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ABSTRACT 

 

Time-dependent queue methods are extended to calculate variances of stochastic queues along 

with their means, and thereby provide a tool for evaluation and better understanding of travel 

time variability and reliability in congested traffic networks and other systems, including 

through probability distributions estimated from moments. Objectives include developing 

computationally efficient analytical methods, and achieving robustness by reflecting the 

underlying structure of queuing systems rather than relying on statistical fitting,  

 

New deterministic and equilibrium formulae for queue variance are developed, acting also as 

constraints on estimating time-dependent queues generated by a range of processes, enabling 

improved accuracy and reliability estimates. New methods for approximating equilibrium and 

dynamic probability distributions use respectively doubly-nested geometric distributions and 

exponentially-weighted combinations of exponential and Normal functions, avoiding the need 

to rely on empirical functions, costly simulation, or equilibrium distributions inappropriate in 

dynamic cases. 

 

For growing queues, corrections are made to the popular sheared approximation, that combines 

deterministic and Pollaczek-Khinchin equilibrium mean formulae in one time-dependent 

function. For decaying queues, a new exponential approximation is found to give better results, 

possibly through avoiding implicit quasi-static assumption in shearing. Predictions for M/M/1 

(yield) and M/D/1 (signal) processes applied to 34 oversaturated peaks show good agreement 

when tested against Markov simulations based on recurrence relations. 

 

Looking to widen the range of queues amenable to time-dependent methods, dependence of 

stochastic signal queues on green period capacity is confirmed by an extended M/D/1 process, 

for which new formulae for equilibrium moments are obtained and compared with earlier 

approximations. A simple formulation of queuing on multiple lanes with shared service is 

developed, two-lane examples with turning movements showing fair match to simulation. 

 

The main new methods are implemented in a spreadsheet demonstrator program, 

incorporating a database of time-sliced peak cases together with a procedure for estimating 

dynamic probability distributions from moments. 
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CHAPTER 1: INTRODUCTION AND REVIEW 

 

The thesis of this dissertation is that general expressions for deterministic time-dependent and 

equilibrium queue variance can be derived, and when combined with corresponding 

expressions for the mean queue, including existing methods modified for accuracy, enable both 

mean and variance of queues to be estimated with improved accuracy. The results can be used 

to estimate general time-dependent profiles of queue mean and variance under transient 

oversaturation. Dynamic probability distributions can be estimated from queue moments, 

giving more detailed information about the reliability of facilities under congested conditions. 

 

1.1. BACKGROUND AND CONTEXT 

 

1.1.1 Link between variability and congestion in traffic networks and other facilities 

 

Origins and destinations of journeys are distributed in space, so any traffic that does not have 

total freedom of movement tends to move through a network linking these points. All network 

links, generators and attractors are subject to capacity limitations and hence to delay and 

congestion when demand exceeds their capacity, and delay rises steeply when capacity is 

approached. Journeys tend to be constrained in time as well as route choice, so options to 

redirect demand may be limited. Where capacities are inflexible
1
 and demand is not 

manageable at source
2
, as is typical of roads, hospitals and other health services, call-centres, 

over-counter services etc, there is risk of congestion, leading to disruption and dissatisfaction. 

Variability of demand and service makes congestion to a degree unpredictable, while 

nonlinearity and sensitivity around saturation further complicate prediction. Where scope for 

new ‘provision’ is limited, reliability becomes a primary objective. In the quest for improved 

reliability, a first step is to understand how variability affects the network, and where queuing is 

the main effect the natural way to describe this is in terms of the variance of queue size. Direct 

simulation is costly. For some processes, deterministic3 and analytical
4
 methods are well 

developed for calculating mean queue sizes or waiting times in equilibrium, as well as some 

transient behaviour, and approximations are available for more general time-dependent 

behaviour. However, calculation of variance is limited to equilibrium values for a few 

processes, or empirical methods for particular scenarios. No general time-dependent method 

has been available for calculating variances or dynamic queue size probability distributions. 

 

                                                
1Counter-examples of service with some flexibility include supermarket check-outs and airline check-in desks. 
2Examples of demand controlled at source could include pre-booked airline or train seats. 
3‘Deterministic’ is used here broadly to mean an expression which does not require or depend directly on 
randomness, though it can include invariants of random processes. 
4‘Analytical' is used here loosely to mean closed-form formulae embodying the structure (analysis) of a problem, 
not just an empirical or statistical fit to data. 
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1.1.2 Costs of road traffic congestion 

 

While not the only area of interest, road traffic is a convenient, as well as intensively studied, 

paradigm. Road traffic congestion seems to increase relentlessly throughout the world. There is 

a view, summarised as ‘peak car’, that road traffic in the UK (and elsewhere) may have peaked 

and now be in decline (Goodwin 2010, Metz 2009,2010). However, this is not universally 

accepted, and spectacular extreme congestion and delay events occur particularly in the 

‘developing’ world (e.g. Global Times 2010), while in ‘developed’ countries a high proportion 

of congestion is associated with recurrent demand (65% in the UK, 55% in the USA), as 

opposed to temporary loss of capacity through incidents, works or weather, and is therefore 

likely to recur at times and places where the network is most sensitive to variability. The annual 

cost of congestion in the UK has been estimated by Eddington (2006) as £8B, while a recent 

opinion survey (LTT 2012) produced estimates as high as £30B per annum. Apart from the 

question what constitutes ‘congestion’ as distinct from unavoidable delay (Lay 2011, Taylor 

2012), the inability economically or politically, or even theoretically, to build a way out of 

congestion (‘predict and provide’) has led to a focus on reliability. Reliability is defined 

formally as the probability of a system performing its intended function during a given time 

period, but this is unhelpful for roads whose performance is not under the full control of 

operators. Therefore it tends to be measured in terms of journey time variability, which may be 

valued differently from average time (Gordon et al 2001, Fosgerau and Karlström 2010). 

 

The UK Department for Transport has used two measures of journey time reliability in its 

published statistics: from July 2005 to March 2010 average delay on the 10% most delayed 

journeys on a set of routes; from April 2010 the average percentage of journeys arriving ‘on 

time’ set against reference speeds. These apply to strategic routes, where delays result mostly 

from transient overload or flow breakdown, or loss of capacity through incidents and road 

works. Speed/flow/density relationships are often used to describe local traffic conditions and 

to characterise level of service, though the latter is problematic (see e.g. Taylor 2012). 

 

In urban road networks, delays may arise from random fluctuations in demand or capacity as 

well as overload. When average demand is below average capacity, some capacity remains 

unused, so upward fluctuations sufficient to cause a queue to form are not compensated by 

downward fluctuations, resulting in a net average queue that increases with variability. There 

are ongoing studies of macroscopic speed/flow/density relationships (MFD) for urban 

networks, analogous to those associated with motorways, that may lead to a concept of level of 

service for urban networks (B G Heydecker, personal communication). The present work is 

concerned only with delay arising from explicit queuing rather than from reductions in average 

speed. Some delay is an inevitable price of mobility, because the economic cost of relieving it 
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completely could not be justified (Miller 1969, and other references in Taylor 2012). In the 

absence of control over demand and capacity, reliability implies keeping delay within tolerable 

limits by managing or allowing for variability. A first step towards this is to be able to predict 

variability of delay, which requires an understanding of the variance of queuing processes. 

 

1.1.3 Development of time-dependent queuing theory 

 

Queuing theory applied to all kinds of communication networks and service facilities has a long 

history going back to the work of Agner Krarup Erlang at the Copenhagen Telephone Company 

(Erlang 1909). In the 1930s interest developed in the performance of freeways in the USA, but 

this focused on continuous flow rather than queuing  (Greenshields 1935). Application to road 

traffic began in earnest in relation to uncontrolled junctions and traffic signals in the late 1950s 

and 1960s (Webster 1958, Tanner 1962, Webster and Cobbe 1966), and later to the design of 

priority junctions and roundabouts. Allsop (1971) focused on the optimisation of signal timings 

to minimise total delay, as an alternative to Webster’s principle of equal saturation on all arms. 

 

In the 1970s and 1980s observations and track experiments led to empirical models of junction 

capacity and development of approximate formulae. Work funded over several years by the UK 

Department for Transport (DfT) used the multi-disciplinary staff and special track facilities at 

the Transport Research Laboratory (TRL)
5
 to set up repeatable controlled experiments, as well 

as direct observations. In the late 1970s P D Whiting
6
, Robertson and Gower (1977), Doherty 

(1977) and Catling (1977), working at the DfT or at TRL, developed coordinate transformed or 

‘sheared’ methods, subsequently refined by Kimber and Hollis (1979). These methods combine 

deterministic queue development with random equilibrium queuing theory to give an 

approximation to time-dependent queues, including growth through saturation that neither 

component can handle separately. Akçelik (1980, 1998a,b) describes analogous methods 

developed in the 1980s for priority and signal junctions. 

 

These results contributed to the development of several computer programs to assist priority 

and signal junction and network design including TRANSYT, CONTRAM, ARCADY, 

PICADY and OSCADY (Robertson and Gower 1977, Kimber et al 1985,1986, (Semmens 

1985a,b), Burrow 1987, Leonard, Gower and Taylor 1989, Taylor 1990,2003). During this 

period, Kimber and Daly (1986) explored the variability of queues under consistent conditions. 

They found that predicted queue size matched the real average well, but individual observed 

queue sizes covered a range up to more than twice the average, as shown in Figure 1.1.1. 

                                                
5‘TRL’may be taken to include all its previous manifestations, including RRL or TRRL as it was known until 
1990 while still the research arm of the UK Department of Transport, and up to and after privatisation in 1996. 
6Whiting left computer code but no documentation, but is also referenced with Hillier for optimum route search. 
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In the USA, Gordon F Newell (1960,1968a,b,c,1971,1982) was a pioneer of queuing theory 

applied to road traffic in the late 1960s, and may have been the first to suggest combining 

deterministic and quasi-static equilibrium functions, in his case using a diffusion 

approximation, but did not go so far as to develop a practical time-dependent analytical closed 

formula applicable to transient over-saturated queues. Figure 1.1.2 (a-c) reproduces some of the 

original figures of these authors, showing the common theme in their ideas and the idea of 

‘shearing’ the equilibrium function into the time-dependent function. Figure 1.1.2 (d) shows 

that unlike the mean queue, variance does not ‘shear’ naturally. 

 

 

Figure 1.1.1  Original figure of Kimber and Daly (1986) showing observed queue variability 

 

Figure 1.1.2  Original figures of four authors illustrating shearing and its precursors 
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1.1.4 Seeking improved accuracy 

 

As will be discussed later, the sheared queue approximation contains a source of inaccuracy in 

its implicit assumption that a dynamically developing queue behaves as quasi-static or locally 

in equilibrium. Dissatisfied with its accuracy, Kimber and Hollis (1979) modified the sheared 

formula for growth by replacing the initial queue by a shift in the time origin. By so doing they 

hoped to avoid indeterminacy of the initial queue state (equivalent to an unspecified probability 

distribution) by making it the result of the growth process. For a decaying queue, they assumed 

that an initial queue greater than twice the equilibrium value (at the current level of demand) 

decays linearly to that value, after which it behaves like a mirror image of the growth function 

as it falls to its equilibrium value. Queue development profiles estimated by alternative methods 

are compared in Figure 1.1.3, where the subscript ‘0’ indicates the initial state at t=0, and 

subscript ‘e’ indicates the equilibrium state. This particular example does not support the idea 

that the origin-shifted/mirror-image method delivers better accuracy compared to benchmark 

Markov simulations (using step size 0.1 unit), and maintaining the initial rate of decay for an 

extended period tends to overestimate the rate at which the queue falls. 

 

 

Figure 1.1.3  Growth/decay example using LR909 methods (time-advanced, not time-sliced) 

 

While the origin-shifted/mirror-image method is ingenious, requires no additional empirical 

parameters or constants, and plays a part in this research, it appears to rely on graphical rather 

than physical arguments, and the accuracy of its approximation was not investigated further. 

This work aims to improve accuracy systematically by incorporating additional natural 

structural constraints including that imposed by variance. 
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1.1.5 Existing approaches to calculating queue variance 

 

While the size of a queue is governed by conservation (what enters must either leave or stay), 

estimation of variance is inseparable from a probabilistic description. Queue variance can be 

estimated by repeated simulations, but this is not always a practical option. While queuing 

theory can provide formulae for the equilibrium variance along with the mean size of some 

queuing processes, there has been no efficient closed-form method available for calculating 

time-dependent variance, nor equilibrium variance for more general processes, nor specific 

probability distributions. This would for example enable estimation of the likelihood of 

occasional long tailbacks, or how likely it is that a queue will spill back across a junction or 

other facility upstream, a situation that can exacerbate congestion or lead to gridlock. 

 

Exact descriptions of or close approximations to time-dependent queues exist for some simpler 

processes (e.g. Morse 1955,1958, Clarke 1956, Cantrell and Beall 1988). Morse (1955) gives 

the earliest known exact transient solution to queue development, which is limited to the 

simplest M/M/1 random queue, whose computation is demanding and subject to precision 

problems. The M/M/1 solution has been extended by Griffiths et al (2005) to M/Ek/1 systems
7
, 

representing staged service, effectively with reduced dispersion, and also multi-channel systems 

(Morse 1955). Markov simulation, evolving queue state probabilities in small steps, is more 

efficient than direct calculation and can be applied to any queue type describable in terms of 

recurrence relations or transition probabilities, but it too is computation-intensive. Microscopic 

event or ‘Monte Carlo’ simulation can represent any arbitrary process, but is the least efficient 

of all. These methods are useful as benchmarks, but are too burdensome for use in most 

practical predictions, unless compromised. For example, microscopic simulations of networks 

may require many randomised repeat runs to get an accurate assessment of the reliability of 

results, but these are seldom performed because of the cost (Wood 2012). 

 

To the author’s knowledge, estimation of queue variance has been addressed in three ways: 

 Steady state equilibrium variance of waiting time or queue size, plus some analysis of 

transients (examples in most standard reference works). Addison and Heydecker (2006) 

extend this by expressing the rate of change of variance in terms of other moments; 

 Regression models of symmetrical peaks calibrated from the results of simulations 

(Kimber et al 1986, and Figure 1.1.4), or statistical methods (Eliasson 2006); 

 Dynamic relationships between observed or simulated variance and mean, giving loop-

like graphs because variance lags mean (Arup, Bates et al 2004, Addison and 

Heydecker 2006, Fosgerau 2010). 

                                                
7 The author is grateful to the Examiners for drawing his attention to this result. 
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Kimber et al (1986), using 34 synthetic symmetrical peak cases representing idealised priority 

junctions with Gaussian demand profiles, fitted parameters of a ‘low definition’ model of queue 

variance to simulation results using empirical power functions of peak duration and average 

demand intensity. Variance was approximated by ‘stitching together’ two half-Gaussian 

functions fitted respectively to the growth and decay regimes of the variance, as shown in 

Figure 1.1.4. Used with the sheared or a low definition queue approximation, this enabled both 

queue mean and variance to be estimated, but only for symmetrical uni-modal peaks. Kimber et 

al (1986) proposed the regression formula (1.1.1), where mT  is the time of the maximum 

variance Vm and the Bi are the estimated scale parameters of the half-Gaussian fitting functions: 

 

       2

1

2
exp BTtVtV mm    0 <t<Tm 

     2

2

2
exp BTtV mm    Tm<t<TL (1.1.1) 

 

 

Figure 1.1.4  Original figure of Kimber et al (1986) showing bi-Gaussian fit to variance data  

 

Low-definition methods cannot predict the development of a queue produced by arbitrary 

demand and capacity profiles, limiting their application compared with analytical time-

dependent approximations like shearing. Conversely, analytical mean queue methods do not 

provide sufficient information to enable variances or probability distributions to be estimated. 

 

1.1.6 New expression for deterministic time-dependent variance 

 

This work establishes a basis for efficient extended approximations by deriving a new 

deterministic formula for the variance of a queue and extending equilibrium formulae to 

embrace a wider range of queue processes. The deterministic variance formula, given by 

equation (1.1.3) below and first published in Taylor (2005a), has a structural resemblance to the 

well-known deterministic mean queue formula (1.1.2) reflecting conservation of queuing units 
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or customers, where L0 is the initial queue at time t=0,  is demand intensity (demand/capacity), 

and x is the average utilisation of capacity . Le is the equilibrium queue size of the random 

process, and D(t) is the average queue size or delay per unit time over the period [0,t]. 

 

      txLtL  0  where    1,min  txx  as t  (1.1.2) 
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The variance formula is believed to be general, and conjectured to represent conservation of 

some higher quantity, though the physical interpretation is unclear. An equilibrium queue exists 

only for demand less than capacity, i.e. <1. However, all equilibrium queue formulae include 

the divisor (1-), so the product (1-)Le and hence equation (1.1.3) are defined for all . 

 

1.1.7 Approach to the problem of queue estimation 

 

Wherever possible this research exploits precise relationships, some of which are new and 

many of which are well known, but it does not aim to repeat what has already been explored 

exhaustively, nor to achieve absolute mathematical rigour in its final results. It aims rather to 

enable approximate but robust and efficient computational methods to produce more 

complete and accurate predictions, and in particular to estimate reliability on a sound 

analytical basis rather than broad assumptions like equilibrium that are seldom tenable in 

reality. Problems in traffic as posed practically are approximations to situations that are not 

precisely known, either as a result of their complexity or uncertainties of measurement. A 

valuable property of an approximate solution is that it reflect the underlying structure and 

behaviour of a physical system, rather than just achieving a good empirical or statistical fit in 

particular cases. Such a solution is more likely to make useful predictions for cases not 

already encountered. This allows that there may be varying degrees of structural affinity 

between the model and original problems. 

 

Any mathematical formula is inherently precise, but few practical problems in network and 

queuing analysis admit exact solutions like the M/M/1 formula of Clarke (1956) and Morse 
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(1955,1958), and they can be hard to use
8
. Therefore, for many practical applications robust 

accuracy may be preferable to fragile precision
9
. Precise but somewhat idealised formulae 

include the deterministic queue formula (1.1.2), reflecting conservation of units/customers, 

and the Pollaczek-Khinchin equilibrium queue formula relating to random processes, and 

may now be considered to include the deterministic variance formula (1.1.3). The sheared 

queue approximation has the advantage of elegantly fusing two mutually incompatible 

formulae, capturing gross properties of time-dependent queuing with a degree of accuracy, 

without the need for additional behavioural assumptions or calibration constants, and 

providing a convenient basis for further development. Some superficially similar methods, 

such as those reviewed in Appendix E, add empirical terms and calibration constants in 

pursuit of greater accuracy, but this is felt to be undesirable in the present research. 

 

1.1.8 Information available from standard works on queuing 

 

Much standard material on queuing theory is concerned with steady-state equilibrium and 

average waiting times, e.g. Kleinrock (1975), Newell (1982), Medhi (2003), Gross et al (2008). 

Since equilibrium is seldom achieved in reality, and exact time-dependent analysis tends to be 

intractable, transient response to change in inputs may be analysed. Although queuing is 

naturally a discrete process, fluid diffusion approximations using continuous functions have 

been exploited, e.g. by Newell (1982), Kleinrock (1976). Continuous models can be easier to 

work with and can provide useful insights. Variances are derived mostly for queues in 

equilibrium. Useful techniques for obtaining equilibrium probability distributions and moments 

are given by Kleinrock (1975) and Bunday (1996). Such results can be of limited relevance to 

dynamic traffic queues in oversaturated peak periods, where for example arrival and capacity 

profiles may be quite variable and inter-dependent. Sustained peaks are common in road traffic, 

so that predicting the course of queue growth and decay is more important than analysing 

transients, whose causes are likely to be events separate from recurrent queuing. Long road 

queues are often unavoidable because of limited control over demand and service facilities, 

while in some other contexts capacity and delay may be managed more readily. Networks of 

queues are addressed in the literature, though in an industrial or telecommunications context the 

networks may be simpler than in the road context, as flows may not interact and conditions be 

more controllable. In road traffic networks, despite the inter-dependence of their elements, the 

statistics of queuing processes are normally assumed to be those of isolated systems. Little 

research has been done to verify that such approximation is valid, with the exception of Kimber 

et al (1986), although the open-ended nature of such traffic problems argues against the 

likelihood of building manageable comprehensive solutions.  

                                                
8Kleinrock (1975) describes the complexity of the M/M/1 solution given by Morse (1958) as “most disheartening” 
despite its describing the “simplest interesting queuing system”. 
9This distinction is also associated with certain quotations of John Tukey (~1958). 
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In practical traffic modelling, simulation is increasingly preferred to analysis. The essential 

difference between competing traffic modelling approaches - microscopic, mesoscopic and 

macroscopic - lies in the level at which simulation takes place (e.g. Taylor 2003). In 

microscopic modelling, the statistical properties of queues arise from the behaviour of 

individual customers. In meso/macroscopic modelling, the statistics of queues at different 

points of a network are characterised in general terms, that can be based on general principles 

or calculated progressively by considering the competing effects of platooning, dispersion and 

mixing of streams, green waves etc, as addressed in the context of optimising coordinated 

signals by for example Robertson and Gower (1977). Stochastic User Equilibrium (SUE) 

assignments attempt to take account of the uncertainty or variance of demand and network 

variables, but tend to make simplifying assumptions about their distributions in order to be able 

to create global objective functions or closed-form solutions (e.g. Maher 1992,1998). 

 

1.1.9 Gap-acceptance as an alternative capacity model 

 

In many practical situations, the capacity of a traffic movement depends on the presence of 

other traffic, for example in the road context at priority junctions, roundabouts and also at 

opposed turns at signal junctions. Because of the complexity of possible movements, 

additional factors of flare lanes and visibility, and typically a large amount of scatter in data 

with a relative paucity of observations at extreme points compared to average conditions, 

linear regression models have been developed to calibrate empirical relationships between 

each movement capacity and opposing flows. Once the capacity of each movement is 

determined, standard queuing theory can be applied. A good example of this approach is 

PICADY (Semmens 1985b), using research and experiments at the Transport Research 

Laboratory by G F Maycock, R M Kimber and I Summersgill inter alia. 

 

Gap acceptance is an alternative approach, which by-passes the capacity stage by directly 

estimating the waiting time in service based on the probabilistic distribution of gaps, and of 

accepting gaps, in opposing traffic or when overtaking, and the behavioural characteristics of 

individuals in service.  An early use of the term is by Miller (1961) and similar problems are 

addressed by Tanner (1961,1962) and Hawkes (1968). The gap distribution is commonly 

assumed to be negative exponential, giving non-linear relationships between unblocked time and 

opposing flow, and between other pairs of variables (see for example review by Akçelik 2007). 

The gap acceptance approach can in principle deal explicitly with bunched arrivals, realistic 

minimum headways in opposing traffic, details of pedestrian behaviour at crossings (e.g. 

Griffiths 1981), etc.  A dichotomy has arisen since capacity-based methods were developed as a 

response to a need for experimentally verified and calibrated computational tools. Zhang and 

Excell (2013) report a play-off between the two approaches illustrating the difficulties of 
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matching methodology to reality in the practical case of a complex junction, as well as the 

emphasis on functionality as opposed to method. The concept of capacity allows a modular 

approach to traffic modelling which is relatively easy to generalise. The present research falls 

naturally into the capacity-based camp, with properties of arrivals and service being represented 

by simple statistics that can be accommodated within the methodology. 

 

1.1.10 Chaotic processes, heavy tails and adaptive systems 

 

As transportation systems become increasingly pressured, the effect of disruptions becomes 

more critical. This applies not only to road networks, where the nature of disruptions can be 

depressingly predictable even if their magnitude and timing is not, but to high-value services 

like airports. These are particularly prone to disruption because of knock-on delays, both 

within and between airports, heavily bunched movements of passengers, and ‘banks’ of 

flights by competing airlines at peak times (Peterson et al 1995). Arrivals in such cases can 

be bunched and highly variable, so that common random processes are considered 

inapplicable, and the arrival pattern may be better described as arising from a chaotic process.  

 

Chow (2013) proposes that chaotic functions can be used to reproduce the statistical 

characteristics of queues resulting from transient events such as incidents, and in particular 

queue length distributions with ‘heavy tails’, where extreme events are much more probable 

than would be expected from exponential or Poisson processes. He points out that chaotic 

maps are deterministic, though they may mimic stochastic processes. Surges of scheduled 

arrivals at an airport could be considered deterministic, although some dispersion and 

randomness is likely to creep in between aircraft and exit. Mirchandani and Zou (2007) focus 

on analysis of adaptive signal control, which also leads to more complex statistics. 

 

The focus of this research is on analytical methods that can be applied to time-dependent 

scenarios in a piecewise continuous manner, regardless of whether parameters change 

regularly and smoothly, or randomly and abruptly. This is for partly for reasons of 

computational efficiency and partly in order to produce repeatable average results. 

Microscopic and Markov simulation are used here only for creating benchmarks for verifying 

the analytical methods. However, beyond some level of system complexity, microscopic or 

event-based simulation may be the only option for getting usefully realistic results
10

, although 

even such methods have limitations (Wood 2012). Establishing how far practically efficient 

analytical methods can be taken in traffic modelling is left for future research. 

  

                                                
10 Examples could include weather forecasting, nuclear and molecular physics, galaxy formation and collision. 
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1.2. CONGESTION AND RELIABILITY 

 

1.2.1 The economic costs of congestion and unreliability 

 

The theoretical cost of congestion and delay in road traffic is almost incalculable. It has been 

estimated by the Automobile Association as £20 billion per annum in the UK (AA 2009), while 

Eddington (2006) quotes the Department for Transport’s more conservative estimate that 

eliminating congestion would be worth £7-8 billion of GDP. Recent less formal estimates are as 

high as £30B (LTT 2012). The cost of congestion in the USA has been estimated as $63.1B in 

2005, “larger than the GNP of most countries in the world” (Prashker 2008, Schrank et al 

2010), and by the US Department of Transportation as $1 trillion per annum in total on all 

roads, equal to the total cash amount spent on road transportation, plus $200M cost of accidents 

and fatalities (NCTIM 2002). Much of this cost is associated with queuing delay. 

 

However, it is arguable that some delay is an unavoidable price for a cost-effective transport 

system. Miller (1969) said “The only objective criterion for deciding what is a tolerable level of 

congestion is an economic one in which the cost of increasing the capacity is matched against 

the benefits so achieved”. The cost of providing more capacity is high and increasing, but it is 

difficult to put a numerical value on this macro-economic criterion because it seeks to 

internalise so many factors. Cost-Benefit Analysis (CBA) as used in transport scheme appraisal 

attempts to do this, although its focus on saving journey time at the expense of pollution, social 

severance etc has attracted criticism (Kelly 2012). Fundamental questions are now being asked 

about the sustainability of a lifestyle dependent on motorised transport. 

 

Congestion is often measured pragmatically in terms of the ‘Congestion Index’ (CI), the ratio 

of average to minimum travel time. This measure seems to be increasing in popularity, but has 

certain drawbacks. A more consistent measure would be marginal delay caused to a body of 

traffic by the addition of one traveller (Taylor 2012). Figure 1.2.1 shows that this is relatively 

insensitive to the standard and capacity of road considered, and independent of section length, 

unlike the CI which is ‘diluted’ on longer sections. 

 

The UK Department for Transport (DfT) has found that a majority of road users do not consider 

recurrent congestion a serious problem for them personally, and have various tactics for coping 

with it, but do become frustrated by unanticipated congestion (DfT 2005). Figure 1.2.1 shows 

that sensitivity of delay is greatest around saturation. Variability or unreliability is potentially 

more amenable to control than absolute congestion, because in principle this can be achieved 

by improved management of an existing system without changing demand or capacity. 
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Figure 1.2.1  A possible definition of congestion: vehicle-minutes marginal total delay per 

additional demand in 1 and 2 hour peaks, as a function of demand/capacity (Taylor 2012) 

 

Value can be ascribed to the reliability of travel time, or the variability of waiting or queuing 

time. This is more controversial than placing a value on delay, though the latter is arguably 

more subjective since it depends on the reference ‘undelayed’ travel time. It was once held that 

the value of travel time uncertainty should be absorbed into the average value of time, all time 

savings being valued equally. However, the perceived value of uncertainty has been found to 

vary greatly, 0.55-3.22 times that of average travel time (Gordon et al 2001). The ‘value’ of 

travel time really reflects opportunity cost, that can be very non-linear for critical journeys such 

as to an airport or hospital, and this could have a bearing on the valuation of reliability. 

 

The DfT regards journey time reliability as a policy objective. Under the Public Services 

Agreement (PSA) in the period 2004-2008, it defined the PSA1 measure and target for 

‘Average Vehicle Delay’ (AVD) as the average delay incurred on the most delayed 10% of 

synthetic journeys on a spanning set of around 100 routes constructed from the around 2,500 

links and 4,200 km of the English primary road network managed by the Highways Agency 

(the HATRIS network). In April 2011, AVD was replaced by an ‘On Time Reliability’ measure 

that calculates the percentage of journeys ‘on-time’ on a link-by-link basis, by comparing 

average speed with a reference speed. The reference speeds are essentially the same as those 

used to calculate delay under PSA1, but the new measure is considered easier to relate to the 

percentage on-time measures used by the rail and air industries. Various other definitions of 

reliability have been used or proposed, including one based on the assumption that journey time 

distributions are approximately LogNormal, implying that there is a significant chance of 

journey times being very much longer than average (Kaparias et al 2008). 
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1.2.2 Recurrent and non-recurrent congestion 

 

Much attention has been and is being focused on preventing or managing incidents, because of 

their avoidability. While incidents are the largest single cause of journey time unreliability, they 

are responsible for only 10-25% of congestion across Europe (CEDR 2009,2011), while 

another 10% is estimated to result from road works (construction) and planned events, implying 

that at least 65% is ascribable to recurrent congestion
11

. Non-recurrent congestion tends to 

involve a sharp drop in capacity, so can be treated by deterministic methods, where the queue 

size depends essentially on the difference between demand and capacity. Sources of incidental 

variability tend to be independent of the traffic demand, for example depending on the severity 

of an incident or the number of lanes closed by road works. 

 

Recurrent congestion tends to recur at the same places. On motorways/freeways these are 

usually, though not invariably, near junctions, merges or diverges, collectively known as ‘seed 

points’. Capacity drop may be associated with spontaneous flow breakdown (Kerner and 

Klenov 2003), although spontaneity has been disputed (Daganzo et al 1999). The drop may be 

only in the range 5-15% (Bertini et al 2005), but high demand flows mean large queues can 

develop. Deterministic methods are therefore applicable, although random queuing theory 

might help to explain why flow breaks down in the first place (Kühne and Lüdtke 2013). Figure 

1.2.2 shows a trajectory of flow and speed measurements at a site upstream of a motorway 

bottleneck, with typical bent-back appearance (e.g. Carey and Bowers 2011, Heydecker and 

Verlander 1998, Taylor et al 2008 and references therein). A less common cause of non-

recurrent congestion is a moving bottleneck, such as a large or slow abnormal load, see Figure 

1.2.3 overleaf. Analysis is more complex than for fixed bottlenecks, requiring ‘horizontal’ 

modelling of queues that are both in motion and extended in space, and involving the use of at 

least basic speed/flow/density relationships (Taylor 2005b,2009 and references therein). Indeed, 

where traffic is moving at considerable speed, a ‘queue’ in the common sense may not be 

discernible by an observer. 

 

In contrast to motorways/freeways, urban networks are characterised by: (a) the relatively 

predictable nature of average delays and the filtering effect of junctions upstream, tending to 

hold traffic volumes around the saturation level where random variability has the greatest 

impact; (b) low speeds, high densities and mostly stationary queues, so physical queue lengths 

are closely related to queue size and ‘horizontal’ methods are not essential; (c) traffic often 

building up and decaying according to recurrent peak profiles. Since it considers arbitrary 

profiles, the present work is not limited to such cases, and should be applicable to more 

complex cases such as traffic flows to or from special events or airports. 

                                                
11These figures originate from 1999 and may have changed, but no more recent figures appear to be available. 
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Figure 1.2.2  State and phase transitions 3.8km upstream of a flow breakdown, showing 

clustering into ‘free flowing’ and ‘congested’ regimes with large short-term variability and 

uncertain meaning of ‘capacity’. Note also the recovery of speed at constant reduced flow.  

 

Figure 1.2.3  MTV
12

 space/time plot with horizontal queue model superimposed on queue 

caused by large slow moving vehicle. Low speed traffic is indicated by lighter areas in thin 

dark bands. Wide blank areas are where loops were disconnected from data network because 

of limited capacity (no better original is available). See also Taylor (2005a,2009). 

                                                
12 MTV and the plots above were developed by Dr Brian Williams and Peter Still at TRL. 
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1.3. QUEUING IN NETWORK TRAFFIC MODELLING 

 

1.3.1 Modelling journeys 

 

Where traffic has a choice of routes available, prediction usually requires a traffic modelling 

computer program, ideally with the ability to assign routes according to a principle such as 

minimum perceived cost, although this surely oversimplifies real route choice if it ignores 

knowledge, preferences and inertia. Where delay is a monotonic function of volume, the User 

Equilibrium (UE) principle, as described by Wardrop (1952) and formulated as an optimisation 

problem by Beckmann (1952), is frequently applied, according to which journeys between the 

same origin and destination distribute themselves so all used routes have equal cost. 

 

A tree-building computer algorithm for finding minimum cost routes was developed 

independently by Dijkstra (1959) and Whiting and Hillier (1960). This has since been improved 

through focusing effort on more productive directions (e.g. Hart, Nilsson and Raphael 1968, 

van Vliet 1977, Taylor 1989), and recently by origin-based assignment (Bar-Gera 2002, Bar-

Gera and Boyce 2003), which greatly improves convergence by calculating routes in terms of 

whole trees based on origins. The User Equilibrium principle is an idealisation, but alternatives 

that seek more realism by accepting uncertainty (Stochastic User Equilibrium) or  limited 

information or unwillingness to change routes unless there is a clear advantage (bounded 

rationality) can be seen and formulated as extensions to the equilibrium concept (Sheffi and 

Powell 1982, Mahmassani and Chang 1987, Maher 1998). 

 

1.3.2 Modelling queues 

 

Assignment methods need to estimate delays in order to find minimum time or cost routes. 

Queues occur where the demand for a service approaches or exceeds the effective capacity of 

the service. Over-saturation is necessarily transient, otherwise queues and delays would 

increase indefinitely. The diurnal cycle of peaks and rests tends to ensure this, and the ability of 

traffic to adjust over time justifies the concept of network equilibrium. On short time scales, 

random fluctuations in demand and service result in a net queue whose mean value in theory 

tends to a steady-state equilibrium value provided average demand is below average capacity. 

On medium time scales queuing occurs because of demand peaks, which while varying greatly 

in duration, magnitude and steepness are generally limited to a few hours during a day. 

Catastrophic events, such as serious incidents, severe weather or major disruptions, can lead to 

queuing on a time scale of days or even weeks (e.g. Global Times 2010) but could be mitigated 

by adaptation of underlying behaviour and expectations. On the time scale of years we move 

onto the socio-economic level of land use, investment, policy and ultimately sustainability. 
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1.3.3 Modelling time-dependent traffic 

 

Understanding time-dependent queuing is essential for accurate journey time prediction in 

conditions of near-saturation and transient over-saturation. Instantaneous time-dependent 

functions describing queuing processes accurately can be intractable to integrate or impractical 

to evaluate numerically. Gradual changes in demand or capacity can be approximated, and step 

changes accommodated directly, by formulating the problem in terms of appropriate time 

slices, giving a piecewise continuous profile as in Figure 1.3.1. Any resulting queue, being 

cumulative, is necessarily continuous. Heydecker and Verlander (1998) point out theoretical 

inaccuracies associated with this type of approach, in particular non-transitivity, though it is 

unclear how severely this could affect traffic predictions or economic appraisal. 

 

 

Figure 1.3.1  Illustration of time-slicing applied to a traffic demand peak 

 

1.3.4 Probabilistic queues and probability distributions 

 

Arrivals and service at a queue tend to have an element of randomness, so if the same average 

profiles of mean arrival and service are repeated each day, the queue size at a given time on a 

given day will be described by a probability distribution (see Figure 1.1.1 earlier). The simplest 

case is where either or both of the inter-arrival and inter-service intervals is exponentially 

distributed (variance  mean
2
). The number of events in a given period is then Poisson 

distributed (variance  mean). Variations include uniform service, an idealisation of the effect 

of a traffic signal, and Erlang-k interval distributions where the ratio of variance to mean is 

modified by a parameter representing arrivals or service in bunches or over several stages. 

 

When calculating queue development from one time slice to the next, ideally a whole 

probability distribution should be carried over, but in typical modelling only the mean value is 

available to be passed. The probability distribution of a queue in equilibrium can be quite 
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simple (e.g. geometric), but in a dynamic process it need not be either simple to describe or 

easy to calculate. In fact, this work will show that most queue size probability distributions 

during a demand peak are nowhere near an equilibrium form. Having a value for the variance 

as well as the mean makes it possible in principle to estimate the true shape of the probability 

distribution, which has not previously been generally possible. 

 

1.3.5  Estimating delay in real networks 

 

Several factors tend to confound the purity of queuing processes in traffic networks: 

 

 Time-varying arrival and service patterns seldom persist long enough or recur 

consistently enough for their probability distributions to be precisely defined; and 

granularity of traffic also limits the precision with which distributions can be defined; 

 

 Capacities cannot be calibrated exactly because of the variability of traffic, indeed the 

definition of capacity is somewhat circular, since it is a theoretical or empirical 

estimate of whatever maximum thoughput can actually be achieved; 

 

 In mixed traffic, different vehicles use capacity differently, an effect that can be 

approximated by using PCU factors, that are only indirectly related to vehicle size; e.g. 

Kimber, McDonald and Hounsell (1985), with references to work by Heydecker (1982) 

and earlier studies going back to 1964; 

 

 Turning and opposing movements result in complicated local interactions; 

 

 Signals incur ‘lost time’ caused by finite reaction times and acceleration rates; 

 

 ‘Non-separability’ occurs where conditions affecting one traffic movement depend on 

other movements. Road network traffic is highly interactive in both space and time, 

although Bar-Gera (2002) claims this is not an issue with origin-based assignment. 

 

As a result, there is a degree of reliance on regression or calibration of parameters of capacity, 

delay or gap-acceptance models, using experimental data either from observation of actual 

traffic or from track experiments, e.g. Kimber, McDonald and Hounsell (1986). This work does 

not aim to deal with these practical issues, except in a highly idealised form in the case of 

multi-lane queues, but takes as given the queue process statistics that have been established 

either theoretically or empirically and are widely accepted. 
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1.3.6  Traffic simulation techniques and computational efficiency 

 

Since around 1990, microscopic simulation of individual events, agents, persons, vehicles etc, 

has grown in capability and popularity. In principle it is capable of simulating in full detail the 

behaviour and interactions of individual agents in an environment of arbitrary complexity and 

realism, and is therefore used extensively in simulations of complex systems in climate, 

weather, physics and structures. It is particularly valuable where complexity or chaotic 

behaviour mean that outcomes are emergent rather than analysable. However, in relation to 

road traffic, microsimulation has been criticised on several grounds. While most of these 

criticisms can be answered (Wood 2012), persistent ones are that methodology is obscure or 

proprietary, and that inputs must be varied randomly to generate a representative spread of 

outputs, while cost constraints may limit the number of repeat runs that can be performed. 

 

Macroscopic, including stochastic, equilibrium methods subsume any randomness into closed 

formulae and hence produce a single ‘typical’ result. New equilibrium assignment methods, 

such as the origin-based method of Bar-Gera (2002), have achieved exceptional levels of 

convergence as measured by the gap between the solution and the theoretical ideal where 

alternative used routes have equal cost (Slavin 2012). However, as Wood (2012) points out, and 

as expressed in a wider economic context by Soros (1987), equilibrium seldom occurs in 

reality, raising the question whether consistency is a sufficient guarantee of realism. Markovian 

simulation, which develops a probabilistic description by evaluating all the possible state 

probabilities over time in small steps, can be applied effectively to a one-dimensional problem 

like queuing, but could lead to an exponential explosion of calculations in a network unless 

results are pruned or aggregated to remove contributions of low probability. 

 

At the present time, neither microscopic nor macroscopic method has been declared the 

‘winner’, but microscopic simulation will surely continue to gain ground, thanks to ever 

increasing computing power and ability to accommodate incremental advances in behavioural 

modelling. However, an ability to simulate detail need not lead to a proportionately better 

understanding of whole systems. Even if the present research is not exploited by macroscopic 

traffic models, it can provide more complete information about how queuing systems can be 

expected to behave on aggregate, which could be lost in the detail of microscopic simulations. 

This may particularly apply where the probability distribution of results has an extended or 

complex shape. 
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1.4. OBJECTIVES AND METHODS 

 

1.4.1 Objectives 

 

The main objective of this work is to develop an efficient method of predicting the most 

characteristic queue moments, mean and variance, and the probability of zero queue, for 

arbitrary time-profiles of demand and capacity, and a range of queuing processes of practical 

importance. Thereby to provide a tool for evaluation and better understanding of travel time 

variability and reliability in congested traffic networks and other systems, where equilibrium is 

inappropriate, with the wider motivation of making time-dependent queuing methods more 

complete and internally consistent. Benefits will include better understanding of network 

performance and sensitivities to demand and capacity, and hence better design and management 

of networks and policies for sustainability. Specific objectives are to: 

 

 Acquire a sufficient understanding of existing methods relevant to the main objective, 

through reviewing and interpreting relevant past work; 

 

 Implement benchmark programs to validate new methods against established theory 

and new analytical approximations against simulations; 

 

 Develop a theoretical and computational approach to calculating the time-dependent 

variance of queues for arbitrary traffic profiles; 

 

 Apply the results of the above to enhance time-dependent closed-form queue 

estimation methods by improving the accuracy of estimation of the mean, estimating 

variance, and providing a way to estimate time-dependent probability distributions; 

 

 Produce a computational implementation for the purpose of demonstration; 

 

 In the light of potential applications, pursue simplicity, efficiency, robustness and 

repeatability, once the basis of the approximations is considered sound. 

 

1.4.2 Scope and application 

 

Equilibrium queue properties tend to depend on the ratio of demand to capacity, not on absolute 

traffic levels. So in channels of high capacity, queuing tends to be dominated by deterministic 

effects, making this work most relevant to systems like urban road networks where elements 

have moderate capacity, there is significant randomness, and long queues can develop on a few 
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channels. However, apart from assuming the standard results of random queuing theory the 

methods do not presuppose any particular system and so may be more widely applicable. 

 

A typical application could be similar to that addressed by existing traffic modelling methods, 

an oversaturated peak acting on a junction in a network, made tractable by approximating by a 

sequence of time slices each characterised by basic parameters of arrival and service rates and 

statistical properties, that are assumed to remain constant within each time slice. If better 

resolution is required, more and shorter time slices can be used. Heydecker and Verlander 

(1998) point out the errors that can occur through time-slicing, yet it not only simplifies 

computations but arguably reflects the fact that data are often available only as average values 

in finite time periods. Since queues are cumulative in nature, conservation of quantities and 

realistic continuity of queue profiles are maintained. The methods developed promise greater 

accuracy and information about variability and reliability within this context, but are not 

restricted to it any more than are existing methods of queue and traffic modelling. 

 

1.4.3 Technical approach, methods and validation 

 

The main lines of the technical approach can be summarised as: 

 

 Development or verification of certain basic results, in particular new results for 

deterministic and equilibrium queue variance, and feasible approximations to 

probability distributions; 

 

 Integration of mean and variance into a single internally consistent description; 

 

 Heuristic rules or corrections to further reduce estimation error, avoiding the use of 

empirical parameters as far as possible; and 

 

 Markov chain simulations based on recurrence relations, used to provide time-

dependent and equilibrium benchmarks to verify methods and validate them against 

theory. Experimental validation is outside the scope of this ‘desktop’ research, but 

reference is made to past experimental verification of some existing methods. 

 

Three methods that could be applied independently are also developed: 

 

 Fitting equilibrium probability distributions to three moments using a doubly-nested 

geometric template, providing a simple approximation for a range of queue processes; 
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 Approximate formulae for the mean, variance and other properties of stochastic queues 

at signals taking account of green period capacity, a factor ignored in some signal 

calculations, extending the scope of earlier work by various authors; 

 

 Estimating queues on multiple lanes with shared service, or lanes shared by different 

movements. The case of two lanes with turning movements where ahead streams can 

use either lane is considered in some detail. Analysis is limited to priority-controlled 

movements but could be extended to other situations in future research. 

 

Several queue processes are subjected to critical analysis to establish some common principles 

that help to extend the range of processes that can be approximated. Where new types of 

function are introduced, they are constrained as far as possible to depend only on natural 

properties of the system. With two moments, plus the probability of the queue being zero, it is 

possible to estimate the queue size probability distribution, providing a tool to address detailed 

questions of reliability and overspill. Mathematical tractability is a criterion, for example for 

probability functions, tempered by compatibility with realistic constraints and tests of 

performance compared to alternatives. A demonstrator program is described in Chapter 7. 

 

1.4.4 Practical and computational considerations 

 

Network-wide time-dependent traffic modelling involves simulating typically hundreds of 

thousands or even millions of trips, and even more transits of links and junctions making up 

assigned routes, so function evaluations need to be computationally efficient and kept to the 

minimum necessary for realism. Methods should be resistant to approximation error to the 

extent that they in some sense conform structurally to the system being modelled. 

 

Road traffic queues have their own particular complexities. They tend to form on a few lanes or 

channels where there may be some initial choice of lane and possibly opportunity for swapping 

between lanes (‘jockeying’) while queuing. Queues can become long and probability 

distributions consequently extended. Other types of service facility may be designed to avoid 

this precisely because of the reliability and predictability issues it creates, for example by 

opening extras service channels according to demand at airport check-ins and supermarket 

check-outs (airports somehow manage to process most long queues in time for flights!). This 

kind of adaptability is seldom possible in geographically or service-constrained facilities where 

demand is difficult to manage, such as road networks and hospitals. 

 

The complicating effect of turning movements has already been referred to. Signal control 

tends to cause platooning, mitigated somewhat by dispersion, so the statistics of arrival 
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processes can be complex. Variability of individual behaviour and demand, and 

unpredictability of circumstances affecting supply, favour the use of relatively simple and 

flexible methods with parameters that can be related readily to data. 

 

1.4.5 Wider applications 

 

Queuing theory has applications in any field in which a service facility has capacity with 

limited flexibility and may be subject to unpredictable or excess demand. This includes most 

forms of transportation, health and other services, hospital management, airport operations, 

telecommunications, call-centres, retail facilities, scheduling and industrial production lines. 

In addition to time profiles that do not conform to a classic AM/PM peak pattern, these can 

involve special configurations such as multiple service channels, the possibility of ‘defection’ 

or systematic ‘censoring’ of customers, addition or removal of servers according to demand, 

and bunching of customers in arrival or service. 

 

Road networks are further complicated by interactions between different movements and 

routes. The methods described may be applied to these cases to the extent that they can be 

described in terms of the available parameters. 

 

Some aspects may merit further investigation by researchers, including the deeper meaning of 

the variance formula, and further development of estimation methods for multi-lane systems 

and probability distributions. A feature of all the systems studied is that they are ‘well-behaved’ 

in the sense that even if unpredictable at the microscopic level, their degree of unpredictability 

is predictable. 

 

In the real world, many processes appear to be highly sensitive to initial conditions, or conform 

to higher principles such as the ‘power law’ in which the probability of an event is roughly 

inversely proportional to its magnitude, or involve extreme and unpredictable (‘black swan’) 

events which overwhelm rational analysis, though it could be argued that these arise from 

correlations that have not been taken into account, so it may be the problem that is mis-

specified. In the last decade or so the study of ‘heavy tails’ and rare events has become a 

discipline in itself. While the present research will not address these cases, knowing the 

boundaries of ‘good behaviour’ may help to identify cases where it does not apply. 
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1.5. STRUCTURE AND CONTENT OF THE DISSERTATION 

 

This dissertation is arranged in several main Chapters. Chapter 1 is this introduction. Chapters 

2-4 describe the main work and results in queuing theory and approximation. Chapter 5 

addresses methods of estimating probability distributions based on the moments calculated by 

the modelling methods described earlier. Chapter 6 explores certain aspects of queuing on 

multiple lanes, Chapter 7 covers computational issues and Chapter 8 concludes. More fully: 

 

Chapter 1 Has addressed the motivation of the research and its historical background, 

scope and applications, and reviewed current traffic and queue modelling methods in general 

terms. Further references to previous work and existing methods are made at appropriate points 

in the following Chapters. 

 

Chapter 2 Reviews the core queue models commonly associated with transportation, in 

particular random-and-oversaturation queues at give-way/yield or signalised junctions, to give 

coverage. From this basis a new formula for the deterministic variance of queue size is derived. 

Finally, benchmark methods for modelling arbitrary traffic profiles in time-dependent queuing 

are described, against which the approximate methods developed later are tested. 

