions for p=0.9, u=1, that get increasingly spread out but tend towards a similar

‘geometric’ shape. However, at most points in time the shape cannot be precisely geometric.
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Figure 2.5.7 M/M/1 distribution sequence generated by Markov simulation

According to equations (2.3.32-33) there is a fixed relationship between equilibrium mean and
variance, L%V=p, so if ‘deviation from equilibrium’ is defined broadly by equation (2.5.2). This
deviation rises before it falls to zero, as shown in Figure 2.5.8. Equilibrium is established after

approximately 3 times the relaxation time, 379.7 in this case, with p=1%.
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Figure 2.5.8 Deviation from equilibrium in M/M/1 queue development

% Units of time are arbitrary, since all queue processes as modelled here depend only on throughput.
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2.6. CONCLUSIONS ON QUEUING PROCESSES

Chapter 2 has defined basic queuing methods, the M/M/1 and M/D/1 processes representing
queues resulting from random arrivals and respectively random and uniform service. The
elemental processes have been described using recurrence relations, that have been used to
specify Benchmark programs against which analytical approximations can be compared. In
road traffic terms these represent queues at (idealised) give-way/yield and signal junctions. The
latter case has been extended to allow explicitly for green period capacity.

Based on the same recurrence relations, a new formula for the deterministic time-dependent
variance of a queue has been derived.This arises from both the M/M/1 and M/D/1 cases, and
the form of the result suggests that it is general. In what follows it will be used extensively,
with the aim of enabling the variance of a time-dependent queue to be estimated alongside the

mean, and realistic probability distributions to be estimated from these moments.
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CHAPTER 3: MORE GENERAL EQUILIBRIUM QUEUES

3.1 INTRODUCTION

In modelling road traffic, processes are usually restricted to random arrivals with random or
uniform service, representing yield or give-way junctions and signals respectively, but there can
be variations, associated for example with bunching. The Pollaczek-Khinchin mean queue
formula allows for some variation in queue process statistics through a randomness parameter
that technically refers to service only. This Chapter derives an extension to include dispersion
of arrivals, then applies a similar method to get an equivalent formula for equilibrium variance.
It goes on to investigate a number of other processes that feature in standard works, with their
probability distributions, and to relate these to the extended equilibrium formulae. It then
obtains a relationship between queue moments and certain probability distributions, that in
principle allows the latter to be estimated for processes that do not fit the P-K model. Finally, in
the absence of an exact formulation, it develops new empirical approximations to the moments

of the M/D/1[G] stochastic signal queue with different green times.
3.2. QUEUE PROCESSES WITH GENERAL STATISTICS
3.2.1  G/M/1 with modified variance of arrival headways

Bunday (1996) shows that, for a general arrival headway distribution a(t) and random service,

queue moments are got by replacing p by an ‘effective rho’ n, being the solution of:

n= j}(t)e—@-")“tdt (3.2.1)

The Erlang-r arrival headway distribution, with arrivals at mean rate g, is usually interpreted as

bunched so that their variance is reduced by the factor r:

r-1,-rqt
a(t)=m sothat mean[a]=1/q, var[a]=1/(rg®) (3.2.2)

(r-1)

In this case, n is given by the solution of (3.2.3), as shown in Figure 3.2.1:

n= (r—pJ (3.2.3)
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Transformation between p and n in principle enables a variety of processes to be
accommodated, parameterised by the relationship between the mean and variance of headways,
though a physical interpretation may no longer be clear. When r=1, this reduces to n=p which
is just M/M/1.

3.2.2 G/M/1 with scheduled arrivals

As r becomes larger, representing arrival headways with smaller variance, the relationship

approaches the lowest curve in Figure 3.2.1:
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Figure 3.2.1 Relationship between n and p for various Er/M/1

Bunday shows n for r=co is the solution of (3.2.4), pointing out that this is equivalent to
‘scheduled’ arrivals, that occur at regular intervals but still with random service, in which case
a(t) in (3.2.1) is replaced by the Dirac delta function, the relationship becoming similar to the

defining form of Lambert’s W function:

n=e ° (3.2.4)
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It is not surprising that this is independent of the schedule interval, and depends only on the
demand intensity, given that no long-term average result can depend on the time scale.
Scheduled arrivals are unusual in free-moving traffic but may occur in traffic moving forward
cyclically within a queue, or any process where arrivals are effectively metered. Of more
practical significance is the case where arrivals form ‘green waves’ generated by coordinated
service in a signalised network, and randomness of arrivals is reduced. Service may also be

non-random, and the exact relationship of green waves to signal cycles will be important.
3.2.3 M/G/1 process with Erlang-m service

If the service time probability distribution is similar in form to (3.2.3):

e

(m—1)

b(t) = so that mean[b]=1/q, var[b]=1/(mp®) (3.2.5)

the probability that j units arrive in one service time, assuming exponentially distributed

(random) arrivals, is:

(3.2.6)

-y e *(at)’ mu(mut)™'e™ o (j+m-1) (%jj_
b i (m—2) j!(m—1) (1+%)J+m

These probabilities can in theory be used to calculate queue size probabilities, using
relationships between generating functions. This is practicable for m=1, M/M/1, and also for

m=co, which can be interpreted as M/D/1, but the general case looks like heavy going.
3.2.4  Generalised notation for deriving moments of G/G/1

An alternative approach using expectation values of arrival and service moments, used by
Kleinrock (1975) and Bunday (1996) to derive the Pollaczek-Khinchin mean queue formula,
appears more user-friendly. This can be used to derive the mean steady-state queue including a
modification for dispersion of arrivals |, following Heydecker (unpublished), with extension to

variance. In addition to the variables in the Definitions in Chapter 2, define?:

G, = the number of units arriving during the service time of unit n

g» = the number of units in the system at the end of the service of n
U(gn) = 1 if a unit remains in the system i.e. g,> 1, otherwise 0, so if U(q,) is 1 then

service will occur in service interval n+1.

%This notation used by Bunday is believed to be due originally to Kleinrock, or possibly Kendall before him.
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The number of units in the system evolves with each service event according to: (number-in-
system after service event n+1) equals (number-in-system after service event n) minus (unit

serviced) plus (arrivals during service of n+1), i.e:

Uns1 =4y _U(qn)+gn+1 (327)

Useful intermediate results for the steady-state include:

V(g™ =U(g,)vm=0 a,U ()=, E(n)=Le
EG)=p  EU(@,))=p Eb]=yn  2Ep]=p  (3.28)
Elc)=| [1.2s + (s blskis = 1, AE[o] + 22[E[]? + var(b]
= Ip+p? +22varlb]= I p+p?(1+c2)=1,p+2p°C (3.2.9)
where C is the randomness coefficient: C = %(l+ C,f) (3.2.10)

3.25 G/M/1 with compound or batched arrivals

Heydecker’s method of accounting for dispersion of arrivals assumes a compound Poisson
process, that can be interpreted as arrivals in batches where the arrival rate of the batches
accords with a Poisson process. This leads to a relatively simple closed-form modification to
the steady-state mean queue as derived by Kleinrock (1975). While more general than the

Erlang distribution approach of sections 3.2.1-2, it cannot cover all possible arrival processes.

After squaring (3.2.7) and simplifying some terms using (3.2.8):

qrirl = qr? +U(qn)2 +gﬁ+l + 2qn§n+l - 2@n+lU (qn )_ 2an (qn) (3211)

= qr? +U(qn )+ gﬁﬂ + angnﬂ - 2€n+lU (qn )_ an

The next step is to take expectations, cancelling the first two terms in the steady state, and

noting that ., is independent of g, and U(gy) so E(q,c,.,)= E(a, )E(c,,, ) etc.
Using equations (3.2.8-10), equation (3.2.11) becomes, term by term:
p+(1,p+2p2C)+2pL, —2p% 2L, =0 (3.2.12)
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Rearranging terms then gives a variant of the Pollaczek-Khinchin mean value formula:

| _ (s +2)p+2(C-1)p°

La-1p  Cp?
Ip 3.2.13
e 20=p) ( )

20-p)  @-p)

1

In the RH expression, a ‘unit-in-service’ parameter | is substituted for the 1 in the term (C-1).
Following the approach of Kimber and Hollis (1979), this is considered to reflect unavoidable
mean time in service as when, having left the formal queue, waiting for a gap at a priority
junction. Its validity is discussed in the next sub-section. Equation (3.2.13) is equivalent to the
form quoted earlier as equation (2.3.50):

I"p+(C—1)p°
L =P =" P 3.2.14
) -p) 8219

where 1" =1+1(1, -1) (3.2.15)

Variations from M/M/1 (I,=1, I=1, ¢,=1, C=1) can be represented either by the coefficients in
(3.2.13-15) or by the Erlang factors r from (3.2.2), which is the inverse of the dispersion of

arrivals r=1/1,, and m from (3.2.5) that is related to C:

p 1 1-r (1+m
L, =——[10—p)+3(1, -1)+Cp|= Il-p)+—+| — 3.2.16
. 1_p[ (L-p)+4(1, pl= p{ 1-p)+= ( anjp} (3.2.16)
Equation (3.2.16) could in principle allow for the effect of signal green waves and to some
extent coordination, although the dominant effect to be accounted for is the overlap of the

arriving green waves with green phases that strongly affects the red/green phase component.
3.2.6  Analysis of the P-K derivation and source of the unit-in-service factor

The divisor (1-p) is common to all equilibrium queue formulae, and ensures realistically that no
finite equilibrium queue can form unless p<1. It arises from the last two terms on the RHS of
(3.2.7), representing the expected net gain during the next service interval. Individually these
terms have the same expectation p, but in (3.2.11) they are multiplied by the first term, which

creates an asymmetry. Since ¢, is independent of g, while U(q,)is not, and the expectation
of ¢,., is p while U(q,)=1 for all non-zero queue states, the result is L. (1-p). Expectations of

higher powers of g, can be expected similarly to include a term involving the appropriate
moment multiplied by factors including (1-p), which will then appear as a divisor in the

expression for the moment.
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In the earlier analysis of M/M/1 versus M/D/1, the presence of the unit-in-service is associated
with whether a queue can be described using infinitesimal service intervals, or requires finite
service periods. For G/M/1, service intervals are infinitesimal by default, so this route to
deriving the parameter is not available. In equation (3.2.7), g, includes the unit-in-service, and
service will occur in period n+1 if g,> 0. This suggests that the queue without unit-in-service,

say (,, can be represented (superficially at least) by g, - U(qn). Substituting this on both sides

of (3.2.7), and moving a term from left to right results in:

an+1 = an _U(qn+1)+ Cna (3-2-17)

Now U(qn) is zero if and only if g,=0, butq, is zero if g, is either 0 or 1. However, this is not a

concern since ,, can be decoupled from U(qs). Its expectation is then L if time in service is not

normally included, although this is numerically different from the expectation of g,. There is no

need to replace U(gn+1), provided it is recognised that it is no longer independent of ¢, .

Table 3.2.1 expands the calculation. The boxes represent the terms of interest in equation
(3.2.17), where the repeated block for g, = 0 has been excluded since it is ‘invisible’ to the

equation. It can be seen directly that ¢, is independent of U(,) but not of U(g.1), as a result

of the two cells shaded that are 1 instead of zero.

Table 3.2.1 Expansion of terms in equation (3.2.17) (m represents any integer > 1)

On U(qn) an Cni1 On+1 U(qn+1) qml
. - + =
0 0 0 0 0 0 0
0 0 0 1 1 1 0
0 0 0 m m 1 m-1
1 1 0 0 0 0 0
1 1 0 1 0 1 0
1 1 0 m m 1 m-1
2 1 1 0 1 1 0
2 1 1 1 2 1 1
2 1 1 m m+1 1 m
3 1 2 0 2 1 0
3 1 2 1 3 1 1
3 1 2 m m+2 1 m
etc...

The contribution to the expectation of ¢,,,U(q,.,) is p from the ¢, ., column, but this applies

only when @,=0, hence the expectation is p(1-p). SinceE(ﬁn):Leby definition,
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E(U (qn))s E(U (qml)), and all other terms are unchanged, the only effect on (3.2.12) is to

replace the 2p® term by 2p, hence:
p+(1,p+2p2C)+2pL, —2p—2L, =0 (3.2.18)
which rearranges to:

_(a-Dp+2Cp* (1, -2p Cp’
) 2(1-p) 21-p) (@-p)

(3.2.19)

Thus removing the unit-in-service has indeed eliminated the Ip termin (3.2.13).

The RH form of equation (3.2.16) is probably of limited practical use, but reveals that there is
only partial symmetry between arrival and service processes. In the case I=C=1 (M/M/1-like),
the effect of dispersion in the arrivals is to multiply the steady-state mean queue by a constant
factor, whereas in the case 1=0, I,=1 (M/D/1-like), the randomness factor C has this effect.
According to (3.2.16), if arrivals are uniform, 1,=0 or D/M/1, the smallest queue is half the
M/M/1 value. If both arrivals and service are uniform (1,=0, C=Y%), then the purely

deterministic case D/D/1 should apply and (3.2.16) reduces to:
L =(-1) (3.2.20)

With a unit-in-service, equation (3.2.20) says that under completely uniform conditions a mean
queue of p/2 should still form, so the average waiting time is half the average service time,
1/(2u). This seems reasonable for a random ‘snapshot’, since arrivals and service need not be
synchronised. Without a unit-in-service (1=0), equation (3.2.20) appears to predict a ‘negative
queue’. As pointed out earlier, the introduction of arrivals dispersion I, hinges on an
assumption about the type of arrival process, so if this were relaxed the anomaly might be
avoided. However | is not a statistical parameter in the normal sense, and 1=0 is associated with
finite service intervals, which is a limiting case in Erlang terms, so the analysis may no longer
be sound. Since uniform arrivals at low intensity are unlikely to be of major interest, the
peculiar result can reasonably be neglected for present purposes. However, Kouvatsos (1988)
has the discussed the equilibrium form of G/G/1 queues from the Maximum Entropy viewpoint,

which may be worthwhile pursuing in further research.
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3.3. GENERALISING EQUILIBRIUM VARIANCE
3.3.1 Motivation and approach

This Section extends the method of the previous Section to get a corresponding expression for
the equilibrium variance of queue size. It then considers an alternative formulation based on the
general Pollaczek-Khinchin method and gets the same result. However, when uniform service
is assumed, the result is not that for the usual M/D/1 queue since it includes a unit-in-service
component that arises naturally as in the similar procedure for the mean queue. This result is
exploited to suggest how the unit-in-service coefficient can be accounted for also in the

equilibrium variance.
3.3.2  Variance of the G/G/1 process calculated from expectations

To calculate the variance of g, the product of (3.2.7) and (3.2.11) is evaluated:

Ona =05 + AU (0,)+ Gasha + 20760 —26,,49,U(d, ) - 207
- qu (qn )_U (Qn )2 - gﬁﬂu (qn )_ anU (qn )Qn+l + 2€n+1U (qn )2 + anU (qn)

+ ql’zlgn+l +U(qn )gn+1 + giﬂ + angﬁﬂ - Zgﬁﬂu (Qn )_ angml

= qr:): +dq, +qngﬁ+l + quzlgnJrl - 2@n+lqn _qu?
- qr? -uU (qn )_ gﬁﬂu (qn )_ 2qn€n+1 + 2@n+1U (qn )+ an

+ qrzlgnJrl +U(qn )gn+1 + giJrl + angﬁﬂ - Zgﬁﬂu (Qn )_ angml (331)

Taking expectations as in the previous Section:

0=L, +LE(2, )+ 20E(0?)-2L.p—2E(2)
~E(02)-p-pElcZ, )~ 2Lop+2p7 + 2L,

+pE(02 )+ p? + E(G31 )+ 2L, E(c2., )~ 20E (2., )-2Lep (3.3.2)

So

3(1-p)E(2)=—p+3p° +3L,(-2p)+ 3(L, —p)E(. )+ ES..)
(3.3.3)
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To evaluate this, in addition to (3.2.11) the value of the following is needed:

E(2)=Ma(c)+ 382 (G, )~ 26(c, ) = [ [3,25+31,05)7 + (15)° plsis

(3.3.4)

In (3.3.4), Ja (for arrivals) is derived by using a relationship between skewness, variance and
mean for the compound Poisson quoted by Willmot (1986), where M is the third moment:

skewness = M—; = %662‘ — 2 +3(G§ _K)Z /l} (3.3.5)

3
c G,

a
For ordinary Poisson, where c,’=A (mean arrival rate), this reduces to A/c.>, i.e. M3=A, while

for compound Poisson, where c.2=1,), it evaluates to J.\/c,° with the new definition of o,,

whence:

J,=12+1,-1 (3.3.6)

a

The first two terms of (3.3.4) are got using (3.2.7-8), and the third term is equal to:
o®(M; o]+ 3E[b]varfo]+ E[oF )~ p*(L+3c? + 2yc?) (3.3.7)

where Mz(b) is the third (central) moment of service and the third term arises because for the
exponential distribution skewness is 2. This is just a convenient approximation, as the service
time distribution need not always be assumed to be exponential, so the factor y (default=1)
allows for adjustment of relative skewness, with J, defined by (3.3.6):

E(3)=3,p+61,Cp? +6p°(C—J)  where J=1(-yc?) (3.3.8)

Evaluating (3.3.3) with (3.2.8) and (3.3.8):

()= 2060’ +30°+ (9p% - 3p° —6p* Jc + 6p*C? —6p°(1—p)J

" 31-p)
i (Le _p)(la _1)+ [(I: +1, —1}3+6(|a —1)Cp2] hence
L-p) 31-p)
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E(z%ﬂij@—P—&Fk+25tz+(L +1(1,-0p+2Cp*[1,-1)  2p%3
L-py @-p) (1-p)

(3.3.9)

Here J,, being a function of |,, has been absorbed, while J remains distinct. Rearranging:

2 42 1 . _
V =p(1—p)+3p (1—P)C+p C +( 3(| 1)p+2Cp Xl ]_ 2p J

(1-p)? (1-p) (-p)

(3.3.10)
When 1,=1, c,=1, whence C=1, J=0, this reduces to the M/M/1 result:
v, =—P (M/M/1) (3.3.11)
(L-p)
When 1,=1, and Cz% (cp=0, Jb=%), it gives a result for Deterministic service:
e=p@2‘18p+1°pz_p3) (M/D/1 “with .i.5"7") (3.3.12)

121-p)’

Comparing (3.3.12) with (2.4.9) (with c,=0 for Deterministic service) shows that the former
exceeds the latter by exactly p. This can be interpreted as the contribution of the unit in service.
The derivation of (2.4.9) assumed no waiting time, and hence no unit in service. At a light
signal this is realistic because the saturation flow usually substantially exceeds the average
junction capacity, leading to a disproportionate reduction in any random queue component.

Assuming | to be independent of ¢y, (3.3.10-12) are then consistent with:

_ o i1)s CP 2L p+(C-2p ) (1o =Dk + 501, - p+2Cp) 2Jp°
e TP T @) )
(3.3.13)

Equation (3.3.13) has been arranged so that each parameter apart from C appears in only one
term, analogous to (3.2.16). This is convenient for computation though not necessarily the most
instructive form when coefficient values are limited to typical values, since parts of the

different terms tend to cancel, simplifying the expression.

27 By analogy with the concept of unit in service in M/M/1.
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3.3.3  Variance of M/G/1 process calculated from a generating function

An alternative to the preceding is to start with a probability generating function. The Pollaczek-
Khinchin transform formula (Medhi 2003) with somewhat modified notation® is:

P(s)= Z:‘, . ‘)B)(l(;(i)_Bs)()x _(13_ s) B°(s)=[ btk dt  (3314)

where {p;} are the steady state queue size probabilities, s is a dummy variable, and the function
B” is the Laplace-Stieltjes transform of the service time probability density function b(t). From
the LHS of (3.3.14), moments can be calculated as follows:

P(0)=(1-p)=P,. P1)=1,P'(1)=L,, (SP+P)1)=V, + L2 (3.3.15)
The form of B” in two common cases is (Medhi 2003):

* 1

B = 1+(1-sp’ Brjon = P (3.3.16)

Equation (3.3.14) does not allow any value for po other than (1-p), so is incompatible with
M/D/1 as defined in Chapter 2, except possibly if B* were to vanish when s=1. Therefore Pyis
identified with the average over the service period (hence the bar) and the complement of
utilisation. To evaluate moments it is necessary to take the limit as s—1, because direct
evaluation causes several lower order terms to vanish giving 0/0. This is dealt with by

I’Hopital’s Rule, worked out explicitly here. As it is easier to take the limit as a variable

approaches 0, first define e=1-s and use d/ds = -d/de ; then in the case of M/M/1.:

P(s)= 172 —p(e)=— (3.3.17)

P (3.3.18)
1-p

ZAlthough different sources share some similarity of notation there is no complete consistency, so familiar
symbols for variables commonly met are used here.
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ot (2)
V, = 1=p 1=p ( P j N P (3.3.19)

[T [F \i-p @-p)
where [ ] represents the bracket in the denominator of (3.3.18).

For M/D/1, according to Medhi (2003):

P(s)= (1‘S’e—)(pl(‘j‘)_P*(g) (1_")8 50 (3.3.20)

L, =- P*I(SX _ (1_9)[(1_pg+ sz)epe _1] (3.3.21)

Approximating e” to 2" order in &:

Num(L,) = (1— )[1+p8+;p282 pe—pe? —1p%° +pe® +pe® +1p%! 1]

=-plp-2p2 +0l2)]

Den(L,) = [].—p+(p—%p2)5+0(82)]282 =(1-pye’ +O(s3), s0 when e—0

_1,42 2
L L (3.3.22)
1-p 2(1-p)
Medhi (2003) goes on to point out (using different notation) that
Poe =1—p (3.3.23)

consistent with steady-state utilisation but differing from the M/D/1 value derived earlier.
Comparing (3.3.22) with (2.4.6), this appears to represent M/D/1 with unit-in-service, which is
not normally considered to apply at a signalised junction since the time in the green phase,
being the inverse of saturation flow, is much less than the average service time®®,

The nature of the approximation means that truncating the exponential in (3.3.20) to finite
powers >2 makes no difference to the M/D/1 result, while truncating it to the first two terms

just gives the M/M/1 form, so effectively there are only two possible results.

®The parameter C is sometimes modified empirically from 0.5 to account for deviations from the ideal.
Fncluding or excluding an ‘in-service’ component could be less important than neglecting the effect of the
upstream-moving discharge wave, i.e. treating the queue as ‘vertical® rather than ‘horizontal’.
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To calculate the variance V. in this way, the last of equations (3.3.15) must be evaluated with
(3.3.20). Judging by the foregoing, this promises to be tedious, although terms of order &* and
below may well cancel so only terms in € need be evaluated. Alternatively, equation (3.3.12)
can be checked by evaluating the moments of (3.3.14) numerically. To reduce error, this
calculation has been done symmetrically, taking the average of results from s slightly <1 and
slightly >1. Figure 3.3.1 shows results for p values in the range 0.1-0.9, using a logarithmic
scale and broken white lines for the M/D/1 “with unit in service’ as calculated from (3.2.13) and
(3.3.12). The results confirm that the ‘without unit in service’ results calculated from (2.4.8)

and (2.4.9) differ consistently by p from “with unit in service’.
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Figure 3.3.1 M/D/1 queue mean and variance calculated by different methods

In conclusion, the results of section 3.3.1 are valid for M/M/1 and M/D/1 ‘with unit-in-service’,
and by implication to M/D/1 ‘without unit-in-service’, allowing equations (3.2.13) and (3.3.11)
or (3.3.13) to be applied with a degree of confidence.

3.3.4 Horizontal versus vertical queuing and the effect of mixed traffic

As pointed out in the Introduction, real queues occupy finite space, which affects both their
growth and discharge behaviour, leading to an increase in delay and maximum extent (Taylor
20053, 2009). Conversely, when traffic is only slightly slowed and compressed, a ‘queue’ as
normally understood may not be discernible. This is most relevant where traffic remains in
motion, and less so where it comes to a halt in a dense queue, as occurs in urban networks. A
mixture of traffic types will also affect randomness and effective capacity. As pointed out
earlier in Chapter 2, hyper-exponential is a more realistic distribution of arrival and service

headways of mixed streams. Investigation of these issues is left for future research.
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3.4. CONSISTENT USE OF STATISTICAL PARAMETERS

This Section reviews some features of the statistical coefficients in the P-K formula and
alternatives that have been proposed, none of which is entirely satisfactory.

3.4.1 Coefficient of variation of arrivals as an alternative to dispersion index

With the unit in service |, after the manner of Kimber and Hollis (1979), along with the index
of dispersion I, as suggested by Heydecker (2009 unpublished), the Pollaczek-Khinchin mean
queue (3.2.16) shows only partial symmetry between the statistics of arrivals and service.
Kimber, Summersgill and Burrow (1986) (in their Appendix 2) sought to generalise the

randomness coefficient by including the coefficient of variation of arrivals c,, here defining:
c' =12 +¢?) in place of C =1(L+¢?) (3.4.1)

Formula (3.4.1) has a long history, being quoted also by Sakasegawa (1977), and Sakasegawa
and Yamazaki (1977) with several variations. Newell (1982) derived an equivalent on the
assumption of ‘heavy traffic’, i.e. p~1. Gross et al (2008) quote it for any p. However, referring
back to the derivation (3.2.7-12), the origin of the 1’ is in dividing E[b]? through by p? leaving

no gap into which c,” can sneak. To be consistent with (3.2.16), ¢, ought to satisfy:

(3.4.2)

However, this is inconsistent with accounting for the degree of non-randomness in the arrivals
either through dispersion 1, or by modifying p. If p=1 then c,?~l,, so the two are equivalent in
the ‘heavy traffic’ case. However, (3.4.2) can be undefined if 1,<1 and p is sufficiently small,

and becomes unbounded as p tends to 0.

In an informal attempt to shed light on this, the following idealisation is considered. If a variate
X, consisting of observations {X;}, represents the number of arrivals in a unit time period, then
its <inverse’ X'=1/X, consisting of observations {1/X;}, represents the intervals between arrivals,
provided that the arrival rate is neither so large that there is a high probability of multiple
arrivals in a unit interval, nor so small that the interval between arrivals has to span multiple

unit time periods. In this case, the relationship between the variate and its inverse is necessarily
symmetrical. If ¢ represents the mean arrival rate E(X;), and g' the mean arrival interval, o

s.d., v variance, the simplest possible relationships satisfying this symmetry principle are:
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In Heydecker’s derivation of the index of dispersion I,, unit time is taken to be the mean service

time, so the mean arrival rate ¢ is numerically equal to p, not A=pp. So, from (3.4.3):

A |
¢l = G—s r—o =22 hence Cy .| (3.4.4)
Ta G G p

This is only trivially consistent with (3.4.2), when p~1, and suffers from the same
unboundedness when p—0. For values of p much different from 1 the assumption about the
time unit may fail. Equation (3.4.4) is more consistent than (3.4.2) with the definition of 1, as
the index of dispersion, but whichever of ¢, or I, is taken as constant for a given type of

process, the other becomes dependent on p.

It is possible to rewrite (3.2.16) in a form that uses (3.4.1), in accordance with (3.4.4):

(3.4.5)

There is no difference where the only processes considered have 1,=1, namely M/M/1 for yield-
type processes and M/D/1 for signal-type processes, but the issue will arise later in the context
of diffusion approximations. Which form is preferable may depend on identifying a type of
process with non-Markov arrivals that can be characterised in a physically meaningful way

independent of p. The factor p in the I, termin (3.2.13) or (3.2.16) seems unavoidable.

The form of (3.2.16) suggests that it is 1, that is independent of p for an identifiable process
such as batched arrivals with a given Erlang factor, and for this reason it seems preferable to c,.
In the perfectly deterministic case C'=0, while the minimum value of C is %. Since the I, term
is dropped completely, this results in a simpler value of L. compared with (3.2.20), which
avoids the ‘negative queue size’ prediction, but appears to be saying in effect that the arrival

and service processes must always be out of synchronisation.

L, =1Ip (3.4.6)
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For example, if p=1, so that arrival and service rates are matched, there is always a customer
awaiting service, whereas intuively it would be given a 50:50 chance of ‘catching’ the service
without having to wait. There is an interesting analogy here with the ‘rule’ that if passengers
come to a bus stop hoping to catch a bus that arrives randomly at a certain mean rate, then the
expected waiting time is equal to the mean interval between buses, not half the mean interval as
would be expected if buses arrive regularly. These arguments tend to favour (3.2.20) over
(3.4.6), hence 1, over c,.

3.4.2 Consistent use of the unit-in-service between mean and variance

A way to modify the M/M/1 probability distribution to exclude the unit-in-service is to define:

b =L-ph™ i>0 (3.4.7)
so, relative to M/M/1;

Py — Po = —p(l—p)
pi—p; = Pi(l_P)Z i>0 (3.4.8)

The distribution (3.4.7) satisfies:

i 5i =1 ilﬁl = ~e =L L. - I:‘e =p (3.4.9)

and it follows directly from (3.4.7-9) that:

0 2 - 2 A2 ~
Ziz-ﬁi _P (1+P) v M V, -V, :p(1+ p) (3.4.10)
i=0

1-p) " @-pf :

There is no change in the dispersion of arrivals between M/M/1 and M/D/1, but the value of C
changes from 1 to % as ¢, goes from 1 to 0. Taking this into account and comparing (2.4.9)
with (3.3.13), the equivalents of (3.4.9-10) for M/D/1 are:

(Le - I:G)M /o =P @e _\7e )M/D/l =p (3.4.11)

102



3.5. EQUILIBRIUM DISTRIBUTIONS OF SOME QUEUING PROCESSES
3.5.1 Motivation and approach

This Section addresses a wider range of equilibrium queues found in standard works, including
with Erlang arrival or service distributions, and queueing with multiple service channels.
Expressions for recurrence relations and equilibrium state probabilities are given where
possible, and distributions calculated or simulated using an extended version of the ‘Qsim’
Markov simulation software program originally developed for M/M/1 and M/D/1. The
relationships between the equilibrium moments the Pollaczek-Khinchin formula with different
statistical parameters are explored, with the aim of bringing making the queue processes
amenable to the time-dependent approximation framework. First, properties of M/M/1 and

M/D/1 are recalled for completeness and comparison.

Note: in several Figures in this Section, smoothed continuous charts have been retained in
preference to histograms which would be more ‘correct’ but have been found difficult to
interpret in practice, because it is difficult to separate multiple graphs particularly where
they are non-monotonic or multi-modal. While technically less accurate, smoothed graphs

are felt to give a general impression of the form of the probability distributions.
352 M/M/1

The M/M/1 process is the archetypal queue process and straightforward in principle, despite the
complexity of the exact solution of Morse (1958) in Section 2.3. Its properties lead quickly to
the deterministic queue formula repeated here as (3.5.1), which also follows logically from
conservation, where L, is the queue size at time t=0, and p is the demand intensity or the ratio

of average demand to average capacity p:

L(t)=L, + (p— x)ut (3.5.1)

As pointed out earlier in Chapter 2, a critical feature of (3.5.1) is that, if the mean queue is to
tend to a steady state and its size is to remain finite, the term in brackets must approach zero as
time t—o0, whence x—p as t—o. As X is the average utilisation of the service, if the possible
states of service are either occupied or unoccupied, unoccupied means the absence of a queue,

and the probability p, of the queue being zero is identified with this, then in the steady state:

Poe =1-p (35.2)

103



If (3.5.2) is interpreted as the average probability of zero queue during the service interval
(which in the case of M/M/1 can be treated as infinitesimal so that average = instantaneous), so
that by definition of utilisation p,(t)=1—u(t) and p,(t)<>1—x(t) as t—oo, then (3.5.2) is the
condition of (3.5.1) remaining finite and any equilibrating queue process must satisfy both
equations (3.5.1) and (3.5.2).

353 M/D/1

Using the Pollaczek-Khinchin transform formula, Medhi (2003) shows that (3.5.2) applies to
the M/D/1 queue with unit-in-service, as derived in the previous Section, equation (3.3.22).
However, the derivation in Chapter 2 of M/D/1 without unit-in-service from recurrence

relations, gives the different formula (2.4.7), repeated here as:
Poie) =€”(1-p) (35.3)

The explanation given is that this refers to the queue size at the end of a finite service period
(e.g. a signal green period), whereas service can actually occur throughout the period, resulting

in a smaller average value of po, say p,, which has been shown to satisfy (3.5.2) and hence is

consistent with the deterministic interpretation of utilisation embodied in (3.5.1).
3.5.4 Erlang-m service

Erlang service is usually described before Erlang arrivals because it is easier to understand.
Kleinrock (1975) and Medhi (2003) interpret M/Em/1 as a multi-stage service process where
an effective capacity of u is achieved by m exponential service processes each of capacity mpu
in series. The process is no longer exponential, having a service time distribution given by
(3.2.5). This has a simple set of differential recurrence relations resembling M/M/1, but

referring to stages not customers:

1dp ~ ~
—% =MpP; — PPy
1 dp - - .
= mp;.; —(Mm+p)B, (i<m) (3.5.5)
p dt
dp, - i
_% =mp;,, (m + p)pl +PPim (I>m)
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Combined demand intensity is p=A/y, delivering equilibrium recurrence relations for p<1:

ﬁl :% r)o
By :(1+ %)pi (i<m) (3.5.6)
Biuy =[1+ Bjr}i L5, (i>m)

m m
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Figure 3.5.1 Markov simulated M/Em/1 ‘raw’ probability distributions for several m

In Figure 3.5.1, the steady-state distributions of stages, as simulated by the Markov program
Qsim, exhibit an oscillatory tendency with period m. This is a consequence of the recurrence
relation where the i+1 element depends on the i-m element but not on those between it and

element i. However, these are not the final distributions in terms of customers.

The ‘rule’ governing the system says that only one of the m servers can be in use at any one
time. Therefore their utilisations are correlated even though their service time distributions
are not. Thus the probability of the system being empty is not (1-p/m)™. Instead there are m
ways in which one server can be occupied with a probability of p/m, so the probability of the
system being empty is correctly (1-p), which is smaller. The mean of the stage distribution
must be divided by m to get the mean number of customers in the system, which is what is
meant here by ‘queue size’ in the traffic context. Accordingly, the customer queue size
distribution is given by summing the stage distribution in groups of m terms, except for po
which is unchanged:
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P, = PN (po = Pp =1-p inthesteady state)  (3.5.7)
j=max [m(i-1)+1,0]

The resulting distributions are shown in Figure 3.5.2, along with their simulated mean values
and the values of the corresponding P-K mean queue formula (3.2.13).
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p=08 1 2 3 4 5 M/D/1(u)
M/Em/1 mean 3.99 3.2 293 28 272
P-K mean 4 3.2 293 28 272 24
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Figure 3.5.2 Markov simulated M/Em/1 final probability distributions for several m

Griffiths et al (2008) show how this particular queue process can be applied to a motorway
facility with limited capacity (the Severn Bridge) where service is not perfectly random (m =
2 or 3). At finite values of m, each service interval admits a Poisson count of arrivals, but it is
hard to interpret this in traffic terms, while (3.2.5) has straightforward interpretation as a
service distribution more uniform than exponential. In the limiting case m—co, all arrivals
take place in one uniform service interval, as at a signal. The results confirm the P-K formula
and support the idea that M/D/1 with unit-in-service can be identified with M/E«/1. Staged

arrivals are considered dual to bulk arrivals (g.v.).

3.5.6 Erlang-r arrivals

Kleinrock (1975) and Medhi (2003) interpret Er/M/1 as a multi-stage arrival process where
each stage involves an arrival rate ri. Although it is hard to interpret this in traffic terms, this
system is considered to be dual to Erlang-m service, and both Erlang parameters can be

combined into one code for calculation, though this fails if both are simultaneously >1.
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Y —-P —rpb
dt pr ppO
1dp, . - ~ .
—— = PBir — PP + PPy (ifi<r) (3.5.8)
p dt
1dp, . . - e
——L =P - (1+ rp)pi + PPy (if i>r)
p dt

The ‘customer’ probabilities are calculated by summing stage probabilities in a different way

from Erlang-m service, giving the superficially similar distributions in Figure 3.5.3:

r(i+1)-1
P = P; (alsogives po=1-p inthe steady state) (3.5.9)

j=ri

0.3

p= 08 1 2 3 4 5
Er/M/1 mean 3.99 3.07 276 261 252
P-K mean a4 3 267 25 24

0.25 |

Markov or Erlang
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number arrivals
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Figure 3.5.3 Markov simulated Er/M/1 final probability distributions for several r
3.5.6 Analternative interpretation of Erlang-r arrivals

As Kleinrock (1975) shows, the following steady-state probabilities apply to Er/M/1:
po=1-p P =pl-pp" (3.5.10)

This ‘Russian dolls’ nested structure also applies when i>n in M/M/n and may be expected
once exponential behaviour takes over beyond the scale-dependent region of the probability
distribution. In the case of (3.5.10) there is no more scale-dependence than with M/M/1, and

the parameter r defines the next least complex family of distributions. Equations (3.5.10) lead
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to simple formulae (3.5.11-12) for the equilibrium mean and variance. Matching (3.2.16) and

(3.5.11 left) relates p to arrivals dispersion or the parameter r. While necessarily correct for

1,=1, r=1, this leads to a singularity in the extended P-K formula when 1,=0 and r=co, since p

is undefined for p<0.5.

[, =-F v =p(1+—ﬁfp) (3.5.11)

2p+1,-1_(2p-1)r+1

3.5.12
I +1 r+1 ( )

p=

a
3.5.7 Performance of equilibrium moment formulae with Erlang processes

Equilibrium variance can be calculated either directly from the distributions or from equation
(3.3.10), or (3.3.13) with I=1 in these cases. Figure 3.5.4 compares calculated and simulated

of L. and V,, showing a good fit between the two.
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Figure 3.5.4 Calculated versus Markov simulated Erlang distribution moments

3.5.8 Generalising Erlang processes

It is not obvious how a description could include both Er>1 and Em>1, and none has been
found in standard works. The following combined method can be programmed conveniently

by equations (3.5.13) provided only one of r, m is >1 on any one occasion.

1% - mp‘i+r - rprji + I’pp.i—m (If Izm) - mﬁi (If Izr) (3513)
K
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There is noticeable asymmetry between the Erlang service and arrival processes, as is
reflected in the asymmetry in the generalised P-K mean queue formula (3.2.16). This does

encourage combining arrivals and service statistics in one parameter C".

3.5.9 Bulk arrivals Mm/M/1

Bulk arrivals, where arrivals come in lots of m, is theoretically congruent to Erlang-m service,
apart from physical interpretation (Kleinrock 1975). It is simulated by similar but not
identical recurrence relations that describe the probability distribution of the number of
customers not stages. The Bulk arrivals parameter can be a random variate, usually taken to
be Poisson distributed, but the point is sufficiently made by fixed values. The resulting ‘raw’
distributions are not compressed after the manner of equations (3.5.7) and (3.5.9), and they
have a distorted shape because of the low probability of ending up with fewer in the queue
than the Bulk value. As anticipated, the results in Figure 3.5.5 are identical to Figure 3.5.1,

but a table of means has been added (also in some later sections) where:

e ‘Raw’ mean is obtained by taking the simulated queue states at face value
e Factored mean is the ‘raw’ mean divided by the Erlang parameter
e Compressed mean is after application of the appropropriate range summing

e P-K mean is the value of the extended P-K formula with Erlang parameter

e p= 08 1 2 3 a 5
Mm/M/1 'raw' mean 3.99 5.99 7.99 9.98 11.96
Factored 3.99 2,995 2.6633 2.495 2.392
Compressed 3.99 3:2 2.93 2.79 2.71
P-K mean 4 3.2 2.93 2.8 2.72
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Figure 3.5.5 Markov simulated ‘raw’ Bulk arrivals probability distributions

The compressed and P-K means match very closely
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3.5.10 Bulk service M/Mr/1

This is said to be analogous to Erlang arrivals, and it appears that as for Bulk arrivals the
parameterisation of the P-K formula must be ‘reversed’, so that in this case |, iS changed.

Simulating this process gives the ‘raw’ distributions graphed in Figure 3.5.6.

p= 0.8 1 2 3 4 5
M/Mr/1'raw' mean 3.99 6.15 8.3 1045 12.6
Factored 3.99 3.075 2.7667 2.6125 2.52
Compress-testl 3.99 2.84 2.46 2.27 2.15
P-K mean 4 3 2.67 25 2.4

Markov or bulk
number service

——M

a 1 2 3 4 5 6 7 B8 g 10 11 12 13 14 15 16 17 18 1% 20

Figure 3.5.6 Markov simulated ‘raw’ Bulk service probability distributions

These are geometric (see also Kleinrock 1975) but for r>1 the ratio between terms is not p.
The distributions have a particular property involving the first r+1 terms enshrined in the

recurrence relations used to generate them, plus the usual geometric property:

rpPo = D P (3.5.15)
=1
or, =Cp; (3.5.16)

Together these lead to the relationship:
p= H=6 (3.5.17)

This is soluble for ¢ though it is hard to see what it means physically, compared for example
to the very natural interpretation of the difference between average and end-of-green po in the

M/D/1[G] queue.
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Despite the supposed ‘duality’ with Erlang arrivals, compression of the distribution according
to equation (3.5.9) does not work in this case, and does not yield the correct values for po.

Equations (3.5.15-17) allow the following expression for po, on eliminating C:

1) « 1 .«
p0=1—p=1—1 P *+(p+Fjpo_F Pr (3.5.18)
0

On the assumption that the compressed distribution has the nested form (3.5.10), translating

A

to just one element of the compressed distribution, the parameter p is equal to . This is

reasonable in the sense that any irregularity is likely to extend only as far as around the first r

elements of the ‘raw’ distribution. This necessarily ‘works’ in the sense that any value of

p <1 will generate a valid distribution. The distributions are shown in Figure 3.5.7.
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M/Mr/1 'raw' mean 3.99 6.15 8.3 1045 12.6

0.25 | Factored 3.99 3.075 2.76667 2.6125 2.52
Compressed 3.99 3.07 2.77 2.61 2.52
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Figure 3.5.7 Final Markov simulated Bulk service probability distributions
The means of the compressed distributions are now essentially the same as those factored

values from the ‘raw’ distributions, i.e. (raw_mean)/r, and now match those for Er/M/1,

although as in that case they do not match the P-K means exactly.
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3.5.11 Multi-channel queue M/M/n

Standard queuing theory for multiple servers centres on the M/M/n or G/G/n processes, where
arrivals choose an idle server if one is available and otherwise choose a channel randomly,
there being no interaction between channels’ service. This describes something like a
supermarket checkout line, airport checkin hall, or toll plaza. Where interaction between
channels can occur the process will be more like queuing on multiple lanes sharing a common

service process, which is considered later in Chapter 6.

If p is the combined demand intensity on the ensemble relative to the total capacity of all the
channels, the steady-state queue and queue size probability distribution are given by the
following formulae (e.g. Medhi 2003, with modified notation®"):

2 n (n)
Lo _ P h _(np)"pg” 51
np+C(n,p)1_p where C(n,p) o) (3.5.19)

n-1 i n
and pé")=[ (o), (o) } p" =———pp{?) (i>0) (3.5.20)
_ 1 min(i, n)

Equation (3.5.19) has an obvious similarity to the P-K mean queue formula, with I being
replaced by n because each server behaves in the same way as the single server in M/M/1, and
C(n,p) taking the place of the statistical parameter C, although the analogy is not exact because
the coefficient of variation of service within each channel remains 1. Bunday (1996) considers
the limiting case M/M/« also, a Poisson distribution that remains defined even when p>1, and

explains it is identical to defection of a fraction i/(i+1) of arrivals when the queue size is i.

L&) =p v =p (3.5.21)
in—p
o) —e®  pE) :$ p) =22 (i>0) (35.22)

M/M/n can also be described in terms of defection. This is embodied in the factor in pi(“). The
converse of defection is partial utilisation of the service facilities. If all servers are idle, with
probability po, the contribution to utilisation is zero. If all servers are busy then the specific
contribution to utilisation before factoring in the state probability is 1. Since an arrival always
chooses a free server if one is available, all servers are busy when i>n. For intermediate values

of i, the specific contribution to utilisation is i/n.

*!The notation has been adjusted so that the function C(n,p) takes the place of C in the P-K formula.
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Multiplying these by probabilities (3.5.20 right) gives absolute contributions of ppj.;, summing

which confirms that the proper utilisation is consistent with (3.5.1-2)*
u=0.p, + pri(fl) =p hence p,=1-p (3.5.23)

Probability distributions for n from 1 to 10 according to (3.5.20) are graphed in Figure 3.5.8
(resembling but different from Erlang distributions). Comparing these with equations (3.5.22)
for n=co gives the impression that they describe two different systems, since as graphed po
decreases steadily with n, whereas at n=co it jumps to the value e®® = 0.4493. Instead of
peaking at some i~O(n) the n=co distribution (3.5.22) declines steadily with i, provided p<1. If
equations (3.5.21-22) are taken at face value, then to recover (3.5.23) the specific contributions
to utilisation must equal i, so u® has the same form as L. Division by n becomes
meaningless, but specific contributions do increase with i in the same manner as for finite n

except that for n=co they do so without limit, so (3.5.23) still holds.

0.25

p=0.8

25

Figure 3.5.8 M/M/n equilibrium probability distributions for several values of n

The dependence of C on p means that approximations that rely on the particular form of the
Pollaczek-Khinchin mean queue like the sheared solution of Kimber and Hollis (1979) cannot
be used to translate from equilibrium to time-dependence, although numerical solutions

should be possible if quasi-equilibrium is assumed to apply.

%Recall that u represents instantaneous utilisation and x is its time average, but these converge at t=cc.
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3.6. USE OF NESTED GEOMETRIC PROBABILITY DISTRIBUTIONS
3.6.1 Singly-nested geometric distributions
Several steady-state probability distributions described in the previous Section become

geometric, with a constant ratio between successive state probabilities, at sufficiently high
states, although different ratios can apply in low states. The simplest model of this is given by

equation (3.6.1), where p and pare first and second level “effective ps’, i.e:

P =1-p"  pi=p L-pp'* (i>1) (3.6.1)

The moments of this distribution are given by:

= or p=1-P (362

In the first of equations (3.6.1), p_ could be defined so as to give the correct p, for the true p. In

such cases po would not equal the complement of the steady-state utilisation, but in principle

M/D/1 could be accommodated. However, only two ‘ps’ are available to fit three moments™®

Pees Le and Ve, limiting the range of distributions that can be fitted.

Medhi (2003) quotes (this appears initially to have been misprinted®) a nested equilibrium
distribution proposed by Kobayashi (1974a) to take on board arrival and service statistics,

derived by considering a continuum approximation (see Chapter 5 later):

o =1-p (3.6.3)

pi =p-pk"" (36.4)

. 2(L-p) 2(L-p)
h = —7—) = —(—) 3.6.5
where p exp{ “2 p36§ +G§ } exp{ c§p+c§ ( )

2 2
and L, = 1 ’_3 5 ~ p((z:zfjpc)b) (as p—1) (3.6.6)

*\We grace p, with the style ‘moment’ here, which is legitimate if the corresponding multiplier of {p;} is taken to
be ‘no queue’=1 and ‘any queue’=0.

*In equation (8.2.21), p389, (;5) is raised (incorrectly) to the power of n, then in equation (8.2.24b), p390, ([3) is
raised (correctly) to the power of n-1.
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The result is not exact, as can be seen if M/M/1 statistics are inserted in (3.6.5) giving

A

p=exp{~(1—p)} rather than p=p. However, the approximation is known to be most

accurate near p=1 (‘heavy traffic’) where these two functions converge. Given its
approximate nature, including the fact that statistical parameters are themselves only an
approximation to a real process, a practical approach to making this time-dependent might be

to set p according to the P-K formula, then replace p in its expression by a function of time.