 

Chapter 3 Extends steady-state mean and variance formulae to more general arrival and 

service processes, with the primary objective of establishing the appropriate parameterisations 

of the Pollaczek-Khinchin mean queue formula to allow exploitation by efficient time-

dependent approximations. A method of fitting doubly-nested geometric probability 

distributions to known queue moments is described. Dependence of the stochastic signal queue 

on the green period capacity is discussed and approximations to equilibrium moments derived. 

 

Chapter 4 Develops time-dependent approximations incorporating extensions of the 

sheared approximation and a new exponential model of queue decay, constrained so as to 

reproduce the correct equilibrium variance where defined. The method is tested by comparing 

with Markov simulations of a set of peak profiles with periods of oversaturation against 

benchmark simulations, for both priority (M/M/1) and signal-type (M/D/1) queuing processes. 

 

Chapter 5 Starting with the example of diffusion approximations, this Chapter develops 

simplified methods that can be used to estimate queue size probability distributions from 

known time-dependent queue moments (while a distribution can be estimated at any time in a 

queue’s development the approximating functions are not themselves time-dependent). 
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Chapter 6 Explores an approach to modelling queuing on multiple lanes, where there may 

be a choice of lane and sharing of the service processes between lanes, and different turning 

movements may share a lane. While somewhat detached from the main argument, this differs 

from multi-channel queuing, and may give additional insight into relevant queuing processes. 

 

Chapter 7 Summarises computational tools and issues associated with exploiting results, 

specifically to predict the evolution of queue mean, variance and probability distributions 

together, for arbitrary traffic profiles. A demonstration software tool is described. 

 

Chapter 8 Summarises the results and discusses potential impacts and future work. 

 

Appendices A-F contain derivations, discussions or examples linked to the main text.  

 

Chapters are divided into Sections, the first of which introduces the Chapter and the last of 

which summarises the main conclusions. Within each Section there can be a number of sub-

sections, the first of which can be a form of introduction where this is thought useful, titled  

‘Motivation and approach’ to avoid confusion with the main Introduction Section. 

 

Figure 1.5.1 illustrates the logical links between the Chapters. 

Figure 1.5.2 visualises the work plan in terms of the flow of information from 

methodological sources to results and applications. 

Figure 1.5.3 pictures the framework of the research in terms of its technical components, 

arranged in three parallel streams, the main thrust being the time-dependent approximation, 

with queue processes feeding into it, and producing output that can be post-analysed to estimate 

probability distributions. Some special cases are brought within the scope to fill perceived gaps 

in existing methods. To avoid unnecessary fragmentation of topics, some Review is embedded 

in the sections in which it is relevant, or in Appendices. 

 

 

Figure 1.5.1  Linkage of Chapters developing the technical argument 

 



46 

 

 

Figure 1.5.2  Work plan in terms of information flows from sources to objectives and impacts 

 

 

Figure 1.5.3  Framework of the research in terms of technical components 
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CHAPTER 2: QUEUING PROCESSES 

 

 

2.1. INTRODUCTION 

 

The core queuing processes relevant to transportation are derived or reviewed, in particular the 

M/M/1 model relevant to give-way/yield processes and the M/D/1 model relevant to signalised 

junctions, the deterministic queue formula representing conservation, and the Pollaczek-

Khinchin (P-K) formula describing the mean equilibrium queue that takes account of 

randomness. Recurrence relations between queue states are derived from first principles. In the 

process, a formula for the deterministic variance of queue size is derived, which is believed to 

be new. Variations in the statistics of arrivals and service found in many standard works on 

queuing theory are discussed and linked to statistical parameters in the P-K formula. 

Benchmark methods are described for modelling arbitrary traffic profiles in time-dependent 

queuing, using Morse’s series formula or Markov simulation, that reveal the details of queue 

size probability distributions and against which the methods developed later will be tested. 

 

2.2. CONVENTIONS AND DEFINITIONS 

 

Usage related to queuing varies between authors and particular subject areas. A conscious effort 

has been made to keep to a consistent use of symbols throughout the document. Conventions 

and variables used are given below, with referenced formulae being ‘translated’ where 

necessary. The notation for variables is similar to that used by Kleinrock (1975), Kimber and 

Hollis (1979) and Bunday (1996). Use of subscripts may vary locally. 

 

2.2.1 Definitions 

 (2.2.1) 

a is a generic symbol for the arrival process, a(t) = arrival time distribution 

b is a generic symbol for the service process, b(t) = service time distribution, where 

t = time 

a and b subscripts will identify quantities associated with arrivals or service  

E(X) = the expectation value of any variate X, var(X) = variance of X 

 = the mean arrival
13

 rate or demand (constant or function of t) 

 = the mean service rate or capacity (constant or function of t) 

s = saturation flow, or conventionally a variable associated with Laplace transformation 

 

                                                
13 In general queuing or ‘renewal’ theory, ‘arrivals’ are often referred to as ‘renewals’. This term is particularly 
appropriate to cyclic processes, but less so to traffic processes where each arrival is a new individual. 
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 = / the demand intensity
14

  

re = stochastic relaxation time towards equilibrium (1/)(1-)
-2

 =
def

(1/)re1 

Ia = index of dispersion of arrivals (after Kendall, Heydecker) = 1/r  (r>1) 

Ib = index of dispersion of service (in quoted formulae only) 

cb = coefficient of variation of service = 1/m  (m>1) 

where r and m are used to represent Erlang parameters of arrivals and service 

distributions respectively, rather than the usual k 

 2

2
1 1 bcC   is the ‘randomness coefficient’ 

ca = coefficient of variation of arrivals (seldom used) 

I = unit-in-service parameter, normally 0 or 1 

 1
2
1*  adef III  

u = instantaneous utilisation (time dependent) 

x = average utilisation or degree of saturation over a time period (time dependent) 

L = mean queue size (time dependent) 

D = average queue or delay per unit time over a time period 

V = queue variance (time dependent) 

W = variable related to second moment: V+L(L+) where <1 

L0, V0, W0 = initial values of the above 

Le, Ve, We = equilibrium (steady-state) values of the above 

Lx, Dx, Vx, Wx = specific forms or estimates of the above 

g, c, s, G=gs, =g/c: signal green, cycle time, saturation flow, green capacity, ratio 

pi = probability that a queue is in discrete state i, so 1
~

0






N

i

ip  

p(x) = probability density of continuous variate x, where  



0

1dyyp  

i  may be used to represent the ith term of the Poisson distribution 

 

  

                                                
14Except in a steady state, the term‘traffic intensity’ is ambiguous, as ‘traffic’ could be interpreted as throughput. 
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2.2.2 Conventions in formulae 

 

The symbol  is sometimes used to represent service time interval, but here it is reserved for 

capacity (service rate) which turns up more often in the transportation context. Likewise  is 

reserved for arrival rate, because this often appears with  in the above context, so  is used 

to represent the ratio of signal green to cycle time. Time can be expressed in any convenient 

units, such as mean service interval, since results never depend on time t per se but on 

throughput or throughput capacity t. However, capacity  is left explicit for two reasons. 

 

First, it is not common practice to express time in units of the service interval. Doing so could 

cause confusion when comparing results with other sources. Second, the instantaneous 

capacity rate is a meaningful property that can depend on instantaneous and material (e.g. 

geometric) factors rather than merely reflecting throughput over a particular time period. This 

does not normally affect results, since the rate of change of capacity is not normally involved 

in formulae, but it could cause confusion where a time-sliced problem is being evaluated. In 

some calculations, however, it may be convenient to set =1 so that t is effectively expressed 

in units of service interval and is numerically equivalent to throughput capacity. It may also 

sometimes be convenient work in multiples of the stochastic relaxation time re. 

 

D G Kendall in 1953 invented a notation for labelling queue processes, employed here in a 

simplified and slightly extended form: 

 

   Ar/Bm/n/N[G]  where A and B can be  (2.2.2) 

 

 M = Markovian, random memoryless process 

 D = Deterministic, or uniform process 

 E = Erlang, a random process with a modified shape parameter 

 

r, m are respectively Erlang parameters of the arrival and service processes, omitted if equal to 

1 (see definitions); 

 

n is the number of parallel independent service channels; 

 

N is the maximum size of the queue, omitted if effectively infinite (see Section 2.5 later); 

 

G is the author’s addition, omitted if equal to 1, representing green phase capacity in a signal 

queue (see definitions) and used to identify an extended form of M/D/1 (see Section 2.4 later). 
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‘Ek’ is interpreted as Erlang-k, where the distribution of intervals between arrival or service 

events is given by equation (2.2.3),  representing the event rate and k is the shape parameter 

(particularlised to r or m as above). If k is allowed to be non-integral this generalises to the 

Gamma distribution (2.2.4): 

 

 
 !1

),,(

1








k

etkk
tkErlang

tkk

   (2.2.3) 

 

 
 k

etkk
tkGamma

tkk






1

),,(    (2.2.4) 

 

Both distributions have mean interval=1/, variance=1/(k
2
)   (2.2.5) 

 

The Erlang distribution can be interpreted as arrival or service passing through k stages each 

with rate parameter k. Staged arrivals/service can alternatively be represented as ‘bulk’ 

service/arrivals, where the ‘customers’ arrive or are served simultaneously, represented by 'Mk' 

in Kleinrock (1975). Newell (1982), Medhi (2003) and Gross et al (2008) also discuss these 

processes. The alternative scale parameter =(k)
-1

 may be used, in which case: 

 

 k

e
t
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





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


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

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For which: 

 
  

 k

ek
MaximumkModekVariancekMean

k






1
2 1

,1,,  (2.2.7) 

 

When k=1, the Gamma distribution reduces to its simplest form, the exponential distribution, 

that results in a Poisson distribution of the number of events i in a given time interval t: 

 

   
tetlExponentia  ),(     (2.2.8) 
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,,     (2.2.9) 
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2.2.3 Conventional use of terms 

 

Following advice, ‘model’ is as far as posssible used more strictly than is common, to imply an 

exact, or at least accepted, mathematical description of a process. For implementations the 

terms ‘approximation’ and ‘method’ are preferred, even where these are thought to reflect the 

structure of a process as well as predicting its results to some degree of accuracy. 

 

Following the usage of others, ‘deterministic’ is used here to mean a formula that depends on 

average quantities independent of their statistics, rather than a formula that does not involve 

randomness in any way. Hence the ‘deterministic queue formula’ does not exclude the 

possibility that it depends implicitly on random behaviour, but does represent conservation of a 

quantity, which is necessarily exact. 

 

Generally ‘equilibrium’ is preferred to ‘steady state’ since it is not restricted to the absence of 

change, but includes dynamic conditions resulting from balance of forces. In practical queuing 

each tends to imply the other, so it may be read as shorthand for ‘steady state equilibrium’. 
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2.3. BASIC QUEUE PROPERTIES INCLUDING NEW VARIANCE RESULT 

 

2.3.1 Motivation and approach 

 

In a general queuing process, arrival and service rates can vary with time. This is helpful 

conceptually but can be difficult to evaluate unless simplified. The simplest queue process is 

one whose arrivals and service headways are random around known mean rates, i.e. 

exponentially distributed inter-arrival and service times. Provided average demand is below 

average capacity the queue tends to an equilibrium condition with a constant probability 

distribution and moments (at any given moment the queue is not in a steady state). Time-

dependent (deterministic) and equilibrium properties of the queuing process, including a new 

formula for time-dependent variance, can be derived from recurrence relations between queue 

states, obtained using standard methods. Detailed derivations are given in Appendix A. 

 

2.3.2 Deterministic queuing 

 

Newell (1982) analyses the development of a deterministic queue through saturation and 

through a mild (undersaturated) peak, using a fluid approximation. With modified notation, the 

mean and variance are calculated by: 

 

         dyyyLtL
t

 
0

0     (2.3.1) 

 

         dyyIyIVtV
t

ba 
0

0    (2.3.2) 

 

where  and  are arbitrary mean arrival rate and capacity functions and Ia and Ib are stated to 

be the indices of dispersion of the arrival and service interval distributions. ‘Deterministic’ in 

this context means the calculation involves only the means of the random variates, not that the 

system does not involve randomness, and (2.3.1) at least represents conservation of number. 

 

In principle these simple integral formulae allow moments of a queue to be calculated at any 

time. However, the initial mean values raise an issue, hence the approximate equality signs. For 

the queue, the single value L0 disguises the possible role of an initial probability distribution, 

that logically ought to affect the early development of the queue, though not the final value if 

the distribution converges ergodically (forgetfully) to a steady-state equilibrium value. This is 

possible because the negative sign within the integral allows it to both increase and decrease. 
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In reality, particularly in under-saturated conditions, the throughput rate depends on the queue 

size, because random variation means there can be periods when the queue is empty, during 

which capacity is unutilised. Unless this is the case it is not possible for the integral in (2.3.1) to 

converge naturally to a finite steady-state value. Therefore, (2.3.1) is replaced by the modified 

equation (2.3.3) where u(t) is the utilisation of capacity or the degree of saturation, which lies in 

the range [0,1]. Equality now holds because u can absorb the effect of the initial probability 

distribution as well as modulating convergence to equilibrium: 

 

           dyyyuyLtL
t

 
0

0    (2.3.3) 

 

However, there is a problem with the variance (2.3.2), since this can only increase, regardless 

of the form of u(t) and (t). So while (2.3.1) can form the basis of a realistic time-dependent 

model of the mean queue, (2.3.2) cannot do the same for the variance. 

 

If  and  are constant, then the only variable function on the RHS is u. Defining the function 

x(t) to represent the average value of u over [0,t], (2.3.3) can be rewritten as: 

 

         ttxLtL  0   where  (2.3.4) 

     
 

t

dyyu
tx

t


 0     (2.3.5) 

 

2.3.3 Steady-state equilibrium 

 

This possibility of convergence is essential to equilibrium theory. Ergodicity is normally 

assumed, meaning loosely that the queue converges to an equilibrium value independent of its 

early states. For computational simplicity it is now assumed that the arrival and service capacity 

rates  and  are constant over finite time slices, and that these can be cascaded to approximate 

time-variation, although Heydecker and Verlander (1998) point out the errors inherent in this. 

 

M/M/1 is the simplest queuing process, in which units/customers arrive and are served in a 

single channel randomly according to exponential distributions of inter-arrival and inter-service 

times at constant mean rates, and Poisson distributions of the number of arrivals or service 

opportunities in a given period. It is ergodic and ‘forgets’ its initial state but only as O(1/t), a 

fact that can be exploited. It is ‘Markovian’ in that the probability of a state change depends 

only on the current state, not on what has gone before. It is also a ‘Birth-Death process’, in 

which only movements from the current state to its immediate neighbours need be considered. 
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Another property that applies to all queues of practical interest in traffic is ‘Chapman-

Kolmogorov homogeneity’ where the probability of any current state can be calculated by 

multiplying the probabilities of initial states by the transition probabilities along all paths 

between them. This ensures that distributions can be developed progressively. 

 

Standard works usually draw a distinction between the number in the system and the number in 

the queue, or total time in the system and waiting time for service. Mean waiting time is often 

calculated rather than queue size. Most sources use the convention: 

 

 Total_time_in_system = Waiting_time + Time_in_service  (2.3.6) 

 

This is reflected in decomposition of the queue into two components: 

 

 Total_queue = Waiting_queue + Unit_in_service_component  (2.3.7) 

 

The two are related by Little’s formula (Little 1961), which says: 

 

 Total_queue = Total_time_in_system * Departure_rate   (2.3.8) 

Note that in the steady state: Departure_rate = Arrival_rate = Service_rate * Traffic_Intensity 

 

In traffic modelling the ‘in service’ distinction is mostly academic, because waiting time and 

time in service are equally unproductive, and the concerns are presence of queues and total 

delay. Service time is likely to increase in importance where it is highly variable, as at toll 

plazas and other borders, bank/post-office counters, airport check-ins and loading facilities etc. 

At traffic signals time in service tends to be ignored or subsumed in a parameter adjustment, 

because saturation flow is much greater than the average capacity over the cycle. Generally, 

therefore, the total number and total time in the system are of primary interest. 

 

Symmetry with a change of state viewpoint implies that far enough away from the empty state 

the probability distribution of a queue process in equilibrium should be independent of its state 

apart from a scaling factor, so that its gradient should be proportional to its value, implying an 

exponential (geometric if discrete) form. Ergodic and Markovian properties imply that to 

approach equilibrium, the difference between the mean system state and the steady state must 

eventually decrease with time. Independence of scaling with a shift in time viewpoint implies 

that its rate of change should also be proportional to its value
15

. Therefore, the long-term 

behaviour of the system is likely to resemble exponential relaxation to equilibrium. 

                                                
15This will not hold for non-equilibrium states, as seen later with drift/diffusion models where the rate of change 
depends on gradients of the probability distribution. 
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2.3.4 The simplest random queue, M/M/1/1, and the significance of utilisation 

 

The simplest random equilibrating queue problem is the ‘parking space’
16

 where there are 

only two possible states – unoccupied (0) and occupied (1). Its value is in illustrating the 

relaxation process, and also revealing the nature of utilisation. Assuming constant arrival and 

service rates the process can be visualised through the state transition diagram, Figure 2.3.1. 

 

 

Figure 2.3.1  Basic state transition diagram for M/M/1/1 ‘parking’ process 

 

The rate of change of p0 is the difference between the rate of transitions out of state 0, and the 

rate of transitions back into state 0 that equals the rate of transitions out of state 1, so: 

 

    01
0 pp

dt

dp
     (2.3.9) 

 

Since the {pi} sum to 1, p1 can be eliminated giving: 

 

      0
0 11

1
p

dt

dp



    (2.3.10) 

 

If some function f satisfies: 

 

     



1

1
0 tfp     (2.3.11) 

 

 

                                                
16I am grateful to Prof. B G Heydecker for suggesting that this example be included. 
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then equation (2.3.10) becomes (2.3.12) whose solution is (2.3.13): 

 

   
 

   tf
dt

tdf
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
1

1
  where   (2.3.12) 
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Ktf  (for some constant K)  (2.3.13) 

 

The mean occupancy of the system is just p1, so after some manipulation: 

 

            tt eeLtLtp  











 11

1 1
1

0    (2.3.14) 

 

where L(0)[0,1], so the equilibrium value when t is: 

 

  





1
1ee pL  with  




1

1
0ep    (2.3.15) 

 

Equation (2.3.14) shows that the system relaxes exponentially from its initial value to its 

equilibrium value with a time constant equal to 
-1

(1+)
-1

, and provided that arrivals do not 

exceed capacity it achieves a maximum mean occupancy of ½ when 1. 

 

However, there is something wrong with this model since it is inconsistent with (2.3.4), which 

in order to remain finite as t requires that ue=xe= at equilibrium. Since the utilisation 

represents the proportion of time capacity  is fully used, capacity being instantaneously 

unutilised if the queue is zero and fully utilised if the queue is occupied
17

, the average 

probability of the queue being empty can be identified with the complement of the utilisation: 

 

   up 10   1110 eee xup   (2.3.16) 

 

Equation (2.3.15) is incompatible with this. The explanation is that Figure 2.3.1 has left out 

those customers who arrive to find the parking space full, and depart without contributing to the 

‘queue’, which in this case represents occupancy of a single parking space. Figure 2.3.2 allows 

for this. 

                                                
17 ‘Occupied’ means a customer at the front of the queue. It is a frequent cause of frustration that the stop line 
serves only the first customer in line so any behind it have no influence. 
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Figure 2.3.2  Completed state transition diagram for M/M/1/1 ‘parking’ process 

 

Customers who arrive when the parking space is inconveniently occupied are said to ‘defect’. 

They could also be systematically ‘censored’ by some external influence, such as by excluding 

every other arrival, but it assumed here that they simply react to availability of parking. In this 

completed system (2.3.9) is replaced by (2.3.17) or in terms of demand intensity (2.3.18): 

 

     01
0 pp

dt

dp
      (2.3.17) 

     0
0 1

1
p

dt

dp



     (2.3.18) 

 

The solution is got by substitution and integration in a similar way to (2.3.11-13): 

 

         tt eeLtLtp   101  so letting t  (2.3.19) 

 

    ee pL 1   10ep    (2.3.20) 

 

Hence (2.3.4) is satisfied.The wrong solution (2.3.15) was the result of mis-specification, but in 

other systems the value of p0e can disagree with (2.3.16) through difference of interpretation 

(see M/D/1 later). Be that as it may, no description of a queuing process that obeys (2.3.4) can 

be considered realistic unless it also satisfies (2.3.16), so this acts as a ‘reality check’ on any 

practical formulation, and any different result calls for explanation and resolution. 

 

2.3.5 The simplest realistic traffic queue: M/M/1/ 

 

Given that mixing and dispersion tend to randomise traffic at least at the microscopic level, 

M/M/1 is one of the most useful processes in traffic modelling, where arrivals and service are 

random as at an idealised priority junction. Although roads often have more than one lane, as 
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long as it is possible to switch lanes freely a single server model can be assumed (a multi-lane 

model is considered in Chapter 6). Real road sections have finite storage capacity, but as long 

as a queue is unlikely to exceed this, infinite storage can be assumed, so the ‘’ is usually 

dropped. As this is a ‘birth-death’ process with a theoretically infinite number of states a 

general recurrence relation between adjacent states is set up, and as there is no particular time 

scale (such as a finite green period) transitions can be evaluated for an infinitesimal interval: 

 

              dtdttpdtdtdttpdtdttpdttp iiii   1111 1
2

1

          (2.3.21) 

 

Terms in infinitesimal dt
2
 vanish, and introducing =/ as before, the relations reduce to the 

following, noting that there is no state below the absorbing zero state: 
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     11 1
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dt

dp
    (2.3.23) 

 

Where i is limited to some finite N, the formula for dpN/dt is truncated, but this is not relevant 

to the present argument. When summed, terms cancel between successive expressions, and 

since the probabilities sum to 1, equations (2.3.22-23) add up to zero on both sides.  

 

The rate of change of the mean queue is calculated by taking the first moment of equations 

(2.3.22-23), with some cancellation of terms and utilisation defined as before: 
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  (2.3.24) 

 

When this is integrated, the deterministic mean queue formula (2.3.4-5) is obtained: 

 

     ttxLdyyutLtL
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













  0

0

0 )(   (2.3.25) 

 

Equation (2.3.25) expresses conservation of units/customers/vehicles and so will be inherent in 

any correctly formulated queuing process. In the parking place model in section 2.3.2, 

conservation was violated as long as  was interpreted as the true demand intensity because 

customers who defected were not recorded. 
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2.3.6 Derivation of the deterministic formula for time-dependent variance 

 

In a similar way to the foregoing, evaluating the rate of change of the second moment of 

equations (2.3.22-23) gives initially (see Appendix A for derivations): 
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 (2.3.26) 

 

Letting N, using (2.3.24) to eliminate p0 in favour of dL/dt, integrating, and using the 

definition of variance V=S
2
-L

2
, the following expression for variance results: 

 

       1121000  LLtDLLLVV e  where  (2.3.27) 

   

t

dyyL
t

tD

0

1
  is the average mean queue or delay over [0,t]  (2.3.28) 

 

L, D and V all being functions of time, and L0, V0 being initial values at t=0. On making the 

natural definition  1 LLVW  (sum of first two moments), a tidier formula results: 

 

      tDLWW e  120     (2.3.29) 

 

Equations (2.3.27-29) constitute the key new result that will be exploited here. As the structural 

similarity to (2.3.4-5) is immediate, one is tempted to conjecture that: 

 

(1) The result applies to all queues, not just M/M/1 

(2) Some property of traffic is conserved, though not simple units of traffic 

(3) Analogous formulae for higher moments may exist. 

 

Conjecture (1) will be reinforced later when it is shown that the variance formula is also 

satisfied by the M/D/1 process and can be derived from diffusion models (see Chapter 5). 

Conjecture (2) does not affect the present discussion but is touched on informally in Appendix 

A. The purpose here is to explore the implications for calculating queue variance and hence 

reliability. The exact shape and tail of a probability distribution depends also on higher 

moments (3), in particular skewness and kurtosis, but the natural asymmetry of a queue 

distribution means that large skewness is likely to be associated with large variance. Kurtosis 

might have a stronger association with ‘heavy tails’, but these and ‘rare events’ may more 

usefully be approached directly. However, it is conceivable that a formula for skewness might 

be used to constrain queue development. This could be a topic for further research. 
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2.3.7 Steady state invariants of M/M/1 

 

Steady-state moments can be got from the recurrence relations by setting the rate of change of 

the next highest moment to zero. Equation (2.3.24) yields the utilisation immediately: 

 

    ee pu 01      (2.3.30) 

 

Using (2.3.22-23) inductively with (2.3.30) gives the steady-state probability distribution: 

 

     i

iep  1       (2.3.31) 

 

Setting the rate of change of the second moment to zero in (2.3.26) and substituting for p0e from 

(2.3.30) yields the equilibrium mean queue size: 

 

   





1
eL       (2.3.32) 

 

To get the equilibrium variance it is necessary to evaluate the rate of change of the third 

moment, whence using substitutions from (2.3.30-32): 

 

   
 21 


eV       (2.3.33) 

 

These are all well-known results, and there are other ways of extracting them for more general 

queue processes (e.g. Kleinrock 1975, Bunday 1996), but they are not obtainable from the 

deterministic formulae of the same order. This is not surprising since the deterministic formulae 

have to apply equally to all queuing processes. 

 

2.3.8 Exact Series formulation of the time-dependent M/M/1/N queue 

 

To describe a queue process completely, the transient queue size probability distribution must 

be specified for all time from any starting condition. The M/M/1 queue was the first queue 

process for which a closed-form solution for the transient probability distribution was derived 

(Morse 1955, Clarke 1956, Morse 1958), in various but equivalent forms involving exponential, 

trigonometric or Bessel functions, and later Generalised Q-functions (e.g. Cantrell 1986, 

Cantrell and Ojha 1987, Cantrell and Beall 1988). Sharma (1990) gives an alternative formula 

involving binomial coefficients. More recently, Griffiths et al (2005) have described the 
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transient solution to the M/Ek/1 process, where service is generalised to the Erlang-k 

distribution. Kleinrock (1975) finds the complexity of the transient solution “most 

disheartening”, despite its representing the “simplest interesting queuing system”. For present 

purposes, the following discrete form quoted by Kimber and Hollis (1979), using only standard 

exponential and trigonometric functions, is found computationally convenient. If the maximum 

queue size is N, the probability mpn that a queue initially of size exactly m has size n at time t is: 
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where 
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The queue size probability distribution at time t, given that at t0, is obtained by convolution of 

the transition probabilities with the initial distribution: 

 

        
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The first term in (2.3.34) represents the equilibrium distribution. Although equilibrium is 

undefined for >1, the formula as a whole remains valid, although the maximum N needed for 

accuracy is no longer bounded. As in simple cases (2.3.14, 2.3.19) the description involves 

exponential relaxation, but (2.3.34) behaves like a linear superimposition of processes with 

different time scales, as if each queue state evolves independently of all the others, like waves 

propagating in a linear medium. As in (2.3.14), there is effective censoring/defection of arrivals 

if the queue is already ‘full’, so (2.3.4) is not exactly satisfied for finite N. 

 

Efficiency and accuracy of calculation depends on the choice of N in equations (2.3.34-37), as 

well as restraint in the value of t when ρ>1. For ρ>1 the highest possible resolution is advisable, 

subject to powers of ρ not exceeding the available computational range. For ρ<1 an adequate 

minimum value for N is found empirically to be: 

 

     171 0LN   when ρ< 1  (2.3.38) 
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In (2.3.34-36) all terms apart from the exponentials are independent of t, so can be 

precalculated for , while the sin and cos functions depend only on N. If (N+1) is chosen to be a 

power of 2, with N sufficiently large that pN is expected to be negligible, the sin and cos terms 

can be precalculated and stored for all i and j. Values for smaller N can then be interpolated by 

selecting from the array. Calculation of pn can be suppressed once the probability falls below 

some lower limit, and the remaining probabilities normalised to sum to 1. For example, if the 

lower limit is set at 0.0000001, and this occurs before i reaches a maximum (N+1) of 1024, 

then the maximum error introduced by truncation is 0.01%. 

 

2.3.9 Characteristic relaxation times 

 

Relaxation times are useful for making approximations that have the right dynamic or transient 

behaviour. When N, or the cos term approaches 1, (2.3.35) simplifies to the inverse of the 

commonly quoted relaxation time of a random queue towards the steady-state, which also 

happens to be the longest time scale: 
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1
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re      (2.3.39) 

 

Morse (1955) quotes a value twice this, but the practical difference is small where re is used 

as a time scale indicator on a logarithmic scale. In the early stages of development the 

shortest time scale dominates, got by setting the cos term to zero, being already familiar from 

the ‘censored’ parking place model (2.3.14): 
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Otherwise, (2.3.35) ranges in value between these two, which diverge as  approaches 1. For 

Erlang-m service, equation (2.2.3), where the variance of the service time is divided by a factor 

m as a result for example of bunching, (2.3.40) generalises to (2.3.41), although this breaks 

down in the case m= representing uniform service: 
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2.3.10 Lags and loops 

 

It is observed that the variance of travel time or delay tends to lag the mean. Addison (2006) 

demonstrates this behaviour through a diffusion approximation (see later in Chapter 5). This 

effect leads to relationships between the variabilities and means of travel times that resemble 

anti-clockwise loops, as illustrated by Arup, Bates et al (2004), and Fosgerau (2010). It is also 

observed that the peak of a queue lags that of the demand profile causing it. This is intuitively 

obvious because a deterministic queue caused by transient oversaturation will go on rising as 

long as the demand exceeds the capacity, including a period while the demand is falling from 

its peak. Equation (2.3.24) expresses this formally. The rate of change of the queue is positive 

as long as the demand intensity  exceeds the utilisation. If >1, since u<1 always, 

oversaturation will cause the queue to grow even while the demand is falling. 

 

The variance equation (2.3.27) or (2.3.29) has a similar general structure to (2.3.25). The 

derivative of (2.3.27), making use of (2.3.24) and (2.3.28), is: 
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This can also be written as (2.3.43), which for the M/M/1 queue simplifies to (2.3.44): 
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 (M/M/1) (2.3.44) 

 

Pre-peak, when the queue is rising, u< and L must be less than Le, but this need not be a 

problem if the queue has not had time to approach equilibrium. Within the peak, where >1, 

dV/dt>0 certainly. Post-peak, where <1 and the queue is falling then necessarily u>, so the 

second inner bracket <1, and dV/dt>0 as long as in the first inner bracket L is not so large 

compared to Le that it overwhelms the second inner bracket making the whole expression to 

go negative. Considering the state produced during the peak, Le is unbounded as  is in lower 

neigbourhood of 1, whereas L is bounded by some value less than the cumulative arrivals, so 

there must be a period after demand falls below capacity when L is less than Le. Hence the 

peak variance lags the peak mean. The same conclusion is reached for other queue types 

since their equilibrium formulae invariably include the divisor (1-) ensuring the multiplier  
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in (2.3.43) is >0. Figure 2.3.3 shows hysteresis loops of L against , and V against L, taken 

from one of a number of over-saturated symmetrical peak cases (J2P4, see Table 2.5.1 later), 

that lasts 108 minutes including 36 minutes over-capacity and is divided into 9-minute time 

slices. Addison and Heydecker (2006) prove this effect in theory, and Arup, Bates et al 

(2004) show that it extends to whole networks. 

 

 

Figure 2.3.3  Lag-loops generated by an oversaturated peak, with points every 9 minutes. 

Left: mean queue against demand intensity; Right: variance against mean queue. 

 

2.3.11  The Pollaczek-Khinchin mean queue formula 

 

The Pollaczek-Khinchin
18,19,20

(P-K) mean queue formula (2.3.45) is the simplest form of a 

generalisation of the steady-state mean queue formulae given earlier.  

 






1

2C
ILe   where   2

2
1 1 bcC 

 
 (2.3.45) 

 

This is a standard result in text books and extensively used although necessarily an idealisation 

of real processes. It is derivable either by considering a queuing process with general (or at 

least Erlang) arrival and service distributions (see later in Chapter 3 where an extended form is 

derived), or via a Laplace transform approach developed by the same authors and found in most 

standard works. The parameters I and C are as defined in (2.2.1). C is nominally 1 for M/M/1 

where cb=1 and 0.5 for M/D/1 where cb=0, but in practical signal models an empirical value in 

the range 0.5-0.6, such as 0.55, is used (Catling 1977, Branston 1978, Kimber and Hollis 1979, 

Burrow 1987), reflecting that the service is not perfectly uniform. The form of C in equation 

                                                
18 We use the modern English transliteration of the Russian name rather than the French Khintchine. 
19 Félix Pollaczek and Aleksandr Khinchin developed their formula for G/G/1 (‘General’) queues independently in 
1930-32, though this has also been credited to Harald Cramér in 1930. 
20 The convention adopted here is consistently to use subscript a for arrivals, and b for departures or service. 
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(2.3.45) takes account of the service process through its coefficient of variation cb, but does not 

involve the arrival process (see later in Chapter 3). However, Kimber, Summersgill and Burrow 

(1986) proposed the alternative (2.3.46) that is trivially valid when  and the index of 

dispersion of arrivals are close to 1: 

 

 22

2
1

ba ccCC  *

    
 (2.3.46) 

 

The unit-in-service coefficient I does not appear in standard texts and is believed to have been 

introduced by Kimber, Hollis and/or Summersgill to reflect the contribution of the average time 

in service at a priority junction. This is neglected at a signal. I is conventionally 1 for the 

M/M/1 queue and 0 for the M/D/1 queue. 

 

2.3.12 The deterministic limit 

 

Equation (2.3.24) contains the time-variable degree of saturation x(t). In equilibrium this 

converges to  so the shrinking of the bracket compensates for the unlimited growth of the time 

multiplier. If service is assumed, somewhat simplistically, to be permanently saturated (x=1), 

the queue formula reduces to: 

 

    tLL  0  where     (2.3.47) 

 

Since this is linear in t the delay-per-unit-time (average queue) function is simply: 
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In the variance formula (2.3.27), since Le always has (1-) in the denominator, the first term in 

the central bracket 2(1-)Le is always defined. In the case of M/M/1 it is just 2, so using 

(2.3.47-48), noting that all the terms in L0 cancel: 
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 (2.3.49) 

 

The final expression in equation (2.3.49) is well known and demonstrates its consistency and 

that of the more general equation (2.3.2) with the variance formula (2.3.27). 
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The constant multipliers of time in (2.3.47) and (2.3.49) feature in simple diffusion 

approximations considered later in Chapter 5 as respectively measures of drift (bodily 

movement) and diffusion (spreading) of the probability distribution. When more general 

process statistics are introduced as in the P-K formula (2.3.45), the form of (2.3.47-48) is not 

affected, but that of Le is. Rewriting (2.3.45) as: 

 

 
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

1

2* ICI
Le  where  1

2
1*  aIII   (2.3.50) 

 

where Ia is the index of dispersion of arrivals. Using I
*
 has advantages that will be apparent  

later (see Chapter 3), and dropping terms in L0 that cancel anyway, (2.3.49) is modified to: 

 

          

   tICIV

ttttICIVV





212

2

*
0

22*
0

 (2.3.51) 

 

So the net effect is to apply a factor to the arrival rate , but this depends on the service process 

as well as the arrival process. For an M/D/1 signal-type queue (I
*
=0, C=0.5) the factor on time 

reduces to (-1). This is positive since the assumption of deterministic growth implies >1. 

However, the significance of (2.3.51) is unclear since neither the factor on time nor the 

equation as a whole seems to correspond to anything familiar. 

 

2.3.13 Accommodating hyper-exponential processes in the P-K statistics 

 

Real processes can involve hyper-exponential headway distributions. For example, arrivals 

might be drawn from several different streams with different headways, and service might be 

affected by intermittent blocking of several exit routes with different capacities. This research is 

aimed specifically at exploiting and enhancing the P-K formula as it is used in many traffic 

modelling tools, so hyper-exponential technically falls outside the scope. However, it is 

possible to estimate how parameters of the P-K formula could represent the average effect of a 

hyper-exponential headway distribution. Figure 2.3.4 shows how the average coefficient of 

variation (c.v.) of headways, i.e. ca of arrivals, or cb in the P-K randomness coefficient, is 

affected by varying the spread of three rate parameters {m} expressed in terms of their c.v. 

from 0 to 0.75, with mean headway normalised to 1, and various permutations of mixture 

probabilities {hm}, again with c.v. in the range 0 to 0.75. In addition to the average value, the 

distribution of results assuming each permutation to be equally probable is indicated. All 

process headway c.vs are greater than 1 and less than 3, so effective randomness is always 

increased but might potentially be accommodated approximately in the P-K model. 
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Figure 2.3.4  Headway coefficient of variation for three-way hyper-exponential cases 

 

2.3.14 Limited applicability of equilibrium 

 

Figure 2.3.5 shows that the practical range of traffic intensities where equilibrium conditions 

can be considered to apply is quite limited. This graphs the M/M/1 equilibrium queue (2.3.31) 

and the relaxation time (2.3.37), assuming throughput capacity of 3600 units/hour, equivalent to 

two average lanes. A lower throughput would increase the relaxation time in proportion, 

making the region of interest even smaller, although in some networks reassignment might tend 

to maintain traffic levels in this region. ‘Heavy traffic’ generally refers to 0.95<ρ< 1. 

 

 

Figure 2.3.5  M/M/1 steady state queue Le and relaxation time re v. demand intensity 

 

In practical problems such as modelling traffic peaks with transient oversaturation, the traffic 

levels are often either too low to produce interesting results, or too high for the system to get 

anywhere near equilibrium in the time available. The latter time-dependent case is of the 

greatest interest because predictions for any particular time can depend sensitively on past 

development, and calculations become correspondingly more complicated.  
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2.4. M/D/1 PROCESSES DERIVED USING RECURRENCE RELATIONS 

 

2.4.1 Motivation and approach 

 

M/D/1 with ‘Markovian’ (random) arrivals and ‘Deterministic’ (uniform) service idealises the 

queue remaining stochastically at the end of an intermittent short period of throughput like 

green at a signal, where traffic can be either stopped (red) or flowing freely (green), sometimes 

referred to as the ‘overflow’ queue. The service interval is notional in that it is based on average 

capacity and does not explicitly reflect a signal cycle. A separate phase queue formula accounts 

for the linear build up of queue in the red phase and its discharge in the green phase (e.g. 

Webster and Cobbe 1966). The derivation of M/D/1 differs from M/M/1 in that instead of a 

single arrival in an infinitesimal time interval, multiple arrivals can occur during the finite 

service interval. Derivations of the basic M/D/1 moments including variance formulae are 

given in Appendix A. However, it allows for only one customer to be serviced in its notional 

service period. Furthermore, like M/M/1, the M/D/1 equilibrium queue depends only on the 

traffic intensity, which in turn depends only on the ratio of green to cycle time. 

 

An extended formulation is therefore required to represent the actual capacity of signal green 

periods. This has been recognised since signal queues began to be analysed, which can be 

traced to A J H Clayton in 1940 (see Allsop / Hutchinson 1972). Various formulae have been 

developed that take account of the green period capacity (Appendices D, E), but the importance 

of M/D/1 is that it is a special case of the Pollaczek-Khinchin equilibrium queue formula, and 

so can be incorporated in time-dependent methods like shearing (see later in Chapter 4). It is 

therefore advantageous to have an extension of M/D/1 that can account for green period 

capacity. In practice, unlike the basic M/D/1, exact closed formulae for the extended moments 

do not appear to be available, so empirical approximations to them are required, which will be 

discussed later in Chapter 3, along with other derivations of equilibrium formulae. 

 

2.4.2 The basic M/D/1 process 

 

The basic M/D/1 process can be interpreted as one in which customers are served singly in 

fixed service time intervals, during which more than one random arrival can take place. The 

probability of j arrivals in a unit time period is Poisson distributed: 

 

    
!j

ej

j


      (2.4.1) 
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The probability of i units in the queue at the point after t+1 service periods (cumulative 

throughput capacity) is the sum of the probabilities of i+1 in the queue at t and no arrivals in 

[t, t +1), i at t and one arrival, i-1 at t with 2 arrivals, and so on, hence: 
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and  (2.4.2) 

       tptptp iii  1  in finite differential form (2.4.3) 

 

In the steady state   0 tpi for all i, so rearranging (2.4.2), and in calculating p0 allowing that 

the initial queue may be zero and there are no arrivals, i.e. the service is not utilised: 

 

  01 1 pep        (2.4.4) 
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The derivation of (2.4.4) for the final state i=0 in (2.4.2) can be visualised as follows: 

 

Table 2.4.1  Construction of recurrence formula (2.4.4) for p1 

Initial state Arrivals Departures Final state j in (2.4.2) Factor pi+1-j 

1 0 1 0 0 e
- p1 

0 1 1 0 1 e
-

 p0 

0                                                           0 0 0 0 e
-

 p0 

 

The first two terms contribute to a notional p(0) as calculated from (2.4.2), which is incomplete 

as the final zero state, and the third term is a notional p(-1) term, again as calculated from (2.4.2). 

These two notional probabilities must be added to give the probability of the real zero state, so 

using brackets around the indices to indicate notional states: 

 

      01100 1 ppeppp  
    (2.4.6) 

 

Multiplying this through by e

 and rearranging yields (2.4.4). The significance of this procedure 

is twofold: first, it formalises the working of the absorbing boundary at zero; second, it is a 

prototype for more general use of notional non-positive states later. Equation (2.4.5) is derived 

in a similar way but without needing a notional term: i.e. setting i=1 yields p2 etc. 

 

As in M/M/1, moments of the steady-state distribution can now be got from (2.4.4-5) (see 

Appendix A for derivation): 
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by evaluating i

i

pi :     10 ep e     (2.4.7) 

by evaluating i

i

pi
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by evaluating i

i
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 :  
 
 2

22
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


eV    (2.4.9) 

 

Equation (2.4.8) is the idealised form of random queue at a signalised stop line (I
*
=0, C=0.5 in 

equation (2.3.50)), although Kimber and Hollis (1979) and references therein, and Burrow 

(1987), find that setting C=0.55 gives a better match to observation. It represents a queue 

without ‘unit in service’ because departures from the queue can proceed at saturation flow 

without having to wait for a gap. While queue size probabilities sum to unity as expected, 

equation (2.4.7) is inconsistent with equilibrium utilisation, which as long as L remains finite 

must equal  to satisfy (2.3.4), as explained in the previous Section. So average p0 should equal 

(1-ρ). In fact, p0 in (2.4.7) applies at the end of the service period, whereas average p0 takes into 

account queues that exist transiently during the green period but discharge before the end of it. 

The final value is greater than average p0 by a factor e
ρ
>1, consistent with this interpretation. 

This important distinction will be justified later. 

 

2.4.3 M/D/1[G] queue dependent on green period capacity 

 

Olszewski (1990) reports an observation made by Miller (1969) and previously by Newell, 

subsequently picked up by Cronjé (1983a) who quotes the relevant formulae, that the mean size 

of the stochastic (‘overflow’) queue at a signal tends to fall with increasing throughput capacity 

in the green period G. He develops transition probabilities for a signal-like process with general 

arrival distribution and variable service period, and using Markov simulation shows that the 

mean queue size does indeed decrease in a manner very similar to Newell’s model
21

. Miller’s 

and Newell’s formulae include dispersion of arrivals Ia as a multiplying factor, the logic 

presumably being that removing all randomness should eliminate the stochastic queue.  

 

According to equation (2.3.50), where Ia enters differently, the queue is zero when Ia=(1-), so 

apparently it is not necessary to eliminate arrivals dispersion to make the queue zero, but the 

queue can still be reduced by any required factor. At a real signal the randomness of stop-line 

arrivals during green could be less than that of a distant demand source because some short-

term randomness in arrivals is absorbed during red. 

                                                
21See Figure 3 in Olszewski (1990). G is used here in place of Olszewski’s B.  
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However, if throughput capacity in the green should then increase, the uniform discharge flow 

from any red queue should represent a smaller proportion of the throughput, so increasing the 

dispersion of stop-line arrivals. This would tend to counteract any direct effect of Ia on the mean 

queue size, so the mean queue reduction cannot be linked so directly to a change in the 

dispersion of arrivals. Since the M/D/1 model assumes cb=0, changing the service statistics also 

cannot reduce the mean queue size. Therefore the model needs radical modification beyond that 

achievable within the P-K formula. 

 

2.4.4 Allowing for different green period capacities 

 

The basic M/D/1 model describes a system like a ramp meter where only one customer can be 

served in each green period. A more realistic model allows for G customers to be serviced in 

each green period, and the recurrence relations become more complicated. Queues of a 

specified size at the end of the green period can be achieved by the following conditions: 

 

Table 2.4.2  Conditions for getting given final queue in green period of capacity G 

Initial state Number of arrivals in green period 

Queue i = 0 at end of green period 

0 Up to G 

1 Up to G-1 

j Up to G-j 

>G Not possible 

Queue i> 0 at end of green period 

0 Exactly G+i 

1 Exactly G+i-1 

j Exactly G+i-j 

>G+i Not possible 

 

Table 2.4.2 shows that development of pi with i>0 is similar to equation (2.4.2), while that for 

p0 must be more complicated, and further that notional states down to -G must be considered: 
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As a device for calculating an overflow queue probability distribution, Cronjé (1983a) (in his 

Table 2) introduces notional negative overflow queue sizes, summing these terms to give the 

real p0 at the end of the cycle, although he does not appear to pursue the concept further. Tables 

2.4.3 visualise this approach for G = 1, 2, and 5 respectively, where the notional states are 

represented by the rows with bracketed indices in the left column. 
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Table 2.4.3  Charts relating final to initial state for different green capacities 

G=1 Initial state 

 0 1 2 3 4 5 6 7 8 9 10 11 12  

(-1) 0              

(0) 1 0  Numbers in interior cells are numbers of arrivals in period 

1 2 1 0  Mean arrival rate = ρ 

2 3 2 1 0  Departures in period = 1 exactly 

3 4 3 2 1 0          

4 5 4 3 2 1 0         

5 6 5 4 3 2 1 0        

 

G=2 Initial state 

 0 1 2 3 4 5 6 7 8 9 10 11 12  

(-2) 0              

(-1) 1 0  Numbers in interior cells are numbers of arrivals in period 

(0) 2 1 0  Mean arrival rate = Gρ = 2ρ 

1 3 2 1 0  Departures in period = 1 exactly 

2 4 3 2 1 0          

3 5 4 3 2 1 0         

4 6 5 4 3 2 1 0        

5 7 6 5 4 3 2 1 0       

 

G=5 Initial state 

 0 1 2 3 4 5 6 7 8 9 10 11 12  

(-5) 0              

(-4) 1 0  Numbers in interior cells = numbers of arrivals in period 

(-3) 2 1 0  Mean arrival rate = G= 5 

(-2) 3 2 1 0  Departures in period = G exactly 

(-1) 4 3 2 1 0          

(0) 5 4 3 2 1 0         

1 6 5 4 3 2 1 0        

2 7 6 5 4 3 2 1 0       

3 8 7 6 5 4 3 2 1 0      

4 9 8 7 6 5 4 3 2 1 0     

5 10 9 8 7 6 5 4 3 2 1 0    
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Numbers in interior cells are arrivals, which translate into Poisson coefficients, in terms of G 

rather than , multiplying the initial probabilities (columns) as in equation (2.4.10). To convert 

from these sequential relationships to steady-state recurrence relations, the final and initial state 

probabilities are equated and terms rearranged as follows: 

 

(1) move the final state probability from the left-hand column to the right and combine it 

with the corresponding initial state term (black-bordered cells) 

(2) move the highest state (always initial) to the equation LHS (red bordered cells) 

(3)  divide through by coefficient of the new LHS (always e
G

) 

(4)  adjust indices as necessary. 

 

This procedure is straightforward for G=1, yielding (2.4.4-5) from (2.4.2), but gives a more 

complex result for G>1. However, the coefficient of the final-state probability is always the 

G
th
 Poisson coefficient (content of black bordered cells), and the coefficient of the highest 

state is always the 0
th
 Poisson coefficient (content of red bordered cells). At equilibrium steps 

(1-2) produce equation (2.4.11) and steps (3-4) rearrange this to (2.4.12): 
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To get the recurrence relations for i<G consider the upper triangular parts of Tables 2.4.3. In 

the case of G=1, the components of the recurrence relation can be constructed as in Table 

2.4.4 (where j represents the j
th
 Poisson coefficient): 

 

Table 2.4.4  Construction of recurrence relation for p1 in the case G=1 

Target equilibrium state Components of recurrence relation 

0p1 = p(0) -1p0 

0p0 = p(-1)  

 

 

The real zeroth state at the end of green is given by (2.4.13), as earlier in (2.4.6): 

 

      010 ppp        (2.4.13) 
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Adding the terms, moving the (unknown) p0 target term to the RHS, applying (2.4.11) to 

leave three terms, and dividing through by 0, results in equation (2.4.4). In this case the 

notional terms can be found explicitly: 
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  (2.4.14)

 

 

In the case G=5, the structure is more complicated, as shown by Table 2.4.5. From this, an 

expression for p5 can be got in terms of lower states. However there seems no straightforward 

way to determine the probabilities of states below 5. This might be possible if the p(-i) could be 

evaluated independently, but there seems to be no way to do this. 

 

Table 2.4.5  Construction of recurrence relations for states in the case G=5 

Target Components of recurrence relation 

0p5 = p(0) -1p4 -2p3 -3p2 -4p1 -5p0 

0p4 = p(-1) -1p3 -2p2 -3p1 -4p0  

0p3 = p(-2) -1p2 -2p1 -3p0   

0p2 = p(-3) -1p1 -2p0    

0p1 = p(-4) -1p0     

0p0 = p(-5)      

 

Seeking a numerical method, a Markovian sequence can be set up that calculates iteratively 

the raw probabilities, including notional final state probabilities (left hand column of Tables 

2.4.3) from the previous ‘real’ state probabilities, then calculates the final real probabilities 

from the raw probabilities. A Markov simulation program developed for benchmarking, 

Qsim
22

, has been enhanced to calculate recurrence relations (2.4.10) for in principle any value 

of G, in practice up to G=100 and  up to 0.95. It is difficult to guarantee accuracy at higher 

values of G because the recurrence relations become increasingly complex, and convergence 

becomes increasingly hard to achieve as  approaches 1. Some compensation for this 

inaccuracy is possible by ensuring that the sum of probabilities is always normalised to 1.  

 

In equations (2.4.13-14), p(-1) represents the probability that the queue remains zero 

throughout the entire green service period, while p(0) represents the probability that one 

arrival occurs and is served in the period. This logic can be extended to any value of G. 

 

                                                
22The implementation of Qsim is discussed in the Section on benchmarking. 
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Since all the notional probabilities contribute zero queue at the end of green, in general: 
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Because it represents a queue present for a negligible part of the green period, p(0) does not 

contribute to the average probability of the queue being zero during the service period, that 

determines the utilisation in practice. The notional probabilities contribute varying amounts 

because some arrivals during the green period can have ‘disappeared’ by the end. 

 

Imagining Table 2.4.3 extended to any values of G, evaluating the steady-state mean value of 

the ‘triangles’ by initially treating the {p(-i)} as real probabilities of negative queue states, and 

since all blank cells are identically zero, the k
th
 column mean is given by: 
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The left-hand column total must equal the total of the right-hand columns, namely: 
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Also:    0pep G
G


 

     
 (2.4.19) 

  

Thus the average probability of the queue being zero during the service period is indeed 

consistent with the definition of utilisation, that requires it to equal  at equilibrium as 

discussed earlier in Section 2.3. It is seen now that the possibility to get result (2.4.7) in the 

case G=1 depends on the fact that there are two equations, (2.4.13) and (2.4.18), that can be 

solved for two unknowns. This apparently does not extend to G>1. 
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From Table 2.4.3, the notional probabilities for G=2 can be expressed in terms of p0: 
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Subsequently (2.4.12) leads to relations analogous to (2.4.4-5): 
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Summing either {pi} or {ipi} using these equations yields an identity, and summing {i
2
pi} 

gives a formula for the steady-state mean queue confirmed for G=2 by Markov simulation 

(up to i=14), that depends on p0: 
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The formulae so far do not give an explicit value for p0. If a formula corresponding to (2.4.18) 

could be found for the variance of the notional probabilities, then this might yield p0. The 

results show at least that the variance of the notional terms satisfies: 

 

     
 

 Gp
Givar  in the limit when p0 1  (2.4.25) 

 

This is certainly true when 0, and also when G is large. However, this gives no clue as to 

the dependence on p0 in other cases. 

 

From (2.4.15) and (2.4.20) in teh cases G=1 and G=2 respectively: 
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The presence of p0 in (2.4.20) and (2.4.27) when G=2, and its absence in (2.4.14) and (2.4.26) 

when G=1, suggests there may be an inherent difficulty in extrapolating these equations, for 

example those for G=3 may involve p1 and so on. This would not invalidate (2.4.25) since in 

the equilibrium distributions pi<p0 for all i>0. 

 

Although some useful results have been found for M/D/1[G], this Section has failed to 

produce any definitive results for its important moments. Historically, researchers have 

resorted to empirical approximations. These and some new empirical formulae are described 

later in Chapter 3. 
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2.5. BENCHMARKING METHODS 

 

2.5.1 Peak cases used for benchmarking 

 

A set of benchmark peak cases is available from Kimber et al (1986)
23

 who approximated the 

M/M/1 variance profiles for 34 symmetrical Gaussian peaks by gluing together half-Gaussian 

functions. The cases represent queuing at several hypothetical give-way junctions ‘Jm’ with 

peak profiles ‘Pn’ producing transient overloading up to various amplitudes, and durations 

ranging from 45 to 120 minutes. For the purpose of simulation, the profiles have been divided 

into at least 12 equal time slices, in each of which demand and capacity are assumed to be 

constant. A similar time-sliced approach is used in respectively roundabout, T- and signal junction 

models ARCADY (Semmens 1985a, Binning 1996), PICADY (Semmens 1985b), OSCADY 

(Burrow 1987), and dynamic traffic assignment model CONTRAM (Taylor 1990,2003). 

 

One of the test cases, J2P4, provides a useful test of ‘middle-weight’ symmetrical Gaussian 

peak with substantial overload, max=1.1384, over a substantial but not excessive peak period 

lasting 90 minutes. Because this case was originally formulated to represent a give-way 

junction with opposing flow, capacity falls somewhat as demand increases, as in Table 2.5.1. 

 

Table 2.5.1  Definition and properties of symmetrical peak case J2P4 as used here 

Time Slice End time (min)   (veh/min) p0 L V 

0 0
24

 0.5717 15.906 0.4283 1.3348 3.1165 

1 9 0.6472 15.492 0.3528 1.8343 5.1975 

2 18 0.8032 14.694 0.1986 3.9755 19.0354 

3 27 0.9520 14.004 0.0736 9.9567 76.6503 

4 36 1.0711 13.494 0.0170 22.2552 213.1961 

5 45 1.1384 13.224 0.0034 39.5938 416.7314 

6 54 1.1384 13.224 0.0012 56.3156 647.6774 

7 63 1.0711 13.494 0.0015 65.1355 876.5028 

8 72 0.9520 14.004 0.0065 59.6147 1056.5750 

9 81 0.8032 14.694 0.0498 37.2192 963.7484 

10 90 0.6472 15.492 0.2465 10.4176 314.5935 

11 99 0.5719 15.906 0.4148 1.9363 22.0238 

12 108 0.5719 15.906 0.4276 1.3519 3.5187 

 

                                                
23 This was joint work between the Transport Research Laboratory and Halcrow Fox and Associates, who also 
investigated (unpublished) the use of Gamma Distributions to model queue size probability distributions. 
24This represents an equilibrium initial state. 



79 

 

2.5.2 Accuracy of M/M/1 Series calculations 

 

Issues relating to the choice of maximum queue size N and the accuracy of the Series 

calculation have been discussed earlier. The author first implemented the Series method in a 

Fortran program. A Visual Basic pseudocode listing is given in Appendix B. Results of the 

Series calculations are consistent for maximum resolutions (N+1) of 256 and above, but begin 

to show errors at maximum resolution 128, that become significant at maximum resolution 64. 

The errors become evident at >1, where it is not possible to analyse equilibrium distributions. 

In an attempt to determine the required resolution, which amounts to estimating where 

probabilities become ‘insignificant’, probability distributions for each of the 12 time slices of 

J2P4 have been compressed in Figures 2.5.1 using natural logarithms. 

 

 

 

Figure 2.5.1  -ln(pi)and –ln(ln(pi))(queue size probability) distributions for peak case J2P4 
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The maximum values plotted are determined by the arbitrary lower limit on pi. If the tail of the 

distribution should approach a geometric equilibrium form, ln(pi) should become linear with i. 

However, in Figure 2.5.1 (left), where the actual -ln(pi) are plotted against i for the initial 

equilibrium distribution and, this appears not to be the case except in the first two time slices. 

In practice, in most time slices, ln(-ln(pi)) appears to become almost linear against i as in Figure 

2.5.1 (right). Why this should be the case is not clear, but it implies that most of the probability 

distributions, including those post-peak, are nowhere near equilibrium, or nearer Gumbel than 

exponential. This is not pursued as it has been possible to generate distributions at sufficient 

resolution, and the results compare well with more efficient Markov simulations next. 

 

2.5.3 Markov simulation 

 

Markov simulation calculates the probability of each queue state at each point in time by 

calculating all possible transitions from the possible states at the previous time point according 

to transition probabilities. It can therefore be applied where only differential recurrence 

relations are available, without explicit state formulae. The initial distribution at each cycle can 

most readily be an exact state, e.g. zero, or an initial equilibrium state, or a distribution carried over 

from the previous time point. As time t is advanced in small steps δt, the {pn(t)} are calculated at 

successive points in time, using finite differential equations of the general linear form: 

 

   mnm
n pa
t

p





      (2.5.1) 

 

Specific recurrence relations exist for M/M/1 (2.3.22-23) and M/D/1 (2.4.2), (2.4.10). In 

addition to its greater computational efficiency, Markov simulation’s ability to calculate M/D/1, 

M/D/1[G] and other distributions lacking explicit formulae for state probabilities (see also 

Chapter 3), gives it a significant advantage over Series calculation which is limited to M/M/1. 

With Neil H Spencer, then a sandwich student at TRL, the author developed a Markov 

algorithm implemented in a program ‘Qsim’. This uses the above method to develop a queue 

length distribution stepping through consecutive time-slices in which the arrival and service rates 

are assumed constant. The program has since been extended to include M/D/1[G], and queues 

with Erlang-k arrival or service distributions (see Chapter 3 later). The effect of continuously 

varying demand and capacity can in principle be simulated by using very short time-slices (e.g. 1 

second). Alternatively, mean arrivals and capacity can be held constant over periods of several 

minutes to allow comparison with time-sliced traffic models such as ARCADY (Semmens 1985a, 

Binning 1996), PICADY (Semmens 1985b), OSCADY (Burrow 1987) and CONTRAM (Taylor 

1990, 2003). A Basic pseudocode listing and example of output are given in Appendix C. 
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2.5.4 Sensitivity of Markov method to maximum queue and step size 

 

The step size δt needs to be chosen with care, since if it is too large the calculation risks becoming 

unstable, whereas if it is too small computation time is increased without any useful gain in 

accuracy. As with the Series method, practical calculations require a maximum queue length to be 

set. The Series method is assumed to be exact provided that the maximum queue size (array 

dimension) in the calculation is sufficient. For all the JmPn test cases, 1024 is considered more 

than adequate, being over five times the largest mean queue expected. For the J2P4 peak case, 

maximum queue size of 256 is sufficient, and reducing it to 128 has little effect. However, the 

calculation fails when maximum queue size is reduced to 64, comparable with the maximum 

mean queue size. Computation time can be reduced, without significant loss of accuracy, by not 

suppressing calculating once pi(t) falls below 10
-7
, but this needs to be smaller than the cut-off 

value for the Series probabilities to avoid accumulating error through many calculation steps. If the 

calculation does reach the maximum queue size N then the results could be inaccurate. The last 

calculated pm could be a guide to the degree of inaccuracy if the question of asymptotic 

behaviour raised in section 2.5.3 were resolved, allowing the missing ‘tail’ to be estimated. 

 

Step size needs to be smaller for the M/M/1 model, which is based on differential recurrence 

relations, than for the M/D/1 model, which is based on finite recurrence relations. In both cases, 

the calculation fails sharply if the step size is too large. Time steps of 1 second give consistent 

results, though 0.1 second can be used for added security or as a check. 

 

Results of using different maximum queue and step sizes are shown in the four panels of Figure 

2.5.2. Run time appears to be little affected by step size but appears to be roughly proportional 

to the logarithm of maximum queue size: e.g. if it is x1 for N=64, it is x2 for 128 and x3 for 256 

etc. 

 

2.5.5 Microscopic simulation 

 

By simulating directly the random arrival and service at units, at given mean rates, probability 

distributions can be built up empirically over a large number of trials. This leads one to 

consider the practical interpretation of the probability distribution, usually seen somewhat 

artificially as representing the state at a particular time when the same conditions are repeated 

day after day. Being conceptually the simplest method and so the least prone to coding error, 

random simulation is useful for checking the other methods and for verifying general features 

of the probability distribution, but it is also the most time consuming, and can produce only a 

ragged approximation to the underlying distribution. 
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Figure 2.5.2  Showing abrupt failure cases of otherwise consistent Markov models. The lower 

graph in each case relates to smallest N or largest step size. Other graphs cannot be separated 

 

2.5.6  Comparison of actual results of different calculation methods 

 

Figure 2.5.3 shows the probability distribution in the J2P4 case at the end of the time slice (Ts) 

giving the greatest variance: Ts 8 at 72 minutes. Interesting features are the accuracy of the 

Markov simulation even when using very large time slices, and the bimodal shape with a dip at 

i=8, that arises in all cases. The lower left figure was generated using 1 second time slices, i.e. 

each of the original 9 minute time slices was broken down into 540 consecutive time slices with 

the same values of ρ and . 

 

Figures 2.5.4-6 compare probability distributions and profiles for the case J2P4 calculated by 

the M/M/1 Series, M/M/1 Markov and M/D/1 Markov methods. In Figure 2.5.6 the peak profile 

ρ is shown together with the mean L and variance V of the queue at the end of each time slice, 

and the delay D (time-average of the mean queue) over each time slice is also plotted. In each 

case both the variance obtained directly from the probability distribution, V and that calculated 

using D and the variance formula, Vcal, are shown, but they are so close that broken lines have 

been used to prove that both are shown. This confirms not only that the variance formula 

(2.3.27) is correct but that it applies to M/D/1. Since its form does not appear specific to a 

distribution, it is inferred that like (2.3.4) it should apply to any queue process, and while this is 

not absolutely proved further evidence will be provided later. Note the lag of variance relative 

to the mean, as well as the lag of mean relative to the demand peak, as remarked earlier. 
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Figure 2.5.3  Alternative probability distributions for J2P4 M/M/1 at maximum variance  

 

 

Figure 2.5.4  Series and Markov M/M/1 probability distributions compared for J2P4 for initial 

state and in 9-minute t/s through the peak (scales vary). The graphs cannot be separated. 
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Figure 2.5.5  Markov M/D/1 probability distributions for J2P4 for initial state and in 9-minute 

t/s through the peak – compared with flatter M/M/1 Series graphs (scales vary) 

 

Figure 2.5.6  Simulated profiles for J2P4 peak case, showing , L, D, V (not to same scale) 

(Upper graphs are profile of demand . V is shown by skewed graphs with alternating colours) 
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2.5.7 Deviation from equilibrium in queue development over time 

 

The Markov simulation program can calculate development of a queue size probability 

distribution over an extended time period leading to equilibrium. Figure 2.5.7 shows a sequence 

of distributions for =0.9, =1, that get increasingly spread out but tend towards a similar 

‘geometric’ shape. However, at most points in time the shape cannot be precisely geometric. 

 

 

Figure 2.5.7  M/M/1 distribution sequence generated by Markov simulation 

 

According to equations (2.3.32-33) there is a fixed relationship between equilibrium mean and 

variance, L
2
/V=, so if ‘deviation from equilibrium’ is defined broadly by equation (2.5.2). This 

deviation rises before it falls to zero, as shown in Figure 2.5.8. Equilibrium is established after 

approximately 3 times the relaxation time, 379.7 in this case, with =1
25

. 

   
V

L
Deviation

2

     (2.5.2) 

 

 

Figure 2.5.8  Deviation from equilibrium in M/M/1 queue development 

                                                
25 Units of time are arbitrary, since all queue processes as modelled here depend only on throughput. 
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2.6. CONCLUSIONS ON QUEUING PROCESSES 

 

Chapter 2 has defined basic queuing methods, the M/M/1 and M/D/1 processes representing 

queues resulting from random arrivals and respectively random and uniform service. The 

elemental processes have been described using recurrence relations, that have been used to 

specify Benchmark programs against which analytical approximations can be compared. In 

road traffic terms these represent queues at (idealised) give-way/yield and signal junctions. The 

latter case has been extended to allow explicitly for green period capacity. 

 

Based on the same recurrence relations, a new formula for the deterministic time-dependent 

variance of a queue has been derived.This arises from both the M/M/1 and M/D/1 cases, and 

the form of the result suggests that it is general. In what follows it will be used extensively, 

with the aim of enabling the variance of a time-dependent queue to be estimated alongside the 

mean, and realistic probability distributions to be estimated from these moments. 
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CHAPTER 3: MORE GENERAL EQUILIBRIUM QUEUES 

 

3.1. INTRODUCTION 

 

In modelling road traffic, processes are usually restricted to random arrivals with random or 

uniform service, representing yield or give-way junctions and signals respectively, but there can 

be variations, associated for example with bunching. The Pollaczek-Khinchin mean queue 

formula allows for some variation in queue process statistics through a randomness parameter 

that technically refers to service only. This Chapter derives an extension to include dispersion 

of arrivals, then applies a similar method to get an equivalent formula for equilibrium variance. 

It goes on to investigate a number of other processes that feature in standard works, with their 

probability distributions, and to relate these to the extended equilibrium formulae. It then 

obtains a relationship between queue moments and certain probability distributions, that in 

principle allows the latter to be estimated for processes that do not fit the P-K model. Finally, in 

the absence of an exact formulation, it develops new empirical approximations to the moments 

of the M/D/1[G] stochastic signal queue with different green times. 

 

3.2. QUEUE PROCESSES WITH GENERAL STATISTICS 

 

3.2.1 G/M/1 with modified variance of arrival headways 

 

Bunday (1996) shows that, for a general arrival headway distribution a(t) and random service, 

queue moments are got by replacing  by an ‘effective rho’ , being the solution of: 

 

       dteta t



1

0
     (3.2.1) 

 

The Erlang-r arrival headway distribution, with arrivals at mean rate q, is usually interpreted as 

bunched so that their variance is reduced by the factor r: 
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In this case,  is given by the solution of (3.2.3), as shown in Figure 3.2.1: 
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Transformation between  and  in principle enables a variety of processes to be 

accommodated, parameterised by the relationship between the mean and variance of headways, 

though a physical interpretation may no longer be clear. When r=1, this reduces to = which 

is just M/M/1. 

 

3.2.2 G/M/1 with scheduled arrivals 

 

As r becomes larger, representing arrival headways with smaller variance, the relationship 

approaches the lowest curve in Figure 3.2.1: 

 

 

Figure 3.2.1  Relationship between  and  for various Er/M/1 

 

Bunday shows  for r= is the solution of (3.2.4), pointing out that this is equivalent to 

‘scheduled’ arrivals, that occur at regular intervals but still with random service, in which case 

a(t) in (3.2.1) is replaced by the Dirac delta function, the relationship becoming similar to the 

defining form of Lambert’s W function: 
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It is not surprising that this is independent of the schedule interval, and depends only on the 

demand intensity, given that no long-term average result can depend on the time scale. 

Scheduled arrivals are unusual in free-moving traffic but may occur in traffic moving forward 

cyclically within a queue, or any process where arrivals are effectively metered. Of more 

practical significance is the case where arrivals form ‘green waves’ generated by coordinated 

service in a signalised network, and randomness of arrivals is reduced. Service may also be 

non-random, and the exact relationship of green waves to signal cycles will be important. 

 

3.2.3 M/G/1 process with Erlang-m service 

 

If the service time probability distribution is similar in form to (3.2.3): 
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the probability that j units arrive in one service time, assuming exponentially distributed 

(random) arrivals, is: 
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These probabilities can in theory be used to calculate queue size probabilities, using 

relationships between generating functions. This is practicable for m=1, M/M/1, and also for 

m=, which can be interpreted as M/D/1, but the general case looks like heavy going. 

 

3.2.4 Generalised notation for deriving moments of G/G/1 

 

An alternative approach using expectation values of arrival and service moments, used by 

Kleinrock (1975) and Bunday (1996) to derive the Pollaczek-Khinchin mean queue formula, 

appears more user-friendly. This can be used to derive the mean steady-state queue including a 

modification for dispersion of arrivals Ia following Heydecker (unpublished), with extension to 

variance. In addition to the variables in the Definitions in Chapter 2, define
26

: 

 

n = the number of units arriving during the service time of unit n 

qn = the number of units in the system at the end of the service of n 

U(qn) = 1 if a unit remains in the system i.e. qn> 1, otherwise 0, so if U(qn) is 1 then 

service will occur in service interval n+1. 

                                                
26This notation used by Bunday is believed to be due originally to Kleinrock, or possibly Kendall before him. 
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The number of units in the system evolves with each service event according to: (number-in-

system after service event n+1) equals (number-in-system after service event n) minus (unit 

serviced) plus (arrivals during service of n+1), i.e: 

 

     11   nnnn qUqq     (3.2.7) 

 

Useful intermediate results for the steady-state include: 
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where C is the randomness coefficient:  2

2
1 1 bcC     (3.2.10) 

 

3.2.5 G/M/1 with compound or batched arrivals 

 

Heydecker’s method of accounting for dispersion of arrivals assumes a compound Poisson 

process, that can be interpreted as arrivals in batches where the arrival rate of the batches 

accords with a Poisson process. This leads to a relatively simple closed-form modification to 

the steady-state mean queue as derived by Kleinrock (1975). While more general than the 

Erlang distribution approach of sections 3.2.1-2, it cannot cover all possible arrival processes. 

 

After squaring (3.2.7) and simplifying some terms using (3.2.8): 
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The next step is to take expectations, cancelling the first two terms in the steady state, and 

noting that 1n  is independent of qn and U(qn) so      11   nnnn EqEqE  etc. 

 

Using equations (3.2.8-10), equation (3.2.11) becomes, term by term: 

 

    02222 22  eea LLCI     (3.2.12) 
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Rearranging terms then gives a variant of the Pollaczek-Khinchin mean value formula: 
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In the RH expression, a ‘unit-in-service’ parameter I is substituted for the 1 in the term (C-1). 

Following the approach of Kimber and Hollis (1979), this is considered to reflect unavoidable 

mean time in service as when, having left the formal queue, waiting for a gap at a priority 

junction. Its validity is discussed in the next sub-section. Equation (3.2.13) is equivalent to the 

form quoted earlier as equation (2.3.50): 
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where  1
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1*  aIII     (3.2.15) 

 

Variations from M/M/1 (Ia=1, I=1, cb=1, C=1) can be represented either by the coefficients in 

(3.2.13-15) or by the Erlang factors r from (3.2.2), which is the inverse of the dispersion of 

arrivals r=1/Ia, and m from (3.2.5) that is related to C: 
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Equation (3.2.16) could in principle allow for the effect of signal green waves and to some 

extent coordination, although the dominant effect to be accounted for is the overlap of the 

arriving green waves with green phases that strongly affects the red/green phase component. 

 

3.2.6 Analysis of the P-K derivation and source of the unit-in-service factor 

 

The divisor (1-) is common to all equilibrium queue formulae, and ensures realistically that no 

finite equilibrium queue can form unless <1. It arises from the last two terms on the RHS of 

(3.2.7), representing the expected net gain during the next service interval. Individually these 

terms have the same expectation , but in (3.2.11) they are multiplied by the first term, which 

creates an asymmetry. Since 1n  is independent of qn while  nqU is not, and the expectation 

of 1n  is  while  nqU =1 for all non-zero queue states, the result is Le (1-). Expectations of 

higher powers of qn can be expected similarly to include a term involving the appropriate 

moment multiplied by factors including (1-), which will then appear as a divisor in the 

expression for the moment. 
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In the earlier analysis of M/M/1 versus M/D/1, the presence of the unit-in-service is associated 

with whether a queue can be described using infinitesimal service intervals, or requires finite 

service periods. For G/M/1, service intervals are infinitesimal by default, so this route to 

deriving the parameter is not available. In equation (3.2.7), qn includes the unit-in-service, and 

service will occur in period n+1 if qn> 0. This suggests that the queue without unit-in-service, 

say nq~ , can be represented (superficially at least) by qn - U(qn). Substituting this on both sides 

of (3.2.7), and moving a term from left to right results in: 

 

     111
~~

  nnnn qUqq     (3.2.17) 

 

Now U(qn) is zero if and only if qn=0, but nq~  is zero if qn is either 0 or 1. However, this is not a 

concern since nq~ can be decoupled from U(qn). Its expectation is then Le if time in service is not 

normally included, although this is numerically different from the expectation of qn. There is no 

need to replace U(qn+1), provided it is recognised that it is no longer independent of 1n . 

 

Table 3.2.1 expands the calculation. The boxes represent the terms of interest in equation 

(3.2.17), where the repeated block for qn = 0 has been excluded since it is ‘invisible’ to the 

equation. It can be seen directly that 1n is independent of U(qn) but not of U(qn+1), as a result 

of the two cells shaded that are 1 instead of zero. 

 

Table 3.2.1  Expansion of terms in equation (3.2.17) (m represents any integer > 1) 

qn U(qn) nq~  1n  qn+1 U(qn+1) 
1

~
nq  

. -  + =   

0 0 0 0 0 0 0 

0 0 0 1 1 1 0 

0 0 0 m m 1 m-1 

1 1 0 0 0 0 0 

1 1 0 1 0 1 0 

1 1 0 m m 1 m-1 

2 1 1 0 1 1 0 

2 1 1 1 2 1 1 

2 1 1 m m+1 1 m 

3 1 2 0 2 1 0 

3 1 2 1 3 1 1 

3 1 2 m m+2 1 m 

etc...  ...   ...  

 

The contribution to the expectation of  11  nn qU  is  from the 1n column, but this applies 

only when nq~ =0, hence the expectation is (1-). Since   en LqE ~ by definition, 
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     1 nn qUEqUE , and all other terms are unchanged, the only effect on (3.2.12) is to 

replace the 2
2
 term by 2, hence: 

 

     02222 2  eea LLCI    (3.2.18) 

 

which rearranges to: 

 

   
 

 
 
   














112

1

12

21 22
CICI

L aa
e   (3.2.19) 

 

Thus removing the unit-in-service has indeed eliminated the I term in (3.2.13). 

 

The RH form of equation (3.2.16) is probably of limited practical use, but reveals that there is 

only partial symmetry between arrival and service processes. In the case I=C=1 (M/M/1-like), 

the effect of dispersion in the arrivals is to multiply the steady-state mean queue by a constant 

factor, whereas in the case I=0, Ia=1 (M/D/1-like), the randomness factor C has this effect. 

According to (3.2.16), if arrivals are uniform, Ia=0 or D/M/1, the smallest queue is half the 

M/M/1 value. If both arrivals and service are uniform (Ia=0, C=½), then the purely 

deterministic case D/D/1 should apply and (3.2.16) reduces to: 

 

 
2
1ILe       (3.2.20) 

 

With a unit-in-service, equation (3.2.20) says that under completely uniform conditions a mean 

queue of ρ/2 should still form, so the average waiting time is half the average service time, 

1/(2). This seems reasonable for a random ‘snapshot’, since arrivals and service need not be 

synchronised. Without a unit-in-service (I=0), equation (3.2.20) appears to predict a ‘negative 

queue’. As pointed out earlier, the introduction of arrivals dispersion Ia hinges on an 

assumption about the type of arrival process, so if this were relaxed the anomaly might be 

avoided. However I is not a statistical parameter in the normal sense, and I=0 is associated with 

finite service intervals, which is a limiting case in Erlang terms, so the analysis may no longer 

be sound. Since uniform arrivals at low intensity are unlikely to be of major interest, the 

peculiar result can reasonably be neglected for present purposes. However, Kouvatsos (1988) 

has the discussed the equilibrium form of G/G/1 queues from the Maximum Entropy viewpoint, 

which may be worthwhile pursuing in further research. 
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3.3. GENERALISING EQUILIBRIUM VARIANCE 

 

3.3.1 Motivation and approach 

 

This Section extends the method of the previous Section to get a corresponding expression for 

the equilibrium variance of queue size. It then considers an alternative formulation based on the 

general Pollaczek-Khinchin method and gets the same result. However, when uniform service 

is assumed, the result is not that for the usual M/D/1 queue since it includes a unit-in-service 

component that arises naturally as in the similar procedure for the mean queue. This result is 

exploited to suggest how the unit-in-service coefficient can be accounted for also in the 

equilibrium variance. 

 

3.3.2 Variance of the G/G/1 process calculated from expectations 

 

To calculate the variance of qn the product of (3.2.7) and (3.2.11) is evaluated: 

 

    2
11

22
1

33
1 222 nnnnnnnnnnnn qqUqqqqUqqq    

            nnnnnnnnnnnn qUqqUqUqqUqUqUq 222
2

11
2

1

22    

     1
2

1
2

1
3

111
2 222   nnnnnnnnnnn qqUqqUq  

 

2
11

22
1

3 222 nnnnnnnnn qqqqqq    

       nnnnnnnnn qqUqqUqUq 222 11
2

1
2    

     1
2

1
2

1
3

111
2 222   nnnnnnnnnnn qqUqqUq   (3.3.1) 

 

Taking expectations as in the previous Section: 

 

     222
1 2220 nennee qELqEELL    

     eenn LLEqE 222 22
1

2    

           ennenn LEELEqE 222 2
1

2
1

3
1

22
   (3.3.2) 

 

So 

 

           3
1

2
1

22 3213313   nneen EELLqE   

(3.3.3) 
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To evaluate this, in addition to (3.2.11) the value of the following is needed: 

 

                dssbssIsJEEEME aannnnn 



0

3232
3

3 323  

          (3.3.4) 

 

In (3.3.4), Ja (for arrivals) is derived by using a relationship between skewness, variance and 

mean for the compound Poisson quoted by Willmot (1986), where M3 is the third moment: 

 

  
  
3

222

3

3 /323

a

aa

a

M
skewness







    (3.3.5) 

 

For ordinary Poisson, where a
2
= (mean arrival rate), this reduces to /a

3
, i.e. M3=, while 

for compound Poisson, where a
2
=Ia, it evaluates to Ja/a

3
 with the new definition of a, 

whence: 

 

   12  aaa IIJ      (3.3.6) 

 

The first two terms of (3.3.4) are got using (3.2.7-8), and the third term is equal to: 

 

          3233

3
3 231var3 bb ccbEbbEbM    (3.3.7) 

 

where M3(b) is the third (central) moment of service and the third term arises because for the 

exponential distribution skewness is 2. This is just a convenient approximation, as the service 

time distribution need not always be assumed to be exponential, so the factor  (default=1) 

allows for adjustment of relative skewness, with Ja defined by (3.3.6): 

 

   JCCIJE aan  323 66  where  3

3
1 1 bcJ   (3.3.8) 

 

Evaluating (3.3.3) with (3.2.8) and (3.3.8): 

 

     
 2

32443232
2

13

166639363






JCC
qE n  

 
  

 
    

 








13

161

1

1 22 CIIIIL aaaae   hence 
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   
 

   
   





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
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

1

2

1
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1

223 32

3
1

2

2422
2 JICILCC

qE
aae

n

  

(3.3.9) 

           

Here Ja, being a function of Ia, has been absorbed, while J remains distinct. Rearranging:  
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1
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1

121
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3
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242 JICILCC
V

aae

e  

(3.3.10) 

   

When Ia=1, cb=1, whence C=1, J=0, this reduces to the M/M/1 result: 

 

   
 21 


eV   (M/M/1)   (3.3.11) 

 

When Ia=1, and C=
2
1  (cb=0, Jb= 3

1 ), it gives a result for Deterministic service: 

 

 
 2

32

112

101812




eV  (M/D/1 ‘with u.i.s’

27
)  (3.3.12) 

 

Comparing (3.3.12) with (2.4.9) (with cb=0 for Deterministic service) shows that the former 

exceeds the latter by exactly . This can be interpreted as the contribution of the unit in service. 

The derivation of (2.4.9) assumed no waiting time, and hence no unit in service. At a light 

signal this is realistic because the saturation flow usually substantially exceeds the average 

junction capacity, leading to a disproportionate reduction in any random queue component. 

Assuming I to be independent of cb, (3.3.10-12) are then consistent with: 

 

  
  

 

    
   





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
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22 JCILICC
CIV

aea

e

 

         (3.3.13) 

 

Equation (3.3.13) has been arranged so that each parameter apart from C appears in only one 

term, analogous to (3.2.16). This is convenient for computation though not necessarily the most 

instructive form when coefficient values are limited to typical values, since parts of the 

different terms tend to cancel, simplifying the expression. 

                                                
27 By analogy with the concept of unit in service in M/M/1. 
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3.3.3 Variance of M/G/1 process calculated from a generating function 

 

An alternative to the preceding is to start with a probability generating function. The Pollaczek-

Khinchin transform formula (Medhi 2003) with somewhat modified notation
28

 is: 

 

 
     

  







0
*

*

1

111

ssB

sBs
spsP i

i     



0

dtetbsB st*  (3.3.14) 

 

where {pi} are the steady state queue size probabilities, s is a dummy variable, and the function 

B
*
 is the Laplace-Stieltjes transform of the service time probability density function b(t). From 

the LHS of (3.3.14), moments can be calculated as follows: 

 

    010 pP  ,    11 P ,   eLP 1' ,    21''' ee LVPsP    (3.3.15) 

 

The form of B
*
 in two common cases is (Medhi 2003): 

 

  
 


s

B MM
11

1*
1// ,  

  s
DM eB 1*

1//   (3.3.16) 

 

Equation (3.3.14) does not allow any value for p0 other than (1-), so is incompatible with 

M/D/1 as defined in Chapter 2, except possibly if B
*
 were to vanish when s=1. Therefore 0p is 

identified with the average over the service period (hence the bar) and the complement of 

utilisation. To evaluate moments it is necessary to take the limit as s1, because direct 

evaluation causes several lower order terms to vanish giving 0/0. This is dealt with by 

l’Hôpital’s Rule, worked out explicitly here. As it is easier to take the limit as a variable 

approaches 0, first define =1-s and use d/ds = -d/d ; then in the case of M/M/1: 

 

     

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

1
  (3.3.18) 

                                                
28Although different sources share some similarity of notation there is no complete consistency, so familiar 
symbols for variables commonly met are used here. 
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where [ ] represents the bracket in the denominator of (3.3.18). 

 

For M/D/1, according to Medhi (2003): 
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Approximating e
ρ

 to 2
nd

 order in : 
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Medhi (2003) goes on to point out (using different notation) that: 

   10ep       (3.3.23) 

consistent with steady-state utilisation but differing from the M/D/1 value derived earlier. 

Comparing (3.3.22) with (2.4.6), this appears to represent M/D/1 with unit-in-service, which is 

not normally considered to apply at a signalised junction since the time in the green phase, 

being the inverse of saturation flow, is much less than the average service time
29,30

. 

The nature of the approximation means that truncating the exponential in (3.3.20) to finite 

powers >2 makes no difference to the M/D/1 result, while truncating it to the first two terms 

just gives the M/M/1 form, so effectively there are only two possible results. 

                                                
29The parameter C is sometimes modified empirically from 0.5 to account for deviations from the ideal. 
30Including or excluding an ‘in-service’ component could be less important than neglecting the effect of the 
upstream-moving discharge wave, i.e. treating the queue as ‘vertical’ rather than ‘horizontal’. 
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To calculate the variance Ve in this way, the last of equations (3.3.15) must be evaluated with 

(3.3.20). Judging by the foregoing, this promises to be tedious, although terms of order 
2 

and 

below may well cancel so only terms in 
3
 need be evaluated. Alternatively, equation (3.3.12) 

can be checked by evaluating the moments of (3.3.14) numerically. To reduce error, this 

calculation has been done symmetrically, taking the average of results from s slightly <1 and 

slightly >1. Figure 3.3.1 shows results for  values in the range 0.1-0.9, using a logarithmic 

scale and broken white lines for the M/D/1 ‘with unit in service’ as calculated from (3.2.13) and 

(3.3.12). The results confirm that the ‘without unit in service’ results calculated from (2.4.8) 

and (2.4.9) differ consistently by  from ‘with unit in service’. 

 

Figure 3.3.1  M/D/1 queue mean and variance calculated by different methods 

 

In conclusion, the results of section 3.3.1 are valid for M/M/1 and M/D/1 ‘with unit-in-service’, 

and by implication to M/D/1 ‘without unit-in-service’, allowing equations (3.2.13) and (3.3.11) 

or (3.3.13) to be applied with a degree of confidence. 

 

3.3.4 Horizontal versus vertical queuing and the effect of mixed traffic 

 

As pointed out in the Introduction, real queues occupy finite space, which affects both their 

growth and discharge behaviour, leading to an increase in delay and maximum extent (Taylor 

2005a, 2009). Conversely, when traffic is only slightly slowed and compressed, a ‘queue’ as 

normally understood may not be discernible. This is most relevant where traffic remains in 

motion, and less so where it comes to a halt in a dense queue, as occurs in urban networks. A 

mixture of traffic types will also affect randomness and effective capacity. As pointed out 

earlier in Chapter 2, hyper-exponential is a more realistic distribution of arrival and service 

headways of mixed streams. Investigation of these issues is left for future research.  
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3.4. CONSISTENT USE OF STATISTICAL PARAMETERS 

 

This Section reviews some features of the statistical coefficients in the P-K formula and 

alternatives that have been proposed, none of which is entirely satisfactory. 

 

3.4.1 Coefficient of variation of arrivals as an alternative to dispersion index 

 

With the unit in service I, after the manner of Kimber and Hollis (1979), along with the index 

of dispersion Ia, as suggested by Heydecker (2009 unpublished), the Pollaczek-Khinchin mean 

queue (3.2.16) shows only partial symmetry between the statistics of arrivals and service. 

Kimber, Summersgill and Burrow (1986) (in their Appendix 2) sought to generalise the 

randomness coefficient by including the coefficient of variation of arrivals ca, here defining: 

 

    22
2
1

ba ccC *  in place of  2

2
1 1 bcC   (3.4.1) 

 

Formula (3.4.1) has a long history, being quoted also by Sakasegawa (1977), and Sakasegawa 

and Yamazaki (1977) with several variations. Newell (1982) derived an equivalent on the 

assumption of ‘heavy traffic’, i.e. 1. Gross et al (2008) quote it for any . However, referring 

back to the derivation (3.2.7-12), the origin of the ‘1’ is in dividing E[b]
2
 through by 

2
, leaving 

no gap into which ca
2
 can sneak. To be consistent with (3.2.16), ca ought to satisfy: 

 

   





1
1 a

a

I
c      (3.4.2) 

 

However, this is inconsistent with accounting for the degree of non-randomness in the arrivals 

either through dispersion Ia or by modifying . If 1 then ca
2 
Ia, so the two are equivalent in 

the ‘heavy traffic’ case. However, (3.4.2) can be undefined if Ia<1 and  is sufficiently small, 

and becomes unbounded as  tends to 0. 

 

In an informal attempt to shed light on this, the following idealisation is considered. If a variate 

X, consisting of observations {Xi}, represents the number of arrivals in a unit time period, then 

its ‘inverse’ X
I
=1/X, consisting of observations {1/Xi}, represents the intervals between arrivals, 

provided that the arrival rate is neither so large that there is a high probability of multiple 

arrivals in a unit interval, nor so small that the interval between arrivals has to span multiple 

unit time periods. In this case, the relationship between the variate and its inverse is necessarily 

symmetrical. If   represents the mean arrival rate E(Xi), and 
I  the mean arrival interval,  

s.d., v variance,  the simplest possible relationships satisfying this symmetry principle are: 
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

1
 (3.4.3) 

 

In Heydecker’s derivation of the index of dispersion Ia, unit time is taken to be the mean service 

time, so the mean arrival rate  is numerically equal to , not =. So, from (3.4.3): 
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
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


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II
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2
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2
2  hence  


 a

a

I
c  (3.4.4) 

 

This is only trivially consistent with (3.4.2), when 1, and suffers from the same 

unboundedness when 0. For values of  much different from 1 the assumption about the 

time unit may fail. Equation (3.4.4) is more consistent than (3.4.2) with the definition of Ia as 

the index of dispersion, but whichever of ca or Ia is taken as constant for a given type of 

process, the other becomes dependent on ρ. 

 

It is possible to rewrite (3.2.16) in a form that uses (3.4.1), in accordance with (3.4.4): 

 

   
   









112

2*2 C
ILe     (3.4.5) 

 

There is no difference where the only processes considered have Ia=1, namely M/M/1 for yield-

type processes and M/D/1 for signal-type processes, but the issue will arise later in the context 

of diffusion approximations. Which form is preferable may depend on identifying a type of 

process with non-Markov arrivals that can be characterised in a physically meaningful way 

independent of ρ. The factor ρ in the Ia term in (3.2.13) or (3.2.16) seems unavoidable. 

 

The form of (3.2.16) suggests that it is Ia that is independent of ρ for an identifiable process 

such as batched arrivals with a given Erlang factor, and for this reason it seems preferable to ca. 

In the perfectly deterministic case C
*
=0, while the minimum value of C is ½. Since the Ia term 

is dropped completely, this results in a simpler value of Le compared with (3.2.20), which 

avoids the ‘negative queue size’ prediction, but appears to be saying in effect that the arrival 

and service processes must always be out of synchronisation. 

 

     ILe      (3.4.6) 
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For example, if =1, so that arrival and service rates are matched, there is always a customer 

awaiting service, whereas intuively it would be given a 50:50 chance of ‘catching’ the service 

without having to wait. There is an interesting analogy here with the ‘rule’ that if passengers 

come to a bus stop hoping to catch a bus that arrives randomly at a certain mean rate, then the 

expected waiting time is equal to the mean interval between buses, not half the mean interval as 

would be expected if buses arrive regularly. These arguments tend to favour (3.2.20) over 

(3.4.6), hence Ia over ca. 

 

3.4.2 Consistent use of the unit-in-service between mean and variance 

 

A way to modify the M/M/1 probability distribution to exclude the unit-in-service is to define: 

 

   2
0 1~ p      

     11~  i
ip   i> 0    (3.4.7) 

 

so, relative to M/M/1: 

 

     1~
00 pp       

    21~  i
ii pp  i> 0    (3.4.8)  

 

The distribution (3.4.7) satisfies: 
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and it follows directly from (3.4.7-9) that: 
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There is no change in the dispersion of arrivals between M/M/1 and M/D/1, but the value of C 

changes from 1 to ½ as cb goes from 1 to 0. Taking this into account and comparing (2.4.9) 

with (3.3.13), the equivalents of (3.4.9-10) for M/D/1 are: 
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3.5. EQUILIBRIUM DISTRIBUTIONS OF SOME QUEUING PROCESSES 

 

3.5.1 Motivation and approach 

 

This Section addresses a wider range of equilibrium queues found in standard works, including 

with Erlang arrival or service distributions, and queueing with multiple service channels. 

Expressions for recurrence relations and equilibrium state probabilities are given where 

possible, and distributions calculated or simulated using an extended version of the ‘Qsim’ 

Markov simulation software program originally developed for M/M/1 and M/D/1. The 

relationships between the equilibrium moments the Pollaczek-Khinchin formula with different 

statistical parameters are explored, with the aim of bringing making the queue processes 

amenable to the time-dependent approximation framework. First, properties of M/M/1 and 

M/D/1 are recalled for completeness and comparison. 

 

Note: in several Figures in this Section, smoothed continuous charts have been retained in 

preference to histograms which would be more ‘correct’ but have been found difficult to 

interpret in practice, because it is difficult to separate multiple graphs particularly where 

they are non-monotonic or multi-modal. While technically less accurate, smoothed graphs 

are felt to give a general impression of the form of the probability distributions. 

 

3.5.2 M/M/1 

 

The M/M/1 process is the archetypal queue process and straightforward in principle, despite the 

complexity of the exact solution of Morse (1958) in Section 2.3. Its properties lead quickly to 

the deterministic queue formula repeated here as (3.5.1), which also follows logically from 

conservation, where L0 is the queue size at time t=0, and  is the demand intensity or the ratio 

of average demand to average capacity : 

 

        txLtL  0     (3.5.1) 

 

As pointed out earlier in Chapter 2, a critical feature of (3.5.1) is that, if the mean queue is to 

tend to a steady state and its size is to remain finite, the term in brackets must approach zero as 

time t, whence x as t. As x is the average utilisation of the service, if the possible 

states of service are either occupied or unoccupied, unoccupied means the absence of a queue, 

and the probability p0 of the queue being zero is identified with this, then in the steady state: 

 

    10ep      (3.5.2) 
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If (3.5.2) is interpreted as the average probability of zero queue during the service interval 

(which in the case of M/M/1 can be treated as infinitesimal so that average = instantaneous), so 

that by definition of utilisation    tutp 10  and    txtp 10  as t, then (3.5.2) is the 

condition of (3.5.1) remaining finite and any equilibrating queue process must satisfy both 

equations (3.5.1) and (3.5.2). 

 

3.5.3 M/D/1 

 

Using the Pollaczek-Khinchin transform formula, Medhi (2003) shows that (3.5.2) applies to 

the M/D/1 queue with unit-in-service, as derived in the previous Section, equation (3.3.22). 

However, the derivation in Chapter 2 of M/D/1 without unit-in-service from recurrence 

relations, gives the different formula (2.4.7), repeated here as: 

 

        10 ep e      (3.5.3) 

 

The explanation given is that this refers to the queue size at the end of a finite service period 

(e.g. a signal green period), whereas service can actually occur throughout the period, resulting 

in a smaller average value of p0, say 0p , which has been shown to satisfy (3.5.2) and hence is 

consistent with the deterministic interpretation of utilisation embodied in (3.5.1). 

 

3.5.4 Erlang-m service 

 

Erlang service is usually described before Erlang arrivals because it is easier to understand. 

Kleinrock (1975) and Medhi (2003) interpret M/Em/1 as a multi-stage service process where 

an effective capacity of  is achieved by m exponential service processes each of capacity m 

in series. The process is no longer exponential, having a service time distribution given by 

(3.2.5). This has a simple set of differential recurrence relations resembling M/M/1, but 

referring to stages not customers:  
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Combined demand intensity is =/, delivering equilibrium recurrence relations for <1: 
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 (i>m)  

 

 

Figure 3.5.1  Markov simulated M/Em/1 ‘raw’ probability distributions for several m 

 

In Figure 3.5.1, the steady-state distributions of stages, as simulated by the Markov program 

Qsim, exhibit an oscillatory tendency with period m. This is a consequence of the recurrence 

relation where the i+1 element depends on the i-m element but not on those between it and 

element i. However, these are not the final distributions in terms of customers.  

 

The ‘rule’ governing the system says that only one of the m servers can be in use at any one 

time. Therefore their utilisations are correlated even though their service time distributions 

are not. Thus the probability of the system being empty is not (1-/m)
m
. Instead there are m 

ways in which one server can be occupied with a probability of /m, so the probability of the 

system being empty is correctly (1-), which is smaller. The mean of the stage distribution 

must be divided by m to get the mean number of customers in the system, which is what is 

meant here by ‘queue size’ in the traffic context. Accordingly, the customer queue size 

distribution is given by summing the stage distribution in groups of m terms, except for p0 

which is unchanged: 
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
 1  in the steady state) (3.5.7) 

 

The resulting distributions are shown in Figure 3.5.2, along with their simulated mean values 

and the values of the corresponding P-K mean queue formula (3.2.13). 

 

 

Figure 3.5.2  Markov simulated M/Em/1 final probability distributions for several m 

 

Griffiths et al (2008) show how this particular queue process can be applied to a motorway 

facility with limited capacity (the Severn Bridge) where service is not perfectly random (m = 

2 or 3). At finite values of m, each service interval admits a Poisson count of arrivals, but it is 

hard to interpret this in traffic terms, while (3.2.5) has straightforward interpretation as a 

service distribution more uniform than exponential. In the limiting case m, all arrivals 

take place in one uniform service interval, as at a signal. The results confirm the P-K formula 

and support the idea that M/D/1 with unit-in-service can be identified with M/E/1. Staged 

arrivals are considered dual to bulk arrivals (q.v.). 

 

3.5.6 Erlang-r arrivals 

 

Kleinrock (1975) and Medhi (2003) interpret Er/M/1 as a multi-stage arrival process where 

each stage involves an arrival rate r. Although it is hard to interpret this in traffic terms, this 

system is considered to be dual to Erlang-m service, and both Erlang parameters can be 

combined into one code for calculation, though this fails if both are simultaneously >1: 
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     11
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iiri
i prprp

dt
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 (if i>r)  

 

The ‘customer’ probabilities are calculated by summing stage probabilities in a different way 

from Erlang-m service, giving the superficially similar distributions in Figure 3.5.3: 
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 (also gives p0 1  in the steady state)  (3.5.9) 

 

 

Figure 3.5.3  Markov simulated Er/M/1 final probability distributions for several r 

 

3.5.6 An alternative interpretation of Erlang-r arrivals 

 

As Kleinrock (1975) shows, the following steady-state probabilities apply to Er/M/1: 

 

   10p    1ˆˆ1  i
ip    (3.5.10) 

 

This ‘Russian dolls’ nested structure also applies when i>n in M/M/n and may be expected 

once exponential behaviour takes over beyond the scale-dependent region of the probability 

distribution. In the case of (3.5.10) there is no more scale-dependence than with M/M/1, and 

the parameter r defines the next least complex family of distributions. Equations (3.5.10) lead 
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to simple formulae (3.5.11-12) for the equilibrium mean and variance. Matching (3.2.16) and 

(3.5.11 left) relates ̂  to arrivals dispersion or the parameter r. While necessarily correct for 

Ia=1, r=1, this leads to a singularity in the extended P-K formula when Ia=0 and r=, since ̂  

is undefined for <0.5. 
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3.5.7 Performance of equilibrium moment formulae with Erlang processes 

 

Equilibrium variance can be calculated either directly from the distributions or from equation 

(3.3.10), or (3.3.13) with I=1 in these cases. Figure 3.5.4 compares calculated and simulated 

of Le and Ve, showing a good fit between the two. 