3.6.2 Doubly-nested geometric distributions

If a third ‘effective p’ is introduced, the simplest doubly-nested distribution is:

P =1-p"  Pi=p(1-p) pi=pPL-pP? (i>2) (3.6.7)

whose first and second moments are:

2 _ p*(1+3[3_5(2+f)_[3)) (368)

L :p)(1+—;i—ﬁ) vV i
(1-p)

€ 1_p e

+
ml_

Note that in this case p~ need not be the same as the actual demand intensity p, and accordingly
Pee = 1-p is not assumed, widening the range of processes that can be handled. In principle, all

three moments can now be fitted. After some manipulation, in which p is first expressed in

terms of p~ and p, and the result of substitution into L, solved for p, the formulae for the
three ‘rhos’ in terms of known steady-state moments are:

P*:l_ Po [32(Ve+Le(Le _1))(1_5)2 5:V9+Le(Le—3)+2p*
e *

2[3 Ve + Le(Le _1)

(3.6.9)

By setting all the ‘rhos’ equal, it can be confirmed that the last two equations (3.6.9) are
satisfied identically when the model reduces to M/M/1. In more general cases, explicit queue
statistics are in principle unnecessary since they are subsumed by the moments. This is
confirmed by Figure 3.6.1 where the fit between the true M/D/1 as calculated by equations
(2.4.4-7) and the doubly-nested model, while not exact, is very close. M/M/1 distributions have
been added for comparison, to emphasise the much greater step between po and p; in the M/D/1

distribution.
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This approximation method relies on the proposition that local symmetry under linear
transformation of origin and appropriate scaling means all equilibrium distributions tend to
geometric once sufficiently remote from the origin. The method enables the ultimate geometric

ratio to be obtained asp.

p=0.5 p=0.9
09 | ===Nested 03 | ===Nested
—M/D/1 | —M/D/1
M/M/1 P M/M/f1

Figure 3.6.1 Fit between doubly-nested model and exact calculated M/D/1 distributions

(‘flatter’ distributions are M/M/1 for comparison)

It gets more interesting when the method is applied to the M/D/1[G] distributions described
earlier in Section 2.4. However, it is true that G has to be large to make a serious difference.
While the fit shown in Figure 3.6.2 is not exact for po and p;, the relative magnitudes of the
probability components are quite well represented. The method can be applied equally with

moments calculated using empirical methods such as those to be described in the next Section.

p=0.9, G=2 p=0.9, G=10
| ===Nested | os —==Nested

—M/D/1[G] 045 femme |—M/D/1[G] |
M/M/1 04 ﬂ M/M/1

Figure 3.6.2 Fit between doubly-nested model and simulated M/D/1[G] distributions

(“flatter’ distributions are M/M/1 for comparison)

Furthermore, by suitable choice of L, and V, it is possible to generate a distribution that is
non-monotonic, like those of Erlang arrivals or bulk service, Figures 3.5.4 and 3.5.8. The

doubly-nested distribution in Figure 3.6.3 (below) approximates that for the M/M4/1 case.
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Figure 3.6.3 Doubly-nested model of M/M4/1 ‘bulk service’ case
(“flatter’ distribution is M/M/1 for comparison)

3.6.4 Maximum Entropy distributions

The singly-nested geometric distribution in equation (3.6.1) is also the Maximum Entropy
distribution as stated by Kouvatsos (1988), who expresses the probability distribution as either
the exponential of a weighted sum of functions, or an equivalent product of powers of
functions. If states are restricted to integer queue sizes, probabilities in terms of constraint
functions are given by equation (3.6.10), and entropy can be expressed in terms of expectations

of the constraint functions by equation (3.6.11), where the y, are Lagrange multipliers:

pi =exp{=7,.1- 7, Q—7,.d} (3.6.10)
H :—Z pi In(p; ) =701+ v,.(L— o)+ 7, L, (3.6.11)
0
The v, term represents the constraint (prior information) £p;=1, Q is 0 when i=0 and 1 when i>0
corresponding to a known value of po or utilisation, and the third term corresponds to the mean

queue L.. Equation (3.6.10) expressed as a product reproduces the nested geometric

distribution, the Lagrange multipliers being explicit functions of the first three probabilities:
p2 ) (p)
Pi = Po{ —. K—ZJ (3.6.12)
Po P2 P1

By the same principles, a doubly-nested distribution can be expressed as:

pi =exp{=vo-1-1,.Q —7,.Q, — 5 i (3.6.13)
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where Q; is as Q before, and Q. is 0 when i<1, and 1 otherwise. Equivalently:

Q 2 \Q i
pi = po.( plsz | P2 [&} (3.6.14)
Po Ps3 P1Ps P2

At first sight this appears not to embody variance as a constraint, because equation (3.6.13)

contains no term in i°. This is misleading because such a term would cause p; to ‘explode’. In
fact, equations (3.6.7-9) link the first four probabilities po .. ps3 to the now four constraints. But
is this still the Maximum Entropy distribution given the constraints? Kouvatsos’ analysis places
no limit on the number of constraints and requires only that probabilities have a form similar to

(3.6.10/13), which ultimately forces the distribution to develop geometrically.
3.6.4 Limitations of nested distributions

An obvious limitation of nested distributions is that they are primarily usable only for

equilibrium distributions, but when does a distribution get near enough to equilibrium to
qualify? Equations (3.6.7) will work only if all the ‘rhos’ are < 1. This is necessarily true for p~
but for p, from the third of equations (3.6.9), the condition is L. >p”. It is certainly not a
problem for M/M/1 and does not appear to cause a problem generally. However, the second of
equations (3.6.9) can predict p>1, contradicting the equilibrium hypothesis. Rho values from

the J2P4 peak case are plotted in Figure 3.6.4, showing that in Ts 3-9, the probability
distributions cannot be matched by a doubly-nested geometric. This is taken to reflect their

being far from equilibrium.
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Figure 3.6.4 Doubly-nested parameters for time slices in J2P4 peak case
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A further limitation is revealed by the M/M/n queue - see earlier in section 3.5.4. Theoretically
the doubly-nested approximation cannot cope with any equilibrium distribution that peaks at
i>2. Since the first few distributions peak at i=n-1, it should work up to n=3. In practice the
estimated parameters are feasible up to n=4, as shown by Figure 3.6.5. However, the shape of
the distributions is reproduced only up to n=3 as shown by Figure 3.6.6 (compare Figure 3.5.1).
In principle n=4 could be approximated with four parameters, but these cannot be determined
uniquely by only three moments (note also that equilibrium variances were got from calculated

distributions, not explicit formulae which are unknown in this case).
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Figure 3.6.5 Doubly-nested parameters for M/M/n queue with p = 0.8

0.25

02

NN\ =
oo \

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i

Doubly-nested p(i)

/

Figure 3.6.6 Doubly-nested approximations to M/M/n queue distributions for p = 0.8
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3.7 EMPIRICAL METHODS TO ACCOUNT FOR SIGNAL GREEN CAPACITY

A summary of the contents of this Section was presented at the UTSG 2013 conference (Taylor
2013) and has been submitted for journal publication as Taylor and Heydecker (2013).

3.7.1 Historical approaches to signal queue modelling

The extended M/D/1[G] processes defined earlier in Section 2.4, that take account of signal
green capacity, are difficult to analyse and exact closed-form moments are not available.
Several authors since the 1960s have developed empirical approximations to the equilibrium
queue. This Section reviews their work and develops an alternative approach to estimating all

three moments: po, mean and variance; enabling probability distributions also to be estimated.

Analysis of signal queues can be traced back to A J H Clayton in 1940 (see Allsop /
Hutchinson 1972), but signal queue models are often associated with F V Webster (1958) and
Webster and Cobbe (1966) who developed a delay or equivalent queue formula (3.7.1). This
contains a deterministic red phase or so-called ‘uniform’ queue, representing the average over
the signal cycle of the queue produced by the red phase including its decay during the green
phase, a stochastic term representing the average effect of oversaturation and random
variations leading to transient excess of arrivals over capacity, leaving a queue at the end of
the green phase, as sketched in Figure 3.7.1, and a third correction term. Here, the

green/cycle ratio is represented by A to avoid confusion with arrival rate, ¢ is cycle time.

overflow
/ queue

xuc(l—A) X? L (2i5n)
L=L = -0.6 3.7.1
p+tLly +Ly 2(1_ XA) + 2(1_ X) 5(XHC)3 X ( )
. Arrivals '.
i | Mean phase
! ! queue :
: | I 7
' — :__ _l—/ H 096\) Mean
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1
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Figure 3.7.1 Sketch of a signal queue, showing phase and stochastic components
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If demand exceeds capacity, (3.7.1) is adjusted by replacing the phase component by a
simplified term obtained by limiting x to 1. Since the signal is at the stop line and any
overflow is taken up by the last two terms in (3.7.1), the stochastic process should be treated
as ‘outside’ the phase queue process, so technically should be subject to the demand intensity.
If this exceeds 1, the stochastic term in (3.7.1) becomes undefined so should be replaced by a
time-dependent formula. The inconsistency of (3.7.1) with time-dependence raises practical
issues, which are alluded to by Taylor (2003). However, the concern in this research is only
with the stochastic component.

Because the service at a signal is quite regular, even if intermittent, it is idealised as
Deterministic, and the cyclic character is considered absorbed by the other components. The
practical accuracy of the method, if not compensated for by the correction term in equation
(3.7.1), can be improved by modifying the randomness parameter in the M/D/1 queue, which

is often given a value in the range 0.5-0.6, rather than exactly 0.5 (Burrow 1987).

It is not known how fully these details are addressed in macroscopic traffic modelling. In the
CONTRAM time-dependent assignment program (Taylor 1990, 2003), only the stochastic
component is made time-dependent, and an ad hoc adjustment is used to ‘relax’ the phase
queue component over a short time if its value falls between time slices - if its value rises it is
simply stepped up. Bin Han (1996) combines phase and stochastic queues in a single
continuously differentiable sheared formula, but there may still be issues because of the

different timescales over which these components operate and their real discontinuities.

A comprehensive time-dependent formulation of the signal queue has been derived by
Heidemann (1994), drawing on results by Meissl (1963). At equilibrium results are virtually
indistinguishable from Webster and Cobbe’s. Heidemann’s formulation includes an
ostensibly exact formula for the stochastic queue, requiring evaluation of complex roots of a
function (see Appendix D). At equilibrium, however, it can be expressed in the same form as
(3.7.1) with an identical phase component and a stochastic component now containing G
explicitly, plus a new correction term that involves the stochastic queue but does not contain

any empirical constants:

— A1—x)2Ly 6] + AX)+ AX

L=Lp +Lyg +Ly where L, = 20— AX)

(3.7.2)

Olszewski (1990) has shown by simulation that the stochastic queue decreases as absolute

green period capacity is increased. This cannot be accommodated by the M/D/1 formula.
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Akgcelik (1980, 1998a) has developed a time-dependent saturating solution resembling the
sheared solution, which incorporates G in the form of gs in a parameter modifying the
effective demand intensity. This is not considered further here as it is not clear how it can be
incorporated in the present scheme, but several alternative approaches are considered in
Appendix E. Empirical approximations to account for the effect of green period capacity on
the mean stochastic equilibrium queue have been proposed by Newell (1960), Miller (1969)
and Cronjé (1983a), although Miller considers Newell’s model too complex for practical use.
The rest of this Section considers these, and then proposes alternative approximations to the
gueue moments based on simulations of the M/D/1[G] process described in Section 2.4.

3.7.2  Results of simulations with a range of parameters

Using the results of Markov simulations based on M/D/1[G] recurrence relations (2.4.10),
with maximum i of 10,000 for accuracy, equilibrium mean queues have been calculated for a
range of values of p values, and green capacities G up to 100. These are plotted in Figure
3.7.2, confirming not only the behaviour observed by Olszewski (1990) and others, but also
suggesting strongly that the queue tends to zero as the green period gets indefinitely long.

This can be considered the deterministic limit, where only oversaturation results in queuing.
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Figure 3.7.2 Dependence of M/D/1[G] equilibrium mean queue on green period G. The

original Figure 3 of Olszewski (1990) is inset as evidence of the points marked.

The process is not absolutely independent of capacity, saturation flow, cycle time, etc,

because these variables are related to p and G as in equations (3.7.3):
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G=gs=cu  hence xzpuszgszg (3.7.3)

There are four truly independent variables A,g,c,s, that can be substituted for by p,G,c,u
through (3.7.3). Capacity p can be ignored because equilibrium properties are independent of
it. However, in order to maintain the capacity (rate), the ratio g/c must then stay constant, so
the idealised M/D/1[G] processes are explicitly dependent only on p,G. It is as though time
stops at the end of one green period and restarts at the beginning of the next, but is stretched
in proportion so that its ‘clock’ keeps pace with reality. During the green periods, arrivals are
assumed to have a headway distribution consistent with the demand intensity p. A physical
explanation for the reduction in queue size with increasing G is that, depending on whether a
queue is present at the moment a customer arrives within the green period, the arrival may
effectively ‘disappear’ because it takes advantage of spare capacity that would otherwise be
unused. This is not ‘censoring’ because it does not happen according to a rule, but it could
lead to both a reduction in the effective arrival rate at service and apparent the bunching of
arrivals later in the green period. However, as will be shown later, this effect could not be

accommodated by adjusting the arrivals dispersion I, in the P-K formula.
3.7.3 Behaviour and estimation of p,

In Figure 3.7.3, graphs of simulated po. against G for different values of p appear to have

similar shapes on different scales.
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Figure 3.7.3 Markov simulated equilibrium po, for a range of M/D/1[G] processes
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Experimentation with simple transformations shows that graphs of p, follow a common
trajectory very closely when plotted against a dimensionless ‘link function’ z, defined
generally by equation (3.7.4) (in what follows, the dependence on p and G is understood):

z(h): G+h

T

where t,, = (1— \/E)_2 and h=2 in this case®  (3.7.4)

rel

T, 1S the stochastic relaxation time (2.3.38) for each p with p set to 1. This result is evident in
Figure 3.7.4, where left end of the LH plot is expanded in the RH plot. The idea of the ‘link
function’ is that combinations of basic variables that give the same link function value lead to

the same results in the target function. This reflects a ‘symmetry” between p and G.
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Figure 3.7.4 Markov-simulated p, against the function z(2) (expanded scale at right)

Points for G=1 satisfy (2.4.7), and since the points for the other values of G lie on the same

curve, interspersed with those of G=1, they can be calculated using the same formula together

with an ‘effective p’, 1o, that needs to satisfy:

-, f =G +20-pf or

2
Mo = Max (1— /% max(l—\/E,O)J .0 (3.7.5)

The lower limit of zero reflects the vanishing (sub-resolution) of the Markov simulated mean

for small p and large G. Then py can be estimated for all G, as required, by:

A

where ﬁ a modified adjustment.

c
%This can be written in terms of signal cycle time cas Z =
Tre

124



Polclest = e (1-n,) (3.7.6)

In Figure 3.7.4 estimated values are indicated by red squares. The estimates are not perfect but
very close, with RMS error = 0.0077 or 0.93% of average. Estimated and Markov simulated
values are compared directly in Figure 3.7.5.
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Figure 3.7.5 Performance of M/D/1[G] po estimates compared to simulation

3.7.4  Attempts at direct approximation to mean queue size

Graphs of the Markov simulated M/D/1[G] queue sizes in Figure 3.7.2 also have a similar
shape, suggesting that a link function may exist for them but, unlike po, they are not confined
within the bounds of [0,1], so the treatment has to be somewhat different. This is broadly the
approach used by previous authors. Miller’s formula for the stochastic queue (with modified

notation as used throughout this Section) is:

4y
e —_
Xp( 3pj

20 ) where y=01-phG (3.7.7)

Leom =

Cronjé (1983a) offers, without further explanation, a “suggested modification to Newell”
where an explicit expression involving the variable y replaces a factor in Newell’s formula.
Dispersion of arrivals |, is also a factor, although in what follows it is dropped since this use

would be incompatible with its role in the extended P-K formula, i.e. 1,=1 is assumed:

lapexp(— y—%yz)
2(1-p)
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Mean queue values fall approximately onto a common trajectory, as shown by Figure 3.7.6, if
the link function (3.7.4) is chosen as:

z = 2(~1.4) optimally, although z = z(~1) works (3.7.9)

Unlike for po, an ‘effective p’ does not arise so immediately in this case, since to achieve this
fit the mean queue sizes have first to be normalised to the L. values for the ‘standard’ M/D/1
values with G=1. Functions can however be fitted to the data, and then transformed back into

an empirical approximation to L. in terms of p and G of the form:
Ll (0 G) = Re) (2) Ly (3.7.10)

Two forms of ¥c,(z), ‘power’ and ‘exponential’, have been tried:

Riajpur (2) = min((l— Jo9z-1f ,1) (3.7.11a)
R(o1ecp (2) = Minfexpl—3.52°7 J1) (3.7.11b)

Figure 3.7.6 also plots the estimated values, and the average absolute and percentage accuracies
of the methods are given in Table 3.7.1. Miller’s formula underestimates seriously, and the
Cronjé-Newell formula appears to overestimate, although inspection of numerical results shows
it is the most accurate for high values of p>0.7. Of the functions in (3.7.11), the power function
gives lower RMS error, around 0.025 over the data range of 0-1, compared to around 0.03 for

the exponential function, but the exponential gives lower percentage error.
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Table 3.7.1 Accuracies of the M/D/1[G] queue size models (limited to 1 X Lei)

Absolute RMS error

Methods Average percent error

All p p>0.7 All p p>0.7

Power 0.025 0.034 18.3 15.5
Exponential 0.030 0.039 10.7 9.7
Cronjé-Newell 0.067 0.009 39.0 4.8
Miller 0.124 0.027 315 26.4

Exponential functions have the advantage that their values do not fall off too rapidly at higher
values of G and so can achieve better approximations. As is often the case, the Miller and
Cronjé-Newell formulae are optimised for ‘heavy traffic’. Their problem is that the exponential
terms, that ought to reduce to p when G=1, do so approximately only for large p. There appears
to be no common ground between the methods that could be exploited to produce a better one.
However, the good performance of the Cronjé-Newell formula at higher values of p makes it
attractive as the basis of a method adjusted to give better results for smaller p values. This can

be tested by calculating the error relative to Markov simulations in the factor:

expl-y-1y?)

fo(p,G)= (3.7.12)

This is (3.7.8) normalised to act as a multiplier of the M/D/1 mean queue (2.4.7). Replacing the
contents of the bracket with a function of the form (1-exp(y)) does not avoid error. Figure 3.7.7
shows that the logarithm of the factor error is a fairly linear function of G, but its slope is

extremely sensitive to p, so sensitive that no function of p normally met could describe it.
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Figure 3.7.7 Cronjé log factor error dependence on p and G

Figure 3.7.8 shows that the slope of these factors has a ‘hockey stick’ shape in relation to p. It

is not obvious whether the slightly negative values for p>0.7 are real or the result of
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imprecision in the simulations. An alternative interpretation is that the slope falls linearly
becoming zero somewhere between p=0.5 and 0.6. On that assumption, admitting that there are
only three data points, the slopes themselves can be fitted by a linear relationship whose
coefficients are slightly rounded from the actual regression values:

s=04-0.75 (3.7.13)
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Figure 3.7.8 Dependence on p of average slopes in Figure 3.7.7

Figure 3.7.8 also plots the fitted and equation (3.7.12) values, that are assumed to be zero for
p>0.6. It is possible that the true relationship bends smoothly and goes to zero near where the
value of L, is 0.5 for G=1 (p~0.6185). However, this affects so narrow a range of p, at factor
error so close to 1, that it probably isn’t worth pursuing. Consequently, the following composite

formula is arrived at;

~ 2 12
L P min exp(max(0.4—0.75p,0)G)M

= _ 1 3.7.14
e[G] 2(1—[)) ( )

where y = (1—p G as before, and the minimum is needed to overcome overprediction by the
Cronjé-Newell function when G=1. Figure 3.7.9 shows that this adjusted Cronjé-Newell
formula fits all the simulated data substantially better than the original. It is disappointing that
an empirical and non-smooth function of p is involved, but it is not obvious what common

function could reproduce the extreme sensitivity to smaller values of p in Figure 3.7.8.
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Figure 3.7.9 Performance of normalised Cronjé-Newell and adjusted queue models

3.7.5  Estimating mean queue using effective traffic intensity

An alternative to such ad hoc adjustment is to define an effective traffic intensity or ‘effective

p’ for M/D/1[G] equilibrium queues by inverting equation (2.4.8), viz:
M =y LefoylLefe] +2) — Lefo] (3.7.15)

Earlier results including from queues with Erlang arrivals suggest that the probability
distribution of any stochastic queue tends to become geometric as queue size increases, but no

particular distribution has been assumed in defining (3.7.15), so its physical meaning is unclear.
However, Figure 3.7.10 reveals that a common trajectory exists for the ratio n:/p when plotted

against the link function z(0), with the ratio limited to 1, although some points for lower values

of p are less well fitted, leading to the ‘effective p’ formulation (3.7.16):

? : -G
Lefe] = ﬁ where n, =p mm[exp{r—}l} (3.7.16)

rel
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Lerg) IS estimated directly by the equivalent of (2.4.7). Table 3.7.2 compares the accuracies of

all the models. This shows accuracy is fair, with RMS error of 0.024 in n; and 0.060 in L),

similar to Cronjé-Newell, but no extra constants are needed, indeed the accuracy deteriorates

rapidly if additional factors or powers of the z function are introduced.

Table 3.7.2 Accuracy of the M/D/1[G] queue size estimates (> 1 X Lepy)

Absolute RMS error

Model Average percent error

All p p>0.7 All p p>0.7
Cronjé-Newell 0.067 0.009 39.0 4.8
Adjusted C-N 0.014 0.009 5.1 4.8
Effective Rho 0.060 0.091 14.4 5.9

The fit of the ratio n,/p is also shown by the red squares in Figure 3.7.10. The link function

fails for G=1, and the ratio has to be forced to 1 in that case, though that presents no practical

problem for computations since G is assumed to be discrete. Although this method results in

higher errors than the adjusted Cronjé-Newell method, it may be preferred for its structural

transparency and computational simplicity where the highest accuracy is not essential. Its

accuracy is best for smaller values of G and higher values of p, and it avoids Cronjé-Newell’s

extreme departures at smaller p values.
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3.7.6  Estimating variance

An approximation to equilibrium M/D/1[G] variance arises directly from the observation that
variance values lie close to a common trajectory when normalised to V[1] using the
exponential function (3.7.17) and link function (3.7.18). This is shown in Figure 3.7.11, where

compliance with the trajectory appears, somewhat surprisingly, better than for Leg;.

Vo] = Ve min[exp(-32(L))1]  where (3.7.17)
G+1
2(1)= (from (3.7.4) (3.7.18)
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Figure 3.7.11 Exponential approximation toVjg)/Vepy using link parameter € = -3

Absolute error is minimised at 0.125 by the factor -3 within the exponential function (3.7.17),
with percentage error 11.1% and a tendency to underpredict smaller values. However,
percentage error is minimised at 7.07% by a factor around -2.7, with absolute error 0.178 but
greater overprediction of larger values. Large values are best fitted by a factor -4. Therefore the
form of the link function is necessarily a compromise. Estimating variance values in this way is
less satisfactory than defining an ‘effective p’. There may possibly be a way this could be
achieved, although the complexity of the expression for V) rather argues against it. However,
it is not critical since only the value of equilibrium variance is required as an asymptotic

constraint. Variance does not come from a time-dependent solution like the sheared queue.

131



3.7.7  Accuracy of the results and discussion of the methods

Figure 3.7.12 shows that the approximations described in this Section give good results over the
wide range of parameter values tested. Figure 3.7.13 compares estimated with simulated
moments for extended M/D/1[G] distributions, i.e. where each origin is shifted by G.
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Figure 3.7.12 Results of M/D/1 estimations for 25 combinations of p and G
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A common element in the formulae developed by the authors cited is the divisor (1-p), also
invariably present in the Pollaczek-Khinchin mean formula. This suggests normalisation with
respect to Lo[1]. Another is the presence of an expression in p and G involving (1-p)\G, which
suggests a symmetry between p and G. The link-functions z(h) attempt to exploit what may be
a deeper symmetry betwen G and the characteristic timescale set for each p by stochastic
relaxation time. The corresponding physical interpretation is that arrivals in green periods of
different lengths should on average have the same impact on the final stochastic queue if their z
values are the same, although this may be stretching a point where the relaxation time is long
compared to the duration of the green period.

3.7.8 Feasibility of estimating M/D/1[G] with modified statistical parameters

It should be asked whether, as an alternative to the preceding, modifying statistical parameters
in the P-K mean queue formula alone could account for the effect of green period length.

Structurally, three possible factors could contribute:

e Reduction in the effective arrival rate
e Bunching of arrivals

e Alteration of the service statistics

The preceding results show that adjusting the effective traffic intensity, which in practice means
the effective arrival rate, can lead to useful approximations. Service is already assumed to be
uniform, c¢,=0, and the derivation of (3.2.13) allows no role for c,, so any effect of bunching

must act through 1. Figure 3.7.14 shows how I, has to vary to reproduce Leg; as estimated.
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Figure 3.7.14 Aurrivals dispersion I, needed to give estimated Leg;
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In Figure 3.7.15, I, has been replaced by the function below and plotted against z(0):

|y 1
f(1,)=1+ 20 = 2(0)=-C- (3.7.19)

It is apparent from the form of (3.7.19) that the process of estimating I, has merely been
reversed. Figure 3.7.14 (above) confirms that the relationship between the quantities in (3.7.19)
is weak. A rather poor exponential approximation of the ‘link function’ type is equation

(3.7.20), but the scatter in Figure 3.7.15 shows that no function of this type can be satisfactory.
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Figure 3.7.15 Function of dispersion I, needed to give estimated Leg)
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3.7.9 Properties of M/D/1[G] probability distributions

Figure 3.7.16 compares simulated probability distributions, extended to include notional

state, for p=0.8 and five values of G (including 1) with Gamma distributions, which are

convenient to work with because of their relatively simple continuous functional form® %",
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Figure 3.7.16 M/D/1[G] simulated extended distributions for p=0.8 and various G

Gamma being a continuous distribution, its parameters can be fitted, with varying degrees of
accuracy, to simulated distributions using standard numerical methods, as e.g. embodied in
Excel’s Solver. LogNormal and Poisson distributions have also been tried but found less
satisfactory. More detail on this is given later in Chapter 5 where the use of continuous

functions to approximate dynamic probability distributions is also addressed.
Some results for the extended probability distributions are established. By direct calculation:

00

0 0 ©
Mean=>"(i+ G)p!) = Zipi(*) +ip +GY p =L, L' +G=L,+Gp (3.7.21)
-G 0 -G

-G

Mode ~ Gp this being the mean number served in the green period or cycle. (3.7.22)

% The Gamma distribution, as a model of queue size probability distributions in over-saturated peaks, has been
proposed by Olszewski (1990) and also investigated by Halcrow Fox and Associates under contract to the
Transport Research Laboratory (unpub.). Discrete alternatives could be Erlang or Negative Binomial.

The Negative Binomial is used in accident analysis where the accident count at any particular site or juncture is
believed to be a Poisson variable, but the variance between sites produced by unspecified factors leads to the
combined distribution being over-dispersed. When mean rates at sites are assumed to be Gamma distributed, the
combined distribution is Negative Binomial (Heydecker and Wu 2001).
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Using a method similar to (3.7.21) the variance of the notional probability terms can be
calculated from the Variance of the extended distribution and the ‘real’ part:

Vjg) =Variance V() — 2G(L—p)Lyg] (3.7.23)

The variance of the notional distribution terms alone can now be calculated if an expression for
V' can be found. The approach is similar to that used previously. Recalling the limiting value
(2.4.25), V' is first assumed to depend on some function Y(z) such that:

Ve =Gp(l-Y(z)p) where (3.7.24)

G-15
T

z~12(-15)=

and Y(2) € [0,1]

rel

Figure 3.7.17 confirms that p and G can be linked through Y(z) or its complement:
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Figure 3.7.17 Common trend component for variances of ‘notional’ parts of distributions

Taking the logarithm of Y(z) shows it is nearly exponential except at small z. (1-Y(z)) more
resembles a saturating function like L or x in a growing queue. However, for the sake of
simplicity an exponential sub-model is attempted. A reasonable fit, with RMSE=0.081 and

average percentage error 1.65%, is got with the following approximation:

Y(z)=1—1—exp(~2.52) (3.7.25)
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Figure 3.7.18 graphs ‘real’ probability distributions simulated for p=0.8 and several values of

G, showing how p, becomes increasingly dominant.

] 1 2 3 4 H 5 6 7 8 ] 10

Figure 3.7.18 Simulated M/D/1[G] equilibrium probability distributions

3.7.10 Anempirical approach to estimating M/D/1[G] probability distributions

This section includes for completeness initial investigations and some speculation about the
distributions, now superseded by work described later in Chapter 6. Referring back to Figure
3.7.18, for sufficiently large i the ratios between successive p; appear to approach a constant
ratio, as expected when remote from the influence of the zero boundary. Furthermore, this

ratio appears to be independent of G, an approximation being:

Iim(;)—‘J ~R(p)= pll-+p) (3.7.26)

For G up to 5, based on the limiting form (3.7.26), the ratio between successive p; in the

middle range of values of i appears to follow:

=i~ R(p)+Ge ¢+ (3.7.27)
Pia

where & is best set to p for larger G, and to 1 for smaller G, and for i<1 this applies to
notional probabilities ie[-G,0], not the real po. The ratios of successive probabilities for one

level of demand, p=0.9 and i>1, normalised so that p;=1, are broadly similar for different G
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values, as shown in Figure 3.7.19, with the ratio between terms in their middle ranges given
approximately by (3.7.26-27).
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Figure 3.7.19 Normalised M/D/1[G] probability distributions

The fit against simulated values can be good for some values of p and G, as shown by Figure
3.7.20 for the particular case G=5. Unfortunately, calculation of the whole distribution is so

sensitive to the values of the p.i* that even small errors render this model of little value.

\ 4

35 True ratios

3 Model
\ ric..: p: 0.8

2 G=5

15 R=0.648

e

-6 -4 -2 0 ’ 2 4 6 8

Figure 3.7.20 Simulated and estimated ratios between successive probabilities, G=5

While the extended probability distributions may be fitted best by Gamma distributions, it may
be supposed that they are nearly geometric for i sufficiently greater than 0. Can this yield to an
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‘effective p’ approach? In the steady state, po IS the complement of the utilisation, and

according to deterministic queuing theory, the arrival rate must balance the utilisation.

Using equation (2.4.6), this appears to imply that, for example, the effective arrival rate for G=1
should be given by:

N=1- oy =1-e°(1-p) (3.7.28)

For p=0.9 this has the value 0.754 rather than the limiting value 0.812 from (3.7.26). While
these functions are not close analytically they are not greatly different in absolute terms over
the range of pe[0,1]. So I, can now be recalculated using (3.7.28) rather than (3.7.19/20), and
Porc) calculated from (3.7.5-6):

20- n)('—e[e] - Ly (n))
n

Ia(est3) =1+ (3.7.29)

However, this now gives values of 1,>1 in most cases, which is not the expected result. This
happens because the m corresponding to po from equations (3.7.5-6) is smaller than that

corresponding to L. from equation (3.7.16).

It seems therefore that this approach is not leading anywhere, but the method of doubly-nested

distributions can still be applied.
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3.8. CONCLUSIONS ON MORE GENERAL EQUILIBRIUM QUEUES

In this Chapter 3 the results of Chapter 2 have been extended to more general arrival and
service statistics, using an event-based formalism found in standard reference works, to produce
generalised formulae for the equilibrium mean and variance of queues. Equilibrium formulae
for a number of specific queue processes are derived from recurrence relations, and are
matched to statistical parameters of the Pollaczek-Khinchin mean formula using Markov
simulations, enabling them to be brought into the time-dependent approximation framework
that will be addressed later in Chapter 4.

The unit-in-service component in the equilibrium queue formula, whose presence seems to
correlate with the possibility of formulating the queue process on infinitesimal time intervals,
has been introduced into the equilibrium variance formula in a consistent way. An
inconsistency in characterising the statistics of arrivals between the dispersion index of arrivals,
as obtained naturally during the derivation of the Pollaczek-Khinchin mean formula, and the
coefficient of variation of arrivals as employed by some authors, has been discussed but

remains unresolved.

It is shown that at some equilibrium probability distributions, in particular those described, with
mode < 2, can be approximated using a doubly-nested geometric distribution expressed in
terms of their three moments: utilisation or p,, mean and variance. The extended M/D/1[G]
queues, representing stochastic queues at signals with specific green period capacities, do not
appear to have close form expressions for their moments. New approximations for these have
been proposed, using a link-function approach, that are shown to be reasonably accurate over a
range of green capacities and demand intensities, not just for ‘heavy traffic’ as in the case of
earlier formulae of Miller and Newell. The doubly-nested geometric method can be used to

estimate their probability distributions.
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CHAPTER 4: TIME-DEPENDENT APPROXIMATION

4.1. INTRODUCTION

The need for simple and efficient calculation of time-dependent queuing in traffic modelling
software, as well as enabling the properties of queues to be explored in a more unified and less
algebraically demanding way than exact analysis, has encouraged approximate methods.
‘Shearing’, an heuristical merging of rigorous deterministic and equilibrium descriptions, is
conceptually simple and does not require additional empirical parameters. The flexibility of the
formulation is another reason for working with it here, where the primary purpose is to extend
the range of applications including to variability and reliability. Exploration of alternative

existing queue approximations and more fundamental improvements are left for future research.

Kimber and Hollis (1979) formalised shearing in terms of coordinate transformation, though a
more revealing interpretation is that this treats the queue as quasi-static. Similar approaches
were made by Doherty (1977) and Catling (1977), and hinted at by Newell (1971 or earlier).
Rider (1976) also used a quasi-static approach. Kimber and Hollis quickly recognised that the
sheared method could be inaccurate, especially during decay. They proposed replacing the
initial queue by a shift in the time origin, except for initial values greater than twice the
equilibrium queue, where they used a linear model, since the rate of change of the mean queue

remains nearly constant as long as the queue is large enough to keep the service saturated.

The assumption that the queue is effectively in a constant state of quasi-equilibrium is a deep
source of potential inaccuracy, especially in the middle stages of growth or during post-peak
decay where actual queue size probability distributions tend to be far from equilibrium form.
The new deterministic variance formula is generally at odds with the predictions of shearing not
only during growth and decay but also at equilibrium. Although the sheared queue
approximation converges reliably to the correct equilibrium value it never quite ‘forgets’ its
initial state. This can be exploited to achieve a correction making it consistent with the variance
formula at equilibrium. Using this asymptotic ‘anchor’ as well as that of expected initial
behaviour, it should be possible to approximate the development of the queue more accurately
than using the mean size constraints alone. Simultaneously, time-dependent variance can be
estimated. Because of the form of the variance equation, this approach hinges on how the delay,

the integral average of the queue function, is approximated along with the mean queue.

After reviewing the sheared queue method, this Chapter 4 looks at corrections and an
alternative for the difficult decay regime, which wherever possible are directly related to initial

and asymptotic behaviour, and tests these against simulations using the set of peak cases.
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4.2. THE SHEARED QUEUE APPROXIMATION AND RELATED ISSUES

4.2.1 The shearing transformation

In the late 1970s, P D Whiting, working at the Transport Research Laboratory in the UK,
proposed a ‘coordinate transformation’ to merge deterministic time-dependent and equilibrium
gueue formulae in order to produce an approximate time-dependent formula that could be
applied seamlessly through and above saturation. This method, known as ‘shearing’, was
applied first by Robertson and Gower (1977) in the traffic signal optimisation software
TRANSYT, and further developed by Kimber and Hollis (1979) and Kimber and Daly (1986),
while similar ideas of Doherty (1977) were developed by Catling (1977), who described a
similar method with the emphasis on stochastic delay at signals. Rider (1976) investigated
relaxation behaviour using an approach based on inverting the relationship between the steady-
state queue and demand intensity, but restricted results to the time-dependent formulation of the
probability of the queue being zero®. Newell (1982) considered queues developing through
saturation, but appears not have been aware of this work and did not describe a transformation

as such. An interpretation by Heydecker and Verlander (1998) will be discussed shortly.

The ‘coordinate transformation’ involved in shearing was originally posed diagrammatically, as

shown in Figure 4.2.1, where different versions of traffic intensity are related by:

_ -1
pe —1=p—f, (L) (4.2.1)
/
Asymptote 4
rotates as time 4
L tincreases ’
/
/
. 7
Random queue in e - - -
equilibrium (p<1) \ 7
L, =L(p.t),?
Queue s sbhly
size /
Shearing /
transformation /
effectively equates + St—p L
these displacements 4 Deterministic
for all values of L 4 queue (p=>1)

Li=(pg1)put

0 Demand / capacity p 1

Figure 4.2.1 Graphical interpretation of the shearing transformation

*¥Knowing this would be sufficient for defining a Geometric equilibrium probability distribution, but not any other
kind of distribution.
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In the transformation, p is the true demand intensity or ratio of demand to capacity, the function
fo is an equilibrium mean queue size function appropriate to the queue process, usually the
Pollaczek-Khinchin mean value formula, and pq is a synthetic variable that allows rewriting of
the simple deterministic queue formula in the form of (2.3.4), assuming full utilisation of
capacity - essentially (2.3.1) with constant parameters:

La(pt)=Lo +(pg ~Dut =Ly +(p— £, (L)t (4.2.2)

where (L) is also the average utilisation x(t) (4.2.3)

e

is the time-averaged utilisation or degree of saturation of service (at the stop line). Therefore
(4.2.3) is equivalent to equating the time dependent queue to the equilibrium queue that would
be generated at the service by traffic of intensity x, where it is convenient to use the forms of
equations (2.3.50) or (3.2.14-15):

* 2
L(x,t)=" X+1((_:; DX here 171 +1(1,-1) (424

Since the system is not in steady-state equilbrium, this constitutes a quasi-static or quasi-
equilibrium assumption, but unlike (2.3.50) which, as it stands, fails when p>1, (4.2.4) is
always defined since x is always less than 1. Therefore (4.2.2-4) can be solved for all t. The
quasi-static approach is not restricted to this relatively simple and analytically soluble case.
Holland and Griffiths (1999) show how it can be applied to the multi-channel queue (section

3.5.11 earlier), producing apparently very accurate results, but needing numerical solution.
4.2.2  Sheared queue solution with initial queue

The shearing transformation is equivalent to solving the equation®:

L(p, X, 1 t) = Lo +(p = x)ut ='*X+1((_3—X")X2 = L(x) (4.2.5)

This is most simply solved for average utilisation x giving the quadratic solution:

*In queue formulae, capacity p and time t always appear in combination, their product representing throughput
capacity. Conventionally, however, the latter is not treated as an independent variable, and in any case it is
sometimes desirable to refer to time in the absolute, though it always appears in a dimensionless expression.
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, 2
x(t)= 9-yg —4fh if f20

2f
x(t)=2
9 if f=0 and g=0 (4.2.6a)
where:
f=pt—(C-1)
g=L,+1"+(p+2ut (4.2.6h)
h=1L,+put
As an aid to differentiation note that this satisfies:
fx? —gx+h=0 S0 (4.2.73)
de_ e’ ~(p+Dx+p) (4.2.7b)
dt g-2fx
dL dx
— = —-X—-t— 4.2.7¢c
=i pxt ) @.270)

The equivalent but more complicated solution for mean queue size L is as given by Kimber and
Hollis (1979):

L&)_G+JGZ—4FH
()=

if F20
2F
H .
k@za- if F=0 and G=0 (4.2.82)
where:
F=ut—(C-1)
G=(Ly — 1"ut—2(C — 1)L, +ppt) - [L—p)ut)* (4.2.8b)

H 2_[(C — 1)L +put)+ |*Htk|-o +put)

Ls(t), with subscript s, here specifically represents the sheared queue function. The reason for
identifying the function in this way is that it is only an approximation to the mean queue, but
there will be occasion later to employ the function Ls with modified parameters to achieve
better accuracy or to modify its relaxation behaviour, while retaining its structural properties.
Those properties make this quadratic function a useful alternative to the exponential for

modelling saturating systems.

144



4.2.3 Sheared queue solution with origin time shift

Kimber and Hollis (1979) proposed an alternative formulation, eliminating Lo, in which the
queue starts at zero at some time —t, so as to reach L, at t=0. They argued that the original
method was inaccurate through not taking account of the history of queue development up to
Lo. While substituting an hypothetical time t, for a real initial queue L, may be considered a
drawback, since L, is likely to be available directly from calculation of earlier time periods.
However, it may still be used as an alternative definition of the queue function. The sheared
queue is reformulated as (4.2.9), where X, being the average utilisation over [-to,t] rather than
[0,t], has the same form as (4.2.6a) but with L, suppressed and modified components:

*2
L(t)=(p—x" Jut" =1x" +1CX =L (x") where t"=t+t, (4.2.9)
—X
f =put"—(C-1)
g =1"+(+ut” (4.2.10a)
h™=put”

To find ty in terms of L, it is easiest to invert the queue formula:

_G+VG?—4FH

2F

if F£0

L(t)= % if F=0 and G=0 (4.2.10b)

where, on setting Lo=0 in (4.2.8b) and substituting shifted t” for t:

F'=ut" —(C-1)
G" =—(—p)ut f =[1 +2p(C = 1)ut"

H" = —p[l Tt p(C -1 )Kut*)z

and by definition: (4.2.10c¢)
F'L’-G'L+H" =0 (4.2.11)
Setting t=0, L=L, and rearranging forms a quadratic in to:
R++R?*-4Qs
t, = _1{+2—QQJ (if Q=0) (4.2.12a)
pn

145



where:

Q={-p)L,—p[1" +p(C-1)]=@-p)L, - L,)
R=[L, +1"+2p(C- 1)L, (4.2.12b)
s=-(C-1)2

Technically this should work only if the queue is growing, so there is a finite time at which it
is zero. For decaying queues, Kimber and Hollis (1979) calculate the time at which the queue
should equal twice the equilibrium value, assuming that it decays linearly. Thereafter they

assume it decays according to a mirror image of the growth function.

Superficially the constructions appear equivalent, but in reality they are not. Referring back
to section 2.5.8, the time to corresponds to a particular point in the development of the queue
from zero, at which the queue size probability distribution will differ from an equilibrium
distribution in some specific (even if unknown) way. In the construction with Lo, however,
the initial queue size distribution at t=0 is unspecified, although (4.2.5) means that quasi-
equilibrium is assumed implicitly. If a decaying queue is assumed to fall to 2L. at t=t., a yet
different distribution ought to apply. Hence the use of subscript t instead of s to emphasise

that they represent different model processes.

It is not the purpose here to compare the basic and origin-shifted sheared methods, for two
reasons. First, corrections to obtain the correct asymptotic variance will inevitably alter the
behaviour of the functions, making such a comparison of academic interest. Second, since
both are approximations, which one works best may depend on circumstance, such as
whichever happens by chance to reflect most closely the true probability distribution at a
particular stage in queue growth. Figure 1.1.3 earlier suggests that origin-shifting does not

necessarily result in greater accuracy, but this could be a topic for further investigation.

4.2.4 Relationship between queue size and delay and derived queue functions

In principle the sheared function, with time replaced by any monotonically increasing function
of time, could represent an instantaneous queue size or its average ‘delay’, because the initial
and final (equilibrium) values would be the same. Kimber and Hollis (1979) approximated the
time-averaged queue, or delay per unit time, by the following on the basis that the queue

function is nearly linear at the beginning and end of the time range:

D,(t)~ Ls(%j (4.2.13)

146



This delay function can be calculated as in section 4.2.2, but x will be different from that for the
sheared queue, and the approximation will be poorest at some intermediate point where the
function is most non-linear. Time transformation is given added impetus by the fact that as
shown later, in particular M/M/1 cases where L,=0 and p<1, as t—, the sheared queue

function Lg(t) is a better model of D in the variance formula (2.3.27) than is Ds(t) itself.
Given the integral relationship between L and D (2.3.28), there may be potential benefit in

deriving L from D because integrating L to get D is intractable, especially if time is replaced by
a function of time, while differentiating D is more straightforward:

L(t):%(tD): D(t)+t(jj—lt3 (4.2.14)

Assuming Ds has the functional form of L, with the factor 2 in (4.2.13) replaced by a general

function of time w(t), where L’ has the functional form of dL(t)/dt, the derived queue is:

L, (t,w)= %(tLS (éD =L, (éj + é L &](1— %’j (4.2.15)

For simplicity, Lsis now treated as just one of a range of possible functions. If o is present, it

can be accommodated through nested differentiation. Differentiating (4.2.5):

L) =pfp-x)-o¢]= 5 x =['*+(C(l_ ')X;Z(Z_Xs)Jxé (4.2.16)
_Xs

Hence the time derivative of x; is expressible in terms of x;:

W ()= (p—x,)u
(1) |,Lt+(|*+(C_I)X 2(2—XS)J

(1_ Xs;

(4.2.17)

Using (2.3.24), containing instantaneous utilisation, if Ls is interpreted as queue size, (4.2.16)
can be rearranged into an alternative form suggested by Prof. B G Heydecker, in which pg

appears as the weighted sum of time-averaged and equilibrium guantities:

_ (p—=x) _ (@=x)+{@—p)dx/dLut
pO(t)_(l_p)+1+(dXs/d|—s)ut o Le(dx/diut 4219
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If Ls is used to estimate delay, then utilisation requires taking the second derivative:

L (t) = —se[(2x/(0))+ o ¢)] (4.2.19)
! = 2x° [(sz —p-Lu+(ut-(C-1 ))Xé]
= P (4.2.20)

If Ls(t) is used to represent queue size then:

U, =p-— L/S(t) (4.2.21)

If Ls(t/w) is used to model delay then:

Ls (t ©)
n

. 2 .2 .
L :E 1_t_0°_t_ oL |_’S+L 1_@
(0] o 20 Q) % ®

These formulae are available for calculating properties of variations of the sheared queue as

Ug=p— where (4.2.22)

L (4.2.23)

S

and when necessary.

4.2.5 Effect on estimation accuracy of assumptions about the initial state

This sub-section comments on some issues of accuracy and interpretation associated with the
sheared approximation and time slicing, in the light of the new result for variance. Kimber and
Hollis (1979) argue that origin-shifting gives more accurate results for all values of time,
because the shape of the queue development is no longer dependent on the initial queue size.
The results are certainly more consistent in that sense. However, as pointed out earlier, a queue
which grows from zero for a time t,, reaching mean size Ly, is not the same as a queue that has
exact size L, at to, because the former will have developed a probability distribution around Lo,
whereas an initial Lo could represent a ‘pure state’. It is sometimes argued that an initial L,
represents the mean of a distribution, indeed Heydecker and Verlander (1998) suggest that it
represents an equilibrated distribution. However, the distribution it actually represents cannot
be controlled, and the lack of information about it within the method is a source of error. In
general, it will not be possible to find a single time t, at which both initial queue and initial

variance are matched, let alone three moments if po is included.
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Suppose (4.2.9) is accepted and a queue starting from zero at t=-t; grows to a mean value of L,
at t=0, related to the initial queue by the following, assuming an M/M/1 process:

uty = ——2 (4.2.24)

According to (4.2.13), the average delay per unit time over the growth period, say Dy, is
approximately equal to the queue size at -ty/2. While L is small, (4.2.9) shows that the queue
grows almost linearly, so initially Do=Lo/2.

Now introduce initial variance V, Bearing in mind that Lo, Vo represent results after a time t,,

and the queue size and variance to put into the equation at t = -ty are both zero, (2.3.27) leads to

the following estimate of variance at t = O:
Vo =(2p—(L=p)Louty - L5 — Ly (4.2.25)

On eliminating to in (4.2.25) using (4.2.24), several terms cancel giving the result:

V=P (4.2.26)

If the queue is equilibrated at t=0 then the mean and variance should be related in the same way
as (2.3.32) and (2.3.33), i.e. Vo =Lo(Lo+1). Substituting this in (4.2.26) and multiplying out by

the RHS denominator results in the following, but this is satisfied only if p=1:

oLy +)—Ly,=p = p=1 (4.2.27)

So, thanks to (2.3.27), it has been shown that in general the queue cannot be equilibrated at t,
This does not matter greatly since the means to calculate p,, L and V at moderate values of t are
now available, and in principle the queue size probability distribution can be inferred from
them. However, this only works for a queue starting at zero, and at large values of t equation
(2.3.27) becomes increasingly sensitive since it involves the product of a number that is
converging on zero and another that is increasing without bound. This applies also to the

deterministic queue formula, but the sheared transformation takes care of it automatically.
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Variance cannot be sheared because its time-dependent graph falls below the deterministic
graph (see Figure 1.1.1 in the Introduction earlier). In any case, shearing the variance would
beg the question of the accuracy of the result, whereas it would be preferable to use the
variance formula to improve the accuracy of the whole approximation. Therefore other methods
are required, which are the subject of much of what follows.

4.2.6 Effect of time slicing on accuracy

Equation (4.2.5) effectively equates the instantaneous time-dependent queue at time t, given by
the middle formula, with the equilibrium queue that would result from an average degree of
saturation x of service over [0,t], given by the RHS. This quasi-steady-state assumption is

necessarily an approximation and a potential source of error.

Brilon (2007) looks at several variants of time-dependent equation, mostly describing delay
rather than queue size, and points to problems that arise when like is equated with not exactly

9540

like. However, the approximation is convenient, avoiding the “disheartening”™ complexity of

exact transient solutions (e.g. Morse 1958), which in any case exist for few processes.

Heydecker and Verlander (1998) argue that better results could be got by integrating the queue
size over very short time steps. This would certainly be advisable if p and p vary significantly
on short time scales, but it could be computationally demanding. They derive their main result
for the rate of change of queue size by a fairly complicated procedure reinterpreted here. The
rate of change of the mean queue in terms of instantaneous utilisation u or average degree of

saturation X is:

%:(p_u),u:(p_x_%tj“ (4.2.28)

Now if the queue is assumed to be quasi-equilibrated, treating L. as a function:

oL oL, aL,
ot ot ox ot

(4.2.29)

Substituting for ox/ot in (4.2.29) using (4.2.28) and rearranging, noting from that (4.2.5) L¢(X) is

an invertible function of x:

“Kleinrock (1975)
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o 1+ﬁut
oL,

oL _ (p—xu (4.2.30)

This is similar to the result got by Heydecker and Verlander (1998), and amounts to a way of
converting between instantaneous utilisation and average utilisation. This in turn means that the
queue development can be handled in a sequence of short quasi-static time slices, but this can
also be done through (4.2.5-7).

Here, arrival and service rates can be generalised to time-dependent functions only if the quasi-
static assumption remains consistent. There is no reason why it shouldn’t, since it contains no
assumptions about the behaviour of arrivals or service. However x and p then lose their
meaning unless defined in terms of average throughput capacity and demand. If x is defined
more generally by (4.2.31), then (4.2.30) is replaced by (4.2.32):

L(t)= Iot%(y)dy - X(t)f;u(y)dy (4.2.31)
oL A —Xp
oL _ A (4.2.32)
a 1+ o nt

oL,

Apart from the arrivals A now being a function of time, the essential difference is that the
capacity p in the numerator is instantaneous while that in the denominator is averaged.
Instantaneous arrivals and capacity can change discontinuously (step functions) but the degree
of saturation x is averaged over [0,t] and therefore must be continuous, even if not everywhere
differentiable. However, when the history of arrivals and service is allowed total freedom, the

assumption of quasi-equilibrium seems increasingly artificial.

The approach adopted in this research retains where possible the quasi-static basis of time-
dependent queue modelling, which has proved extremely successful, robust and applicable to a
wide range of problems, while steering it towards greater accuracy through enhancements
linked wherever possible to established queue properties. Developing inherently more accurate
efficient queue approximations, that could involve dropping or modifying the quasi-static
assumption, is not considered part of this research, but could be a topic of future research that
could include reviewing the alternative approximate time-dependent methods which have

variously been proposed.
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4.2.7 Practical issues of predicting queues at junctions

Queue and delay measurements can be explained post hoc by measuring arrival rate profiles
and measuring or inferring capacity profiles, but reliably predicting either ahead of time is more
problematic. Kimber and Daly (1986) demonstrated that predicted queue sizes at a give-way
junction, using the time-dependent method, could match observation roughly within a range of
a factor of two either way, consistent with the exponential distribution of M/M/1 arrival and

service times.

The futility of over-precise predictions is clear from this, but accuracy can be said to be
achieved by methods that both deliver mean predictions within the expected range of variability
or uncertainty, and respond realistically to changes in their data, and so are useful for predicting
the effects of different designs or policies. This is more likely if the methods embody essential
structural features or at least realistic constraints. It is these properties to which the sheared

approximation owes its success.
However, queue variance and probability distributions have been left out of time-dependent

modelling until now because they are not as easily measured as mean queue size, nor have

analytical descriptions been available.The next Sections of this Chapter aim to address this.
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4.3. CORRECTING THE SHEARED QUEUE APPROXIMATION FOR M/M/1

4.3.1 Extended sheared formula

The shearing approximation including dispersion of arrivals is, from (3.2.13):

(1, —1)x . Cx?