 

 

Figure 3.5.4  Calculated versus Markov simulated Erlang distribution moments 

 

3.5.8 Generalising Erlang processes 

 

It is not obvious how a description could include both Er>1 and Em>1, and none has been 

found in standard works. The following combined method can be programmed conveniently 

by equations (3.5.13) provided only one of r, m is >1 on any one occasion.  

   

 iri
i prpm

dt
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There is noticeable asymmetry between the Erlang service and arrival processes, as is 

reflected in the asymmetry in the generalised P-K mean queue formula (3.2.16). This does 

encourage combining arrivals and service statistics in one parameter C
*
. 

 

3.5.9 Bulk arrivals Mm/M/1 

 

Bulk arrivals, where arrivals come in lots of m, is theoretically congruent to Erlang-m service, 

apart from physical interpretation (Kleinrock 1975). It is simulated by similar but not 

identical recurrence relations that describe the probability distribution of the number of 

customers not stages. The Bulk arrivals parameter can be a random variate, usually taken to 

be Poisson distributed, but the point is sufficiently made by fixed values. The resulting ‘raw’ 

distributions are not compressed after the manner of equations (3.5.7) and (3.5.9), and they 

have a distorted shape because of the low probability of ending up with fewer in the queue 

than the Bulk value. As anticipated, the results in Figure 3.5.5 are identical to Figure 3.5.1, 

but a table of means has been added (also in some later sections) where: 

 

 ‘Raw’ mean is obtained by taking the simulated queue states at face value 

 Factored mean is the ‘raw’ mean divided by the Erlang parameter 

 Compressed mean is after application of the appropropriate range summing 

 P-K mean is the value of the extended P-K formula with Erlang parameter 

 

 

Figure 3.5.5  Markov simulated ‘raw’ Bulk arrivals probability distributions 

The compressed and P-K means match very closely 
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3.5.10 Bulk service M/Mr/1 

 

This is said to be analogous to Erlang arrivals, and it appears that as for Bulk arrivals the 

parameterisation of the P-K formula must be ‘reversed’, so that in this case Ia is changed. 

Simulating this process gives the ‘raw’ distributions graphed in Figure 3.5.6. 

 

 

Figure 3.5.6  Markov simulated ‘raw’ Bulk service probability distributions 

 

These are geometric (see also Kleinrock 1975) but for r>1 the ratio between terms is not . 

The distributions have a particular property involving the first r+1 terms enshrined in the 

recurrence relations used to generate them, plus the usual geometric property: 
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1 ii pp        (3.5.16) 

 

Together these lead to the relationship: 
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      (3.5.17) 

 

This is soluble for  though it is hard to see what it means physically, compared for example 

to the very natural interpretation of the difference between average and end-of-green p0 in the 

M/D/1[G] queue. 
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Despite the supposed ‘duality’ with Erlang arrivals, compression of the distribution according 

to equation (3.5.9) does not work in this case, and does not yield the correct values for p0. 

Equations (3.5.15-17) allow the following expression for p0, on eliminating : 

 

   
**

0*
0

0

11

1
11 rp

r
p

rp
p 













   (3.5.18) 

 

On the assumption that the compressed distribution has the nested form (3.5.10), translating 

to just one element of the compressed distribution, the parameter ̂  is equal to 
r
. This is 

reasonable in the sense that any irregularity is likely to extend only as far as around the first r 

elements of the ‘raw’ distribution. This necessarily ‘works’ in the sense that any value of 

1ˆ   will generate a valid distribution. The distributions are shown in Figure 3.5.7. 

 

 

 Figure 3.5.7  Final Markov simulated Bulk service probability distributions 

 

The means of the compressed distributions are now essentially the same as those factored 

values from the ‘raw’ distributions, i.e. (raw_mean)/r, and now match those for Er/M/1, 

although as in that case they do not match the P-K means exactly. 
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3.5.11 Multi-channel queue M/M/n 

 

Standard queuing theory for multiple servers centres on the M/M/n or G/G/n processes, where 

arrivals choose an idle server if one is available and otherwise choose a channel randomly, 

there being no interaction between channels’ service. This describes something like a 

supermarket checkout line, airport checkin hall, or toll plaza. Where interaction between 

channels can occur the process will be more like queuing on multiple lanes sharing a common 

service process, which is considered later in Chapter 6. 

 

If ρ is the combined demand intensity on the ensemble relative to the total capacity of all the 

channels, the steady-state queue and queue size probability distribution are given by the 

following formulae (e.g. Medhi 2003, with modified notation
31

): 
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Equation (3.5.19) has an obvious similarity to the P-K mean queue formula, with I being 

replaced by n because each server behaves in the same way as the single server in M/M/1, and 

C(n,) taking the place of the statistical parameter C, although the analogy is not exact because 

the coefficient of variation of service within each channel remains 1. Bunday (1996) considers 

the limiting case M/M/ also, a Poisson distribution that remains defined even when >1, and 

explains it is identical to defection of a fraction i/(i+1) of arrivals when the queue size is i. 

 

   )(
eL  )(

eV     (3.5.21) 

   
    ep0     

!
1

i

e
p

i
p

i

ii





 



  (i>0)  (3.5.22) 

 

M/M/n can also be described in terms of defection. This is embodied in the factor in pi
(n)

. The 

converse of defection is partial utilisation of the service facilities. If all servers are idle, with 

probability p0, the contribution to utilisation is zero. If all servers are busy then the specific 

contribution to utilisation before factoring in the state probability is 1. Since an arrival always 

chooses a free server if one is available, all servers are busy when i>n. For intermediate values 

of i, the specific contribution to utilisation is i/n. 

                                                
31The notation has been adjusted so that the function C(n,) takes the place of C in the P-K formula. 
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Multiplying these by probabilities (3.5.20 right) gives absolute contributions of pi-1, summing 

which confirms that the proper utilisation is consistent with (3.5.1-2)
32

: 

 

   
 







1

10.0
i

n
ippu   hence 10p   (3.5.23) 

 

Probability distributions for n from 1 to 10 according to (3.5.20) are graphed in Figure 3.5.8 

(resembling but different from Erlang distributions). Comparing these with equations (3.5.22) 

for n= gives the impression that they describe two different systems, since as graphed p0 

decreases steadily with n, whereas at n= it jumps to the value e
-0.8 

= 0.4493. Instead of 

peaking at some i~O(n) the n= distribution (3.5.22) declines steadily with i, provided <1. If 

equations (3.5.21-22) are taken at face value, then to recover (3.5.23) the specific contributions 

to utilisation must equal i, so u
()

 has the same form as Le
()

. Division by n becomes 

meaningless, but specific contributions do increase with i in the same manner as for finite n 

except that for n= they do so without limit, so (3.5.23) still holds. 

 

 

Figure 3.5.8  M/M/n equilibrium probability distributions for several values of n 

 

The dependence of C on  means that approximations that rely on the particular form of the 

Pollaczek-Khinchin mean queue like the sheared solution of Kimber and Hollis (1979) cannot 

be used to translate from equilibrium to time-dependence, although numerical solutions 

should be possible if quasi-equilibrium is assumed to apply.  

                                                
32Recall that u represents instantaneous utilisation and x is its time average, but these converge at t=. 
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3.6. USE OF NESTED GEOMETRIC PROBABILITY DISTRIBUTIONS 

 

3.6.1 Singly-nested geometric distributions 

 

Several steady-state probability distributions described in the previous Section become 

geometric, with a constant ratio between successive state probabilities, at sufficiently high 

states, although different ratios can apply in low states. The simplest model of this is given by 

equation (3.6.1), where * and ̂ are first and second level ‘effective s’, i.e: 

 

   *
0 1 ep    1* ˆˆ1  i

ip  (i>1)   (3.6.1) 

 

The moments of this distribution are given by: 

 






ˆ1

*

eL , 
 
 2

**

ˆ1

ˆ1




eV  or  

eL

*

1ˆ


  (3.6.2) 

 

In the first of equations (3.6.1), * could be defined so as to give the correct p0 for the true . In 

such cases p0 would not equal the complement of the steady-state utilisation, but in principle 

M/D/1 could be accommodated. However, only two ‘s’ are available to fit three moments
33

 

p0e, Le and Ve, limiting the range of distributions that can be fitted. 

 

Medhi (2003) quotes (this appears initially to have been misprinted
34

) a nested equilibrium 

distribution proposed by Kobayashi (1974a) to take on board arrival and service statistics, 

derived by considering a continuum approximation (see Chapter 5 later): 

 

   10p       (3.6.3) 

     1ˆˆ1  i
ip      (3.6.4) 

 

where 
 

 
 

 

























222232

12
exp

12
expˆ

baba cc
  (3.6.5) 

and 
 
 









12ˆ1

22
ba

e

cc
L  (as ρ1)  (3.6.6) 

                                                
33We grace p0 with the style ‘moment’ here, which is legitimate if the corresponding multiplier of {pi} is taken to 
be ‘no queue’=1 and ‘any queue’=0. 
34

In equation (8.2.21), p389,  ̂  is raised (incorrectly) to the power of n, then in equation (8.2.24b), p390,  ̂  is 

raised (correctly) to the power of n-1. 
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The result is not exact, as can be seen if M/M/1 statistics are inserted in (3.6.5) giving

   1expˆ  rather than ̂ . However, the approximation is known to be most 

accurate near ρ=1 (‘heavy traffic’) where these two functions converge. Given its 

approximate nature, including the fact that statistical parameters are themselves only an 

approximation to a real process, a practical approach to making this time-dependent might be 

to set ̂  according to the P-K formula, then replace ρ in its expression by a function of time. 

 

3.6.2 Doubly-nested geometric distributions 

 

If a third ‘effective ’ is introduced, the simplest doubly-nested distribution is: 

 

  *
0 1 ep    ˆ1*

1p  
  2* 1ˆ  i

ip


 (i>2) (3.6.7) 

 

whose first and second moments are: 

 

  
 




 



1

ˆ1*

eL  
  

 2
*

2

1

ˆ2ˆ31




 



ee LV  (3.6.8) 

 

Note that in this case 
*
 need not be the same as the actual demand intensity , and accordingly 

p0e = 1- is not assumed, widening the range of processes that can be handled. In principle, all 

three moments can now be fitted. After some manipulation, in which ̂  is first expressed in 

terms of 
*  and 


, and the result of substitution into eL  solved for 


, the formulae for the 

three ‘rhos’ in  terms of known steady-state moments are: 

 

ep0
* 1  

   
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2
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 
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

eee

eee

LLV

LLV

 

          

(3.6.9) 

 

By setting all the ‘rhos’ equal, it can be confirmed that the last two equations (3.6.9) are 

satisfied identically when the model reduces to M/M/1. In more general cases, explicit queue 

statistics are in principle unnecessary since they are subsumed by the moments. This is 

confirmed by Figure 3.6.1 where the fit between the true M/D/1 as calculated by equations 

(2.4.4-7) and the doubly-nested model, while not exact, is very close. M/M/1 distributions have 

been added for comparison, to emphasise the much greater step between p0 and p1 in the M/D/1 

distribution. 
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This approximation method relies on the proposition that local symmetry under linear 

transformation of origin and appropriate scaling means all equilibrium distributions tend to 

geometric once sufficiently remote from the origin. The method enables the ultimate geometric 

ratio to be obtained as


. 

 

 

Figure 3.6.1  Fit between doubly-nested model and exact calculated M/D/1 distributions 

(‘flatter’ distributions are M/M/1 for comparison) 

 

It gets more interesting when the method is applied to the M/D/1[G] distributions described 

earlier in Section 2.4. However, it is true that G has to be large to make a serious difference. 

While the fit shown in Figure 3.6.2 is not exact for p0 and p1, the relative magnitudes of the 

probability components are quite well represented. The method can be applied equally with 

moments calculated using empirical methods such as those to be described in the next Section. 

 

 

Figure 3.6.2  Fit between doubly-nested model and simulated M/D/1[G] distributions 

(‘flatter’ distributions are M/M/1 for comparison) 

 

Furthermore, by suitable choice of Le and Ve it is possible to generate a distribution that is 

non-monotonic, like those of Erlang arrivals or bulk service, Figures 3.5.4 and 3.5.8. The 

doubly-nested distribution in Figure 3.6.3 (below) approximates that for the M/M4/1 case. 
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Figure 3.6.3  Doubly-nested model of M/M4/1 ‘bulk service’ case 

(‘flatter’ distribution is M/M/1 for comparison) 

 

3.6.4 Maximum Entropy distributions 

 

The singly-nested geometric distribution in equation (3.6.1) is also the Maximum Entropy 

distribution as stated by Kouvatsos (1988), who expresses the probability distribution as either 

the exponential of a weighted sum of functions, or an equivalent product of powers of 

functions. If states are restricted to integer queue sizes, probabilities in terms of constraint 

functions are given by equation (3.6.10), and entropy can be expressed in terms of expectations 

of the constraint functions by equation (3.6.11), where the k are Lagrange multipliers: 

 

    iQpi ..1.exp 210      (3.6.10) 

       eii LpppH .1.1.ln 2010

0

 


  (3.6.11) 

 

The 0 term represents the constraint (prior information) pi=1, Q is 0 when i=0 and 1 when i>0 

corresponding to a known value of p0 or utilisation, and the third term corresponds to the mean 

queue Le. Equation (3.6.10) expressed as a product reproduces the nested geometric 

distribution, the Lagrange multipliers being explicit functions of the first three probabilities: 
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By the same principles, a doubly-nested distribution can be expressed as: 

 

    iQQpi ...1.exp 322110     (3.6.13) 
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where Q1 is as Q before, and Q2 is 0 when i<1, and 1 otherwise. Equivalently: 

 

   

iQQ

i
p

p

pp

p

pp

pp
pp 





































2

3

31

2
2

30

21
0 ...

21

   (3.6.14) 

 

At first sight this appears not to embody variance as a constraint, because equation (3.6.13) 

contains no term in i
2
. This is misleading because such a term would cause pi to ‘explode’. In 

fact, equations (3.6.7-9) link the first four probabilities p0 .. p3  to the now four constraints. But 

is this still the Maximum Entropy distribution given the constraints? Kouvatsos’ analysis places 

no limit on the number of constraints and requires only that probabilities have a form similar to 

(3.6.10/13), which ultimately forces the distribution to develop geometrically. 

 

3.6.4 Limitations of nested distributions 

 

An obvious limitation of nested distributions is that they are primarily usable only for 

equilibrium distributions, but when does a distribution get near enough to equilibrium to 

qualify? Equations (3.6.7) will work only if all the ‘rhos’ are < 1. This is necessarily true for *

but for 


, from the third of equations (3.6.9), the condition is Le >
*
. It is certainly not a 

problem for M/M/1 and does not appear to cause a problem generally. However, the second of 

equations (3.6.9) can predict ̂>1, contradicting the equilibrium hypothesis. Rho values from 

the J2P4 peak case are plotted in Figure 3.6.4, showing that in Ts 3-9, the probability 

distributions cannot be matched by a doubly-nested geometric. This is taken to reflect their 

being far from equilibrium. 

 

 

Figure 3.6.4  Doubly-nested parameters for time slices in J2P4 peak case 
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A further limitation is revealed by the M/M/n queue - see earlier in section 3.5.4. Theoretically 

the doubly-nested approximation cannot cope with any equilibrium distribution that peaks at 

i>2. Since the first few distributions peak at i=n-1, it should work up to n=3. In practice the 

estimated parameters are feasible up to n=4, as shown by Figure 3.6.5. However, the shape of 

the distributions is reproduced only up to n=3 as shown by Figure 3.6.6 (compare Figure 3.5.1). 

In principle n=4 could be approximated with four parameters, but these cannot be determined 

uniquely by only three moments (note also that equilibrium variances were got from calculated 

distributions, not explicit formulae which are unknown in this case). 

 

 

Figure 3.6.5  Doubly-nested parameters for M/M/n queue with  = 0.8 

 

 

Figure 3.6.6  Doubly-nested approximations to M/M/n queue distributions for  = 0.8 
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3.7 EMPIRICAL METHODS TO ACCOUNT FOR SIGNAL GREEN CAPACITY 

 

A summary of the contents of this Section was presented at the UTSG 2013 conference (Taylor 

2013) and has been submitted for journal publication as Taylor and Heydecker (2013). 

 

3.7.1 Historical approaches to signal queue modelling 

 

The extended M/D/1[G] processes defined earlier in Section 2.4, that take account of signal 

green capacity, are difficult to analyse and exact closed-form moments are not available. 

Several authors since the 1960s have developed empirical approximations to the equilibrium 

queue. This Section reviews their work and develops an alternative approach to estimating all 

three moments: p0, mean and variance; enabling probability distributions also to be estimated. 

 

Analysis of signal queues can be traced back to A J H Clayton in 1940 (see Allsop / 

Hutchinson 1972), but signal queue models are often associated with F V Webster (1958) and 

Webster and Cobbe (1966) who developed a delay or equivalent queue formula (3.7.1). This 

contains a deterministic red phase or so-called ‘uniform’ queue, representing the average over 

the signal cycle of the queue produced by the red phase including its decay during the green 

phase, a stochastic term representing the average effect of oversaturation and random 

variations leading to transient excess of arrivals over capacity, leaving a queue at the end of 

the green phase, as sketched in Figure 3.7.1, and a third correction term. Here, the 

green/cycle ratio is represented by  to avoid confusion with arrival rate, c is cycle time. 
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 (3.7.1) 

 

 

Figure 3.7.1 Sketch of a signal queue, showing phase and stochastic components 
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If demand exceeds capacity, (3.7.1) is adjusted by replacing the phase component by a 

simplified term obtained by limiting x to 1. Since the signal is at the stop line and any 

overflow is taken up by the last two terms in (3.7.1), the stochastic process should be treated 

as ‘outside’ the phase queue process, so technically should be subject to the demand intensity. 

If this exceeds 1, the stochastic term in (3.7.1) becomes undefined so should be replaced by a 

time-dependent formula. The inconsistency of (3.7.1) with time-dependence raises practical 

issues, which are alluded to by Taylor (2003). However, the concern in this research is only 

with the stochastic component. 

 

Because the service at a signal is quite regular, even if intermittent, it is idealised as 

Deterministic, and the cyclic character is considered absorbed by the other components. The 

practical accuracy of the method, if not compensated for by the correction term in equation 

(3.7.1), can be improved by modifying the randomness parameter in the M/D/1 queue, which  

is often given a value in the range 0.5-0.6, rather than exactly 0.5 (Burrow 1987). 

 

It is not known how fully these details are addressed in macroscopic traffic modelling. In the 

CONTRAM time-dependent assignment program (Taylor 1990, 2003), only the stochastic 

component is made time-dependent, and an ad hoc adjustment is used to ‘relax’ the phase 

queue component over a short time if its value falls between time slices - if its value rises it is 

simply stepped up. Bin Han (1996) combines phase and stochastic queues in a single 

continuously differentiable sheared formula, but there may still be issues because of the 

different timescales over which these components operate and their real discontinuities. 

 

A comprehensive time-dependent formulation of the signal queue has been derived by 

Heidemann (1994), drawing on results by Meissl (1963). At equilibrium results are virtually 

indistinguishable from Webster and Cobbe’s. Heidemann’s formulation includes an 

ostensibly exact formula for the stochastic queue, requiring evaluation of complex roots of a 

function (see Appendix D). At equilibrium, however, it can be expressed in the same form as 

(3.7.1) with an identical phase component and a stochastic component now containing G 

explicitly, plus a new correction term that involves the stochastic queue but does not contain 

any empirical constants:  

 

  HGVP LLLL   where 
    

 x

xxLx
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

12

21
 (3.7.2) 

 

Olszewski (1990) has shown by simulation that the stochastic queue decreases as absolute 

green period capacity is increased. This cannot be accommodated by the M/D/1 formula. 
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Akçelik (1980, 1998a) has developed a time-dependent saturating solution resembling the 

sheared solution, which incorporates G in the form of gs in a parameter modifying the 

effective demand intensity. This is not considered further here as it is not clear how it can be 

incorporated in the present scheme, but several alternative approaches are considered in 

Appendix E. Empirical approximations to account for the effect of green period capacity on 

the mean stochastic equilibrium queue have been proposed by Newell (1960), Miller (1969) 

and Cronjé (1983a), although Miller considers Newell’s model too complex for practical use. 

The rest of this Section considers these, and then proposes alternative approximations to the 

queue moments based on simulations of the M/D/1[G] process described in Section 2.4. 

 

3.7.2  Results of simulations with a range of parameters 

 

Using the results of Markov simulations based on M/D/1[G] recurrence relations (2.4.10), 

with maximum i of 10,000 for accuracy, equilibrium mean queues have been calculated for a 

range of values of  values, and green capacities G up to 100. These are plotted in Figure 

3.7.2, confirming not only the behaviour observed by Olszewski (1990) and others, but also 

suggesting strongly that the queue tends to zero as the green period gets indefinitely long. 

This can be considered the deterministic limit, where only oversaturation results in queuing.  

 

 

Figure 3.7.2  Dependence of M/D/1[G] equilibrium mean queue on green period G. The 

original Figure 3 of Olszewski (1990) is inset as evidence of the points marked. 

 

The process is not absolutely independent of capacity, saturation flow, cycle time, etc, 

because these variables are related to  and G as in equations (3.7.3): 
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    cgsG  hence 
c

G

c

gs 



   (3.7.3) 

 

There are four truly independent variables ,g,c,s, that can be substituted for by ρ,G,c,µ 

through (3.7.3). Capacity µ can be ignored because equilibrium properties are independent of 

it. However, in order to maintain the capacity (rate), the ratio g/c must then stay constant, so 

the idealised M/D/1[G] processes are explicitly dependent only on ρ,G. It is as though time 

stops at the end of one green period and restarts at the beginning of the next, but is stretched 

in proportion so that its ‘clock’ keeps pace with reality. During the green periods, arrivals are 

assumed to have a headway distribution consistent with the demand intensity . A physical 

explanation for the reduction in queue size with increasing G is that, depending on whether a 

queue is present at the moment a customer arrives within the green period, the arrival may 

effectively ‘disappear’ because it takes advantage of spare capacity that would otherwise be 

unused. This is not ‘censoring’ because it does not happen according to a rule, but it could 

lead to both a reduction in the effective arrival rate at service and apparent the bunching of 

arrivals later in the green period. However, as will be shown later, this effect could not be 

accommodated by adjusting the arrivals dispersion Ia in the P-K formula. 

 

3.7.3 Behaviour and estimation of p0 

 

In Figure 3.7.3, graphs of simulated p0e against G for different values of  appear to have 

similar shapes on different scales. 

 

 Figure 3.7.3  Markov simulated equilibrium p0e for a range of M/D/1[G] processes 
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Experimentation with simple transformations shows that graphs of p0 follow a common 

trajectory very closely when plotted against a dimensionless ‘link function’ z, defined 

generally by equation (3.7.4) (in what follows, the dependence on  and G is understood): 

  
1re

hG
hz






 

where   2

1 1


re  and h=2 in this case
35

 (3.7.4) 

 

1re is the stochastic relaxation time (2.3.38) for each  with  set to 1. This result is evident in 

Figure 3.7.4, where left end of the LH plot is expanded in the RH plot. The idea of the ‘link 

function’ is that combinations of basic variables that give the same link function value lead to 

the same results in the target function. This reflects a ‘symmetry’ between  and G. 

 

 

Figure 3.7.4  Markov-simulated p0 against the function z(2) (expanded scale at right) 

 

Points for G=1 satisfy (2.4.7), and since the points for the other values of G lie on the same 

curve, interspersed with those of G=1, they can be calculated using the same formula together 

with an ‘effective ’, 0, that needs to satisfy: 
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  (3.7.5) 

 

The lower limit of zero reflects the vanishing (sub-resolution) of the Markov simulated mean 

for small  and large G. Then p0 can be estimated for all G, as required, by: 

                                                

35This can be written in terms of signal cycle time c as 

re

hc
z






ˆ
where ĥ  a modified adjustment. 



125 

 

 

   0
0

0 1  ep estG      (3.7.6) 

 

In Figure 3.7.4 estimated values are indicated by red squares. The estimates are not perfect but 

very close, with RMS error = 0.0077 or 0.93% of average. Estimated and Markov simulated 

values are compared directly in Figure 3.7.5. 

 

 

Figure 3.7.5  Performance of M/D/1[G] p0 estimates compared to simulation 

 

3.7.4  Attempts at direct approximation to mean queue size 

Graphs of the Markov simulated M/D/1[G] queue sizes in Figure 3.7.2 also have a similar 

shape, suggesting that a link function may exist for them but, unlike p0, they are not confined 

within the bounds of [0,1], so the treatment has to be somewhat different. This is broadly the 

approach used by previous authors. Miller’s formula for the stochastic queue (with modified 

notation as used throughout this Section) is: 
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











12

3

4
exp

y

L MGe  where    Gy  1   (3.7.7) 

 

Cronjé (1983a) offers, without further explanation, a “suggested modification to Newell” 

where an explicit expression involving the variable y replaces a factor in Newell’s formula. 

Dispersion of arrivals Ia is also a factor, although in what follows it is dropped since this use 

would be incompatible with its role in the extended P-K formula, i.e. Ia=1 is assumed: 
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Mean queue values fall approximately onto a common trajectory, as shown by Figure 3.7.6, if 

the link function (3.7.4) is chosen as: 

 

  4.1 zz  optimally,  although  1 zz  works (3.7.9) 

 

Unlike for p0, an ‘effective ’ does not arise so immediately in this case, since to achieve this 

fit the mean queue sizes have first to be normalised to the Le values for the ‘standard’ M/D/1 

values with G=1. Functions can however be fitted to the data, and then transformed back into 

an empirical approximation to Le in terms of  and G of the form: 

           1., eGestGe LzGL      (3.7.10) 

Two forms of [G](z), ‘power’ and ‘exponential’, have been tried: 

 

         





  1,19.01min

2

zzpwrG    (3.7.11a) 

         1,5.3expmin 7.0
exp zzG     (3.7.11b) 

 

Figure 3.7.6 also plots the estimated values, and the average absolute and percentage accuracies 

of the methods are given in Table 3.7.1. Miller’s formula underestimates seriously, and the 

Cronjé-Newell formula appears to overestimate, although inspection of numerical results shows 

it is the most accurate for high values of ρ>0.7. Of the functions in (3.7.11), the power function 

gives lower RMS error, around 0.025 over the data range of 0-1, compared to around 0.03 for 

the exponential function, but the exponential gives lower percentage error.  

 

 

Figure 3.7.6  Relationship between normalised Le values and the link function z 
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Table 3.7.1  Accuracies of the M/D/1[G] queue size models (limited to 1 x Le[1]) 

 

Exponential functions have the advantage that their values do not fall off too rapidly at higher 

values of G and so can achieve better approximations. As is often the case, the Miller and 

Cronjé-Newell formulae are optimised for ‘heavy traffic’. Their problem is that the exponential 

terms, that ought to reduce to ρ when G=1, do so approximately only for large ρ. There appears 

to be no common ground between the methods that could be exploited to produce a better one. 

However, the good performance of the Cronjé-Newell formula at higher values of  makes it 

attractive as the basis of a method adjusted to give better results for smaller  values. This can 

be tested by calculating the error relative to Markov simulations in the factor: 

 

   
 






2

2
1exp

,
yy

GfC  where    Gy  1   (3.7.12) 

 

This is (3.7.8) normalised to act as a multiplier of the M/D/1 mean queue (2.4.7). Replacing the 

contents of the bracket with a function of the form (1-exp(y)) does not avoid error. Figure 3.7.7 

shows that the logarithm of the factor error is a fairly linear function of G, but its slope is 

extremely sensitive to , so sensitive that no function of  normally met could describe it. 

 

 

Figure 3.7.7  Cronjé log factor error dependence on  and G 

 

Figure 3.7.8 shows that the slope of these factors has a ‘hockey stick’ shape in relation to . It 

is not obvious whether the slightly negative values for >0.7 are real or the result of 

Methods Absolute RMS error Average percent error 

All ρ ρ>0.7 All ρ ρ>0.7 

Power 0.025 0.034 18.3 15.5 

Exponential 0.030 0.039 10.7 9.7 

Cronjé-Newell 0.067 0.009 39.0 4.8 

Miller 0.124 0.027 31.5 26.4 
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imprecision in the simulations. An alternative interpretation is that the slope falls linearly 

becoming zero somewhere between =0.5 and 0.6. On that assumption, admitting that there are 

only three data points, the slopes themselves can be fitted by a linear relationship whose 

coefficients are slightly rounded from the actual regression values: 

 75.04.0s       (3.7.13) 

 

 

Figure 3.7.8  Dependence on  of average slopes in Figure 3.7.7 

  

Figure 3.7.8 also plots the fitted and equation (3.7.12) values, that are assumed to be zero for 

>0.6. It is possible that the true relationship bends smoothly and goes to zero near where the 

value of Le is 0.5 for G=1 (0.6185). However, this affects so narrow a range of , at factor 

error so close to 1, that it probably isn’t worth pursuing. Consequently, the following composite 

formula is arrived at: 
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12 yy

GL
Ge  (3.7.14) 

 

where   Gy  1  as before, and the minimum is needed to overcome overprediction by the 

Cronjé-Newell function when G=1. Figure 3.7.9 shows that this adjusted Cronjé-Newell 

formula fits all the simulated data substantially better than the original. It is disappointing that 

an empirical and non-smooth function of  is involved, but it is not obvious what common 

function could reproduce the extreme sensitivity to smaller values of  in Figure 3.7.8. 
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Figure 3.7.9  Performance of normalised Cronjé-Newell and adjusted queue models 

 

 

3.7.5  Estimating mean queue using effective traffic intensity 

 

An alternative to such ad hoc adjustment is to define an effective traffic intensity or ‘effective 

’ for M/D/1[G] equilibrium queues by inverting equation (2.4.8), viz: 

      GeGeGe LLL  21     (3.7.15) 

 

Earlier results including from queues with Erlang arrivals suggest that the probability 

distribution of any stochastic queue tends to become geometric as queue size increases, but no 

particular distribution has been assumed in defining (3.7.15), so its physical meaning is unclear.  

 

However, Figure 3.7.10 reveals that a common trajectory exists for the ratio 1/ when plotted 

against the link function z(0), with the ratio limited to 1, although some points for lower values 

of  are less well fitted, leading to the ‘effective ’ formulation (3.7.16): 

 

   1

2
1

12 


GeL  where 



























 1,expmin

1

1

re

G
 (3.7.16) 
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Figure 3.7.10  Best fit of 1/ as function of z for estimating Le[G] 

 

Le[G] is estimated directly by the equivalent of (2.4.7). Table 3.7.2 compares the accuracies of 

all the models. This shows accuracy is fair, with RMS error of 0.024 in 1 and 0.060 in Le[G], 

similar to Cronjé-Newell, but no extra constants are needed, indeed the accuracy deteriorates 

rapidly if additional factors or powers of the z function are introduced. 

Table 3.7.2  Accuracy of the M/D/1[G] queue size estimates (> 1 x Le[1]) 

Model Absolute RMS error Average percent error 

All ρ ρ>0.7 All ρ ρ>0.7 

Cronjé-Newell 0.067 0.009 39.0 4.8 

Adjusted C-N 0.014 0.009 5.1 4.8 

Effective Rho 0.060 0.091 14.4 5.9 

 

The fit of the ratio 1/ is also shown by the red squares in Figure 3.7.10. The link function 

fails for G=1, and the ratio has to be forced to 1 in that case, though that presents no practical 

problem for computations since G is assumed to be discrete. Although this method results in 

higher errors than the adjusted Cronjé-Newell method, it may be preferred for its structural 

transparency and computational simplicity where the highest accuracy is not essential. Its 

accuracy is best for smaller values of G and higher values of , and it avoids Cronjé-Newell’s 

extreme departures at smaller  values. 
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3.7.6  Estimating variance 

 

An approximation to equilibrium M/D/1[G] variance arises directly from the observation that 

variance values lie close to a common trajectory when normalised to Ve[1] using the 

exponential function (3.7.17) and link function (3.7.18). This is shown in Figure 3.7.11, where 

compliance with the trajectory appears, somewhat surprisingly, better than for Le[G]. 

 

       1,13expmin1 zVV eGe   where   (3.7.17) 

 

 
1

1
1

re

G
z




   (from (3.7.4)   (3.7.18) 

 

 

Figure 3.7.11  Exponential approximation toVe[G]/Ve[1] using link parameter  = -3 

 

Absolute error is minimised at 0.125 by the factor -3 within the exponential function (3.7.17), 

with percentage error 11.1% and a tendency to underpredict smaller values. However, 

percentage error is minimised at 7.07% by a factor around -2.7, with absolute error 0.178 but 

greater overprediction of larger values. Large values are best fitted by a factor -4. Therefore the 

form of the link function is necessarily a compromise. Estimating variance values in this way is 

less satisfactory than defining an ‘effective ’. There may possibly be a way this could be 

achieved, although the complexity of the expression for Ve[1] rather argues against it. However, 

it is not critical since only the value of equilibrium variance is required as an asymptotic 

constraint. Variance does not come from a time-dependent solution like the sheared queue. 
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3.7.7 Accuracy of the results and discussion of the methods 

 

Figure 3.7.12 shows that the approximations described in this Section give good results over the 

wide range of parameter values tested.  Figure 3.7.13 compares estimated with simulated 

moments for extended M/D/1[G] distributions, i.e. where each origin is shifted by G. 

 

 

Figure 3.7.12  Results of M/D/1 estimations for 25 combinations of  and G 

 

 

Figure 3.7.13  Fit between estimated and simulated extended M/D/1[G] moments 
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A common element in the formulae developed by the authors cited is the divisor (1-), also 

invariably present in the Pollaczek-Khinchin mean formula. This suggests normalisation with 

respect to Le[1]. Another is the presence of an expression in  and G involving (1-)G, which 

suggests a symmetry between  and G. The link-functions z(h) attempt to exploit what may be 

a deeper symmetry betwen G and the characteristic timescale set for each  by stochastic 

relaxation time. The corresponding physical interpretation is that arrivals in green periods of 

different lengths should on average have the same impact on the final stochastic queue if their z 

values are the same, although this may be stretching a point where the relaxation time is long 

compared to the duration of the green period. 

 

3.7.8 Feasibility of estimating M/D/1[G] with modified statistical parameters 

 

It should be asked whether, as an alternative to the preceding, modifying statistical parameters 

in the P-K mean queue formula alone could account for the effect of green period length. 

Structurally, three possible factors could contribute: 

 

 Reduction in the effective arrival rate 

 Bunching of arrivals 

 Alteration of the service statistics 

 

The preceding results show that adjusting the effective traffic intensity, which in practice means 

the effective arrival rate, can lead to useful approximations. Service is already assumed to be 

uniform, cb=0, and the derivation of (3.2.13) allows no role for ca, so any effect of bunching 

must act through Ia. Figure 3.7.14 shows how Ia has to vary to reproduce Le[G] as estimated. 

 

 

Figure 3.7.14  Arrivals dispersion Ia needed to give estimated Le[G] 



134 

 

 

In Figure 3.7.15, Ia has been replaced by the function below and plotted against z(0): 
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It is apparent from the form of (3.7.19) that the process of estimating Ia has merely been 

reversed. Figure 3.7.14 (above) confirms that the relationship between the quantities in (3.7.19) 

is weak. A rather poor exponential approximation of the ‘link function’ type is equation 

(3.7.20), but the scatter in Figure 3.7.15 shows that no function of this type can be satisfactory. 
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Figure 3.7.15  Function of dispersion Ia needed to give estimated Le[G] 
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3.7.9 Properties of M/D/1[G] probability distributions 

 

Figure 3.7.16 compares simulated probability distributions, extended to include notional 

state, for =0.8 and five values of G (including 1) with Gamma distributions, which are 

convenient to work with because of their relatively simple continuous functional form
36,37

. 

 

 

Figure 3.7.16  M/D/1[G] simulated extended distributions for =0.8 and various G 

 

Gamma being a continuous distribution, its parameters can be fitted, with varying degrees of 

accuracy, to simulated distributions using standard numerical methods, as e.g. embodied in 

Excel’s Solver. LogNormal and Poisson distributions have also been tried but found less 

satisfactory. More detail on this is given later in Chapter 5 where the use of continuous 

functions to approximate dynamic probability distributions is also addressed. 

 

Some results for the extended probability distributions are established. By direct calculation: 
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**  (3.7.21) 

Mode  G  this being the mean number served in the green period or cycle.  (3.7.22) 

 

                                                
36 The Gamma distribution, as a model of queue size probability distributions in over-saturated peaks, has been 
proposed by Olszewski (1990) and also investigated by Halcrow Fox and Associates under contract to the 

Transport Research Laboratory (unpub.). Discrete alternatives could be Erlang or Negative Binomial. 
37The Negative Binomial is used in accident analysis where the accident count at any particular site or juncture is 
believed to be a Poisson variable, but the variance between sites produced by unspecified factors leads to the 
combined distribution being over-dispersed. When mean rates at sites are assumed to be Gamma distributed, the 
combined distribution is Negative Binomial (Heydecker and Wu 2001). 
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Using a method similar to (3.7.21) the variance of the notional probability terms can be 

calculated from the Variance of the extended distribution and the ‘real’ part: 

 

          GeGeG LGVVarianceV  12*    (3.7.23) 

 

The variance of the notional distribution terms alone can now be calculated if an expression for 

V
*

[G] can be found. The approach is similar to that used previously. Recalling the limiting value 

(2.4.25), V
*

[G] is first assumed to depend on some function Y(z) such that: 

 

        zYGV G 1*   where   (3.7.24) 
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Figure 3.7.17 confirms that  and G can be linked through Y(z) or its complement: 

 

 

Figure 3.7.17  Common trend component for variances of ‘notional’ parts of distributions 

 

Taking the logarithm of Y(z) shows it is nearly exponential except at small z. (1-Y(z)) more 

resembles a saturating function like L or x in a growing queue. However, for the sake of 

simplicity an exponential sub-model is attempted. A reasonable fit, with RMSE=0.081 and 

average percentage error 1.65%, is got with the following approximation: 

 

      zzY 5.2exp11      (3.7.25) 
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Figure 3.7.18 graphs ‘real’ probability distributions simulated for =0.8 and several values of 

G, showing how p0 becomes increasingly dominant. 

 

 

Figure 3.7.18  Simulated M/D/1[G] equilibrium probability distributions 

 

 

3.7.10  An empirical approach to estimating M/D/1[G] probability distributions 

 

This section includes for completeness initial investigations and some speculation about the 

distributions, now superseded by work described later in Chapter 6. Referring back to Figure 

3.7.18, for sufficiently large i the ratios between successive pi appear to approach a constant 

ratio, as expected when remote from the influence of the zero boundary. Furthermore, this 

ratio appears to be independent of G, an approximation being: 
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For G up to 5, based on the limiting form (3.7.26), the ratio between successive pi in the 

middle range of values of i appears to follow: 
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where  is best set to  for larger G, and to 1 for smaller G, and for i<1 this applies to 

notional probabilities i[-G,0], not the real p0. The ratios of successive probabilities for one 

level of demand, =0.9 and i>1, normalised so that p1=1, are broadly similar for different G 
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values, as shown in Figure 3.7.19, with the ratio between terms in their middle ranges given 

approximately by (3.7.26-27). 

 

 

Figure 3.7.19  Normalised M/D/1[G] probability distributions 

 

The fit against simulated values can be good for some values of  and G, as shown by Figure 

3.7.20 for the particular case G=5. Unfortunately, calculation of the whole distribution is so 

sensitive to the values of the p-i
*
 that even small errors render this model of little value. 

 

 

Figure 3.7.20  Simulated and estimated ratios between successive probabilities, G=5 

 

While the extended probability distributions may be fitted best by Gamma distributions, it may 

be supposed that they are nearly geometric for i sufficiently greater than 0. Can this yield to an 
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‘effective ’ approach? In the steady state, p0 is the complement of the utilisation, and 

according to deterministic queuing theory, the arrival rate must balance the utilisation. 

 

Using equation (2.4.6), this appears to imply that, for example, the effective arrival rate for G=1 

should be given by: 

 

     111 10 ep e     (3.7.28) 

 

For =0.9 this has the value 0.754 rather than the limiting value 0.812 from (3.7.26). While 

these functions are not close analytically they are not greatly different in absolute terms over 

the range of ρ[0,1]. So Ia can now be recalculated using (3.7.28) rather than (3.7.19/20), and 

p0[G] calculated from (3.7.5-6): 
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However, this now gives values of Ia>1 in most cases, which is not the expected result. This 

happens because the  corresponding to p0 from equations (3.7.5-6) is smaller than that 

corresponding to Le from equation (3.7.16). 

 

It seems therefore that this approach is not leading anywhere, but the method of doubly-nested 

distributions can still be applied. 
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3.8. CONCLUSIONS ON MORE GENERAL EQUILIBRIUM QUEUES 

 

In this Chapter 3 the results of Chapter 2 have been extended to more general arrival and 

service statistics, using an event-based formalism found in standard reference works, to produce 

generalised formulae for the equilibrium mean and variance of queues. Equilibrium formulae 

for a number of specific queue processes are derived from recurrence relations, and are 

matched to statistical parameters of the Pollaczek-Khinchin mean formula using Markov 

simulations, enabling them to be brought into the time-dependent approximation framework 

that will be addressed later in Chapter 4. 

 

The unit-in-service component in the equilibrium queue formula, whose presence seems to 

correlate with the possibility of formulating the queue process on infinitesimal time intervals, 

has been introduced into the equilibrium variance formula in a consistent way. An 

inconsistency in characterising the statistics of arrivals between the dispersion index of arrivals, 

as obtained naturally during the derivation of the Pollaczek-Khinchin mean formula, and the 

coefficient of variation of arrivals as employed by some authors, has been discussed but 

remains unresolved. 

 

It is shown that at some equilibrium probability distributions, in particular those described, with 

mode < 2, can be approximated using a doubly-nested geometric distribution expressed in 

terms of their three moments: utilisation or p0, mean and variance. The extended M/D/1[G] 

queues, representing stochastic queues at signals with specific green period capacities, do not 

appear to have close form expressions for their moments. New approximations for these have 

been proposed, using a link-function approach, that are shown to be reasonably accurate over a 

range of green capacities and demand intensities, not just for ‘heavy traffic’ as in the case of 

earlier formulae of Miller and Newell. The doubly-nested geometric method can be used to 

estimate their probability distributions. 
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CHAPTER 4: TIME-DEPENDENT APPROXIMATION 

 

4.1. INTRODUCTION  

 

The need for simple and efficient calculation of time-dependent queuing in traffic modelling 

software, as well as enabling the properties of queues to be explored in a more unified and less 

algebraically demanding way than exact analysis, has encouraged approximate methods. 

‘Shearing’, an heuristical merging of rigorous deterministic and equilibrium descriptions, is 

conceptually simple and does not require additional empirical parameters. The flexibility of the 

formulation is another reason for working with it here, where the primary purpose is to extend 

the range of applications including to variability and reliability. Exploration of alternative 

existing queue approximations and more fundamental improvements are left for future research. 

 

Kimber and Hollis (1979) formalised shearing in terms of coordinate transformation, though a 

more revealing interpretation is that this treats the queue as quasi-static. Similar approaches 

were made by Doherty (1977) and Catling (1977), and hinted at by Newell (1971 or earlier). 

Rider (1976) also used a quasi-static approach. Kimber and Hollis quickly recognised that the 

sheared method could be inaccurate, especially during decay. They proposed replacing the 

initial queue by a shift in the time origin, except for initial values greater than twice the 

equilibrium queue, where they used a linear model, since the rate of change of the mean queue 

remains nearly constant as long as the queue is large enough to keep the service saturated.  

 

The assumption that the queue is effectively in a constant state of quasi-equilibrium is a deep 

source of potential inaccuracy, especially in the middle stages of growth or during post-peak 

decay where actual queue size probability distributions tend to be far from equilibrium form. 

The new deterministic variance formula is generally at odds with the predictions of shearing not 

only during growth and decay but also at equilibrium. Although the sheared queue 

approximation converges reliably to the correct equilibrium value it never quite ‘forgets’ its 

initial state. This can be exploited to achieve a correction making it consistent with the variance 

formula at equilibrium. Using this asymptotic ‘anchor’ as well as that of expected initial 

behaviour, it should be possible to approximate the development of the queue more accurately 

than using the mean size constraints alone. Simultaneously, time-dependent variance can be 

estimated. Because of the form of the variance equation, this approach hinges on how the delay, 

the integral average of the queue function, is approximated along with the mean queue. 

 

After reviewing the sheared queue method, this Chapter 4 looks at corrections and an 

alternative for the difficult decay regime, which wherever possible are directly related to initial 

and asymptotic behaviour, and tests these against simulations using the set of peak cases. 
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4.2. THE SHEARED QUEUE APPROXIMATION AND RELATED ISSUES 

 

4.2.1 The shearing transformation 

 

In the late 1970s, P D Whiting, working at the Transport Research Laboratory in the UK, 

proposed a ‘coordinate transformation’ to merge deterministic time-dependent and equilibrium 

queue formulae in order to produce an approximate time-dependent formula that could be 

applied seamlessly through and above saturation. This method, known as ‘shearing’, was 

applied first by Robertson and Gower (1977) in the traffic signal optimisation software 

TRANSYT, and further developed by Kimber and Hollis (1979) and Kimber and Daly (1986), 

while similar ideas of Doherty (1977) were developed by Catling (1977), who described a 

similar method with the emphasis on stochastic delay at signals. Rider (1976) investigated 

relaxation behaviour using an approach based on inverting the relationship between the steady-

state queue and demand intensity, but restricted results to the time-dependent formulation of the 

probability of the queue being zero
38

. Newell (1982) considered queues developing through 

saturation, but appears not have been aware of this work and did not describe a transformation 

as such. An interpretation by Heydecker and Verlander (1998) will be discussed shortly. 

 

The ‘coordinate transformation’ involved in shearing was originally posed diagrammatically, as 

shown in Figure 4.2.1, where different versions of traffic intensity are related by: 

 

 Lfed
11       (4.2.1) 

 

Figure 4.2.1  Graphical interpretation of the shearing transformation 

 

                                                
38Knowing this would be sufficient for defining a Geometric equilibrium probability distribution, but not any other 
kind of distribution. 
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In the transformation, ρ is the true demand intensity or ratio of demand to capacity, the function 

fe is an equilibrium mean queue size function appropriate to the queue process, usually the 

Pollaczek-Khinchin mean value formula, and ρd is a synthetic variable that allows rewriting of 

the simple deterministic queue formula in the form of (2.3.4), assuming full utilisation of 

capacity - essentially (2.3.1) with constant parameters: 

 

       tLfLtLtL edd  1
00 1,    (4.2.2) 

 

  where  Lfe
1  is also the average utilisation  tx   (4.2.3) 

 

is the time-averaged utilisation or degree of saturation of service (at the stop line). Therefore 

(4.2.3) is equivalent to equating the time dependent queue to the equilibrium queue that would 

be generated at the service by traffic of intensity x, where it is convenient to use the forms of 

equations (2.3.50) or (3.2.14-15): 
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Since the system is not in steady-state equilbrium, this constitutes a quasi-static or quasi-

equilibrium assumption, but unlike (2.3.50) which, as it stands, fails when >1, (4.2.4) is 

always defined since x is always less than 1. Therefore (4.2.2-4) can be solved for all t. The 

quasi-static approach is not restricted to this relatively simple and analytically soluble case. 

Holland and Griffiths (1999) show how it can be applied to the multi-channel queue (section 

3.5.11 earlier), producing apparently very accurate results, but needing numerical solution. 

 

4.2.2  Sheared queue solution with initial queue 

 

The shearing transformation is equivalent to solving the equation
39

: 
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,,,
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0   (4.2.5) 

 

This is most simply solved for average utilisation x giving the quadratic solution: 

 

                                                
39In queue formulae, capacity  and time t always appear in combination, their product representing throughput 

capacity. Conventionally, however, the latter is not treated as an independent variable, and in any case it is 
sometimes desirable to refer to time in the absolute, though it always appears in a dimensionless expression. 
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  if f=0 and g0   (4.2.6a) 

 

where: 
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As an aid to differentiation note that this satisfies: 

 

02  hgxfx  so    (4.2.7a) 
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







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dt

dx
tx

dt

dL
     (4.2.7c) 

 

The equivalent but more complicated solution for mean queue size L is as given by Kimber and 

Hollis (1979): 
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where: 
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Ls(t), with subscript s, here specifically represents the sheared queue function. The reason for 

identifying the function in this way is that it is only an approximation to the mean queue, but 

there will be occasion later to employ the function Ls with modified parameters to achieve 

better accuracy or to modify its relaxation behaviour, while retaining its structural properties. 

Those properties make this quadratic function a useful alternative to the exponential for 

modelling saturating systems.  
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4.2.3 Sheared queue solution with origin time shift 

 

Kimber and Hollis (1979) proposed an alternative formulation, eliminating L0, in which the 

queue starts at zero at some time –t0 so as to reach L0 at t=0. They argued that the original 

method was inaccurate through not taking account of the history of queue development up to 

L0. While substituting an hypothetical time t0 for a real initial queue L0 may be considered a 

drawback, since L0 is likely to be available directly from calculation of earlier time periods. 

However, it may still be used as an alternative definition of the queue function. The sheared 

queue is reformulated as (4.2.9), where x
*
, being the average utilisation over [-t0,t] rather than 

[0,t], has the same form as (4.2.6a) but with L0 suppressed and modified components: 
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     (4.2.10a) 

 

To find t0 in terms of L0 it is easiest to invert the queue formula: 

 

    
F

FHGG
tLt

2

42 
  if F0    

    
G

H
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where, on setting L0=0 in (4.2.8b) and substituting shifted t
*
 for t: 
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0**2*  HLGLF      (4.2.11) 

Setting t=0, L=L0 and rearranging forms a quadratic in t0: 
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where: 
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 (4.2.12b) 

 

Technically this should work only if the queue is growing, so there is a finite time at which it 

is zero. For decaying queues, Kimber and Hollis (1979) calculate the time at which the queue 

should equal twice the equilibrium value, assuming that it decays linearly. Thereafter they 

assume it decays according to a mirror image of the growth function. 

Superficially the constructions appear equivalent, but in reality they are not. Referring back 

to section 2.5.8, the time t0 corresponds to a particular point in the development of the queue 

from zero, at which the queue size probability distribution will differ from an equilibrium 

distribution in some specific (even if unknown) way. In the construction with L0, however, 

the initial queue size distribution at t=0 is unspecified, although (4.2.5) means that quasi-

equilibrium is assumed implicitly. If a decaying queue is assumed to fall to 2Le at t=tc, a yet 

different distribution ought to apply. Hence the use of subscript t instead of s to emphasise 

that they represent different model processes. 

It is not the purpose here to compare the basic and origin-shifted sheared methods, for two 

reasons. First, corrections to obtain the correct asymptotic variance will inevitably alter the 

behaviour of the functions, making such a comparison of academic interest. Second, since 

both are approximations, which one works best may depend on circumstance, such as 

whichever happens by chance to reflect most closely the true probability distribution at a 

particular stage in queue growth. Figure 1.1.3 earlier suggests that origin-shifting does not 

necessarily result in greater accuracy, but this could be a topic for further investigation.  

 

4.2.4 Relationship between queue size and delay and derived queue functions 

 

In principle the sheared function, with time replaced by any monotonically increasing function 

of time, could represent an instantaneous queue size or its average ‘delay’, because the initial 

and final (equilibrium) values would be the same. Kimber and Hollis (1979) approximated the 

time-averaged queue, or delay per unit time, by the following on the basis that the queue 

function is nearly linear at the beginning and end of the time range: 
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This delay function can be calculated as in section 4.2.2, but x will be different from that for the 

sheared queue, and the approximation will be poorest at some intermediate point where the 

function is most non-linear. Time transformation is given added impetus by the fact that as 

shown later, in particular M/M/1 cases where L0=0 and <1, as t, the sheared queue 

function Ls(t) is a better model of D in the variance formula (2.3.27) than is Ds(t) itself. 

 

Given the integral relationship between L and D (2.3.28), there may be potential benefit in 

deriving L from D because integrating L to get D is intractable, especially if time is replaced by 

a function of time, while differentiating D is more straightforward: 
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Assuming Ds has the functional form of Ls, with the factor 2 in (4.2.13) replaced by a general 

function of time (t), where Ls
/
 has the functional form of dLs(t)/dt, the derived queue is: 
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For simplicity, Ls is now treated as just one of a range of possible functions. If  is present, it 

can be accommodated through nested differentiation. Differentiating (4.2.5): 
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Hence the time derivative of xs is expressible in terms of xs: 
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Using (2.3.24), containing instantaneous utilisation, if Ls is interpreted as queue size, (4.2.16) 

can be rearranged into an alternative form suggested by Prof. B G Heydecker, in which p0 

appears as the weighted sum of time-averaged and equilibrium quantities: 

 

    
 
 

    
  tdLdx

tdLdxx

tdLdx

x
tp

ss

sss

ss

s











1

11

1
10   (4.2.18) 



148 

 

If Ls is used to estimate delay, then utilisation requires taking the second derivative: 
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If Ls(t) is used to represent queue size then: 
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If Ls(t/) is used to model delay then: 
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These formulae are available for calculating properties of variations of the sheared queue as 

and when necessary. 

 

4.2.5 Effect on estimation accuracy of assumptions about the initial state 

 

This sub-section comments on some issues of accuracy and interpretation associated with the 

sheared approximation and time slicing, in the light of the new result for variance. Kimber and 

Hollis (1979) argue that origin-shifting gives more accurate results for all values of time, 

because the shape of the queue development is no longer dependent on the initial queue size. 

The results are certainly more consistent in that sense. However, as pointed out earlier, a queue 

which grows from zero for a time t0, reaching mean size L0, is not the same as a queue that has 

exact size L0 at t0, because the former will have developed a probability distribution around L0, 

whereas an initial L0 could represent a ‘pure state’. It is sometimes argued that an initial L0 

represents the mean of a distribution, indeed Heydecker and Verlander (1998) suggest that it 

represents an equilibrated distribution. However, the distribution it actually represents cannot 

be controlled, and the lack of information about it within the method is a source of error. In 

general, it will not be possible to find a single time t0 at which both initial queue and initial 

variance are matched, let alone three moments if p0 is included. 
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Suppose (4.2.9) is accepted and a queue starting from zero at t=-t0 grows to a mean value of L0 

at t=0, related to the initial queue by the following, assuming an M/M/1 process: 
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According to (4.2.13), the average delay per unit time over the growth period, say D0, is 

approximately equal to the queue size at -t0/2. While L0 is small, (4.2.9) shows that the queue 

grows almost linearly, so initially D0L0/2. 

 

Now introduce initial variance V0. Bearing in mind that L0, V0 represent results after a time t0, 

and the queue size and variance to put into the equation at t = -t0 are both zero, (2.3.27) leads to 

the following estimate of variance at t = 0: 
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On eliminating t0 in (4.2.25) using (4.2.24), several terms cancel giving the result: 
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If the queue is equilibrated at t=0 then the mean and variance should be related in the same way 

as (2.3.32) and (2.3.33), i.e. V0
*
=L0(L0+1). Substituting this in (4.2.26) and multiplying out by 

the RHS denominator results in the following, but this is satisfied only if ρ=1: 

 

      00 1 LL   =1   (4.2.27) 

 

So, thanks to (2.3.27), it has been shown that in general the queue cannot be equilibrated at t0. 

This does not matter greatly since the means to calculate p0, L and V at moderate values of t are 

now available, and in principle the queue size probability distribution can be inferred from 

them. However, this only works for a queue starting at zero, and at large values of t equation 

(2.3.27) becomes increasingly sensitive since it involves the product of a number that is 

converging on zero and another that is increasing without bound. This applies also to the 

deterministic queue formula, but the sheared transformation takes care of it automatically. 
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Variance cannot be sheared because its time-dependent graph falls below the deterministic 

graph (see Figure 1.1.1 in the Introduction earlier). In any case, shearing the variance would 

beg the question of the accuracy of the result, whereas it would be preferable to use the 

variance formula to improve the accuracy of the whole approximation. Therefore other methods 

are required, which are the subject of much of what follows. 

 

4.2.6 Effect of time slicing on accuracy 

 

Equation (4.2.5) effectively equates the instantaneous time-dependent queue at time t, given by 

the middle formula, with the equilibrium queue that would result from an average degree of 

saturation x of service over [0,t], given by the RHS. This quasi-steady-state assumption is 

necessarily an approximation and a potential source of error. 

 

Brilon (2007) looks at several variants of time-dependent equation, mostly describing delay 

rather than queue size, and points to problems that arise when like is equated with not exactly 

like. However, the approximation is convenient, avoiding the “disheartening”
40

 complexity of 

exact transient solutions (e.g. Morse 1958), which in any case exist for few processes. 

 

Heydecker and Verlander (1998) argue that better results could be got by integrating the queue 

size over very short time steps. This would certainly be advisable if ρ and  vary significantly 

on short time scales, but it could be computationally demanding. They derive their main result 

for the rate of change of queue size by a fairly complicated procedure reinterpreted here. The 

rate of change of the mean queue in terms of instantaneous utilisation u or average degree of 

saturation x is: 
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Now if the queue is assumed to be quasi-equilibrated, treating Le as a function: 
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Substituting for ∂x/∂t in (4.2.29) using (4.2.28) and rearranging, noting from that (4.2.5) Le(x) is 

an invertible function of x: 

                                                
40Kleinrock (1975) 
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     (4.2.30) 

 

This is similar to the result got by Heydecker and Verlander (1998), and amounts to a way of 

converting between instantaneous utilisation and average utilisation. This in turn means that the 

queue development can be handled in a sequence of short quasi-static time slices, but this can 

also be done through (4.2.5-7). 

 

Here, arrival and service rates can be generalised to time-dependent functions only if the quasi-

static assumption remains consistent. There is no reason why it shouldn’t, since it contains no 

assumptions about the behaviour of arrivals or service. However x and ρ then lose their 

meaning unless defined in terms of average throughput capacity and demand. If x is defined 

more generally by (4.2.31), then (4.2.30) is replaced by (4.2.32): 
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Apart from the arrivals  now being a function of time, the essential difference is that the 

capacity  in the numerator is instantaneous while that in the denominator is averaged. 

Instantaneous arrivals and capacity can change discontinuously (step functions) but the degree 

of saturation x is averaged over [0,t] and therefore must be continuous, even if not everywhere 

differentiable. However, when the history of arrivals and service is allowed total freedom, the 

assumption of quasi-equilibrium seems increasingly artificial. 

 

The approach adopted in this research retains where possible the quasi-static basis of time-

dependent queue modelling, which has proved extremely successful, robust and applicable to a 

wide range of problems, while steering it towards greater accuracy through enhancements 

linked wherever possible to established queue properties. Developing inherently more accurate 

efficient queue approximations, that could involve dropping or modifying the quasi-static 

assumption, is not considered part of this research, but could be a topic of future research that 

could include reviewing the alternative approximate time-dependent methods which have 

variously been proposed. 
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4.2.7 Practical issues of predicting queues at junctions 

 

Queue and delay measurements can be explained post hoc by measuring arrival rate profiles 

and measuring or inferring capacity profiles, but reliably predicting either ahead of time is more 

problematic. Kimber and Daly (1986) demonstrated that predicted queue sizes at a give-way 

junction, using the time-dependent method, could match observation roughly within a range of 

a factor of two either way, consistent with the exponential distribution of M/M/1 arrival and 

service times. 

 

The futility of over-precise predictions is clear from this, but accuracy can be said to be 

achieved by methods that both deliver mean predictions within the expected range of variability 

or uncertainty, and respond realistically to changes in their data, and so are useful for predicting 

the effects of different designs or policies. This is more likely if the methods embody essential 

structural features or at least realistic constraints. It is these properties to which the sheared 

approximation owes its success. 

 

However, queue variance and probability distributions have been left out of time-dependent 

modelling until now because they are not as easily measured as mean queue size, nor have 

analytical descriptions been available.The next Sections of this Chapter aim to address this. 
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4.3. CORRECTING THE SHEARED QUEUE APPROXIMATION FOR M/M/1 

 

 

4.3.1 Extended sheared formula 

 

The shearing approximation including dispersion of arrivals is, from (3.2.13): 
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As in equations (3.2.14-15) this can be rewritten combining I and Ia into one coefficient: 
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where   1
2
1*  aIII     (4.3.3) 

 

This is convenient because C appears in the sheared solution only in the form (C-I), and I
*
 

substitutes directly for I wherever it appears alone, and is identical to I as long as Ia=1. This 

makes one wonder whether I
*
 might have some physical significance, but difficulties arise 

because I appears to have only two possible values, 0 and 1, at least for single-channel queues. 

 

4.3.2  Relationship between queue size and delay 

 

Shearing the variance appears not to be possible, since the time-dependent graph falls below the 

deterministic line (see Newell (1968a) and Figure 1.1.1d in the Introduction) (it would also 

require solving a quartic not a quadratic). A stronger  argument is that parallel approximations 

to mean and variance would not be expected to be mutually consistent, so additional correction 

would be required. Instead a way is sought to adjust the mean queue formula so that the 

variance equation (2.3.27) is satisfied. This involves both mean queue L and its time-average D, 

which is the same as mean total delay per unit time, thus constraining the behaviour of both 

functions. Conditions can be imposed initially and at equilibrium where true values are known. 

D can be calculated from the integral of L in accordance with (2.3.28), but the sheared queue 

function is awkward to integrate. Kimber and Hollis (1979) make use of the approximation: 

  

       2tLtD ss       (4.3.4) 
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This delay is accurate at t0 and t because the functions are almost linear there, but is 

inevitably less accurate at intermediate values where their behaviour is more dynamic. In effect 

the P-K formula is now sheared to a deterministic model of delay, where t is replaced by t/2 in 

(4.3.1-2), which can be considered exact if x is given a modified interpretation. This may seem 

artificial, but the original interpretation of x is also artificial and approximate In Figure 4.3.1, 

for =0.8, it can be seen how the sheared queue function starts close to simulated L but as time 

progresses moves closer to simulated D. Note also that neither Ls(t) nor Ls(t/2) is close to the 

true L, at least in this simple case. So to satisfy the variance equation, Ls is the best estimate of 

delay D as t, and while Ls(t) gives the correct mean queue as t0, Ls(2t) is better as t. 

Since V depends on both L and D, the greatest benefit is likely if they are compatible. 

 

 

Figure 4.3.1  Markov simulated and sheared queue growth functions 

 

To investigate the asymptotic behaviour of the sheared formula it is convenient to recast the 

sheared formula as a function of z=1/t, knowing that the Taylor expansion is convergent: 
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This is equivalent to solving: 

 

02  xx   so that   (4.3.6a) 
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where:  
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From (4.3.6a) and LHS of (4.3.5), where 
/
 means differentiation with respect to z: 
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And for the record the second derivatives are: 
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With these terms, the Taylor expansion around z=0 can be used to calculate limiting values. In 

the limit, with x= and defining a factor  dividing time, the terms become: 
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Since near z=0, x=+x
/
z=+x

/
/t, equation (4.3.9b) is trivially equivalent to the deterministic 

queue formula. To be compatible with the deterministic variance (2.3.27) the delay function 

must satisfy the following, regardless of the asymptotic behaviour of terms in L whose time-

dependent components become negligible relative to that of D, which is multiplied by t: 
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Therefore to make the Ls(.)  function asymptotically compatible with simulated D: 
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In the simplest M/M/1 case (L0=0, V0=0, C=1, I
*
=I=1, etc), this equals 1 for all . This 

demonstrates that the basic sheared queue function is the better approximation to delay as t 

in this particular case, though the sheared delay (4.3.4) is necessarily better near t=0. Generally, 

 can take different values. In the case of M/D/1, with unit-in-service it stays a little above 1, 

but without unit-in-service is close to 1/, so can be moderate or very large. For example, for 

=0.8, L0=0,  is around 1.1197 with unit-in-service and 1.1944 without unit-in-service, so no 

longer has a simple value. 

 

The second order terms in D give no clue to the first order terms in whatever ought to serve as 

L, but only lead to a relationship involving the first order term of V. To investigate the 

behaviour of L its integral relationship to D (2.3.28) must be invoked. Since recovering L 

involves differentiating D, and the time divisors  at t=0 and t= are different, a time-variable 

time-scaling factor (t) must be introduced. In summary if, regardless of its parameters, delay 

D is defined using the function Ls then (where the subscript d means ‘derived’): 
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4.3.3  Basic corrections to delay 

 

At t=0, linearity in the limit means  must start with the value 2. In the simplest case of M/M/1 

starting from zero, it falls to 1 at t=. To investigate its behaviour Markov simulation is used to 

generate queue growth profiles to compare with the sheared function for several values of , 

then time is factored to get the sheared function Ls to match the simulated delay D. In order to 

compare the results on the same basis a time transformation is preferred that effectively makes 
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the queue function independent of  (link function again), and also (possibly) independent of 

queue statistics, assuming that queue development is largely
41

 monotonic: 
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It is clear that the transformed equilibrium queue size is 1, so 
*
=0.5 if the (*) function is 

assumed to be M/M/1-like. If L0=0, and hence L0
*
=0, and  is not transformed, a normalised 

time variable is defined by: 
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It is convenient to make the values of t used in the simulations and calculations a logarithmic 

sequence in multiples of re. When  is plotted against t
*
, points for different values of  tend to 

cluster together, suggesting that a single function could indeed represent them all. While they 

do not converge exactly to the value 2 as t
*
0, but rather to around 1.8, the half-way value of 

 occurs close to the =0.5 relaxation time (re(0.5)) 11.66, suggesting that time or a function of 

it be factored by relaxation time. Now three possible functional forms of (t) are considered: 
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41A queue growing from an initial pure or narrowly distributed state other than zero may sink somewhat before its 
probability distribution relaxes and the mean queue starts to increase. 
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In practice, nothing appears to be gained by using power m other than 1, leaving 0 as the only 

calibration parameter. Figure 4.3.2 shows RMS errors and optimum values of 0 as a function 

of the minimum value allowed to the time function, t
*
 or t/re. 

 

 

Figure 4.3.2  Performance of various candidates for the  function 

 

This shows that (4.3.16c) offers the most consistent performance, though this could leave 

unresolved the issue of what to do if the queue statistics are not M/M/1 and an appropriate 

formula for relaxation time is not available. Figure 4.3.3 plots [3] against ‘relaxed’ time. 

Although RMS error remains low, points diverge at the lowest t values. Note that possible 

future use of time scaling based on the sheared function as in (4.3.15a) is not discounted. In fact 

this was the kind of approach tried first in the different form of the ratio of Ds to Ls. 

 

 

Figure 4.3.3  [3] function against ‘relaxed time’ (two points with >2 omitted) 

 

The formulae (4.3.16a,b) produce similar graphs but with substantially more divergence of 

points at low values of the time function (it is not clear why any divergence occurs). 
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Figure 4.3.4  [3] function against absolute time (=1) 

 

In Figure 4.3.4, if a few rogue points resulting from inaccuracy at the extreme left are ignored, 

as well as points for =1.1 (>1) which must behave differently, the impression is that data 

points tend towards a common trend as a function of low values of actual time (bearing in mind 

that re ranges from 7.4 to 379.7, so t=1 in Figure 4.3.4 corresponds to values well below 1 in 

Figure 4.3.3). This trend might indeed eventually converge to a common value, but only at 

times so short they are of little practical interest. To get a handle on this it is necessary to 

simulate short growth times in fine detail. In doing so each time point is recalculated from a 

zero initial state to avoid inaccuracies in D to which  is very sensitive. 

. 

 

Figure 4.3.5  [3] function against short actual times 
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In Figure 4.3.5, the behaviour of  is seen to be converging smoothly towards 2 as t0, but 

there appears to be no easy way to transform t so as to merge the graphs for different . Various 

functions having been tried, probably the most exotic of which is to multiply t by (1-
2
)

1/4
, but 

without a structural basis such functions are unlikely to extended to more general cases. 

 

Returning to Figure 4.3.1, it is noticeable how smoothly D moves between Ls(t/2) at small t and 

Ls(t) at large t, and that the half-way point occurs near the relaxation time, 89.72 for this case 

(=0.8), suggesting that a function weighting queue functions rather than time, say (t), might 

be able to predict D. Figure 4.3.6 shows that when (t) is defined and applied by equations 

(4.3.17), this behaves similarly to , including divergence at small times: 
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Figure 4.3.6   function against ‘relaxed time’ (compare with Figure 4.3.3) 

 

Absolute times less than 1 unit, representing 1/, are practically meaningless. Allowing that 

estimates become unstable at very small values of t, Figure 4.3.4 suggests that [3] values 

plotted for various  converge around absolute time t=1, representing 1/ since =1 for these 

tests. If instead of t/re the time function is defined by ‘shifted relaxed time’, equation (4.3.18), 

much of the divergence at small values of t disappears, as shown in Figures 4.3.7 and 4.3.8 

respectively (note that, as before, data for >1 are not expected to comply): 
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Figure 4.3.7   function v. shifted ‘relaxed time’, model factor = 1.77, RMSE = 0.024 

 

 

Figure 4.3.6   function v. ‘shifted relaxed time’, model factor = 0.85, RMSE = 0.018 

 

In both cases, the unfactored models overpredict, and consequently the factored models, that 

minimise error, are unable to achieve the theoretical result at extremely short times. While this 

may not matter in itself, it may matter that a factor must be introduced that could vary 

depending on the starting condition. The ‘external’  function appears to give cleaner results 

than the ‘internal’  function, as well as being easier to work with as discussed earlier. 

 

Regardless of initial conditions, 02, and  is given by (4.3.12). Equation (4.3.17b), together 

with the fact that all queue and delay functions start equal to L0, implies that 01, and using 

(4.3.10-11) it can be shown that (4.3.19a) applies in general, and since the same difference of 1 

applies at t=0, it may be assumed (if required) that it applies for all t. 
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Inspired by the Logistic form of Figure 4.3.6, (t) is defined by (4.3.19b), using (4.3.18): 
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4.3.5  Interpolative correction in basic cases 

 

Figure 4.3.7 plots RMS errors for the range of <1 values tested. 

 

 

Figure 4.3.7 RMS errors for D corrected by  and  methods relative to Markov simulated 

 

Figure 4.3.8 shows that both the methods give very accurate results for delay growing from 

zero with =0.8 (it is practically impossible to separate the graphs). Similar results are got for 

=0.5, 0.7 and 0.9. For =1.1, where  is forced to 1 (=2), the fit is also good as shown by 

Figure 4.3.9, with RMS error .3335 relative to D values ranging from 1.25 to 219. 

 

 

Figure 4.3.8  Comparison of Markov and /-corrected D equilibrating example 
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Figure 4.3.9  Markov and /-modelled D functions for over-saturated growth example 

 

4.3.6  Interpolative correction with general initial queue 

 

 appears to be well defined in all cases, but it remains to evaluate 0 in the general case 

when the initial queue is non-zero, and this does not appear to be possible using the method 

applied to . Examples with =0.8 and L0=2 have been tested. Figure 4.3.10 shows the 

dependence of  on t in this case
42

. The final values are as predicted by equation (4.3.12). The 

initial value for equilibrated L0 is as expected, but in the case of exact L0 values cannot be 

calculated for small t using  because D is not monotonic – it falls before it rises, whereas Ls 

can only be monotonic. However,  does not suffer from this limitation. 

 

 

Figure 4.3.10   function for non-zero initial queue 

 

Figure 4.3.11 (left) shows that Ls(t/2) is a good approximation to D, so while one might ignore 

the hump in the  function, Figure 4.3.12 (right) shows that Ls cannot match D. 

                                                
42 The presence of  rather than  here is for historical reasons, and the adoption of  in (4.3.19b) really ought to 

follow this analysis, but the close relationship between these functions may be kept in mind. 
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Figure 4.3.11  Queue and delay development for equilibrated or exact initial queue 

 

 

Figure 4.3.12  Markov and /-estimated D functions for equilibrated or exact L0 

 

For the equilibrated initial queue, given that the rising part of the ‘hump’ in  covers a 

relatively short period, if the initial value of  can be set to the height of the hump, instead of 

1.8 or 2, then quite a good fit can be achieved, as Figure 4.3.12 (left) shows, but a satisfactory 

fit is also obtained using  interpolation (4.3.17), and this achieves a much better fit when the 

initial queue is exact, Figure 4.3.12 (right). 

 

The  method has the fundamental limitation that it cannot reproduce a dip in D caused by high 

initial utilisation (e.g. associated with low initial variance). Only the  method can do this. The 

problem is now to determine 0. The formula (4.3.17a) implies a ‘limiting value’ of  as t0. 

This can be estimated by approximating D by L0+½(-u0)t where u0 is set to the value it ought 

to have at t=0, depending on the initial state assumed. At the same time, an empirical value of 

0 is found so as to minimise RMS error between Markov simulated values of D and those 

estimated by equations (4.3.16c) and (4.3.17b). 

 

Bearing in mind that RMSE is biased by the logarithmic sequence of time points estimated, 

Table 4.3.1 gives for very small t (0.000001 used to avoid divide error) and three types of initial 

state (in groups of three cells). The limit  values can be rather sensitive and the correlation 

with the estimated values is weak. Figure 4.3.13 plots the optimum values. 
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Table 4.3.1  Experimental/estimated values of 0 and calculated values of . In each group: 

limit 0 values (left), ‘optimum’ values (middle), and theoretical values if known (right)
43

 

 

 
L0 

if>0 

L0=0 L0>0 pure state L0>0 equilibrated 

Limit ‘Opt.’ True  Limit ‘Opt.’ True  Limit ‘Opt.’ True  

0.25 - 1.00 0.83 1 0         

0.5 1 1.00 0.85 1 0         

0.7 1 1.00 0.89 1 0 3.50 2.35 - 0.525 3.49 1.22 - 0.3 

0.8 2 1.00 0.85 1 0 3.36 2.68 - 0.7 0.97 1.30 - 0.4 

0.9 5 1.00 0.83 1 0 2.46 2.97 - 0.875 1.00 1.40 - 0.5 

0.95 5 1.00 0.83 1 0 2.46 1.74 - 0.304 1.00 1.29 - 0.25 

0.95 9     2.51 2.51 - 0.675 1.41 1.41 - 0.45 

 

 

 

Figure 4.3.13  Optimal 0 for various  and initial states 

 

There is a practical limitation on the values of  that can be tested in this way. Values near 1 

take a long time to simulate, and the Markov simulation program Qsim accepts only exact 

integer values of the initial queue (in addition of course to equilibrated initial states), meaning 

only >0.5 can be tested usefully in that mode. However, lower values of  have been tested 

with L0=0 to see whether  0(opt) tends to 1, which it appears not to, and =0.95 has been tested 

with two initial queue values, resulting in significant differences. The conclusion is that simple 

functions of  to predict  cannot be set up. 

  

                                                
43Originally it was planned to label initial and asymptotic time correction parameters  and , but 0 and  were 

considered more informative, hence leading to 0 and . The parameter  was studied in some detail and 

methods found for matching highly non-linear simulated initial behaviour from low variance initial states. 
However, this approach was considered to be too complicated and empirical to be practical at this stage. 
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4.3.7  Interpolative correction for mean queue size 

 

Assuming that 0 can be estimated, this sub-section looks at performance in estimating the 

mean queue size. The mean queue function can be calculated by applying (4.2.14) and (4.2.16) 

to (4.3.17). The calculation is best done in stages because the full explicit expression is messy 

and hence prone to error. From the definition of D (2.3.28), the final stage of the evaluation is: 
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This makes use of the derivative Ls
/
 of the Ls function, as given by (4.2.16), and the time 

derivative of  from (4.3.16c) and (4.3.18): 
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Figures 4.3.14 show that for =0.8 the estimates of L and V based on (4.3.20) and (2.3.27) are 

quite accurate, except for some over- or undershoot in V. Similar results have been got for 

=0.7 and 0.9
44

. Sheared mean queue and ‘naïve’ variance approximations are also plotted 

(dashed graphs), the latter using Ls(t/2) to represent delay, illustrating the former’s inaccuracy 

and the latter’s inability to satisfy the steady-state asymptotic constraint. It is interesting that in 

this case the variance appears to ‘lose its memory’ of its initial state more quickly than the 

mean queue. It is noticeable, though not surprising, that the accuracy of V is less than that D 

and L, even neglecting overshoot. Therefore there may be a case for adjusting  to minimise 

some practical combination of the errors in the variables. 

 

4.3.8  Calculation of initial 0 for undersaturated growth 

 

Since L appears to be estimated accurately by (4.3.20), differentiation is expected to lead to a 

formula for 0. On the face of it, this appears complex, but differentiating (4.3.20) relates the 

rate of change of mean queue to , and its derivative which is simplified by (4.3.21): 

 

tDtDL   2          (4.3.22) 

 

                                                
44There does not appear to be a tendency for errors to escalate as 1. 



167 

 

 

 

 

Figure 4.3.14  Fit of Markov and /-estimated L and V for various initial states 

 

Expressions that multiply t and remain finite as t0 will vanish. Since this is true of Ls
/
(t) and 


/
, it is necessary only be sure that Ls

//
(t) remains finite to eliminate the last term in (4.3.22). 

Tedious evaluation of (4.2.19) shows that Ls
//
 is linear in xs

/
 and xs

//
, and that xs

//
 is linear in xs

/
. 

The only risk factor lies in the denominator that can become zero when xs=1. As there is no 

reason to suppose the expressions ‘explode’ at the last moment when moving towards an exact 

initial state, it is assumed that derivatives remain finite. Now from the initial rate of change of 

the queue size it follows from equation (4.3.20) that: 

 

     00 lim2  tDu       (4.3.23) 

 

The final term in D  declines to zero, leaving only the first two terms, and the derivative 

functions (4.2.18) simplify greatly and smoothly when t0, hence: 
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while, for completeness, from (4.3.12) and (4.3.19a): 
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In (4.3.24), xs is obtained by inverting the P-K mean function. In the M/M/1 case, 0 can be 

expressed simply in terms of L0: 
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This necessarily gives the value 1 for all equilibrated initial states tested that are not ‘singular’ 

(in the sense of =0.5, L0=1), including L0=0, since in those cases xs=u0. For exact initial states, 

0 can take on a range of values >1, since u0=1 necessarily exceeds equilibrium utilisation. 

Qsim is able to generate examples with intermediate values of initial variance (using a Normal 

distribution), and these also produce 0>1 for the same reason. In principle, extreme ‘long tail’ 

distributions could occur where V0 exceeds the equilibrium value associated with L0, but these 

are likely only when a queue is decaying and would be expected to result in 0<1. 

 

It is interesting, and significant, that 0 involves the initial utilisation and mean queue, but not 

initial variance, while  involves initial and equilibrium mean queue and variance, but not 

initial utilisation. Taken together, these quantities send the strong message that all three 

moments - allowing utilisation, or its complement p0, the style of ‘moment’ – are necessary to 

characterise the state of a queue. Furthermore, these results not only answer the requirement to 

make the approximation to queue development consistent with the variance equation, but also 

bring in the explicit dependence on the initial probability distribution which has been identified 

as lacking in previous methods where only the mean queue was considered. 

 

Because of the amount of work involved, detailed testing of the effect of different types of 

initial state has been restricted to  values 0.8, 0.9 and 0.95. As Qsim can generate equilibrated 

and exact initial states only for integral values of L0, and for <0.7 equilibrium is reached very 

rapidly, =0.8 (Le = 4) is the lowest value of  for which a practically interesting range of cases 

can be generated. 
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Examples have been generated for the following initial states: 

 

 exact initial queue size - zero variance 

 ‘small’ initial variance - where the variance is broadly similar to the mean 

 ‘medium’ initial variance - where the variance is around half the equilibrated value 

 initial variance corresponding to equilibrated initial queue 

 

Figure 4.3.15 shows how 0 (calculated), 0 (hand-optimised) and  (calculated) vary against 

L0. There appears to be a common pattern covering all cases, with a tendency for the calculated 

value to exceed the optimum, except when equilibrated (right). Figure 4.3.16 plots 0 

optimised against calculated, showing deviations from linearity, while Figure 4.3.17 shows 

trends against the ratio V0/L0, showing differences in trend behaviour. The differences matter 

because the results can be sensitive to 0. 

 

 

Figure 4.3.15   values for various initial states (defined on previous page) 

 

 

Figure 4.3.16  Fit of calculated 0 for various initial states 

 

When a single factor in the range 0.81-0.84 replaces individual hand-optimised factors, error is 

increased by 2 to 3 times. Detailed regression of the relationship between opt and cal does not 
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appear worthwhile, but obvious features that could affect accuracy ought to be accounted for. 

The difference between the four initial cases lies in the shapes of their queue size probability 

distributions, which are Delta, Normal-like, Poisson-like, and geometric respectively. 

 

 

Figure 4.3.17  0 versus variance ratio for various initial states 

 

The geometric distribution differs fundamentally from the other probability distributions in that 

it has mode=0, while all the others have mode>0. For this reason, one way to separate cases 

might be to estimate parameters of the Gamma distribution (2.2.6-7), even if it is not the most 

appropriate form. Alternatively, equilibriated or near-equilibriated cases can be identified by 

their relatively large initial variance. Various functions of L0, V0 and  have been tested to 

separate cases and to linearise the dependence of the Ω-ratio, and the following appear to work, 

as evidenced by Figure 4.3.18: 
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where a normalised demand intensity parameter is defined by: 
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Figure 4.3.18  Linearised trend model for  adjustment factor when <1 

 

The impact of the corrections can be judged from Figure 4.3.19, which shows the fit of variance 

values using optimised, calculated and adjusted 0 respectively. While the corrections cannot 

achieve the quality of fit of individually optimised 0 values (left), the corrected parameters 

(right) are clearly better than the uncorrected ones (middle). While it is disappointing that the 

theoretical formulae alone do not achieve accuracy, and the corrections are not perfect, this 

could not reasonably be expected given the complexity of queue processes. 

 

 

Figure 4.3.19  Effect of 0 adjustment on variance estimates for =0.9 cases 

 

With origin-time shift, the -correction is still possible using the same adjustment formulae, 

but errors in tests with =0.9 are somewhat greater, as shown in Table 4.3.2. 

 

Table 4.3.2  RMS errors with -corrected models, =0.9 

Method Queue L Delay D Variance V 

Sheared with L0 0.064 0.049 0.266 

Sheared with t0 0.096 0.087 0.409 
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4.3.9 Definition of queue growth methods and labelling of combinations 

 

In later Sections alternative methods of calculating queue development, and specifically queue 

growth, are coded as shown in the following Table 4.3.3: 

 

Table 4.3.3  Definition of approximation methods for queue growth 

Symbol Method 

s Basic sheared queue and delay 

t Origin-shifted sheared queue 

d Sheared delay, derived sheared queue 

z Origin-shifted derived sheared queue 

c Corrected derived sheared 

k Corrected origin-shifted derived sheared 

 

These may be combined in various ways to calculate undersaturated growth, oversaturated 

growth, and decay, plus the two transitions between these regimes. So a method combination is 

labeled ‘abcde’ where ‘-‘ can replace a transitional method (b or d) to represent defaulting to 

the method in an adjacent main regime. Section 4.5 later illustrates and discusses these regimes 

further, once methods for oversaturated growth and decay have been determined. 
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4.4. OVERSATURATED GROWTH REGIME 

 

4.4.1 Behaviour relative to a deterministic asymptote 

 

The asymptotic behaviour of the queue when >1 is different from <1 because utilisation can 

never exceed 1. By Taylor expansion of the inverse-time sheared queue function, as in the 

previous Section, the asymptotic value of x is found to be: 
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Like (4.3.9b), this is trivially consistent with the deterministic queue formula except for the 

contribution of the RH term, so that: 
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The min() term has been retained, but since >1 its value is simply 1 and the statistical 

expression is evaluated using the definition of I
*
 and the relationship between Ia and ca in 

Section 3.4. This gives the result in a revealing form: 
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Thus the queue (approximation) never ‘forgets’ its initial value nor its deviation from linearity 

during initial growth (which the above equations ascribe to randomness but could also be 

influenced by the initial utilisation). As the time scale is zoomed out the queue graph looks 

increasingly linear, so Ls(t/2) is expected to be a good approximation to the ‘delay’ associated 

with mean queue Ls, possibly with a modified third term. Figure 4.4.1 is an example of 

equations (4.4.3) in action. This shows the devation from the deterministic asymptotes of queue 

and delay calculated by Markov simulation (‘sL’, ‘sD’) and sheared method (‘sLs’, ‘sLs/’, 

where ‘/’ indicates that t is replaced by t/2). The calculated functions tend to a value not far 

from the theoretical final value. However, as all the functions start and finish at the same 

values, any correction to the difference from the asymptote function must be non-monotonic, 

meaning that for example estimation methods based on an exponential function cannot be used. 
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Figure 4.4.1 Difference from deterministic asymptote for various estimation methods 

 

4.4.2 -correction for oversaturated growth 

 

A similar empirical analysis to that of the previous Section has been done for 21 oversaturated 

growth cases, with  in the range to 1.0151-1.3, L0 ranging from 0 to 100 (mostly at the lower 

end), and variances ranging from zero to equilibrated. The results are shown in Figure 4.4.2, 

and equations (4.4.4). 

 

 

Figure 4.4.2  Linearised trend estimate of  ratio for >1 
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The impact of the correction is evident in Figure 4.4.3. This correction applies to the basic 

sheared approximation calculated for an extended range of time points from a common origin, 

not to the derived version, nor to a time-sliced calculation. 

 

 

Figure 4.4.3  Effect of 0 on variance estimates for >1 growth test cases 

 

This correction does not work well for the 34 peak test cases. They differ from the 21 pure 

growth cases in several respects: 

 

 Initial states generated by a complex growth process 

  values change with time 

 Transitions between <1 and >1 

 Relatively short growth times 

 Only 2 cases where V0>L0
2
 

 

The 34 peak cases contain a total of 163 time slices where >1, with  ranging from 1.0061 to 

1.1458. It is found empirically that in each peak case a certain set of optimal factors applied to 

Ω0 achieves minimum error (measured for V which is the most sensitive result). These values 

are mostly near to but not exactly the same as an average values for each peak case. With Ω∞=1 

the effect of the time-dependence (4.3.16c) is small. There is no apparent relationship between 

the empirical correction factors and V0/L0
2
. Regressing scatter relationships between the factors 

and the normalised variable 
*
 defined by equation (4.3.27), as shown in Figure 4.4.4, yields 

the fairly flat formulae (4.4.5) (where regression coefficients have been rounded). However, the 

results seem unduly sensitive to the values of the correction factors, and better results appear to 

come from simply using the origin-shifted sheared ‘t’ method. 

 

  < 1 in previous t/s:  *1.093.0 




cal

opt
    

  >1 in previous t/s:  
*2.082.0 





cal

opt
  (4.4.5) 



176 

 

 

Figure 4.4.4  Correction factors to 0 for >1 time slices in peak cases 

 

 

4.4.3 Transition through saturation and long-term growth 

 

The behaviour of queues is complex, so any simplified or partly empirical approximation must 

be subject to a limit of performance. At some point it is necessary to stop experimenting and 

settle on a method that is sufficiently good for practical purposes. Even so, experiments with 

peak cases suggest that performance can be improved by replacing method ‘t’ by ‘k’ in the 

early oversaturated time-slices, reducing error in the variance. The effect decreases as more 

time slices are converted, and working from the late end of the oversaturated period is much 

less effective. To investigate the consistency of this effect a case of pure oversaturated growth 

has also been tested. In Figure 4.4.5 a queue is growing from an initial equilibrated size of 20 

under heavy oversaturation at =1.3. Although plotted on a linear time scale it is calculated in 

logarithmic time steps so the time slices keep getting longer. 

 

 

Figure 4.4.5  Oversaturated growth at =1.3, =1 from equilibrated initial queue size 20 

using two different calculation methods 
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At first sight it appears that only method ‘t’ produces an accurate result, and method ‘k’ fails to 

an unacceptable degree (other methods are worse). However, the methods start to diverge only 

after a time, in this case equivalent to throughput of around 100 (=1). That this is not just an 

appearance can be confirmed by plotting the left end of the graph on an extended time scale. 

This confirms that the ‘k’ method can be beneficial in the oversaturated transition regime.  

 

If this is a consequence of some ‘relaxation’ process then one would expect it to be related to 

throughput, not time slices or time. Figure 4.4.6 plots the benefit, in terms of reduction in 

variance error, of using method ‘k’ in just the first oversaturated time slice in all the peak cases 

against the throughput in the time slice (the pattern is similar when plotted against the total 

throughput in oversaturation). 

 

 

Figure 4.4.6  Benefit of using method ‘k’ in the first oversaturated time slice only 

 

There is no benefit for M/D/1 cases, but there does appear to be a benefit for M/M/1 cases, 

although it hits a ‘cliff’ at throughput similar to the above. The optimum value to minimise 

average variance error is 130, but the origin of this number is obscure. In the straight growth 

case, Figure 4.4.5, error becomes apparent only when method ‘k’ is applied for a total 

throughput greater than somewhere between 82 and 158, which is consistent with the above 

value. It is concluded that if over-saturated time slices are estimated by method ‘k’ where the 

cumulative throughput is less than 130 units, average error is reduced and performance in the 

lighter peaks visibly improved. 

 

In some cases error can be reduced by applying method ‘k’ in the last undersaturated time slice 

before the oversaturated growth regime. In all such cases the value of  is large (0.9463-

0.9925), but in some other cases where  is in this range accuracy is reduced, so it is unclear 

what objective criterion could be used to select the best method. 
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4.5. EXPONENTIAL DECAY METHOD BASED ON GENERAL PROPERTIES 

 

4.5.1 Motivation and approach 

 

The sheared queue method performs least well in representing the decay of queues, especially 

large queues, as pointed out by Kimber and Hollis (1979) who substituted a combination of a 

linear approximation and a mirror-image of the growth formula. This might be because of 

greater departure of the queue size probability distribution from that implied by the quasi-static 

model. A possible reason for a qualitative difference is that decay is dominated by the queue 

itself rather than a balance between input and output, making it more uni-directional. A queue 

that can substantially exceed the equilibrium size corresponding to the traffic intensity, can be 

viewed as applying a proportional ‘pressure’ driving its own discharge. If previous growth has 

been undersaturated, it does not follow that the probability distribution will be equilibrium-like, 

because to produce a queue of any substantial size the traffic intensity must be high, more than 

0.9 say, so the growth time could be much less than the stochastic relaxation time. A Normal-

like distribution is more likely in practice, so that variance and utilisation have a smaller role 

than drift of the mean. 

 

Since rate of discharge is limited by capacity, the decay rate of a large queue well above the 

equilibrium value assocated with the current demand will be virtually constant, agreeing with 

the linear regime of the Kimber and Hollis (1979) method. However, the rate must eventually 

fall off as the queue declines. In principle, the sheared formula could then be applied ‘as is’, but 

Kimber and Hollis found this to be inaccurate. They do not go deeply into their reasons for 

using an inverted form of the sheared function, although this appeare to have convenient 

properties, but point out that the relaxation of a queue is not simple (an unsurprising 

consequence of an extended probability distribution). 

 

This on the face of it argues against using the next simplest function to linear, an exponential 

depending on the difference between the current and equilibrium queue sizes which would 

naturally converge to equilibrium. However, as with the growth approximations described 

earlier, any function describing queue decay must satisfy at least initial and asymptotic 

constraints. These will not generally be satisfied by the same function, so a pure exponential 

function, with a single fixed time constant, could not satisfy the extreme constraints in any case. 

Arguably, therefore, the next simplest function to try is e
f(t)

, with the exponential providing 

global relaxation behaviour over time, and f(t) embodying additional time-dependence to match 

the extremal constraints. 
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4.5.2 Structural properties of queue development – initial state 

 

The sheared approximation deals with finite time intervals, and real queues involve discrete 

events, but queue behaviour can analysed theoretically as a continuous or piecewise continuous 

process. The rate of change of a queue is given by differentiating (2.3.3), giving (4.5.1). 

Utilisation is necessarily exogenous since it depends on the instantaneous queue size 

probability distribution which in turn depends on the past history of queue development. 

 

  u
dt

dL
      (4.5.1) 

 

If the initial state of the queue is in equilibrium then the initial mean utilisation will satisfy the 

RHS of the P-K mean queue formula (4.2.5) at t=0 (since xu there) and can be calculated from 

the initial queue by inverting that equation. This is the assumption made by Kimber and Hollis 

(1979) for large decaying queues, though they assume this rate remains constant until the queue 

has fallen to 2Le. If the initial state of the queue is an exact size >0 (a ‘pure state’ or ‘shock’), 

then the initial utilisation is exactly 1. If the initial queue is large then utilisation will be very 

close to 1. A large queue is therefore initially in ‘free fall’ and stochastic relaxation behaviour 

as described by equation (2.3.38) or (2.3.39) has not properly begun. It should be possible to 

describe such as queue by drift with some diffusion (Newell 1982) as long as p0 remains 

sufficiently small so the ‘zero barrier’ plays no part. The decay rate must eventually decline as 

the utilisation moves away from 1. The next simplest evolution is exponential, which actually 

applies to the very simple M/M/1/1 process (see earlier in Section 2.3). If, rather than assuming 

constant drift, the queue function is assumed to evolve exponentially, at least over the time 

period of interest, the following can satisfy both initial and equilibrium constraints: 
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Differentiating (4.5.2) and using (4.5.1) the initial value of ‘characteristic time’  in (4.5.2) that 

satisfies the initial condition is: 
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Equation (4.5.3) can be interpreted as the time scale of initial nearly linear decay. Equation 

(4.5.2) is readily integrated using the definition of delay D (2.3.28), provided  can be assumed 

to be so ‘slowly varying’ that its variation may be ignored: 
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This needs slightly careful handling because as it stands the second term becomes singular at 

t=0, but by expanding the exponential for small t it is confirmed to have the initial value L0, as 

well as asymptotic value Le. While it is not obvious that equation (4.5.4) is approximately equal 

to the average of L0 and L in the neighbourhood of t=0, or is generally close to L(t/2), both 

these can be shown to be true. 

 

If equation (4.5.4) is taken at face value as the definition of D, as there is no a priori reason to 

assume that (4.5.2) will turn out to be the most accurate formula, an alternative queue can be 

obtained as the derivative, equation (4.5.5), which differs from (4.5.2) by the presence of the 

term involving the derivative of . Because this vanishes at t=0, the initial value of  given by 

equation (4.5.3) remains valid. 
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It is also possible to start by defining D using a formula analogous to (4.5.2), with L expressed 

in terms of its derivative like the ‘derived queue’ in Section 4.2, with or without a term 

involving the derivative of . Then (4.5.2,4) are replaced by (4.5.6,7) repectively: 
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Finally, if the complexity of (4.5.6) is considered too much, the option exists to adopt L(1) and 

D(2) together, and work around any resulting inconsistency. Having said that, it is accepted that 

achieving maximum accuracy of and consistency between L and D and, by implication 

variance, without excessive complexity, is an issue that may benefit from further research. 
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4.5.3 Structural properties of queue development – asymptotic state 

 

Asymptotically, the queue’s evolution must satisfy the variance equation (2.3.27). Substituting 

(4.5.4) into (2.3.29) and setting t= yields the asymptotic characteristic time: 
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4.5.4 Unsuitability of exponential method for growth 

 

Although derived with decaying queues in mind it is natural to ask whether the whole range of 

growth and decay could be covered by an exponential method. The method is essentially 

deterministic, with the type of queuing process entering only through steady-state invariants, 

avoiding the conceptual issues of the quasi-static assumption in shearing. If L(1.5) or L(2) is 

adopted then, since L0<Le, the  term is negative, which could result in undershoot. However, 

this does not affect L(1) so its derivative, and hence u, should still behave sensibly. In practice 

this is not pursued for three reasons: (1) the demonstrated performance of the corrected sheared 

approximation; (2) the qualitative difference between queue growth and decay; (3) 

experiemental results showing that the exponential method performs poorly for growth. 

 

4.5.5 Relaxation behaviour of the characteristic time parameter 

 

The next task is to find a time-dependent function (t) to cover the whole range of t, that 

satisfies the extremal conditions, preserves structural integrity, and is good enough for 

practical purposes. The function (t) should interpolate i and a smoothly and ideally 

monotonically. What is the evidence from actual queues? 

 

Initially, queue decay evolution has been calculated for four values of ρ: 0.1, 0.5, 0.8, 0.9, 

with =1, and one of two initial states: 

 

 Equilibrated queue generated by Markov simulation with ρ=0.95, leading to an actual 

mean queue size of 18.982 corresponding to slightly reduced ρ=0.949955, and 

corresponding variance. 

 

 Exact initial queue size of 19 with zero variance. 
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Figure 4.5.1 shows that the queues evolve in a qualitatively similar way against a time scale 

based on the stochastic relaxation time for each  value (equation 2.3.38). 

 

 

Figure 4.5.1  Evolution of queue size for different traffic intensities and initial states 

Rates of decay depend on whether the initial queue is exact (steeper) or equilibrated (gentler). 

 

Relaxation and characteristic times are given in Table 4.5.1. The times at which the graphs 

cease to be practically distinguishable are not obviously related to stochastic relaxation times 

re. However, it appears from the relationships of i to the corresponding re that if time were 

instead scaled according to i the horizontal axes would all be around the same length (~10), 

supporting the view that i is the critical time constant in the initial relaxation process. 