L(t)=L, +(p—X)ut=Ix+ 20-x)  1-x

(4.3.1)

As in equations (3.2.14-15) this can be rewritten combining | and I, into one coefficient:

L(t)=Lo +(p— X)ut = w (4.3.2)

where I"=1+1(1,-1) (4.3.3)

This is convenient because C appears in the sheared solution only in the form (C-1), and I"
substitutes directly for | wherever it appears alone, and is identical to | as long as 1,=1. This
makes one wonder whether I might have some physical significance, but difficulties arise

because | appears to have only two possible values, 0 and 1, at least for single-channel queues.
4.3.2 Relationship between queue size and delay

Shearing the variance appears not to be possible, since the time-dependent graph falls below the
deterministic line (see Newell (1968a) and Figure 1.1.1d in the Introduction) (it would also
require solving a quartic not a quadratic). A stronger argument is that parallel approximations
to mean and variance would not be expected to be mutually consistent, so additional correction
would be required. Instead a way is sought to adjust the mean queue formula so that the
variance equation (2.3.27) is satisfied. This involves both mean queue L and its time-average D,
which is the same as mean total delay per unit time, thus constraining the behaviour of both
functions. Conditions can be imposed initially and at equilibrium where true values are known.
D can be calculated from the integral of L in accordance with (2.3.28), but the sheared queue

function is awkward to integrate. Kimber and Hollis (1979) make use of the approximation:

D, (t)~ L (t/2) (4.3.4)
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This delay is accurate at t—0 and t—oo because the functions are almost linear there, but is
inevitably less accurate at intermediate values where their behaviour is more dynamic. In effect
the P-K formula is now sheared to a deterministic model of delay, where t is replaced by t/2 in
(4.3.1-2), which can be considered exact if x is given a modified interpretation. This may seem
artificial, but the original interpretation of x is also artificial and approximate In Figure 4.3.1,
for p=0.8, it can be seen how the sheared queue function starts close to simulated L but as time
progresses moves closer to simulated D. Note also that neither Ls(t) nor L(t/2) is close to the
true L, at least in this simple case. So to satisfy the variance equation, L is the best estimate of
delay D as t—o0, and while L¢(t) gives the correct mean queue as t—0, Ly(2t) is better as t—»oo.

Since V depends on both L and D, the greatest benefit is likely if they are compatible.

Function value

Ls(t)
| —Ls(t/2) |

01 1 10 100 1000 10000

Time (u=1)

Figure 4.3.1 Markov simulated and sheared queue growth functions

To investigate the asymptotic behaviour of the sheared formula it is convenient to recast the

sheared formula as a function of z=1/t, knowing that the Taylor expansion is convergent:

L(z)=L, + b _ZX)“ _1x +1((_:; X _ L, (x) (4.3.5)

This is equivalent to solving:

ax® +Px+y=0 so that (4.3.6a)
p— 2 —
x(z)= PP~ dax if a0
200
x(z)= —% if =0 and p0 (4.3.6b)

154



where:

az(C—Iﬁ—p
B=(Lo+1"z+(p+1p (4.3.6¢)
1 =—(Loz+pp)

From (4.3.6a) and LHS of (4.3.5), where ' means differentiation with respect to z:

o Z_(C— ')ngof)&i;'*)x— Lo (4.3.72)
U (I +(C—1)x2-x)K' (4.3.7h)

@-x)°

And for the record the second derivatives are:

X,,:_Z(ax’(x+x’)+((C—l)x+ L0+I*)><’) (4.3.88)
20X+

o _2C=K UK UK
1-x x/

(4.3.8b)

With these terms, the Taylor expansion around z=0 can be used to calculate limiting values. In

the limit, with x=p and defining a factor w dividing time, the terms become:

a=—p
B=(p+1)n (4.3.9)
1=—pH

__(Lo+l*)p+(C—|)PZ_'—o:_(Le_LO) S0 (4.3.9b)

o) . 4,y +p2-plC-1)|e,
LS( )t%_l_e (L, LO){ o) th (4.3.10)

Since near z=0, x=p+xz=p+x/t, equation (4.3.9b) is trivially equivalent to the deterministic
gueue formula. To be compatible with the deterministic variance (2.3.27) the delay function
must satisfy the following, regardless of the asymptotic behaviour of terms in L whose time-

dependent components become negligible relative to that of D, which is multiplied by pt:
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W, -W, 1
D(t =L, -——90 - 4.3.11
(t—>o)=L, 20 p) (4.3.11)

Therefore to make the L(.) function asymptotically compatible with simulated D:

_ (1_ P)(We _Wo)
“ AL, L) +p2—p)C 1)) (4312

In the simplest M/M/1 case (Lo=0, V=0, C=1, I'=I=1, etc), this equals 1 for all p. This
demonstrates that the basic sheared queue function is the better approximation to delay as t—
in this particular case, though the sheared delay (4.3.4) is necessarily better near t=0. Generally,
®. can take different values. In the case of M/D/1, with unit-in-service it stays a little above 1,
but without unit-in-service is close to 1/p, so can be moderate or very large. For example, for
p=0.8, Lo=0, o, is around 1.1197 with unit-in-service and 1.1944 without unit-in-service, so no

longer has a simple value.

The second order terms in D give no clue to the first order terms in whatever ought to serve as
L, but only lead to a relationship involving the first order term of V. To investigate the
behaviour of L its integral relationship to D (2.3.28) must be invoked. Since recovering L
involves differentiating D, and the time divisors o at t=0 and t=c are different, a time-variable
time-scaling factor w(t) must be introduced. In summary if, regardless of its parameters, delay

D is defined using the function Ls then (where the subscript d means ‘derived’):

D(t)= % L)L, [%)dy (4.3.13a)
Ly(t)=L, (lj + L (lJ@ (4.3.13b)
() (OO

4.3.3  Basic corrections to delay

At t=0, linearity in the limit means o must start with the value 2. In the simplest case of M/M/1
starting from zero, it falls to 1 at t=co. To investigate its behaviour Markov simulation is used to
generate queue growth profiles to compare with the sheared function for several values of p,
then time is factored to get the sheared function L to match the simulated delay D. In order to

compare the results on the same basis a time transformation is preferred that effectively makes
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the queue function independent of p (link function again), and also (possibly) independent of

queue statistics, assuming that queue development is largely* monotonic:

L+ (o7 —x " = oot (p—x)ut (4.3.14)

L.(p)

It is clear that the transformed equilibrium queue size is 1, so p =0.5 if the (*) function is
assumed to be M/M/1-like. If L,=0, and hence Lo =0, and p is not transformed, a normalised

time variable is defined by:

t = ~ where 4.3.15a
LJO.S—X D ( )

U (4.3.15h)

It is convenient to make the values of t used in the simulations and calculations a logarithmic
sequence in multiples of t... When o is plotted against t", points for different values of p tend to
cluster together, suggesting that a single function could indeed represent them all. While they
do not converge exactly to the value 2 as t' —0, but rather to around 1.8, the half-way value of
o occurs close to the p=0.5 relaxation time () 11.66, suggesting that time or a function of

it be factored by relaxation time. Now three possible functional forms of w(t) are considered:

(t */T re(0.5) )m

©Of) (t)= o5 + (o, —oq )m (4.3.16a)
re(0.5)
op(t)= wo(m—wJ“ froal / o) - (4.3.16b)
®o 1+ (t /Tre(O.S))
(”[3](t)= 0y + (o, — @o)lfétr/—:))m (4.3.16¢)

*A queue growing from an initial pure or narrowly distributed state other than zero may sink somewhat before its
probability distribution relaxes and the mean queue starts to increase.
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In practice, nothing appears to be gained by using power m other than 1, leaving , as the only
calibration parameter. Figure 4.3.2 shows RMS errors and optimum values of o, as a function

of the minimum value allowed to the time function, t™ or t/t,e.

\ 2 ) oy
—Transformed
= time =
g 15 g 12
g —Log B - T
E N . Transformed 2 -
o ’ time E ’

Relaxed time e
4485 o4
e — il
U ‘ o

01 1 10 01 1 10

Minimum value of time function

Figure 4.3.2 Performance of various candidates for the o function

This shows that (4.3.16c) offers the most consistent performance, though this could leave
unresolved the issue of what to do if the queue statistics are not M/M/1 and an appropriate
formula for relaxation time is not available. Figure 4.3.3 plots o against ‘relaxed’ time.
Although RMS error remains low, points diverge at the lowest t values. Note that possible
future use of time scaling based on the sheared function as in (4.3.15a) is not discounted. In fact

this was the kind of approach tried first in the different form of the ratio of Ds to L.
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Figure 4.3.3 o function against ‘relaxed time’ (two points with ®>2 omitted)

The formulae (4.3.16a,b) produce similar graphs but with substantially more divergence of

points at low values of the time function (it is not clear why any divergence occurs).
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Figure 4.3.4 o3 function against absolute time (u=1)

In Figure 4.3.4, if a few rogue points resulting from inaccuracy at the extreme left are ignored,
as well as points for p=1.1 (>1) which must behave differently, the impression is that data
points tend towards a common trend as a function of low values of actual time (bearing in mind
that 1, ranges from 7.4 to 379.7, so t=1 in Figure 4.3.4 corresponds to values well below 1 in
Figure 4.3.3). This trend might indeed eventually converge to a common value, but only at
times so short they are of little practical interest. To get a handle on this it is necessary to
simulate short growth times in fine detail. In doing so each time point is recalculated from a

zero initial state to avoid inaccuracies in D to which w is very sensitive.
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Figure 4.3.5 g function against short actual times
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In Figure 4.3.5, the behaviour of o is seen to be converging smoothly towards 2 as t—0, but
there appears to be no easy way to transform t so as to merge the graphs for different p. Various
functions having been tried, probably the most exotic of which is to multiply t by (1-p%)"*, but

without a structural basis such functions are unlikely to extended to more general cases.

Returning to Figure 4.3.1, it is noticeable how smoothly D moves between L¢(t/2) at small t and
Ls(t) at large t, and that the half-way point occurs near the relaxation time, 89.72 for this case
(p=0.8), suggesting that a function weighting queue functions rather than time, say Q(t), might
be able to predict D. Figure 4.3.6 shows that when Q(t) is defined and applied by equations

(4.3.17), this behaves similarly to o, including divergence at small times:

L(t)-D
Qt)=—3~—— or (4.3.17a)
Ls (t - Ls (t/2)
D=(1-Q(t)L(t)+Qt)(t/2) (4.3.17b)
X : ) P
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Figure 4.3.6 Q function against ‘relaxed time” (compare with Figure 4.3.3)

Absolute times less than 1 unit, representing 1/u, are practically meaningless. Allowing that
estimates become unstable at very small values of t, Figure 4.3.4 suggests that s values
plotted for various p converge around absolute time t=1, representing 1/u since u=1 for these
tests. If instead of t/t, the time function is defined by ‘shifted relaxed time’, equation (4.3.18),
much of the divergence at small values of t disappears, as shown in Figures 4.3.7 and 4.3.8

respectively (note that, as before, data for p>1 are not expected to comply):

t, = (4.3.18)
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Figure 4.3.7 o function v. shifted ‘relaxed time’, model factor = 1.77, RMSE = 0.024
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Figure 4.3.6 Q function v. ‘shifted relaxed time’, model factor = 0.85, RMSE = 0.018

In both cases, the unfactored models overpredict, and consequently the factored models, that
minimise error, are unable to achieve the theoretical result at extremely short times. While this
may not matter in itself, it may matter that a factor must be introduced that could vary
depending on the starting condition. The ‘external’ Q function appears to give cleaner results

than the ‘internal’ o function, as well as being easier to work with as discussed earlier.

Regardless of initial conditions, we~2, and ., is given by (4.3.12). Equation (4.3.17b), together
with the fact that all queue and delay functions start equal to Lo, implies that Qg~1, and using
(4.3.10-11) it can be shown that (4.3.19a) applies in general, and since the same difference of 1

applies at t=0, it may be assumed (if required) that it applies for all t.
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Inspired by the Logistic form of Figure 4.3.6, Q(t) is defined by (4.3.19b), using (4.3.18):

Q, =, -1 (4.3.19)

Qt)=0, +(Q, —Qo)(t tilj (4.3.19b)

4.3.5 Interpolative correction in basic cases

Figure 4.3.7 plots RMS errors for the range of p<1 values tested.
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Figure 4.3.7 RMS errors for D corrected by o and Q methods relative to Markov simulated

Figure 4.3.8 shows that both the methods give very accurate results for delay growing from
zero with p=0.8 (it is practically impossible to separate the graphs). Similar results are got for
p=0.5, 0.7 and 0.9. For p=1.1, where Q is forced to 1 (w=2), the fit is also good as shown by
Figure 4.3.9, with RMS error .3335 relative to D values ranging from 1.25 to 219.
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Figure 4.3.8 Comparison of Markov and w/Q-corrected D equilibrating example
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Figure 4.3.9 Markov and o/Q-modelled D functions for over-saturated growth example

4.3.6 Interpolative correction with general initial queue

Q. appears to be well defined in all cases, but it remains to evaluate Q, in the general case
when the initial queue is non-zero, and this does not appear to be possible using the method
applied to Q.. Examples with p=0.8 and L,=2 have been tested. Figure 4.3.10 shows the
dependence of ® on t in this case®. The final values are as predicted by equation (4.3.12). The
initial value for equilibrated L, is as expected, but in the case of exact Lo values cannot be
calculated for small t using m because D is not monotonic — it falls before it rises, whereas L

can only be monotonic. However, Q does not suffer from this limitation.

1)

incalculable
\s N
2 wﬂ exact
2 ﬂm <~ 1.7
\
m I ————
) 1.4
1 p=0.8
0.1 1 10 t 100 1000 10000

Figure 4.3.10 o function for non-zero initial queue

Figure 4.3.11 (left) shows that Ls(t/2) is a good approximation to D, so while one might ignore
the hump in the o function, Figure 4.3.12 (right) shows that L, cannot match D.

*2 The presence of o rather than Q here is for historical reasons, and the adoption of € in (4.3.19b) really ought to
follow this analysis, but the close relationship between these functions may be kept in mind.
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Figure 4.3.11 Queue and delay development for equilibrated or exact initial queue
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Figure 4.3.12 Markov and w/Q-estimated D functions for equilibrated or exact L,

For the equilibrated initial queue, given that the rising part of the ‘hump’ in ® covers a
relatively short period, if the initial value of ® can be set to the height of the hump, instead of
1.8 or 2, then quite a good fit can be achieved, as Figure 4.3.12 (left) shows, but a satisfactory
fit is also obtained using Q interpolation (4.3.17), and this achieves a much better fit when the

initial queue is exact, Figure 4.3.12 (right).

The o method has the fundamental limitation that it cannot reproduce a dip in D caused by high
initial utilisation (e.g. associated with low initial variance). Only the Q method can do this. The
problem is now to determine . The formula (4.3.17a) implies a ‘limiting value’ of Q as t—0.
This can be estimated by approximating D by Lq+Y%2(p-Uo)ut where uy is set to the value it ought
to have at t=0, depending on the initial state assumed. At the same time, an empirical value of
Qo is found so as to minimise RMS error between Markov simulated values of D and those
estimated by equations (4.3.16¢) and (4.3.17b).

Bearing in mind that RMSE is biased by the logarithmic sequence of time points estimated,
Table 4.3.1 gives for very small t (0.000001 used to avoid divide error) and three types of initial
state (in groups of three cells). The limit Q values can be rather sensitive and the correlation

with the estimated values is weak. Figure 4.3.13 plots the optimum values.
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Table 4.3.1 Experimental/estimated values of QO and calculated values of Q... In each group:

limit Q values (left), ‘optimum’ values (middle), and theoretical values if known (right)*

Lo Lo=0 Lo>0 pure state Lo>0 equilibrated

P if>0 Limit ‘Opt.” True Q, Limit ‘Opt’ True Q, Limit ‘Opt.” True Q.
025 - 1.00 083 1 0
05 1 100 08 1 0
07 1 100 08 1 0 350 23 - 0525 349 122 - 03
08 2 100 08 1 0 336 268 - 0.7 097 130 - 04
09 5 100 083 1 0 246 297 - 0875 100 140 - 05
095 5 1.00 083 1 0 246 174 - 0304 100 129 - 025
095 9 251 251 - 0675 141 141 - 045

35 | | |

3 —|#L0=0
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Figure 4.3.13 Optimal Q, for various p and initial states

There is a practical limitation on the values of p that can be tested in this way. Values near 1

take a long time to simulate, and the Markov simulation program Qsim accepts only exact

integer values of the initial queue (in addition of course to equilibrated initial states), meaning

only p>0.5 can be tested usefully in that mode. However, lower values of p have been tested

with L,=0 to see whether Qg tends to 1, which it appears not to, and p=0.95 has been tested

with two initial queue values, resulting in significant differences. The conclusion is that simple

functions of p to predict Q cannot be set up.

®0riginally it was planned to label initial and asymptotic time correction parameters o. and o, but @, and w,, were
considered more informative, hence leading to Qg and Q... The parameter o was studied in some detail and
methods found for matching highly non-linear simulated initial behaviour from low variance initial states.
However, this approach was considered to be too complicated and empirical to be practical at this stage.
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4.3.7 Interpolative correction for mean queue size

Assuming that Qg can be estimated, this sub-section looks at performance in estimating the
mean queue size. The mean queue function can be calculated by applying (4.2.14) and (4.2.16)
to (4.3.17). The calculation is best done in stages because the full explicit expression is messy
and hence prone to error. From the definition of D (2.3.28), the final stage of the evaluation is:

L(t)=D(t)+ Dt where

N _ (1 / QL/S (t/Z) _ (Qoo _QO)(LS (t)_ Ls (t/z))(’cre _:I/“)
D=Q1-Q)L.(t)+ > ot 2) (4.3.20)

This makes use of the derivative L, of the L function, as given by (4.2.16), and the time
derivative of Q2 from (4.3.16c¢) and (4.3.18):

Yy _ (Qoo _QO)(Tre _]/H)
Q= AT (4.3.21)

Figures 4.3.14 show that for p=0.8 the estimates of L and V based on (4.3.20) and (2.3.27) are
quite accurate, except for some over- or undershoot in V. Similar results have been got for
p=0.7 and 0.9*. Sheared mean queue and ‘naive’ variance approximations are also plotted
(dashed graphs), the latter using Ls(t/2) to represent delay, illustrating the former’s inaccuracy
and the latter’s inability to satisfy the steady-state asymptotic constraint. It is interesting that in
this case the variance appears to ‘lose its memory’ of its initial state more quickly than the
mean queue. It is noticeable, though not surprising, that the accuracy of V is less than that D
and L, even neglecting overshoot. Therefore there may be a case for adjusting 2 to minimise

some practical combination of the errors in the variables.

4.3.8 Calculation of initial Qq for undersaturated growth

Since L appears to be estimated accurately by (4.3.20), differentiation is expected to lead to a
formula for Q. On the face of it, this appears complex, but differentiating (4.3.20) relates the

rate of change of mean queue to Q, and its derivative which is simplified by (4.3.21):

L=2Dt+ Dt (4.3.22)

“There does not appear to be a tendency for errors to escalate as p—1.
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Figure 4.3.14 Fit of Markov and w/Q-estimated L and V for various initial states

Expressions that multiply t and remain finite as t—0 will vanish. Since this is true of L{/(t) and
Y, it is necessary only be sure that L¢/(t) remains finite to eliminate the last term in (4.3.22).
Tedious evaluation of (4.2.19) shows that L¢" is linear in x, and x,’, and that ;" is linear in x,.
The only risk factor lies in the denominator that can become zero when x;=1. As there is no
reason to suppose the expressions ‘explode’ at the last moment when moving towards an exact
initial state, it is assumed that derivatives remain finite. Now from the initial rate of change of
the queue size it follows from equation (4.3.20) that:

(p—Uyu=21limD,_, (4.3.23)
The final term in D declines to zero, leaving only the first two terms, and the derivative

functions (4.2.18) simplify greatly and smoothly when t—0, hence:
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(P-uolu—2LL) . pyu, —2x,

t—0
= (4.3.24)
O L/S (t/thAO B ZL/S (tXtao - XS
while, for completeness, from (4.3.12) and (4.3.19a):
(L p)W, W) 1 (4.3.25)

T 2L - LI +pl2-pXC-1)

In (4.3.24), x, is obtained by inverting the P-K mean function. In the M/M/1 case, Q) can be

expressed simply in terms of Ly:

_(prup )Ly +1)-2L, (4.3.26)
p(Le +1)-Lg

Qo(M/M/l)
This necessarily gives the value 1 for all equilibrated initial states tested that are not ‘singular’
(in the sense of p=0.5, Lo=1), including Lo=0, since in those cases xs=uo. For exact initial states,
Q) can take on a range of values >1, since us=1 necessarily exceeds equilibrium utilisation.
Qsim is able to generate examples with intermediate values of initial variance (using a Normal
distribution), and these also produce Qy>1 for the same reason. In principle, extreme ‘long tail’
distributions could occur where V, exceeds the equilibrium value associated with L, but these

are likely only when a queue is decaying and would be expected to result in Qq<1.

It is interesting, and significant, that Q, involves the initial utilisation and mean queue, but not
initial variance, while €, involves initial and equilibrium mean queue and variance, but not
initial utilisation. Taken together, these gquantities send the strong message that all three
moments - allowing utilisation, or its complement po, the style of ‘moment’ — are necessary to
characterise the state of a queue. Furthermore, these results not only answer the requirement to
make the approximation to queue development consistent with the variance equation, but also
bring in the explicit dependence on the initial probability distribution which has been identified

as lacking in previous methods where only the mean queue was considered.

Because of the amount of work involved, detailed testing of the effect of different types of
initial state has been restricted to p values 0.8, 0.9 and 0.95. As Qsim can generate equilibrated
and exact initial states only for integral values of Lo, and for p<0.7 equilibrium is reached very
rapidly, p=0.8 (L. = 4) is the lowest value of p for which a practically interesting range of cases

can be generated.
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Examples have been generated for the following initial states:

e exact initial queue size - zero variance
e ‘small’ initial variance - where the variance is broadly similar to the mean
¢ ‘medium’ initial variance - where the variance is around half the equilibrated value

e initial variance corresponding to equilibrated initial queue

Figure 4.3.15 shows how Q, (calculated), Q, (hand-optimised) and Q., (calculated) vary against
Lo. There appears to be a common pattern covering all cases, with a tendency for the calculated
value to exceed the optimum, except when equilibrated (right). Figure 4.3.16 plots Q
optimised against calculated, showing deviations from linearity, while Figure 4.3.17 shows

trends against the ratio Vo/Lo, showing differences in trend behaviour. The differences matter

because the results can be sensitive to Q.
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Figure 4.3.15 Q values for various initial states (defined on previous page)
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Figure 4.3.16 Fit of calculated Q, for various initial states

When a single factor in the range 0.81-0.84 replaces individual hand-optimised factors, error is

increased by 2 to 3 times. Detailed regression of the relationship between Q,; and Q¢ does not
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appear worthwhile, but obvious features that could affect accuracy ought to be accounted for.
The difference between the four initial cases lies in the shapes of their queue size probability
distributions, which are Delta, Normal-like, Poisson-like, and geometric respectively.
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Figure 4.3.17 Q, versus variance ratio for various initial states

The geometric distribution differs fundamentally from the other probability distributions in that
it has mode=0, while all the others have mode>0. For this reason, one way to separate cases
might be to estimate parameters of the Gamma distribution (2.2.6-7), even if it is not the most
appropriate form. Alternatively, equilibriated or near-equilibriated cases can be identified by
their relatively large initial variance. Various functions of Lo, Vo and p have been tested to
separate cases and to linearise the dependence of the Q-ratio, and the following appear to work,
as evidenced by Figure 4.3.18:

2 Qopt 2 T

Vo>Lo®: =1+—p (at or near equilibrium)

Qcal 3
2 Qopt 3 * .

0<Vo<Lo": =—+=p (typical cases) (4.3.27)
Qcal 4
Q *

Vo=0: Qopt = w (exact initial state)

where a normalised demand intensity parameter is defined by:

. 2Ly/L, 2L,
L /L +1 Ly +L,

(4.3.28)
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Figure 4.3.18 Linearised trend model for Q adjustment factor when p<1

The impact of the corrections can be judged from Figure 4.3.19, which shows the fit of variance
values using optimised, calculated and adjusted Qg respectively. While the corrections cannot
achieve the quality of fit of individually optimised Q, values (left), the corrected parameters
(right) are clearly better than the uncorrected ones (middle). While it is disappointing that the
theoretical formulae alone do not achieve accuracy, and the corrections are not perfect, this

could not reasonably be expected given the complexity of queue processes.
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Figure 4.3.19 Effect of (O adjustment on variance estimates for p=0.9 cases

With origin-time shift, the Q-correction is still possible using the same adjustment formulae,

but errors in tests with p=0.9 are somewhat greater, as shown in Table 4.3.2.

Table 4.3.2 RMS errors with Q-corrected models, p=0.9

Method Queue L Delay D Variance V
Sheared with L, 0.064 0.049 0.266
Sheared with t, 0.096 0.087 0.409
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4.3.9 Definition of queue growth methods and labelling of combinations

In later Sections alternative methods of calculating queue development, and specifically queue
growth, are coded as shown in the following Table 4.3.3:

Table 4.3.3 Definition of approximation methods for queue growth
Symbol Method

S Basic sheared queue and delay

t Origin-shifted sheared queue

d Sheared delay, derived sheared queue

z Origin-shifted derived sheared queue

c Corrected derived sheared

k Corrected origin-shifted derived sheared

These may be combined in various ways to calculate undersaturated growth, oversaturated
growth, and decay, plus the two transitions between these regimes. So a method combination is
labeled ‘abcde’ where ‘- can replace a transitional method (b or d) to represent defaulting to
the method in an adjacent main regime. Section 4.5 later illustrates and discusses these regimes

further, once methods for oversaturated growth and decay have been determined.
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4.4, OVERSATURATED GROWTH REGIME
4.4.1 Behaviour relative to a deterministic asymptote

The asymptotic behaviour of the queue when p>1 is different from p<1 because utilisation can
never exceed 1. By Taylor expansion of the inverse-time sheared queue function, as in the
previous Section, the asymptotic value of x is found to be:

*

_q, V+(C—1)min(p)
70 (L—put

X| (4.4.1)

Like (4.3.9b), this is trivially consistent with the deterministic queue formula except for the
contribution of the RH term, so that:

Ly|, ,=Lo +(p—Dut - ) (4.4.2)

The min() term has been retained, but since p>1 its value is simply 1 and the statistical
expression is evaluated using the definition of 1" and the relationship between I, and c, in

Section 3.4. This gives the result in a revealing form:

=L+ (p-Dut+——— where C =1 (c2 +c?) (4.4.3)

- (b-1)

Thus the queue (approximation) never ‘forgets’ its initial value nor its deviation from linearity
during initial growth (which the above equations ascribe to randomness but could also be
influenced by the initial utilisation). As the time scale is zoomed out the queue graph looks
increasingly linear, so Ly(t/2) is expected to be a good approximation to the ‘delay’ associated
with mean queue L, possibly with a modified third term. Figure 4.4.1 is an example of
equations (4.4.3) in action. This shows the devation from the deterministic asymptotes of queue
and delay calculated by Markov simulation (‘sL’, ‘sD”) and sheared method (‘sLs’, ‘sLs/’,
where ¢/’ indicates that t is replaced by t/2). The calculated functions tend to a value not far
from the theoretical final value. However, as all the functions start and finish at the same
values, any correction to the difference from the asymptote function must be non-monotonic,

meaning that for example estimation methods based on an exponential function cannot be used.
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Figure 4.4.1 Difference from deterministic asymptote for various estimation methods

4.4.2 Q-correction for oversaturated growth

A similar empirical analysis to that of the previous Section has been done for 21 oversaturated
growth cases, with p in the range to 1.0151-1.3, L, ranging from 0 to 100 (mostly at the lower
end), and variances ranging from zero to equilibrated. The results are shown in Figure 4.4.2,

and equations (4.4.4).
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Figure 4.4.2 Linearised trend estimate of Q ratio for p>1

Q *
Vo>Lo®: o gL,
cal 3
Q *
VosLeZ S _ 7 +12p (4.4.4)

cal
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The impact of the correction is evident in Figure 4.4.3. This correction applies to the basic
sheared approximation calculated for an extended range of time points from a common origin,

not to the derived version, nor to a time-sliced calculation.

Optimum €, 30000 Unadjusted calculated Q, Adjusted calculated Q

«L0=0 +L0=0 +L0=0
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Figure 4.4.3 Effect of Oy on variance estimates for p>1 growth test cases

This correction does not work well for the 34 peak test cases. They differ from the 21 pure

growth cases in several respects:

o Initial states generated by a complex growth process
e p values change with time

e Transitions between p<1 and p>1

e Relatively short growth times

e Only 2 cases where Vo>L¢’

The 34 peak cases contain a total of 163 time slices where p>1, with p ranging from 1.0061 to
1.1458. It is found empirically that in each peak case a certain set of optimal factors applied to
Qo achieves minimum error (measured for V which is the most sensitive result). These values
are mostly near to but not exactly the same as an average values for each peak case. With Q=1
the effect of the time-dependence (4.3.16¢) is small. There is no apparent relationship between
the empirical correction factors and Vo/Lo’. Regressing scatter relationships between the factors
and the normalised variable p~ defined by equation (4.3.27), as shown in Figure 4.4.4, yields
the fairly flat formulae (4.4.5) (where regression coefficients have been rounded). However, the
results seem unduly sensitive to the values of the correction factors, and better results appear to

come from simply using the origin-shifted sheared ‘t> method.

. . Qopt *
p< 1 in previous t/s: =0.93+0.1p
Qcal
. . . Qopt *
p>1 in previous t/s: Q. 0.82+0.2p (4.4.5)

cal
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Figure 4.4.4 Correction factors to €, for p>1 time slices in peak cases

4.4.3 Transition through saturation and long-term growth

The behaviour of queues is complex, so any simplified or partly empirical approximation must
be subject to a limit of performance. At some point it is necessary to stop experimenting and
settle on a method that is sufficiently good for practical purposes. Even so, experiments with
peak cases suggest that performance can be improved by replacing method ‘t” by ‘k’ in the
early oversaturated time-slices, reducing error in the variance. The effect decreases as more
time slices are converted, and working from the late end of the oversaturated period is much
less effective. To investigate the consistency of this effect a case of pure oversaturated growth
has also been tested. In Figure 4.4.5 a queue is growing from an initial equilibrated size of 20
under heavy oversaturation at p=1.3. Although plotted on a linear time scale it is calculated in

logarithmic time steps so the time slices keep getting longer.
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Figure 4.4.5 Oversaturated growth at p=1.3, u=1 from equilibrated initial queue size 20

using two different calculation methods
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At first sight it appears that only method ‘t” produces an accurate result, and method ‘k’ fails to
an unacceptable degree (other methods are worse). However, the methods start to diverge only
after a time, in this case equivalent to throughput of around 100 (u=1). That this is not just an
appearance can be confirmed by plotting the left end of the graph on an extended time scale.

This confirms that the ‘k” method can be beneficial in the oversaturated transition regime.

If this is a consequence of some ‘relaxation’ process then one would expect it to be related to
throughput, not time slices or time. Figure 4.4.6 plots the benefit, in terms of reduction in
variance error, of using method ‘k’ in just the first oversaturated time slice in all the peak cases
against the throughput in the time slice (the pattern is similar when plotted against the total

throughput in oversaturation).
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Figure 4.4.6 Benefit of using method ‘k’ in the first oversaturated time slice only

There is no benefit for M/D/1 cases, but there does appear to be a benefit for M/M/1 cases,
although it hits a ‘cliff’” at throughput similar to the above. The optimum value to minimise
average variance error is 130, but the origin of this number is obscure. In the straight growth
case, Figure 4.4.5, error becomes apparent only when method ‘k’ is applied for a total
throughput greater than somewhere between 82 and 158, which is consistent with the above
value. It is concluded that if over-saturated time slices are estimated by method ‘k’ where the
cumulative throughput is less than 130 units, average error is reduced and performance in the

lighter peaks visibly improved.

In some cases error can be reduced by applying method ‘k’ in the last undersaturated time slice
before the oversaturated growth regime. In all such cases the value of p is large (0.9463-
0.9925), but in some other cases where p is in this range accuracy is reduced, so it is unclear

what objective criterion could be used to select the best method.
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4.5. EXPONENTIAL DECAY METHOD BASED ON GENERAL PROPERTIES

45.1 Motivation and approach

The sheared queue method performs least well in representing the decay of queues, especially
large queues, as pointed out by Kimber and Hollis (1979) who substituted a combination of a
linear approximation and a mirror-image of the growth formula. This might be because of
greater departure of the queue size probability distribution from that implied by the quasi-static
model. A possible reason for a qualitative difference is that decay is dominated by the queue
itself rather than a balance between input and output, making it more uni-directional. A queue
that can substantially exceed the equilibrium size corresponding to the traffic intensity, can be
viewed as applying a proportional ‘pressure’ driving its own discharge. If previous growth has
been undersaturated, it does not follow that the probability distribution will be equilibrium-like,
because to produce a queue of any substantial size the traffic intensity must be high, more than
0.9 say, so the growth time could be much less than the stochastic relaxation time. A Normal-
like distribution is more likely in practice, so that variance and utilisation have a smaller role

than drift of the mean.

Since rate of discharge is limited by capacity, the decay rate of a large queue well above the
equilibrium value assocated with the current demand will be virtually constant, agreeing with
the linear regime of the Kimber and Hollis (1979) method. However, the rate must eventually
fall off as the queue declines. In principle, the sheared formula could then be applied ‘as is’, but
Kimber and Hollis found this to be inaccurate. They do not go deeply into their reasons for
using an inverted form of the sheared function, although this appeare to have convenient
properties, but point out that the relaxation of a queue is not simple (an unsurprising

consequence of an extended probability distribution).

This on the face of it argues against using the next simplest function to linear, an exponential
depending on the difference between the current and equilibrium queue sizes which would
naturally converge to equilibrium. However, as with the growth approximations described
earlier, any function describing queue decay must satisfy at least initial and asymptotic
constraints. These will not generally be satisfied by the same function, so a pure exponential
function, with a single fixed time constant, could not satisfy the extreme constraints in any case.
Arguably, therefore, the next simplest function to try is €', with the exponential providing
global relaxation behaviour over time, and f(t) embodying additional time-dependence to match

the extremal constraints.
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45.2 Structural properties of queue development — initial state

The sheared approximation deals with finite time intervals, and real queues involve discrete
events, but queue behaviour can analysed theoretically as a continuous or piecewise continuous
process. The rate of change of a queue is given by differentiating (2.3.3), giving (4.5.1).
Utilisation is necessarily exogenous since it depends on the instantaneous queue size

probability distribution which in turn depends on the past history of queue development.

dL

o (p—ul (4.5.1)

If the initial state of the queue is in equilibrium then the initial mean utilisation will satisfy the
RHS of the P-K mean queue formula (4.2.5) at t=0 (since x=u there) and can be calculated from
the initial queue by inverting that equation. This is the assumption made by Kimber and Hollis
(1979) for large decaying queues, though they assume this rate remains constant until the queue
has fallen to 2L.. If the initial state of the queue is an exact size >0 (a ‘pure state’ or ‘shock’),
then the initial utilisation is exactly 1. If the initial queue is large then utilisation will be very
close to 1. A large queue is therefore initially in ‘free fall’ and stochastic relaxation behaviour
as described by equation (2.3.38) or (2.3.39) has not properly begun. It should be possible to
describe such as queue by drift with some diffusion (Newell 1982) as long as po remains
sufficiently small so the ‘zero barrier’ plays no part. The decay rate must eventually decline as
the utilisation moves away from 1. The next simplest evolution is exponential, which actually
applies to the very simple M/M/1/1 process (see earlier in Section 2.3). If, rather than assuming
constant drift, the queue function is assumed to evolve exponentially, at least over the time

period of interest, the following can satisfy both initial and equilibrium constraints:
5
Lyt)=L +(L,—L.)e ™ (4.5.2)

Differentiating (4.5.2) and using (4.5.1) the initial value of ‘characteristic time’ t in (4.5.2) that

satisfies the initial condition is:

o=t (4.5.3)
(P—UO)M

Equation (4.5.3) can be interpreted as the time scale of initial nearly linear decay. Equation
(4.5.2) is readily integrated using the definition of delay D (2.3.28), provided t can be assumed

to be so ‘slowly varying’ that its variation may be ignored:
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Dy (t)~ L, +%(L0 -, )(1—e‘%j =L, +%(|_0 ~L) (4.5.4)

This needs slightly careful handling because as it stands the second term becomes singular at
t=0, but by expanding the exponential for small t it is confirmed to have the initial value L, as
well as asymptotic value L. While it is not obvious that equation (4.5.4) is approximately equal
to the average of L, and L in the neighbourhood of t=0, or is generally close to L(t/2), both
these can be shown to be true.

If equation (4.5.4) is taken at face value as the definition of D, as there is no a priori reason to
assume that (4.5.2) will turn out to be the most accurate formula, an alternative queue can be
obtained as the derivative, equation (4.5.5), which differs from (4.5.2) by the presence of the
term involving the derivative of t. Because this vanishes at t=0, the initial value of t given by

equation (4.5.3) remains valid.
Lus)t)=Le +(Lo - L) +(L, L, )(1— et )t (4.5.5)

It is also possible to start by defining D using a formula analogous to (4.5.2), with L expressed
in terms of its derivative like the ‘derived queue’ in Section 4.2, with or without a term

involving the derivative of t. Then (4.5.2,4) are replaced by (4.5.6,7) repectively:

t 2 _t
Lip(t)=L, +(1—2LJ(L0 -~ Le)e%r +2t?(LO -L, )(1—e Af)t (4.5.6)

T

D(z)(t): L, +(Ly — L, )e%r (4.5.7)

Finally, if the complexity of (4.5.6) is considered too much, the option exists to adopt L and
D together, and work around any resulting inconsistency. Having said that, it is accepted that
achieving maximum accuracy of and consistency between L and D and, by implication

variance, without excessive complexity, is an issue that may benefit from further research.
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4.5.3 Structural properties of queue development — asymptotic state

Asymptotically, the queue’s evolution must satisfy the variance equation (2.3.27). Substituting
(4.5.4) into (2.3.29) and setting t=co yields the asymptotic characteristic time:

W, —W,
T, = ¢ (4.5.8)
: 2(1_p)(|—e - I-0 )“

4.5.4 Unsuitability of exponential method for growth

Although derived with decaying queues in mind it is natural to ask whether the whole range of
growth and decay could be covered by an exponential method. The method is essentially
deterministic, with the type of queuing process entering only through steady-state invariants,
avoiding the conceptual issues of the quasi-static assumption in shearing. If Lus) or Ly is
adopted then, since Lo<L., the Tterm is negative, which could result in undershoot. However,
this does not affect L so its derivative, and hence u, should still behave sensibly. In practice
this is not pursued for three reasons: (1) the demonstrated performance of the corrected sheared
approximation; (2) the qualitative difference between queue growth and decay; (3)

experiemental results showing that the exponential method performs poorly for growth.

4.5.5 Relaxation behaviour of the characteristic time parameter

The next task is to find a time-dependent function t(t) to cover the whole range of t, that
satisfies the extremal conditions, preserves structural integrity, and is good enough for
practical purposes. The function t(t) should interpolate t; and t, smoothly and ideally

monotonically. What is the evidence from actual queues?

Initially, queue decay evolution has been calculated for four values of p: 0.1, 0.5, 0.8, 0.9,

with u=1, and one of two initial states:
e Equilibrated queue generated by Markov simulation with p=0.95, leading to an actual
mean queue size of 18.982 corresponding to slightly reduced p=0.949955, and

corresponding variance.

e Exact initial queue size of 19 with zero variance.
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Figure 4.5.1 shows that the queues evolve in a qualitatively similar way against a time scale

based on the stochastic relaxation time for each p value (equation 2.3.38).
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Figure 4.5.1 Evolution of queue size for different traffic intensities and initial states

Rates of decay depend on whether the initial queue is exact (steeper) or equilibrated (gentler).

Relaxation and characteristic times are given in Table 4.5.1. The times at which the graphs

cease to be practically distinguishable are not obviously related to stochastic relaxation times

Tre. HOWever, it appears from the relationships of t; to the corresponding 1, that if time were

instead scaled according to 1; the horizontal axes would all be around the same length (~10),

supporting the view that 7; is the critical time constant in the initial relaxation process.

Table 4.5.1 Calculated relaxation and characteristic times (Lo~ 19, u=1)

Process Equilibrated initial queue Exact initial queue
p Tre Ti Ta Ti Ta
0.9 379.74 199.82 289.82 100.00 100.00
0.8 86.72 99.91 119.91 75.00 56.67
0.5 11.66 39.96 41.96 36.00 20.89
0.1 2.14 22.20 22.33 20.99 11.17

On inverting (4.5.2), equation (4.5.4) and the variance formula allow alternative t values to

be back-calculated or reconstituted from simulated queue values:
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It is necessarily the case that t =t p whatever the method of calculation, but it is not

necessary that T p=1 | except in the case of the exponential queue model, since a different

W —W,

- 20-p)L- Lo

(4.5.9)

(4.5.10)

(4.5.11)

queue function would in general lead to a different detailed relationship between L and D.

Equation (4.5.9) can run into difficulty if the benchmark fails to converge exactly to the
theoretical equilibrium queue, so in preference to the theoretical L, value the benchmark mean
queue at the largest t value tested (=100t,) is used. This in turn can result in the logarithm

being undefined, so limiting the range of values of t for which t  is estimated.

Figure 4.5.2 shows that when only valid ranges are plotted, the values of t | are only broadly
consistent with the theoretical values given in Table 4.5.1. For the equilibriated cases,

dependence on time is quite weak, and two of the cases with exact initial queue appear not to

be monotonic. No firm conclusion can be drawn from these rather variable results.

Figure 4.5.2
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45.6 A possible refinement to allow for non-monotonicity

Abate and Whitt (1987) point out that a queue starting from a range of initial values, including
some greater than its equilibrium value, can fall below it before climbing up again, so the
function of time is non-monotonic, something the exponential approximation cannot
accommodate. They suggest that a queue’s moments can be modelled using two components as
in equation (4.5.12) both of which are monotonic, so if the second term in particular can be
approximated, this problem might be avoided.

L(L,,t)=L(0,t)+ (L(L,,t)- L(O,1)) (4.5.12)

However, the effect is most pronounced when a queue starts from an initial pure state, i.e. is
associated with low initial variance. Although this is one of the tests above, it is relatively
uncommon in traffic modelling and especially unlikely in the case of a decaying queue, that
thanks to randomness during growth is likely to begin from an extended probability

distribution. For this reason such refinement is left for potential future research.
4.5.7 Testing various exponential interpolations
Continuing the empirical approach for the sake of simplicity, several alternative interpolation

functions based on the characteristic times (4.5.3, 4.5.8) and the generic exponential queue

approximation (4.5.2) have been tested:

Lt)=L, +(L, - L )e /™ (4.5.13)
L(t)="L, +(Ly - Le)e_%a (4.5.14)
L(t)=L, +(L - |_a)e‘%i (4.5.15)
L,(t)="L, +(L - La)e’%a (4.5.16)
Lolt) = L+ (L - L @5.17)
L, (t)=L, +(L, - Le)e_%" (4.5.18)

The additional compound time parameters are defined by equations (4.5.19-20), and (4.5.15)
can be rewritten in the form of (4.5.2) if t is replaced by t, as defined by (4.5.21):

T (t) =1, + (1 —ra)e_%i (4.5.19)
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7, (t) =1, + (1 —ra)e’%a (4.5.20)
e/ —g i +e_%a(1—e_%‘) (4.5.21)

As Figure 4.5.3 shows for the J2P4 peak case (defined earlier in Section 2.5), several
interpolations produce wild excursions, including negative values in Ts 4-7*° where p>1.
Figure 4.5.4 shows that greater excursions occur in variance estimates (calculated from
2.3.27). L, is stable only in the decay regime. Ly, calculated using a ‘mixed characteristic
time’ 1, appears to produce a smooth stable graph and a close fit to the true mean queue and
variance profiles, although its value in Ts 3 is low, making it second best to L, in the decay
regime. In the peak regime Ts 4-7, when p>1, L, achieves the lowest RMS error, while other
interpolations are unstable. Both of these methods have in common that they use 7; to

interpolate the characteristic times.
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Figure 4.5.3 J2P4 peak case: queue size profiles estimated by various models

2000

1000

Variance at end of Ts

-1000

-2000
Time slice

Figure 4.5.4 J2P4 peak case: variance size profiles estimated by various models

** Time slice 0 is used to set up the initial equilibrium state.
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Table 4.5.2 Best interpolation methods for J2P4 — second best in brackets where error <2x

Best model Growth Peak Decay Growth+Decay
in regime Ts 1-3, p<1 Ts4-7, p>1 Ts 8-12, p<1 Ts: p<1

L X m n(x) X

D X m m(x) X

\% X m m(x) X

To get a sense of the error involved in basing this on the simple L, approach (4.5.2), the

derivative of t, can be calculated from the definition (4.5.17):

, =-a_-m (4.5.22)

Assuming 1, to be monotonic, this could make a significant contribution to (4.5.5) through the
t term at middle values if t, but at least it is simple to evaluate. However, as Figure 4.5.5 (next
page) shows® (in this peak case at least), it leads to serious distortion of the queue profile
‘L(alt)’, compared to the simple method labelled ‘L(model)’, suggesting that (4.5.4) might not
be a good approximation to delay if © has the degree of variability indicated by (4.5.22) and the

7 term in (4.5.5) leads to unacceptable error.

4.5.8 Practical application of simple exponential interpolations of characteristic times

The quandary can be avoided by adopting L) with D¢yy. Figures 4.5.3-4 show that, surprisingly,
the method appears to be accurate in Ts 4-7, even though it is not expected to work when p>1.
Furthermore t,,, can go negative, though this may be acceptable where relaxation to equilibrium
is not involved, and it may also help that the time slices are relatively short (9 minutes)

compared to the magnitude of 1, (at least 22 minutes).

Two particular kinds of issue can arise in practical application to the decay regime:

o T;>T,, Where intuitively 1; <t, is expected as 1, relates to an asymptotic condition

e Oneorbothof t,, 1i<0

While t; <t, is true for lighter peaks like J1P1, it turns out that in heavy peak cases like J3P9,

Ti>14 IS more usual. In intermediate cases like J2P4, t.~ti.

*To achieve the close fit at around 54 minutes it is necessary to take the initial state values from the Markov
simulation up to that point, rather than from iterative calculations in which the result in each time-slice provides
the input for the next. After 54 minutes the model using the Markov initial states makes little difference. As
predicted at the outset, the exponential model performs poorly in the early growth part of the peak.
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Figure 4.5.5 Effect on queue of initial states and (alt) added term in equation (4.5.5)

So there is a pattern that appears rational. Initially, a time parameter calculated as the average
of t; and min(t;,t,) was tried on the basis that it ought to be closer to t; than to t,. However, this
was found unsatisfactory, and would actually be illogical in cases where neither t; nor t, is
consistently greater. On the principle that a working parameter should represent whichever

relaxation process ‘gets there first’, (4.5.18) is modified to:

Negative values of t,, i do not seem a problem for estimation of L, since the mean could

increase as well as decrease, and D from the integral of L is meaningful in either case.

(‘alt’ graphs are different from the other two similar graphs)

T (t): T, + (Ti _ Ta)e_%win(ri,ra)
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However, stability of V calculated from these quantities is not guaranteed, and this is more of
an issue where Lo~L, results in t, becoming highly sensitive. To avoid this problem, a simple
exponential interpolation of V using the relaxation time .. has been attempted when either of
Ta, Ti IS Negative, but this also proved unsatisfactory. However, cases with this problem are rare.

Consequently certain basic measures may be adopted to protect the results:

e [f1,<0, set Ty =7
o Absolute value of t/min(t;,t,) is limited to avoid overflow in the exponential function

oV is subject to a lower limit of min(Vo,Ve)
45.9 Comparative performance of decay estimates for run-out to equilibrium
Several methods of estimating queue delay have been compared against Markov simulation
using the tails of two peak cases, starting in each case from two different initial states drawn
from the full Markov simulations, and extended to run out to equilibrium at constant traffic

intensity, as defined in Table 4.5.3.

Table 4.5.3 Definition of decay run-out cases

Case name  Starting point Run-outp  Duration  Time-slices
J3P9x1 Markov values at start of decay >0.8084 140 mins 10 mins
J3P9x2 Markov values at start of run-out 0.8084 120 mins 10 mins

J4P10x1 Markov values at start of run-out 0.9206 166.5 mins 4.5 mins

JAP10x2 Markov values at start of run-out 0.7480 157.5 mins 4.5mins

The average RMS errors of the four tests are given in Table 4.5.4, using the methods defined in

Table 4.3.3 plus ‘m’ exponential.

Table 4.5.4 Average errors in decay run-out tests

Method ErrorinL  ErrorinD  ErrorinV
s:. Basic sheared queue and delay 3.75 4.16 1052.63

t: Origin-shifted sheared queue, Lt = 1.5 L, 7.30 6.78 1604.81

t: Origin-shifted sheared queue, Lt =2 L, 6.17 5.82 1464.95

t: Origin-shifted sheared queue, Lt = 2.5 L, 5.25 5.11 1234.29

d: Sheared delay, derived sheared queue 4.90 4.62 1172.55

z: Origin-shifted derived sheared queue 23.06 25.93 7701.67

c: (Growth) Corrected derived sheared 123.80 113.18 76685.67
k: Corrected origin-shifted derived sheared 122.03 111.85 77830.03
m: Mixed exponential 0.91 0.78 132.63
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The results for methods ‘c’ and ‘k’ are so poor that these methods are clearly inappropriate

for decay — they are designed to correct growth. Of the pre-existing methods, surprisingly the

original sheared method ‘s’ gives the smallest errors, but those of the exponential method ‘m’

are an order of magnitude smaller. This can be ascribed to its inherent conformance to the

correct asymptotes, as well as possibly being structurally superior. Figure 4.5.6 shows

differences in performance of the methods on three run out tests, compared to Markov

simulated run out profiles, showing method ‘s’ is unsuitable for decay of a heavy queue (top

right). Figure 4.5.7 plots mean, delay and variance of four run-out tests (the additional second

case being a variation of the first with later resetting to a Markov initial state).
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Figure 4.5.7 Results of the four run-out tests using ‘ckt-m’ combination
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The ‘kinks’ in the first time slice of the ‘m’ examples above arise because of the need to force
the input of the last oversaturated time slice to the Markov value. This is not required in
subsequent tests, where the optimum method combination is used, together with the ‘Markov
restarts’ given in Table 4.5.3. Estimated and simulated means and delays are almost
indistinguishable, though the variances show that they are not perfect. This gives confidence
that the exponential method is at least usable for the entire relaxation to equilibrium.

4.5.10 Accuracy of the time parameters and sources of uncertainty

On substituting the Markov simulated values for all M/M/1 peaks into equations (4.5.9-11)
for the three alternative back-calculated parameters, Figure 4.5.8 shows values are similar.

+Tau_D -

= Tau_V *
1000 = *

Alternative Tau value
)

1 10 100 1000

Tau_L

Figure 4.5.8 Similarity of alternative t values back-calculated from Markov simulations

Figure 4.5.9 shows a fair match (on logarithmic axes) between estimated time parameters and

the average of the nearly identical ‘benchmark’ values, with some scatter.
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Figure 4.5.9 Estimated t parameters versus t back-calculated from Markov simulations
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In Figure 4.5.10, supplementary data have been obtained from extended decays to equilibrium
at constant p values. On expanded linear scales, most scatter is in t, since most of the
evaluation times are quite short compared with the characteristic times, confirming that <(t)
should initially be close to 1;. The equilibrating decays involve longer times so this should not
apply to them. The different behaviour of the back-calculated t values is emphasised for the
equilibrating decays, also revealing limitations of the Markov simulation. Red lines mark where
the Markov simulated mean queue ceases to converge, without actually reaching the precise
equilibrium value. This may be a result of insufficient precision or too large a step size in the
calculation, but in any case results are not meaningful beyond that point. As expected, t_v

converges to t,, but there appears to be no general tendency for t_, to converge to a limit.
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Figure 4.5.10 Behaviour of back-calculated t for three equilibrating queues

Lower graphs are t_ which unlike t_\ does not appear to converge to a limit

The most obvious error in the estimation of peaks occurs in the variance during the decay of
two heavy peaks, J3P6 and J3P9, where the rate of decay is particularly high, as shown in
Figure 4.5.11. Error in the mean queue or delay is hardly evident, although it is sufficient to

produce some error in variance through the magnifying effect of the variance formula.
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Figure 4.5.11 Predicted and Markov profiles for heavy peaks (p..=0.8086)

The maximum absolute error in variance in any one time slice in these cases represents

underestimation by 24% (Markov prediction 2604, approximation estimate 1989). Greater
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percentage underestimation occurs but at much smaller absolute values, so is of less practical
importance. In terms of standard deviation, the maximum absolute error occurs at a later time
and amounts to underestimation by 47%. While these are substantial errors, they occur in a
dynamic context where the queue and its variance are falling rapidly, as evident in Figure
4.5.11. Another way of looking at them is that the approximation predicts the end of a 2%
hour peak 10 minutes early, which seems less serious. It is natural to ask how the average t,
in the exponential decay formulae would have to be adjusted to give the correct variance.
Figure 4.5.12, drawn from the extended decay of J3P9, shows no simple pattern, and even

with an adjustment results could still be very sensitive to small variations in parameters.
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0.85
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Figure 4.5.12 Factor to apply to 1., to correct variance during decay in one peak case

Rapidly changing queue size and variance suggests that the queue size distribution is volatile.
Moving ahead briefly to the material to be covered later in Chapter 5, Figure 4.5.13 (lower,
overleaf) shows that the initial probability distribution for the final run-out period in J3P9 (Ts
12 running from t=110 to t=120) is complex, reminiscent of a water wave crashing into a sea
wall, having developed quite rapidly over the previous 20 minutes from a near-Normal shape
(top left) through a mixture of exponential- and Normal-like functions (top right) - note also
the difference in the vertical (probability) scales as po rises rapidly though still to nowhere

near its equilibrium value.

Dynamic probability distributions such as this make it difficult to achieve accurate
predictions with simple approximations, so a more detailed approach may be needed where
highest accuracy is required. However, it is not clear that this is a practical necessity given
the uncertainties in data that are likely to be involved, and that a probability distribution is not
a prediction. For example, it seems unlikely that the precise queue size probabilities could be
validated. Instead, the best practical prediction would be that in a certain time period
following the peak, queue lengths can be very volatile, with short queues on some days and

long ones on other days, for no obvious reason. So enhancement is left for future research.
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Figure 4.5.13 Probability distributions at start of J3P9 decay and 10 and 20 minutes later
4.5.11 Estimating error in time parameters and potential for correction

Using Markov simulated data as the input isolates consecutive time slices, so constituting a
limited and artificial test. If the input for each time slice is taken more realistically from the
output of the previous one, the value of t can still be forced to produce the correct final value
of one of the moments, by substituting one of the back-calculation formulae (4.5.9-11). At the
same time, free values of 1, t, and t, from (4.5.22) can be calculated for comparison.
Comparing z, with the ‘optimum’ t should then give an idea of the practical magnitude of
error and the conditions under which it occurs. Figure 4.5.14 shows that where t | is taken as

optimum then most of the calculated t,, are similar but a few are greatly overestimated.
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In Figure 4.5.15, where back-calculated t \ is taken as optimum, a few points are similarly

scattered though not only overestimated (the scattered points are not even predominantly
from the heavy cases selected above).
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In many cases the optimum t lies somewhat outside the range of [t;, T2 ] Suggesting that the
monotonic form of (4.5.22) is an oversimplification, as accepted earlier. The lower graphs

show that in most cases, where ‘~’ means ‘similar to’:

(where ‘X’ is L or V) (4.5.23)

The problem with applying this factor to (4.5.22) is that it gives the wrong extreme values.
The cases where t, is most poorly predicted mostly occur where 7; is much less than t,, and t
is significantly greater than t;, so the exponential term in (4.5.22) has little influence, forcing
Tm Close to t,. However, applying (4.5.23) uncritically can result in serious errors elsewhere,

and there seems no reliable way to identify the cases that need correction.

4.5.12 Reality check on queue decay rate

In principle a queue can grow at any rate if there is sufficient demand, but it cannot decay at a
greater rate than capacity. This maximum rate is what Kimber and Hollis (1979) assume for
large queues in their modified sheared method. The deterministic queue formula applies in
this case and places a lower limit on the queue size at any subsequent time. The exponential
decay method ‘m’ ought not to predict a queue smaller than this at the end of the time period,
but this could occur where the initial queue is large and the arrival rate is very low. While the
mean queue could be corrected by adjusting T, in practice this cannot be relied upon to
ensure the consistency of the delay and variance, so in case of the exponential method ‘m’
lead to an anomalous result in one time slice, the time-origin-shifted method ‘t* is adopted.
Somewhat unsatisfactory as this is, its resolution may depend on further research to improve
the method of estimating queue decay. None of the peak cases produces this anomaly, but it

can occur briefly in the more extreme random profile cases described next.

4.5.13 Random profile tests

To challenge the method further, three random profiles each with several oversaturated peaks
have been tested. In the profiles, shown in Figure 4.5.16, p, n and time-slice lengths have
been generated randomly within specified ranges: traffic intensity 0.5<p<1.5; capacity
20<u<24 (veh/min), time slices 8-15 minutes. Traffic intensity is the critical factor, and this

is allowed to exceed considerably the highest value in the peak cases.
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All three ‘random’ cases are modelled using the ‘ckt-m’ method combination (for explanation
see section 4.3.9 earlier) and M/M/1 process. These cases have been embedded and run in the
Demonstrator software described later in Chapter 7. In all three there are several points where
the demand intensity drops abruptly to low values, something that does not occur in the peak
cases, resulting in certain ‘anomalies’ which fail the ‘reality check’. For example in case 1
these occur at around 50 and 160 minutes, while case 3 experiences many anomalies
including a cluster in the range 210-300 minutes. With the substitution of methods applied in
the time slices affected, the results are as shown in Figure 4.5.17. There is a tendency in all
cases for the queue to grow on average over the test period, an expected consequence of the

choice of a range of p centred on 1.

Any similarity between demand and mean queue profiles disappears as one moves from Case
1 to Case 3, the last being severely overloaded. The match of queue and delay is close in all
cases. Variance is reasonably well estimated in the first two cases, but distinctly
underestimated in the third. Having said that, the maximum underestimation of standard
deviation is 22.3%. Case 3 is virtually insensitive to the methods used for growth, suggesting
that it suffers from insufficient constraint on the variance, as in other growth tests.

18

15
‘Random'’ demand profile case 1 ‘Randgm'’ demand profile case
4

‘Random’ demand profile case 3
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Figure 4.5.16 Three ‘randomly generated’ traffic profiles: p above, u below
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4.5.14 Conclusion on mixed exponential approximation

The foregoing has shown that the simple exponential approximation is effective in most cases
of decay including from large queues produced by oversaturation and over long periods of
relaxation to equilibrium. The method can run into trouble in some more extreme cases but

among the test cases these are relatively rare. Situations that can lead to problems include:

e Heavy queuing is followed by low demand, resulting in rapid queue decay
e Complex shape of initial probability distribution

e Large difference between initial and asymptotic time parameters.

Although some indicators have been identified, no simple modification to the mixed
exponential method has been found that can deal with special cases without harming
accuracy in the majority of cases. This suggests that a more general method would be more
complex, making it more difficult to assure stability. Results with the peak cases for both
M/M/1 and M/D/1 processes show that using ‘optimum’ t values, rather than the estimated
Tm, Would reduce average error by a modest 23-35%. However, the benefit of the best
combination of approximation methods over uncorrected methods is orders of magnitude
greater. For these reasons, the results are considered sufficient for the present purpose, while

an improved approximation to queue decay could be a topic for future research.
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4.6. TRANSITIONAL REGIMES AND COMBINED PERFORMANCE ON PEAKS

Figure 4.6.1 summarises the role of transitional regimes around the boundaries between under-

and over-saturated regimes in an idealised peak case, giving a five-regime combination.

Regular

-‘% Oversaturated

o Growth Regime

£ p=1 ° p=1

o

5

= Undersaturated Regular

Growth Regime /. — Decay

? Regime

Qversaturated Transition

=
3
5]
1 Undersaturated Transition

Figure 4.6.1 Model of queue development regimes

For early oversaturated time slices, the use of transitional method ‘k’ in place of ‘t” was
described earlier in Section 4.4. This represents a merging of the basic undersaturated and
oversaturated growth methods: ‘c’=corrected derived sheared + ‘t’=origin-shifted sheared =
‘k’=corrected origin-shifted derived sheared. This seems rational, but it works only for the first
130 or so units of throughput (see earlier in Section 4.4), and where this number comes from is
a not known®’. In a few cases it appears beneficial for the modification to extend into the

undersaturated regime but there is no obvious criterion for this.

The ‘undersaturated transition’ (post-peak) matters in rare cases where queue decay does not
follow a simple pattern, for example the mean queue increases or the variance increases.
Modifications have been proposed that have some logical justification, but cannot be
guaranteed optimal. A problem can occur where t,< 0 in the time slice immediately following
the oversaturated regime. This occurs in only one M/M/1 peak case, J2P10, and what works is

simply to use the ‘c’ method instead of ‘m’, no other growth method working in this case.

"t is not known whether it is an absolute number or related to some common feature of the peak shapes which
may not translate to more general cases. If interpreted directly as a relaxation parameter, 130 units throughput
corresponds to p=0.832 or L~5, or p=1.183 if it is accepted that a relaxation parameter is meaningful for p>1.
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A less rare and extreme situation arises where a high value of L. in the first decay time slice
means that L.<Lo<2L,. For M/M/1 in these cases it is found that the ‘k’ method can give better
results than ‘m’, while the ‘c’ method is less satisfactory, but for M/D/1 this results in
catastrophic error in one case, J1P6, so is unproven in general. However, the fallback is the

basic method combination that is no different in most cases and not much worse on average.

Questions remain about the best ways of dealing with these transitional regimes and special
cases. Further research may reveal patterns that can be exploited but there is also a risk that

over-optimisation may reduce the robustness of approximation.

In full tests of all 34 peak cases, where the input of each time slice is cascaded from the output
of the previous time slice, results for both M/M/1 and M/D/1 are generally good. The optimum
method combinations and their average RMS errors can be as low as shown in Table 4.6.1,
where the growth methods are as defined in Table 4.3.3. More detail including non-optimal

combinations is given in the next two main Sections.

Table 4.6.1 Summary performance of best method combinations in all peak cases

Method used in regime Average RMS error across all cases
Growth / Growth Decay L D v
p<i p>1 p<i

All 34 peak cases using M/M/1 process

C Kk t - m 0.40 0.59 30.41

C k t m m 0.40 0.59 30.41

C k t k m 0.39 0.59 30.06

‘cktkm’ with Markov initial states 0.19 0.32 19.37
All 34 peak cases using M/D/1 process

C - t - m 0.47 0.47 16.40

c - t m m 0.47 0.47 16.40

C k t - m 0.35 0.37 16.27

‘c-t-m’ with Markov initial states 0.32 0.31 19.02

The most reliable combination for both queue processes appears to be ‘ckt-m’, giving errors
comparable with those of ‘optimum input and combination’ tests where time slices are

calculated independently using the actual Markov estimated values as the inputs.

Figure 4.6.2 shows that for all peak cases together the estimation of variance is good. However,
Figure 4.6.3 shows a range of performance for variance estimation, with some underestimation
in the decay regime of J3P9, which is also found in other heavy peak cases — the slight

overestimation in the lighter peak J1P1 originates in the growth regime.
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4.7. METHODS AND SUMMARY RESULTS FOR M/M/1 PEAK CASES

4.7.1 Methods tested

A test-bed spreadsheet has been set up so that several options can be tested on all 34 peak cases
simultaneously, average errors noted from a central point, and comparisons of results with
simulation plotted. Cases are limited to 12 time slices (sufficient in most cases to give adequate
run-off) except for J1P9 (16), J3P6 (17), J3P9 (18) and J4P7 (14), resulting in a total of 425

calculations. Table 4.7.1 summarises the alternative methods available in various combinations.

Table 4.7.1 Summary of approximation methods

Symbol Method

Basic sheared queue and delay

Origin-shifted sheared queue

Sheared delay, derived sheared queue
Origin-shifted derived sheared queue
Omega-corrected derived sheared
Omega-corrected origin-shifted derived sheared
Exponential

S[(x|o|N|la|~|wn

The main choice provided for is the method in each of the three main queue development
regimes (see previous Section), but additional choices are provided for the first time slice of
oversaturated growth, reflecting the alternative correction factors in equations (4.3.32), and the
first time slice after oversaturation where it is found that the equilibrium queue size can exceed
the initial queue, resulting in principle in an undersaturated growth situation. In the former case,
a choice may be exercised between Q-correcting or not, and in the latter a version of the
exponential method can be applied. These choices are summarised in Table 4.7.2. Since ‘t” and
'z do not include correction they cannot guarantee accurate steady-state variance, though this is

seldom approached in the peak cases, and is not an issue for oversaturation.

Table 4.7.2 Methods used in different regimes of queue development

Development regime P Typical methods
Undersaturated growth <1 c, kst z
Oversaturated transition >1 k,s,t
Oversaturated growth >1 k, s, t
Undersaturated transition <1 c,mt, z
Decay <1 m, t

The convention adopted here and in the test spreadsheet is to default the transitional methods if
they are not specified, represented by dashes between the main methods, e.g. ‘c-t-m’. The
default for the oversaturated transition is the main oversaturated method, while the default for

the undersaturated transition depends on the relationship between L, and L..
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4.7.2 Comparative performance of methods in peak cases with M/M/1 process

Table 4.7.3 lists the RMS errors (across all time slices) in the mean queue, delay and variance
respectively. Variances tend to be the most sensitive, but it should be remembered that the error
on the standard deviation, at most half that in the variance in percentage terms, may be thought
a fairer criterion. The highlighted rows show that the basic sheared method ‘s-s-s’, and the
origin-time shifted modification proposed by Kimber and Hollis (1979) ‘t-t-t’, perform much
less well than the combinations involving corrections, but the corrected method does not work
so well in the oversaturated regime. In a post-oversaturation transition the new exponential
method appears safer than one of the methods derived from shearing. This may because the
initial variance at that point is severely incompatible with quasi-equilibrium.The best methods
are not far worse than ‘optimal’ calculations where Markov-simulated initial states are input in

each time-slice rather than values calculated in the previous time slice.

Table 4.7.3 Errors for method combinations on M/M/1 peak cases

Method used for M/M/1 Initial data, Average RMSE (all 34 peaks)
Growth Growth Decay substitution
p<1 / p>1 p<l etc. L D v

t t t 19.05 21.18 4924.66
m m m 182.58 173.62 503.77
d d d 4.44 4.92 413.39
S S S 3.58 4.16 376.99
d d m 4.03 4.55 368.07
C C m 3.55 3.96 339.62
C S m 3.51 3.95 330.78
S S m 3.38 3.79 326.52
z z m 1.52 1.58 192.15
c z m 1.54 1.57 191.88
k z m 1.46 1.55 189.36
z t m 1.21 1.73 76.11
k k m 0.86 1.44 75.20
k t m 1.30 1.81 73.97
c k m 0.42 0.59 69.82
t t m 1.40 1.93 65.70
c k t m T | 5T 0.35 0.58 44.89
c t m 0.77 1.07 38.68
c t m m 0.77 1.07 38.68
c t k m 0.75 1.06 36.89
c k t m (Preferred) 0.40 0.59 30.41
c k t m m 0.40 0.59 30.41
c k t k m 0.39 0.59 30.06
c k t m T bTm 0.37 0.53 20.03
C k t m T voTm 0.37 0.52 19.82
C Kk t m Markov data 0.19 0.32 19.38
c k t k m Markov data 0.19 0.32 19.37
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The results labelled ‘Markov data’ take data for each time slice from the Markov simulation, so
those results are only a benchmark. All the estimation methods cascade the output of each time
slice to the input of the next. Stability issues can arise when this is done over many time slices
with no external constraint, and this was a critical hurdle for the development of the correction
method. The best performance is by variations of the combination ‘c-t-m’. Whether an
appropriate method is chosen automatically for a transitional time slice depends on the exact
results emerging from the previous time slice. There are so many possible combinations that
only the ones that perform well, or extremely poorly, without exercising the transition options,
are further tested with these options.

4.7.3 Summary of performance in peak cases with M/M/1 process
Figure 4.7.1 plots estimated versus Markov-simulated values of main results for all the 34 peak

cases. Figure 4.7.2 shows for comparison plots for combinations ‘s-s-s’ and ‘t-t-t’, basic and

origin-shifted sheared.
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Figure 4.7.1 Performance of optimal ‘ckt-m” model on 34 M/M/1 peak cases (408 points)
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Figure 4.7.2 Performance of basic (left) and origin-shifted sheared (right) M/M/1 methods

Figure 4.7.2 shows that it is possible to get away with uncorrected models for estimating mean
queue size and delay, but not for calculating variance. The greater scatter in variance V and zero
queue probability po compared to Figure 4.7.1 is evident. When individual cases are plotted the
difference is particularly obvious. Figure 4.7.3 shows one of the heaviest and longest peaks,
J3P6, for several model combinations. The sensitivity of variance is evident given the close fit
of both L and D over most of the time range in all cases, but the performance of the uncorrected

methods shows wild errors in variance compared to the corrected method.
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Figure 4.7.3 Performance on heavy peak case J3P6 (17 time slices), using M/M/1 process

(The Markov simulated benchmark profiles are common to all methods)
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4.8. MODIFICATION AND SUMMARY RESULTS FOR M/D/1 PEAK CASES
4.8.1 Modification of calculation for M/D/1

Since almost all of the expressions derived in the previous Sections either include the statistical
parameters of the P-K formula, or are independent of them and hence essentially deterministic,
the method should in principle be applicable to any queue process including M/D/1.Before
proceeding to test this, an issue must be resolved that requires revisiting an earlier point about
the distinction between the average probability of zero queue and the value that appears in the
theoretical probability distribution. The calculation methods work exclusively in terms of mean
utilisation. If a value of p, is taken from a simulated probability distribution, in general it must
first be translated into the corresponding average, the complement of utilisation. This does not
affect actual calculations but only comparisons with Markov results. No changes should be
needed to Q or any calculations provided that the appropriately parameterised P-K formula or

its inverse have been included in all calculations, and this is confirmed by results.
Whether it is simpler to calculate the Markov average utilisation from the Markov distribution

Po, OF the estimated distribution p, from the estimated utilisation depends on the relationship. In

the case of M/D/1 the latter is simpler, because the distribution pq is given at equilibrium by:

Poe = e"(l— p) (in probability distribution) (4.7.1)
Based on a quasi-static assumption, p, at any point can be estimated from the utilisation by:

1-u

Po[distributon] = U€ (4.7.2)
The alternative, starting from popvarkov, IS to solve (4.7.2) for a value of u to compare with the
estimated utilisation. While such a solution must be numerical the solution method need not be
efficient as it is needed only for verification and testing.
4.8.2 Comparative performance of methods in peak cases with M/D/1 process
Using an identical spreadsheet test-bed to M/M/1, with the appropriate statistical parameters
but without modifying the case definitions, the 34 peak models have been recalculated for

M/D/1 and compared with the results generated by the Markov simulation. The calculated value

of po is compared with the average p, as calculated above, rather than the simulation value.
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Table 4.8.1 gives errors for M/D/1 peak cases using the same combinations of methods as for

M/M/1. The smaller absolute errors are consistent with the smaller values of the moments

compared to M/M/1. Combination ‘ckt-m’ is superior to ‘c-t-m’ and ‘c-k-m’, but all can be

considered acceptable. The best combination for both queue processes is ‘ckt-m’.

Table 4.8.1 Errors for method combinations on M/D/1 peak cases.

Method used for M/D/1 Initial data, Average RMSE (all 34 peaks)
Growth Growth Decay substitution L D v
p<l p>1 p<l etc.

d d d 3.26 2.87 554.14
S S S 2.43 2.42 539.61
t t t 8.45 8.53 486.51
c k t m 0.76 0.73 325.89
m m m 279.20 262.13 297.94
d d m 2.74 2.55 188.01
c S m 2.36 2.19 167.34
S S m 2.27 2.10 166.00
c c m 1.84 1.67 121.60
c z m 1.07 0.87 100.05
k z m 0.94 0.77 92.68
z z m 0.98 0.80 93.45
C k t m T | 5T 0.24 0.44 50.98
k k m 0.77 0.92 30.05
z k m 0.67 0.83 28.39
t t m 0.74 0.76 22.18
C k m 0.49 0.61 22.28
Cc k t m Markov data 0.54 0.47 21.02
k t m 0.61 0.64 20.97
z t m 0.55 0.58 20.24
c t m Markov data 0.32 0.31 19.02
c t m 0.47 0.47 16.40
c t m 0.47 0.47 16.40
C k t m (Preferred) 0.35 0.37 16.27
c k t m T bTm 0.29 0.34 13.70
C k t m T voTm 0.30 0.34 12.68

4.8.3

Summary of performance peak cases with M/D/1 process

Figure 4.8.1 plots estimated versus Markov-simulated values of main results for all the 34 peak

cases. Figure 4.8.2 shows for comparison plots for combinations ‘s-s-s” and ‘t-t-t’, traditional

and origin-shifted sheared. The appearance of these plots, and comparative performance

generally, is similar to that for the M/M/1 cases. Again, the greater scatter in variance V and

zero gueue probability p, compared to Figure 4.8.1 is evident. Figure 4.8.3 shows one of the

heaviest and longest peaks, J3P6, for several model combinations, the results being somewhat

similar to those for M/M/1 (Figure 4.7.3).
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4.9. CONCLUSIONS ON TIME-DEPENDENT APPROXIMATIONS

In this Chapter 4 an improved and extended time-dependent approximation for queue
development has been described which:

o Satisfies the time-dependent variance formula.

e Calculates essential queue properties: po (~utilisation), mean and variance.

o Handles overcapacity seamlessly through its use of an enhanced sheared method
applied to growth and a mixed exponential method applied to decay.

e Can accommodate different queue processes through the statistical parameters of the
Pollaczek-Khinchin equilibrium mean queue and new equilibrium variance formula.

e Can accommodate some non-monotonic queue growth, e.g. from a ‘pure’ initial state.

o Is computationally efficient through the use of closed-form formulae.

e Isstable in the sense that queues can be handed on iteratively from one time slice to the
next over many cycles to develop the prediction for an entire peak profile.

e Subject to qualification concerning variance estimates in a few cases, offers good
accuracy compared to benchmark simulations of over-saturated peak test cases,

modelled as a sequence of time slices with constant parameters within each time slice.

The methods have several possible or inherent weaknesses:

e The correction of the sheared method for queue growth assumes that stochastic
relaxation time can be used to normalise the time scale of queue development, though
this is supported by general arguments and empirical evidence.

e Fine tuning of the correction of queue growth regimes employs adjustment factors
involving ‘free parameters’ (although the main correction does not).

e Sensitivity around the edges of oversaturation has been addressed by ad hoc rules.

e The mixed exponential approximation for queue decay is based on general principles
applied independently to mean and variance, and uses an heuristic method of
interpolation over the time range, which is challenged in a few extreme cases and

cannot accommodate non-monotonic queue development.

A legitimate question in any engineering discipline is “when is good good enough?”, or “when
is bad not bad enough to worry about?” This is essentially the precision v. accuracy dichotomy
again. Arguments have been put forward that the results are sufficiently good for the practical
purposes objectives of this research, which can be considered to have been achieved, and

further improvement in the methods can be left for future research.
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CHAPTER 5: ESTIMATING PROBABILITY DISTRIBUTIONS

5.1 INTRODUCTION

Computationally convenient ways of approximating the queue size probability distribution at
any time are explored, given the three queue properties available from the foregoing time-
dependent approximation methods: p,, mean and variance. Standard continuous diffusion
approximations are first reviewed, but are considered to be both more complex and less flexible
than is required, bearing in mind that a fully time-dependent solution is not required since this
is already embodied in the queue moments obtained by the estimation methods described
earlier. Alternative approaches are developed based on continuous functions that are easier to
work with than discrete forms and can exploit standard solution methods.

5.2. POTENTIAL OF CONTINUOUS APPROXIMATIONS TO DISTRIBUTIONS

Figure 5.2.1 superimposes normalised simulated distributions for the 12 time-slices of the J2P4

peak case (see Section 2.5 earlier). In addition to being normalised to have equal maxima, the
distributions have been shifted so that all their means lie at x=0.

rho
e LR = T IF A
—0.6472
—08032 ———
—0.952
—1.0711
—1.1384
—1.1384
—1.0711
—0.952
—0a8032 —
— 06472
—0.5719

*

-200 -100 u] M 100 200 300 400

Figure 5.2.1 Superimposed normalised probability distributions from J2P4 peak case

Graphical examples in Kobayashi (1974b) show that a diffusion approximation can reproduce
many of the distribution shapes between Normal and exponential/geometric-like, including bi-
modal with the ‘duck-tail” at the left, though not as pronounced as in the simulation. However,

they appear unable to reproduce the more extreme distribution shapes in some later time slices.
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Any queue distribution can be viewed as a linear superposition, like the solution given by
Morse (1958). States below the equilibrium mean will behave like growing queues, while those
above it behave like decaying queues. This hints at the possibility of simply combining
exponential and Normal functions, but it remains to be shown that this can be done uniquely.

5.3. TIME-DEPENDENT DIFFUSION SOLUTIONS FOR M/M/1

5.3.1 The diffusion equation

The Kolmogorov Forward Equation or Fokker-Planck Equation (FPE), as quoted e.g. by
Newell (1968a), is considered the prototype for a continuous analogue of recurrence relations.
Its coefficients represent drift at a rate determined by the difference between capacity and
arrivals, and diffusion at a rate determined by the variance. The diffusion term includes the

indices of dispersion of arrival and service, I, and 1,

ap(x,t) (lp+ |u)62p(x,t) ap(x,t)
Famill TP (5.3.1)
Newell (1968a) says, for a Poisson (i.e. M/M/1) process, only that both I, and 1, are ‘suitable
coefficients’ expected to be ‘comparable to 1 and essentially independent of [p] or u’, which is
certainly consistent with c,’=1, but raises a question about what is meant by I, here (one
suspects it corresponds to c,%). The term is the exact variance only in the deterministic case,
suggesting that a solution will apply to ‘heavy traffic’, i.e. where p~1. It is not clear to what

extent this can cover the full range of the P-K formula.

A diffusion equation also arises in an analysis of platoon bunching, derived from M/M/1 time-
dependent recurrence relations (Kihne and Ludke 2013). After translating variables, this

amounts to:

2
ap((;t(,t) = u(a g)(()z(’t)+(1—p)ap(x’t)J (5.3.2)
Equation (5.3.1) is consistent with this only if 1, is interpreted as c,?, rather than c,’p in
accordance with equation (3.4.5). This is inconsistent with the assertion of Newell (1968a)
that I, in equation (5.3.1) should be around 1, while I,= 2 = 1 remains uncontroversial. This
ambiguity will be commented on further shortly, but the use of the diffusion approximation in
what follows will be pragmatic.
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5.3.2 Diffusion solutions combining exponential and Normal functions

The exponential function is a solution of the static FPE (LHS of (5.3.1/2) = 0), and the Normal
function is a solution of FPE remote from x=0, making for an analogy with the equilibrium and
deterministic queue formulae. An initial pure state or ‘shock’ will initially drift and diffuse into
a Normal distribution whose mean evolves naturally according to the difference between arrival
and departure rates and whose standard deviation increases approximately as the square root of
time. If there were no barrier at x=0, the distribution would spread out until it becomes uniform.
According to Rose (1995), the zero queue state is not a true reflecting barrier but a ‘reflecting
sticky barrier’, meaning that on reaching zero the state remains there until it receives a positive

impulse. Ultimately the distribution should relax to a stable exponential form.

Kobayashi (1974a,b), Newell (1968a-c, 1982), Kleinrock (1976), Gross et al (2008) and others
give solutions for the time-dependent M/M/1 queue size probability distribution evolving from
an initial pure state or ‘shock’ towards the equilibrium distribution under constant arrival and

service rates. Gross et al give a solution, expressed here in slightly modified notation:

(x=Xo+(1=p)ut 21-p)x [ _(x+xo+{i-p)ut)®

1 + + + 2(1~
p(x,t|x0)= —’—2n(1+p)pt e 2okt g () g 2Alpht +7(l+pp) E(x,tlxo)
(5.3.3)
where
(y+xo+{1—p)ut
[ ‘yz(lTitp _|mld+pjut X+X0+(l—p)ut
E(xtx,)=[ e dy = erfc
X 2 201+ p it
(5.3.4)
The formula can be rewritten in a form more convenient for evaluation:
(x=o+(1=p)ut )’ 21-p)x _(x+xp+{1-put)’ 2x(1-p)
p(x,t|Xo)= e ekt ye Bwe ok + (l"’)ef @) erfc X+ % +(l_p )“ t
J2r(l+ p)ut il J2(1+ p)ut

(5.3.5)
Kobayashi (1974a) points out that the barrier at x=0 makes this a Wiener process, which can be

characterised by drift (p-1)ut and variance (p+1)ut.

8 Some authors use A and p representing arrival and service rates. Others use expressions involving p in the
sense of interval times. Newell and Kobayashi also transform or scale variables and extract common terms to
simplify formulae. This can aid calculation substantially, but does not always assist physical interpretation, so we
stick with variables used elsewhere in the dissertation.
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Figure 5.3.1 shows that this equation generates realistic distributions, and suggests that the left
and right parts of (5.3.5) represent Normal-like and exponential-like components respectively.
A feature of the model is that p(x,t|xo) integrates to 1 over the range (-o0,+0) rather than [0,0),
as a result of which the integral over [0,0) declines with time, and the mean, variance and po
have to be normalised by dividing by the integral of p, po being assumed to be the normalised
integral over [0,1). Accuracy begins to deteriorate at large values of t.

03

015 /\ i1
02 / \ —10
0.15 / \

R

—50
—60
005
—70
80
0

pix)

001323456758 9101112131415161718 19 2021 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 3830404142 43 44 4545 47 4849 50 0
X
12
p=0.95, 471, x=10 t
! S —
\ —10
08
—120
% —130
— 06
9 "4

7 D NN . —
N AN O —
AR N :

00123456 7 8 010111213 1415 16 17 18 10 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 50 20

0

X

0.004

t

—1

0.0035

0003

—10
0.0025

—120

0002 —x

p(x)

—40
0.0015

—50
0.001

—60
0.0005

—70

0 80

0123 4567 8 010111213 141516171819 20 21 22 23 24 25 25 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46 4748 4050 90

X

Figure 5.3.1 Distributions generated by Gross et al diffusion approximation (5.3.5),
respectively the full distribution, two LH terms and RH term (p values unnormalised).
Development is shown over a short time period after an initial ‘impulse’, during which the

upper (Normal-like) component diffuses, while the lower (equilibrium-like) component grows

In principle, predicting the queue size distribution from an arbitrary initial distribution, as may

be required when calculating the result of an arbitrary demand/capacity profile, requires
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convolving (5.3.5) with an arbitrary initial distribution. One way to avoid this would be to
calculate for some X, and t+t, where t, is the time at which the distribution most closely
resembles the required starting distribution, analogous to origin-shifting the sheared queue.
Calculating the mean and variance requires integrating terms in erfc, which should be relatively

straightforward since terms in x"erfc(x) integrate to expressions involving x"™'erfc(x).

The distribution function must move from a Normal-like shape to an exponential-like shape,
and these components are virtually independent, analogous to the deterministic and P-K
components of the sheared formula. However, the former consists of not one but two Normal-
like components, because of the mirror term. Functionally, this component arises as a link

between the two main functions, rather as the utilisation variable x in the sheared solution.

Gross et al’s expression appears to suffer from confusion about the sign of the (1-p) term
(though this could lie with the present author). Kobayashi (1974b) quotes a differential form of
the diffusion approximation (apparently misprinted in Kobayashi (1974a)), which he transforms
into two ‘coordinate-free’ solutions applying to p<l and p>1 respectively. The expression
involves a function @ similar to E in (5.3.4) except that the integral is over (-o0,x), and (1-p)
appears as its absolute value. As far as can be ascertained, when evaluated for p~1, the
probabilities sum to near 1 for all t, and moments approach their equilibrium values accurately.
The different forms for p<1 and p>1 can be absorbed into a single expression, with change of
sign of (1-p) being accommodated by use of the absolute in some terms. Reverting to the

untransformed variables, a replacement for (5.3.5) which embraces the full range of p is:

(x=xp+(1-p)ut} 2xf1-p|  (x+xp—(1-p)ut)®
e 2(1+P)P-t +e (1+P) e 2(1+P)Ht

72X‘1—p‘
e e et

p(x,t|xo):

(5.3.6)

where:

E(x,tlx, )= erfc{sign(l— p{ X+ (1 p)“tn ,erfe(~|z])=2—erfc(z))

J2(L+p)ut
(5.3.7)

Figure 5.3.2 shows the difference between the Gross and Kaobayashi formulae results. The
calculations are for integral values of x, and the sums of probabilities of the Kobayashi formula

for p=0.95 are up to 3.7% high, but the moments are quite accurate when adjusted for Zp;, with
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Po converging to about 0.0487. For smaller values of p the error in Zp; is greater, for example

37% at p=0.5, but again the moments are quite accurate, with p, approaching 0.476.

While it is possible that Gross et al’s function has been misunderstood, as it stands it produces
strange results (left), in particular the sum of probabilities decays with time while the mean
rises well above the expected equilibrium value. Kobayashi’s version as interpreted (right)
gives sensible results where the sum of probabilities remains around 1, and the mean converges
to the equilibrium value, so it is adopted as fulfilling the requirement.
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Figure 5.3.2 Time-development of moments of approximations for M/M/1, p=0.95, L,=10

Figure 5.3.3 shows the full distributions and their components produced by (5.3.6-7).
Comparing with Figure 5.3.1, the main visible difference is in the combined distribution. At
first it appears that the two Normal components have taken over the whole distribution, but
actually the exponential component is still growing with time. The changing balance between
them over a longer time period is graphed by Figure 5.3.4, showing that the exponential

component does eventually become dominant.

Drawbacks of the diffusion approximation have already been touched upon. They include:

e Starts from an initial ‘impulse’, so in principle needs to be convoluted with an initial
probability distribution, or retro-fitted to one by shifting the time origin.

e Less accurate for smaller values of p.

¢ Modification for general queue process statistics is questionable.

e Analytical calculation of moments requires complicated integrations.
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5.3.3  Equilibrium distributions with more general statistics

Kobayashi (1974b) proposes a generalisation of the process-dependent parameters that enter
into his derivation of the equivalent of (5.3.6-7). In effect, wherever (1+p) appears it is replaced

as follows*:
1+p)—> (C§p+c§) (5.3.8)

Referring back to the c, versus I, discussion earlier in Chapter 3, if it is assumed that I,=c.’p
then the RHS of (5.3.8) loses its explicit dependence on p and can no longer be properly
matched with the LHS. However, comparing (5.3.8) with (5.3.1) suggests the identification
la=c,>and l,=c,’. Taking (5.3.8) at face value, if ¢, is set to zero to reflect M/D/1 then the time
developments follow a similar pattern with reduced moments as shown by Figure 5.3.5, where
the initial queue has been appropriately reduced, and once again Kobayashi’s version performs

correctly (although the discrete distribution as calculated is not perfectly normalised).
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Figure 5.3.5 Time-development of approximations to M/D/1, p=0.95, Lo=5, ¢,=0

Although the moments approach the expected values in general terms the results are not precise
enough to distinguish between with and without unit-in-service. The moments are too low and
therefore nearer the latter, but p, tends towards 0.095 for p=0.95 and 0.829 for p=0.5, which

values are too high. The approximation certainly works best for M/M/1 and for p~1.

Kobayashi (1974a) finds the equilibrium solution of (5.3.1) with (5.3.8):

p(x)= 20-p) exp{— 2(1_")"} (5.3.9)

(c2p+c?) (c2p+c?)

* In Kobayashi’s paper his ¢, are the squares of the coefficients of variation.
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Integration over unit intervals just produces the geometric series:

i+1 . . .
[ plyldy=p'-p" = @-pp'

where (5.3.10)
2(1-
o] 22|
CaP +Cy (5.3.11)
which makes for the obvious identification:
pi =(1-p)p' (5.3.12)

However, in the M/M/1 analogy, p is not equal to p, so an improved discrete interpretation is

proposed, the singly-nested distribution (3.6.3-4) in Chapter 3, but even that is not perfect.

Figure 5.3.6 shows how this distribution compares with the continuous distribution, where it
can be seen that the match between po and the integral over the interval [0,1] becomes less

accurate at smaller values of p.
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Figure 5.3.6 Comparison of nested discrete and continuous equilibrium distributions

Recalling Whitt (1982), there are many alternative versions of a waiting time formula, and
hence the closely related mean queue formula, leading to different generalisations of (1+p),

none of which appears completely satisfactory, so for this practical application it may be
sufficient to accept whatever works well enough.
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5.3.4 Consequences for variance of assuming Kobayashi's formula

Recalling equation (2.3.51) for the deterministic limit of the variance, if L, is substituted from
the P-K formula, the simple M/M/1 form is replaced by the rather awkward:

V=1 -1+ c-pph+u=(20 -1)+1, + (2 +1-20ph+p} (53.13)

When I=1, I,.=1 and c¢,’=1, (5.3.13) collapses to the simple deterministic result. If it is then

assumed that 1,=c,’p:

vV =(20 -1)-@1 -1p+(c? +c2 pp +uk (5.3.14)

Apart from the seductive alignment of the coefficients of variation without the p factor on c.?, it
is hard to see what this is saying in practical terms. A particular oddity is that c,’ appears in

association with A rather than p. This casts doubt on the generality of (5.3.8).
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54. CONTINUUM APPROACHES FOR EQUILIBRIUM QUEUES
5.4.1 Exponential solution of the Fokker-Planck diffusion equation

The Fokker-Planck Equation (FPE) (5.3.1) with constant drift and diffusion can be written

more generally as (using the coefficients o and f commonly found in some standard works):

op(x,t 0% p(x,t op(x,t
p(t) o 2%plct) g op(x.) (5.4.1)

a2 o OX

The continuous exponential distribution is already known to be a solution of the static form of
(5.4.1), and can be related to a discrete geometric distribution as in equations (5.3.8-11).

However, the corresponding ‘traffic intensity’ pis not equal to p. An alternative equilibrium

solution in which it is equal to p is the exponential distribution:

pe(X)=—p*Inp=ve™ where v=§=—lnp= pe(0) (5.4.2)
(04

When discrete probabilities are identified with integrals over unit intervals, as before, this

satisfies all the usual relationships making it analogous to the discrete geometric distribution:

i+1

.[:pE(X)dle’ Po :LlpE(y)dyzl—p, Pi=) pE(Y)dy:(l_P)Pi (5.4.3)

However, the moments of the geometric distribution do not exactly match the exponential:

o 1 (7.2 1
L, _J.OxpE(x)dx_; V, _L X pE(x)dx_V—2 (5.4.4)

The relationship between the variance and the mean is the same as for a discrete exponential
distribution (as e.g. used to describe headways), but differs from that for the geometric
distribution. The mean itself has a different form from that of M/M/1, suggesting that (5.4.2) is
in some sense a limiting case of M/M/1 rather than a direct analogy. Figure 5.4.1 graphs the
discrete M/M/1 geometric and continuous exponential functions, confirming that they match
well over the range. The red lines represent the integral of the continuous function over [0,1)

which is indistinguishable from the discrete p in these cases.
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However, this begs the question what is the meaning of pe(x) at non-integral values of x, and in
particular the meaning of peg(0). A way to explore this is to move from a discrete to a
continuous interpretation by gradually reducing the step size, but (5.4.1) is difficult to simulate
numerically since, when x is discretised in steps of & (say), it reduces to a Markov process

similar to (2.3.22-23), to which the following apply but offer no new insight:

() 1 Api  Pia—Pi Apy
- —L =T T (i>0 — ==
“ (p ) 1_p8 AX 6 ( ) AX pO
2 _ ) ] 2 _
A gi _ Pis 2F2)I * Pia (i>0) ﬂzu (5.4.5)
AX B AXZ o

Integrating (5.4.1) with respect to X yields the rate of change of the ‘zeroth moment’, which is
of course zero, the RHS rearranging to:

dp
dx|,_o

Moments of (5.4.1) can be calculated by using integration by parts with respect to x over the
range [0,0), and the general results p(co,t)=0, [p=1, [xp=L etc. The first moment yields the time-
dependent deterministic relationship (5.4.7), consistent with static interpretation of v and p(0),

leads to an identification of capacity [, and is analogous to the rate of change of the discrete
mean queue (2.3.24):

0 o0

% = Ix%dx=%jxp”dx+ﬁ!xp’dx= %[Xp’]: +I(BX—%jP/dX

0
=0 {(BX —‘;‘j pr —BT pdx=""p(0)-p (5:4.7)
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Hence:

a_ (p(0)=v)u where v=2P (as before) and p :% (5.4.8)
o

Note, however, that while the second of equations (5.4.2) is satisfied, meaning that dL/dt is zero
at equilibrium, the variables do not have the usual relationship to p. Since the coefficients on

the RHS are constants, integrating (5.4.8) over time gives the deterministic queue formula:

L) = L+ (@—v)-xOpt  where x(t)= % [a-pO)t (.49
The second moment of (5.4.1), evaluated similarly, is:

4—)1 Pt fponsfpone S fie-aw
0 0 5 .

©

+[(Bx—a)xp]? - [ (2Bx—a)pdx =0+0-2BL + 0 (5.4.10)

o'—.

Substituting the coefficient values from (5.4.8), and then integrating over time:

Mz 21— vL)u (5.4.11)

dt

v +12)= 2{% - Djm +(Vo+12)  where D= %j Ldt  (5.4.12)
Remembering the form of L. in (5.4.4), equation (5.4.12) has the form of the discrete variance
formula (2.3.27) apart from missing terms L and L. In (2.3.27) these come from the p, term in
(2.3.26), which in turn arises from the difference between the recurrence relations (2.3.22) and
(2.3.23) caused by the boundary at zero. As step size & in the discrete distribution is reduced
from 1 to O the influence of the boundary at zero decreases, and the contribution of this term

decreases linearly, so the definition of W (equation 2.3.29) can be generalised to:
W=V +L(L+3) (5.4.13)

Thus not only the deterministic queue formula, as would be expected through conservation, but

also the deterministic variance formula, arise naturally from the FPE diffusion process.
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5.4.2 Adding arrival and service statistics through Gamma approximation

The essence of the modification by Kobayashi (1974a) lies in the relationship between the P

that fits the exponential model (5.4.2) and the real p, as per (5.3.8-11). However, the
distribution itself is not changed. In reality, the distribution always changes. One possibility

A

would be to make p a non-linear function of p. The problem with this is evident from the

M/D/1[G] results, that ps, which nominally should be the integral of the function over [0,1], is
increasingly out of scale with the rest of the distribution as G increases. Although it is
straightforward to fit a discrete doubly-nested geometric distribution, it would be very difficult

to fit a continuous function.

In addition to a shift of origin, a useful distribution needs two parameters, eliminating
Poisson. The Gamma distribution has several advantages: its mode can be 0 or >0; one of its
parameterisations yields the exponential distribution and a limiting parameterisation leads to
the Normal distribution. Apart from this, as will be shown, simulation also gives empirical
support for the Gamma distribution as an approximation to the extended distribution {p"s ...
Pi-o} When its origin is shifted appropriately®. Technically, the approximating distribution is
Erlang (2.2.3) because it is calculated discretely, but the ability to make non-integral
adjustments to parameters in Gamma is an advantage. The basis of fitting Gamma is to set the
shape and scale/rate parameters according to known invariants of the target distribution, the
mean and variance, and in the case of M/D/1[G] the mode. Properties of the Gamma

distribution, using k and v as the shape and rate parameters, are given by:

kv(kvx )< ek

r'(k)

Gammak, v, x) = (5.4.14)

k-1
Mean= 1 ,Variance= i ,Mode= (k _1) , Maximum= M (5.4.15)
v kv? kv kT (k v

Using results from Chapter 3, the shifted queue size distribution satisfies:

0 0 s} s}
Mean=>"(i+G)p{’ =>ip{? +>ip; +G>_ p{) =L, - L' +G =L, +Gp
e -G 0 -G
(5.4.18)
Mode ~ Gp (5.4.19)

%0 Olszewski (1990) implies that a Gamma or possibly Negative Binomial distribution can be used to describe the
probability distribution of a time-averaged signal overflow queue, but as this is not origin-shifted is not clear that
it has any bearing on the distribution of an extended M/D/1[G] distribution including notional queue states.
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The extended M/D/1[G] queue size probability distributions can be approximated by:
p(), =Gammdk”(1x)kv,i+G)  ie[-Goo) (5.4.20)

where 1 and «k are adjustments to the mode and mean respectively such that equations (5.4.15)
are satisfied by the parameters k and v as modified, and the origin is shifted by G. The ‘real’
value of po is obtained by summing components —G to 0, as described earlier in Chapter 2.
Numerical fitting can be achieved in most cases using a standard method such as Excel’s
Solver (a Newton method), with the target to minimise the simple RMS error between the
simulated and calculated probability components, but this may not work where p is small and

G large. The Anderson-Darling difference measure has also been tested but gives a poor fit.

To estimate k the variance is needed. The results of Chapter 3 enable the variance of the
notional probability terms to be calculated from the Variance of the extended distribution and

the ‘real’ part®™. Now k can be estimated from moments of the extended distribution:

» Given L, estimate Mean from (5.4.18)
» Estimate Variance by the procedure in Chapter 3 (equations 3.7.23-25).

> Estimate k as Mean?/Variance or from the formula for Mode

To fit the distribution it is now necessary to optimise the adjustments, for example by
minimising the error between the estimated and simulated distributions. Several methods
exist, differing in the way they weight the queue size probabilities. The Cramér-von Mises
Statistic is just unweighted least squares, although expressed formally as an integral, while
the Anderson-Darling Statistic places greater emphasis on the ends of the distribution (e.g.
Laio 2004). In this case simple least-squares is preferred precisely because it does not

emphasise what are likely to be the least reliable regions of an approximate distribution.

Matching the maxima of the distributions helps guide automatic selection of the adjustments.
To do this, using similar methods to those of Chapter 3 to approximate M/D/1[G] moments,
the maxima h(p,G) of the simulated extended probability distributions are approximated by

the following, where the second equation defines a link function as discussed previously:

h(p,G)=0.21—p)1—In(H(p,G))) where (5.4.21)

*1 As in Section 3.7 we use italics to identify the moments of the unshifted notional distribution.
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H(p,G)= G-l-pp (5.4.22)

Tre
This approximation achieves absolute RMS error of 0.042 in normalised predictions of maxima
values in the range [0.2,1.5], giving the trend shown in Figure 5.4.2.
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Figure 5.4.2 Linking of transformed maxima of Gamma distributions and estimates

For the purpose of testing, a least-squares fit using manual adjustment of parameters with step

size of 0.05 has been used, giving the parameters, fit and errors graphed in Figures 5.4.3-6.
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Figure 5.4.4 Optimum « and 1 adjustments for Gamma distributions
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Figure 5.4.6 Fit between simulated M/D/1[G] and Gamma distribution moments
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The error is greater the smaller the value of p but remains moderate on average, although the
match of variance can be poor. Figure 5.4.7 shows the graphical fit between the simulated

(solid) and Gamma (broken) distributions for four p values.
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Figure 5.4.7 Simulated extended M/D/1[G] and adjusted Gamma distributions

An alternative to adjustment could be to match the known p, of the queue distribution with
the equivalent property of the Gamma distribution, or match the part of the equivalent of

average p, to the expected value of (1-p). Matching p, requires the integral of the Gamma or

its cumulative distribution®, while matching P, requires the first moment of notional terms:

G+1
P, = j Gamma(x) (5.4.23)
x=0
1 G+l
Po=1-p=Py -3 jx.Gamma(x) (5.4.24)
x=0

Figure 5.4.6 earlier shows that a good match of p, is achievable, so this might improve the fit

from matching just Mean and Variance. Figure 5.4.8 shows that the Gamma distribution

reproduces the values of P, quite well.

52For numerical calculations, Microsoft Excel (spreadsheet) provides a cumulative Gamma function as well as the
Gamma function, and this may also be available in other programming tools and languages.
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Figure 5.4.8 Fit of simulated average p, with Gamma approximation

5.4.3 M/D/1 growth test with Gamma approximation

Figure 5.4.9 compares Markov simulated distributions (left) at logarithmically advancing
times of an M/D/1[5] queue with Gamma approximations (right), where the basic value of v
is the inverse of the mean of the extended Markov distribution. The Markov simulations
could be inaccurate for small t, as notional probabilities need to be factored up significantly.
Significant adjustment is also needed to the Gamma distributions (inset), and the distributions

are only broadly matched at small t. However, they converge as equilibrium is approached.