 

Table 4.5.1  Calculated relaxation and characteristic times (L0 19, =1) 

Process Equilibrated initial queue Exact initial queue 

 re i a i a 

0.9 379.74 199.82 289.82 100.00 100.00 

0.8 86.72 99.91 119.91 75.00 56.67 

0.5 11.66 39.96 41.96 36.00 20.89 

0.1 2.14 22.20 22.33 20.99 11.17 

 

On inverting (4.5.2), equation (4.5.4) and the variance formula allow alternative  values to 

be back-calculated or reconstituted from simulated queue values:  
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It is necessarily the case that _V=_D whatever the method of calculation, but it is not 

necessary that _D=_L except in the case of the exponential queue model, since a different 

queue function would in general lead to a different detailed relationship between L and D. 

 

Equation (4.5.9) can run into difficulty if the benchmark fails to converge exactly to the 

theoretical equilibrium queue, so in preference to the theoretical Le value the benchmark mean 

queue at the largest t value tested (=100re) is used. This in turn can result in the logarithm 

being undefined, so limiting the range of values of t for which _L is estimated. 

 

Figure 4.5.2 shows that when only valid ranges are plotted, the values of _L are only broadly 

consistent with the theoretical values given in Table 4.5.1. For the equilibriated cases, 

dependence on time is quite weak, and two of the cases with exact initial queue appear not to 

be monotonic. No firm conclusion can be drawn from these rather variable results. 

 

 

Figure 4.5.2  Characteristic time values estimated from benchmark queue sequences 
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4.5.6 A possible refinement to allow for non-monotonicity 

 

Abate and Whitt (1987) point out that a queue starting from a range of initial values, including 

some greater than its equilibrium value, can fall below it before climbing up again, so the 

function of time is non-monotonic, something the exponential approximation cannot 

accommodate. They suggest that a queue’s moments can be modelled using two components as 

in equation (4.5.12) both of which are monotonic, so if the second term in particular can be 

approximated, this problem might be avoided. 

 

           tLtLLtLtLL ,0,,0, 00     (4.5.12) 

 

However, the effect is most pronounced when a queue starts from an initial pure state, i.e. is 

associated with low initial variance. Although this is one of the tests above, it is relatively 

uncommon in traffic modelling and especially unlikely in the case of a decaying queue, that 

thanks to randomness during growth is likely to begin from an extended probability 

distribution. For this reason such refinement is left for potential future research. 

 

4.5.7 Testing various exponential interpolations 

 

Continuing the empirical approach for the sake of simplicity, several alternative interpolation 

functions based on the characteristic times (4.5.3, 4.5.8) and the generic exponential queue 

approximation (4.5.2) have been tested: 
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The additional compound time parameters are defined by equations (4.5.19-20), and (4.5.15) 

can be rewritten in the form of (4.5.2) if  is replaced by x as defined by (4.5.21): 
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As Figure 4.5.3 shows for the J2P4 peak case (defined earlier in Section 2.5), several 

interpolations produce wild excursions, including negative values in Ts 4-7
45

 where ρ>1. 

Figure 4.5.4 shows that greater excursions occur in variance estimates (calculated from 

2.3.27). Ln is stable only in the decay regime. Lm, calculated using a ‘mixed characteristic 

time’ m, appears to produce a smooth stable graph and a close fit to the true mean queue and 

variance profiles, although its value in Ts 3 is low, making it second best to Lx in the decay 

regime. In the peak regime Ts 4-7, when ρ>1, Lm achieves the lowest RMS error, while other 

interpolations are unstable. Both of these methods have in common that they use i to 

interpolate the characteristic times. 

 

 

Figure 4.5.3  J2P4 peak case: queue size profiles estimated by various models 

 

Figure 4.5.4  J2P4 peak case: variance size profiles estimated by various models 

                                                
45 Time slice 0 is used to set up the initial equilibrium state. 
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Table 4.5.2  Best interpolation methods for J2P4 – second best in brackets where error <2x 

Best model 

in regime 
Growth Peak Decay Growth+Decay 

Ts 1-3, ρ<1 Ts 4-7, ρ>1 Ts 8-12, ρ<1 Ts: ρ<1 

L x m n(x) x 
D x m m(x) x 
V x m m(x) x 

 

To get a sense of the error involved in basing this on the simple L(1) approach (4.5.2), the 

derivative of m can be calculated from the definition (4.5.17): 
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       (4.5.22) 

 

Assuming m to be monotonic, this could make a significant contribution to (4.5.5) through the 

  term at middle values if t, but at least it is simple to evaluate. However, as Figure 4.5.5 (next 

page) shows
46

 (in this peak case at least), it leads to serious distortion of the queue profile 

‘L(alt)’, compared to the simple method labelled ‘L(model)’, suggesting that (4.5.4) might not 

be a good approximation to delay if  has the degree of variability indicated by (4.5.22) and the 

 term in (4.5.5) leads to unacceptable error. 

 

4.5.8 Practical application of simple exponential interpolations of characteristic times 

 

The quandary can be avoided by adopting L(1) with D(1). Figures 4.5.3-4 show that, surprisingly, 

the method appears to be accurate in Ts 4-7, even though it is not expected to work when >1. 

Furthermore m can go negative, though this may be acceptable where relaxation to equilibrium 

is not involved, and it may also help that the time slices are relatively short (9 minutes) 

compared to the magnitude of m (at least 22 minutes). 

 

Two particular kinds of issue can arise in practical application to the decay regime: 

 

 i>a, where intuitively i  <a is expected as a relates to an asymptotic condition 

 One or both of a, i < 0 

 

While i <a is true for lighter peaks like J1P1, it turns out that in heavy peak cases like J3P9, 

i>a is more usual. In intermediate cases like J2P4, ai. 

                                                
46To achieve the close fit at around 54 minutes it is necessary to take the initial state values from the Markov 
simulation up to that point, rather than from iterative calculations in which the result in each time-slice provides 
the input for the next. After 54 minutes the model using the Markov initial states makes little difference. As 
predicted at the outset, the exponential model performs poorly in the early growth part of the peak. 
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Figure 4.5.5  Effect on queue of initial states and (alt) added term in equation (4.5.5) 

(‘alt’ graphs are different from the other two similar graphs) 

 

So there is a pattern that appears rational. Initially, a time parameter calculated as the average 

of i and min(i,a) was tried on the basis that it ought to be closer to i than to a. However, this 

was found unsatisfactory, and would actually be illogical in cases where neither i nor a is 

consistently greater. On the principle that a working parameter should represent whichever 

relaxation process ‘gets there first’, (4.5.18) is modified to: 
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Negative values of a, i do not seem a problem for estimation of L, since the mean could 

increase as well as decrease, and D from the integral of L is meaningful in either case. 



188 

 

However, stability of V calculated from these quantities is not guaranteed, and this is more of 

an issue where L0Le results in a becoming highly sensitive. To avoid this problem, a simple 

exponential interpolation of V using the relaxation time re has been attempted when either of 

a, i is negative, but this also proved unsatisfactory. However, cases with this problem are rare. 

Consequently certain basic measures may be adopted to protect the results: 

 

 If a< 0, set m = i. 

 Absolute value of t/min(i,a) is limited to avoid overflow in the exponential function 

 Vm is subject to a lower limit of min(V0,Ve) 

 

4.5.9 Comparative performance of decay estimates for run-out to equilibrium 

 

Several methods of estimating queue delay have been compared against Markov simulation 

using the tails of two peak cases, starting in each case from two different initial states drawn 

from the full Markov simulations, and extended to run out to equilibrium at constant traffic 

intensity, as defined in Table 4.5.3. 

 

Table 4.5.3  Definition of decay run-out cases 

Case name Starting point Run-out  Duration Time-slices 

J3P9x1 Markov values at start of decay >0.8084 140 mins 10 mins 

J3P9x2 Markov values at start of run-out 0.8084 120 mins 10 mins 

J4P10x1 Markov values at start of run-out 0.9206 166.5 mins 4.5 mins 

J4P10x2 Markov values at start of run-out 0.7480 157.5 mins 4.5mins 

 

The average RMS errors of the four tests are given in Table 4.5.4, using the methods defined in 

Table 4.3.3 plus ‘m’ exponential. 

 

Table 4.5.4  Average errors in decay run-out tests 

Method Error in L Error in D Error in V 

s:  Basic sheared queue and delay 3.75 4.16 1052.63 

t:  Origin-shifted sheared queue, LT = 1.5 Le 7.30 6.78 1604.81 

t:  Origin-shifted sheared queue, LT = 2 Le 6.17 5.82 1464.95 

t:  Origin-shifted sheared queue, LT = 2.5 Le 5.25 5.11 1234.29 

d:  Sheared delay, derived sheared queue 4.90 4.62 1172.55 

z:  Origin-shifted derived sheared queue 23.06 25.93 7701.67 

c:  (Growth) Corrected derived sheared 123.80 113.18 76685.67 

k:  Corrected origin-shifted derived sheared 122.03 111.85 77830.03 

m: Mixed exponential 0.91 0.78 132.63 
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The results for methods ‘c’ and ‘k’ are so poor that these methods are clearly inappropriate 

for decay – they are designed to correct growth. Of the pre-existing methods, surprisingly the 

original sheared method ‘s’ gives the smallest errors, but those of the exponential method ‘m’ 

are an order of magnitude smaller. This can be ascribed to its inherent conformance to the 

correct asymptotes, as well as possibly being structurally superior. Figure 4.5.6 shows 

differences in performance of the methods on three run out tests, compared to Markov 

simulated run out profiles, showing method ‘s’ is unsuitable for decay of a heavy queue (top 

right). Figure 4.5.7 plots mean, delay and variance of four run-out tests (the additional second 

case being a variation of the first with later resetting to a Markov initial state). 

 

 

 

Figure 4.5.6  Results of run-out tests using methods ‘s’ (above) and ‘m’ (below) 

 

 

Figure 4.5.7 Results of the four run-out tests using ‘ckt-m’ combination 
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The ‘kinks’ in the first time slice of the ‘m’ examples above arise because of the need to force 

the input of the last oversaturated time slice to the Markov value. This is not required in 

subsequent tests, where the optimum method combination is used, together with the ‘Markov 

restarts’ given in Table 4.5.3. Estimated and simulated means and delays are almost 

indistinguishable, though the variances show that they are not perfect. This gives confidence 

that the exponential method is at least usable for the entire relaxation to equilibrium. 

 

4.5.10  Accuracy of the time parameters and sources of uncertainty 

 

On substituting the Markov simulated values for all M/M/1 peaks into equations (4.5.9-11) 

for the three alternative back-calculated parameters, Figure 4.5.8 shows values are similar. 

 

 

Figure 4.5.8  Similarity of alternative  values back-calculated from Markov simulations 

 

Figure 4.5.9 shows a fair match (on logarithmic axes) between estimated time parameters and 

the average of the nearly identical ‘benchmark’ values, with some scatter. 

  

 

Figure 4.5.9  Estimated  parameters versus  back-calculated from Markov simulations 
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In Figure 4.5.10, supplementary data have been obtained from extended decays to equilibrium 

at constant  values. On expanded linear scales, most scatter is in a since most of the 

evaluation times are quite short compared with the characteristic times, confirming that (t) 

should initially be close to i. The equilibrating decays involve longer times so this should not 

apply to them. The different behaviour of the back-calculated  values is emphasised for the 

equilibrating decays, also revealing limitations of the Markov simulation. Red lines mark where 

the Markov simulated mean queue ceases to converge, without actually reaching the precise 

equilibrium value. This may be a result of insufficient precision or too large a step size in the 

calculation, but in any case results are not meaningful beyond that point. As expected, _V 

converges to a, but there appears to be no general tendency for _L to converge to a limit. 

 

 

Figure 4.5.10  Behaviour of back-calculated  for three equilibrating queues 

Lower graphs are _L which unlike _V does not appear to converge to a limit 

 

The most obvious error in the estimation of peaks occurs in the variance during the decay of 

two heavy peaks, J3P6 and J3P9, where the rate of decay is particularly high, as shown in 

Figure 4.5.11. Error in the mean queue or delay is hardly evident, although it is sufficient to 

produce some error in variance through the magnifying effect of the variance formula. 

 

 

Figure 4.5.11  Predicted and Markov profiles for heavy peaks (=0.8086) 

 

The maximum absolute error in variance in any one time slice in these cases represents 

underestimation by 24% (Markov prediction 2604, approximation estimate 1989). Greater 
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percentage underestimation occurs but at much smaller absolute values, so is of less practical 

importance. In terms of standard deviation, the maximum absolute error occurs at a later time 

and amounts to underestimation by 47%. While these are substantial errors, they occur in a 

dynamic context where the queue and its variance are falling rapidly, as evident in Figure 

4.5.11. Another way of looking at them is that the approximation predicts the end of a 2½ 

hour peak 10 minutes early, which seems less serious. It is natural to ask how the average m 

in the exponential decay formulae would have to be adjusted to give the correct variance. 

Figure 4.5.12, drawn from the extended decay of J3P9, shows no simple pattern, and even 

with an adjustment results could still be very sensitive to small variations in parameters. 

 

 

Figure 4.5.12  Factor to apply to m to correct variance during decay in one peak case 

 

Rapidly changing queue size and variance suggests that the queue size distribution is volatile. 

Moving ahead briefly to the material to be covered later in Chapter 5, Figure 4.5.13 (lower, 

overleaf) shows that the initial probability distribution for the final run-out period in J3P9 (Ts 

12 running from t=110 to t=120) is complex, reminiscent of a water wave crashing into a sea 

wall, having developed quite rapidly over the previous 20 minutes from a near-Normal shape 

(top left) through a mixture of exponential- and Normal-like functions (top right) - note also 

the difference in the vertical (probability) scales as p0 rises rapidly though still to nowhere 

near its equilibrium value. 

 

Dynamic probability distributions such as this make it difficult to achieve accurate 

predictions with simple approximations, so a more detailed approach may be needed where 

highest accuracy is required. However, it is not clear that this is a practical necessity given 

the uncertainties in data that are likely to be involved, and that a probability distribution is not 

a prediction. For example, it seems unlikely that the precise queue size probabilities could be 

validated. Instead, the best practical prediction would be that in a certain time period 

following the peak, queue lengths can be very volatile, with short queues on some days and 

long ones on other days, for no obvious reason. So enhancement is left for future research. 
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Figure 4.5.13  Probability distributions at start of J3P9 decay and 10 and 20 minutes later 

 

4.5.11  Estimating error in time parameters and potential for correction 

 

Using Markov simulated data as the input isolates consecutive time slices, so constituting a 

limited and artificial test. If the input for each time slice is taken more realistically from the 

output of the previous one, the value of  can still be forced to produce the correct final value 

of one of the moments, by substituting one of the back-calculation formulae (4.5.9-11). At the 

same time, free values of i, a  and m from (4.5.22) can be calculated for comparison. 

Comparing m with the ‘optimum’  should then give an idea of the practical magnitude of 

error and the conditions under which it occurs. Figure 4.5.14 shows that where _L is taken as 

optimum then most of the calculated m are similar but a few are greatly overestimated. 
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Figure 4.5.14  Comparison of estimated m and ‘optimum’ based on L 

 

In Figure 4.5.15, where back-calculated _V   is taken as optimum, a few points are similarly 

scattered though not only overestimated (the scattered points are not even predominantly 

from the heavy cases selected above). 

 

 

Figure 4.5.15  Comparison of estimated m and ‘optimum’ based on V 
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In many cases the optimum  lies somewhat outside the range of [i, a ] suggesting that the 

monotonic form of (4.5.22) is an oversimplification, as accepted earlier. The lower graphs 

show that in most cases, where ‘~’ means ‘similar to’: 
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 (where ‘x’ is L or V)   (4.5.23) 

 

The problem with applying this factor to (4.5.22) is that it gives the wrong extreme values. 

The cases where m is most poorly predicted mostly occur where i is much less than a, and t 

is significantly greater than i, so the exponential term in (4.5.22) has little influence, forcing 

m close to a. However, applying (4.5.23) uncritically can result in serious errors elsewhere, 

and there seems no reliable way to identify the cases that need correction.  

 

4.5.12  Reality check on queue decay rate 

 

In principle a queue can grow at any rate if there is sufficient demand, but it cannot decay at a 

greater rate than capacity. This maximum rate is what Kimber and Hollis (1979) assume for 

large queues in their modified sheared method. The deterministic queue formula applies in 

this case and places a lower limit on the queue size at any subsequent time. The exponential 

decay method ‘m’ ought not to predict a queue smaller than this at the end of the time period, 

but this could occur where the initial queue is large and the arrival rate is very low. While the 

mean queue could be corrected by adjusting m, in practice this cannot be relied upon to 

ensure the consistency of the delay and variance, so in case of the exponential method ‘m’ 

lead to an anomalous result in one time slice, the time-origin-shifted method ‘t’ is adopted. 

Somewhat unsatisfactory as this is, its resolution may depend on further research to improve 

the method of estimating queue decay. None of the peak cases produces this anomaly, but it 

can occur briefly in the more extreme random profile cases described next. 

 

4.5.13  Random profile tests 

 

To challenge the method further, three random profiles each with several oversaturated peaks 

have been tested. In the profiles, shown in Figure 4.5.16, ,  and time-slice lengths have 

been generated randomly within specified ranges: traffic intensity 0.5<<1.5; capacity 

20<<24 (veh/min), time slices 8-15 minutes. Traffic intensity is the critical factor, and this 

is allowed to exceed considerably the highest value in the peak cases. 
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All three ‘random’ cases are modelled using the ‘ckt-m’ method combination (for explanation 

see section 4.3.9 earlier) and M/M/1 process. These cases have been embedded and run in the 

Demonstrator software described later in Chapter 7. In all three there are several points where 

the demand intensity drops abruptly to low values, something that does not occur in the peak 

cases, resulting in certain ‘anomalies’ which fail the ‘reality check’. For example in case 1 

these occur at around 50 and 160 minutes, while case 3 experiences many anomalies 

including a cluster in the range 210-300 minutes. With the substitution of methods applied in 

the time slices affected, the results are as shown in Figure 4.5.17. There is a tendency in all 

cases for the queue to grow on average over the test period, an expected consequence of the 

choice of a range of  centred on 1. 

 

Any similarity between demand and mean queue profiles disappears as one moves from Case 

1 to Case 3, the last being severely overloaded. The match of queue and delay is close in all 

cases. Variance is reasonably well estimated in the first two cases, but distinctly 

underestimated in the third. Having said that, the maximum underestimation of standard 

deviation is 22.3%. Case 3 is virtually insensitive to the methods used for growth, suggesting 

that it suffers from insufficient constraint on the variance, as in other growth tests. 

 

 

Figure 4.5.16  Three ‘randomly generated’ traffic profiles:  above,  below 

 

Figure 4.5.17  Modelled v. Markov mean queue, delay and variance for ‘random’ cases  
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4.5.14  Conclusion on mixed exponential approximation 

 

The foregoing has shown that the simple exponential approximation is effective in most cases 

of decay including from large queues produced by oversaturation and over long periods of 

relaxation to equilibrium. The method can run into trouble in some more extreme cases but 

among the test cases these are relatively rare. Situations that can lead to problems include: 

 

 Heavy queuing is followed by low demand, resulting in rapid queue decay 

 

 Complex shape of initial probability distribution 

 

 Large difference between initial and asymptotic time parameters. 

 

Although some indicators have been identified, no simple modification to the mixed 

exponential method has been found that can deal with special cases without harming 

accuracy in the majority of cases. This suggests that a more general method would be more 

complex, making it more difficult to assure stability. Results with the peak cases for both 

M/M/1 and M/D/1 processes show that using ‘optimum’  values, rather than the estimated 

m, would reduce average error by a modest 23-35%. However, the benefit of the best 

combination of approximation methods over uncorrected methods is orders of magnitude 

greater. For these reasons, the results are considered sufficient for the present purpose, while 

an improved approximation to queue decay could be a topic for future research. 
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4.6. TRANSITIONAL REGIMES AND COMBINED PERFORMANCE ON PEAKS 

 

Figure 4.6.1 summarises the role of transitional regimes around the boundaries between under- 

and over-saturated regimes in an idealised peak case, giving a five-regime combination. 

 

 

Figure 4.6.1  Model of queue development regimes 

 

For early oversaturated time slices, the use of transitional method ‘k’ in place of ‘t’ was 

described earlier in Section 4.4. This represents a merging of the basic undersaturated and 

oversaturated growth methods: ‘c’=corrected derived sheared + ‘t’=origin-shifted sheared  

‘k’=corrected origin-shifted derived sheared. This seems rational, but it works only for the first 

130 or so units of throughput (see earlier in Section 4.4), and where this number comes from is 

a not known
47

. In a few cases it appears beneficial for the modification to extend into the 

undersaturated regime but there is no obvious criterion for this. 

 

The ‘undersaturated transition’ (post-peak) matters in rare cases where queue decay does not 

follow a simple pattern, for example the mean queue increases or the variance increases. 

Modifications have been proposed that have some logical justification, but cannot be 

guaranteed optimal. A problem can occur where a< 0 in the time slice immediately following 

the oversaturated regime. This occurs in only one M/M/1 peak case, J2P10, and what works is 

simply to use the ‘c’ method instead of ‘m’, no other growth method working in this case. 

 

                                                
47It is not known whether it is an absolute number or related to some common feature of the peak shapes which 
may not translate to more general cases. If interpreted directly as a relaxation parameter, 130 units throughput 

corresponds to =0.832 or Le5, or =1.183 if it is accepted that a relaxation parameter is meaningful for >1. 
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A less rare and extreme situation arises where a high value of Le in the first decay time slice 

means that Le<L0<2Le. For M/M/1 in these cases it is found that the ‘k’ method can give better 

results than ‘m’, while the ‘c’ method is less satisfactory, but for M/D/1 this results in 

catastrophic error in one case, J1P6, so is unproven in general. However, the fallback is the 

basic method combination that is no different in most cases and not much worse on average.  

 

Questions remain about the best ways of dealing with these transitional regimes and special 

cases. Further research may reveal patterns that can be exploited but there is also a risk that 

over-optimisation may reduce the robustness of approximation. 

 

In full tests of all 34 peak cases, where the input of each time slice is cascaded from the output 

of the previous time slice, results for both M/M/1 and M/D/1 are generally good. The optimum 

method combinations and their average RMS errors can be as low as shown in Table 4.6.1, 

where the growth methods are as defined in Table 4.3.3. More detail including non-optimal 

combinations is given in the next two main Sections. 

 

Table 4.6.1  Summary performance of best method combinations in all peak cases 

Method used in regime Average RMS error across all cases 

Growth 

<1 
/ 

Growth 

>1 
\ 

Decay 

<1 
L D V 

All 34 peak cases using M/M/1 process 
c k t - m 0.40 0.59 30.41 
c k t m m 0.40 0.59 30.41 
c k t k m 0.39 0.59 30.06 
‘cktkm’ with Markov initial states 0.19 0.32 19.37 

All 34 peak cases using M/D/1 process 
c - t - m 0.47 0.47 16.40 
c - t m m 0.47 0.47 16.40 
c k t - m 0.35 0.37 16.27 

‘c-t-m’ with Markov initial states 0.32 0.31 19.02 
 

 

The most reliable combination for both queue processes appears to be ‘ckt-m’, giving errors 

comparable with those of ‘optimum input and combination’ tests where time slices are 

calculated independently using the actual Markov estimated values as the inputs. 

 

Figure 4.6.2 shows that for all peak cases together the estimation of variance is good. However, 

Figure 4.6.3 shows a range of performance for variance estimation, with some underestimation 

in the decay regime of J3P9, which is also found in other heavy peak cases – the slight 

overestimation in the lighter peak J1P1 originates in the growth regime. 
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Figure 4.6.2  Match of variance estimates in all peak cases, using exponential decay method 

 

 

 

 

Figure 4.6.3  Estimation of variance 

in light, moderate and heavy M/M/1 

peak cases 
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4.7. METHODS AND SUMMARY RESULTS FOR M/M/1 PEAK CASES 

 

4.7.1  Methods tested 

 

A test-bed spreadsheet has been set up so that several options can be tested on all 34 peak cases 

simultaneously, average errors noted from a central point, and comparisons of results with 

simulation plotted. Cases are limited to 12 time slices (sufficient in most cases to give adequate 

run-off) except for J1P9 (16), J3P6 (17), J3P9 (18) and J4P7 (14), resulting in a total of 425 

calculations.Table 4.7.1 summarises the alternative methods available in various combinations. 

 

Table 4.7.1  Summary of approximation methods 

Symbol Method 

s Basic sheared queue and delay 

t Origin-shifted sheared queue 

d Sheared delay, derived sheared queue 

z Origin-shifted derived sheared queue 

c Omega-corrected derived sheared 

k Omega-corrected origin-shifted derived sheared 

m Exponential 

 

The main choice provided for is the method in each of the three main queue development 

regimes (see previous Section), but additional choices are provided for the first time slice of 

oversaturated growth, reflecting the alternative correction factors in equations (4.3.32), and the 

first time slice after oversaturation where it is found that the equilibrium queue size can exceed 

the initial queue, resulting in principle in an undersaturated growth situation. In the former case, 

a choice may be exercised between -correcting or not, and in the latter a version of the 

exponential method can be applied. These choices are summarised in Table 4.7.2. Since ‘t’ and 

'z' do not include correction they cannot guarantee accurate steady-state variance, though this is 

seldom approached in the peak cases, and is not an issue for oversaturation. 

 

Table 4.7.2  Methods used in different regimes of queue development 

Development regime  Typical methods
 

Undersaturated growth <1 c, k, s, t, z 

Oversaturated transition >1 k, s, t 

Oversaturated growth >1 k, s, t 

Undersaturated transition <1 c, m, t, z 

Decay <1 m, t 

 

The convention adopted here and in the test spreadsheet is to default the transitional methods if 

they are not specified, represented by dashes between the main methods, e.g. ‘c-t-m’. The 

default for the oversaturated transition is the main oversaturated method, while the default for 

the undersaturated transition depends on the relationship between L0 and Le. 
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4.7.2  Comparative performance of methods in peak cases with M/M/1 process 

 

Table 4.7.3 lists the RMS errors (across all time slices) in the mean queue, delay and variance 

respectively. Variances tend to be the most sensitive, but it should be remembered that the error 

on the standard deviation, at most half that in the variance in percentage terms, may be thought 

a fairer criterion. The highlighted rows show that the basic sheared method ‘s-s-s’, and the 

origin-time shifted modification proposed by Kimber and Hollis (1979) ‘t-t-t’, perform much 

less well than the combinations involving corrections, but the corrected method does not work 

so well in the oversaturated regime. In a post-oversaturation transition the new exponential 

method appears safer than one of the methods derived from shearing. This may because the 

initial variance at that point is severely incompatible with quasi-equilibrium.The best methods 

are not far worse than ‘optimal’ calculations where Markov-simulated initial states are input in 

each time-slice rather than values calculated in the previous time slice. 

 

Table 4.7.3  Errors for method combinations on M/M/1 peak cases 

Method used for M/M/1 Initial data, 

substitution 

etc. 

Average RMSE (all 34 peaks) 

Growth 

<1 
/ 

Growth 

>1 
 \ 

Decay 

<1 
L D V 

t  t  t  19.05 21.18 4924.66 

m  m  m  182.58 173.62 503.77 

d  d  d  4.44 4.92 413.39 

s  s  s  3.58 4.16 376.99 

d  d  m  4.03 4.55 368.07 

c  c  m  3.55 3.96 339.62 

c  s  m  3.51 3.95 330.78 

s  s  m  3.38 3.79 326.52 

z  z  m  1.52 1.58 192.15 

c  z  m  1.54 1.57 191.88 

k  z  m  1.46 1.55 189.36 

z  t  m  1.21 1.73 76.11 

k  k  m  0.86 1.44 75.20 

k  t  m  1.30 1.81 73.97 

c  k  m  0.42 0.59 69.82 

t  t  m  1.40 1.93 65.70 

c k t  m _L m 0.35 0.58 44.89 

c  t  m  0.77 1.07 38.68 

c  t m m  0.77 1.07 38.68 

c  t k m  0.75 1.06 36.89 
c k t  m (Preferred) 0.40 0.59 30.41 

c k t m m  0.40 0.59 30.41 

c k t k m  0.39 0.59 30.06 

c k t  m _D m 0.37 0.53 20.03 

c k t  m _V m 0.37 0.52 19.82 
c k t  m Markov data 0.19 0.32 19.38 
c k t k m Markov data 0.19 0.32 19.37 
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The results labelled ‘Markov data’ take data for each time slice from the Markov simulation, so 

those results are only a benchmark. All the estimation methods cascade the output of each time 

slice to the input of the next. Stability issues can arise when this is done over many time slices 

with no external constraint, and this was a critical hurdle for the development of the correction 

method. The best performance is by variations of the combination ‘c-t-m’. Whether an 

appropriate method is chosen automatically for a transitional time slice depends on the exact 

results emerging from the previous time slice. There are so many possible combinations that 

only the ones that perform well, or extremely poorly, without exercising the transition options, 

are further tested with these options. 

 

4.7.3  Summary of performance in peak cases with M/M/1 process 

 

Figure 4.7.1 plots estimated versus Markov-simulated values of main results for all the 34 peak 

cases. Figure 4.7.2 shows for comparison plots for combinations ‘s-s-s’ and ‘t-t-t’, basic and 

origin-shifted sheared. 

 

 

Figure 4.7.1  Performance of optimal ‘ckt-m’ model on 34 M/M/1 peak cases (408 points) 
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Figure 4.7.2  Performance of basic (left) and origin-shifted sheared (right) M/M/1 methods 

 

Figure 4.7.2 shows that it is possible to get away with uncorrected models for estimating mean 

queue size and delay, but not for calculating variance. The greater scatter in variance V and zero 

queue probability p0 compared to Figure 4.7.1 is evident. When individual cases are plotted the 

difference is particularly obvious. Figure 4.7.3 shows one of the heaviest and longest peaks, 

J3P6, for several model combinations. The sensitivity of variance is evident given the close fit 

of both L and D over most of the time range in all cases, but the performance of the uncorrected 

methods shows wild errors in variance compared to the corrected method. 
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  L    D    V 

Figure 4.7.3  Performance on heavy peak case J3P6 (17 time slices), using M/M/1 process 

(The Markov simulated benchmark profiles are common to all methods) 
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4.8. MODIFICATION AND SUMMARY RESULTS FOR M/D/1 PEAK CASES 

 

4.8.1 Modification of calculation for M/D/1 

 

Since almost all of the expressions derived in the previous Sections either include the statistical 

parameters of the P-K formula, or are independent of them and hence essentially deterministic, 

the method should in principle be applicable to any queue process including M/D/1.Before 

proceeding to test this, an issue must be resolved that requires revisiting an earlier point about 

the distinction between the average probability of zero queue and the value that appears in the 

theoretical probability distribution. The calculation methods work exclusively in terms of mean 

utilisation. If a value of p0 is taken from a simulated probability distribution, in general it must 

first be translated into the corresponding average, the complement of utilisation. This does not 

affect actual calculations but only comparisons with Markov results. No changes should be 

needed to Ω or any calculations provided that the appropriately parameterised P-K formula or 

its inverse have been included in all calculations, and this is confirmed by results. 

 

Whether it is simpler to calculate the Markov average utilisation from the Markov distribution 

p0, or the estimated distribution p0 from the estimated utilisation depends on the relationship. In 

the case of M/D/1 the latter is simpler, because the distribution p0 is given at equilibrium by: 

 

      10 ep e   (in probability distribution) (4.7.1) 

 

Based on a quasi-static assumption, p0 at any point can be estimated from the utilisation by: 

 

    
u

ondistributi uep  1
0      (4.7.2) 

 

The alternative, starting from p0[Markov], is to solve (4.7.2) for a value of u to compare with the 

estimated utilisation. While such a solution must be numerical the solution method need not be 

efficient as it is needed only for verification and testing. 

 

4.8.2 Comparative performance of methods in peak cases with M/D/1 process 

 

Using an identical spreadsheet test-bed to M/M/1, with the appropriate statistical parameters 

but without modifying the case definitions, the 34 peak models have been recalculated for 

M/D/1 and compared with the results generated by the Markov simulation. The calculated value 

of p0 is compared with the average p0 as calculated above, rather than the simulation value.  



207 

 

Table 4.8.1 gives errors for M/D/1 peak cases using the same combinations of methods as for 

M/M/1. The smaller absolute errors are consistent with the smaller values of the moments 

compared to M/M/1. Combination ‘ckt-m’ is superior to ‘c-t-m’ and ‘c-k-m’, but all can be 

considered acceptable. The best combination for both queue processes is ‘ckt-m’. 

 

Table 4.8.1  Errors for method combinations on M/D/1 peak cases. 

Method used for M/D/1 Initial data, 

substitution 

etc. 

Average RMSE (all 34 peaks) 

Growth 

<1 
/ 

Growth 

>1 
 \ 

Decay 

<1 
L D V 

d  d  d  3.26 2.87 554.14 

s  s  s  2.43 2.42 539.61 

t  t  t  8.45 8.53 486.51 

c k t k m  0.76 0.73 325.89 

m  m  m  279.20 262.13 297.94 

d  d  m  2.74 2.55 188.01 

c  s  m  2.36 2.19 167.34 

s  s  m  2.27 2.10 166.00 

c  c  m  1.84 1.67 121.60 

c  z  m  1.07 0.87 100.05 

k  z  m  0.94 0.77 92.68 

z  z  m  0.98 0.80 93.45 
c k t  m _L m 0.24 0.44 50.98 

k  k  m  0.77 0.92 30.05 

z  k  m  0.67 0.83 28.39 

t  t  m  0.74 0.76 22.18 

c  k  m  0.49 0.61 22.28 
c k t  m Markov data 0.54 0.47 21.02 

k  t  m  0.61 0.64 20.97 

z  t  m  0.55 0.58 20.24 
c  t  m Markov data 0.32 0.31 19.02 

c  t  m  0.47 0.47 16.40 

c  t m m  0.47 0.47 16.40 
c k t  m (Preferred) 0.35 0.37 16.27 
c k t  m _D m 0.29 0.34 13.70 

c k t  m _V m 0.30 0.34 12.68 
 

4.8.3 Summary of performance peak cases with M/D/1 process 

 

Figure 4.8.1 plots estimated versus Markov-simulated values of main results for all the 34 peak 

cases. Figure 4.8.2 shows for comparison plots for combinations ‘s-s-s’ and ‘t-t-t’, traditional 

and origin-shifted sheared. The appearance of these plots, and comparative performance 

generally, is similar to that for the M/M/1 cases. Again, the greater scatter in variance V and 

zero queue probability p0 compared to Figure 4.8.1 is evident. Figure 4.8.3 shows one of the 

heaviest and longest peaks, J3P6, for several model combinations, the results being somewhat 

similar to those for M/M/1 (Figure 4.7.3). 
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Figure 4.8.1  Performance of optimal ‘c-t-m’ model on 34 M/D/1 peak cases (408 points) 

 

 

 

Figure 4.8.2  Performance of basic (left) and origin-shifted sheared (right) M/D/1 methods 
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Figure 4.8.3  Performance on heavy peak case J3P6 (17 time slices), using M/D/1 process 

(The Markov simulated benchmark profiles are common to all methods) 

 

  



210 

 

4.9. CONCLUSIONS ON TIME-DEPENDENT APPROXIMATIONS 

 

In this Chapter 4 an improved and extended time-dependent approximation for queue 

development has been described which: 

 

 Satisfies the time-dependent variance formula. 

 Calculates essential queue properties: p0 (~utilisation), mean and variance. 

 Handles overcapacity seamlessly through its use of an enhanced sheared method 

applied to growth and a mixed exponential method applied to decay. 

 Can accommodate different queue processes through the statistical parameters of the 

Pollaczek-Khinchin equilibrium mean queue and new equilibrium variance formula. 

 Can accommodate some non-monotonic queue growth, e.g. from a ‘pure’ initial state. 

 Is computationally efficient through the use of closed-form formulae. 

 Is stable in the sense that queues can be handed on iteratively from one time slice to the 

next over many cycles to develop the prediction for an entire peak profile. 

 Subject to qualification concerning variance estimates in a few cases, offers good 

accuracy compared to benchmark simulations of over-saturated peak test cases, 

modelled as a sequence of time slices with constant parameters within each time slice. 

 

The methods have several possible or inherent weaknesses: 

 

 The correction of the sheared method for queue growth assumes that stochastic 

relaxation time can be used to normalise the time scale of queue development, though 

this is supported by general arguments and empirical evidence. 

 Fine tuning of the correction of queue growth regimes employs adjustment factors 

involving ‘free parameters’ (although the main correction does not). 

 Sensitivity around the edges of oversaturation has been addressed by ad hoc rules. 

 The mixed exponential approximation for queue decay is based on general principles 

applied independently to mean and variance, and uses an heuristic method of 

interpolation over the time range, which is challenged in a few extreme cases and 

cannot accommodate non-monotonic queue development. 

 

A legitimate question in any engineering discipline is “when is good good enough?”, or “when 

is bad not bad enough to worry about?” This is essentially the precision v. accuracy dichotomy 

again. Arguments have been put forward that the results are sufficiently good for the practical 

purposes objectives of this research, which can be considered to have been achieved, and 

further improvement in the methods can be left for future research. 
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CHAPTER 5: ESTIMATING PROBABILITY DISTRIBUTIONS 

 

5.1. INTRODUCTION 

 

Computationally convenient ways of approximating the queue size probability distribution at 

any time are explored, given the three queue properties available from the foregoing time-

dependent approximation methods: p0, mean and variance. Standard continuous diffusion 

approximations are first reviewed, but are considered to be both more complex and less flexible 

than is required, bearing in mind that a fully time-dependent solution is not required since this 

is already embodied in the queue moments obtained by the estimation methods described 

earlier. Alternative approaches are developed based on continuous functions that are easier to 

work with than discrete forms and can exploit standard solution methods. 

 

5.2. POTENTIAL OF CONTINUOUS APPROXIMATIONS TO DISTRIBUTIONS 

 

Figure 5.2.1 superimposes normalised simulated distributions for the 12 time-slices of the J2P4 

peak case (see Section 2.5 earlier). In addition to being normalised to have equal maxima, the 

distributions have been shifted so that all their means lie at x=0. 

 

 

Figure 5.2.1 Superimposed normalised probability distributions from J2P4 peak case 

 

Graphical examples in Kobayashi (1974b) show that a diffusion approximation can reproduce 

many of the distribution shapes between Normal and exponential/geometric-like, including bi-

modal with the ‘duck-tail’ at the left, though not as pronounced as in the simulation. However, 

they appear unable to reproduce the more extreme distribution shapes in some later time slices. 
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Any queue distribution can be viewed as a linear superposition, like the solution given by 

Morse (1958). States below the equilibrium mean will behave like growing queues, while those 

above it behave like decaying queues. This hints at the possibility of simply combining 

exponential and Normal functions, but it remains to be shown that this can be done uniquely. 

 

5.3. TIME-DEPENDENT DIFFUSION SOLUTIONS FOR M/M/1 

 

5.3.1 The diffusion equation 

 

The Kolmogorov Forward Equation or Fokker-Planck Equation (FPE), as quoted e.g. by 

Newell (1968a), is considered the prototype for a continuous analogue of recurrence relations. 

Its coefficients represent drift at a rate determined by the difference between capacity and 

arrivals, and diffusion at a rate determined by the variance. The diffusion term includes the 

indices of dispersion of arrival and service, Ia and I: 
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  (5.3.1) 

 

Newell (1968a) says, for a Poisson (i.e. M/M/1) process, only that both Ia and I are ‘suitable 

coefficients’ expected to be ‘comparable to 1 and essentially independent of [] or ’, which is 

certainly consistent with cb
2
=1, but raises a question about what is meant by Ia here (one 

suspects it corresponds to ca
2
). The term is the exact variance only in the deterministic case, 

suggesting that a solution will apply to ‘heavy traffic’, i.e. where 1. It is not clear to what 

extent this can cover the full range of the P-K formula. 

 

A diffusion equation also arises in an analysis of platoon bunching, derived from M/M/1 time-

dependent recurrence relations (Kühne and Lüdke 2013). After translating variables, this 

amounts to: 
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  (5.3.2) 

 

Equation (5.3.1) is consistent with this only if Ia is interpreted as ca
2
, rather than ca

2
 in 

accordance with equation (3.4.5). This is inconsistent with the assertion of Newell (1968a) 

that Ia in equation (5.3.1) should be around 1, while I= cb
2
 = 1 remains uncontroversial. This 

ambiguity will be commented on further shortly, but the use of the diffusion approximation in 

what follows will be pragmatic. 
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5.3.2 Diffusion solutions combining exponential and Normal functions 

 

The exponential function is a solution of the static FPE (LHS of (5.3.1/2) = 0), and the Normal 

function is a solution of FPE remote from x=0, making for an analogy with the equilibrium and 

deterministic queue formulae. An initial pure state or ‘shock’ will initially drift and diffuse into 

a Normal distribution whose mean evolves naturally according to the difference between arrival 

and departure rates and whose standard deviation increases approximately as the square root of 

time. If there were no barrier at x=0, the distribution would spread out until it becomes uniform. 

According to Rose (1995), the zero queue state is not a true reflecting barrier but a ‘reflecting 

sticky barrier’, meaning that on reaching zero the state remains there until it receives a positive 

impulse. Ultimately the distribution should relax to a stable exponential form. 

 

Kobayashi (1974a,b), Newell (1968a-c, 1982), Kleinrock (1976), Gross et al (2008) and others 

give solutions for the time-dependent M/M/1 queue size probability distribution evolving from 

an initial pure state or ‘shock’ towards the equilibrium distribution under constant arrival and 

service rates. Gross et al give a solution, expressed here in slightly modified notation
48

: 
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                                                                                                                      where
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(5.3.4)  

The formula can be rewritten in a form more convenient for evaluation: 
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          (5.3.5) 

Kobayashi (1974a) points out that the barrier at x=0 makes this a Wiener process, which can be 

characterised by drift (-1)t and variance (+1)t. 

                                                
48 Some authors use  and  representing arrival and service rates. Others use expressions involving x in the 
sense of interval times. Newell and Kobayashi also transform or scale variables and extract common terms to 

simplify formulae. This can aid calculation substantially, but does not always assist physical interpretation, so we 
stick with variables used elsewhere in the dissertation. 
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Figure 5.3.1 shows that this equation generates realistic distributions, and suggests that the left 

and right parts of (5.3.5) represent Normal-like and exponential-like components respectively. 

A feature of the model is that p(x,t|x0) integrates to 1 over the range (-,+) rather than [0,), 

as a result of which the integral over [0,) declines with time, and the mean, variance and p0 

have to be normalised by dividing by the integral of p, p0 being assumed to be the normalised 

integral over [0,1). Accuracy begins to deteriorate at large values of t. 

 

 

Figure 5.3.1 Distributions generated by Gross et al diffusion approximation (5.3.5), 

respectively the full distribution, two LH terms and RH term (p values unnormalised). 

Development is shown over a short time period after an initial ‘impulse’, during which the 

upper (Normal-like) component diffuses, while the lower (equilibrium-like) component grows 

 

In principle, predicting the queue size distribution from an arbitrary initial distribution, as may 

be required when calculating the result of an arbitrary demand/capacity profile, requires 
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convolving (5.3.5) with an arbitrary initial distribution. One way to avoid this would be to 

calculate for some x0 and t+t0 where t0 is the time at which the distribution most closely 

resembles the required starting distribution, analogous to origin-shifting the sheared queue. 

Calculating the mean and variance requires integrating terms in erfc, which should be relatively 

straightforward since terms in x
n
erfc(x) integrate to expressions involving x

n+1
erfc(x). 

 

The distribution function must move from a Normal-like shape to an exponential-like shape, 

and these components are virtually independent, analogous to the deterministic and P-K 

components of the sheared formula. However, the former consists of not one but two Normal-

like components, because of the mirror term. Functionally, this component arises as a link 

between the two main functions, rather as the utilisation variable x in the sheared solution. 

 

Gross et al’s expression appears to suffer from confusion about the sign of the (1-) term 

(though this could lie with the present author). Kobayashi (1974b) quotes a differential form of 

the diffusion approximation (apparently misprinted in Kobayashi (1974a)), which he transforms 

into two ‘coordinate-free’ solutions applying to <1 and >1 respectively. The expression 

involves a function  similar to E in (5.3.4) except that the integral is over (-,x), and (1-) 

appears as its absolute value. As far as can be ascertained, when evaluated for ~1, the 

probabilities sum to near 1 for all t, and moments approach their equilibrium values accurately. 

The different forms for <1 and >1 can be absorbed into a single expression, with change of 

sign of (1-) being accommodated by use of the absolute in some terms. Reverting to the 

untransformed variables, a replacement for (5.3.5) which embraces the full range of  is: 
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where: 
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(5.3.7) 

 

Figure 5.3.2 shows the difference between the Gross and Kobayashi formulae results. The 

calculations are for integral values of x, and the sums of probabilities of the Kobayashi formula 

for =0.95 are up to 3.7% high, but the moments are quite accurate when adjusted for pi, with 
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p0 converging to about 0.0487. For smaller values of  the error in pi is greater, for example 

37% at =0.5, but again the moments are quite accurate, with p0 approaching 0.476. 

 

While it is possible that Gross et al’s function has been misunderstood, as it stands it produces 

strange results (left), in particular the sum of probabilities decays with time while the mean 

rises well above the expected equilibrium value. Kobayashi’s version as interpreted (right) 

gives sensible results where the sum of probabilities remains around 1, and the mean converges 

to the equilibrium value, so it is adopted as fulfilling the requirement. 

 

 

Figure 5.3.2  Time-development of moments of approximations for M/M/1, =0.95, L0=10  

 

Figure 5.3.3 shows the full distributions and their components produced by (5.3.6-7). 

Comparing with Figure 5.3.1, the main visible difference is in the combined distribution. At 

first it appears that the two Normal components have taken over the whole distribution, but 

actually the exponential component is still growing with time. The changing balance between 

them over a longer time period is graphed by Figure 5.3.4, showing that the exponential 

component does eventually become dominant. 

 

Drawbacks of the diffusion approximation have already been touched upon. They include: 

 

 Starts from an initial ‘impulse’, so in principle needs to be convoluted with an initial 

probability distribution, or retro-fitted to one by shifting the time origin. 

 Less accurate for smaller values of . 

 Modification for general queue process statistics is questionable. 

 Analytical calculation of moments requires complicated integrations. 
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Figure 5.3.3  Distributions generated by Kobayashi diffusion approximation (5.3.6) 

Development is shown over a short time period after an initial ‘impulse’, during which the 

upper (Normal-like) component diffuses, while the lower (equilibrium-like) component grows  

 

 

 

Figure 5.3.4  Time-development of sums of probabilities in diffusion approximation 
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5.3.3 Equilibrium distributions with more general statistics 

 

Kobayashi (1974b) proposes a generalisation of the process-dependent parameters that enter 

into his derivation of the equivalent of (5.3.6-7). In effect, wherever (1+ρ) appears it is replaced 

as follows
49

: 

 

      221 ba cc          (5.3.8) 

 

Referring back to the ca versus Ia discussion earlier in Chapter 3, if it is assumed that Ia=ca
2
ρ 

then the RHS of (5.3.8) loses its explicit dependence on ρ and can no longer be properly 

matched with the LHS. However, comparing (5.3.8) with (5.3.1) suggests the identification 

Ia=ca
2 
and Ib=cb

2
. Taking (5.3.8) at face value, if cb is set to zero to reflect M/D/1 then the time 

developments follow a similar pattern with reduced moments as shown by Figure 5.3.5, where 

the initial queue has been appropriately reduced, and once again Kobayashi’s version performs 

correctly (although the discrete distribution as calculated is not perfectly normalised). 

 

 

Figure 5.3.5  Time-development of approximations to M/D/1, =0.95, L0=5, cb=0  

 

Although the moments approach the expected values in general terms the results are not precise 

enough to distinguish between with and without unit-in-service. The moments are too low and 

therefore nearer the latter, but p0 tends towards 0.095 for =0.95 and 0.829 for =0.5, which 

values are too high. The approximation certainly works best for M/M/1 and for ~1. 

 

Kobayashi (1974a) finds the equilibrium solution of (5.3.1) with (5.3.8): 
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49 In Kobayashi’s paper his cx are the squares of the coefficients of variation. 
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Integration over unit intervals just produces the geometric series: 
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which makes for the obvious identification: 

 

   
  i

ip  ˆˆ1       (5.3.12) 

 

However, in the M/M/1 analogy, ̂  is not equal to , so an improved discrete interpretation is 

proposed, the singly-nested distribution (3.6.3-4) in Chapter 3, but even that is not perfect.  

 

Figure 5.3.6 shows how this distribution compares with the continuous distribution, where it 

can be seen that the match between p0 and the integral over the interval [0,1] becomes less 

accurate at smaller values of . 