Simulated M/D/1[5], p=0.8, Lo=0 Gamma distribution approximation

Adjusted parameters

P

Wi~

897214

Figure 5.4.9 Comparison of growth to equilibrium with Gamma approximation

(Logarithmic time scale - peaks subside increasingly slowly as time progresses)

While the Gamma distribution can fit M/D/1[G] distributions quite well, the adjustments to
parameters needed are somewhat erratic, and the results are found to be rather sensitive to
them. Since the ‘real’ distributions have mode zero they may fitted more simply by the

doubly-nested geometric. However, the Gamma model may merit further investigation.
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5.4.4 Other candidate distributions and their asymptotic properties

From (5.4.14), for large x the ratio of Gamma function values of successive integer states is:

L I (T S ES
Gammdx)

In the case k=1 the Gamma distribution is precisely the exponential distribution (5.4.2). For
k>1, once x is sufficiently large compared to k the above ratio tends to a constant value given

by equation (5.4.26), so Gamma becomes exponential asymptotically:
r.—>e™ as X—o0 (5.4.26)

Using similar methods LogNormal and Poisson distributions have been tested as
approximations to M/D/1[G] extended distributions, in the former case matching the mean

and mode, and in the latter case just the mean.

Comparing Figures 5.4.10 and 5.4.11 (overleaf) with 5.4.7 suggests that these distributions
perform worse than Gamma, especially for small G. In particular, while the LogNormal
performs reasonably well for larger values of the mean (smaller s.d./mean ratio), where it is
more similar to the Normal, it performs very poorly for small values of mean where its

asymmetrical character is most evident.

For the LogNormal, the ratio has a rather complex form that after declining tends very slowly

back up towards 1, and is therefore not representative of an equilibrium distribution:

(In(x(x+1))-2n)

r =(X—+1j T S lasx oo (5.4.27)
X

Although the Poisson distribution looks broadly similar, its ratio between integer state

probabilities declines to zero, so is also not representative of an equilibrium distribution:

wy
L > 0as X - (5.4.28)
X+1

In addition, neither distribution includes the exponential distribution as a particular case, so

neither appears suitable for approximating an equilibrium queue distribution.
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More exotic distributions include the Conway-Maxwell-Poisson distribution, a generalised

form of Poisson which can match non-zero p, without needing an origin shift, but has no closed
form. Others with a smooth Poisson-like shape include the Gaudin and Tracy-Widom
distributions (which turn up as limiting distributions in connection with Random Matrices).
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However, neither has a closed form expression, nor an obvious physical connection with simple
gueues. The convenient properties of the exponential, Gamma and Normal distributions favour

their use even should some more complex distribution turn out to be a ‘truer’ representation.
5.4.5 Fitting general time-dependent distributions

It is clearly important that M/M/1 should be covered by the set of equilibrium
approximations, and it now appears equivalent to be a limiting case of M/D/1[G] where the
service interval has shrunk to zero. With three generating parameters, k, v and an origin shift,
ideally optimised by fitting po, L and V, the Gamma distribution may be suitable for

approximating other unimodal queue size distributions such as those covered in Chapter 3.

So far, mainly equilibrium distributions have been fitted. Unimodal distributions may have
enough degrees of freedom to fit po, L and V where a target dynamic distribution is unimodal,
but none can reproduce the bimodal distributions seen in Figures 2.5.4 and 5.2.1. This is not a
problem for a combination of distributions, however. The earlier results of the diffusion
approximation suggest that such a combination can consist of two Normal drifting-and-
diffusing components and one equilibrating component that retains its basic shape but changes
in scale and/or amplitude over time. This is convenient if the statistics of the queue process are
assumed to be constant. The combination is then in some sense equivalent to the combination
of deterministic and random components in the sheared approximation. Such a quasi-static
approach is not without precedent. Rider (1976) defines a variable o(t) such that the system

initially has the distribution pi=(1-c)c', relaxing to the final distribution (1-p)p'.
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5.5. COMBINATION APPROACHES TO APPROXIMATING DISTRIBUTIONS

The preceding diffusion solutions can be interpreted as an equilibrating component and two
relatively shifted diffusing components, but apart from their inherent complexity they strictly
describe time development from an initial ‘shock’, so to describe time development in
general needs convolution with an initial distribution. However, for present purposes, a time-
dependent function for the probability distribution is not needed because time-dependence is
handled by the analytical approximations to the queue moments. All that is required is to fit a
time-stamped static function to these moments. Given the three properties po, L and V, the
objective of this Section is to fit an approximate distribution that can accommodate all

conditions from initial through dynamic to equilibrium. Such a distribution can be defined by:
p(x)= A(x)pe (x, k,v)+B(x)po (x,m,s) (55.1)

subject to:
[p(x)=1 (5.5.2)
0

Here it is assumed that the equilibrium component is exponential or Gamma, and the dynamic
component is Normal or similar, so each is specified by at most two parameters. As has been
shown earlier, ‘real’ states of an equilibrium distribution, with the possible exception of p, and
p1, can be represented by an exponential function, although Gamma might be a more flexible
alternative, and a Normal function appears to be the most satisfactory candidate for the

dynamic component, although LogNormal could be considered.

The natural choices for A(x) and B(x) are either constants or exponential functions, e.g. e,
both of which can satisfy the basic FPE when combined with an exponential or Normal
function since they result in functions of the same form. The known value of p(0), derived from
po as discussed in the next Section and elsewhere, can be accommodated specially by

appropriate calibration of the weighting factors, or more generally by ensuring:
A(0)=1, B(0)p,(0,m,s)=0 (5.5.3)

The following Sections address specific issues of combining continuous distributions to

approximate a discrete queue size distribution and explore some alternative approaches.
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56. MATCHING CONTINUOUS AND DISCRETE DISTRIBUTIONS
5.6.1 Motivation and approach

While relating a discrete probability distribution to a continuous function has obvious
advantages for approximations, calculation and understanding of moments, identification of
family resemblances, and dynamic estimation, it raises the questions of how conversion can be
done consistently, how the zero of the continuous axis should be interpreted, and whether

differences between the impacts on different moments matter.
5.6.2 Relating discrete probabilities to intervals of the continuous function

Alternative ways to relate a discrete distribution to a continuous analogue are given by:
i+h+0.5
p, = J.i+h—0.5 p(x)jx (5.6.1)

p, = p(i+h) (5.6.2)

One might think that a sensible choice of h would be 0, but this requires p(x) to be defined for
x<0, which is likely to be inconvenient. If h is set to 0.5, then (5.6.1) leads to the convenient
relationships given earlier in sub-section 5.4.1. Equation (5.6.1) converts exactly between the
exponential function used there and the discrete geometric distribution. While this may not
apply to other equilibrium distributions, the tendency of such distributions to revert to an

exponential/geometric form at higher states makes it a reasonable practical assumption.

Equation (5.6.2) is accurate to the extent that p(x) is symmetrical or linear over a unit interval.
If h were a function of i and corresponded to the centroid of the interval, the two versions

would correspond. For exponential, the adjustment h is independent of i and given exactly by:

1 1-p
hoptimum :Eln[_lnpj (5.6.3)

The value of h so defined is always less than 0.5, but does not fall below 0.4 until p is below
0.1, so h=0.5 can be considered a reasonable practical assumption, given that the distribution

matching exercise will in any case be an approximation based on approximate data.
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However, what amounts to a shift in the continuous origin leads to differences between the
moments, as shown earlier by equations (5.4.4). The corresponding discrete states are in effect
shifted by +0.5. This does not affect the sum of the probabilities, but:

E:i(nh)pi =L+h (5.6.4)

0

V+L2=>(i+hfp =V +L*+2hL+h? hence

0

V=V +L2+2hL+h?>—(L+hy =V (5.6.5)

So the only correction needed is to the mean. Thus, h must be added to the analytically
calculated mean before estimating the parameters of a continuous distribution to match it.
When matching to a simulated discrete distribution for testing purposes, it is sufficient to place
the discrete probabilities at points i+h, whence the discrete mean will be augmented

automatically.
5.6.3 Interpreting the origin of the continuous function

One further point concerns the nature of p(0), which is intimately connected to the parameter v
of the continuous equilibrium distribution in Section 5.4. For the exponential function, (5.6.1)

leads to the relationship:

p(0)=v =-In(p)=In(t-p,) (5.6.6)

This transformation is essential to generate the correct continuous distribution, but it means that
p(0) and po as graphed will differ. Going back to the previous Section, estimation of the
continuous approximation will be much simplified if only the equilibrium component is
assumed to exist at x=0. Therefore its parameter v can be calculated from the po of the
analytical approximation, analogous to the quasi-static utilisation x in the sheared
approximation. This requires the dynamic continuous component to be zero at x=0, which can
be assured by suitable choice of weighting functions. It does mean, however, that this
component does not vanish entirely on [0,1], so in principle, po is influenced not only by the
form of the equilibrium component but by the dynamic component too. In practice this can

probably be ignored, again appealing to the approximate nature of the exercise.
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5.6.4 Effect of weighting on the Gamma distribution used as an equilibrium function

If pe is chosen to be an exponential equilibrium distribution, exponential weighting is
straightforward, as described later.

If pe is chosen to be a Gamma distribution, the shape parameter k can produce a peaked
unshifted distribution. For M/D/1[G] (signal-type) processes, the distribution will then need to
be shifted by G places (approximately), and po will be calculated by summing notional state
probabilities where relevant. For G/M/r processes (i.e. infinitesimal service period), G=0. All
variables except x and k can be functions of time. Finite moment integrals of the Gamma

distribution can be expressed in terms of the Cumulative Gamma with modified parameters.

Iyx.Gamma(x,k,vﬁx=l.CumGamm{y,k+1,k—vj (5.6.7)
0 \Y k+1

Y , k+1 kv
x“.Gammax,k,vdx=——.CumGammay,k + 2,
'[0 6( V)j kv? {y i K+

2) (5.6.8)

Exponentially weighting the Gamma distribution by the factor e modifies its amplitude and

scale without change of shape:

k

5E(X,9,k,v)s L@ .Gamm{x,k,v+gj = A(G,k,v)pE(X, k,v+§)

V4=
k

(5.6.9)
5.6.5 Using nested exponential/geometric distributions for the equilibrium component

Although the Gamma distribution seems a good approximation to the various possibilities of
equilibrium distribution, it may be asked whether it is really necessary for the present purpose
given that the time-dependent approximation of queue evolution will provide instantaneous
(end of time-slice) values for po, L and V, and the known queue statistics will define the
corresponding asymptotic equilibrium values for the current time slice. Then the doubly-nested
geometric approximation can provide a discrete asymptotic equilibrium distribution with the
same degrees of freedom as a shifted Gamma. Figure 5.6.1 confirms that in general the
exponential functions that fit the three parts of a doubly-nested geometric distribution, po, p1,

and {pi} (i>1), are too different to be merged into even a piecewise-continuous single function.
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Figure 5.6.1 Fitting exponential functions to parts of doubly-nested geometric distribution

Where p, and possibly p; depart from the geometric form, it seems most manageable to adjust
the mean and variance of the continuous approximation so that only an ‘underlying’ geometric

distribution, as represented by the parameter p introduced earlier in Chapter 3, need be
matched. If the shape of the nested distribution is assumed fixed through time, then the other
parameters can be calculated from ratios of the asymptotic equilibrium values as determined by
the actual p and queue statistics. The contributions of the other parts to the mean and variance
need to be assessed. Working with the second and third components separately is more
complicated than appears justified by the approximate nature of the exercise and the moderate
contribution to the moments made by p;. Thus it is practical to work with a full geometric

distribution based on the third p parameter, which is the default in case one or no levels of

nesting are involved.

Since po does not contribute to the continuous mean or variance, only the contribution of p; has
to be accommodated by them. To do this the exact difference from the contribution of p could
be calculated, but the expressions are complicated because both ends of the integral are finite.
By separating out the first two discrete states of the distribution, and treating the rest as
continuous, and assuming an exponential weighting factor e, an approximation to the sum or

integral of the probabilities is:

P =(1—p")+p L-pl + p*é(#jeze (5.6.10)
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There is no need to involve h here since the discrete components already incorporate this shift.
It can be seen that ISE reduces to 1 when 6=0. If the exponential weighting function is treated as

quasi-linear in the neighbourhood of x=1, then the adjustment for the weighted mean is:
Le =P+ p*(l— Ejee(““) (5.6.11)
p p

Since 1°=1, the adjustment to the weighted second cumulative moment Ve+L¢” is the same. It is

probably simpler to make this adjustment than a more complex adjustment to Ve alone.

There is an implementation issue with these equations in that they involve 6. In order to get a
solution, the target value of L must be specified, but this now depends, usually to a small
extent, on the solution. To avoid a circular reference, the value of 6 must be fixed, and this
would normally be the initial estimate. In principle, the calculation should be iterated using the
value of the previously solved 6. In practice this may not be worthwhile, as the non-geometric
nature of the probability distribution is unlikely to be evident unless the queue is close to

equilibrium, in which case 6 will be small anyway.
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5.7. LINEAR COMBINATION APPROACH

This Section considers a linear combination of exponential and Normal distributions using
constant weighting factors, as perhaps the simplest approach to a combined distribution:

p(x)= Apc(x,v)+Bpy (x,m,s) (57.1)

where the component distributions are defined respectively by:

pe (x,v)=—p* logp=ve ™ (5.7.2)
1 ’E[X mj

X,s,m)=——=e " ° 5.7.3

pN( ) sJon ( )

Using some weighting factors A and B the constraints imposed by the moments are:

B
A+—erfc -—— = 574
-5 (5.7.0)
A Bs ie%g] +merfc(——J =L (5.7.5)
v J2rn sv2
m 2
(mjz [l+(sj ]
2A Ll 0 m g m )
S iBs? ———e %/ 4 erfc| — =V +L (5.7.6)
v2 sv2n 2 [ s\/i]
8 7
Av + e **/ =plo 5.7.7
T p(0) (5.7.7)
As per equation (5.4.3), po for the exponential component should be calculated as:
1
peo = [, Pe(y)dy=1-¢" (5.7.8)

As an alternative to integrating the Normal over the range [0,1], it can be approximated by

the median value, assuming local monotonicity:

() oy

1 1 e 2
= dy ~ b — hence 5.7.9
Pno .[)pN(y) y pN[Z) sJ2n e ( )
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oo ) 2] _

_ = p 5.7.11
S\/ﬂ 0 ( )

AL-e™)+

The following substitutions can now be made, the last two depending on whether p(0) or po is
to be fitted according to (5.7.7) or (5.7.10):

1erfc(— i) _@-A) and (5.7.11)
2 S+/2 B
1 e—%[?] _(p)-Av) or (5.7.12)
Sv27 B
o _(pg-poe e+
1 A% (po—Al-e™)e '’
= - - (5.7.13)

Noticing that (5.7.12-13) can be used to eliminate B, (5.7.5-6) can be rewritten to give simple

weighted sums of the primitive moments with an adjustment term:

é+(1—A)m+E:|_ (5.7.14)
A%
28 (- Am? +57)+ Em=V + L2 (5.7.15)
N

where, depending on the choice between (5.7.12-13), the adjustment term E is either of:

Eq =(p(0)— Av)s? or (5.7.16)

(5.7.17)

Thus there are two equations to fit four unknowns {v, m, s, A} A possible solution approach
is to take account of the dynamics described earlier, the constant rates of drift of the mean
and diffusion of the variance of the Normal component, but this raises the question what
should be the time origin, as in the case of time-shifting the diffusion approximation. The
relaxation behaviour of the exponential component could also be assumed. In principle,
fitting both initial and final states would then mean four equations for five unknowns (time
origin being the fifth) since the values of v, m and s would be linked through time, although
there seems no natural link between the factors A over time. Despite this improvement, this

approach seems to present as many difficulties as the diffusion approximation.
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5.8. LOGNORMAL APPROACH

It was argued earlier that the LogNormal does not satisfy the FPE and is unsuitable as an
equilibrium queue distribution because of its relatively heavy tail, which does not tend towards
exponential. However, it does have two desirable properties for approximating the dynamic
component, namely being zero at x=0 (if unshifted), so naturally accommodating the reflecting
barrier, and approximating Normal when the standard deviation is much less than the mean. If
the queue size distribution can be divided into separate equilibrium and dynamic components
then an explicit solution may be arrived at. Since the unshifted LogNormal vanishes at x=0 the
amplitude of the equilibrium component there can be determined. However, this component

must be weighted so that its integral is < 1, to leave room for the LogNormal component.

If pe(0) must equal p(0), its weight must be a function of x and must equal 1 at x=0. Assuming
that pe is restricted to the exponential (k=0), an exponential weighting function (as proposed
earlier) satisfies the requirements. Since the LogNormal vanishes at x=0, its normalising factor

can be a constant. Equation (5.5.1) reduces to:

p(x)=e *pg (x,k,v)+np,(x,m,s) (5.8.1)
pe (x,v)=—p* logp=ve ™ (5.8.2)
P :Ie_eXpE(X):vie (5.8.3)
Le =Ixe‘°" pe (x)= o; (5.8.4)
Ve + L2 =Ix2e‘9XpE(x)= o erve)s (5.8.5)

Since the LogNormal is defined only over [0,), its contribution to the mean and variance can
be calculated directly, and the constant normalising factor n is calculable directly from the
integral of (5.8.1) which is fixed at 1:

ne1-—v -9 (5.8.6)
v+0 v+0

The LogNormal is specified with two parameters (with location parameter = 0):
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(5.8.7)

I:Lz]gxpL(x)zﬁ(L— hd jz(VJre)[L— A ]:meéSz (5.8.8)

’ 0 (v+0) (5.8.9)
=m?e¥’ (eSZ —1)+ e’ )zmze232
leading to the explicit solution
L v,
m= L s= In(~—; +1J (5.8.10)
L

Equations (5.8.9-10) together allow m and s to be expressed in terms of modelled moments:

(L(v + 9)2 - v)z

T vrop e 0p —2v)

(5.8.11)

ot _ollv + L2y o —2v)
(L(v + 9)2 - v)2

(5.8.12)

If 6=0, m and s become essentially undefined, and n=0 from (5.8.6). If v=0, the exponential

distribution component vanishes, and (5.8.11-12) reduce to L= L, V =V . Once 0 is chosen,

the distributions are explicitly determined. The simulated distributions of a relatively heavy

peak case, J3P9, have been fitted by selecting the values of 6 that minimise the sum-of-squares

error between the distributions, where the ith discrete term is compared with the continuum

probability at x = i+0.5. The results given in Figure 5.8.1 show that 6 never rises much above

0.1 and the error is moderate in all time slices.
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Figure 5.8.1 Exponential and LogNormal distribution fit results for J3P9

The LogNormal function is convenient and easy to work with. Sadly, added to its failure to
satify FPE as noted earlier, the match between shapes of estimated and simulated distribution is
poor. Figure 5.8.2 gives the example of Ts 8, just after the peak, where the inset shows that
while the mean and s.d. agree closely, the distributions visibly do not match, because the

simulated distribution is close to Normal while the LogNormal is substantially skewed. This

situation is inevitable where the real distribution is dominated by the dynamic component.

001
* PE(x)
= pL(x
0008 p ( )
- plx)
> Ts8
0.006
x
o,
0.004
T=8 Series E+L estimate
Mean 153.25 153.23
S.D. A47.7 47.65
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a
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X

Figure 5.8.2 Simulated and exponential+LogNormal distributions for J3P9 post-peak
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59. EXPONENTIALLY-WEIGHTED NORMAL APPROACH
5.9.1 Formulation and its consequences

A weighting factor linear in x or t cannot cover an infinite range. The simplest usable weighting
function running from 1 to O over the range [0,o) is an exponential function of x, as already
applied in earlier Sections, whose parameter 6 could be a function of t. If a complementary
factor is used for the dynamic component, this ensures that only the equilibrating component is
non-zero at x=0. In general, the parameters in the weighting factors could differ, though in
practice they will be equated to reduce the degrees of freedom. Even then the problem is
overspecified because there are four parameters to be fitted to three moments. The combined

extended probability distribution can be written:

p(x)=e"pg(x.k,v)+ n(l— e ¥ )pD (x,m,s) (5.9.1)

Now assuming the dynamic part to be Normal, exponential weighting acts to shift and scale the

distribution, leaving its Normal form unchanged:

_of m-2s2
BN(X,¢,m,s)Ee¢( 2 ij(X,m—q)sz,s)z B(¢,m,s)pN(x,m—¢sz,s) (5.9.2)

Equation (5.9.1) is thus transformed into a linear combination of three components, such that

the last two cancel at x=0, leaving the weighted exponential pg(0) to represent (most of) po.
0 2
p(x)= ApE(x, k,v+ Ej + n[pN (x,m,s)— Bp, (x, m—¢s s)] (5.9.3)

This has a similarity to the form of the diffusion solution (5.3.5), and the second Normal term

can be considered to represent a reflected component.

Compared to the linear combination, the contributions of the equilibrating component to the
mean and variance of the whole distribution are no longer simply factored by a constant,
because the exponential weighting factor enters into the integrals when calculating the first and
second moments. Numerical evaluation of the estimated distribution should present no
fundamental difficulties since exponential, Gamma, cumulative Gamma and error (erf/c)

function approximations are available in most programming languages.
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Moments require integration over [0,00). As the exponential or Gamma equilibrium components
are not truncated, their standard mean and variance can be used, except when calculating po
(unless the range is short enough that the integral can be approximated using the median value
of the function). The Normal functions do need to be truncated, so error functions will be
involved, and it is no longer possible to get closed-form solutions for the Normal parameters as

it was for the LogNormal approximation.

5.9.2 Formulae for weighted exponential distribution as equilibrium component

Accepting the exponential distribution as a quasi-static approximation to part of a time-
dependent distribution, the first step is to equate the first (or only) traffic parameter p or p~ with

the utilisation, to give the parameter of the continuous analogue:

v=-Inp" =-Inu=-In(l-p,) (5.9.4)

Starting again with the exponential distribution (assuming M/M/1 for simplicity):

pe(X)=—p™Inp" =ve ™ (5.9.5)
P :Ie_eXpE(X):vie (5.9.6)
Le =;|jxe "o (x)= o :6)2 (5.9.7)
Ve +L2 =Ix2e‘9XpE(x)= o erve)s (5.9.8)

For a doubly-nested distribution the correction (5.6.10-11) can be applied to the moments

provided that v is replaced by v calculated from the asymptotic geometric parameter p.
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5.9.3 Formulae for weighted Normal distribution as dynamic component

As the Normal function is truncated, its integrals involve error functions:

[} pu(xum,s)ix= %{erf ( 3;:/5”“)+erf (%ﬂ (5.9.9)
j;y Xpy (X, m, s)dx = %{erf ( 3;:/;)+erf [%]}%[em _e%[ ysmq (5.9.10)

'Lyxsz(x,m’S)dX:(m2552){erf£y ]+erf( m J}rﬁei@)z_()um) e*%(y;smz

sv/2 T 2n Jor
(5.9.11)
Specific moment integrals over [0,00) are:
_[ p, (x,m,s)d I X mj 1 erfc(— —j (5.9.12)
s\/_ s+/2
ro xpy (x,m,s)dx = M (m,s)= Le_%(?jz m erfc(— —j (5.9.13)
0 Vor sv/2

_afm ’ 2 2
f:xsz(x,m,s)deS(m,s):%e ) 8 J;m erfc(—%j (5.9.14)

Using the shorthand:

1 A8 L[ ) )
N(m,s)=——e **/ E(m,s)==erfc| ———= | F(d,m,s)=¢e
(ms)=——e "+ Elms)=Zerld - | F(oims)
(5.9.15)
equations (5.9.12-14) can be rewritten:
.[:OpN (x,m,s)dx=E(m,s) (5.9.16)
ﬁ(pN (x,m,s)dx=M(m,s)=sN(m,s)+mE(m,s) (5.9.17)

j:xz py (x,m,s)dx = S(m, s)=msN(m,s)+(s2 +m? JE(m,s) (5.9.18)
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5.9.4 Combining the distributions

Combining the integrated components in accordance with (5.9.1) and (5.9.3), the moments of
the full distribution approximation are:

I:p(x)dx =1= G I ) + n[E(m, s)—F(e,m, s)E(m —0s?, s)] (5.9.19)
L= oy + n[M (m,s)—F(6,m,s)M (m —esz,s)] (5.9.20)
Val2=—2ins(m,s)-F(6.m,s)s(m—os? s] (5.9.21)

—_

v+0)

Most of the error function terms in (5.9.20), and thanks to (5.9.3) all the straight exponential
terms, can be eliminated to give an alternative expression for L from which equation (5.9.19)

can be used to eliminate n if required:

LoV, mo +e‘°[”“‘3ﬂ(”952Jerf{_(m—esz)j (5.9.22)

(v+0) v+6 2 sv/2

Equation (5.9.22) confirms that the mean tends to 1/v for small 6, and to m for large 6 and large
m, with an additional term that vanishes at both extremes and is linked with the ‘reflected’

Normal component.
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5.10. SOLVING EXPONENTIALLY-WEIGHTED DISTRIBUTION COMBINATION
5.10.1 Motivation and approach

The purpose of this Section is to show that solutions exist for time-stamped queue size
distributions, that satisfy the constraints of time-dependent moments and are a reasonable
match to simulated distributions. It is not proposed to define a solution algorithm since standard
numerical methods exist. While these methods may not be computationally efficient enough to
be embodied ‘on-line’ in an analytical traffic modelling program, they should be usable ‘off-
line’ as a post-processing output. More efficient methods, e.g. to enable the probability of
spillback to be incorporated into an assignment algorithm, are left for future research, though

‘heuristic’ estimations based directly on the queue moments might be possible.
5.10.2 Practical problems affecting analytical solution methods

If the normalising factor n is eliminated this leaves just three degrees of freedom represented by
0, m and s. Since v is fixed by po, there are just two moments to be fitted, L and V. Hence the

problem is overspecified unless some other constraint, such as on shape, can be imposed.

In the LogNormal approach, the explicit expressions for m and s reduce the solution problem to
one of choosing 6. As an explicit solution for m and s appears impossible in this case, even
where 0 is specified, it is natural to ask first whether a solution can be found by minimising an

objective function. Differentials of the elementary functions in (5.9.15) include:

dN =ms?N (ms‘lds - dm) dE =s™*N (ms‘lds — dm)

dF = 6%sFds— OFdm~— (m — 6s? )Fdo (5.10.1)

where N represents the Normal component, N(x,m,s) or N(m,s) with x=0 understood as

appropriate. Since v is assumed to be fixed by p,, the differential of the integral (5.9.19) is:

\%
0= —mde
+[E(m,s)- F(0,m,s)E(m - 05, jin
+ nN(m,s)(ms‘zds—s‘ldm) (5.10.2)
—nF(0,m,s)N(m—0s?,s)(ms2 +0)ds— s dm-+ sdo)

- n(estds —OFdm-— (m —0s® )FdG)E(m —0s?, s)
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This expression alone has 12 terms, of which only one can be eliminated by fixing 0, and the
equivalents for dL and dV would be even more complicated. Alternatively the differentials of
(5.9.1) can be integrated:

dp=x(nN - p)de + n(1_e—6x)N{(X—m)(dm+§j+@}

= x("N - p)do +(p —Ve(we)x{(x_ m)tdm%}@}

(5.10.3)

0= (nJ.xN - L)de+[(L‘2m)(dm+Ej+@}

S S n

- v(iz(dm + %j + @Jj(x —m)e(v+oK

S S n

= (nM(m,s)— |_)d9+[(|‘;2m)(dm+EJ+ﬂ}

S S n

el g, ), )

(v+oy \s? s

(5.10.4)

This is somewhat more manageable, as would be J.xdp and Ixzdpfrom which dL and dV can

be obtained. However, it is still a fairly awkward expression, encouraging the use of a standard

numerical solution method for the purpose of practical demonstration.
5.10.3 Selecting initial parameter values and target criteria

Numerical methods generally require an initial approximate solution, the choice of which may
affect the final result. The simplest starting parameters that would not cause an instant error are
0=0, m=0, s=1. This would produce an initial exponential distribution. Following some
experimentation, it has been found that except in equilibrated (or nearly) pre-peak time slices,
where the exponential is a natural initial choice, a useful initial estimate of 0 is given by the
following, obtained simply from (5.9.19) by ignoring the contribution of the second Normal

component, assuming n=1, and setting initial m and s as if the distribution were Normal:

m=L, s=\V (5.10.5)
Oy — 2 g (5.10.6)
erfc(—mj



L is the target mean queue adjusted according to equation (5.6.4), and v is calculated from po
according to equation (5.9.4). The possibility of solution can be tested by using a numerical tool
such Solver available with Microsoft Excel, whose default solution method is Newton.

The error in the estimated distribution (‘dis’) is not naturally normalised, but the sum of
squared differences (5.10.7) will converge and become nearly constant for sufficiently large N.

N

Error(p):\/Z(pi(sim) - pi(dis))2 (5.10.7)

0

However, minimising this error cannot be an objective because a simulated distribution will not
normally be available. Therefore the target for solution must be based on fitting moments of the
distribution. However, since there are two moments that in general cannot be fitted
simultaneously, so they must be combined in some way. A simple choice is to combine the

errors in the mean and standard deviation unweighted:

Erro r(L, S) = \/(E(tar) - L(dis))z + (S(tar) - S(dis))2 (5108)

Alignment of the discrete and continuous distribution was discussed earlier in Section 5.6. In
these tests the discrete probability values taken from the simulated distributions are placed at
half-interval points, i.e. po at x=0.5, p; at x=1.5 etc, amounting to assumption of a constant
displacement h=0.5. As pointed out earlier, this is quite accurate for higher values of p, and not
too far off for lower values. The discrete mean is thus automatically adjusted before being
compared with the continuous mean (variances being unaffected). When fitting a distribution to
a calculated mean queue size, the latter needs to be adjusted explicitly, the earlier argument

again justifying the simple addition of 0.5.
5.10.4 Early unsuccessful attempts at efficient solution

In principle an explicit solution method tailored to the problem would be preferable to a
proprietary ‘black box’, or numerical calculation of uncertain duration. However, an attempt
to create an ad hoc solution for the parameters by extrapolating the results of varying them by
small amounts, e.g. +10%, proved unreliable. Improving upon standard but not necessarily
efficient, e.g. Newton, solution methods would be likely to be a major piece of work in itself
and a digression from the present purpose. Computationally efficient implementation of the
estimation of probability distributions, as such, is not an aim of this work, so for the purposes

of demonstration a method available with proprietary software has been used.
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5.10.5 Solution results using Excel Solver
Two peak cases have been used in tests, J2P4 and J3P9, the latter being the more demanding
because it represents one of the heaviest peaks. Steps of estimation are given in Table 5.10.1,

Figure 5.10.1 plotting values of 6 and errors for 15 time slices of J3P9, each 10 minutes long.

Table 5.10.1 Excel Solver estimation schemes for distribution parameters

Setup Define criterion, e.g. mimimise error in L, S=VV as defined by (5.10.8)
1 Set initial 6, m, s Solve for 6,m, s
2 Force m=0, set initial 6,s Solve for 0,s
3 If p<1, Force 6=0, set initial m, s Solve for m, s

Output Select the result that minimises the error criterion

The initial parameter estimates (5.10.5-6) are used in each step - there is no recursion. Forcing a
parameter to zero means that it is not only initialised to zero but is held to zero in the solution.
The logic of Step 3 is that an equilibrium distribution cannot occur if p>1, but Step 2 is also
aimed at p<1 since a dynamic distribution is likely to have a significant Normal component
with m>0. It is found in practice that Step 3 does not improve the solution, so can be omitted.

In testing the method, there is an issue concerning what is being compared with what. Initial
test sought to establish that it could reproduce the queue size probability distributions given
their actual moments {po,L,V}. In the ‘heat-maps’, Figures 5.10.1-2, the minimum error
solutions are indicated by bold time-slice numbers. The subjective fit to the distribution is
indicated by a colour code: full green is good, light green acceptable, yellow indicates a defect

though not necessarily serious, red is unacceptable, and blank means not tested.

0,m,s 1 2 3 5 6 7 8 9 10 12
0,m=0,s 1 3 11 12
6=0,m,s 3 5 6 7

Figure 5.10.1 Verification of distribution fit by time-slice for J2P4 moderate peak

o,m,s 2| 6 7 8 10| 11 13 14 15
0,m=0,s 3 4 6 7 8 E]
0=0,m,s 2| 4 5 6 7 2 9

Figure 5.10.2 Verification of distribution fit by time-slice for J3P9 heavy peak

Significant results are that:
e No pure equilibrium solution with 6=0 is optimal, though the difference can be small;
e Modified equilibrium solutions with m=0 may be optimal outside the peak;

e In most post-peak periods all three parameters are optimally non-zero.
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Figures 5.10.3-4 plot errors for the same two peak cases as Figures 5.10.1-2. Errors in the

distribution (equation 5.10.7) are absolute since the distribution is normalised, and are modest,

the greatest being a little over 4%. Errors in the moments according to the criterion equation

(5.10.8) are shown relative to the mean queues and are very small.
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Figure 5.10.3 Intrinsic distribution fit errors by time-slice for J2P4 moderate peak
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Figure 5.10.4 Intrinsic distribution fit errors by time-slice for J3P9 heavy peak

Figures 5.10.5-6 compare estimated and simulated probability distributions for four time slices

in each of

the peak cases, where it can be seen that the fits are close. In these plots the green

and red curves represent the exponential and Normal components respectively. The resultant

estimated distribution in blue and the simulated distribution is purple and marked by crosses.

These results give confidence in the method as such.
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Figure 5.10.5 Intrinsic distribution fits in four time slices of J2P4 moderate peak
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Figure 5.10.6 Intrinsic distribution fits in four time slices of J3P9 heavy peak

However, in practice the simulated distributions will not be available, and the estimated queue
moments will be developed over many time periods allowing errors to creep in. Therefore to
compare estimated with simulated distributions time-slice by time-slice is not entirely fair, but
is nevertheless necessary to establish usefulness of the method. Figures 5.10.7-8 plot errors in

estimated distributions on this basis.
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Figure 5.10.8 Distribution fit errors through time-slices for J3P9 heavy peak
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Errors in the distribution itself are highly variable but only in isolated cases reach 10%. The
larger errors reflect difficulty in reproducing simulated distributions either because of their
shape or because po is not accurately estimated, bearing in mind that its estimated value is
highly sensitive to estimated utilisation near to 1. In some time-slices, the fit to the simulated
distribution could be improved (broken lines) but only at the expense of worsening the fit to the
estimated moments. Results are necessarily a compromise, but Figures 5.10.9-10 show that the
distribution shapes are in most cases similar, a notable exception being in Ts 3 of case J2P4,

which lies in the pre-peak transition period just before oversaturation.

254



J2P4Ts3 L7 . J2P4 Ts6 1"
0=0.952 o - /N p=1.1384 L

J2P4Ts8 L - J2P4Ts9 1

p=0.9520 i p=0.8032
Y "

Figure 5.10.9 Example distribution fits in four time slices of J2P4 moderate peak

pli)_1s3 [« pri_Ts6

J3P9 Ts3 J3P9Ts6
ones 1 _3 p= 1 .01 41 Siovulated | p: 1 . 1 458 |« simulated |
) o, I “

J3Pg TSS _.:Dm’m J3Pg TS1 3 'Euluusn

- p=1.1225 p=0.8086 s

#00)

oﬂ-l) .

Figure 5.10.10 Example distribution fits in four time slices of J3P9 heavy peak
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Table 5.10.2 gives some parameters of the peak cases to indicate scale.

Table 5.10.2 Throughput parameters for the peak cases tested

Case  Average Timeslice  Ave. throughput Max. traffic  Duration of
capacity duration capacity in Ts intensity oversaturation
J2P4  14.7 units/min 9 minutes 132 1.1384 36 minutes
J3P9  22.5units/min 10 minutes 225 1.1458 80 minutes

While the Normal distribution makes a good approximation around the height of a peak in these
oversaturated cases, it is evident that both components are needed post-peak once demand falls
below saturation. As indicated by Figures 5.10.1-2, no distribution is adequately fitted by a
purely exponential distribution - there are no optimal solutions with 6 exactly zero. This result
is less surprising in hindsight, given that the queuing processes are dynamic. Values of m tend
to be similar to the mean queues unless 6 is very small, while values of s vary quite
considerably. Solver would be expected to find a small value of 6 where the moments are near

to equilibrium. This is consistent with the view that Step 3 in Table 5.10.1 can be omitted.

Figures 5.10.8-9 show that problems occur mostly in the pre-peak growth period and the period
of maximum post-peak decay rate where it is most difficult to estimate the moments reliably.
Since the queue estimation procedure gives quite accurate values of mean, and reasonably
accurate values of standard deviation, some of the difference between can be ascribed to a
difference between the simulated and calculated values of po, which is critical for ‘pinning’ the
left-hand end of the distribution. This is an aspect of the macroscopic time-dependent queue

approximation which might be addressed in further research.

From the viewpoint of risk and resilience an important practical question is how accurately the
tails of queue size distributions can be estimated, though this depends on where the critical size
is placed. These questions could be addressed in further research. The results given suggest that
the error in estimation of tail probabilities, assuming these to begin some way above the
distribution mode, is likely to be small except in a few cases and then mostly pre-peak, while

concern is likely to be focused post-peak when extended distributions are most likely.
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5.11. CONCLUSIONS ON ESTIMATING PROBABILITY DISTRIBUTIONS

Probability distributions of queue size or delay can be important both for estimating the
reliability of travel times and for predicting the likelihood of blocking effects on facilities
upstream of a bottleneck. Then the shape of the distribution is important for estimating not only
the weight of the tail beyond a specified point, but also its sensitivity to changes in parameters,
which is maximised near where the slope of the distribution is greatest. If this point coincides
with a critical network location or facility then both large and unpredictable variations in
system performance could result. Knowing mean and variance alone is insufficient where
probability distributions are far from an equilibrium shape, as the foregoing shows is probable
in peak cases. However, distributions can be estimated if utilisation or the probability of the

queue beng zero is also known.

This Chapter 5 has discussed the nature of time-dependent queue size distributions and how
these can be represented by time-stamped® continuous functions with equilibrium or diffusion
characteristics. Standard diffusion solutions, while informative, are considered too difficult to
work with for present purposes, that seek only to fit distributions statically to analytically
derived time-dependent moments, rather than to obtain fully evolving time-dependent
distribution functions. Having considered various methods, it is concluded that an
exponentially-weighted combination of an equilibrium distribution, most simply exponential
but possibly Gamma or doubly-nested geometric/exponential, with a Normal distribution, can
give sufficient flexibility to match distributions generated by simulation. The problem is
underspecified, and satisfactory results have been obtained in tests using a generally available

standard solution method and a simple objective based on the target moments.

Development of equilibrium and time-dependent deterministic variance formulae, correction or
substitution of time-dependent mean queue formulae, enlargement of the range of queue
processes to which these can be applied, and development of approximations to equilibrium and
dynamic probability distributions, complete the main aims of this work. Computationally
efficient implementations require an efficient solution algorithm, but specifying this is not an
objective since standard methods exist. Implementation for demonstration purposes and

computational issues are discussed later in Chapter 7.

5%Time-stamped’ signifies that the probability distribution is evaluated for a particular point in time during the
evolution of a queue, from time-dependent moments, but is not explicitly a time-dependent function.
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CHAPTER 6: QUEUING ON MULTIPLE LANES

6.1. INTRODUCTION

Queues on several interacting lanes, and the particular case of two lanes with turning
movements, are explored. Apart from extending the range of cases accessible to time-dependent
approximations, and potentially leading to enhanced junction modelling methods, this may give
insight into some features of queuing processes. Efficient approximation methods are sought
for cases complicated by the interaction of several traffic streams, situations not covered in the
foregoing Chapters. Multi-lane queues raise issues about how the statistics of arrivals and
departures should be represented, because from the myopic viewpoint of a particular lane,
arrivals may appear to be ‘censored’ if they select another lane either randomly or when the
queue there appears to be shorter. If lanes are assumed to share the capacity of a common
service channel, effectively their service processes become correlated. The extent to which
multi-lane processes can be accommodated by the Pollaczek-Khinchin model is considered, and
properties of lane probability distributions are investigated. A paper reporting some of this
work was presented at the UTSG 2011 conference (Taylor 2011).

6.2. MULTI-LANE FORMULATION AND ANALYSIS OF TWO LANES

Many junctions, particularly larger ones including major roundabouts, have several entry lanes.
Although some lanes are dedicated to particular turning movements, others may be shared by
different movements, and movements may have a choice of lanes. Short flares may be present
which interact with main approach lanes, but only main lanes of unrestricted length are
considered in this idealised analysis. If choice of lane is available, it may be random or involve
rational selection, for example choosing the lane that appears to contain the shortest queue. The
question is then how this affects the queue sizes. Although M/M/c and G/G/c multi-server
queues are covered by standard works, they tend to deal with short queues on a large number of
non-interacting channels, whereas the type of queues of interest here are likely to be longer on

fewer channels, and lane-changing either within or on departure from the queue may occur.
6.2.1 Apparent problem with queuing on two lanes

For a single lane where the traffic intensity is p the M/M/1 equilibrium queue size is:

L =P (6.2.1)
1-p
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Suppose a junction approach is divided into two lanes, and arrivals can choose a lane either
randomly or according to some rule, and there is sharing of service, as in Figure 6.2.1.

i

Lo o I

i

Figure 6.2.1 Two lane approach with possibility of lane choice and service sharing

If there is no lane-changing after arrival and no sharing of capacity, then the lane queues are
independent apart from the initial choice of lane. In the steady state, queue size depends only on
the demand intensity, not the arriving volume or capacity separately. If each lane has half the
total capacity and arrivals are divided with rates yA left and (1-y)A right, and the process in each

lane is M/M/1, then the total equilibrium queue is:

_ 2 20—yl _ 2p(-2yp(L-7))
S e e Tzl 2

Because the capacity of each lane is fixed, total queue size is maximised when y is 0 or 1, and a
lane can become oversaturated even if p<l. Total queue size is minimised when y=0.5, but is

then twice what it would be in a single lane, namely:

L, = 12—p (separate and symmetrical lanes) (6.2.3)

This does not seem realistic. If either lane can be chosen freely, arrivals might choose the lane
they perceive to have the shorter queue™, but this does not seem to be essential since any
symmetrical strategy, from choosing lanes alternately to choosing a lane randomly, should
equalise the mean lane queues. If the centre line is removed, allowing free movement between
lanes, it can be replaced in simulation by free choice between lane servers, if this is possible.

Lane-changing as such is only of interest in as much as it may affect throughput capacity.

% An element of mis-perception can be introduced by adding to the actual queue size a random amount
proportional to the square-root of queue size. This effectively treats the space occupied by customers as a Poisson
variable. In practice, it is the split ratio which matters, not the method used to achieve it.
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If these various processes are imagined to be hidden inside a ‘black box’, they become
equivalent to a single lane (6.2.1). By symmetry, each lane queue must then be half the total.

Yet the demand intensity on each lane is still p, since both the arrivals (assumed symmetrical)
and the nominal capacity in each lane are halved. Therefore the statistics of the queue process
in either lane can no longer be M/M/1. If lane choice by arrivals is (relatively) unimportant, as

implied above, then it is the service process that is critical.

If two lanes ultimately feed into a single stream, for example where a multi-lane stop line at a
roundabout feeds into an unmarked circulating section, some turbulence in the merge might be
expected. In practice such movements may be difficult to observe in detail, making it difficult
to verify a description except in aggregate. Nevertheless, one can imagine a range of
possibilities from no sharing of service to perfect sharing, with any actual case approximated
somewhere in that range. This is of some interest for its own sake, and is approached here in
those terms, but there is also the possibility of shedding light on non-M/M/1 processes and on

how they can be approximated.
6.2.2 Simulation of multi-lane queues and their probability distributions

A simple microscopic simulation program has been constructed, where arrival and service
events have exponential headway distributions generated using a standard pseudo-random

generator®, with sufficient events to allow equilibrium to be approached. Options include:

o Lane selected randomly on arrival and for shared service
e Shortest lane queue selected on arrival and lane selected randomly for shared service

¢ Independent arrivals and service on each lane with same total traffic.

Queue sizes are given in Table 6.2.1 for a four-lane case, with p=0.9, capacity u=1 for shared
service or 0.25 for independent service where each lane receives 1/4 of the flow, and 1 million
simulated events. The difference between the simulated and expected mean queues, 8.838 and
9.0 respectively, is consistent with an analysis of ‘standard’ error given in Appendix F*. The
shared service mechanism in the first two cases selects a lane at random from those where a
gueue is present. Therefore the process is not truly FIFO, since queuing ‘customers’ are not
represented explicitly. That the effect of this is small has been confirmed by a small difference
in results using an alternative simulation that maintains FIFO in each lane. However,
differences in the software and its efficiency are significant because individuals are identified.

As is to be expected, there is substantial correlation between lane queues with shared service.

*® Random number generator supplied with the Silverfrost Fortran 95 compiler.
% | am grateful to one of the Examiners for pointing out a need to increase the number of events simulated.
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Table 6.2.1 Queue sizes in multi-lane simulations (p=0.9, u=1.0, 1M events)

No. of Capacity pand Total Individual Lane Queues Correlation of

Lanes Type of process Queue Lanel Lane2 Lane3 Laned4 Queue Sizes(r)

1 1.00 random 8.838 8.838 - - - n/a

4 0.25 indep. 36.786 9.211 9.254 9.128 9.193 0.009
4 1.00 shared 9.178 2.310 2.271 2.344 2.253 0.373
4 1.00 shortest 9.178 2.295 2.292 2.295 2.296 0.933

Table 6.2.2 verifies that the statistics of arrival and service headway sequences are close to
exponential (coefficient of variation = 1) and uncorrelated in a single queue. There is some
correlation (Pearson r) between arrivals and service on lanes with shared service, as may be
expected since arrivals correlate with queue size, and queue size correlates with service since a

larger queue is more likely to ‘borrow’ service from another lane.

Table 6.2.2 Arrival and service intervals in simulations (p=0.9, u=1.0 shared, 1M events)

Arrivals Service

Single Multi-Lane Queuing Single Multi-Lane Queuing

Queue Lanel Lane2 Lane3 Lane4 Queue Lanel Lane2 Lane3 Laned

Mean 1.112 4.453 4.454 4439 4451 0.999 4.003 4.001 3.990 4.002

S.d. 1.114 4452 4465 4.462 4461 1.002 4.045 4.058 4.041 4.037

Co.var 1.002 1.000 1.002 1.005 1.002 1.002 1.010 1.014 1.013 1.009

Peffilaos 0.899  0.899 0.898 0.899 0.899 0.079 0.543 0.547 0.543 0.544

Table 6.2.3 shows how the probability of the queue being zero varies. Here it is important to
distinguish between the value of p, for all lanes combined and the average of the individual lane
values. The total and individual lane queues are consistent with the corresponding M/M/1
values of p,, i.e. 1/(L+1), except for the case where arrivals select the shortest queue, when the
individual queues are less likely to be zero, although the combined arrival and service events

are still uncorrelated because they are generated by the same independent mechanisms.

Table 6.2.3 Probability of zero queue in simulations (p=0.9, u=1.0, 1M events)

No. of Capacity pand Average Combined p, Individual Lane po

Lanes Type of process Lane po (~1-p) Lanel Lane2 Lane3 Lane4
1 1.00 random 0.100 0.100 0.100 - - -
4 0.25 indep. 0.099 n/a 0.100 0.098 0.098 0.099
4 1.00 shared 0.377 0.105 0.376 0.378 0.375 0.378
4 1.00 shortest 0.250 0.105 0.251 0.250 0.249 0.248
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Table 6.2.4 gives the variances of the queue sizes in the four tests (nominal value = 90). The
difference between the values in the first two cases can be ascribed to the high sensitivity of the
M/M/1 equilibrium value to the effective p value (dV/dp=1900 @ p=0.9). Since simulated p is
typically ‘out’ by 0.001-0.002, around half the variability in V is accounted for by this.
However, the lane variances are much smaller values in the last two cases, where lanes share

service. The mechanism of this is analysed later (for the case of two lanes).

Table 6.2.4 Variance of queue size in multi-lane cases (p=0.9, u=1.0, 1M events)

No. of Capacity pand  Average Lane Individual Lane Variance

Lanes Type of process Variance Lanel Lane?2 Lane 3 Lane 4
1 1.00 random 82.413 82.413 - - -
4 0.25 indep. 94.790 95.934 94.355 97.743  91.129
4 1.00 shared 11.662 11.428 10.941 12.721 11.556
4 1.00 shortest 6.505 6.515 6.502 6.490  6.512

Kleinrock (1975) states® that where a queue is present the queue size distribution is geometric
for any G/M/c process, ¢ being number of parallel channels. A multi-lane system is not G/M/c,
but Table 6.2.5 gives ‘effective rho’ values, the average ratio between successive probabilities
n on the assumption that the distribution is geometric, i.e. pi = pon'. This assumption would
imply po = 1-n. The average n from simulation in the first two cases can be considered

practically equal to p, and py is consistent with geometric distribution.

Table 6.2.5 Geometric ratio in probability distribution (p=0.9, u=1.0, 1M events)

No. of Capacity pand  Average Average Individual Lane n

Lanes Type of process ~ Lane po n Lanel Lane2 Lane3 Lane4
1 1.00 random 0.100 0.899 0.899 - - -
4 0.25 indep. 0.099 0.909 0.903 0.896 0.899 0.898
4 1.00 shared 0.377 0.761 0.759 0.756 0.762 0.768
4 1.00 shortest 0.250 0.691 0.688 0.696 0.692 0.689

Where arrivals choose the shortest queue, the probability distributions are no longer truly
geometric in shape since po is relatively reduced, as seen in Figure 6.2.2, where the
distributions are sampled showing some variability, and Figure 6.2.3 where the distributions are
equilibriated (aggregated between 10,000 and 1M events, compared to the theoretical relaxation

period for p=0.9 of ~380 service events) and there is no visible difference between the lanes.

" Kleinrock (1975), p246-249.
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In the two shared service cases the average n from simulation is substantially different from p,
but with random selection the distribution has a geometric appearance. Where the shortest
queue is selected the distribution is no longer geometric, and an appropriate approximation
would be nested geometric (see Chapter 3 earlier). However, since p, does not contribute to

moments, they can still be estimated by substituting an ‘effective rho’ into M/M/1 formulae.
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Figure 6.2.2 Sample queue size distributions for 4 lanes (p=0.9, u=1.0, 9000 events)
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To produce on each lane a mean equilibrium queue size that equals the total queue divided by
the number of lanes n, assuming that p, fits the pattern, the effective demand intensity on each
lane should be given by equation (6.2.4). Figure 6.2.4, comparing estimated and simulated
moments of various shared exit cases with p=0.7 or 0.9, and shortest queue selection with

p=0.9, shows that this works fairly well given the simplicity of the approximation®,

__ P 6.2.4
T onp) (6:24)
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Figure 6.2.4 Comparing queue moments based on estimated n with simulation

6.2.3 Markov model of multi-lane queuing

If the system has n identical lanes, then the mean size of each queue is L¢/n and the probability
distributions of the individual lane queues must combine to reproduce the combined M/M/1
geometric distribution. However, the lane queues are not independent. Even if arrivals and

departures are randomly chosen, choosing one lane necessarily affects the other(s). First define:

p(”),«,j,k,,_._ = absolute probability of the n lane queues being in state i,j,k,I...
p™;im = prob. that lane queue indexed m of n is in state i (6.2.5)

Pi or pim) = the probability that the queue size on a typical lane of n is i.

A ‘Markovian’ process is memoryless, so its future state depends only on the current state. A

multi-lane queuing process can be modelled as a continuous-time process:

%8 Subject to the largest queue (n=1), corresponding to the largest value of 1 (=p), being simulated by a
sufficiently large number of events to bring it near to equilibrium, as mentioned earlier.
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1 dpjic. .
=20 M (o ()b, ke, 0y, 0z, (6.2.6)
uodt
dpj.
puk.. < pljk + djtk ot (627)

where M is some function, primed indices are dummies representing all probabilities of the
current state at time t, and {on} are various option settings. Since p is always associated with t
it can be convenient work in terms of ut instead of t. The Markov process can be implemented
by a computer program using a finite step size udt, and will be stable if this is not too large,
although a very small value will increase computation time with little benefit to accuracy. The
formulation of recurrence relations will be described and discussed later. To establish relevant

behaviour at the outset, some results of simulation are given first.

6.2.4 Queue size probability distributions from Markov simulation of 2 lanes

Figure 6.2.5 shows a clear difference between the two-server (broken line) and M/M/1 (nearby
solid line) distributions, while the distributions on individual lanes are similar regardless of how
generated (three solid lines with higher po). The dip in pg in the selective case is present though
less evident than in the previous 4-lane simulations. These results confirm the earlier view that
the critical factor is the service process, and that at least in symmetrical cases and where the
primary objective is to estimate moments, the individual lane processes can be approximated by
M/M/1 with a modified ‘effective p’, opening the way to simplified approximations amenable

to standard time-dependent methods.
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Figure 6.2.5 Markov simulated queue size distributions for some two-lane cases with p=0.8
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The first parts of the probability distributions, simulated for p=0.8, u=1, and 6t=0.01 in
equation (6.2.7), and 50,000 iteration cycles, are tabulated in Table 6.2.6, showing that the
gueue size probability distribution in each lane is not dissimilar to that of an M/M/1 distribution
with half the mean queue size. Some invariants are given in Table 6.2.7. Tables 6.2.8 and 6.2.9
later give more detail about probabilities for a two lane system with random selection of lanes.

Table 6.2.6 Probability distributions in whole system or each of 2 lanes, p=0.8
Queue Whole Each Lane Each Lane M/M/1 half

Sizei System Random Selective mean queue
0 0.200 0.369 0.300 0.333
1 0.160 0.215 0.239 0.222
2 0.128 0.134 0.161 0.148
3 0.102 0.088 0.107 0.099
4 0.082 0.059 0.069 0.066
5 0.066 0.040 0.045 0.044
6 0.052 0.028 0.029 0.029
7 0.042 0.020 0.018 0.020
8 0.034 0.014 0.012 0.013
9 0.027 0.010 0.008 0.009
10 0.022 0.007 0.005 0.006
11 0.017 0.005 0.003 0.004
12 0.014 0.004 0.002 0.003
13 0.011 0.003 0.001 0.002
14 0.009 0.002 0.001 0.001
15 0.007 0.001 0.001 0.001
16 0.006 0.001 0.000 0.001

Table 6.2.7 Invariant values for the Markov simulated two-lane cases
Queue Two M/M/1 Each Each Lane M/M/1

Sizei  Servers Process Lane Selective Half
Total Total Random Queue

Po 0.111 0.200 0.369 0.300 0.333
L. 4.444 4.000 2.000 2.000 2.000

The probability Py of either lane being empty regardless of the other is the sum of the
probabilities that one lane is empty and the other lane has any possible value, i.e. the row-0 or

column-0 sum in Table 6.2.8:

n
8

Po=) Poi (6.2.8)

T
o
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If the queue in one lane is zero, knowing that the probability of both lanes being empty is 0.2
(=1-p), the probability that the other lane is also empty has a value much greater than that of an

independent lane, viz:

Rl =o)=%6286 =0.5426 (6.2.9)

In Table 6.2.8, the probability of both lane queues being empty is not the product of the
probabilities of each lane being empty. If the two lanes were independent, and each had on
average half the total arrivals and half the total service, then each would still have the same
p=0.8 and probability 0.2 of being zero, so the probability of both being zero would be only
0.2% = 0.04. However, each lane queue would then have the same mean size as the actual two-
lane system. This violation of the ‘product form’ (Koenigsberg 1991) is an indication of non-
independence of the lane queues, which naturally results in diagonal joint probabilities being
greater than the products (squares) of the corresponding lane probabilities. The differences
might be seen as a measure of inter-lane correlation (if the lanes were perfectly correlated each

diagonal joint probability would be equal to the corresponding individual lane probability).

Table 6.2.8 Markov simulated joint and lane state probabilities, random selection

p=0.8 Sums 0.3686 0.2148 0.1344 0.0877 0.0588 0.0402 0.0278 0.0195
Sums i,j 0 1 2 3 4 5 6 7

0.3686 0 0.2001 0.0800 0.0375 0.0198 0.0113 0.0069 0.0043 0.0028
0.2148 1 0.0800 0.0530 0.0314 0.0186 0.0113 0.0070 0.0045 0.0029
0.1344 2 0.0375 0.0314 0.0221 0.0147 0.0096 0.0063 0.0041 0.0028
0.0877 3 0.0198 0.0186 0.0147 0.0107 0.0075 0.0051 0.0035 0.0024
0.0588 4 0.0113 0.0113 0.0096 0.0075 0.0055 0.0040 0.0028 0.0020
0.0402 5 0.0069 0.0070 0.0063 0.0051 0.0040 0.0030 0.0022 0.0016
0.0278 6 0.0043 0.0045 0.0041 0.0035 0.0028 0.0022 0.0017 0.0013
0.0195 7 0.0028 0.0029 0.0028 0.0024 0.0020 0.0016 0.0013 0.0010
0.0137 8 0.0019 0.0019 0.0019 0.0017 0.0014 0.0012 0.0009 0.0007
0.0097 9 0.0012 0.0013 0.0013 0.0011 0.0010 0.0008 0.0007 0.0005
0.0069 10 0.0008 0.0009 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004
0.0050 11  0.0006 0.0006 0.0006 0.0006 0.0005 0.0004 0.0004 0.0003
0.0036 12 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002
0.0026 13 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002
0.0019 14  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
0.0014 15 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0010 16  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0007 17 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0005 18 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000
0.0004 19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0003 20  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

267



6.2.5 Interpretation of shared service as ‘borrowing’ of capacity between lanes

The interpretation that unused capacity in one lane is ‘borrowed’ by the other is justified by the
state transition model in Figure 6.2.6, where it is made explicit when one lane is empty.

A
Pi Pi+1

Lane 1 state

Lane 2 queue > 0

P =30, with probability
j=0 1_ Pii1,0
‘Pi+i
K

Lane 2 queue =0
with probability

Pi.1,0

2“ P4

Figure 6.2.6 State transition diagram for two lanes

The state probabilities P; are for Lane 1 alone, not technically ‘in isolation’ but as if Lane 2 and
correlations were hidden from an observer. The probability ratio in the diagram follows from
the fact that, in considering the transition on Lane 1 from queue state i+1 to state i through a
service event, what is required is the probability of Lane 2 being empty given that the queue in

Lane 1 is known to be i+1. The transition balance equation is therefore:

pHY pi+,
AP, =uPi+1(1— Plo}LZHPM( PIOJ:H(R+1+pi+1,O) S0

i+1 i+1

P.1—PP =—Pio (6.2.10)

Full recurrence relations for this and other cases, and what can (or cannot) be extracted from

them, are presented and discussed next.
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6.2.6

For n=2, the following formulae can be derived by considering each possible initial state

Evolution of probabilities where arrivals select one queue at random

leading to a given final state, where one index is allowed to change at a time:

RHS of equations (6.2.11) are expanded in Tables 6.2.9 for low values of i and j. In the steady

1 dpg, — Do+ Prg —pP

I dt 0,1 1,0 0,0

1 dpg | i

E dt 5Py + Po,ja _(1+p)p0.j +.5pPg 1 (>0)

1 dp; i

N d'[y0 =51 + Prro — (L+p)Pio +-5PPi10 (i>0) (6.2.11)
1.dp;; i
wodt 5Piaj + 5P ja —(L+p)Pij +-5pPi e + 50D 4 (1J>0)

state all the cell sums are identically zero.

Table 6.2.9a Rho-factored (arrival) components of dp;/dt=0

i\j 0 1 2 3

0 ~Poo -Po1+.9Poo -Pozt+.5Pos -Pos+.5pPo2

1 -9Poo-P1o -9Po1*.9P10-P11 -9Po2*.9P11-P12 -9Po3*.9P12-P13

2 -9P10-P2o -9P11+.9P20-Pas -OP12+.5P21-P22 -OP13+.9P22-P23

3 -9P20-P3o -9P21+.9P30-Pa1 -OP22+.9P31-Pa2 -9P23+.9P32-Pa3
Table 6.2.9b Unit-factored (departure) components of dp;/dt=0

i\j 0 1 2 3

0 P10tPos -9P11+Poz-Poz -9P12+Pos~Poz -9P13+Pos=Pos

1 P20t.5P11-P1o SP21t+.5P12-Pus SP22t+.5P13-Pr2 -SP2st.5P14Pis

2 Paot.5P21-P2o -9P31+.9P22-Pas -9P32+.9P23-P22 -9P33+.5P24-P23

3 Paot.5Pa1-P3o -9Pa1+.5Ps2-Pas -9P42*.9P33-P32 -9P43*.5P34-Pa3

Noting the symmetry p;; = p;i, summing the rows or columns of the elementary probabilities p;;
gives the following relationships, where P; represents the i sum, the probability that the queue

size in one lane is i:
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P — PPy =—Po1 =—5pPoo
P, —(L+p)P, +pPy = Poy — Poy (6.2.12)
P _(1+P)P2 + PP = Po2 — Pos

etc., or summing cumulatively

P —pPF =—Poy
P, —pP, = =Py, (6.2.13)
P; —pP, =—Pos

So equation (6.2.10) is recovered. The LHS above are identical to those for the M/M/1 queue,
but the RHS are now non-zero. Summing the equations, using (6.2.8), leads only to the known

result poo=(1-p).
6.2.7 Estimation of two lane moments and probability distributions

The first moment L; of equations (6.2.13) can be related to the ensemble mean by:
Z iPoi

L, +/0=L, where ¢, = 01_p (6.2.14)

where L; is the actual equilibrium queue in the jth lane, L. is the equilibrium queue of the whole

M/M/1 system p/(1-p) (the subscript e could be interpreted here as standing for ‘ensemble’),

and / , represents a ‘shadow queue’ contributed by the other lane. Taking the second moment:

00 -2
Z' Poi
Vi +L5+vg+05+2L,0, =V, +L2  where v, =°1——/z§ (6.2.15)

Here, in addition to a ‘shadow second moment’ there is a term that could be described as a
‘decoupling’ or anti-correlation term (a correlation term would be negative). The ‘shadow
queue’s probability distribution is not normalised, not even in the second of equations (6.2.14),
because the sum of its probabilities is P, not 1 or (1-p). However, there is no obvious way to
get an expression for P, from these expressions. As this is a specific system and no statistical
parameters have been ‘hidden’, there is no logical prohibition of a closed-form solution, yet it
appears not to be available even for a simple physical system like this. Nevertheless, it is
interesting that all that is needed, to describe the system fully, is the state of one queue when

the other is empty. By symmetry the two lane queues are equal, therefore from (6.2.14-15):
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You=P  Yieu=" (6.2.16)
0 0

(6.2.17)

2 e

Lo=1L ly=3L V,+v, =V, -1

NowV; # v, # 1V, , and while L; and ¢ , are equal their underlying probability distributions are

different. These results can be confirmed using the data in Table 6.2.8. In all M/M/1 cases:

Poo =1—p and for any number of lanes Poo=1-p (6.2.18)

Therefore, the simplest estimate of the whole distribution {poi} would be the unnormalised
singly-nested distribution:

Poi ~(L—p)n' (i>0) (6.2.19)

In practice this performs poorly, and in any case forces a relationship between po; and n. In fact
it is possible to obtain po; explicitly. For any number of lanes, if the total queue is 1 then only
one lane can contain the queue, but all lanes are equally likely, so po..; must be 1/n of the

M/M/1 ensemble probability of a queue of size 1, hence:

pll-p)

Po 1 & and in particular Po1 = p(12— p) (6.2.20)

With poo and po; known, the simplest progression of the distribution is geometric:
Poi ® Pon' (i>1) (6.2.21)

The solution for n to fit the mean (6.2.16) in this case is:

n:l—/3%%==1—J1—p (6.2.22)

An early attempt at estimating the whole distribution {poi} was the empirical formula (6.2.23),
which while consistent with (6.2.19-20) when i<1, has no theoretical justification and would

not be easy to extend to n>2, but is included for completeness:
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by 1 (_1“’)9 | (6.2.23)

Summing terms of (6.2.21) together with (6.2.18-19) gives the following value for Py):

pvl-p

Poe) =1-p+ 5

(6.2.24)

An earlier attempt to devise an empirical formulae for Py, is also included for completeness:

plL+p)

0(2) ~ (constructed from p terms to 2 order) (6.2.25)
2l+p—p

2

Figure 6.2.7 compares estimates of P, using different methods.
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Figure 6.2.7 Estimates of P, for two lanes and a range of traffic intensities

The mean value of {pe} according to the formulation (6.2.20-22) is, as required:
3 ipy =t =P (6.2.26)
n 2

To complete a practical description it remains to determine the lane queue variance V. Using

(6.2.20-22) the second moment of {pyi} can now be estimated as (6.2.27), and thence v, from
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(6.2.15), from which V; can be obtained using the last of (6.2.17) (best done numerically since
neither expression reduces to a suggestive form).

3%, =% (6.2.27)

Alternative estimated probability distributions for p=0.8, including a doubly-nested distribution
based on three moments including variance, are compared with simulation in Figure 6.2.8. The
empirical distribution appears to fit the simulation data very well, which may make it worthy of
future investigation. The similarity of estimated (6.2.19-21) and doubly-nested distributions is

not surprising since they have similar forms each determined by three parameters.

0.2

—4—Simulated

0.15 -
=~ Empirical
UNested

0.1 1
== DNested

—i—Estimated
0.05

Figure 6.2.8 Simulated and estimated probability distributions{p.i}, two lanes, p=0.8

Figure 6.2.9 plots the variance elements as functions of p. The estimated value of v, goes

negative when p = 0.95, which is allowed since it is not a true variance, and it remains small so
V; is generally around half V.. If the lanes were independent, each with half the arrival and
capacity rates, and hence the same demand intensity equal to the ensemble value p, the total
queue size and variance would both be twice the ensemble values. On the other hand, to
produce the same total queue with independent lanes, each lane would need a reduced demand
intensity p/(2-p), and the total variance would be approximately half the ensemble variance.
This shows that the variance of a lane queue more or less tracks the mean queue size as the

relationship between the lane processes is varied.
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Figure 6.2.9 Calculated lane queue variances for two lanes and range of p values

6.2.8  Evolution of probabilities where arrivals select shorter of two queues

In the case of selection of the shorter queue between two lanes (or randomly only if the queues

are exactly equal), equations (6.2.11) are modified as below, some terms being evaluated in

Tables 6.2.10a,b:

ldpo,j

1)

dt

ldpi,o

p

dt

ldpi,j

1)

dt

ldpi,j

1)

dt

ldpi,j

1)

dt

ldpi,j

1)

dt

ldpi,j

1)

dt

= 5Py + Pojur ~(L+p)Py
=51+ Pigo ~(L+p)Pig
=.5Piy,j 9P ju _(1+p)pi|j +PPi_yj +-5PP; 1
=.5Pi,1j +-5Pi ju _(1+p)pi|j +.9pPiyj + PP ju

=.5Pi,j +-9Piju _(1+p)pi,j +PPi_yj +PPi 1

=.5Pj,j +9Pi ju _(1+p)pi,j +PPiy

=.5Pj,j +9Pi ju _(1+p)pi,j + PP
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Table 6.2.10a Rho-factored (arrival) components of dp;/dt=0

i\j 0 1 2 3 4

0 -Poo -Po+.5poo -Poz+.5po1 -Pos+.5pP02 -Pos+.5pP03
1 -9Poo-P10 Po1*P10-Pu1 Pozt.5P11-Pr2 Poz-P13 Pos-P14

2 -5P10-P20 -SP11+P20-Pa1 P12t P21-P2 -5P22+P13-Pas P14-P2s

3 -9P20-P3o Pso-Pa1 9Pzt Pa1-Ps2 P23t+P32-Ps3 -5PagtP24-Pas
4 -9P30-Pao Pao-Par Pa1-Pa2 -9P33tPaz-Pa P3atPaz-Pas
5 -9P40-Pso Pso-Ps1 Ps1-Ps2 Ps2-Ps3 -9Pas+Ps3-Psa

Table 6.2.10b Unit-factored (departure) components of dp;/dt=0

i\j 0 1 2 3 4

0 P1o+Pos -9P11+Po2-Por -9P12+Po3~Po2 -9P13+Pos=Pos -5P14%Pos-Pos
1 P2o+.5P11-P10 -OPat.OP12-P11 -SPa2t.SPisz-Piz .5P23+.5P14P13 .5P24+.5P15-P14
2 P3ot+.5P21-P20 -OPa1t.OPa-Par .SPas2t.SPas-Pa2 .5P33+.5P24-P2s .5P34+.5P25-P2a
3 Etc — same as Table 6.2.9b

Unlike in the non-selective case, these formulae do not lend themselves to a repetitive simple
relationship, but there is some regularity. Other terms besides po nhow appear on the RHS.
Eliminating P, from the first two equations gives the next pair relationship, but subsequent

relationships become increasingly messy.

P —pF =—Pos

(P, —P,)=2p(P, = Py) = Poy = Po; — (P11 +2P1o — Poo) (6.2.29)
(P = P,)—20(P, = P,) = Poz — Pos — (P22 + 2P0 — Pyy +2 P21 — Pro)

L 0r L.

P, —(2p—1)P, =—Po1 — Poo — (P11 +2P1o — Poo) (6.2.30)

It is possible that arrivals gain some advantage from ‘jockeying’, that is changing lane
whenever there appears to be an advantage in doing so. This could lead to almost infinite
variation in the details of lane selection and service sharing mechanisms. Nevertheless, if the
whole system is treated as a ‘black box’ with random arrivals and service, whose n internal
lanes are identical, then symmetry requires that the means of all the lane queues be equal to 1/n
of the M/M/1 queue, their probability distributions are the same, and the convolution of all the
lane probability distributions must give the usual M/M/1 queue size probability distribution.

What appears free to vary within these constraints is the correlation between lane queues.
275



6.3. EXTENDING TO ANY NUMBER OF LANES

6.3.1 Relationship to multi-channel queue process

It is natural to ask whether queues in multi-lane systems could be represented by using or
adapting standard queue processes or modifying their parameters. Multi-channel queues with
independent servers are described by the M/M/n or G/G/n processes, the first of which was
summarised earlier in Section 3.5, representing something like a supermarket checkout or
communications system with n channels. Arrivals choose an idle server if one is available and
otherwise choose randomly, and there is no interaction between channels’ service. In standard
works the focus tends to be on evaluating waiting times in cases where individual queues are
short, implying that server provision can be matched to demand. In transport the focus is more
on evaluating queue sizes and delays where there are a few heavily loaded servers, since it may
be difficult or impossible to provide extra capacity. The standard processes do not provide for

explicit service sharing.

If p is the demand intensity on the whole ensemble relative to the sum of the channel capacities,
the M/M/n steady-state queue (e.g. Medhi 2003) is:

2 n _(n)
p (np)"p
Le(n) = np+C(n’p)1_p where C(n,p)zw_op) (6.3.1)
(o) (o) | "W
d = i) = " 0 (6.32
an pO(n) [i_o |' + n!(l— p) pl(n) min(i, n) ppl—l (I> ) ( )

Here po is the probability that the whole system is empty, and the coefficient of variation of
service is assumed to equal 1 for each server, as implied by (6.3.1) when n=1. The probability
distribution becomes geometric when i>n. When n=1, the usual M/M/1 formulae are recovered.
For n=2:

_1-p

2p
=— and L., = 6.3.3
1rp o(2) (6.3.3)

Po(2)

The mean queue size (6.3.3 right) lies between the extremes (6.2.1) and (6.2.3), which range
would allow for channel selection by arrivals, but service sharing is excluded since the channels
are physically independent. If the first term of the queue formula in (6.3.1) can be interpreted as

total units-in-service, dividing it by n gives the expected value I=1 for each channel. However,
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as Figure 6.3.1 shows, C decreases with n, so if the average queue on each lane is got by
dividing (6.3.1) by n, and n is large, the randomness term virtually disappears.

N —

04
\5 o
0.2

Figure 6.3.1 Variation of M/M/n quantities with number of channels n, p=0.8

Since over time arrivals are equally likely to select any channel, and the service processes are
independent, each channel experiences demand intensity p. Although the arrival process seen
by each channel is initially non-random, once sufficient queues have built up it becomes
random and the statisitics of each channel process will be not far from M/M/1, while for the

ensemble they are far from M/M/1. So this is not a good approximation to a multi-lane system.

6.3.2 Can multiple lanes be represented by P-K formula with modified parameters?

If a multi-lane ensemble process is M/M/1 and there is symmetry between lanes, the mean

queue on each lane must be reduced by the factor of the number of lanes n:

L) = P (6.3.4)

The P-K queue formulae derived earlier (equation 3.2.13 or 3.2.16 with 3.2.10),

notwithstanding the arguments against the use of c,, is:

%(1+c§)pz .

~ |

(1, -1) .\
(1-p) (1-p)

p
2L-p)

L.=Ip+ + (6.3.5)

It might be expected that where arrivals choose the shorter of two queues, this could affect
the dispersion of arrivals in each queue separately. In practice, the difference from random

selection is likely to be small, since symmetry requires that the lane queues tend to become
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equal anyway. So to first approximation the dispersion-related terms in (6.3.5) can be
eliminated by setting 1,=1 or c,=1. To account for service sharing there are now only the
parameters | and c,. It is not obvious that I can meaningfully be subdivided, as it represents
the unavoidable average time needed to service each customer. Subdividing the randomness
coefficient in (6.3.5) appears impossible unless ¢, is adopted and can be subdivided as well as
Cp. This might just be possible for two lanes, but no more. In conclusion, manipulating P-K
statistical coefficients whether in M/M/1 or M/M/n appears insufficient.

6.3.3  Are Censored Poisson or Erlang processes relevant to multi-lane queues?

In a Censored Poisson process every rth arrival is accepted and the rest discarded. Even though
arrivals are random this is subtly different from M/M/r. The probability density function of
accepted-arrival intervals is given by equation (6.3.6) (e.g. Trabka and Marchand 1970):

k rXr—le—kx

f(x)= W so that mean[f]=r/k, var[f]=r/k 2 (6.3.6)

This is equivalent to the Erlang formula with substitutions of variables:

r-1_-rqt
a(t) = rg(rat) e xeokt, qeskir (6.3.7)

(r-1)

An interpretation of (6.3.7) is that instead of (r-1) arrivals being discarded in each interval up to
the rth arrival, they are parked and then combined with the rth in a bunch. The form of (6.3.7)
is misleading since g is not the mean arrival rate but the inverse of the mean arrival interval, the
true mean arrival rate of the bunched arrivals being k=rqg. However, the mean arrival rate of the
censored arrivals is g. Therefore the censored process can be represented as Erlang-r arrivals

with arrival rate reduced by the factor r.

If distributing arrivals between r lanes is equivalent to ‘censoring’, and capacity equally divided
between the lanes so p is the same for each lane as for the ensemble, then in each lane, from
(3.2.16):

L, =L[|(1—p)+—+p} (per lane) (6.3.8)

Assuming the ‘unit-in-service’ coefficient | remains 1 independently of r, the results are as

shown in Table 6.3.1.
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Table 6.3.1 Queue size in each of r lanes predicted by equation (6.3.8)

r 1 2 3 . ')

GO CORE SO

The total queue rLe increases without limit, but is always less than it would be if the lanes
were totally independent, which in this case means arrivals selecting lanes at random, since
there is no interaction between the service processes. According to equation (3.2.16), including
the Erlang service coefficient m, the only way to get the correct result is if I=r=m. This shows

that multi-lane queuing is not equivalent to censoring arrivals.

6.3.4 Emergent patterns from simulation of two or more lanes

Markov simulation has been applied for up to four lanes with several values of p. Because of
the somewhat inefficient technique of generating explicit transition tables for each initial
state, run time escalates rapidly with the number of lanes, four being the current practical
limit. Also, the reliability of the distributions cannot be guaranteed except that their
convolution can be checked to equal the geometric distribution of the ensemble queue. This
constraint applies regardless of how arrivals select a lane, e.g. randomly or selectively,

provided that the combined arrivals and service are random, i.e. exponentially distributed.

If simulated lane queue probability distributions for n>1 are normalised to the same
amplitude pou and their state axes suitably transformed then they can be overlaid
approximately as in Figure 6.3.2. Although the matches are approxmate and their quality is
difficult to assess rigorously, there appears to be a simple transformation that links the
distributions, which are expressed here as continuous functions because of the non-integral

scaling factor, so interpolation is generally necessary to derive integer state probabilities:

R)(x)= P(”(O)P[ : J (63.9)

In equation (6.3.9), as previously, capital P is used for lane state probabilities to distinguish
them from joint probabilities p; ; The presence of p? appears to be necessary for p<0.9,

although not obtained by anything more rigorous than experiment and noting that differences

between the moments of the transformed distributions are broadly minimised.
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Figure 6.3.2 Markov multi-lane distributions against transformed state variable

(The graphs for a single lane are visibly separate from the multi-lane graphs)

The pattern does not extend to a single lane, as shown by the separate (light blue) curves.
This is unavoidable, as all symmetrical lane selection strategies must result in the M/M/1
distribution of the total queue provided that the ensemble arrivals and service remain random.
However, since different strategies result in different distributions, no one transformation
could match the M/M/1 distribution. The rule starts to fail for 2 lanes in the case p=0.95,
which may mean that it is not appropriate to cases where p is close to 1, which are not
practical to simulate all the way to equilibrium. The n=1 curves can be moved into the
common trend approximately by applying a scaling factor 0.75, though this does not work for
p=0.95. Referring back to equation (6.3.4), if the distributions were M/M/1 their effective

parameters would be given by (6.3.10), which is consistent with (6.3.9) when p is close to 1.

plr—P Lo (pl) (6.3.10)
p+n(l-p)

The true P, values depend on the lane selection process, so there is inevitably a degree of
arbitrariness in any system where this is not specified. For practical purposes, adopting
(6.3.9) gives results that are ‘useful’, although significantly inferior to those for 2 lanes
obtained in the previous Section, and surprisingly, gives reasonable value for Py, although by
a formula quite different from those found earlier. Table 6.3.2 gives p’ (‘effective rho’) values
according to equation (6.3.10) and inferred from P,. Table 6.3.3 shows increasing error in the

estimated values of Py that is reflected in error in the distribution, despite the increasing
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consistency between the n-lane processes. Noting that, unlike the percentage errors in p' in

Table 6.3.2, the errors in Py in Table 6.3.3 (relative sum-of-squares errors for the whole

distributions are also shown) vary relatively little and in no consistent direction with n, and if

only half-integral or integral powers of p are allowed, a simple formula for the percentage

error is given by:

__ b
TR

(6.3.11)

Table 6.3.2 Comparison of ‘Effective rho’ values for M/M/1 multi-lane approximation

Number of lanes
p 2 3 4
1-P, p/ %error | 1-P, o %error | 1-P, p/ %error
0.5 |0.3244 0.3333 274 |0.2421 0.25 3.26 |0.1937 0.2 3.25
0.7 | 05138 0.5385 4.81 | 0.4106 0.4375 6.55 | 0.3439 0.3684 7.12
0.8 | 0.6315 0.6667 557 | 05278 05714 826 | 04562 0.5 9.6
09 |0.7762 0.8182 541 |0.6874 0.75 9.11 | 0.6192 0.6923 11.81
0.95 | 0.8675 0.9048 4.3 0.7935 0.8636  8.83 | 0.7284 0.8261 13.41
Table 6.3.3 P, values estimated by M/M/1 approximation and their errors
Py simulated/estimated by number of lanes | %Error in Po/%RSSE by lanes
p 1 2 3 4 2 3 4
0.5 0.5 0.6756 0.7579 0.8063 1.32 1.04 0.78
0.5 0.6667 0.75 0.8 1.33 1.29 1.09
0.7 0.3 0.4862 0.5894 0.6561 5.07 4.56 3.74
0.3 0.4615 0.5625 0.6316 3.08 3.61 3.49
0.8 0.2 0.3685 0.4722 0.5438 9.54 9.24 8.05
0.2 0.3333 0.4286 0.5 4.1 5.31 5.58
0.9 0.1 0.2238 0.3126 0.3808 18.76 20.03 19.2
0.1 0.1818 0.25 0.3077 4.77 7.02 8.22
0.95 0.05 0.1325 0.2065 0.2716 28.12 33.96 35.97
0.05 0.0952 0.1364 0.1739 4.46 7.84 10.6

Figure 6.3.3 shows that the error formula (6.3.11) is fairly accurate except for the points at

upper right, corresponding to p=0.95, but Table 6.3.3 shows that the errors invariably take the

form of underestimation, suggesting that a systematic adjustment is possible.
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An adjusted ‘effective p’ for each lane, still retaining the M/M/1 model is thus:

I 1 P _ P I P
o =1 [“(1—\/5)](1 p+n(1_p)j P=1=p  (63.12)

Table 6.3.4 shows that this achieves a useful reduction in errors.

Table 6.3.4 Pq values and errors based on adjusted estimates

Po simulated/estimated by number of lanes  %Error in Po/%RSSE by lanes
P 1 2 3 4 2 3 4
0.5 0.5 0.6756 0.7579 0.8063 0.36 0.65 0.91
0.5 0.6780 0.7628 0.8137 0.71 0.75 0.88
0.7 0.3 0.4862 0.5894 0.6561 1.00 0.47 0.39
0.3 0.4813 0.5866 0.6586 1.79 1.95 1.77
0.8 0.2 0.3685 0.4722 0.5438 2.69 2.36 1.09
0.2 0.3586 0.4610 0.5379 2.49 3.08 3
0.9 0.1 0.2238 0.3126 0.3808 451 6 5.03
0.1 0.2137 0.2938 0.3617 3.1 4.18 4.55
0.95 0.05 0.1325 0.2065 0.2716 1.15 9.19 11.94
0.05 0.1310 0.1875 0.2392 3.77 4.29 5.01

The resulting fit of Py and L is shown in Figure 6.3.4, the least accurate points in the mean

being those associated with the highest demand intensity employed, p=0.95.
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Figure 6.3.4 Fit of adjusted estimates of P, and mean queue to simulated values
6.3.5 Conclusions on extension to any number of lanes

The conclusions of this Section are:

A standard multi-channel process is not appropriate for describing multiple lanes;

Censored Poisson or Erlang arrivals might be able to reflect lane selection but cannot

represent service sharing;

When the ensemble queue is M/M/1, individual lane queue probability distributions
are clearly not M/M/1, but the error in assuming them to be so is not great, bearing in

mind that the actual processes of lane selection and service could be uncertain;

Queue distributions for different numbers of lanes appear to be related approximately
by a simple transformation. Since the distribution on two lanes can be estimated
using the non-M/M/1 distribution described in the previous Section, distributions on

more than two lanes can be inferred, although this may fail for p>0.95;

These are subject to the proviso that only M/M/1 ensembles have been considered,
whereas one might expect multiple lane queues to be equally if not more prevalent at
signals. However, up to this point signals queues would seem to require separate

treatment.
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6.4. MULTI-LANE METHOD WITH TURNS BASED ON UTILISATIONS

6.4.1 Motivation and approach

Attempts to find formulae for probability elements of lane queues have had limited success.
With turning movements the situation becomes much more complicated. If each lane queue
could be treated as approximately M/M/1, it could be expressed in Pollaczek-Khinchin form,
even though as shown earlier the coefficients of dispersion and variation in P-K cannot be used
to represent the effect of multiple lanes. If so, then all results obtained for the time-dependent
sheared approximation can be applied. This Section derives an analytical approach based on an

analysis of utilisations, referring back to Section 6.2.
6.4.2 Effect of service sharing and turning movements on utilisation
Figure 6.4.1 extends Figure 6.2.1 to include turning movements™. Left turners always use the

left lane and right turners the right lane. Straight ahead movers may use either lane according to

some choice mechanism, such as selecting the queue that appears to be shorter.
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Figure 6.4.1 Two lanes with turning movements and shared service

% The layout in the diagram reflects left-side (UK) driving convention but this does not affect the analysis.
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In Table 6.4.1 the states of lane queues are divided into empty and non-empty, with the
utilisation of each lane being defined as the proportion of time for which it is non-empty®.
Again the convention of lower-case p for elementary probabilities and upper-case P for

symmetrical single—lane probabilities is used:

Table 6.4.1 Grouping of elementary probabilities for two lanes with shared service

Lane 2 queue =0 Lane 2 queue >0
Po
Lane 1 queue =0 —
Poo 21"Poj = Po — Poo
Z1"Ppio = Po— Poo {pi; 1,j>0}
Lane 1 queue >0
1-Py

If each lane can use all the capacity available to the other when it is empty, then (also referring

back to Figure 6.2.5) the effective factor of gain in capacity for each lane is:

:1_Po + Py — Poo :1— Poo
1-P, 1-P,

fuz) (6.4.1)

In practical terms, the throughput capacity on a lane doubles during some random time
intervals, as in Figure 6.2.5, and the distribution of service headways is therefore no longer
perfectly exponential. Therefore, in terms of time, a smaller proportion of total time is needed
to service the queue in each lane, so the effective utilisation in terms of time is reduced. A

similar calculation for three lanes gives the results in Table 6.4.2.

Table 6.4.2 Utilisation construction for three lanes with shared service

Case Absolute probability Utilisation factor
All lanes zero Poo=1-p 0
Both other lanes zero 2Pooi = Poo — Pooo 3 (contributes additional 2x)
One other lane zero Po—2(Poo — Pooo) - Pooo 2 (contributes additional 1x)
Neither other lane zero remainder 1
Lane 1 non-zero 1-Zpoij = 1-Po Includes the three cases above

The effective utilisation with three lanes is then:

fu(3) _ 1-F + (Po - 2(Poo - 500(;3)_ p000)+ 2(P00 - pooo) _ 11— plgoo (6.4.2)
- -

%This relies on the assumption that the capacity is constant over the measured period.
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For any number of lanes n, the probability of the total queue being zero p,. o is the same,
namely (1-p) where p is the demand intensity on the whole system. In time-dependent cases p
should be replaced by the combined utilisation of service x, but for the moment only the steady
state is considered. To calculate f,™ requires an estimate of Py, the probability that an individual
lane is empty. To this end, a ‘transfer probability’ P, is first defined by:

Po — Po.o

Pn) :m (6.4.3)

The factor f,n can be built inductively as a Binomial expansion (6.4.4), whose components
represent the separate contributions to one lane’s utilisation when no other lane is empty, one
other lane is empty, two are empty etc, up to all other lanes empty. Each contribution has a
factor one more than the number of empty lanes: one empty lane, with a certain probability,
doubles the utilisation available to the current lane, two empty lanes triple it (if ‘cutting up’ the

middle lane is allowed!) etc, and each case can occur in the combinatorial number of ways:
fum =@=P )" +2(1 P =P, )" +..+nRI (6.4.4)
Equation (6.4.4) simplifies naturally to:
fum =0=P)+nP, =1+(n-1)P, (6.4.5)
Even though most of the terms in the Binomial formulation cancel out, it has explanatory value
because it represents the contributions as mutually independent, so avoiding the need for an

explicit representation of correlation between lanes. By symmetry, the mean steady-state queue

in each of n lanes has to be:

Lem) = P (6.4.6)

Treating each lane queue as quasi-M/M/1, this implies the effective p in each lane is given by
(6.4.7), matching (6.2.4), but the last equality also follows from the symmetry assumption since

in the steady state the utilisation must equal the effective demand intensity:

o = - P __P (6.4.7)




If, again assuming quasi-M/M/1, it is supposed that approximately:

P, ~1-p (6.4.8)

P ~1-p (6.4.9)

Equation (6.4.9) fixes what was previously called the transfer probability. In this approach the
transfer contribution from an empty lane is not only independent of the other lanes but is the
same as the nominal probability of the lane being empty as if it were isolated. This is
convenient because it can potentially be extended to more general cases, using conventional
methods. The linearity of (6.4.5) and (6.4.7) suggests that if only a proportion ¢ of an empty
lane’s capacity is sharable then P, can simply be reduced by this factor. This will be convenient

where a degree of effective sharing arises from weaving between lanes or after departure.

On a time basis, it is possible to write the probabilities that when one lane is ready for service

the other lane is empty or otherwise not ready, PX(E,), and its complement where the other lane is

ready for service, PX(;) . For two lanes:

Px((t)) — (I) I:)0 — Poo , Px(;) — 1_(1+¢)P0 +(I)p00 (6410)
1-P, 1-P,

The probabilities that a customer will be served are given by equations (6.4.11), which differ
from (6.4.10) because twice as many can be served on one lane while the other lane is not being
served. The significance of this distinction is that the probabilities (6.4.11) can be measured
directly in simulations by counting the numbers of customers served under different conditions,
allowing models to be tested, and possibly the factor ¢ to be calibrated. Of course, the formulae

will be more complicated if there is not symmetry between lanes.

P(S) _ 2p>(<to) _ 2¢(Py = Poo) p(s) _ 1—(L+ )Py + dPog (6.4.11)
1+ p>(<to) 1-(L-¢)Py — dPgo " 1-(1- 0Py — dpgo

For the basic two lane case in (Figure 6.2.1), using (6.4.5) and (6.4.6):, the effective and actual

demand intensities for straight movements are related by:

/ PsL ' Psr
Py =—F——, Psp=—"F""—— (6.4.12)
T 10— per) 14 9-ps.)
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These equations allow service sharing to be accounted for approximately when the arrivals and
possibly the underlying service are not necessarily symmetrical between the lanes. In the time-

dependent case it is assumed that traffic intensities p can be replaced by utilisations.

6.4.3 Space sharing in a single lane

Before proceeding to consider turning movements, it is desirable to show that the method is
internally consistent where a lane carries two independent movements. This could be called the
‘red queue, blue queue’ problem, meaning that if arrivals are arbitrarily painted in two colours
it should not affect the result. Suppose that total arrivals are A, capacity is p, the ‘red’ and
‘blue’ component arrival rates are A, and Ap, and u,, U, are the corresponding utilisations
relative to the capacity. Then since each ‘colour’ takes capacity away from the other, the partial

capacities are:

* * ?\/r }\4
wo=pnd-u,), pp =pd-u,) where u, =—", u, :H_b (6.4.13)
S S
Now define the effective utilisations simply as follows:
« A A « A A
uj=—t-__-r Ug=—2=—"52__ (6.4.14)
My (us_}\‘b) MUy (Hs_}\‘r)

The mean quasi-steady-state queues according to the standard M/M/1 formula are:

.oy A .U A
L =" = r , L, =72 = b (6.4.15)
' (1—Ur) (“s_kr_kb) (1_ub) (“s_}\‘r_y"b)
Since these queues are non-overlapping the total queue is just their sum:
. Ay + A
L = (A +2) (6.4.16)
(us - 7“r - 7\’b )
But since the total volume A= A, + Ay, in the steady state this is just the same as:
L B (6.4.17)
(m-2) @-p)
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This result is independent of the ‘red/blue’ split, showing that the method is internally
consistent. This will not necessarily work for queue processes other than M/M/1, if the presence
of one queue modifies the headway distributions of the other.

6.4.4  Averaging capacities of streams sharing a lane

Suppose the traffic population ‘colours’ are distinguishable, for example because their

capacities differ. How should the capacities then be combined?

Suppose the elementary capacities are p, and py, being the capacities each population would
experience if the other were absent. These could be the same, or different if for example each
type of customer requires a different amount of capacity. The conventional answer is to use the
harmonic mean, as this gives the mean service time. However, this neglects the relative

proportions of the colours in the arriving flow, as reflected in the respective utilisations.

Remembering that utilisation has been defined as the proportion of time that service takes place
on a movement, and that the movements are mutually exclusive, at any point in a given time
period a customer can be using either the ‘red” mode or the ‘blue’ mode, or no service is taking
place. The combined utilisation is therefore the sum of the component utilisations. Therefore, it
is reasonable to define the effective combined capacity as the total throughput divided by the

sum of the component utilisations:

Urktr FUpHy (6.4.18)
u, +U,

n=

Since the throughputs equal arrivals in the steady-state, Ay = Uy (cOompare equation (6.4.14))
and service times t, are the inverses of capacities, equation (6.4.18) is equivalent to:

Ao
O T R
BOA+A, Ar + Ay

(6.4.19)

The average capacity is therefore the harmonic mean of the component capacities weighted by
flows. This is also the definition used by Knote (2006) based on the German Handbuch fiir die
Bemessung von Strassenverkehrsanlagen (handbook for the measurement of road traffic
installations, equivalent to the US Highway Capacity Manual), which he then finds gives

accurate results when applied in simulation of a signalised junction.
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Contrary to what might appear at first sight, the average capacity in (6.4.18) is not dominated
by the larger of the component capacities. Suppose for example that the ‘red’ capacity
approaches zero while the ‘blue’ capacity stays finite then, remembering that the sum of the
utilisations cannot exceed 1, if there is any ‘red’ demand at all its utilisation must approach 1
and the ‘blue’ utilisation is therefore forced towards zero. The combined capacity then
approaches the ‘red’ capacity, zero. The conclusion in this extreme case is then the same as if

the combined capacity were the unweighted harmonic mean of the component capacities.
6.4.5 Effective capacity on each movement

Effective capacities for all the movements can be calculated using the shared service and shared
lane formulae (6.4.12) and (6.4.13), treating straight-left-lane (SL) and straight-right-lane (SR)
as separate movements, the latter involving mutual dependence on actual traffic flows through
utilisations, the proportions of time spent serving a movement. The sharing factor ¢ is omitted
as it would complicate formulae while adding nothing to the argument, but it can be

reintroduced quite straightforwardly into numerical calculations.

The effective capacities of the movements (asterisked) can be expressed in terms of either
absolute (unprimed) or effective (primed) utilisations, assuming that each lane claims half of
the total straight-movement capacity ps, though not necessarily half the throughput. Each

effective capacity is determined by the proportion of time a lane is not being used by another
movement. For example, the capacity for straight anead movements on the left lane, pg, , is the
basic left lane capacity, .5ug factored by the proportion of time the left turn movement is not
running (1—uL), enhanced by the proportion of time straight ahead service is not being used

by the right lane (2 - uSR), with the 2 representing that the straight capacity has been halved.

The effective capacity of the left turn | is factored by the proportion of the effective capacity

available to the straight ahead movement in the left lane not used by straight movements in the
right lane. The other two effective capacities are mirror images of the above. The effective turn
capacities define corresponding effective straight ahead utilisations, the proportions of time that

the lane is not serving turners. The alternative expression for effective capacities follow:

. 2—uUg —u
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. 1—ug N1 -ul
Wip = 5t (1—Ug o2 = B (1-ug N2 -ug ) = ps “F;)(/ ) (6.4.22)
Usg (1_USLUSR)

* 2—Ug —U
u =uR(Mj = pgll-uly) (6.4.23)
2—Ug.

Then assuming quasi-M/M/1 processes, the component queues can be calculated from the
effective traffic intensities of the component services:

p; =—+, (6.4.24)

L =—Pi_ (in the steady state) (6.4.25)

*

1-pi

The component queues in each lane are then added get the total queues, in accordance with
(6.4.6) and (6.4.7). The formulae then start to get complicated, so the optimal way to proceed is

by numerical calculation.

Referring back to the earlier comment about signal junctions requiring multi-lane service
sharing treatment, it appears straightforward to extend the preceding simplified approach to
more general types of equilibrium queue such as M/D/1 just by replacing the M/M/1 formulae
as in (6.4.6) etc. The usefulness of this could be tested by Monte Carlo simulation, because of
the complexity of defining recurrence relations compared to an M/M/1 ensemble. The degree to
which individual lane queues tend to share the broad statistical properties of the ensemble could
be investigated, and whether their statistical properties are relatively insensitive to humber of

lanes above 2. These could be topics for further research.
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6.5. EXTENSION TO TIME-DEPENDENCE

6.5.1 Time-dependent simulation with turning movements

Time-dependence is important not just when service is oversaturated, and where the demand
intensity is enough that relaxation times are long compared to the modelled time period, but
also when the system as a whole is within capacity, if interaction between movements reduces
the effective capacity of one or more movements sufficiently to oversaturate them. To provide a
benchmark for analytical methods an event-based simulation has been developed. Figures 6.5.1
shows the results of a simulation of 1100 units/hour demand impinging on a system with total
capacity of 1750 units/hour summed over all movements. The graphs represent the average of

nine simulations each running to a simulated duration of about 7 hours.

Event-based simulation has the advantage of revealing the variability of queue sizes as well as
avoiding an explosion in the dimensions of the probability distributions, though of course it can
be difficult to get reliable averages. In Figure 6.5.2, individual simulation runs exhibit much
greater variability than the averaged results. Figure 6.5.3 confirms that the statistics of the
exponential event generator are accurate. An apparent slowing of the queue growth rates in the
early growth part in Figure 6.5.1, and in Figure 6.5.2, is however illusory. Undersaturated cases
have the same ragged appearance but without the secular growth trend, in fact variability is

expected to be maximised around saturation (Taylor 2005a).
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Figure 6.5.1 Averaged oversaturated queues from event simulations on four movements
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Figure 6.5.2 Detail of one of the event simulations for the above case showing variability
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Figure 6.5.3 Verification of exponential generator in simulation (100,000 events)

6.5.2 Time-dependent estimation using the shearing method

In the time-dependent case, demand intensities of arrivals no longer equal utilisations at the
service points. The demand intensities are known from data, but it is the utilisations that
determine the queue sizes. In the case of a single queue this is modeled by a kind of feedback
between the time-dependent deterministic queue formula and the Pollaczek-Khinchin formula,

leading to a quadratic solution.

As described by Kimber and Hollis (1979) and elsewhere, shearing transforms the Pollaczek-
Khinchin steady-state mean queue formula to be asymptotic to the deterministic queue formula
to create a closed-form time-dependent description that handles the transition between under
and oversaturation seamlessly (also see earlier in Part B). It can be interpreted functionally as
treating the dynamic queue as approximately quasi-static, with the degree of saturation at the
service replacing the demand intensity (Taylor 2003). The simplest formulation, where L, is the

initial queue and C represents the statistical term (1+c,), has an additional parameter a to allow
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choice between calculating the final queue at time t (a=1), and the average queue over [0,t]
(a=2), where these values rely on the fact that with constant parameters the average queue over
time is approximately equal to the instantaneous queue at half time (Kimber and Hollis 1979):

(1, -1x  Cx?

L(t)=L, +(p—X)%t= IX+

Average values are needed when adjusting average traffic intensities for feasibility and also if
the chosen benchmark is of relative stable time-averaged rather than highly variable final

simulated queues.

The solution of the modified problem (6.5.1) for the degree of saturation x is:

—\g? —4fth
x(t)= % (t20) , x(t)=" (f=0and g=0) where (6.5.2)
g
ut * ut ut
f==—(C-1), g=Ly+1"+(p+1)=, h=Ly+p— (6.5.3)
a a a
For M/M/1, where I" =1 = C = 1, and Lo=0, the queue is now calculated in three steps:

[g/2f]:%(1+p+ij, x=[g/2t]-y[0/2tF-p, L=—2"  (654)
ut 1-x

6.5.3 Practical algorithm for time-dependent lane queues with turning movements

Interacting movements lead to complications that appear soluble only iteratively, particularly as
it is impractical to solve for an explicit optimal proportion y of straight-moving arrivals that
should use each lane according to whatever selection policy is adopted. Indeed, if component
queues fail to grow in step this proportion could also vary with time. However, for the moment

the concern is only to show it is possible to arrive at an internally consistent solution.
The algorithm adopted is the following:

1. Given the arrival (demand) rates on each movement, or total arrivals and turning
proportions, and basic capacities for each movement, calculate ‘raw’ average
utilisations (degrees of saturation) on each movement using the sheared queue method.

If steady state is assured, x=p, so this step can be omitted.
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2. Calculate initial values of the effective utilisations on movements affected by shared
service. This affects only the SL and SR movements in Figure 6.4.1.

3. If the sum of effective utilisations on a lane exceeds 1 then they are infeasible and must
be adjusted. This can be done by factoring the utilisations so their sum does not exceed
the single utilisation derived from the total demand and average capacity on the lane,
the latter being estimated from the basic capacities and raw effective utilisations
according to (6.4.18), and the average utilisation in the lane estimated using the sheared
approximation with a=2.

4. Using adjusted effective utilisations, calculate effective capacities and demand
intensities according to equations (6.4.20-25), then use the sheared method to calculate
either the time-averaged or final component queues.

This algorithm is somewhat circular, but solving analytically for feasible, mutually consistent
component utilisations appears intractable, and it is felt that a stepwise analytical approach is
more transparent than numerical solution. Although up to three evaluations of the sheared

queue formula per lane are needed rather than just one, the sheared solution is quite efficient.

However, results are very sensitive to the value of the left-right split factor y for the straight
movement, which should normally be adjusted to achieve some pre-determined condition like
equalising lane queues (if feasible). In test cases up to five iterations of the entire algorithm
have been needed to get this value. The result appears insensitive to the starting estimate of v,
which therefore may as well be 0.5. In each iteration the factor can be adjusted using a descent
direction calculated using derivatives of queue size with respect to y. Based on a spreadsheet
program, the main algorithm needs 52 function evaluations, and the descent direction adds 34.
So five outer iterations multiply the basic algorithm work by a factor of about 8, possibly

leaving room for some practical improvement.