 

 

Figure 5.3.6  Comparison of nested discrete and continuous equilibrium distributions 

 

Recalling Whitt (1982), there are many alternative versions of a waiting time formula, and 

hence the closely related mean queue formula, leading to different generalisations of (1+), 

none of which appears completely satisfactory, so for this practical application it may be 

sufficient to accept whatever works well enough. 
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5.3.4 Consequences for variance of assuming Kobayashi's formula 

 

Recalling equation (2.3.51) for the deterministic limit of the variance, if Le is substituted from 

the P-K formula, the simple M/M/1 form is replaced by the rather awkward: 

 

           tIcIItICIV ba  21122 2

2
1*  (5.3.13) 

 

When I=1, Ia=1 and cb
2
=1, (5.3.13) collapses to the simple deterministic result. If it is then 

assumed that Ia=ca
2
: 

 

          tccIIV ba  221212   (5.3.14) 

 

Apart from the seductive alignment of the coefficients of variation without the  factor on ca
2
, it 

is hard to see what this is saying in practical terms. A particular oddity is that cb
2
 appears in 

association with  rather than . This casts doubt on the generality of (5.3.8). 
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5.4. CONTINUUM APPROACHES FOR EQUILIBRIUM QUEUES 

 

5.4.1 Exponential solution of the Fokker-Planck diffusion equation 

 

The Fokker-Planck Equation (FPE) (5.3.1) with constant drift and diffusion can be written 

more generally as (using the coefficients  and  commonly found in some standard works): 
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The continuous exponential distribution is already known to be a solution of the static form of 

(5.4.1), and can be related to a discrete geometric distribution as in equations (5.3.8-11). 

However, the corresponding ‘traffic intensity’ ̂ is not equal to . An alternative equilibrium 

solution in which it is equal to  is the exponential distribution: 
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When discrete probabilities are identified with integrals over unit intervals, as before, this 

satisfies all the usual relationships making it analogous to the discrete geometric distribution: 
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However, the moments of the geometric distribution do not exactly match the exponential: 
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The relationship between the variance and the mean is the same as for a discrete exponential 

distribution (as e.g. used to describe headways), but differs from that for the geometric 

distribution. The mean itself has a different form from that of M/M/1, suggesting that (5.4.2) is 

in some sense a limiting case of M/M/1 rather than a direct analogy. Figure 5.4.1 graphs the 

discrete M/M/1 geometric and continuous exponential functions, confirming that they match 

well over the range. The red lines represent the integral of the continuous function over [0,1) 

which is indistinguishable from the discrete p0 in these cases. 
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Figure 5.4.1  Comparison of discrete M/M/1 and continuous equilibrium queue distributions 

 

However, this begs the question what is the meaning of pE(x) at non-integral values of x, and in 

particular the meaning of pE(0). A way to explore this is to move from a discrete to a 

continuous interpretation by gradually reducing the step size, but (5.4.1) is difficult to simulate 

numerically since, when x is discretised in steps of  (say), it reduces to a Markov process 

similar to (2.3.22-23), to which the following apply but offer no new insight: 
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Integrating (5.4.1) with respect to x yields the rate of change of the ‘zeroth moment’, which is 

of course zero, the RHS rearranging to: 
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     (5.4.6) 

 

Moments of (5.4.1) can be calculated by using integration by parts with respect to x over the 

range [0,), and the general results p(,t)=0, p=1, xp=L etc. The first moment yields the time-

dependent deterministic relationship (5.4.7), consistent with static interpretation of  and p(0), 

leads to an identification of capacity µ, and is analogous to the rate of change of the discrete 

mean queue (2.3.24): 
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Hence: 

   0p
dt

dL
 where 






2
(as before) and 

2


  (5.4.8) 

 

Note, however, that while the second of equations (5.4.2) is satisfied, meaning that dL/dt is zero 

at equilibrium, the variables do not have the usual relationship to . Since the coefficients on 

the RHS are constants, integrating (5.4.8) over time gives the deterministic queue formula: 
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The second moment of (5.4.1), evaluated similarly, is: 
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Substituting the coefficient values from (5.4.8), and then integrating over time: 
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Remembering the form of Le in (5.4.4), equation (5.4.12) has the form of the discrete variance 

formula (2.3.27) apart from missing terms L and L0. In (2.3.27) these come from the p0 term in 

(2.3.26), which in turn arises from the difference between the recurrence relations (2.3.22) and 

(2.3.23) caused by the boundary at zero. As step size  in the discrete distribution is reduced 

from 1 to 0 the influence of the boundary at zero decreases, and the contribution of this term 

decreases linearly, so the definition of W (equation 2.3.29) can be generalised to: 

 

     LLVW      (5.4.13) 

 

Thus not only the deterministic queue formula, as would be expected through conservation, but 

also the deterministic variance formula, arise naturally from the FPE diffusion process. 
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5.4.2 Adding arrival and service statistics through Gamma approximation 

 

The essence of the modification by Kobayashi (1974a) lies in the relationship between the ̂

that fits the exponential model (5.4.2) and the real , as per (5.3.8-11). However, the 

distribution itself is not changed. In reality, the distribution always changes. One possibility 

would be to make ̂  a non-linear function of . The problem with this is evident from the 

M/D/1[G] results, that p0, which nominally should be the integral of the function over [0,1], is 

increasingly out of scale with the rest of the distribution as G increases. Although it is 

straightforward to fit a discrete doubly-nested geometric distribution, it would be very difficult 

to fit a continuous function. 

 

In addition to a shift of origin, a useful distribution needs two parameters, eliminating 

Poisson. The Gamma distribution has several advantages: its mode can be 0 or >0; one of its 

parameterisations yields the exponential distribution and a limiting parameterisation leads to 

the Normal distribution. Apart from this, as will be shown, simulation also gives empirical 

support for the Gamma distribution as an approximation to the extended distribution {p
*

-G … 

pi>0} when its origin is shifted appropriately
50

. Technically, the approximating distribution is 

Erlang (2.2.3) because it is calculated discretely, but the ability to make non-integral 

adjustments to parameters in Gamma is an advantage. The basis of fitting Gamma is to set the 

shape and scale/rate parameters according to known invariants of the target distribution, the 

mean and variance, and in the case of M/D/1[G] the mode. Properties of the Gamma 

distribution, using k and  as the shape and rate parameters, are given by: 
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Using results from Chapter 3, the shifted queue size distribution satisfies: 
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GMode  
       (5.4.19) 

                                                
50 Olszewski (1990) implies that a Gamma or possibly Negative Binomial distribution can be used to describe the 
probability distribution of a time-averaged signal overflow queue, but as this is not origin-shifted is not clear that 
it has any bearing on the distribution of an extended M/D/1[G] distribution including notional queue states. 
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The extended M/D/1[G] queue size probability distributions can be approximated by: 
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esti
 ,,,**
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where  and  are adjustments to the mode and mean respectively such that equations (5.4.15) 

are satisfied by the parameters k and  as modified, and the origin is shifted by G. The ‘real’ 

value of p0 is obtained by summing components –G to 0, as described earlier in Chapter 2. 

Numerical fitting can be achieved in most cases using a standard method such as Excel’s 

Solver (a Newton method), with the target to minimise the simple RMS error between the 

simulated and calculated probability components, but this may not work where  is small and 

G large. The Anderson-Darling difference measure has also been tested but gives a poor fit. 

 

To estimate k the variance is needed. The results of Chapter 3 enable the variance of the 

notional probability terms to be calculated from the Variance of the extended distribution and 

the ‘real’ part
51

. Now k can be estimated from moments of the extended distribution: 

 

 Given Le estimate Mean from (5.4.18)  

 Estimate Variance by the procedure in Chapter 3 (equations 3.7.23-25). 

 Estimate k as Mean
2
/Variance or from the formula for Mode 

 

To fit the distribution it is now necessary to optimise the adjustments, for example by 

minimising the error between the estimated and simulated distributions. Several methods 

exist, differing in the way they weight the queue size probabilities. The Cramér-von Mises 

Statistic is just unweighted least squares, although expressed formally as an integral, while 

the Anderson-Darling Statistic places greater emphasis on the ends of the distribution (e.g. 

Laio 2004). In this case simple least-squares is preferred precisely because it does not 

emphasise what are likely to be the least reliable regions of an approximate distribution. 

 

Matching the maxima of the distributions helps guide automatic selection of the adjustments. 

To do this, using similar methods to those of Chapter 3 to approximate M/D/1[G] moments, 

the maxima h(,G) of the simulated extended probability distributions are approximated by 

the following, where the second equation defines a link function as discussed previously: 

 

          GHGh ,ln112.0,   where  (5.4.21) 

                                                
51 As in Section 3.7 we use italics to identify the moments of the unshifted notional distribution. 
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This approximation achieves absolute RMS error of 0.042 in normalised predictions of maxima 

values in the range [0.2,1.5], giving the trend shown in Figure 5.4.2. 

 

 

Figure 5.4.2  Linking of transformed maxima of Gamma distributions and estimates 

 

For the purpose of testing, a least-squares fit using manual adjustment of parameters with step 

size of 0.05 has been used, giving the parameters, fit and errors graphed in Figures 5.4.3-6. 

 

 

Figure 5.4.3  Optimum k and  parameters for Gamma distributions 
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Figure 5.4.4  Optimum  and  adjustments for Gamma distributions 

 

Figure 5.4.5  Percent RMS error of Gamma distribution fits for various values of  

 

 

 

Figure 5.4.6  Fit between simulated M/D/1[G] and Gamma distribution moments 
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The error is greater the smaller the value of  but remains moderate on average, although the 

match of variance can be poor. Figure 5.4.7 shows the graphical fit between the simulated 

(solid) and Gamma (broken) distributions for four  values. 

 

 

Figure 5.4.7  Simulated extended M/D/1[G] and adjusted Gamma distributions 

 

An alternative to adjustment could be to match the known p0 of the queue distribution with 

the equivalent property of the Gamma distribution, or match the part of the equivalent of 

average 0p  to the expected value of (1-). Matching p0 requires the integral of the Gamma or 

its cumulative distribution
52

, while matching 0p requires the first moment of notional terms: 
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Figure 5.4.6 earlier shows that a good match of p0 is achievable, so this might improve the fit 

from matching just Mean and Variance. Figure 5.4.8 shows that the Gamma distribution 

reproduces the values of 0p quite well. 

 

                                                
52For numerical calculations, Microsoft Excel (spreadsheet) provides a cumulative Gamma function as well as the 
Gamma function, and this may also be available in other programming tools and languages. 
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Figure 5.4.8  Fit of simulated average 0p with Gamma approximation 

 

5.4.3 M/D/1 growth test with Gamma approximation 

 

Figure 5.4.9 compares Markov simulated distributions (left) at logarithmically advancing 

times of an M/D/1[5] queue with Gamma approximations (right), where the basic value of  

is the inverse of the mean of the extended Markov distribution. The Markov simulations 

could be inaccurate for small t, as notional probabilities need to be factored up significantly. 

Significant adjustment is also needed to the Gamma distributions (inset), and the distributions 

are only broadly matched at small t. However, they converge as equilibrium is approached. 

 

 

Figure 5.4.9  Comparison of growth to equilibrium with Gamma approximation 

(Logarithmic time scale - peaks subside increasingly slowly as time progresses) 

 

While the Gamma distribution can fit M/D/1[G] distributions quite well, the adjustments to 

parameters needed are somewhat erratic, and the results are found to be rather sensitive to 

them. Since the ‘real’ distributions have mode zero they may fitted more simply by the 

doubly-nested geometric. However, the Gamma model may merit further investigation.  
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5.4.4 Other candidate distributions and their asymptotic properties 

 

From (5.4.14), for large x the ratio of Gamma function values of successive integer states is: 
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  (5.4.25) 

 

In the case k=1 the Gamma distribution is precisely the exponential distribution (5.4.2). For 

k>1, once x is sufficiently large compared to k the above ratio tends to a constant value given 

by equation (5.4.26), so Gamma becomes exponential asymptotically: 

 

   
 

ker  as x     (5.4.26) 

 

Using similar methods LogNormal and Poisson distributions have been tested as 

approximations to M/D/1[G] extended distributions, in the former case matching the mean 

and mode, and in the latter case just the mean. 

 

Comparing Figures 5.4.10 and 5.4.11 (overleaf) with 5.4.7 suggests that these distributions 

perform worse than Gamma, especially for small G. In particular, while the LogNormal 

performs reasonably well for larger values of the mean (smaller s.d./mean ratio), where it is 

more similar to the Normal, it performs very poorly for small values of mean where its 

asymmetrical character is most evident. 

 

For the LogNormal, the ratio has a rather complex form that after declining tends very slowly 

back up towards 1, and is therefore not representative of an equilibrium distribution: 
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Although the Poisson distribution looks broadly similar, its ratio between integer state 

probabilities declines to zero, so is also not representative of an equilibrium distribution: 

 

1






x

e
rP

 
  0 as x    (5.4.28) 

 

In addition, neither distribution includes the exponential distribution as a particular case, so 

neither appears suitable for approximating an equilibrium queue distribution. 
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Figure 5.4.10  Simulated M/D/1[G]and LogNormalfor =0.9, mean and variance matched 

 

 

Figure 5.4.11  Simulated M/D/1[G] and Poisson for =0.9, mean matched 

 

More exotic distributions include the Conway-Maxwell-Poisson distribution, a generalised 

form of Poisson which can match non-zero p0 without needing an origin shift, but has no closed 

form. Others with a smooth Poisson-like shape include the Gaudin and Tracy-Widom 

distributions (which turn up as limiting distributions in connection with Random Matrices). 
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However, neither has a closed form expression, nor an obvious physical connection with simple 

queues. The convenient properties of the exponential, Gamma and Normal distributions favour 

their use even should some more complex distribution turn out to be a ‘truer’ representation.  

 

5.4.5 Fitting general time-dependent distributions 

 

It is clearly important that M/M/1 should be covered by the set of equilibrium 

approximations, and it now appears equivalent to be a limiting case of M/D/1[G] where the 

service interval has shrunk to zero. With three generating parameters, k,  and an origin shift, 

ideally optimised by fitting p0, L and V, the Gamma distribution may be suitable for 

approximating other unimodal queue size distributions such as those covered in Chapter 3. 

 

So far, mainly equilibrium distributions have been fitted. Unimodal distributions may have 

enough degrees of freedom to fit p0, L and V where a target dynamic distribution is unimodal, 

but none can reproduce the bimodal distributions seen in Figures 2.5.4 and 5.2.1. This is not a 

problem for a combination of distributions, however. The earlier results of the diffusion 

approximation suggest that such a combination can consist of two Normal drifting-and-

diffusing components and one equilibrating component that retains its basic shape but changes 

in scale and/or amplitude over time. This is convenient if the statistics of the queue process are 

assumed to be constant. The combination is then in some sense equivalent to the combination 

of deterministic and random components in the sheared approximation. Such a quasi-static 

approach is not without precedent. Rider (1976) defines a variable (t) such that the system 

initially has the distribution pi=(1-)
i
, relaxing to the final distribution (1-)

i
. 
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5.5. COMBINATION APPROACHES TO APPROXIMATING DISTRIBUTIONS 

 

The preceding diffusion solutions can be interpreted as an equilibrating component and two 

relatively shifted diffusing components, but apart from their inherent complexity they strictly 

describe time development from an initial ‘shock’, so to describe time development in 

general needs convolution with an initial distribution. However, for present purposes, a time-

dependent function for the probability distribution is not needed because time-dependence is 

handled by the analytical approximations to the queue moments. All that is required is to fit a 

time-stamped static function to these moments. Given the three properties p0, L and V, the 

objective of this Section is to fit an approximate distribution that can accommodate all 

conditions from initial through dynamic to equilibrium. Such a distribution can be defined by: 

 

            smxpxBkxpxAxp DE ,,,,      (5.5.1) 

 

subject to: 

 

     1
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


xp       (5.5.2) 

 

Here it is assumed that the equilibrium component is exponential or Gamma, and the dynamic 

component is Normal or similar, so each is specified by at most two parameters. As has been 

shown earlier, ‘real’ states of an equilibrium distribution, with the possible exception of p0 and 

p1, can be represented by an exponential function, although Gamma might be a more flexible 

alternative, and a Normal function appears to be the most satisfactory candidate for the 

dynamic component, although LogNormal could be considered. 

 

The natural choices for A(x) and B(x) are either constants or exponential functions, e.g. e
-x

, 

both of which can satisfy the basic FPE when combined with an exponential or Normal 

function since they result in functions of the same form. The known value of p(0), derived from 

p0 as discussed in the next Section and elsewhere, can be accommodated specially by 

appropriate calibration of the weighting factors, or more generally by ensuring: 

 

     10 A ,     0,,00 smpB D    (5.5.3) 

  

The following Sections address specific issues of combining continuous distributions to 

approximate a discrete queue size distribution and explore some alternative approaches. 
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5.6. MATCHING CONTINUOUS AND DISCRETE DISTRIBUTIONS 

 

5.6.1 Motivation and approach 

 

While relating a discrete probability distribution to a continuous function has obvious 

advantages for approximations, calculation and understanding of moments, identification of 

family resemblances, and dynamic estimation, it raises the questions of how conversion can be 

done consistently, how the zero of the continuous axis should be interpreted, and whether 

differences between the impacts on different moments matter. 

 

5.6.2 Relating discrete probabilities to intervals of the continuous function 

 

Alternative ways to relate a discrete distribution to a continuous analogue are given by: 
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    hippi        (5.6.2) 

 

One might think that a sensible choice of h would be 0, but this requires p(x) to be defined for 

x<0, which is likely to be inconvenient. If h is set to 0.5, then (5.6.1) leads to the convenient 

relationships given earlier in sub-section 5.4.1. Equation (5.6.1) converts exactly between the 

exponential function used there and the discrete geometric distribution. While this may not 

apply to other equilibrium distributions, the tendency of such distributions to revert to an 

exponential/geometric form at higher states makes it a reasonable practical assumption. 

 

Equation (5.6.2) is accurate to the extent that p(x) is symmetrical or linear over a unit interval. 

If h were a function of i and corresponded to the centroid of the interval, the two versions 

would correspond.  For exponential, the adjustment h is independent of i and given exactly by: 

 

   















ln

1
ln

ln

1
optimumh     (5.6.3) 

 

The value of h so defined is always less than 0.5, but does not fall below 0.4 until  is below 

0.1, so h=0.5 can be considered a reasonable practical assumption, given that the distribution 

matching exercise will in any case be an approximation based on approximate data.  
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However, what amounts to a shift in the continuous origin leads to differences between the 

moments, as shown earlier by equations (5.4.4). The corresponding discrete states are in effect 

shifted by +0.5. This does not affect the sum of the probabilities, but: 
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So the only correction needed is to the mean. Thus, h must be added to the analytically 

calculated mean before estimating the parameters of a continuous distribution to match it. 

When matching to a simulated discrete distribution for testing purposes, it is sufficient to place 

the discrete probabilities at points i+h, whence the discrete mean will be augmented 

automatically. 

 

5.6.3 Interpreting the origin of the continuous function 

 

One further point concerns the nature of p(0), which is intimately connected to the parameter  

of the continuous equilibrium distribution in Section 5.4. For the exponential function, (5.6.1) 

leads to the relationship: 

 

        01lnln0 pp      (5.6.6) 

 

This transformation is essential to generate the correct continuous distribution, but it means that 

p(0) and p0 as graphed will differ. Going back to the previous Section, estimation of the 

continuous approximation will be much simplified if only the equilibrium component is 

assumed to exist at x=0. Therefore its parameter  can be calculated from the p0 of the 

analytical approximation, analogous to the quasi-static utilisation x in the sheared 

approximation. This requires the dynamic continuous component to be zero at x=0, which can 

be assured by suitable choice of weighting functions. It does mean, however, that this 

component does not vanish entirely on [0,1], so in principle, p0 is influenced not only by the 

form of the equilibrium component but by the dynamic component too. In practice this can 

probably be ignored, again appealing to the approximate nature of the exercise. 
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5.6.4 Effect of weighting on the Gamma distribution used as an equilibrium function 

 

If pE is chosen to be an exponential equilibrium distribution, exponential weighting is 

straightforward, as described later. 

 

If pE is chosen to be a Gamma distribution, the shape parameter k can produce a peaked 

unshifted distribution. For M/D/1[G] (signal-type) processes, the distribution will then need to 

be shifted by G places (approximately), and p0 will be calculated by summing notional state 

probabilities where relevant. For G/M/r processes (i.e. infinitesimal service period), G=0. All 

variables except x and k can be functions of time. Finite moment integrals of the Gamma 

distribution can be expressed in terms of the Cumulative Gamma with modified parameters. 
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Exponentially weighting the Gamma distribution by the factor e
-x

 modifies its amplitude and 

scale without change of shape: 
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5.6.5 Using nested exponential/geometric distributions for the equilibrium component 

 

Although the Gamma distribution seems a good approximation to the various possibilities of 

equilibrium distribution, it may be asked whether it is really necessary for the present purpose 

given that the time-dependent approximation of queue evolution will provide instantaneous 

(end of time-slice) values for p0, L and V, and the known queue statistics will define the 

corresponding asymptotic equilibrium values for the current time slice. Then the doubly-nested 

geometric approximation can provide a discrete asymptotic equilibrium distribution with the 

same degrees of freedom as a shifted Gamma. Figure 5.6.1 confirms that in general the 

exponential functions that fit the three parts of a doubly-nested geometric distribution, p0, p1, 

and {pi} (i>1), are too different to be merged into even a piecewise-continuous single function. 
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Figure 5.6.1 Fitting exponential functions to parts of doubly-nested geometric distribution 

 

Where p0 and possibly p1 depart from the geometric form, it seems most manageable to adjust 

the mean and variance of the continuous approximation so that only an ‘underlying’ geometric 

distribution, as represented by the parameter 


 
introduced earlier in Chapter 3, need be 

matched. If the shape of the nested distribution is assumed fixed through time, then the other 

parameters can be calculated from ratios of the asymptotic equilibrium values as determined by 

the actual  and queue statistics. The contributions of the other parts to the mean and variance 

need to be assessed. Working with the second and third components separately is more 

complicated than appears justified by the approximate nature of the exercise and the moderate 

contribution to the moments made by p1. Thus it is practical to work with a full geometric 

distribution based on the third 


 parameter, which is the default in case one or no levels of 

nesting are involved. 

 

Since p0 does not contribute to the continuous mean or variance, only the contribution of p1 has 

to be accommodated by them. To do this the exact difference from the contribution of 


 could 

be calculated, but the expressions are complicated because both ends of the integral are finite. 

By separating out the first two discrete states of the distribution, and treating the rest as 

continuous, and assuming an exponential weighting factor e
-x

, an approximation to the sum or 

integral of the probabilities is: 
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There is no need to involve h here since the discrete components already incorporate this shift. 

It can be seen that 
EP

~
reduces to 1 when =0. If the exponential weighting function is treated as 

quasi-linear in the neighbourhood of x=1, then the adjustment for the weighted mean is: 
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Since 1
2
=1, the adjustment to the weighted second cumulative moment VE+LE

2
 is the same. It is 

probably simpler to make this adjustment than a more complex adjustment to VE alone. 

 

There is an implementation issue with these equations in that they involve . In order to get a 

solution, the target value of L must be specified, but this now depends, usually to a small 

extent, on the solution. To avoid a circular reference, the value of  must be fixed, and this 

would normally be the initial estimate. In principle, the calculation should be iterated using the 

value of the previously solved . In practice this may not be worthwhile, as the non-geometric 

nature of the probability distribution is unlikely to be evident unless the queue is close to 

equilibrium, in which case  will be small anyway. 
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5.7. LINEAR COMBINATION APPROACH 

 

This Section considers a linear combination of exponential and Normal distributions using 

constant weighting factors, as perhaps the simplest approach to a combined distribution: 
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where the component distributions are defined respectively by: 
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Using some weighting factors A and B the constraints imposed by the moments are: 
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As per equation (5.4.3), p0 for the exponential component should be calculated as: 
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As an alternative to integrating the Normal over the range [0,1], it can be approximated by 

the median value, assuming local monotonicity: 
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The following substitutions can now be made, the last two depending on whether p(0) or p0 is 

to be fitted according to (5.7.7) or (5.7.10): 
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Noticing that (5.7.12-13) can be used to eliminate B, (5.7.5-6) can be rewritten to give simple 

weighted sums of the primitive moments with an adjustment term: 
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where, depending on the choice between (5.7.12-13), the adjustment term E is either of: 
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Thus there are two equations to fit four unknowns {, m, s, A}! A possible solution approach 

is to take account of the dynamics described earlier, the constant rates of drift of the mean 

and diffusion of the variance of the Normal component, but this raises the question what 

should be the time origin, as in the case of time-shifting the diffusion approximation. The 

relaxation behaviour of the exponential component could also be assumed. In principle, 

fitting both initial and final states would then mean four equations for five unknowns (time 

origin being the fifth) since the values of , m and s would be linked through time, although 

there seems no natural link between the factors A over time. Despite this improvement, this 

approach seems to present as many difficulties as the diffusion approximation. 
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5.8. LOGNORMAL APPROACH 

 

It was argued earlier that the LogNormal does not satisfy the FPE and is unsuitable as an 

equilibrium queue distribution because of its relatively heavy tail, which does not tend towards 

exponential. However, it does have two desirable properties for approximating the dynamic 

component, namely being zero at x=0 (if unshifted), so naturally accommodating the reflecting 

barrier, and approximating Normal when the standard deviation is much less than the mean. If 

the queue size distribution can be divided into separate equilibrium and dynamic components 

then an explicit solution may be arrived at. Since the unshifted LogNormal vanishes at x=0 the 

amplitude of the equilibrium component there can be determined. However, this component 

must be weighted so that its integral is < 1, to leave room for the LogNormal component. 

 

If pE(0) must equal p(0), its weight must be a function of x and must equal 1 at x=0. Assuming 

that pE is restricted to the exponential (k=0), an exponential weighting function (as proposed 

earlier) satisfies the requirements. Since the LogNormal vanishes at x=0, its normalising factor 

can be a constant. Equation (5.5.1) reduces to: 
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Since the LogNormal is defined only over [0,), its contribution to the mean and variance can 

be calculated directly, and the constant normalising factor n is calculable directly from the 

integral of (5.8.1) which is fixed at 1: 
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The LogNormal is specified with two parameters (with location parameter = 0): 
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Its mean has to equal: 
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and its variance must satisfy: 
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leading to the explicit solution: 
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Equations (5.8.9-10) together allow m and s to be expressed in terms of modelled moments: 
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If =0, m and s become essentially undefined, and n=0 from (5.8.6). If =0, the exponential 

distribution component vanishes, and (5.8.11-12) reduce to LL 
~

, VV 
~

. Once  is chosen, 

the distributions are explicitly determined. The simulated distributions of a relatively heavy 

peak case, J3P9, have been fitted by selecting the values of  that minimise the sum-of-squares 

error between the distributions, where the ith discrete term is compared with the continuum 

probability at x = i+0.5. The results given in Figure 5.8.1 show that  never rises much above 

0.1 and the error is moderate in all time slices. 
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Figure 5.8.1   Exponential and LogNormal distribution fit results for J3P9 

 

The LogNormal function is convenient and easy to work with. Sadly, added to its failure to 

satify FPE as noted earlier, the match between shapes of estimated and simulated distribution is 

poor. Figure 5.8.2 gives the example of Ts 8, just after the peak, where the inset shows that 

while the mean and s.d. agree closely, the distributions visibly do not match, because the 

simulated distribution is close to Normal while the LogNormal is substantially skewed. This 

situation is inevitable where the real distribution is dominated by the dynamic component. 

 

 

Figure 5.8.2  Simulated and exponential+LogNormal distributions for J3P9 post-peak 
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5.9. EXPONENTIALLY-WEIGHTED NORMAL APPROACH 

 

5.9.1 Formulation and its consequences 

 

A weighting factor linear in x or t cannot cover an infinite range. The simplest usable weighting 

function running from 1 to 0 over the range [0,) is an exponential function of x, as already 

applied in earlier Sections, whose parameter  could be a function of t. If a complementary 

factor is used for the dynamic component, this ensures that only the equilibrating component is 

non-zero at x=0. In general, the parameters in the weighting factors could differ, though in 

practice they will be equated to reduce the degrees of freedom. Even then the problem is 

overspecified because there are four parameters to be fitted to three moments. The combined 

extended probability distribution can be written: 
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E
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Now assuming the dynamic part to be Normal, exponential weighting acts to shift and scale the 

distribution, leaving its Normal form unchanged: 
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Equation (5.9.1) is thus transformed into a linear combination of three components, such that 

the last two cancel at x=0, leaving the weighted exponential pE(0) to represent (most of) p0. 
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This has a similarity to the form of the diffusion solution (5.3.5), and the second Normal term 

can be considered to represent a reflected component. 

 

Compared to the linear combination, the contributions of the equilibrating component to the 

mean and variance of the whole distribution are no longer simply factored by a constant, 

because the exponential weighting factor enters into the integrals when calculating the first and 

second moments. Numerical evaluation of the estimated distribution should present no 

fundamental difficulties since exponential, Gamma, cumulative Gamma and error (erf/c) 

function approximations are available in most programming languages.  
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Moments require integration over [0,). As the exponential or Gamma equilibrium components 

are not truncated, their standard mean and variance can be used, except when calculating p0 

(unless the range is short enough that the integral can be approximated using the median value 

of the function). The Normal functions do need to be truncated, so error functions will be 

involved, and it is no longer possible to get closed-form solutions for the Normal parameters as 

it was for the LogNormal approximation. 

 

 

5.9.2 Formulae for weighted exponential distribution as equilibrium component 

 

Accepting the exponential distribution as a quasi-static approximation to part of a time-

dependent distribution, the first step is to equate the first (or only) traffic parameter  or * with 

the utilisation, to give the parameter of the continuous analogue: 
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  (5.9.4) 

 

Starting again with the exponential distribution (assuming M/M/1 for simplicity): 
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For a doubly-nested distribution  the correction (5.6.10-11) can be applied to the moments 

provided that  is replaced by 


 calculated from the asymptotic geometric parameter 


. 
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5.9.3 Formulae for weighted Normal distribution as dynamic component 

 

As the Normal function is truncated, its integrals involve error functions: 
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Specific moment integrals over [0,∞) are: 
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Using the shorthand: 
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equations (5.9.12-14) can be rewritten: 
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5.9.4 Combining the distributions 

 

Combining the integrated components in accordance with (5.9.1) and (5.9.3), the moments of 

the full distribution approximation are: 
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Most of the error function terms in (5.9.20), and thanks to (5.9.3) all the straight exponential 

terms, can be eliminated to give an alternative expression for L from which equation (5.9.19) 

can be used to eliminate n if required: 

 

 

 












 













 



















 


22

22
2

2

2

s

sm
erfc

sn
e

m
L

sm

  

(5.9.22) 

 

Equation (5.9.22) confirms that the mean tends to 1/ for small , and to m for large  and large 

m, with an additional term that vanishes at both extremes and is linked with the ‘reflected’ 

Normal component. 
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5.10. SOLVING EXPONENTIALLY-WEIGHTED DISTRIBUTION COMBINATION 

 

5.10.1  Motivation and approach 

 

The purpose of this Section is to show that solutions exist for time-stamped queue size 

distributions, that satisfy the constraints of time-dependent moments and are a reasonable 

match to simulated distributions. It is not proposed to define a solution algorithm since standard 

numerical methods exist. While these methods may not be computationally efficient enough to 

be embodied ‘on-line’ in an analytical traffic modelling program, they should be usable ‘off-

line’ as a post-processing output. More efficient methods, e.g. to enable the probability of 

spillback to be incorporated into an assignment algorithm, are left for future research, though 

‘heuristic’ estimations based directly on the queue moments might be possible. 

 

5.10.2 Practical problems affecting analytical solution methods 

 

If the normalising factor n is eliminated this leaves just three degrees of freedom represented by 

, m and s. Since  is fixed by p0, there are just two moments to be fitted, L and V. Hence the 

problem is overspecified unless some other constraint, such as on shape, can be imposed. 

 

In the LogNormal approach, the explicit expressions for m and s reduce the solution problem to 

one of choosing . As an explicit solution for m and s appears impossible in this case, even 

where  is specified, it is natural to ask first whether a solution can be found by minimising an 

objective function. Differentials of the elementary functions in (5.9.15) include: 
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where N represents the Normal component, N(x,m,s) or N(m,s) with x=0 understood as 

appropriate. Since  is assumed to be fixed by p0, the differential of the integral (5.9.19) is: 

 

  

 

      
  
      

    ssmEFdsmFdmsFdsn

sddmsdsmsssmNsmnF

dmsdsmssmnN

dnssmEsmFsmE

d

,

,,,

,

,,,,

0

222

122

12

2

2

















   (5.10.2) 

 



249 

 

This expression alone has 12 terms, of which only one can be eliminated by fixing , and the 

equivalents for dL and dV would be even more complicated. Alternatively the differentials of 

(5.9.1) can be integrated: 
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This is somewhat more manageable, as would be  xdp  and  dpx2
from which dL and dV can 

be obtained. However, it is still a fairly awkward expression, encouraging the use of a standard 

numerical solution method for the purpose of practical demonstration. 

 

5.10.3  Selecting initial parameter values and target criteria 

 

Numerical methods generally require an initial approximate solution, the choice of which may 

affect the final result. The simplest starting parameters that would not cause an instant error are 

=0, m=0, s=1. This would produce an initial exponential distribution. Following some 

experimentation, it has been found that except in equilibrated (or nearly) pre-peak time slices, 

where the exponential is a natural initial choice, a useful initial estimate of  is given by the 

following, obtained simply from (5.9.19) by ignoring the contribution of the second Normal 

component, assuming n=1, and setting initial m and s as if the distribution were Normal: 
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L
~

 is the target mean queue adjusted according to equation (5.6.4), and  is calculated from p0 

according to equation (5.9.4). The possibility of solution can be tested by using a numerical tool 

such Solver available with Microsoft Excel, whose default solution method is Newton. 

 

The error in the estimated distribution (‘dis’) is not naturally normalised, but the sum of 

squared differences (5.10.7) will converge and become nearly constant for sufficiently large N. 

 

          
N

disisimi pppError
0

2
   (5.10.7) 

 

However, minimising this error cannot be an objective because a simulated distribution will not 

normally be available. Therefore the target for solution must be based on fitting moments of the 

distribution. However, since there are two moments that in general cannot be fitted 

simultaneously, so they must be combined in some way. A simple choice is to combine the 

errors in the mean and standard deviation unweighted: 

 

              22~
, distardistar SSLLSLError    (5.10.8) 

 

Alignment of the discrete and continuous distribution was discussed earlier in Section 5.6. In 

these tests the discrete probability values taken from the simulated distributions are placed at 

half-interval points, i.e. p0 at x=0.5, p1 at x=1.5 etc, amounting to assumption of a constant 

displacement h=0.5. As pointed out earlier, this is quite accurate for higher values of , and not 

too far off for lower values. The discrete mean is thus automatically adjusted before being 

compared with the continuous mean (variances being unaffected). When fitting a distribution to 

a calculated mean queue size, the latter needs to be adjusted explicitly, the earlier argument 

again justifying the simple addition of 0.5. 

 

5.10.4  Early unsuccessful attempts at efficient solution 

 

In principle an explicit solution method tailored to the problem would be preferable to a 

proprietary ‘black box’, or numerical calculation of uncertain duration. However, an attempt 

to create an ad hoc solution for the parameters by extrapolating the results of varying them by 

small amounts, e.g. +10%, proved unreliable. Improving upon standard but not necessarily 

efficient, e.g. Newton, solution methods would be likely to be a major piece of work in itself 

and a digression from the present purpose. Computationally efficient implementation of the 

estimation of probability distributions, as such, is not an aim of this work, so for the purposes 

of demonstration a method available with proprietary software has been used.  
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5.10.5  Solution results using Excel Solver 

 

Two peak cases have been used in tests, J2P4 and J3P9, the latter being the more demanding 

because it represents one of the heaviest peaks. Steps of estimation are given in Table 5.10.1, 

Figure 5.10.1 plotting values of  and errors for 15 time slices of J3P9, each 10 minutes long. 

 

Table 5.10.1 Excel Solver estimation schemes for distribution parameters 

Setup Define criterion, e.g. mimimise error in L, S=V as defined by (5.10.8) 

1 Set initial , m, s Solve for ,m, s 

2 Force m=0, set initial ,s Solve for ,s 

3 If <1, Force =0, set initial m, s Solve for m, s 

Output Select the result that minimises the error criterion 

 

The initial parameter estimates (5.10.5-6) are used in each step - there is no recursion. Forcing a 

parameter to zero means that it is not only initialised to zero but is held to zero in the solution. 

The logic of Step 3 is that an equilibrium distribution cannot occur if >1, but Step 2 is also 

aimed at <1 since a dynamic distribution is likely to have a significant Normal component 

with m>0. It is found in practice that Step 3 does not improve the solution, so can be omitted. 

In testing the method, there is an issue concerning what is being compared with what. Initial 

test sought to establish that it could reproduce the queue size probability distributions given 

their actual moments {p0,L,V}. In the ‘heat-maps’, Figures 5.10.1-2, the minimum error 

solutions are indicated by bold time-slice numbers. The subjective fit to the distribution is 

indicated by a colour code: full green is good, light green acceptable, yellow indicates a defect 

though not necessarily serious, red is unacceptable, and blank means not tested. 

 

 

Figure 5.10.1  Verification of distribution fit by time-slice for J2P4 moderate peak 

 

Figure 5.10.2  Verification of distribution fit by time-slice for J3P9 heavy peak 

 

Significant results are that: 

 No pure equilibrium solution with =0 is optimal, though the difference can be small; 

 Modified equilibrium solutions with m=0 may be optimal outside the peak; 

 In most post-peak periods all three parameters are optimally non-zero. 
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Figures 5.10.3-4 plot errors for the same two peak cases as Figures 5.10.1-2. Errors in the 

distribution (equation 5.10.7) are absolute since the distribution is normalised, and are modest, 

the greatest being a little over 4%. Errors in the moments according to the criterion equation 

(5.10.8) are shown relative to the mean queues and are very small.  

 

 

Figure 5.10.3  Intrinsic distribution fit errors by time-slice for J2P4 moderate peak 

 

 

Figure 5.10.4  Intrinsic distribution fit errors by time-slice for J3P9 heavy peak 

 

Figures 5.10.5-6 compare estimated and simulated probability distributions for four time slices 

in each of the peak cases, where it can be seen that the fits are close. In these plots the green 

and red curves represent the exponential and Normal components respectively. The resultant 

estimated distribution in blue and the simulated distribution is purple and marked by crosses. 

These results give confidence in the method as such. 
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Figure 5.10.5  Intrinsic distribution fits in four time slices of J2P4 moderate peak 

 

 

Figure 5.10.6  Intrinsic distribution fits in four time slices of J3P9 heavy peak 

 

However, in practice the simulated distributions will not be available, and the estimated queue 

moments will be developed over many time periods allowing errors to creep in. Therefore to 

compare estimated with simulated distributions time-slice by time-slice is not entirely fair, but 

is nevertheless necessary to establish usefulness of the method. Figures 5.10.7-8 plot errors in 

estimated distributions on this basis. 
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Figure 5.10.7  Distribution fit errors through time-slices for J2P4 moderate peak 

 

 

Figure 5.10.8  Distribution fit errors through time-slices for J3P9 heavy peak 

 

Errors in the distribution itself are highly variable but only in isolated cases reach 10%. The 

larger errors reflect difficulty in reproducing simulated distributions either because of their 

shape or because p0 is not accurately estimated, bearing in mind that its estimated value is 

highly sensitive to estimated utilisation near to 1. In some time-slices, the fit to the simulated 

distribution could be improved (broken lines) but only at the expense of worsening the fit to the 

estimated moments. Results are necessarily a compromise, but Figures 5.10.9-10 show that the 

distribution shapes are in most cases similar, a notable exception being in Ts 3 of case J2P4, 

which lies in the pre-peak transition period just before oversaturation. 
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Figure 5.10.9  Example distribution fits in four time slices of J2P4 moderate peak 

 

 

 

Figure 5.10.10  Example distribution fits in four time slices of J3P9 heavy peak 
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Table 5.10.2 gives some parameters of the peak cases to indicate scale. 

 

Table 5.10.2  Throughput parameters for the peak cases tested 

Case Average 

capacity 

Time slice 

duration 

Ave. throughput 

capacity in Ts 

Max. traffic 

intensity 

Duration of 

oversaturation 

J2P4 14.7 units/min 9 minutes 132 1.1384 36 minutes 

J3P9 22.5 units/min 10 minutes 225 1.1458 80 minutes 

 

While the Normal distribution makes a good approximation around the height of a peak in these 

oversaturated cases, it is evident that both components are needed post-peak once demand falls 

below saturation. As indicated by Figures 5.10.1-2, no distribution is adequately fitted by a 

purely exponential distribution - there are no optimal solutions with  exactly zero. This result 

is less surprising in hindsight, given that the queuing processes are dynamic. Values of m tend 

to be similar to the mean queues unless  is very small, while values of s vary quite 

considerably. Solver would be expected to find a small value of  where the moments are near 

to equilibrium. This is consistent with the view that Step 3 in Table 5.10.1 can be omitted. 

 

Figures 5.10.8-9 show that problems occur mostly in the pre-peak growth period and the period 

of maximum post-peak decay rate where it is most difficult to estimate the moments reliably. 

Since the queue estimation procedure gives quite accurate values of mean, and reasonably 

accurate values of standard deviation, some of the difference between can be ascribed to a 

difference between the simulated and calculated values of p0, which is critical for ‘pinning’ the 

left-hand end of the distribution. This is an aspect of the macroscopic time-dependent queue 

approximation which might be addressed in further research. 

 

From the viewpoint of risk and resilience an important practical question is how accurately the 

tails of queue size distributions can be estimated, though this depends on where the critical size 

is placed. These questions could be addressed in further research. The results given suggest that 

the error in estimation of tail probabilities, assuming these to begin some way above the 

distribution mode, is likely to be small except in a few cases and then mostly pre-peak, while 

concern is likely to be focused post-peak when extended distributions are most likely. 
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5.11. CONCLUSIONS ON ESTIMATING PROBABILITY DISTRIBUTIONS 

 

Probability distributions of queue size or delay can be important both for estimating the 

reliability of travel times and for predicting the likelihood of blocking effects on facilities 

upstream of a bottleneck. Then the shape of the distribution is important for estimating not only 

the weight of the tail beyond a specified point, but also its sensitivity to changes in parameters, 

which is maximised near where the slope of the distribution is greatest. If this point coincides 

with a critical network location or facility then both large and unpredictable variations in 

system performance could result. Knowing mean and variance alone is insufficient where 

probability distributions are far from an equilibrium shape, as the foregoing shows is probable 

in peak cases. However, distributions can be estimated if utilisation or the probability of the 

queue beng zero is also known. 

 

This Chapter 5 has discussed the nature of time-dependent queue size distributions and how 

these can be represented by time-stamped
53

 continuous functions with equilibrium or diffusion 

characteristics. Standard diffusion solutions, while informative, are considered too difficult to 

work with for present purposes, that seek only to fit distributions statically to analytically 

derived time-dependent moments, rather than to obtain fully evolving time-dependent 

distribution functions. Having considered various methods, it is concluded that an 

exponentially-weighted combination of an equilibrium distribution, most simply exponential 

but possibly Gamma or doubly-nested geometric/exponential, with a Normal distribution, can 

give sufficient flexibility to match distributions generated by simulation. The problem is 

underspecified, and satisfactory results have been obtained in tests using a generally available 

standard solution method and a simple objective based on the target moments. 

 

Development of equilibrium and time-dependent deterministic variance formulae, correction or 

substitution of time-dependent mean queue formulae, enlargement of the range of queue 

processes to which these can be applied, and development of approximations to equilibrium and 

dynamic probability distributions, complete the main aims of this work. Computationally 

efficient implementations require an efficient solution algorithm, but specifying this is not an 

objective since standard methods exist. Implementation for demonstration purposes and 

computational issues are discussed later in Chapter 7.  

                                                
53‘Time-stamped’ signifies that the probability distribution is evaluated for a particular point in time during the 
evolution of a queue, from time-dependent moments, but is not explicitly a time-dependent function. 
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CHAPTER 6: QUEUING ON MULTIPLE LANES 

 

6.1. INTRODUCTION 

 

Queues on several interacting lanes, and the particular case of two lanes with turning 

movements, are explored. Apart from extending the range of cases accessible to time-dependent 

approximations, and potentially leading to enhanced junction modelling methods, this may give 

insight into some features of queuing processes. Efficient approximation methods are sought 

for cases complicated by the interaction of several traffic streams, situations not covered in the 

foregoing Chapters. Multi-lane queues raise issues about how the statistics of arrivals and 

departures should be represented, because from the myopic viewpoint of a particular lane, 

arrivals may appear to be ‘censored’ if they select another lane either randomly or when the 

queue there appears to be shorter. If lanes are assumed to share the capacity of a common 

service channel, effectively their service processes become correlated. The extent to which 

multi-lane processes can be accommodated by the Pollaczek-Khinchin model is considered, and 

properties of lane probability distributions are investigated. A paper reporting some of this 

work was presented at the UTSG 2011 conference (Taylor 2011). 

 

6.2. MULTI-LANE FORMULATION AND ANALYSIS OF TWO LANES 

 

Many junctions, particularly larger ones including major roundabouts, have several entry lanes. 

Although some lanes are dedicated to particular turning movements, others may be shared by 

different movements, and movements may have a choice of lanes. Short flares may be present 

which interact with main approach lanes, but only main lanes of unrestricted length are 

considered in this idealised analysis. If choice of lane is available, it may be random or involve 

rational selection, for example choosing the lane that appears to contain the shortest queue. The 

question is then how this affects the queue sizes. Although M/M/c and G/G/c multi-server 

queues are covered by standard works, they tend to deal with short queues on a large number of 

non-interacting channels, whereas the type of queues of interest here are likely to be longer on 

fewer channels, and lane-changing either within or on departure from the queue may occur. 

 

6.2.1 Apparent problem with queuing on two lanes 

 

For a single lane where the traffic intensity is ρ the M/M/1 equilibrium queue size is: 

 

   





1
eL       (6.2.1) 
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Suppose a junction approach is divided into two lanes, and arrivals can choose a lane either 

randomly or according to some rule, and there is sharing of service, as in Figure 6.2.1. 

 

 

Figure 6.2.1  Two lane approach with possibility of lane choice and service sharing 

 

If there is no lane-changing after arrival and no sharing of capacity, then the lane queues are 

independent apart from the initial choice of lane. In the steady state, queue size depends only on 

the demand intensity, not the arriving volume or capacity separately. If each lane has half the 

total capacity and arrivals are divided with rates  left and (1-) right, and the process in each 

lane is M/M/1, then the total equilibrium queue is: 
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Because the capacity of each lane is fixed, total queue size is maximised when  is 0 or 1, and a 

lane can become oversaturated even if ρ<1. Total queue size is minimised when =0.5, but is 

then twice what it would be in a single lane, namely: 

 

   





1

2
eL  (separate and symmetrical lanes) (6.2.3) 

 

This does not seem realistic. If either lane can be chosen freely, arrivals might choose the lane 

they perceive to have the shorter queue
54

, but this does not seem to be essential since any 

symmetrical strategy, from choosing lanes alternately to choosing a lane randomly, should 

equalise the mean lane queues. If the centre line is removed, allowing free movement between 

lanes, it can be replaced in simulation by free choice between lane servers, if this is possible. 

Lane-changing as such is only of interest in as much as it may affect throughput capacity. 

                                                
54 An element of mis-perception can be introduced by adding to the actual queue size a random amount 
proportional to the square-root of queue size. This effectively treats the space occupied by customers as a Poisson 
variable. In practice, it is the split ratio which matters, not the method used to achieve it. 
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If these various processes are imagined to be hidden inside a ‘black box’, they become 

equivalent to a single lane (6.2.1). By symmetry, each lane queue must then be half the total. 

Yet the demand intensity on each lane is still ρ, since both the arrivals (assumed symmetrical) 

and the nominal capacity in each lane are halved. Therefore the statistics of the queue process 

in either lane can no longer be M/M/1. If lane choice by arrivals is (relatively) unimportant, as 

implied above, then it is the service process that is critical. 

 

If two lanes ultimately feed into a single stream, for example where a multi-lane stop line at a 

roundabout feeds into an unmarked circulating section, some turbulence in the merge might be 

expected. In practice such movements may be difficult to observe in detail, making it difficult 

to verify a description except in aggregate. Nevertheless, one can imagine a range of 

possibilities from no sharing of service to perfect sharing, with any actual case approximated 

somewhere in that range. This is of some interest for its own sake, and is approached here in 

those terms, but there is also the possibility of shedding light on non-M/M/1 processes and on 

how they can be approximated. 

 

6.2.2 Simulation of multi-lane queues and their probability distributions 

 

A simple microscopic simulation program has been constructed, where arrival and service 

events have exponential headway distributions generated using a standard pseudo-random 

generator
55

, with sufficient events to allow equilibrium to be approached. Options include: 

 

 Lane selected randomly on arrival and for shared service 

 Shortest lane queue selected on arrival and lane selected randomly for shared service 

 Independent arrivals and service on each lane with same total traffic. 