6.5.4 Results and discussion

The method and algorithm described have been implemented in a spreadsheet and compared
with event simulation. The test cases, defined in Table 6.5.1, are not intended to reflect typical
realistic situations. In Table 6.5.1 and Figure 6.5.4 the estimation has been provided with the
outturn simulated arrival rates and capacities rather than the specified values. This is arguably a
fair test as results can be very sensitive to the inputs. ‘Reconstruction’ is a simplified
application of the method based on outturn statistics such as equations (6.4.11), and therefore
gives an indication of how well the method and event simulation correspond at a basic level

without, for example, re-adjusting the straight-movement split factor y.
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Table 6.5.1 Results using specified arrival and capacity rates, with y estimated iteratively

Movement Left Straight Right
Capacities 500 1000 250
Sub-Case Turning proportions
A 0 1 0
B 0.2 0.6 0.2
Cc 0.35 0.5 0.15
Case Total Event Simulation Reconstruction Modelled from
demand simulation data®
Q Hours y L. Lg L. Le LL Ly
80A 800 19.571 0.555 2.1 2 2.9 1.9 2 2 0.5
80B 800 19.561 0.708 2 3.4 2.5 5 3.2 3.2 0.853
80C 800 19.543 0.487 2.7 2.4 3.9 2.7 34 34 0.395
95A 950 18506 0.512 101 10.1| 123 9.6 92 92 05
9%5B 950 18.49 0.757 5.4 8.9 6.8 18.1 99 10 0.856
95C 950 18.49 0.437 7.8 6.9 12.6 8.9 13.2 13.3 0.396
99A 990 18.174 0502 356 35.6| 521 47.2 38 38 05
99B 990 18.164 0.788 9 13.8] 121 335 18 18.1 0.865
99C 990 18.203 0.421 134 122 233 142 | 28.2 284 0.381
110A 1100 1.726 0504 444 445] 47.8 43.3 40 40 05
110B 1100 1732 0803 273 34.1| 284 61.8 | 34.2 34.3 0.827
110C 1100 169 039 374 352| 458 4111 48.3 484 0.371
120
Recorstructien Model from
1c0
) ...
w
/f N\
\
10
Slr‘nulatmn
20 "—ﬁ
—_— Cace
’ 204 0B I B0C I o3a 5B 95C I o4 soB 9o 1104 110B 1100

Figure 6.5.4 Total queues in test cases simulated and calculated from simulation data

8 The original simulated arrival and capacity values are used, but the left-right balance » has been hand-adjusted.
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In Figure 6.5.5, the method is working with the specified data, which can be a few percent
different from those actually simulated. There is some error in the estimated queue components
relative to event simulation, and in particular the method appears to overestimate turning
queues. Figure 6.5.6 plots the standard deviations of the component queues between the nine
simulation runs with different random seeds, giving an idea of their inherent uncertainty which
is around 30% of the average queue values and is of similar order to the estimation error,

suggesting the latter may be in part irreducible.
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Figure 6.5.5 Test cases calculated from specification v. simulated component queues

[
(=]

—_
(4]

S.D of component queues between runs
=)

*
¢ 9 ¢
*

5 ¥

. +

e,

7 SR
0 ‘M T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50

Average component queues in 9 simulations

Figure 6.5.6 Standard deviations of simulated component queues between runs
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Two particular questions arise concerning realism and possible further investigation.

First, the degree of service sharing ¢ can have a dramatic effect on queue sizes, and the
implementation of the method allows it to be specified. What values would be realistic is a
matter for further theoretical and possibly empirical study. For two lanes it may be possible to
ascribe values to particular cases. For more than two lanes, a single value may not be
meaningful, but if appropriate values between lane pairs can be established then the method of
adding up independent contributions summarised by equation (6.4.4) should be able to cope.

Second, it has been found in microscopic simulations that even if straight-moving arrivals
select the shorter queue at their moment of arrival, lane queues may still end up unequal, the
longer queue tending to occur on the lane where the turning flow is most dominant®. A
possible explanation is that since lane selection affects only straight-movers, as a queue
fluctuates they will tend to join it only when it is short, thereby tending to oppose downward
fluctuations, but turners, having no choice, will not be put off when the queue is long, so
tending to preserve upward fluctuations. Thus, queues with more turners will tend to increase.

This effect will be masked by any algorithm that actively forces equality on the lane queues.

82 personal communication by Dr Helen Gibson, TRL
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6.6. CONCLUSIONS ON QUEUING ON MULTIPLE LANES

This Chapter 6 has been focused on the particular topic of multi-lane queues, which they arise
frequently in practical urban networks, but it is believed have not previously been treated
according to the shared service principle. The approach follows that of the preceding Chapters
to the extent of trying to describe the lane queues in terms to which the time-dependent and
Pollaczek-Khinchin methods can be applied.

This has been done by developing formulae for the effective capacities of movements, where
each movement can have a different exit capacity, and by defining utilisations in terms of the
proportion of time available to each movement. This has been formulated in detail for two lanes
with turning movements. For any number of lanes, a simple description in terms of service

sharing has been proposed.

The results have been derived for equilibrium queues, but are extendable to time-dependence
and oversaturation through the sheared method because utilisations always lead to feasible
results in the time-dependent queue formulae, subject to consistency checks on the
utilisations themselves. The results agree fairly well with event-based simulations, bearing in
mind the high variability evident in the latter. This Chapter has therefore extended the scope
of the work in a direction that is practically relevant. It has also raised though not necessarily
resolved issues that may be of theoretical interest, in particular the role of correlation between
lane service processes, and how this can be handled in simple structural terms. These may

provide topics for future research.
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7.1.

CHAPTER 7: COMPUTATIONAL ISSUES AND
DEMONSTRATOR

INTRODUCTION

Practical traffic modelling applications generally require efficient computational methods

because of the magnitude of problems addressed and the need to test and compare multiple

options and to perform sensitivity analysis. What would be appropriate to different applications,

and how it may differ from existing computational methods, is considered. Demonstrator

software is described together with illustrations of results.

7.2.

FIELD OF APPLICATION OF THE METHODS

The specific aim of this work is to predict the evolution of queues and delays for arbitrary

traffic profiles of demand and capacity with useful accuracy. As far as can be ascertained from

publications, macroscopic modelling currently uses four different methods:

Analytical static delay-volume functions, as used in traffic modelling suite SATURN
(2012). In SATURN delay is estimated by a power function of the ratio of volume to

capacity, and demand in the inner simulation is constrained not to exceed capacity.

Empirical speed-flow relationships, as used in COBA (2012), which also apply only in
a static context with demand below capacity. An extension to allow for overcapacity

was proposed in 1971 but not generally applied (see Taylor et al 2008).

Time-dependent queuing, as described in this dissertation and used in the CONTRAM

dynamic assignment suite (Taylor 2003) and TRL's junction modelling software.

The Cell Transmission Method (CTM), which models queuing deterministically by
considering inflows to and outflows from small network elements (cells) that are
chained together to represent traffic streams (TRLSoftware 2012). Similar input-output
flow-conservation methods are described in many published papers. A continuous
variation of this approach that is widely studied but less used because of its
computational difficulty is the Lighthill-Whitham-Richards (LWR) kinematic method,
originated by Sir James Lighthill and Gerald Whitham (1955).
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What methods are used in practice can be difficult to tell. Since traffic modelling software first
appeared in the 1970s, it has become increasingly commercial and proprietary and tends to be
sold on features and appearance rather than methodology, as a result of which the inner

workings have become increasingly obscure.

The enhancements to queue modelling described here lend themselves mostly to time-
dependent macro/mesoscopic tools like CONTRAM for assignment or for the design and
modelling of junctions. The random queue calculation is a software module whose inputs are
initial queue, demand, capacity, duration of period, and statistical parameters, and whose
outputs are final queue size and average utilisation. An enhanced module will have additional
inputs and outputs, the initial and final values of p, and variance. All other new variables and
calculations can be internal to the module. The computational burden for each queue in each
time period is likely to be increased substantially compared to mean queue calculation®, so an
increase in run time is also to be expected®. However, one would expect a parallel investment
in more efficient assignment methods. Note that dropping the variance calculation is not an
option if the improved accuracy of mean queue estimation that it enables is to be achieved.
Estimation of the queue size probability distribution is likely to be optional because of its
relatively high computational effort, but its inputs are simple: demand intensity

(demand/capacity), statistical parameters, current values of po, mean queue size and variance.

7.3. DEMONSTRATOR

Developing a computationally-efficient module or program to perform the calculations defined
in this dissertation is considered to be outside the scope of the work. The reasons are similar to
those put forward for not pursuing an independent solution algorithm for fitting queue size
distributions. Instead a demonstration program has been constructed enabling scenarios to be
tested and results examined. Use of a spreadsheet, while not necessarily computationally
efficient, provides a transparent vehicle for computations as well as convenient access to the
methods and intermediate results, not normally available from modular software. Comparison
of estimation errors across all peak cases required the code to be replicated in a separate
worksheet for each case along with its own case data and Markov similulated results, one set
for M/M/1 and one set for M/D/1. The Demonstrator ‘Case’ spreadsheet has one calculating
worksheet, which refers by lookup to either the M/M/1 or M/D/1 case database. Formulae are
arranged vertically with each time slice occupying one column, this being more convenient for
testing. In the transposed ‘Demo’ worksheet the calculations for each time slice occupy one

row, which may be more convenient where the number of time slices is large.

% The Demonstrator calculation uses about 70 lines of Excel code compared to 20 for the sheared approximation.
% In CONTRAM as much as 80% of run time is devoted to the calculation of link and junction delays.
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A sample of the ‘Case’ worksheet is shown in Figure 7.3.1. The green fields are data and
steady-state values, and the black fields at the bottom are results. These are compared in the
graphs of L, D and V respectively, below which errors are printed in red. The transposed and

slightly rearranged ‘Demo’ version is illustrated in Figure 7.3.2.
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Figure 7.3.2 Part of Demo worksheet for J3P9 (M/M/1) (one time-slice per row)
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The ‘Distribution’ worksheet shown in Figure 7.3.3 is used to estimate the probability
distribution for one time slice of the ‘Case’ worksheet, using Excel's ‘Solver’ method.
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Figure 7.3.3 Distribution worksheet example for J3P9 (M/M/1, Ts 12)

The method described earlier in Chapter 5 is applied sequentially, as follows. The required case
is first set up in the ‘Case’ worksheet, whose inputs can either be drawn from pre-defined data
in the M/M/1 or M/D/1 database worksheet, or set up manually in input fields (not

recommended). Switching to the ‘Distribution’ worksheet:

Set required time slice (Ts) number in blue-bordered cell at top left

Set ‘Enable m’ field to 1 so that all three parameters 6, m and s will be solved for
Copy columns D:E to E:F - this initialises the solution column E to the starting values
Run Solver - this estimates optimum parameters in column E

Set ‘Enable m’ field to 0 so only parameters 6 and s will be solved, with m forced to 0
Copy columns D:E to E:F - this copies the first solution to column F and re-initialises
Run Solver again - this estimates new parameters in column E

The optimum solution is selected automatically from either column E or F

© ®© N oo a k~ w dE

Optionally copy result values from the purple-bordered box to the ‘Repository’ area,
enabling parameters to be collected and for each time slice and restored

10. An option exists to compare with a simulated distribution stored in another worksheet.

The target and variable cell addresses for Solver are embedded in the worksheet and do not
need to be changed. The solution values used are forced to be non-negative. If Solver arrives at
a negative value it is replaced by the corresponding initial value, but if Solver moves back into

the feasible region then the variable is reconnected. The constraint rules in Solver are not used.
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As explained in Chapter 5, the option to set 6 to zero, so forcing a pure exponential probability
distribution, is not provided as it is considered unnecessary. If the calculated mean and variance
or s.d. are consistent with an exponential/geometric distribution then the method is expected to
return a very small value of 6, so a third run of Solver will not add anything. Of the two
solutions the one with the minimum error is selected by default, but the choice can be forced by

setting the appropriate ‘Use solution’ switch.

The probability distribution corresponding to the solution in the larger purple-bordered box is
plotted, with the exponential component shown in green, the (truncated but unnormalised)
Normal component in maroon, and the combined estimated distribution in blue. A simulated
distribution, if present, is indicated by crosses. The mean and standard deviation of the
estimated distribution are given in the smaller purple-bordered box for comparison with
analytically estimated values in the green-bordered box to its left, along with % RMS error

giving equal weight to mean and standard deviation.

Further options exist:

e To select ‘Continuous’ mode that suppresses the h correction (not recommended)
o To select ‘Repository’ that displays the distribution using stored data for the selected
time slice instead of the Case data

e To force the choice of solution for purposes of comparison or checking.
The Repository will need to be copied and saved before a different case is analysed.

Alternatively the entire worksheet can be copied, bearing in mind that Excel graphs retain links

to the original worksheet, so these will need to be edited using <right-click>Select Data.
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7.4. SUMMARY OF BENCHMARKING AND TEST PROGRAMS

A number of compiled Fortran 95 programs have been written to simulate queue development.
Series and Qsim are described in Chapter 2 and pseudo-code of their principal algorithms

given in Appendices A and B. These and other programs are summarised in the Table below.

Table 7.4.1 Summary of simulation and other programs

Program Purpose Command inputs  Input files Output
Series Evaluates options, n/a .tab=dimension (max i),
Morse’s resolution, Lo, p, Po, L, D,V
M/M/1 series i, t .out=probabilities{p;}
formula [by time slice]
Qsim Markov data name, [p], .dat= sum={ po, L, D, V}
simulation of  process, step size,  {p, u, t} .dis=probabilities {pi}
M/M/1, initial queue, with with [by time slice]
M/D/1, optional modifiers various
M/D/1[G] and options by
various Erlang sign
processes
LodefV Evaluation of ‘JXPy’ junction n/a Jdod=L, V
Gaussian ID, peak length, .sin= data for Series
peaks and number of time .dat=data for Qsim
synthesis of slices
time-sliced
data for other
programs
LaneMultiRandom  Random event [randomise_seed], n/a Multi<case>.txt=
simulation of  case_code, lanes, detailed record of arrival
queuing on p, L, selectivity, and service events and
one or more  number_of_trials, queue sizes,
lanes with [number of run-up Multi<case>.tot=
variable trials not counted] summary statistics for
degree of each lane including
selectivity of correlations
shortest queue
LaneMultiStates Synthesises  p, lanes, step size, n/a Table of recurrence

recurrence maximum total relation coefficients for
relations for ~ queue, number of first few distinct
up to six cycles, modifier recurrence relations.
lanes, then for selective
applies them arrivals Ensemble and lane
in Markov probability distributions.
simulation to
estimate Joint probability matrix
probability for two lanes.

distributions

LaneTurningRandom Random event turnsin.txt=output filename, Queue size probability

simulation of  proportion of ahead movement distributions: total, left-
queuing on using right lane, exit capacities, lane, right-lane, left-
two lanes with total demand, turning turning, left-lane ahead,
turning proportions, random seed, right-lane ahead, right-
movements  number of cycles, FIFO option® turning

%The FIFO option means that rather than just storing the number of units in each queue, the program records their
actual positions dynamically in a large array, at the cost of some loss of speed.
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CHAPTER 8: SUMMARY AND CONCLUSIONS

8.1. ACHIEVEMENTS

8.1.1 Extension and demonstration of tools for estimating time-dependent queues

Main results

By deriving and applying a new deterministic formula for queue variance, the tools available
for macroscopic estimation of time-dependent queues have been extended, improving their
accuracy and range of application, and enabling estimation of variance and reliability. Methods
of fitting probability distributions to equilibrium and calculated time-dependent non-

equilibrium moments have been developed, providing detail particularly for ‘tails’.

Guiding principles
An objective throughout has been to develop or enhance methods that are computationally
efficient, robust, and as general as possible, by exploiting the underlying structures of queuing

systems rather than seeking statistical matches to simulation benchmarks.

Validation and demonstration

The methods show good agreement when tested against Markov simulations of M/M/1
(priority-like) and M/D/1 (signal-like stochastic/overflow) processes based on recurrence
relations. The M/M/1 Markov simulation method is itself validated against calculation based on
the exact series formula as given by Morse, and random event simulation. Application to a
range of oversaturated peak and other cases is demonstrated. A spreadsheet demonstration
program enables mean queue size, delay and variance to be evaluated from piecewise time-
dependent demand/capacity profiles, and includes a procedure for estimating instantaneous

queue size probability distributions from the time-dependent moments.

8.1.2 Main innovations

New deterministic and equilibrium queue variance formulae have been derived. These
respectively partner the deterministic and Pollaczek-Khinchin (P-K) equilibrium mean queue
formulae, enabling the variance of a queue to be estimated at any point in time, and giving

improved queue estimation accuracy through their role as asymptotic constraints.

The new variance formulae have been used with inherent structural features of queue processes
to correct the sheared queue formula, a convenient and computationally efficient approximation

that seamlessly combines time-dependent deterministic and equilibrium queue formulae.
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A new approximation for queue decay based on exponential functions has been developed, that
also relies on structural features of queuing processes, but avoids the quasi-static implication of
the sheared method that appears inappropriate to the decay regime.

Mean queues with Erlang arrival/service have been parameterised in the Pollaczek-Khinchin
formula, using the results of Markov simulations based on appropriate recurrence relations,
confirming that these processes can be brought into the time-dependent approximation scheme.

New empirical formulae relating the mean and variance of a stochastic equilibrium queue at a
signal to throughput capacity in the green period have been developed, based on an extended
M/D/1 process defined by recurrence relations. These results are compatible with time-
dependent modelling and provide moment expressions needed for estimating time-dependent

queues and equilibrium probability distributions taking into account green capacity.

A new doubly-nested geometric approximation to discrete equilibrium probability distributions
by fitting parameters to three queue moments has been developed and demonstrated. It is
considered that three critical moments are necessary and sufficient to characterise a queue
process for present practical purposes: the utilisation or its complement the probability that the

gueue is zero, mean queue size and variance.

A new method of fitting a dynamic queue size probability function to queue moments using a
combination of exponential and Normal functions has been developed and demonstrated. The

continuous distribution function can be discretised numerically or by integration.

A new method for estimating capacities and queues on shared lanes with turning movements
has been described. The method based on a general approach, shows fair agreement in

estimating the resulting time-dependent queues when compared against simulation.

8.1.3 Review of relevant past work and underlying issues

Relevant past work has been reviewed, and a number of issues related to the above methods
and topics discussed. General discussion in the Introduction has been supported by reviewing
and addressing specific issues in the appropriate sections. Particular issues include the
generality of the deterministic variance formula, sources of inaccuracy in the sheared formula,
alternative types of equilibrium distribution, the significance of initial probability distributions
and the significance of utilisation or the probability of zero queue, the traffic and statistical
parameters needed to characterise the subsequent evolution of a queue, methods applicable to

multi-lane queues, and diffusion approximations to queue size probability distributions.
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8.2. IMPACTS

8.2.1 More reliable traffic and assignment modelling

Microscopic simulation has gained in popularity in recent years, because of the apparent
realism of its disaggregate approach, and its ease of visualisation. It has been criticised on the
grounds that it delivers random samples rather than averages and uses internal models that are
not directly verifiable. Macroscopic and mesoscopic, including agent-based and cell-
transmission, methods make use of validated closed formulae, giving them the advantages of

efficiency and providing average results in a single pass, potentially with uncertainty ranges.

8.2.2  Better treatment of variability and unreliability

Transportation traffic behaviour is variable and to a degree unpredictable. While microscopic
simulation embodies randomness and variability at source, the large number of possible
outcomes means it cannot explore the effects of variability efficiently and accurately. With
reliability of transport becoming increasingly important as the scope for infrastructure provision
decreases, an ability to evaluate the reliability of outputs as a function of the variability or
uncertainty of inputs and processes becomes increasingly necessary. Although variability in
gueue and delay processes cannot embrace all possible types of uncertainty, such as ‘heavy
tails’ or rare events, it may provide a base description to replace simple averages that could be
misleading. Queuing theory has many applications apart from road traffic, including systems
that do not conform to an AM/PM peak pattern but have systematic features in their arrival and
service patterns, like airports and health care facilities. Robustness of queue estimation methods
is essential where arrival and service profiles may be arbitrary. Estimation of variance means

that critical points can be identified more reliably and potentially mitigated.

8.3. POTENTIAL FUTURE WORK

This work has aimed to provide practical tools for estimating traffic and similar queues in
which variability is an integral part, supported by certain methodological extensions. Topics for
future research in this area could include: extension at least approximately to more general
arrival and service patterns including platooned arrivals; calculation of higher moments of
distributions with possible application to ‘heavy tails’ or to further constrain queue
development; other improvements to approximations to reduce the need for calibrated
adjustments; application of the new methods to network assignment modelling. These may also

lead to a fuller understanding of relevant mechanisms and increased confidence in predictions.

308



REFERENCES

AA (2009). http://www.theaa.co.uk. February 2009.

Abate J and Whitt W (1987). Transient behavior of the M/M/1 queue: starting at the origin.
Queueing Systems 2, (1987), 41-65.

Addison J D (2006). Behaviour of variance of delay. Proc. UTSG Conference 2006, Dublin.

Addison J D and Heydecker B G (2006). Journey time variability on a congested link. Proc.
UTSG Conference 2006, Dublin.

Allsop R E (1971). Delay-minimizing settings for fixed-time traffic signals at a single road
junction. IMA Journal of Applied Mathematics, 8(2), 164-185.

Allsop R E / Hutchinson T P (1972). Delay at fixed-time traffic signals [Parts | and 11
respectively]. Transportation Science 6(3), 260-285, 286-305.

Akgelik R (1980). Time-dependent expressions for delay, stop rate and queue length at traffic
signals. ARRB Internal Report AIR 367-1. Australian Road Research Board.

Akgcelik R (1998a). Traffic signals: capacity and timing analysis.Report ARR 123. Australian
Road Research Board. [Most recent edition of report first published 1981]

Akcelik R (1998b). Roundabouts: capacity and performance analysis. Report ARR 321.

Australian Road Research Board.

Akgcelik (2001). HCM 2000 back of queue model for signalised intersections. Technical Note.
Akcelik and Associates Pty Ltd, September 2001.

Akgelik R (2007). A review of gap-acceptance capacity models. Proc. 29th Conference of
Australian Institutes of Transport Research (CAITR 2007), University of South Australia,
Adelaide, 5-7 December 2007.

Arup, Bates J, Fearon J and Black | (2004). Frameworks for Modelling the Variability of
Journey Times on the Highway Network. UK Department of Transport,
dft_econappr_pdf_6104309.

309


http://www.theaa.co.uk/

Asmussen S (1987). Applied probability and queues. Wiley.

Bar-Gera H (2002). Origin-based algorithm for the traffic assignment problem.
Transportation Science, 36(4), 398-417.

Bar-Gera H and Boyce D (2003). Origin-based algorithms for combined travel forecasting
models. Transportation Research B, 37(2003), 405422

Beckman M (1952). A continuous model for transportation. Econometrica, 20, 643-660.

Bell M G H (2009). Hyperstar: a multi-path Astar algorithm for risk-averse vehicle
navigation. Transportation Research,43B, 2009, 97-107.

Bertini R L, Hasen S and Bogenberger K (2005). Empirical analysis of traffic sensor data
surrounding a bottleneck on a German autobahn. Transportation Research Record 1934,

Transportation Research Board, Washington DC.

Bin Han (1996). A new comprehensive sheared delay formula for traffic signal optimisation.
Transportation Research A, 30(2), 155-171.

Binning J (1996). Visual PICADY/4 User Guide. TRL Application Guide AG23, Transport

Research Laboratory. Crowthorne House.

Binning J (2004). ARCADY 6 User Guide. TRL Application Guide AG49, Transport

Research Laboratory. Crowthorne House.

Branston D (1978). A comparison of observed and estimated queue lengths at over-saturated
traffic signals. Traffic Engineering and Control 19(7), 322-327.

Brilon W (2007). Time dependent delay at unsignalized intersections. Proc. International

Symposium on Transportation and Traffic Theory 2007. Elsevier.

Bunday B D (1996). An introduction to queueing theory. Arnold (Hodder Headline).

Burrow | J (1987). OSCADY: a computer program to model capacities, queue and delays at

isolated traffic signal junctions. TRL Report RR 105. Crowthorne House.

310



Cantrell P E (1986). Computation of the transient M/M/1 queue cdf, pdf and mean with
generalized Q-functions. IEEE transactions on communications, COM-94(8), August 1986.

Cantrell P E and Ojha A K (1987). Comparison of generalized Q-function algorithms.
Correspondence in IEEE Transactions on Information Theory, 1T-33(4), July 1987.

Cantrell P E and Beall G R (1988). Transient M/M/1 queue variance computation using
generalized Q-functions. IEEE Transactions on Communications, 36(6), June 1988.

Carey M and Bowers M (2011). A review of properties of flow-density functions. Transport
Reviews, 31(1), 49-73, Routledge.

Catling I (1977). A time-dependent approach to junction delays. Traffic Engineering and
Control, 18, 520-526.

CEDR (2009). Traffic Incident Management: Final Report of Task 5, February 2009.

Conference of European Directors of Roads, http://www.cedr.fr

CEDR (2011). Best practice in European Traffic Incident Management.Final Report of Task
13, May 2011. Conference of European Directors of Roads, http://www.cedr.fr

Cheng D X, Messer C J, Tian Z Z and Liu J (2003). Modification of Webster’s Minimum
Delay Cycle Length Equation Based on HCM 2000. [Texas Transportation Institute] TRB
2003 Annual Meeting, Washington DC.
http://wolfweb.unr.edu/homepage/zongt/Publications_files/ChengDingXinTRB-03.pdf

Chow J Y J (2013). On observable chaotic maps for queueing analysis. Proc. 92nd TRB
Annual Meeting, January 2013. Transportation Research Board, Washington DC.

Clarke A B (1956). A Waiting Line Process of Markov Type. Annals of Mathematical
Statistics, 27, 452-459.

COBA (2012). http://www.dft.gov.uk/publications/coba-11-user-manual/ [accessed 26/10/12]

Cronjé (1983a). Analysis of existing formulas for delay, overflow and stops. Transportation

Research Record 905, Transportation Research Board, Washington DC.

311


http://www.cedr.eu/
http://www.cedr.eu/

Cronjé (1983b). Optimization model for isolated signalized traffic intersections.
Transportation Research Record 905, 80-83, Transportation Research Board, Washington
DC.

Daganzo C F, Cassidy M J and Bertini R L (1999). Possible explanations of phase transitions
in highway traffic. Transportation Research A, 33(1999), 365-379.

DfT (2005). Attitudes to congestion on motorways and other roads. Department for
Transport.

Dijkstra E W (1959). A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269-271.

Doherty A R (1977). A comprehensive junction delay formula. LTR1 working paper,

Department of Transport.

Eddington Sir R (2006). The Eddington Transport Study Main Report: Transport’s role in

sustaining the UK’s productivity and competitiveness. HMSO.

Eliasson J (2006). Forecasting travel time variability. Proc. European Transport Conference
2006. PTRC

Erlang A K (1909). The theory of probabilities and telephone conversations. Nyt Tidsskrift
for Matematik B20, Kgbnhavn.

Fosgerau M (2008). On the relation between the mean and variance of delay in dynamic
queues with random capacity and demand. MPRA Paper No 11994/Technical University of

Denmark. http://mpra.ub.uni-muenchen.de/11994/

Fosgerau M and Karlstrém A (2010). The value of reliability. Transportation Research B,
44(2010), 38-49. Elsevier.

Global Times (2010). Highway jam enters its 9th day, spans 100km. 23 Aug 2010.
http://china.globaltimes.cn/society/2010-08/566070.html?loc=interstitialskip

Goodwin P (2010). ‘Peak car’. Various articles in Local Transport Today. Issues 548-554.

312



Gordon A, Van Vuren T, Watling D, Polak J, Noland R, Porter S and Taylor N B (2001).
Incorporating variable travel time effects into route choice models. Proc. European
Transport Conference, Homerton College, Cambridge, September 2001, PTRC.

Greenshields B D (1935). A study of traffic capacity. Proc. 14th Annual Meeting of Highway
Research Board.

Griffiths J D (1981). A mathematical model of a non-signalized pedestrian crossing.
Transportation Science, 15(3), 222-232.

Griffiths J D, Leonenko G M and Williams J E (2005). The transient solution to M/Ek/1
queue. Operations Research Letters, 34(2006), 349-354.

Griffiths J D, Leonenko G M and Williams J E (2008). Time-dependent analysis of non-
empty M/EK/1 queue. Quality Technology and Quantitative Management, 5(3), 309-320.

Gross D, Shortle J F, Thompson J M and Harris C M (2008). Fundamentals of queueing
theory. Wiley.

Hart P E, Nilsson N J and Raphael B (1968). A Formal Basis for the Heuristic Determination

of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4(2),
100-107.

Hawkes A G (1968). Gap-acceptance in road traffic. J. Applied Probability, 5(1), 84-92.

Heidemann D (1994). Queue length and delay distributions at traffic signals. Transportation
Research, 24B(5), 377-389. Elsevier.

Heydecker B G (unpublished). An extension of the Pollaczek-Khintchine delay formula.

Transport Studies Group, University College London.

Heydecker B G (1982). Vehicles, PCUs and TCUs in traffic signal calculations. Traffic
Engineering and Control, 24(3), 111-114.

Heydecker B G and Verlander N Q (1998). Transient delay in oversaturated queues. Proc. 3™
IMA International Conference on Mathematics in Transport Planning and Control, Cardiff,

1-3 April 1998.

313



Heydecker B G and Wu J (2001). Identification of sites for road accident remedial work by
Bayesian statistical methods: an example of uncertain inference. Advances in Engineering
Software 32(2001), 859-869.

Holland W and Griffiths J D (1999). A time-dependent approximation for the queue
M/M(1,s)/c. IMA J. of Mathematics Applied in Business & Industry, 1999(10),213-223.

Kaparias I, Bell M G H and Belzner H (2008). A new measure of travel time reliability for in-
vehicle navigation systems. J. of Intelligent Transportation Systems, 12(4), 202-211.

Kelly B (2012). A ‘green-wave’ reprieve. Traffic Engineering and Control, February 2012.

Kerner B S and Klenov S L (2003). Microscopic theory of spatio-temporal traffic patterns at
highway bottlenecks. Physical Review E, 68, 036130.

Kimber R M and Daly P (1986). Time-dependent queuing at road junctions: observation and
prediction. Transportation Research, 20B(3), 187-203.

Kimber R M, Daly P, Barton J and Giokas C (1986). Predicting time-dependent distributions
of queues and delays for road traffic at roundabouts and priority junctions. J. Operational

Research Society, 37(1), 87-97. Palgrave Macmillan.

Kimber R M and Hollis E M (1979). Traffic queues and delays at road junctions. TRL Report
LR 909. Transport Research Laboratory, Crowthorne House.

Kimber R M, McDonald M and Hounsell N B (1985). Passenger car units in saturation flows:

concept, definition, derivation. Transportation Research,19B(1), 39-61.

Kimber R M, McDonald M and Hounsell N B (1986). The prediction of saturation flows for
road junctions controlled by traffic signals. TRL Report RR67. Transport Research
Laboratory, Crowthorne House.

Kimber R M, Summersgill | and Burrow | J (1986). Delay processes at unsignalised
junctions: the inter-relation between geometric and queueing delay. Transportation Research,

20B(6), 457-476.

Kleinrock L (1975). Queueing systems: Volume 1 Theory. Wiley

314



Kleinrock L (1976). Queueing systems: Volume 11 Computer applications. Wiley

Knote T (2006). Kapazitat von Mischstromen in Nebenstrassenzufahrten von Kreuzungen
und Einmindungen mit Vorfahrtbeschilderung. StraRenverkehrstechnik, 50(2), 75-80.

Kobayashi H (1974a). Application of the diffusion approximation to queueing networks —
Part I: equilibrium queue distributions. J Association for Computing Machinery, 21(2), 316-
328.

Kobayashi H (1974b). Application of the diffusion approximation to queueing networks —
Part 1I: non-equilibrium queue distributions and applications to computer modeling. J

Association for Computing Machinery, 21(3), 459-4609.

Koenigsberg E (1991). Is queueing theory dead? OMEGA International Journal of
Management Science, 19(2/3), 69-78. Pergamon.

Kouvatsos D D (1988). A maximum entropy analysis of the G/G/1 queue at equilibrium. J.
Operational Research Society, 39(2), 183-200.

Kihne R and Ludke A (2013). Traffic breakdowns and freeway capacity as extreme value
statistics. Transportation Research C, 27(2013), 159-168. Elsevier.

Laio F (2004). Cramér-von Mises and Anderson-Darling goodness of fit tests for extreme

value distributions with unknown parameters. Water Resources Research, 40, W09308.

Lay M G (2011). Measuring traffic congestion. Road and Transport Research, 20(2), June
2011. Australian Road Research Board.

Leonard D R, Gower P and Taylor N B (1989).CONTRAM: Structure of the model. TRL
Report RR178. Transport Research Laboratory, Crowthorne House.

Lighthill Sir M J, Whitham G B(1955). On Kkinetic wave Il: a theory of traffic flow
oncrowded roads. Proceedings of the Royal Society of London, Series A, 229(1178), 317-345.

Little J D C (1961). A simple proof of L=AW. Operations Research 9, 383-387.

LTT (2012). In Passing, in Local Transport Today Issue 593, 30 March — 12 April 2012.

315



Maher M J (1992). SAM — a stochastic assignment model. Proc. IMA Mathematics in
Transport Conference. Institute of Mathematics and its Applications.

Maher M J (1998). Algorithms for logit-based stochastic user equilibrium assignment.
Transportation Research — Methodological, 32B(8), 539-549.

Mahmassani H S and Chang G-L (1987). On Boundedly-Rational User Equilibrium in
Transportation Systems. Transportation Science, 21(2).

Medhi J (2003). Stochastic models in queueing theory. Elsevier Academic Press.

Meissl P (1963). Zufallsmodell einer Lichtsignalanlage mit mehrspurigem Stauraum.
Mathematik-Technik-Wirtschaft, Heft 1/63, 1-4, and Heft 2/63,63-68, Wien.

Metz D (2009). Saturation of demand for travel. Transport Reviews, 2009, 1-16.

Metz D (2010). We have reached the limit of personal travel demand. Local Transport
Today. Issue 557, 11 June 2010.

Miller A J (1961). A queueing model for road traffic flow. Journal of the Royal Statistical
Society, B23(1), 64-90.

Miller A J (1969). Some operating characteristics of fixed-time signals with random arrivals.

Institution of Highways and Traffic Research, University of New South Wales.

Mirchandani P B and Zou N (2007). Queuing models for analysis of adaptive signal control.

IEEE Transactions on Intelligent Transportation Systems, 8(1), 50-59.

Morse P M (1955). Stochastic properties of waiting lines. J. Operations research Society of
America. 3(3), 255-261, August 1955.

Morse P M (1958). Queues inventories and maintenance. Wiley.

NCTIM (2002). A road map to the future. Proceedings of the National Conference on Traffic
Incident Management, Irvine CA, 2-4 March 2002.

Newell G F (1960). Queues for a fixed-cycle traffic light. Annals of Mathematical Statistics,
31, 589-597.

316



Newell G F (1968a). Queues with time-dependent arrival rates — Part | the transition through
saturation. Journal of Applied Probability, 5(2), 436-451.

Newell G F (1968b). Queues with time-dependent arrival rates — Part Il the maximum queue
and return to equilibrium. Journal of Applied Probability, 5(3), 579-590.

Newell G F (1968c). Queues with time-dependent arrival rates — Part 111 a mild rush hour.
Journal of Applied Probability, 5(3), 591-606.

Newell G F (1971,1982). Applications of queuing theory. Chapman and Hall.

Olszewski P S (1990). Modelling of queue probability distribution at traffic signals. Proc.
International Symposium of Traffic and Transportation Theory, 1990.

Peterson M D, Bertsimas D J and Odoni A R (1995). Models and algorithms for queueing
congestion at airports. Management Science, 41(8), 1279-1294.

Prashker J N (2008). Editorial in special issue of journal, Transportation Research C, 16
(2008), 275-276.

Rider K L (1976). A simple approximation to the average queue size in the time-dependent
M/M/1 queue. J Association of Computing Machinery, 23(2), 361-367.

Rigobon R (2009). Brownian motion and stochastic calculus introductory notes. MIT, Fall
2009.

Robertson D | and Gower P (1977). User Guide to TRANSYT version 6. TRL report LR255,

Transport Research Laboratory, Crowthorne House.

Rose C (1995). A statistical identity linking folded and censored distributions. J Economic
Dynamics and Control, 19(1995), 1391-1403.

Sakasegawa H (1977). An approximation formula ... Annals Inst. Stat. Math. 29A(1), 67-75.
Sakasegawa H and Yamazaki G (1977). Inequalities and an approximation formula for the

mean delay time in tandem gueueing systems. Annals Inst. Stat. Math. 29A(1), 445-466.

317



SATURN (2012). https://saturnsoftware.co.uk/downloads/pdfs/Saturn_Brochure_300.pdf.
[accessed 26/10/12]

Schrank D, Lomax T and Turner S (2010). TTI’s 2010 Urban Mobility Report. Texas
Transportation Institute.

Semmens M C (1985a). ARCADY?2: an enhanced program to model capacities, queues and
delays at roundabouts. TRL Report RR 35. Transport Research Laboratory, Crowthorne

House.

Semmens M C (1985b). PICADY?2: an enhanced program to model capacities, queues and
delays at major/minor priority junctions. TRL Report RR 36. Transport Research Laboratory,
Crowthorne House.

Sharma O P (1990). Markovian queues. Ellis Horwood.

Sheffi Y and Powell W B (1982). An algorithm for the equilibrium assignment problem with
random link times. Networks 12(2), 191-207.

Slavin H (2012). Convergence of assignment methods. Presentation given at Modelling
World Conference 2012, The Oval, London.

Soros G (1987). The alchemy of finance. John Wiley & Sons.

Spiess H. Conical volume-delay functions. Transportation Science 24(2), 153-158.

Tanner J C (1961). Two Papers on Applications of Stochastic Processes to Road Traffic
Problems: Delays on a Two-Lane Road. Journal of the Royal Statistical Society, B23(1), 38-

63.

Tanner J C (1962). A theoretical analysis of delays at an uncontrolled intersection.
Biometrika, 49 (1 and 2), 163-169.

Taylor N B (1989). Speeding up quickest route assignment in CONTRAM using an heuristic
algorithm. Traffic Engineering and Control, February 1989.

Taylor N B (1990). CONTRAM 5: An enhanced traffic assignment model. TRL Report
RR249. Transport Research Laboratory, Crowthorne House.

318



Taylor N B (2003). The CONTRAM dynamic traffic assignment model. Networks and
Spatial Economics Journal — special issue on Dynamic Traffic Assignment. 3: (2003) 297-
322, Kluwer, September 2003.

Taylor N B (2005a). Variance and accuracy of the sheared queue model. Proc. IMA
Mathematics in Transport Conference, University College London, 7-9 September 2005.

Taylor N B (2005b). The impact of Abnormal Loads on road traffic congestion. Proc.
European Transport Conference, Strasbourg, 3-5 October 2005, AET.

Taylor N B (2007). A new approach to modelling variability in queues. Proc. European
Transport Conference, Leeuwenhorst, 17-19 October 2007.

Taylor N B (2009). The management and impact of abnormal loads. TRL Insight Report
INS004, Transport Research Laboratory, Crowthorne House.

Taylor N B (2011). An approach to time-dependent modelling of queues in multiple lanes
with turning movements. Proc. Universities Transport Studies Group (UTSG) Conference

2011, Open University Milton Keynes.

Taylor N B (2012). A recipe for jam - can congestion be defined consistently? Proc. Road
Traffic and Control (RTIC) Conference, September 2012, IET London.

Taylor N B (2013). The effect of green time on signal overflow queues. Proc. Universities

Transport Studies Group (UTSG) Conference, January 2013, Oxford University.

Taylor N B and Heydecker B G (2013). The effect of green time on stochastic queues at
traffic signals. Transportation Planning and Technology - Special Issue based on UTSG 2013
Conference at Oxford University. Published online on 18 October 2013.
http://dx.doi.org/10.1080/03081060.2013.844907

Taylor N B, Notley S, Bourne N and Skrobanski G (2008). Evidence for speed-flow

relationships. Proc. European Transport Conference, Leeuwenhorst, 6-8 October 2008, AET.

Trabka E A and Marchand E W (1970). Mean and variance of the number of renewals of a

Censored Poisson process. Biological Cybernetics, 7(6), 221-224, Springer.

319



TRLSoftware (2012). Cell Saturation flows and the noticable effects of switch from PDM to
CTM. https://www.trlsoftware.co.uk/support/knowledgebase/articles/194 [accessed 26/10/12]

van Vliet (1977). D’Esopo: a forgotten tree-building algorithm. Traffic Engineering and
Control, July/August 1977.

Wardrop J G (1952). Some theoretical aspects of road traffic research, Proceedings, Institute
of Civil Engineers, PART II, Vol.1, 325-378.

Webster F V (1958). Traffic signal settings. Road Research Technical Paper 39. Road
Research Laboratory, Langley.

Webster F V and Cobbe B M (1966). Traffic signals. Road Research Technical Paper 56.
HMSO.

Whiting P D and Hillier J A (1960). A method of finding the shortest route through a road
network. Operational Research Quarterly, 11(1-2), 37-40.

Whitt W (1982). Refining diffusion approximations for queues. Operations Research Letters,
1(2), 165-168.

Willmot G E (1986). Mixed compound Poisson distributions. Astin Bulletin vol 16 S, 59-79.

Wood S (2012). Traffic microsimulation — dispelling the myths, Traffic Engineering and
Control, October 2012, 339-344.,

Zhang K and Excell A (2013). Modelling a complex give-way situation — AIMSUN vs

LINSIG. Road and Transport Research, 22(2), 16-26. Australian Road Research Board, June
2013.

320



ADDITIONAL BIBLIOGRAPHY

This section lists some other sources consulted but not referenced in the text.

Abate J and Whitt W (1992). Transient behavior of the M/G/1 workload process. Operations
Research, 42(4), 750-763.

Akglingér A P (2008). A new delay parameter dependent on variable analysis periods at
signalized intersections. Turkish Journal of Transport 23(1-2), 31-36 and 91-94.

Akgilingdr A P and A G R Bullen (2007). A new delay parameter for variable traffic flows
and signalized intersections. Turkish Journal of Engineering and Environmental Science
31(2007), 61-70.

Atkinson J B (1995). The transient M/G/1/0 queue: some bounds and approximations for
light traffic with application to reliability. J. of Applied Mathematics and Stochastic

Applications, 8(4), 347-359.

Baykal-Girsoy M, Xiao W and Ozbay K (2009). Modeling traffic flow interrupted by
incidents. European J. of Operational Research, 195(2009), 127-138.

Celeux G, Lavergne C and Vernaz Y (2000). Assessing material aging from doubly censored
data: Weibull distribution vs Poisson process. Rapport de Recherche no 3857, Unité de
Recherche INTIA Rhdne-Alpes.

Cooper R B (1981). Introduction to queueing theory. Elsevier.

Cox D R and Miller H D (1965). The theory of stochastic processes. Wiley.

Daigle J N and Magalhdes M N (1991). Transient behaviour of M/M'/1 queues. Queueing
Systems 8 (1991), 357-378.

Duda A (1983). Transient diffusion approximations for some queueing systems. Université de
Paris-Sud.

van Eenige M J A (1996). Queueing systems with periodic service. Eindhoven University of

Technology.

321



Garcia J-M, Brun O and Gauchard D (2002). Transient analytical solution of M/M/1/N
queues. J. Applied Probability, 39, 853-864.

Gaver D P (1968). Diffusion approximations and models for certain congestion problems. J.
of Applied Probability, 5, 607-623.

Gaver D P and Miller R G (1962). Limiting distributions for some storage problems. Studies
in applied probability and management science, 110-126, Stanford.

Grassmann W (1976). Transient solutions to Markovian queues — An algorithm for finding
them and determining their waiting-time distributions. European J. of Operational Researchl
(1977), 396-402.

Lee H W, Yoon S H and Lee S S (1996). A continuous approximation for batch arrival
queues with threshold. Computers Operations Research, 23(3), 299-308.

van Leeuwaarden J S H (2006). Delay analysis for a fixed-cycle traffic-light queue.
Transportation Science 40(2), May 2006, 189-199.

Li H, Bovy P H L and Bliemer M C J (2008). Departure time distribution in the stochastic
bottleneck model. Int. J. of ITS Research, 6(2), 79-86

Lipsky L (1992). Queueing theory — a linear algebraic approach. Macmillan

Loynes R M (1961). A continuous-time treatment of certain queues and infinite dams.

Statistical Laboratory, University of Cambridge.

Miller R G Jr (1963). Continuous time stochastic storage processes with random linear inputs
and outputs. J. Math. Mech. 12, 275-291.

Mullowney P and James A (2007). The role of variance in capped-rate stochastic growth
models with external mortality. J. of Theoretical Biology, 244(2007), 228-238.

Odoni A R and Roth E (1983). An empirical investigation of the transient behavior of
stationary gueueing systems. Operations Research 31(3), 432-455.

Selvin S (1974). Maximum likelhood estimation in the truncated or censored Poisson

distribution. J. of the American Statistical Association, 69(345), Theory and Methods Section.
322



Stern T E (1979). Approximation of queue dynamics and their application to adaptive routing
in computer communication networks. IEEE Transactions on Communications, COM-27(9),
September 1979.

Viti F and van Zuylen H J (2009). The dynamics and the uncertainty of queues at fixed and
actuated controls: a probabilistic approach. J. Intelligent Transp. Systems, 13(1), 39-51.

Yeo G F (1961). Single server queues with the modified service mechanisms. Australian
National University, Canberra.

323



APPENDIX A - DERIVATION OF MEAN AND VARIANCE
FORMULAE

Al TIME DERIVATIVE AND DETERMINISTIC MEAN OF THE M/M/1
QUEUE

The dynamic recurrence relations for the M/M/1 queue, which can be formulated on an
infinitesimal service time period, are:

dp

_dto =up; — AP,

dp;

at = Wi — (HJF;“)pi + APy (A1)

The rate of change of the first moment is:

=, . d
ZI dptl _HZ'F’M (u+2 ZIpI +X2Ip, 5
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. A
L=(p-1+polu=(p—u  where p =uslop (A
Integrating:
t
L=Ly +(p—x)ut where  x E%J-u(y)dy (A.4)

0

A2 DETERMINISTIC VARIANCE OF THE M/M/1 QUEUE

The rate of change of the second moment is:
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00
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Mz :H(Mz - pl)_zu(L_ p1)+H(1_ P — po)_(HJF;V)Mz +AM, +2AL + A
M, =

2(7“_M)L+M+7"_Hpo =(—2(1—p)|_+1+p— po)l/l

. (A.6)
=(2p-20-p)L)u-L
Integrating:
t
M, =2put—2(1—p)u I L(y)dy — L + constant (A7)
0
Hence, on introducing the boundary conditions at t=0, and t=co where D=L
V=V, +Ly(L, +1)+ 20— pXL, — D)ut — L(L +1) where
1 o}
D==|L(y)dy , L, =—r0 A8
: ! (y)dy 1o (A8)

A3 TIME DERIVATIVE AND DETERMINISTIC MOMENTS OF THE M/D/1
QUEUE

If notional states i = -1,0 are admitted, so that the real p, = p) + p(y), then the recurrence

relations of the M/D/1 queue, which is formulated on a finite service time interval, are:

i+l jo—p
Pi (Ht +1) = % Piij (Ht) (A.9)

i=0

If the average rate of change is then taken to be given by the finite difference:

~ nAp; = p(p; (ut +1)— p; (ut)) (A.10)

only derivatives of p; for i > 0 contribute to the mean, but a singleton po term arises from the

sum of all the po terms in the differential relations, so:
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-3 [(pep +(i-1)° —iep)pi]+ P,
=0 (A.11)

(P—l)ep [pi]+ Po hence

00
i=0

[=(p-1+epohu=(p-ul (A12)
At equilibrium each expression must be zero, as for M/M/1, so:
po =€ (L-p) (A.13)

But as explained in the main dissertation this is the py at the end of the service period, not the

average p, in the service period that determines the utilisation. The second moment is:

= i[(pze" +(2fi -1+ Dpe” + (i ~2Fe* ~i% o, |-p, (A14)

M, =(p? +2pL—p—2L+1-e"p, ju

=(p? —2@-p)Lhu-L

(A.15)

This is the same as the M/M/1 formula (A.6) except for the first term. Integrating, again:

V =V, + Ly(Ly +1)+ 21— p)L, — DJut — L(L +1) where

1 t
D="[L(y)y , L == (A.16)
0

L. is of course the equilibrium mean, but in principle we ought to prove this!
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A4 EQUILIBRIUM RECURRENCE RELATIONS OF THE M/D/1 QUEUE

Formulae for L, and V. can be found by evaluating the second and third moments of
equilibrium probabilities respectively. Deriving them from a generating function may be
more efficient, but in the main dissertation this results in a unit-in-service component.
Exhaustive evaluation confirms the link between the recurrence relation formulation and the
generally accepted result without unit-in-service.When the LHS and RHS of the time-

dependent recurrence relations are equated, the following steady-state relations are obtained:

o0 p; (>1) (A.17)

When p, is added to p; a pattern appears:

Po + Py =€° Py — PPy
2
p2=e%%—pm—%gpo (A.18)

2 3
P; =€°p, —pp, _% p1_p—

3 Po

Etc.

Some general results can now be stated,where M, is the kth moment. Noting that p, appears

as itself in any expression for a moment, if for some X:

M, = X +p, (A.19)

Then
M, + o = X +(e” —p)p, (A.20)

And for any power k:

ii(' - J)k P Pi_j =(ep _1)Mk

i1 j J!
o i » . p
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o0 i

D i(-1)i-j j=p’ePM,

i=1 j=1

Etc.

A5 EQUILIBRIUM MEAN OF THE M/D/1 QUEUE
Taking the first moment simply recovers p,, which is already available from (A.13):
P, =€”(1—p) (A22)

Taking the second moment, expanding multipliers to match the probability indices:

M +p0_z| p|+p0 —(ep—p)ZI pl—l ZZIZP_JIPIJ

i=1l j=2
ZePZizpi—l Zzlz_pl i
i=1 i=L j=L :

epi( +1)pI 4

- (A.23)

Z ( +2J(_j)+j2)pfjlpi—j

i=1l j=1 J
M, + Py =e”(M, +2L, +1)—[[e? —1M, + 2pe°L, +p%e® +pe?|  (A24)

The M,terms cancel, and after dividing through by e®, and substituting for p, the M/D/1

mean, without unit-in-service, is left;

21-p)L, =p? or L, =—" (A.25)

A.6 EQUILIBRIUM VARIANCE OF THE M/D/1 QUEUE

Taking the third moment:

00 i

M3+ Po ziispi + Po z(ep _p)iispi—l 22'3— Pi-j

i=0 i=1 i=1l j=2
= Pj
:epzlspi—l Zl:z;lg J Pi-j
i=1 i=1l j=
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( 1P +3(-1)+1)p, s

ZwZZ( J+3ii J')Z+3J'2(i—j)+is)% Pi-j

i=1l j=1

Ms

eP
(A.26)

So:
M, + p, =€°(M, +3M, +3L, +1)
- [(e" —1)M3 +3pe”M, +3p°e’L, +3pe’L, +p’e” +3pZe’ +pe"]
(A.27)

The M; terms cancel, and using previous results for p, and L, and dividing through by e”:

3p° 3 3 s Lo
3M, + +1-3pM ,— - -p°=3p°—p=1-p (A.28)
*2(L-p) * 20l-p) 2(1-p)
Many terms cancel leaving:
4 3 2
M, =P P 3 (A.29)
6(1-p)

Hence, the M/D/1 variance without unit-in-service is:

2 2
6-2p-p?)
V,=M,-12=P PP (A.30)

12(1-p)

A7  SPECULATION ON THE GENERALITY AND MEANING OF THE
VARIANCE RESULT

The deterministic variance formula derived for both M/M/1 and M/D/1 seems as universal as
the deterministic mean formula, but in principle other queue processes could lead to
variations that also satisfy the boundary conditions, for example through modification of the
(1-p) factor or the form of the polynomial expression in L. In main Chapter 5, it is shown that
the exact form of the deterministic variance formula, equation (5.4.13), as derived from the
diffusion equation, depends on the step size between fractionally discrete states, although this
is a relatively minor adjustment, and arises from a mathematical artifice, not a different
physical process. The derivation nevertheless supports the generality of the deterministic

variance formula.
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Since moments are linear in probabilities, if a process whose mean is described by the P-K
function with some statistical parameters could be represented by a weighted linear
combination of M/M/1 and M/D/1 having the form of equations (4.3.2-3), as in equation
(A.31) with the weighting factor o after eliminating the common factor p/(1-p), it could be

inferred that the variance result also applies to it.

a+3l-a)p=(1+5(1,-1)+(C-1)p) (A.31)

If this holds for all p, so that corresponding terms can be compared, while its value is

independent of I, eliminating o. between the resulting equations shows that C depends on I:

211, +3
B 4

C and  a=2C-1)+I, (A.32)

If | is taken to represent the choice between working with finite or infinitesimal service
intervals, it can be only 0 or 1, which restricts C to two possible relationships with I,, so
unless the restriction on the values of | can be relaxed the arrival and service processes can no
longer be independent. But it is not clear what relaxing this restriction would mean in terms
of defining an actual process capable of producing the target distribution. So this approach

seems artificial.

A more fundamental argument considers that, while the M/M/1 and M/D/1 calculations both
arrive at the same deterministic formulae, as they must if the fornulae are general, there is no
explicit account of randomness in the variance apart from the presence of L. as the limiting
value of D. Therefore, whatever random processes are involved, their effects apart from L,
must somehow be eliminated. In both M/M/1 and M/D/1 cases, evaluating the second
moment of either the time-dependent or the equilibrium probability distribution yields the
equilibrium mean, with the deterministic variance as a bonus in the first case. Therefore the
deterministic variance calculation leaves the equilibrium variance indeterminate, just as the

deterministic mean formula leaves the equilibrium mean indeterminate.
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An (almost philosophical) question is then: if a queue process is such that analysis from first
principles turns out to be intractable, its equilibrium moments being only emergent, as they
could in principle be since an infinite number of infinitely long trials is required to determine
them physically, how can it then lead to the deterministic formulae unless these are already
guaranteed by a deeper set of principles? For any queue process, this is true of the
deterministic mean queue formula since it represents conservation of queuing units.
Conjecturing that this applies to higher moments (or sums of moments) may be a step too far,

but it would be gratifying to find a physical quantity that is conserved by the variance.

The mean of a distribution is also the point on the state axis with the minimum probability-
weighted sum of squared differences (PWSSD) from all possible states. As a queue develops
from its initial to a final state this property applies along the whole path of the mean. The
principle of least action says that any system follows the path of least action out of all
possible paths. If the PWSSD is identified with action, then the path of the mean can be
identified with the path of least action in the ‘field’ defined by the state probabilities, and the
variance is a measure of this minimum action.This may be somewhat egregious because the
probability distribution at each point depends on that at an earlier point, so the ‘field’ is not

independent of the thing that ‘moves’ through it, but this could also be true of other systems.

In physics, action is the integral of the Lagrangian, which is the difference between kinetic
and potential energy. The simpler form of the variance equation, equation (2.3.29), describes
the time development of the sum of the first two raw moments. If the path of the mean is
treated as determined then this sum could be analogous to action. However, what is the
‘Lagrangian’ in this case, and the connection with ‘energy’? The hypothesised general

differential formulae for the second moment in equations (A.6) and (A.15) generalise to:

M, =(-L)-20-p(L-L,) (A.33)

Speculatively, the first term on the RHS could be identified in some sense with ‘kinetic
energy’, as the queue changes (gains ‘energy’ as it falls, loses as it rises), and the second term
with ‘potential energy’, as the queue approaches or diverges from its equilibrium state which
represents ‘zero potential’. In (A.33), both kinds of ‘energy’ can have either sign. This could

be a topic for future research.
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APPENDIX B - M/M/1 PROBABILITY DISTRIBUTION
ALGORITHM BASED ON SERIES FORMULA

Private Sub Series_Distribution(T As Double)

' Dim T As Double ' Absolute or relative time

Calculate the queue size probability distribution as given by Morse (1958)

' Public NP as Integer Dimension of arrays = maximum resolution

' Public NQ as Integer Half of NP, for one Sin & Cos quadrant

' Public NR As Integer ' Resolution of calculation
' Public NN As Integer ' One less than NR - i.e. maximum queue size
' Public N@ As Integer ' Actual maximum queue size in distribution

' Public calcs As Long Number of major operations performed

' Public Pe(NP) As Double ' Equilibrium distribution
' Public Pm(NP) As Double ' Base distribution
' Public Pn(NP) As Double ' Calculated distribution

' Public srho(-NP To NP) As Double ' Powers of sqrt(rho)

' Public Const Pi As Double = 3.14159265358979

' Public Const STOPON As Boolean = True

' Public Const STOPP As Double = 0.0000001 ' Minimum value of Pn

Dim i As Integer

Dim m As Integer

Dim n As Integer

Dim addexp As Double

Dim sumexp(NP) As Double
Dim sumP As Double

Dim Pmin As Double

Dim Pmax As Double

Dim force_zero As Boolean

force_zero = False

Pmin = @
Pmax = ©
sumP = @

Initialise with equilibrium distribution
For n = @ To NN
Pn(n) = Pe(n)

Next n
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Add time-dependent terms
For n = @ To NN
NO = n
If force_zero = True Then
Pn(n) = ©
Exit For
Else
For m = © To NN
If Pm(m) > © Then
sumexp(n) = ©
For i =1 To NN
addexp = S(i, m) * S(i, n) * Exp(-X(i) * T) / X(i)
sumexp(n) = sumexp(n) + addexp
Next i

Pn(n) = Pn(n) + 2 * Pm(m) * srho(n - m) * sumexp(n) / NR

End If
Next m
sumP = sumP + Pn(n)
If Pn(n) >= Pmax Then
Pmax = Pn(n)
Else
Pmin = STOPP
End If
If STOPON And (n > 1 And Pn(n) < Pmin) Then force_zero = True
End If
Next n

Normalise probabilities
For n = @ To No©
Pn(n) = Pn(n) / sumP

Next n

End Sub
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Private Function Sine(i As Long, NS As Integer) As Double
' Interpolate value of Sine in any quadrant, where i is relative to NS, representing
Pi radians

N should be a power of two and not exceed 2 NQ

Dim nquadrant As Integer
Dim j As Long

Dim k As Integer

Dim 1 As Long

Dim gn As Integer

Determine quadrant within one cycle and equivalent point within quadrant

Following tricks avoid overflow
If NS >= NQ Then

gn = NS / NQ
1=(2*1i) / gn

Else

gn = (2 * NQ) / NS
1=1*gqgn

End If

k = Int(l / NQ)

j = 1 Mod NQ

k = k Mod 4

Select Case k

Case 0
Sine = SI(3j)
Case 1
Sine = SI(NQ - j)
Case 2
Sine = -SI(j)
Case 3
Sine = -SI(NQ - j)
End Select

End Function
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Private Function Cosine(i As Long, NS As Integer) As Double

Interpolate value of Cosine in any quadrant, where i 1is relative to NS,

representing Pi radians. N should be a power of two and not exceed 2 NQ

Dim ic As Long

ic=1i+NS/ 2

Cosine = Sine(ic, NS)

End Function

Private Sub Fill_Sines()

" Fill in Sines at (public) NQ points between @ and Pi/2

NQ should ideally be a power of 2

Dim Piover2 As Double

Dim i As Integer

Piover2 = Pi / 2
SI(P) = @
SI(NQ) = 1
For i =1 To NQ - 1
SI(i) = Sin((Piover2 * i) / NQ)
Next i

calcs = calcs + NQ - 1

End Sub
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APPENDIX C - MARKOV PROBABILITY DISTRIBUTION
ALGORITHM AND EXAMPLES

Sub Markov_Distribution(rho As Double, T As Double, step As Double, NN As Integer, r
As Integer, m as Integer, G As Integer, Pm As Double)

¢ Dim rho As Double ' Demand intensity

¢ Dim mu As Double Capacity rate parameter

Dim T As Double ' Absolute or relative time

Dim step as Double Iterative time step

' Dim NN As Integer ' Maximum queue size

¢ Dim r As Integer ¢ Erlang arrivals parameter

¢ Dim m As Integer ¢ Erlang service parameter

¢ Dim G As Integer ¢ Process / Green period throughput
¢ Dim Pm(@:NN) As Double ¢ Initial distribution/state proxy

Dim exprho, tt, s, sumP As Double
Dim i, j As Integer
Dim Pn(-100:NN), dP(-100:NN), Pp(@:NN), Poisson(@:NN) As Double

¢ G should be >= 1 for M/D/1 and zero otherwise
¢ Bulk parameter is negative of Erlang parameter in reversed position
erho = rho * Max(-r,1) / Max(-m,1)
' Poisson terms for M / D / 1
exprho = Exp(-G*rho)
Poisson(@) = 1
For j = 1 To NR
Poisson(j) = (G*rho)~j * exprho / j
Next j

tt =0
' Initial distribution
For i = -G To NN

Pn(i) = Pm(i)
Next i

Pn(NN + 1) = ©

¢ Each time step

While tt <= T

NO = 0
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¢ Each queue state in the distribution

For i = -G To NN

¢ Process to be simulated
If G = @ Then

¢ Calculation of new probabilities at each time step

"Mm / Mr / 1 or Er / Em / 1 (only one of r and m may be = 1)
If i < NN

dP(i) = Max(m,1) * Pn(1+Abs(r)) - Max(r,1) * erho * Pn(i)
If i = @ Then
For j = 1 to -(r+1)
dP(i) = dP(i) + Pn(3)
Next j
Endif
If i >= Max(r,1) Then
dP(i) = dP(i) - Max(m,1) * Pn(i)
If i >= Abs(m) Then
dP(i) = dP(i) + Max(r,1) * erho * Pn(i-Abs(m))

Else
dP(i) = - Max(m,1) * Pn(i) + Max(r,1) * erho * Pn(i - m)

End If
dP(i) = dP(i) * step * mu

Else

"M/D/1

s =0
If i = @ Then s = Pn(0Q)
For j =0 Toi+G
s = s + Poisson(j) * Pn(i + G - jJ)
Next j
dP(i) = (s * exprho - Pn(i)) * step * mu
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End If

No = i
If Pn(i) + dP(i) < ©.0000000001 Then Exit For

Next i

¢ Note that range of loops can be limited if higher probabilities are zero

‘ For M / D / 1 processes notional negative states are absorbed into p®

For i =1 to -G

dp(@) = dp(@) + dp(i)
Next i

¢ Changes are accumulated to absolute probabilities that are normalized

sumP = @
For i = @ To N@
Pn(i) = Pn(i) + dP(i)
sumP = sumP + Pn(i)
Next i
If sumP > @ Then
For i = @ To NO
Pn(i) = Pn(i) / sumP
Next i
End If

¢ For Erlang processes convert €‘stages’ probabilities to ‘customers’

If r>1o0orm>1 Then
For i = © to NN
Pp(i) = Pn(i)
Pn(i) = ©
Next i
Endif

If r > 1 Then

For i = © to NN/r + 1
For j = i*r to (i+l1)*r-1
Pn(i) = Pn(i) + Pp(3)
Next j

Next i
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Else if m > 1 Then
For i = @ to NN/m + 1
For j = Max((i-1)*m+1,0) to i*m
Pn(i) = Pn(i) + Pp(j)
Next j
Next i
Endif
¢ Finishing calculations for this time step
tt = tt + step

Wend

End Sub
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Following a listing of Qsim parameters and options, and a typical data file, examples of the
output of Qsim are given below, for growth of a queue starting from zero with p=0.9
measured at several points, and various processes. The first example (M/M/1) recalculates
each time point from zero, the next and subsequent calculate in time slices starting with the
probability distribution from the previous time slice. Results of the two methods are very
close. The ‘mean’ and ‘variance’ are calculated from the probability distribution, ‘delay(s)’ is
calculated by averaging the mean queue during the calculation step, ‘delay(t)’ relates to the
time from zero, and ‘delay(v)’ is back-calculated from the variance using the variance

formula. Mean and variance of (average) po are practically relevant only to M/D/1[G>1].

Program Qsim version 15/05/12, run on 12/08/12

General command form: Qsim<data> [/output] [=<rho>] <process><step><init_g>
<data_file> default extension is .DAT

<process> = E.E.[][.G] where @ reads as infinity so:

1.1 is M/M/1, 1.0 is M/D/1, 1.0.G is M/D/1[G]

E values not both >1. Numerical parameters in range ©0-99
<step_size> is 1 by default, but may need to be reduced
<initial_queue> exact value used once, then reset to zero

if <@ then pure state, if >=0 then equilibriated

if fractional "m.s" then Normal p.d: mean=m, sd=m*(.s)

Step size = seconds between evaluations of recurrence

relations, and may need to be reduced.

.DAT format: Title_line / {rho mu t} .. :

rho(+continue previous distribution, -reset to zero queue)

mu (+as given, -multiplied by relaxation time)

t (+absolute time, -slice length)

Figure C.1 Qsim condensed help listing

Qsimgrow9.dat 1.1 0.10 [data file, M/M/1, step=0.1, initial queue=0]

Grow?

8.2 1 18
8.2 1 38
8.2 1 148
8.2 1 348
8.2 1 10888
8.9 1 3Jode

8. 1 16080

Figure C.2 Qsim command and data file for simple growth problem

Program QSIM version 15/8%/12, run on 12/708/12

Case grow9, Process M/M/1 , Period 8, Step 8.18, Initial State 8.008 E
minutes duration rho mu p{a) mean variance delay(u) delay(s) delay(t) mean(p8) var(p@)
108.0808 16.088 8.9088 1.00888 8.2273 2.53088 5.8126 1.6259 1.6263 1.6263 0.2273 ©.0000
30.0808 30.00 8.9088 1.0888 0.1588 41935 15.0938 2.8545 2.8550 2.5478 0.1580 ©.0000
1668.868 180.08 a.o0888 1.0888 @.1188 64432 37.5392 4.7251 L. 7211 4.1623 A.1188 ©.0888
3ae.aa8 3a0.08 a.o0888 1.08688 @.1648 8.2858 67.8981 6.6896 6.60857 5.80692 a.1048 ©.0888
168088.088 104806. 068 a.o0888 1.08688 a.1882 8.9454 87.9605 8.1154 8.1077 7.4053 A.1082 ©.0808
3600.088 30a80.08 a.o0888 1.08688 @.1881 8.9771 89.2234 8.782a 8.6853 8.2782 a.1081 ©.0808
106008.00 16008.80 6.90860 1.8688 6.1881 8.9771 89.2234 8.9186 8.8895 8.6991 0.10681 ©6.06800

Execution time = 61.459 seconds

Figure C.3 Markov calculation of M/M/1 growth from zero over increasing time periods
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Program QSIM version 15785712, run on 12/88/12

case grow?, Process M/M/1 , Period 8, Step 0.18, Initial State 0.000 E
minutes duration rho nu p{a) mean variance delay(v) delay(s) delay(t) mean(pB) var{p8)
a.ea a.88 a.o888 1.0688 1.868688 6.0808 0.0888 - - - - -
18.88 18.88 8.90080 1.0888 8.2273 2.5388 5.8126 1.6259 1.6263 1.6263 8.2273 ©.00008
38.80 28.88 8.90080 1.0008 ©.1588 4.1934 15. 8931 3.4692 3.4692 2.8549 8.15880 ©.00008
108.88 7o.88 a.90068 1.06088 8.1188 6.4433 37.5396 L .5266 5.5252 4.7241 B8.1188 0.8008
3e8.08 208.88 a.90068 1.00088 0.1848 8.2858 67.8983 7.5518 7.5u65 6.60857 B6.1848 0.8000
1008.088 7op.00 a.o068 1.0088 B8.1882 8.0458 87 .9608% 8.7688 8.7514 8.1077 0.1002 0.0000
3000.00 2000.088 8.9060 1.06088 8.1881 8.9771 80.2234 8.99053 8.9711 8.6853 06.1881 0.0000
1866808.68 L] a.o888 1.8888 8.1881 8.9771 89.2234 9_0688 8.9771 8.8895 0.1881 0.8084
Execution time = 44,846 seconds
Figure C.4 M/M/1 growth in successive time slices of increasing duration, compare C.3
Program QSIH version 15/85/12, run on 12/88/12
Case grow9, Process M/D/1 , Period 1, Step 6.18, Initial State a.608 E
minutes duration rho mu p(8) mean variance delay(v) delay(s} delay(t) mean(p@) var(p8)
a.88 8.88 0.9988 1.0088 1.0088 a.0888 0.0808 - - - - -
10.08 16.88 9.7008 1.0068 B.4326 1.3918 3.0685 6.8528 8.8538 8.8530 0.1814 B.1485
30.088 20.088 §.9908 1.0668 0.3222 2.3359 7.87083 1.9338 1.9328 1.5729 @8.1328 08.1146
1088.08 70.88 §.9808 1.00688 0.2644 3.3996 14,7296 2.9912 2.9985 2.5652 @8.1676 0.8968
300.088 200.88 0.9008 1.0088 0.2488 3.9504 21.1928 3.7734 3.7112 3.3692 0.10068 0.0907
10680.08 760.88 0.9908 1.00088 0.2468 4.0458 22.7830 4.8326 4.0291 3.8311 0.1608 0.0008
3000.08 2000.08 §.9808 1.0068 0.2468 48451 22.7839 4. 8588 48451 3.9737 0.1688 0.89088
166860.08 7000.08 §.9808 1.0068 0.2468 48451 22.7839 4. 8588 48451 4.9237 0.1688 0.8908
Execution time = 311.320 seconds

Figure C.5 Markov calculation of M/D/1 queue growth, note larger po, smaller L, same poave)

Program 0SIM version 15/085/12, run on 12/08/12
Case grow9, Process HW/D/1[ 18] , Period 18, Step 8.81, Initial State 0.0080 E

minutes duration rho mu pi{a) mean variance delay{v} delay(s) delay(t) mean{pB8) var{p8)
0.80 6.86 ©6.9660 1.860680 1.0608 6.6080 0.00800 - - - - -
1.88 1.88 6.9000 1.0088 B.785%6 B.6377 2.4551 —-14.3777 8.330% 8.3395 ©.1891 8©.3828
3.88 2.88 a.9888 1.008088 B8.6857 1.4891 C.8983 -11.3433 1.8638 B.8218 8.1399 8.3421
10.680 7.88 0.968668 1.80080 0.4833 2.4349 12.8391 -5.3929 2.8336 1.6761 0.1888 8.2954
30.688 20.008 6.9000 1.0088 B.4585 2.90054 19.1391 a.6448 2.8116 2.4311 B8.1889 B8.2815
1808.88 7o.ee a.9888 1.008088 8.4467 3.8947 207747 2.9529 3.8777 2.8837 8.1881 B.2799
360.808 2088.88 0.96668 1.8080 0.4467 3.08949 28.7784 3.1199 3.08949 3.8245 0.1881 8.2799
1080.68 7op.pa 6.9000 1.00808 8.4467 3.89490 20.7784 3. 12m 3.89490 3.8738 8.1881 8.2799
Execution time = 351.996 seconds

Figure C.6 Markov calculation of M/D/1 [G=10] growth. Time points and step size must be
reduced by factor of G to compensate for lengthened service intervals.

Note even larger po, smaller L, but again same pocve) (delay back-calculated from variance is
no longer valid)

J2P4

B.5717 15.9877 g8.848

B.6473 15.4920 9.80

B.8630 14.6945 18.088
B.9517 14.8851 27.0808
1.8711 13.4963 36.088
1.1382 13.2268 54.088
1.1382 13.2268 63 .00
1.8711 13.4963 72.0808
B.9517 14.8851 81.080
B.8630 14.6945 90.088
B.6473 15.4920 99.088
B.5717 15.9877 1068.08
B.5717 15.9877 117 .08
B.5717 15.9877 126.088

Figure C.7 Data for a peak case J2P4, (p, u, t),where the first time slice is equilibrated
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In the following three figures, the distributions settle as time progresses. The last two figures
have not been smoothed to avoid undershoot.
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Figure C.8 Development of Markov-simulated distributions for M/M/1 queue growth
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Figure C.9 Development of Markov-simulated distributions for M/D/1 queue growth
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Figure C.10 Development of Markov-simulated distributions for M/D/1 [G=10] growth
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APPENDIX D - HEIDEMANN’S SIGNAL QUEUE FORMULA

This Appendix compares a result obtained by Heidemann (1994) for the queue size at a signal
with a one-lane approach that draws on work of other authors including Meissl (1963), with
that of Webster and Cobbe (1966). Heidemann’s formula is time-dependent and claimed to be
exact for any green period length, whereas as explained Chapter 2 of the main text Webster’s
stochastic term applies only to the nominal case where each service period can serve only one
customer (M/D/1). However, it is asserted that Webster’s empirical correction term, which
depends on the service period throughput capacity G, compensates for this. The objective
here is to show that when the M/D/1[G] mean is inserted into Heidemann’s result under
equilibrium, the match to Webster’s result is fair. Because the notation used by Heidemann
differs from that used in this Dissertation and one symbol overlaps, a glossary is provided.
Equations given by Heidemann (1994) are recognised by an additional “(H.-)”” marker.

Table D.1 Glossary of variables

Quantity represented Heidemann’s symbol Local symbol
Service interval T 1/s
Saturation flow Ut S

Cycle time Tey c

Red period uT r

Green period vT g

Red period input capacity 1 rs

Green period throughput capacity v gs=uc=G
Green proportion vi(ut+v) A=glc
Probability Generating Function P(y) P(y)
Mean arrival rate f=P"(1)/IT A
Capacity C=p/((u+Vv)T) pn=As
Degree of saturation fiIC X=Au
Mean arrivals in one service interval | P’(1) Ms=AX
Ave. overflow queue at start of red R'(1) Lvg

The Probability Generating Function of the queue size is:

P(y)= i Py where (D.1)

i=0

p; = probability of i arrivals in a time interval that equals one service time
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The queue size given by Meissl (1963) is quoted by Heidemann as his equation (17):

1 Ou , POuu+1) PQ) _
Lzl_pf(l)(wvH 2y 2] (D.2=A.17)

To evaluate this, Heidemann first determines the derivative of R(1) as his equation (25):

el -D)-P U, - [P _
RO olP O —D)=x 2P @] (B.3=H.25)

where the {xc} are the (v-1) zeros lying within the complex unit circle of the function:

o(x)=x" —exp[P' @)+ v)(x —1)] (D.4=H.~)

It is assumed that arrivals are Poisson distributed (exponentially distributed intervals):

—
==
x
—

p; =——2e ™ (D.5)

s0, as P’(1) is the derivative of P(y) evaluated at y=1:
P'(1)=Ax, P"(1)=(Ax) (D.6)

Using equations (D.5) and writing Ly for the stochastic (‘overflow’) queue R’ (1),

Heidemann’s expression for the mean steady-state queue (D.2) translates to:

{2(1—A)LV[G] + xuc(l—A)(l—A(l—éD + (AX)Z}

L =
2(1- Ax) (D.7)

where Lyg; is the stochastic queue component, and the Webster-Cobbe phase component can
be discerned in the middle of the expression. While G and uc are actually identical, both are
used in (D.7) in order to retain the original form of each term. To evaluate the stochastic term

it is necessary to translate equation (D.3), in which:

P'@)(t+v) — Axcs = AXG % = GX (D.8)
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U R

D.9
& explndy, —1)-y, | 20-%) (B-9)

SO —) LV[G]

where the {y;} are the roots of: y® =exp(Gx(y —1)) (D.10)

If G=1, the sum and the final element of (D.9) vanish, leaving the usual M/D/1 mean steady-
state queue formula. In general Ly depends on G as one would expect, but in a way that does
not appear convenient to evaluate. The middle term in (D.7) is recognisable as the phase
queue in Webster’s formula, equation (3.7.1) in main text, with a modification that vanishes
when the absolute green period capacity is very large. However, a peculiarity of (D.7) is that
the stochastic component is modified by a factor that does not depend explicitly on G.

The problem is to decide which modifications should belong to individual terms and which
should be corrections to the whole formula. Ly may be taken as given, but there is no obvious
reason why the phase term, being derivable deterministically, should differ from Webster’s.
The modifications to it and the Lyig) term and the last term of (D.7) may therefore be
identified with Webster’s correction term. Equation (D.7) can now be rearranged into the
traditional Webster form, with a modified correction term involving the stochastic queue:

Ax = AL-x)2Ly (o] + Ax)

L=L, +Lyg +Ly where L, = 20— %) (D.11)

Figure D.1 shows fair agreement between (D.11) and Webster’s formula, using the

approximate formulae for Ly;g; developed in Chapter 3. The cases are defined in Table D.2.

=
o

== Webster-Cobbe

fél‘:\
\\ =li-Heidemann (estimated)

Total equilibrium queue size
(=) = (=] (2] =y L ()] | [==] o

Cases (x=0.9, 0.5; G=15, 30, 45)

Figure D.1 Comparison with Webster-Cobbe queue for cases based on Heidemann’s Figs. 3

and 4, using equation (D.11) and estimated formula for M/D/1[G] mean queue
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Table D.2 Parameters used to generate cases in Figure D.1

Parameter/Case 1 2 3 4 5 6
G 15 30 45 15 30 45
X 0.9 0.9 0.9 0.5 0.5 0.5
A 0.25 0.5 0.75 0.25 0.5 0.75

The slight rise in the graphs in Figure D.1 at G=30 can be traced to the artificial manoeuvre
of keeping x constant in each group of cases.

A feature of equation (D.7) is that the phase and stochastic components appear to get ‘mixed
up’, but a different interpretation may be possible. In view of the derivation, it is tempting to
suggest that the whole middle term of (D.7) be taken as the phase queue, reducing to the
Webster-Cobbe form when the green capacity is large. Calling this modified term L5, the

correction term takes a more suggestive form:

. . . AX)? 1-x)A
L=L +Lye+Ly  where L}, = 2((1_"2\)()_( (1_)/\::)[‘31 (D.12)

In equation (D.12), the M/D/1 form has reappeared in the component L" but with the
average degree of saturation x replaced by the true saturation level in the green period, during
which the actual capacity is not p but s. However, the physical meaning of the second term in

L"y is obscure, and the separation into three components is itself artificial.

Local references also in main references

Heidemann D (1994). Queue length and delay distributions at traffic signals. Transportation
Research, 24B(5), 377-389. Elsevier.

Meissl P (1963). Zufallsmodell einer Lichtsignalanlage mit mehrspurigem Stauraum.
Mathematik-Technik-Wirtschaft, Heft 1/63, 1-4, and Heft 2/63, 63-68, Wien.

Webster F V and Cobbe B M (1966). Traffic signals. Road Research Technical Paper 56.
HMSO.
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APPENDIX E - COMPARISON OF SOME ALTERNATIVE TIME-
DEPENDENT QUEUE/DELAY FORMULATIONS

In the following, the notation used in the main body of the dissertation is used, so formulae of

other authors have been ‘translated’ where necessary.
E.1  CATLING’S FORMULATION OF SHEARING

Catling (1977) approaches the problem from the point of view of delay to individuals. Delay
is related to queue size by Little’s formula (E.1), where x is average degree of saturation, and

equilibrium delay (E.2) is a case of the Pollaczek-Khinchin equilibrium mean formula:

d=— ) (E.1)

=1+ (E-2)

The time-dependent ‘coordinate transformed’ function of Doherty (1977) is then given as a
quadratic solution, which when converted back into the quadratic and rearranged into the

quasi-static pattern has the form:
(d—1 1+M —d. -1 (E.3)
1 e

This clearly gives the right result as t—oo. It appears to blow up at t=0, but in fact the solution
requires d=I at this point, so the first bracket shrinking to zero and the second bracket tending
to infinity combine to produce the finite RHS. The degree of saturation ‘X’ in the original has
been interpreted as p here because that is understood to be the intention. The formulation
does not tackle or resolve the ambiguity between the demand intensity p and the degree of
saturation of service x. This is germane if converting from delay to queue size, because

Little’s formula involves the degree of saturation of service, not the demand intensity.

Another important difference from the sheared queue as presented in main Chapter 3 is that
equations (E.2-3) include delay incurred during the run-out period. While individual delay is
a true out-turn value its relationship to queue size, which is statically measurable at any
instant, depends on the behaviour of capacity. The same queue size will result in different

individual delays if the capacity changes before the queue is fully discharged.
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However, assume that the capacity remains constant. Catling points out that the queue
function has to be evaluated by equating the average individual delay to the integral under its
envelope as shown in Figure E.1, leading to a somewhat intractable expression.

Catling proposes an alternative by shearing the queue itself, getting a result identical to Ls in
equations (4.2.8), but with Lo=0 and 1=0. He then goes on to derive expressions for the delay
to individual arrivals when the arrival rate varies. Whether capacity is allowed to vary is
unclear since the traffic pattern is described in terms of degrees of saturation, interpreted here

as demand intensities.

QUEUE

LEMGTH

TIME

Figure E.1 Original Figure 2 from Catling (1977), relating to Doherty’s method

The analysis runs up against the same complication of run-out periods noted above. In
computer implementations like ARCADY, PICADY and OSCADY for junctions and
CONTRAM for networks (see main References), this complication is avoided by calculating
average individual delay either by dividing total population delay by total throughput, or by
following each individual (or ‘packet’ of notional individuals) through the queue discharge
process. However, it is apparent that Catling developed the sheared queue formula

virtually simultaneously with and independently of Whiting, Kimber and Hollis.
E.2 VOLUME-DELAY AND CONICAL FUNCTIONS
Volume/delay or volume/travel-time functions can take various forms of varying complexity,

but one of the simplest is the US Bureau of Public Roads (BPR) formula for travel time when

the demand intensity is p and t, is free-flow travel time:

t=t,(1+Bp*) (E.4)
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In the formula, B is 1 in the case of BPR, but could have some other calibrated value (e.g. as
in the case of the SATURN software). Volume/delay functions are not time-dependent and
hence of limited interest in this context. However, where they are used it is recognised that
the power can cause escalation of delay if demand exceeds capacity substantially. A way to
moderate this is to use a conical function. This defines a hyperbolic function on axes derived
from a conic section, as sketched in Figure E.2, which looks remarkably similar to shearing
(see main Chapter 4). The hyperbolic function before transformation of the axes is 1/(1-p),

which is not dissimilar from the M/M/1 equilibrium mean queue.

1

0 P
Figure E.2 Sketch of conical volume-delay function

The delay function is now asymptotic to a linear relationship when p>> 1, and its formula is a

quadratic (Spiess 1990):

tzto[Z—B—a(l—p)+\/ocz(l—p)z+B2} where Bzza_l (E.5)
200—2

Time-dependent shearing takes this a step further, not only by using a physically meaningful
equilibrium queue function but by making the asymptote time-dependent to reflect the

deterministic conservation constraint.

Equation (E.5) has only one parameter o, which determines both the slope of the asymptote
and the sharpness of the curve. This may be an advantage when calibrating the function to
empirical data or simulation outputs, so it can be used as a component of a smooth,
differentiable objective function to be minimised for an entire traffic pattern. However, it

does not have room for time-dependence.
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E.3 THE HIGHWAY CAPACITY MANUAL DELAY FUNCTION

The US HCM/Canadian delay function (Cheng et al 2003, Akgungor and Bullen 2007),
equation (E.6), is time-dependent, and consistent with the M/D/1 equilibrium queue value

(E.7) if C=0.5 and the upstream filtering factor ¢ is given its default value of 1:

d :%{—(l—p)+ sign(l—p)\/(l—p)z +8C¢p] (E.6)
ut
L, = fpz (since de=L, assuming ¢=1) (E.7)
-pP

It is not certain that this is the intention since C is described as an ‘incremental delay factor
dependent on actuated control settings’. On the other hand, values > 0.5 make the equilibrium
queue excessively large. Note that in (E.6) and similar equations here the factor sign(1-p) is
applied to the (positive) square-root to give sensible asymptotic results when t—co. This is

not normally found in the references. However, in the case p>1 the formula predicts:
d—1(p-1) (E.8)

which is wrong because the factor ¥ should apply to average delay over the growth period,
not to delay expected by the current arrival. As in Section E.1, no distinction is made between
demand intensity and degree of saturation. There is a problem in how to translate (E.6) to
queue length, as Little’s formula requires utilisation, which in general is not identical to p.

The Federal Highway Administration quotes the formula (FHWA):

L:“—t[—(l—p)+ sign@—pK/@-p)* +z] (E.9)

where Z is a ‘composite factor’ for whose definition the reader is referred elsewhere. This
appears to assume that utilisation equals 1, which is realistic only for ‘heavy traffic’. Akgelik
(2001) quotes an interpretation that appears to be an extension of the HCM formula as
implemented in his SIDRA software (see also next). Z in its simplest form can broadly be
identified with the last term in (E.6), but this no longer gives the M/D/1 equilibrium queue.

Either the term or the whole formula needs to be multiplied by p to give that result.
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E.4  THE AUSTRALIAN FORMULATION

Akgelik (1998a) considers a signal queue, that can be decomposed into a red/green phase
gueue and a stochastic (random and oversaturation) queue, as described in main Chapter 2.
He formulates the stochastic queue in such a way that it incorporates a term involving the
absolute green period, addressed empirically in main Chapter 3. Akcelik’s formula is:

L :“Zt[— (1—p)+sign(1—p)\/( -p) +%}p°)}(if p>p)  (E10)

Po = 0.67+% where G = saturation flow * green time (E.11)

Again ‘X’ has been translated into p. This predicts no stochastic queue if p is less than a
certain positive value. Rearranging (E.10) as (E.12) and expanding the square root to first

order, it is easier to see that when p<1 and t—oo, the equilibrium queue is given by (E.13):

L= @—put [—1+ sign(1—p) 1+12p—_2p°J (if p>po, else zero) (E.12)
L-p)ut

L, =—1'5§p__pp°) (E.13)

Although the approach is simpler than M/D/1[G], the empirical lower limit on demand
intensity, equation (E.11), represents a drawback in our view. The results of the empirical
M/D/1[G] Section in main Chapter 3 can be used to compare equilibrium queue predictions.
As shown in Figure E.3, the results are significantly different for smaller values of p and G,

although the queues there are so small this may not matter much in practice.

Akglingdr and Bullen (2007) summarise how Akgelik (1980) generates a smooth sheared
delay function taking into account the average uniform (phase) queue acting as a lower
bound, the situation where Bin Han (1996) finds an issue in producing a continuously

differentiable combined function.
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Figure E.3 Akgelik (A) and M/D/1[G] (M) equilibrium stochastic queues compared
(graphs sink with increasing G, broken lines relate to Akgelik’s formula)

The phase queue differs from an initial queue in that it is dependent on p<l. However, the
phase delay is is a separate component added to the sheared delay, whose modified statistical
parameter C in the Pollaczek-Khinchin formula takes account of the effect of green capacity.

Akgelik and his collaborators estimate this parameter as follows:

C. =1.22G "% (E.14)

It is unclear whether this is actually applied in the Australian queue formula, but if it is, this

should more closely resemble the HCM formula, becoming:

L= %t((p ~1)+ \/(p ~1) + %t_p(’)) (if p>po, else zero) (E.15)
u

If a statistical parameter is to be used it should either be 1.5 from (E.13), or Cs as above,

since it compensates to some extent for po. A value C=0.5 would be much too small.
E.5 COMPARISON OF THE METHODS

Figure E.4 compares four different formulae for queue growth with p=0.9 and G=1, showing
that the Australian method estimates a shorter queue. For smaller values of p the difference is

much greater, as is to be expected because of the substantial value of po.
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£=0.9, G=1

—+—L(Australian) C=1.5

. /r
— tﬁ:ﬁr}a”an) — /.t
o @

=—=L(M/D/1)[G] 25 //é//;

Ovwerflow queue

0.0001 0.001 0.01 01 1 10 100 1000

t (mins) (=30/min)

Figure E.4 Different methods compared for theoretical minimum green case

Figure E.5 compares the same methods for a high value of green capacity, showing greater
differences between the methods. In this case M/D/1[G] lies between the two possible
Awustralian curves (the upper one being the standard version). As far as it is possible to tell,

the HCM method does not allow for green capacity, so estimates a much greater queue.

Reports like Akcelik (1998a) contain a large amount of empirical factors and adjustments to
allow for things like junction geometry, turning movements and signal control algorithms. So
interpreting narrowly-focused comparisons like the above is problematic, as is drawing any
conclusion about which method is most realistic. This analysis is therefore intended mainly to
draw attention to structural features and assumptions that justify adopting M/D/1[G] in the

present theoretical line of research.

£=0.9, G=50

—+—| (Australian) C=1.5 .. /
o (Australian) C=C(G) /
=i (HCM) /

—=L[M/D/1)]G] = /

Ovwerflow queue

0.0001 0.001 001 01 1 10 100 1000

t (mins) (u=30/min)

Figure E.5 Different methods compared for a case with a long green time
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E.6 COMMON BEHAVIOUR AND UNDERLYING STRUCTURE

The most fundamental issue is the explicit quasi-static assumption. All the methods described
satisfy the following relationship with their equilibrium queue value L., as can be seen by
evaluating (E.16/17) using first-order Taylor expansion of the square root when t is large.

L - %t(‘ (- p)+ sign(i—p) \/(1—p)2 +%) E16)

or

(1—p)ut( : 8L, J
L=""PM 9 sign—p) 1+ ——2— E.17
4 *signit—p) Ta-put =20

This formula most certainly does not work for quasi-static sheared M/D/1, which has a far
lower initial growth rate. Average rate of growth can be calculated by differentiating the
deterministic queue formula, and thence average utilisation over the period concerned,
according to equation (E.18), where U is used rather than x since it applies between pairs of

calculation points, which in the calculations giving Figures E.3-4 advance logarithmically.

% =(p—T) (E.18)

Utilisations are graphed in Figure E.6, where it is evident that the negative initial utilisations

of the Australian and HCM functions are unphysical, although they persist for a short time.

—Australian _,,G_J/_ -
—HCM /

2 o5
M/D/1 /

/ 4

/ (5

0.0001 0.001 / 0.01 01 10 100 1000 10000
/ i

l O

/ N
/

Average utilisation

Figure E.6 Behaviour of utilisations of the different methods
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The generic non-M/D/1 equation (E.17) is the solution of:

-1, (E.19)

This simple formula is problematic when t approaches zero. Assuming no initial queue, as

above, and on the basis that average utilisation must satisfy the deterministic formula:
L= (p—x)ut (E.20)
after some manipulation at an expression for L(t) in terms of x(t) without t is arrived at:

:% (E.21)
1+p—2x

The L corresponding to the HCM formula is that for M/D/1, so if the method were quasi-
static it should be possible to replace every instance of p by x (or some function of
instantaneous utilisation) that can then be calculated from the L values. Figure E.7 shows how
these are initially very different but converge once x gets close enough to p. It is possible to
show that the initial rate of change of the queue at t=0 is infinite, and obviously both the
instantaneous rate and its time average change very rapidly at first, so many methods in the

main dissertation that depend on the initial utilisation or on p, could not be used.

0.00001 0.0001 D.DDlﬁ.Dl 01 10 100 1000
/ 1
/ 3

D

Average utilisation for HCM

“\._‘_.

—x(eff)

/ T

[:1]

Figure E.7 Effective versus quasi-static utilisations for HCM queue function
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E.7 ANALOGOUS FORMULATION OF M/D/1 SOLUTION

The quasi-static sheared M/D/1 formula is more complicated than the HCM and similar
formulae. From the expressions in main Chapter 4, the equivalent of (E.19) is:

(ut-C)L? [ put j
L —L E.22
T aCout+ (@ pptf 2L, +put (F22)

When t is very large, L—L. as it should. Unlike (E.19), when t— 0, the RHS vanishes, and

the LHS is consistent with L starting from zero and initially growing linearly.
E.8 POSSIBILITY OF EXPONENTIAL APPROXIMATIONS

The exponential formula developed in main Chapter 4, constrained by time constants derived
from initial and asymptotic states, appears to approximate queue decay quite well, though not
queue growth. Although a similar function is used to estimate the variance of a decaying
queue, the mean queue and variance formulae are not formally consistent. A simplified

version of the mean queue function, growing from zero with unvarying time constant, is:

L-L, (1— exp(— pL—“tD (E.23)

However, the time development of (E.23) does not match simulation well, as shown by

Figure E.8, where it converges to the equilibrium value much too quickly.

—+—Sheared (M/D/1)

4 o
—=-Exponential / ~
Exp-Inv-Pwr / //

—=Markov (M/D/1) / J //
-/
/ /,

LA

()

0.0001 0.001 0.01 01 1 10 100 1000
t(mins) (p=0.9,4=30/min)

Queue size

Figure E.8 Exponential alternatives to the M/D/1 function
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Realistic behaviour seems to demand a more complex function. The exponential function of
inverse time, (E.24) can fit the general shape of the M/D/1 function®, as shown in Figure
(E.8), but cannot reproduce the initial rate of change, and involves calibration constants:

L =L, expl—(2t) °*) (E.24)

Returning to equation (E.23), the delay-per-unit-time is:

D= % y'[OL(y)dy =L, (1+ :—;(exp(— "L—“tj - 1}] (E.25)

To get the value at t=0 it is necessary to take a limit, and only the second-degree term in the

exponential survives, giving D—Y2put as t—0. Putting (E.25) into the variance equation:

W =2(1-p)L, - D)ut = M(l— exp[— ﬂ}j (E.26)

p L.

When t—o0, in the cases of M/M/1 and M/D/1 respectively, the limiting values are:

W =ﬁ the correct M/M/1 value being W, = 2p 5 (E.27)
1-p (L-p)

3 2(q _ 2
w, =P the correct M/D/1 value being W, = P (6 4p t P (E.28)
2 6(L-p)

So this simple model is not consistent with variance. It is asserted that an extension of (E.23)
with a weighted sum of two exponential terms, satisfying the initial rate of change, also
cannot be made consistent with variance. Referring to the series formula given by Morse
(1958), an infinite weighted sum of exponential functions represents M/M/1 exactly, so
perhaps there is some finite number of terms greater than two that can make mean and
variance consistent, though not necessarily higher moments. This is a question that might be

investigated in further research.

% As noted elsewhere, the Markov simulation may not be completely reliable near equilibrium.
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E.9 SUMMARY

The quasi-static shearing approach seems better able to match all the structural properties of
queue growth than the simpler HCM formula or its more empirical Australian development,
or ostensibly simpler exponential functions that would require calibration constants. Further
investigation of the consequences of the quasi-static assumption could be of interest, though
not materially affecting this work whose objective is to make the minimum adjustments to the
sheared queue method necessary to allow variance also to be calculated. The same applies to

further investigation of exponential approximations.
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APPENDIX F - STANDARD ERROR OF EQUILBRIUM MEAN
QUEUE ESTIMATE

To predict the accuracy of the mean in a simulation of an equilibrated queue process, as a
function of the number of events simulated, we consider the relationship between the run
length of sequences of events and the variance of the means of runs, for various run lengths.
This analysis is required to confirm that simulation results with a given number of events are

consistent with what would be expected, and there can be confidence in the simulation.

In a run of events of an equilibrated queue, the mean of run means is the same as the overall
mean, and assuming the total number of events is large this should approach the expected
mean. The variance of run means will start equal to the overall variance of queue sizes when
run length is 1, should eventually decrease to zero as run length is increased. In a sequence of
random observations, where there is no correlation between successive observations, the
usual standard error formula should apply. However, successive queue sizes are not
uncorrelated, and the relationship with run length is therefore likely to be quite different. In
principle, we would expect the ‘standard error’ to be greater than that for uncorrelated
observations, meaning that more events must be simulated to get an accurate estimate of the

mean than would be the case for a random sequence.

In a simulation of a single-lane M/M/1 gqueue with p=0.9, mean queue size averaged over
900,000 arrival and service events (not just service events), numbered from 100,001 to 1M to
allow an initial period of stabilisation, is L=8.834 which is not far from the expected value of
9.0. Variance V is 82.61 which is somewhat less than the expected value of 90.0 but at least

comparable. In terms of standard deviation, 6=9.09 compared to expected 9.49.

Considering that N observations {x;} are divided into m runs of n successive observations,
and assuming that observations in any run can be considered equivalent to those in any other,

the variance between runs is estimated by:
~ 1 1G9 Vv 1
Vi =EZH?—H2=szxixj—uz=ﬁ+[1—ﬁjxf (F.1)

Here p is the ensemble mean, V =V, is the ensemble variance, and X2 is the mean excess

value of any product of two different elements x; and x; in a run after subtraction of
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Clearly, when n=1, this expression reduces to the ensemble variance, and for n>1 if the last

term were absent it would give the standard error result.

Considering just adjacent queue measurements, the probabilities of the next observed queue
size being greater or less than the current value are in the ratio p:1 (on the assumption that
arrivals and service do not occur literally simultaneously, queue size cannot be unchanged).

So if the initial queue size is i then the expected result of the next queue observation is:

j = pli+1)+(i-1) _. _[1—_9j (F2)
p+1 1+p

Therefore the mean value of products of successive (n=2) observation pairs is given by:

~Siin =Sz [ =P i | = 2 _(1=p
Hz_Zupi_Z[l (1 jl]p, V. + L2 (1+ije (F.3)

+p

For p=0.9, the theoretical value is 170.53. Using the simulated values of mean and variance,
it is 160.18. The actual value from the simulation is 158.65. The final term in (F.3) makes
only a small contribution. The important point is that the mean value of the product is greater
by around the variance than would be expected if successive observations were uncorrelated,

which would be just the square of the mean, i.e. 81.0 expected or 78.04 as simulated.

When n>2, the products in X,2 are not all of adjacent observations. Queue size observations
become progressively less correlated the farther they are apart, but the degree of correlation
should continue to depend on p. For example, if p~1 then if x; is large X« is likely to be large
also. For more modest values of p, and eventually for sufficiently large k, the second term in
the product will tend towards the mean queue size, and it is not unreasonable to suppose that

relaxation should be approximately exponential.

A simple function to predict the mean value of queue size observations k events away from
an observation i, which satisfies the end constraints and has roughly the right initial rate of

change, is:

()= -+ abs{i - p)ﬂp(%} (F.4)
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The mean value of j can be estimated as the integral of (F.4) broadly within the range [0,n],
divided by the range, though there may be an issue whether the range ought to be [1,n] or
[0,n-1] which can perhaps be ignored if n is sufficiently large. The approximate result is
given by (F.5) which has extremal values i at n=0 and p at n=co, and gives the correct value

(F.2) for n=1 when approximated to second order:

i=u—sign(i—u)(1+p)(i_“)2{exp((l g )j_l} "

nt-p) +pabs(i —

The evaluation of the product moment (F.3) as an integral of a continuous function looks
awkward because of the exponential function of i in (F.5), which leads to a factor involving i
and an exponential term containing both i and its inverse. Alternatively, (F.5) might be
converted to a discrete form. Either appears tedious, and in practice the desired numerical

results can be obtained by direct calculation, the variance between runs being estimated by:
V=TI, —L? (F.6)

Figure F.1 compares the simulated and estimated standard deviation between runs as a
function of run length, showing that they match closely but are substantially different from
the o/\n standard error for uncorrelated observations, which is also shown. This confirms
the model and predicts o error in the mean of 0.216 for n = 1M events. It is reasonable to
expect that, if the simulation is accurate, the error in the simulated mean will be of similar

order, the actual value being 0.162.

10 e

—+—mean of run means

sigma(0)/sart(n_events)

—B-sigma between runs (simulated)

Value (log scale) -M/M/1 with p=0.9

==sigma between runs (estimated)

Number of events in run (log scale)

Figure F.1 Standard error of mean queue estimate as function of no. of events, M/M/1, p=0.9
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A useful observation is that, for sufficiently large n, the expected error decreases as 1/vn,
allowing it to be extrapolated to any greater range, although it is displaced from the

uncorrelated case by several orders of magnitude.

For n=10,000, the number of events simulated in earlier experiments which were considered
unsatisfactory, the predicted error in the mean is 2.16, implying a one-sigma range of 6.84-
11.16, so the result is likely to be substantially different from expectation. This is evident in
Table F.1, which may be compared with Table 6.2.1 in main Chapter 6. On the face of it this
is a surprising result since the stochastic relaxation constant should be only around 1.9*379.7

= 722 events (including both arrival and service events).

Table F.1 Queue sizes in earlier multi-lane simulations (p=0.9, u=1.0, 10,000 events)

No. of Capacity p Total Individual Lane Queues Correlation of
and type of Queue Queue

Lanes process Lanel Lane2 Lane3 Lane4 Sizes (Rz)

1 1.00 random 7.317 7.317 - - - n/a

4 0.25 indep. 41633 10772 8823 10377 11661 0-033

4 1.00 shared 6743 1467 1796 1673 1806 0237

4 1.00 shortest 0.844

6.743 1.644 1.687 1.693 1.719

In conclusion, the foregoing analysis has provided a means of estimating the expected
accuracy of a simulated M/M/1 equilibrium queue as a function of the length of simulation,
or conversely providing an indication of how many events need to be simulated to get a result
of given accuracy, and has shown that this number can be several orders of magnitude greater

than would be expected on the basis of the usual standard error rule.
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