 

Queue sizes are given in Table 6.2.1 for a four-lane case, with =0.9, capacity =1 for shared 

service or 0.25 for independent service where each lane receives 1/4 of the flow, and 1 million 

simulated events. The difference between the simulated and expected mean queues, 8.838 and 

9.0 respectively, is consistent with an analysis of ‘standard’ error given in Appendix F
56

. The 

shared service mechanism in the first two cases selects a lane at random from those where a 

queue is present. Therefore the process is not truly FIFO, since queuing ‘customers’ are not 

represented explicitly. That the effect of this is small has been confirmed by a small difference 

in results using an alternative simulation that maintains FIFO in each lane. However, 

differences in the software and its efficiency are significant because individuals are identified. 

As is to be expected, there is substantial correlation between lane queues with shared service. 

                                                
55 Random number generator supplied with the Silverfrost Fortran 95 compiler. 
56 I am grateful to one of the Examiners for pointing out a need to increase the number of events simulated. 
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Table 6.2.1  Queue sizes in multi-lane simulations (=0.9, =1.0, 1M events) 

No. of 

Lanes 

Capacity  and 

Type of process 

Total 

Queue 

Individual Lane Queues Correlation of 

Queue Sizes(r) Lane 1 Lane 2 Lane 3 Lane 4 

1 1.00 random 8.838 8.838 - - - n/a 

4 0.25 indep. 36.786 9.211 9.254 9.128 9.193 0.009 

4 1.00 shared 9.178 2.310 2.271 2.344 2.253 0.373 

4 1.00 shortest 9.178 2.295 2.292 2.295 2.296 0.933 

 

Table 6.2.2 verifies that the statistics of arrival and service headway sequences are close to 

exponential (coefficient of variation  1) and uncorrelated in a single queue. There is some 

correlation (Pearson r) between arrivals and service on lanes with shared service, as may be 

expected since arrivals correlate with queue size, and queue size correlates with service since a 

larger queue is more likely to ‘borrow’ service from another lane. 

 

Table 6.2.2  Arrival and service intervals in simulations (=0.9, =1.0 shared, 1M events) 

 Arrivals Service 

Single 

Queue 

Multi-Lane Queuing Single 

Queue 

Multi-Lane Queuing 

Lane1 Lane2 Lane3 Lane4 Lane1 Lane2 Lane3 Lane4 

Mean 1.112 4.453 4.454 4.439 4.451 0.999 4.003 4.001 3.990 4.002 

S.d. 1.114 4.452 4.465 4.462 4.461 1.002 4.045 4.058 4.041 4.037 

Co.Var 1.002 1.000 1.002 1.005 1.002 1.002 1.010 1.014 1.013 1.009 

eff :ras 0.899 0.899 0.898 0.899 0.899 0.079 0.543 0.547 0.543 0.544 

 

Table 6.2.3 shows how the probability of the queue being zero varies. Here it is important to 

distinguish between the value of p0 for all lanes combined and the average of the individual lane 

values. The total and individual lane queues are consistent with the corresponding M/M/1 

values of p0, i.e. 1/(Le+1), except for the case where arrivals select the shortest queue, when the 

individual queues are less likely to be zero, although the combined arrival and service events 

are still uncorrelated because they are generated by the same independent mechanisms. 

 

Table 6.2.3  Probability of zero queue in simulations (=0.9, =1.0, 1M events) 

No. of 

Lanes 

Capacity  and 

Type of process 

Average 

Lane p0 

Combined p0 

(~1-) 

Individual Lane p0  

Lane 1 Lane 2 Lane 3 Lane 4 

1 1.00 random 0.100 0.100 0.100 - - - 

4 0.25 indep. 0.099 n/a 0.100 0.098 0.098 0.099 

4 1.00 shared 0.377 0.105 0.376 0.378 0.375 0.378 

4 1.00 shortest 0.250 0.105 0.251 0.250 0.249 0.248 
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Table 6.2.4 gives the variances of the queue sizes in the four tests (nominal value = 90). The 

difference between the values in the first two cases can be ascribed to the high sensitivity of the 

M/M/1 equilibrium value to the effective  value (dV/d=1900 @ =0.9). Since simulated  is 

typically ‘out’ by 0.001-0.002, around half the variability in V is accounted for by this. 

However, the lane variances are much smaller values in the last two cases, where lanes share 

service. The mechanism of this is analysed later (for the case of two lanes). 

 

Table 6.2.4  Variance of queue size in multi-lane cases (=0.9, =1.0, 1M events) 

No. of 

Lanes 

Capacity  and 

Type of process 

Average Lane 

Variance 

 Individual Lane Variance 

Lane 1 Lane 2 Lane 3 Lane 4 

1 1.00 random 82.413  82.413 - - - 

4 0.25 indep. 94.790  95.934 94.355 97.743 91.129 

4 1.00 shared 11.662  11.428 10.941 12.721 11.556 

4 1.00 shortest 6.505  6.515 6.502 6.490 6.512 

 

Kleinrock (1975) states
57

 that where a queue is present the queue size distribution is geometric 

for any G/M/c process, c being number of parallel channels. A multi-lane system is not G/M/c, 

but Table 6.2.5 gives ‘effective rho’ values, the average ratio between successive probabilities 

 on the assumption that the distribution is geometric, i.e. pi = p0
i
. This assumption would 

imply p0 = 1-. The average  from simulation in the first two cases can be considered 

practically equal to , and p0 is consistent with geometric distribution.  

 

Table 6.2.5  Geometric ratio in probability distribution (=0.9, =1.0, 1M events) 

No. of 

Lanes 

Capacity  and 

Type of process 

Average 

Lane p0 

Average 

 

Individual Lane  

Lane 1 Lane 2 Lane 3 Lane 4 

1 1.00 random 0.100 0.899 0.899 - - - 

4 0.25 indep. 0.099 0.909 0.903 0.896 0.899 0.898 

4 1.00 shared 0.377 0.761 0.759 0.756 0.762 0.768 

4 1.00 shortest 0.250 0.691 0.688 0.696 0.692 0.689 

 

Where arrivals choose the shortest queue, the probability distributions are no longer truly 

geometric in shape since p0 is relatively reduced, as seen in Figure 6.2.2, where the 

distributions are sampled showing some variability, and Figure 6.2.3 where the distributions are 

equilibriated (aggregated between 10,000 and 1M events, compared to the theoretical relaxation 

period for =0.9 of ~380 service events) and there is no visible difference between the lanes. 

                                                
57 Kleinrock (1975), p246-249. 



263 

 

In the two shared service cases the average  from simulation is substantially different from , 

but with random selection the distribution has a geometric appearance. Where the shortest 

queue is selected the distribution is no longer geometric, and an appropriate approximation 

would be nested geometric (see Chapter 3 earlier). However, since p0 does not contribute to 

moments, they can still be estimated by substituting an ‘effective rho’ into M/M/1 formulae. 

 

 

Figure 6.2.2  Sample queue size distributions for 4 lanes (=0.9, =1.0, 9000 events) 

 

 

Figure 6.2.3  Equilibriated distributions for 4 lane cases (=0.9, =1.0, 1M events) 
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To produce on each lane a mean equilibrium queue size that equals the total queue divided by 

the number of lanes n, assuming that p0 fits the pattern, the effective demand intensity on each 

lane should be given by equation (6.2.4). Figure 6.2.4, comparing estimated and simulated 

moments of various shared exit cases with =0.7 or 0.9, and shortest queue selection with 

=0.9, shows that this works fairly well given the simplicity of the approximation
58

. 

 

 


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1n
     (6.2.4) 

 

 

Figure 6.2.4  Comparing queue moments based on estimated  with simulation 

 

6.2.3 Markov model of multi-lane queuing 

 

If the system has n identical lanes, then the mean size of each queue is Le/n and the probability 

distributions of the individual lane queues must combine to reproduce the combined M/M/1 

geometric distribution. However, the lane queues are not independent. Even if arrivals and 

departures are randomly chosen, choosing one lane necessarily affects the other(s). First define: 

 

p
(n)

i,j,k,l… = absolute probability of the n lane queues being in state i,j,k,l...  

p
(n)

i(m) = prob. that lane queue indexed m of n is in state i   (6.2.5) 

 Pi or pi(n) = the probability that the queue size on a typical lane of n is i. 

 

A ‘Markovian’ process is memoryless, so its future state depends only on the current state. A 

multi-lane queuing process can be modelled as a continuous-time process: 

 

                                                
58 Subject to the largest queue (n=1), corresponding to the largest value of  (=), being simulated by a 

sufficiently large number of events to bring it near to equilibrium, as mentioned earlier. 
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where M is some function, primed indices are dummies representing all probabilities of the 

current state at time t, and {m} are various option settings. Since  is always associated with t 

it can be convenient work in terms of t instead of t. The Markov process can be implemented 

by a computer program using a finite step size t, and will be stable if this is not too large, 

although a very small value will increase computation time with little benefit to accuracy. The 

formulation of recurrence relations will be described and discussed later. To establish relevant 

behaviour at the outset, some results of simulation are given first. 

 

6.2.4 Queue size probability distributions from Markov simulation of 2 lanes 

 

Figure 6.2.5 shows a clear difference between the two-server (broken line) and M/M/1 (nearby 

solid line) distributions, while the distributions on individual lanes are similar regardless of how 

generated (three solid lines with higher p0). The dip in p0 in the selective case is present though 

less evident than in the previous 4-lane simulations. These results confirm the earlier view that 

the critical factor is the service process, and that at least in symmetrical cases and where the 

primary objective is to estimate moments, the individual lane processes can be approximated by 

M/M/1 with a modified ‘effective ’, opening the way to simplified approximations amenable 

to standard time-dependent methods. 

 

 

Figure 6.2.5  Markov simulated queue size distributions for some two-lane cases with ρ=0.8 
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The first parts of the probability distributions, simulated for =0.8, =1, and t=0.01 in 

equation (6.2.7), and 50,000 iteration cycles, are tabulated in Table 6.2.6, showing that the 

queue size probability distribution in each lane is not dissimilar to that of an M/M/1 distribution 

with half the mean queue size. Some invariants are given in Table 6.2.7. Tables 6.2.8 and 6.2.9 

later give more detail about probabilities for a two lane system with random selection of lanes. 

 

Table 6.2.6  Probability distributions in whole system or each of 2 lanes, =0.8 

Queue 

Size i 
Whole 

System 
Each Lane 

Random 
Each Lane 

Selective 
M/M/1 half 

mean queue 
0 0.200 0.369 0.300 0.333 
1 0.160 0.215 0.239 0.222 
2 0.128 0.134 0.161 0.148 
3 0.102 0.088 0.107 0.099 
4 0.082 0.059 0.069 0.066 
5 0.066 0.040 0.045 0.044 
6 0.052 0.028 0.029 0.029 
7 0.042 0.020 0.018 0.020 
8 0.034 0.014 0.012 0.013 
9 0.027 0.010 0.008 0.009 
10 0.022 0.007 0.005 0.006 
11 0.017 0.005 0.003 0.004 
12 0.014 0.004 0.002 0.003 
13 0.011 0.003 0.001 0.002 
14 0.009 0.002 0.001 0.001 
15 0.007 0.001 0.001 0.001 
16 0.006 0.001 0.000 0.001 

 

 

Table 6.2.7  Invariant values for the Markov simulated two-lane cases  

Queue 

Size i 

Two 

Servers 

Total 

M/M/1 

Process 

Total 

Each 

Lane 

Random 

Each Lane 

Selective 

M/M/1 

Half 

Queue 

p0 0.111 0.200 0.369 0.300 0.333 

Le 4.444 4.000 2.000 2.000 2.000 

 

 

The probability P0 of either lane being empty regardless of the other is the sum of the 

probabilities that one lane is empty and the other lane has any possible value, i.e. the row-0 or 

column-0 sum in Table 6.2.8: 

 







i

i

ipP
0

00              (6.2.8) 
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If the queue in one lane is zero, knowing that the probability of both lanes being empty is 0.2 

(=1-), the probability that the other lane is also empty has a value much greater than that of an 

independent lane, viz: 

  

  5426.0
3686.0

2.0
0

)(

0 jP
i

          (6.2.9) 

 

In Table 6.2.8, the probability of both lane queues being empty is not the product of the 

probabilities of each lane being empty. If the two lanes were independent, and each had on 

average half the total arrivals and half the total service, then each would still have the same 

=0.8 and probability 0.2 of being zero, so the probability of both being zero would be only 

0.2
2
 = 0.04. However, each lane queue would then have the same mean size as the actual two-

lane system. This violation of the ‘product form’ (Koenigsberg 1991) is an indication of non-

independence of the lane queues, which naturally results in diagonal joint probabilities being 

greater than the products (squares) of the corresponding lane probabilities. The differences 

might be seen as a measure of inter-lane correlation (if the lanes were perfectly correlated each 

diagonal joint probability would be equal to the corresponding individual lane probability). 

 

Table 6.2.8  Markov simulated joint and lane state probabilities, random selection 

=0.8 Sums 0.3686 0.2148 0.1344 0.0877 0.0588 0.0402 0.0278 0.0195 
Sums i,j 0 1 2 3 4 5 6 7 
0.3686 0 0.2001 0.0800 0.0375 0.0198 0.0113 0.0069 0.0043 0.0028 
0.2148 1 0.0800 0.0530 0.0314 0.0186 0.0113 0.0070 0.0045 0.0029 
0.1344 2 0.0375 0.0314 0.0221 0.0147 0.0096 0.0063 0.0041 0.0028 
0.0877 3 0.0198 0.0186 0.0147 0.0107 0.0075 0.0051 0.0035 0.0024 
0.0588 4 0.0113 0.0113 0.0096 0.0075 0.0055 0.0040 0.0028 0.0020 
0.0402 5 0.0069 0.0070 0.0063 0.0051 0.0040 0.0030 0.0022 0.0016 
0.0278 6 0.0043 0.0045 0.0041 0.0035 0.0028 0.0022 0.0017 0.0013 
0.0195 7 0.0028 0.0029 0.0028 0.0024 0.0020 0.0016 0.0013 0.0010 
0.0137 8 0.0019 0.0019 0.0019 0.0017 0.0014 0.0012 0.0009 0.0007 
0.0097 9 0.0012 0.0013 0.0013 0.0011 0.0010 0.0008 0.0007 0.0005 
0.0069 10 0.0008 0.0009 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 
0.0050 11 0.0006 0.0006 0.0006 0.0006 0.0005 0.0004 0.0004 0.0003 
0.0036 12 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 
0.0026 13 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 
0.0019 14 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 
0.0014 15 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
0.0010 16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
0.0007 17 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
0.0005 18 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 
0.0004 19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0003 20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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6.2.5 Interpretation of shared service as ‘borrowing’ of capacity between lanes 

 

The interpretation that unused capacity in one lane is ‘borrowed’ by the other is justified by the 

state transition model in Figure 6.2.6, where it is made explicit when one lane is empty. 

 

 

Figure 6.2.6  State transition diagram for two lanes 

 

The state probabilities Pi are for Lane 1 alone, not technically ‘in isolation’ but as if Lane 2 and 

correlations were hidden from an observer. The probability ratio in the diagram follows from 

the fact that, in considering the transition on Lane 1 from queue state i+1 to state i through a 

service event, what is required is the probability of Lane 2 being empty given that the queue in 

Lane 1 is known to be i+1. The transition balance equation is therefore: 
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Full recurrence relations for this and other cases, and what can (or cannot) be extracted from 

them, are presented and discussed next. 
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6.2.6 Evolution of probabilities where arrivals select one queue at random 

 

For n=2, the following formulae can be derived by considering each possible initial state 

leading to a given final state, where one index is allowed to change at a time: 
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RHS of equations (6.2.11) are expanded in Tables 6.2.9 for low values of i and j. In the steady 

state all the cell sums are identically zero.  

 

Table 6.2.9a  Rho-factored (arrival) components of dpij/dt=0 

i \ j 0 1 2 3 

0 -p00 -p01+.5p00 -p02+.5p01 -p03+.5p02 

1 .5p00-p10 .5p01+.5p10-p11 .5p02+.5p11-p12 .5p03+.5p12-p13 

2 .5p10-p20 .5p11+.5p20-p21 .5p12+.5p21-p22 .5p13+.5p22-p23 

3 .5p20-p30 .5p21+.5p30-p31 .5p22+.5p31-p32 .5p23+.5p32-p33 

 

 

Table 6.2.9b  Unit-factored (departure) components of dpij/dt=0 

i \ j 0 1 2 3 

0 p10+p01 .5p11+p02-p01 .5p12+p03-p02 .5p13+p04-p03 

1 p20+.5p11-p10 .5p21+.5p12-p11 .5p22+.5p13-p12 .5p23+.5p14-p13 

2 p30+.5p21-p20 .5p31+.5p22-p21 .5p32+.5p23-p22 .5p33+.5p24-p23 

3 p40+.5p31-p30 .5p41+.5p32-p31 .5p42+.5p33-p32 .5p43+.5p34-p33 

 

 

Noting the symmetry pij = pji, summing the rows or columns of the elementary probabilities pij 

gives the following relationships, where Pi represents the i
th

 sum, the probability that the queue 

size in one lane is i: 
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000101 5. ppPP   

  0201012 1 ppPPP       (6.2.12) 

  0302123 1 ppPPP    

     etc., or summing cumulatively 

0101 pPP   

0212 pPP       (6.2.13) 

0323 pPP   

 

So equation (6.2.10) is recovered. The LHS above are identical to those for the M/M/1 queue, 

but the RHS are now non-zero. Summing the equations, using (6.2.8), leads only to the known 

result p00=(1-). 

 

6.2.7 Estimation of two lane moments and probability distributions 

 

The first moment Lj of equations (6.2.13) can be related to the ensemble mean by: 

ej LL  0   where  
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where Lj is the actual equilibrium queue in the jth lane, Le is the equilibrium queue of the whole 

M/M/1 system /(1-) (the subscript e could be interpreted here as standing for ‘ensemble’), 

and 0 represents a ‘shadow queue’ contributed by the other lane. Taking the second moment: 
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 (6.2.15) 

 

Here, in addition to a ‘shadow second moment’ there is a term that could be described as a 

‘decoupling’ or anti-correlation term (a correlation term would be negative). The ‘shadow 

queue’s probability distribution is not normalised, not even in the second of equations (6.2.14), 

because the sum of its probabilities is P0, not 1 or (1-). However, there is no obvious way to 

get an expression for P0 from these expressions. As this is a specific system and no statistical 

parameters have been ‘hidden’, there is no logical prohibition of a closed-form solution, yet it 

appears not to be available even for a simple physical system like this. Nevertheless, it is 

interesting that all that is needed, to describe the system fully, is the state of one queue when 

the other is empty. By symmetry the two lane queues are equal, therefore from (6.2.14-15): 
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Now ej VV
2
1

0  , and while Lj and 0 are equal their underlying probability distributions are 

different. These results can be confirmed using the data in Table 6.2.8. In all M/M/1 cases: 

 

  100p  and for any number of lanes 10...0p  (6.2.18) 

 

Therefore, the simplest estimate of the whole distribution {p0i} would be the unnormalised 

singly-nested distribution: 

 

  i
ip  10   (i > 0)    (6.2.19) 

 

In practice this performs poorly, and in any case forces a relationship between p01 and . In fact 

it is possible to obtain p01 explicitly. For any number of lanes, if the total queue is 1 then only 

one lane can contain the queue, but all lanes are equally likely, so p0…1 must be 1/n of the 

M/M/1 ensemble probability of a queue of size 1, hence: 
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With p00 and p01 known, the simplest progression of the distribution is geometric: 

 

1
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 i
i pp   (i > 1)    (6.2.21) 

 

The solution for  to fit the mean (6.2.16) in this case is: 
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An early attempt at estimating the whole distribution {p0i} was the empirical formula (6.2.23), 

which while consistent with (6.2.19-20) when i<1, has no theoretical justification and would 

not be easy to extend to n>2, but is included for completeness: 
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Summing terms of (6.2.21) together with (6.2.18-19) gives the following value for P0(2):  
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An earlier attempt to devise an empirical formulae for P0(2) is also included for completeness: 
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Figure 6.2.7 compares estimates of P0 using different methods. 

 

 

Figure 6.2.7   Estimates of P0 for two lanes and a range of traffic intensities 

 

The mean value of {p0i} according to the formulation (6.2.20-22) is, as required: 
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To complete a practical description it remains to determine the lane queue variance Vj. Using 

(6.2.20-22) the second moment of {p0i} can now be estimated as (6.2.27), and thence 0  from 
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(6.2.15), from which Vj can be obtained using the last of (6.2.17) (best done numerically since 

neither expression reduces to a suggestive form). 
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Alternative estimated probability distributions for =0.8, including a doubly-nested distribution 

based on three moments including variance, are compared with simulation in Figure 6.2.8. The 

empirical distribution appears to fit the simulation data very well, which may make it worthy of 

future investigation. The similarity of estimated (6.2.19-21) and doubly-nested distributions is 

not surprising since they have similar forms each determined by three parameters. 

 

 

Figure 6.2.8  Simulated and estimated probability distributions{p0i}, two lanes, =0.8 

 

Figure 6.2.9 plots the variance elements as functions of . The estimated value of 0  goes 

negative when  = 0.95, which is allowed since it is not a true variance, and it remains small so 

Vj is generally around half Ve. If the lanes were independent, each with half the arrival and 

capacity rates, and hence the same demand intensity equal to the ensemble value , the total 

queue size and variance would both be twice the ensemble values. On the other hand, to 

produce the same total queue with independent lanes, each lane would need a reduced demand 

intensity /(2-), and the total variance would be approximately half the ensemble variance. 

This shows that the variance of a lane queue more or less tracks the mean queue size as the 

relationship between the lane processes is varied. 
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Figure 6.2.9  Calculated lane queue variances for two lanes and range of  values 

 

 

6.2.8 Evolution of probabilities where arrivals select shorter of two queues 

 

In the case of selection of the shorter queue between two lanes (or randomly only if the queues 

are exactly equal), equations (6.2.11) are modified as below, some terms being evaluated in 

Tables 6.2.10a,b: 
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Table 6.2.10a  Rho-factored (arrival) components of dpij/dt=0 

i \ j 0 1 2 3 4 

0 -p00 -p01+.5p00 -p02+.5p01 -p03+.5p02 -p04+.5p03 

1 .5p00-p10 p01+p10-p11 p02+.5p11-p12 p03-p13 p04-p14 

2 .5p10-p20 .5p11+p20-p21 p12+p21-p22 .5p22+p13-p23 p14-p24 

3 .5p20-p30 p30-p31 .5p22+p31-p32 p23+p32-p33 .5p33+p24-p34 

4 .5p30-p40 p40-p41 p41-p42 .5p33+p42-p43 p34+p43-p44 

5 .5p40-p50 p50-p51 p51-p52 p52-p53 .5p44+p53-p54 

 

Table 6.2.10b  Unit-factored (departure) components of dpij/dt=0 

i \ j 0 1 2 3 4 

0 p10+p01 .5p11+p02-p01 .5p12+p03-p02 .5p13+p04-p03 .5p14+p05-p04 

1 p20+.5p11-p10 .5p21+.5p12-p11 .5p22+.5p13-p12 .5p23+.5p14-p13 .5p24+.5p15-p14 

2 p30+.5p21-p20 .5p31+.5p22-p21 .5p32+.5p23-p22 .5p33+.5p24-p23 .5p34+.5p25-p24 

3 Etc – same as Table 6.2.9b 

 

 

Unlike in the non-selective case, these formulae do not lend themselves to a repetitive simple 

relationship, but there is some regularity. Other terms besides p0i now appear on the RHS. 

Eliminating P0 from the first two equations gives the next pair relationship, but subsequent 

relationships become increasingly messy. 

 

0101 pPP   

     00101102010112 22 pppppPPPP     (6.2.29) 

     102111202203021223 222 pppppppPPPP    

 ... or ... 

   001011020112 212 pppppPP     (6.2.30) 

 

It is possible that arrivals gain some advantage from ‘jockeying’, that is changing lane 

whenever there appears to be an advantage in doing so. This could lead to almost infinite 

variation in the details of lane selection and service sharing mechanisms. Nevertheless, if the 

whole system is treated as a ‘black box’ with random arrivals and service, whose n internal 

lanes are identical, then symmetry requires that the means of all the lane queues be equal to 1/n 

of the M/M/1 queue, their probability distributions are the same, and the convolution of all the 

lane probability distributions must give the usual M/M/1 queue size probability distribution. 

What appears free to vary within these constraints is the correlation between lane queues. 
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6.3. EXTENDING TO ANY NUMBER OF LANES 

 

6.3.1 Relationship to multi-channel queue process 

 

It is natural to ask whether queues in multi-lane systems could be represented by using or 

adapting standard queue processes or modifying their parameters. Multi-channel queues with 

independent servers are described by the M/M/n or G/G/n processes, the first of which was 

summarised earlier in Section 3.5, representing something like a supermarket checkout or 

communications system with n channels. Arrivals choose an idle server if one is available and 

otherwise choose randomly, and there is no interaction between channels’ service. In standard 

works the focus tends to be on evaluating waiting times in cases where individual queues are 

short, implying that server provision can be matched to demand. In transport the focus is more 

on evaluating queue sizes and delays where there are a few heavily loaded servers, since it may 

be difficult or impossible to provide extra capacity. The standard processes do not provide for 

explicit service sharing. 

 

If ρ is the demand intensity on the whole ensemble relative to the sum of the channel capacities, 

the M/M/n steady-state queue (e.g. Medhi 2003) is: 
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Here p0 is the probability that the whole system is empty, and the coefficient of variation of 

service is assumed to equal 1 for each server, as implied by (6.3.1) when n=1. The probability 

distribution becomes geometric when i>n. When n=1, the usual M/M/1 formulae are recovered. 

For n=2: 
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The mean queue size (6.3.3 right) lies between the extremes (6.2.1) and (6.2.3), which range 

would allow for channel selection by arrivals, but service sharing is excluded since the channels 

are physically independent. If the first term of the queue formula in (6.3.1) can be interpreted as 

total units-in-service, dividing it by n gives the expected value I=1 for each channel. However, 
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as Figure 6.3.1 shows, C decreases with n, so if the average queue on each lane is got by 

dividing (6.3.1) by n, and n is large, the randomness term virtually disappears.  

 

Figure 6.3.1  Variation of M/M/n quantities with number of channels n, =0.8 

 

Since over time arrivals are equally likely to select any channel, and the service processes are 

independent, each channel experiences demand intensity . Although the arrival process seen 

by each channel is initially non-random, once sufficient queues have built up it becomes 

random and the statisitics of each channel process will be not far from M/M/1, while for the 

ensemble they are far from M/M/1. So this is not a good approximation to a multi-lane system. 

 

6.3.2 Can multiple lanes be represented by P-K formula with modified parameters? 

 

If a multi-lane ensemble process is M/M/1 and there is symmetry between lanes, the mean 

queue on each lane must be reduced by the factor of the number of lanes n: 
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The P-K queue formulae derived earlier (equation 3.2.13 or 3.2.16 with 3.2.10), 

notwithstanding the arguments against the use of ca, is: 
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It might be expected that where arrivals choose the shorter of two queues, this could affect 

the dispersion of arrivals in each queue separately. In practice, the difference from random 

selection is likely to be small, since symmetry requires that the lane queues tend to become 
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equal anyway. So to first approximation the dispersion-related terms in (6.3.5) can be 

eliminated by setting Ia=1 or ca=1. To account for service sharing there are now only the 

parameters I and cb. It is not obvious that I can meaningfully be subdivided, as it represents 

the unavoidable average time needed to service each customer. Subdividing the randomness 

coefficient in (6.3.5) appears impossible unless ca is adopted and can be subdivided as well as 

cb. This might just be possible for two lanes, but no more. In conclusion, manipulating P-K 

statistical coefficients whether in M/M/1 or M/M/n appears insufficient. 

 

6.3.3 Are Censored Poisson or Erlang processes relevant to multi-lane queues? 

 

In a Censored Poisson process every rth arrival is accepted and the rest discarded. Even though 

arrivals are random this is subtly different from M/M/r. The probability density function of 

accepted-arrival intervals is given by equation (6.3.6) (e.g. Trabka and Marchand 1970): 
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This is equivalent to the Erlang formula with substitutions of variables: 
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An interpretation of (6.3.7) is that instead of (r-1) arrivals being discarded in each interval up to 

the rth arrival, they are parked and then combined with the rth in a bunch. The form of (6.3.7) 

is misleading since q is not the mean arrival rate but the inverse of the mean arrival interval, the 

true mean arrival rate of the bunched arrivals being k=rq. However, the mean arrival rate of the 

censored arrivals is q. Therefore the censored process can be represented as Erlang-r arrivals 

with arrival rate reduced by the factor r. 

 

If distributing arrivals between r lanes is equivalent to ‘censoring’, and capacity equally divided 

between the lanes so  is the same for each lane as for the ensemble, then in each lane, from 

(3.2.16): 
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Assuming the ‘unit-in-service’ coefficient I remains 1 independently of r, the results are as 

shown in Table 6.3.1. 
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Table 6.3.1  Queue size in each of r lanes predicted by equation (6.3.8) 

r 1 2 3 ..  
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The total queue rLe(r) increases without limit, but is always less than it would be if the lanes 

were totally independent, which in this case means arrivals selecting lanes at random, since 

there is no interaction between the service processes. According to equation (3.2.16), including 

the Erlang service coefficient m, the only way to get the correct result is if I=r=m. This shows 

that multi-lane queuing is not equivalent to censoring arrivals. 

 

6.3.4 Emergent patterns from simulation of two or more lanes 

 

Markov simulation has been applied for up to four lanes with several values of . Because of 

the somewhat inefficient technique of generating explicit transition tables for each initial 

state, run time escalates rapidly with the number of lanes, four being the current practical 

limit. Also, the reliability of the distributions cannot be guaranteed except that their 

convolution can be checked to equal the geometric distribution of the ensemble queue. This 

constraint applies regardless of how arrivals select a lane, e.g. randomly or selectively, 

provided that the combined arrivals and service are random, i.e. exponentially distributed. 

 

If simulated lane queue probability distributions for n>1 are normalised to the same 

amplitude p0(1) and their state axes suitably transformed then they can be overlaid 

approximately as in Figure 6.3.2. Although the matches are approxmate and their quality is 

difficult to assess rigorously, there appears to be a simple transformation that links the 

distributions, which are expressed here as continuous functions because of the non-integral 

scaling factor, so interpolation is generally necessary to derive integer state probabilities: 
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   (6.3.9) 

 

In equation (6.3.9), as previously, capital P is used for lane state probabilities to distinguish 

them from joint probabilities pi…j. The presence of 
2 appears to be necessary for <0.9, 

although not obtained by anything more rigorous than experiment and noting that differences 

between the moments of the transformed distributions are broadly minimised. 
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Figure 6.3.2  Markov multi-lane distributions against transformed state variable 

(The graphs for a single lane are visibly separate from the multi-lane graphs) 

The pattern does not extend to a single lane, as shown by the separate (light blue) curves. 

This is unavoidable, as all symmetrical lane selection strategies must result in the M/M/1 

distribution of the total queue provided that the ensemble arrivals and service remain random. 

However, since different strategies result in different distributions, no one transformation 

could match the M/M/1 distribution. The rule starts to fail for 2 lanes in the case =0.95, 

which may mean that it is not appropriate to cases where  is close to 1, which are not 

practical to simulate all the way to equilibrium. The n=1 curves can be moved into the 

common trend approximately by applying a scaling factor 0.75, though this does not work for 

=0.95. Referring back to equation (6.3.4), if the distributions were M/M/1 their effective 

parameters would be given by (6.3.10), which is consistent with (6.3.9) when  is close to 1. 
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The true P0 values depend on the lane selection process, so there is inevitably a degree of 

arbitrariness in any system where this is not specified. For practical purposes, adopting 

(6.3.9) gives results that are ‘useful’, although significantly inferior to those for 2 lanes 

obtained in the previous Section, and surprisingly, gives reasonable value for P0, although by 

a formula quite different from those found earlier. Table 6.3.2 gives 
/
 (‘effective rho’) values 

according to equation (6.3.10) and inferred from P0. Table 6.3.3 shows increasing error in the 

estimated values of P0 that is reflected in error in the distribution, despite the increasing 
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consistency between the n-lane processes. Noting that, unlike the percentage errors in 
/
 in 

Table 6.3.2, the errors in P0 in Table 6.3.3 (relative sum-of-squares errors for the whole 

distributions are also shown) vary relatively little and in no consistent direction with n, and if 

only half-integral or integral powers of  are allowed, a simple formula for the percentage 

error is given by: 

 


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1
%e       (6.3.11) 

Table 6.3.2  Comparison of ‘Effective rho’ values for M/M/1 multi-lane approximation 

 

 

Number of lanes 

2 3 4 

1-P0 
/
 %error 1-P0 

/
 %error 1-P0 

/
 %error 

0.5 0.3244 0.3333 2.74 0.2421 0.25 3.26 0.1937 0.2 3.25 

0.7 0.5138 0.5385 4.81 0.4106 0.4375 6.55 0.3439 0.3684 7.12 

0.8 0.6315 0.6667 5.57 0.5278 0.5714 8.26 0.4562 0.5 9.6 

0.9 0.7762 0.8182 5.41 0.6874 0.75 9.11 0.6192 0.6923 11.81 

0.95 0.8675 0.9048 4.3 0.7935 0.8636 8.83 0.7284 0.8261 13.41 

 

Table 6.3.3  P0 values estimated by M/M/1 approximation and their errors 

 
P0 simulated/estimated by number of lanes %Error in P0/%RSSE by lanes 

1 2 3 4 2 3 4 

        

0.5 0.5 0.6756 0.7579 0.8063 1.32 1.04 0.78 

0.5 0.6667 0.75 0.8 1.33 1.29 1.09 

        

0.7 0.3 0.4862 0.5894 0.6561 5.07 4.56 3.74 

0.3 0.4615 0.5625 0.6316 3.08 3.61 3.49 

        

0.8 0.2 0.3685 0.4722 0.5438 9.54 9.24 8.05 

0.2 0.3333 0.4286 0.5 4.1 5.31 5.58 

        

0.9 0.1 0.2238 0.3126 0.3808 18.76 20.03 19.2 

0.1 0.1818 0.25 0.3077 4.77 7.02 8.22 

        

0.95 0.05 0.1325 0.2065 0.2716 28.12 33.96 35.97 

0.05 0.0952 0.1364 0.1739 4.46 7.84 10.6 

 

Figure 6.3.3 shows that the error formula (6.3.11) is fairly accurate except for the points at 

upper right, corresponding to =0.95, but Table 6.3.3 shows that the errors invariably take the 

form of underestimation, suggesting that a systematic adjustment is possible. 
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Figure 6.3.3  Performance of formula estimation percentage error in P0 

 

An adjusted ‘effective ’ for each lane, still retaining the M/M/1 model is thus: 
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Table 6.3.4 shows that this achieves a useful reduction in errors.  

 

Table 6.3.4  P0 values and errors based on adjusted estimates 

 
P0 simulated/estimated by number of lanes %Error in P0/%RSSE by lanes 

1 2 3 4 2 3 4 

        

0.5 0.5 0.6756 0.7579 0.8063 0.36 0.65 0.91 

0.5 0.6780 0.7628 0.8137 0.71 0.75 0.88 

        

0.7 0.3 0.4862 0.5894 0.6561 1.00 0.47 0.39 

0.3 0.4813 0.5866 0.6586 1.79 1.95 1.77 

        

0.8 0.2 0.3685 0.4722 0.5438 2.69 2.36 1.09 

0.2 0.3586 0.4610 0.5379 2.49 3.08 3 

        

0.9 0.1 0.2238 0.3126 0.3808 4.51 6 5.03 

0.1 0.2137 0.2938 0.3617 3.1 4.18 4.55 

        

0.95 0.05 0.1325 0.2065 0.2716 1.15 9.19 11.94 

0.05 0.1310 0.1875 0.2392 3.77 4.29 5.01 

 

The resulting fit of P0 and Le(n) is shown in Figure 6.3.4, the least accurate points in the mean 

being those associated with the highest demand intensity employed, =0.95. 
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Figure 6.3.4  Fit of adjusted estimates of P0 and mean queue to simulated values 

 

 

6.3.5 Conclusions on extension to any number of lanes 

 

The conclusions of this Section are: 

 

 A standard multi-channel process is not appropriate for describing multiple lanes; 

 

 Censored Poisson or Erlang arrivals might be able to reflect lane selection but cannot 

represent service sharing; 

 

 When the ensemble queue is M/M/1, individual lane queue probability distributions 

are clearly not M/M/1, but the error in assuming them to be so is not great, bearing in 

mind that the actual processes of lane selection and service could be uncertain; 

 

 Queue distributions for different numbers of lanes appear to be related approximately 

by a simple transformation. Since the distribution on two lanes can be estimated 

using the non-M/M/1 distribution described in the previous Section, distributions on 

more than two lanes can be inferred, although this may fail for >0.95; 

 

 These are subject to the proviso that only M/M/1 ensembles have been considered, 

whereas one might expect multiple lane queues to be equally if not more prevalent at 

signals. However, up to this point signals queues would seem to require separate 

treatment. 
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6.4. MULTI-LANE METHOD WITH TURNS BASED ON UTILISATIONS 

 

6.4.1 Motivation and approach 

 

Attempts to find formulae for probability elements of lane queues have had limited success. 

With turning movements the situation becomes much more complicated. If each lane queue 

could be treated as approximately M/M/1, it could be expressed in Pollaczek-Khinchin form, 

even though as shown earlier the coefficients of dispersion and variation in P-K cannot be used 

to represent the effect of multiple lanes. If so, then all results obtained for the time-dependent 

sheared approximation can be applied. This Section derives an analytical approach based on an 

analysis of utilisations, referring back to Section 6.2. 

 

6.4.2 Effect of service sharing and turning movements on utilisation 

 

Figure 6.4.1 extends Figure 6.2.1 to include turning movements
59

. Left turners always use the 

left lane and right turners the right lane. Straight ahead movers may use either lane according to 

some choice mechanism, such as selecting the queue that appears to be shorter. 

 

Figure 6.4.1  Two lanes with turning movements and shared service 

 

                                                
59 The layout in the diagram reflects left-side (UK) driving convention but this does not affect the analysis. 
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In Table 6.4.1 the states of lane queues are divided into empty and non-empty, with the 

utilisation of each lane being defined as the proportion of time for which it is non-empty
60

. 

Again the convention of lower-case p for elementary probabilities and upper-case P for 

symmetrical single–lane probabilities is used: 

 

Table 6.4.1  Grouping of elementary probabilities for two lanes with shared service 

 Lane 2 queue = 0 Lane 2 queue > 0 

Lane 1 queue = 0 
P0 

p00 1

p0j = P0 – p00 

Lane 1 queue > 0 
1


pi0 = P0 – p00 {pij, i,j>0} 

1-P0 

 

If each lane can use all the capacity available to the other when it is empty, then (also referring 

back to Figure 6.2.5) the effective factor of gain in capacity for each lane is: 
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In practical terms, the throughput capacity on a lane doubles during some random time 

intervals, as in Figure 6.2.5, and the distribution of service headways is therefore no longer 

perfectly exponential. Therefore, in terms of time, a smaller proportion of total time is needed 

to service the queue in each lane, so the effective utilisation in terms of time is reduced. A 

similar calculation for three lanes gives the results in Table 6.4.2. 

 

Table 6.4.2  Utilisation construction for three lanes with shared service 

Case Absolute probability Utilisation factor 

All lanes zero p000 = 1 -  0 

Both other lanes zero p00i = P00 – p000 3 (contributes additional 2x) 

One other lane zero P0 – 2(P00 – p000) - p000 2 (contributes additional 1x) 

Neither other lane zero remainder 1 

Lane 1 non-zero 1-p0ij = 1-P0 Includes the three cases above 

 

The effective utilisation with three lanes is then: 
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60This relies on the assumption that the capacity is constant over the measured period. 
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For any number of lanes n, the probability of the total queue being zero p0…0 is the same, 

namely (1-ρ) where ρ is the demand intensity on the whole system. In time-dependent cases ρ 

should be replaced by the combined utilisation of service x, but for the moment only the steady 

state is considered. To calculate fu
(n) 

requires an estimate of P0, the probability that an individual 

lane is empty. To this end, a ‘transfer probability’ Px
(n)

 is first defined by: 
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The factor fu(n) can be built inductively as a Binomial expansion (6.4.4), whose components 

represent the separate contributions to one lane’s utilisation when no other lane is empty, one 

other lane is empty, two are empty etc, up to all other lanes empty. Each contribution has a 

factor one more than the number of empty lanes: one empty lane, with a certain probability, 

doubles the utilisation available to the current lane, two empty lanes triple it (if ‘cutting up’ the 

middle lane is allowed!) etc, and each case can occur in the combinatorial number of ways: 
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Equation (6.4.4) simplifies naturally to: 

 

         xxxnu PnnPPf 111     (6.4.5) 

 

Even though most of the terms in the Binomial formulation cancel out, it has explanatory value 

because it represents the contributions as mutually independent, so avoiding the need for an 

explicit representation of correlation between lanes. By symmetry, the mean steady-state queue 

in each of n lanes has to be: 
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Treating each lane queue as quasi-M/M/1, this implies the effective  in each lane is given by 

(6.4.7), matching (6.2.4), but the last equality also follows from the symmetry assumption since 

in the steady state the utilisation must equal the effective demand intensity: 
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If, again assuming quasi-M/M/1, it is supposed that approximately: 

   /
0 1 P       (6.4.8) 

equations (6.4.5) and (6.4.7) give: 

   1xP       (6.4.9) 

Equation (6.4.9) fixes what was previously called the transfer probability. In this approach the 

transfer contribution from an empty lane is not only independent of the other lanes but is the 

same as the nominal probability of the lane being empty as if it were isolated. This is 

convenient because it can potentially be extended to more general cases, using conventional 

methods. The linearity of (6.4.5) and (6.4.7) suggests that if only a proportion  of an empty 

lane’s capacity is sharable then Px can simply be reduced by this factor. This will be convenient 

where a degree of effective sharing arises from weaving between lanes or after departure. 

On a time basis,it is possible to write the probabilities that when one lane is ready for service 

the other lane is empty or otherwise not ready, 
 t

xP 0 , and its complement where the other lane is 

ready for service, 
 t

xxP . For two lanes: 
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The probabilities that a customer will be served are given by equations (6.4.11), which differ 

from (6.4.10) because twice as many can be served on one lane while the other lane is not being 

served. The significance of this distinction is that the probabilities (6.4.11) can be measured 

directly in simulations by counting the numbers of customers served under different conditions, 

allowing models to be tested, and possibly the factor  to be calibrated. Of course, the formulae 

will be more complicated if there is not symmetry between lanes. 
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For the basic two lane case in (Figure 6.2.1), using (6.4.5) and (6.4.6):, the effective and actual 

demand intensities for straight movements are related by: 
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These equations allow service sharing to be accounted for approximately when the arrivals and 

possibly the underlying service are not necessarily symmetrical between the lanes. In the time-

dependent case it is assumed that traffic intensities  can be replaced by utilisations. 

 

6.4.3 Space sharing in a single lane 

 

Before proceeding to consider turning movements, it is desirable to show that the method is 

internally consistent where a lane carries two independent movements. This could be called the 

‘red queue, blue queue’ problem, meaning that if arrivals are arbitrarily painted in two colours 

it should not affect the result. Suppose that total arrivals are , capacity is , the ‘red’ and 

‘blue’ component arrival rates are r and b, and ur, ub are the corresponding utilisations 

relative to the capacity. Then since each ‘colour’ takes capacity away from the other, the partial 

capacities are: 
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Now define the effective utilisations simply as follows: 
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The mean quasi-steady-state queues according to the standard M/M/1 formula are: 
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Since these queues are non-overlapping the total queue is just their sum: 
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But since the total volume = r + b, in the steady state this is just the same as: 
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This result is independent of the ‘red/blue’ split, showing that the method is internally 

consistent. This will not necessarily work for queue processes other than M/M/1, if the presence 

of one queue modifies the headway distributions of the other. 

 

6.4.4 Averaging capacities of streams sharing a lane 

 

Suppose the traffic population ‘colours’ are distinguishable, for example because their 

capacities differ. How should the capacities then be combined?  

 

Suppose the elementary capacities are r and b, being the capacities each population would 

experience if the other were absent. These could be the same, or different if for example each 

type of customer requires a different amount of capacity. The conventional answer is to use the 

harmonic mean, as this gives the mean service time. However, this neglects the relative 

proportions of the colours in the arriving flow, as reflected in the respective utilisations. 

 

Remembering that utilisation has been defined as the proportion of time that service takes place 

on a movement, and that the movements are mutually exclusive, at any point in a given time 

period a customer can be using either the ‘red’ mode or the ‘blue’ mode, or no service is taking 

place. The combined utilisation is therefore the sum of the component utilisations. Therefore, it 

is reasonable to define the effective combined capacity as the total throughput divided by the 

sum of the component utilisations: 
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Since the throughputs equal arrivals in the steady-state, x = uxx (compare equation (6.4.14)) 

and service times tx are the inverses of capacities, equation (6.4.18) is equivalent to: 

 

br

bbrr

br

b

b

r

r

tt
t





















1

    (6.4.19) 

 

The average capacity is therefore the harmonic mean of the component capacities weighted by 

flows. This is also the definition used by Knote (2006) based on the German Handbuch für die 

Bemessung von Strassenverkehrsanlagen (handbook for the measurement of road traffic 

installations, equivalent to the US Highway Capacity Manual), which he then finds gives 

accurate results when applied in simulation of a signalised junction. 
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Contrary to what might appear at first sight, the average capacity in (6.4.18) is not dominated 

by the larger of the component capacities. Suppose for example that the ‘red’ capacity 

approaches zero while the ‘blue’ capacity stays finite then, remembering that the sum of the 

utilisations cannot exceed 1, if there is any ‘red’ demand at all its utilisation must approach 1 

and the ‘blue’ utilisation is therefore forced towards zero. The combined capacity then 

approaches the ‘red’ capacity, zero. The conclusion in this extreme case is then the same as if 

the combined capacity were the unweighted harmonic mean of the component capacities. 

 

6.4.5 Effective capacity on each movement 

 

Effective capacities for all the movements can be calculated using the shared service and shared 

lane formulae (6.4.12) and (6.4.13), treating straight-left-lane (SL) and straight-right-lane (SR) 

as separate movements, the latter involving mutual dependence on actual traffic flows through 

utilisations, the  proportions of time spent serving a movement. The sharing factor  is omitted 

as it would complicate formulae while adding nothing to the argument, but it can be 

reintroduced quite straightforwardly into numerical calculations. 

 

The effective capacities of the movements (asterisked) can be expressed in terms of either 

absolute (unprimed) or effective (primed) utilisations, assuming that each lane claims half of 

the total straight-movement capacity s, though not necessarily half the throughput. Each 

effective capacity is determined by the proportion of time a lane is not being used by another 

movement. For example, the capacity for straight ahead movements on the left lane,
*
SL  , is the 

basic left lane capacity, S5.  factored by the proportion of time the left turn movement is not 

running  Lu1 , enhanced by the proportion of time straight ahead service is not being used 

by the right lane  SRu2 , with the 2 representing that the straight capacity has been halved. 

The effective capacity of the left turn 
*
L is factored by the proportion of the effective capacity 

available to the straight ahead movement in the left lane not used by straight movements in the 

right lane. The other two effective capacities are mirror images of the above. The effective turn 

capacities define corresponding effective straight ahead utilisations, the proportions of time that 

the lane is not serving turners. The alternative expression for effective capacities follow: 
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Then assuming quasi-M/M/1 processes, the component queues can be calculated from the 

effective traffic intensities of the component services: 

 

   
*

*

i

i
i




 ,      (6.4.24) 

*

*

1 i

i
iL




  (in the steady state)   (6.4.25) 

         

The component queues in each lane are then added get the total queues, in accordance with 

(6.4.6) and (6.4.7). The formulae then start to get complicated, so the optimal way to proceed is 

by numerical calculation. 

 

Referring back to the earlier comment about signal junctions requiring multi-lane service 

sharing treatment, it appears straightforward to extend the preceding simplified approach to 

more general types of equilibrium queue such as M/D/1 just by replacing the M/M/1 formulae 

as in (6.4.6) etc. The usefulness of this could be tested by Monte Carlo simulation, because of 

the complexity of defining recurrence relations compared to an M/M/1 ensemble. The degree to 

which individual lane queues tend to share the broad statistical properties of the ensemble could 

be investigated, and whether their statistical properties are relatively insensitive to number of 

lanes above 2. These could be topics for further research. 
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6.5. EXTENSION TO TIME-DEPENDENCE 

 

6.5.1 Time-dependent simulation with turning movements 

 

Time-dependence is important not just when service is oversaturated, and where the demand 

intensity is enough that relaxation times are long compared to the modelled time period, but 

also when the system as a whole is within capacity, if interaction between movements reduces 

the effective capacity of one or more movements sufficiently to oversaturate them. To provide a 

benchmark for analytical methods an event-based simulation has been developed. Figures 6.5.1 

shows the results of a simulation of 1100 units/hour demand impinging on a system with total 

capacity of 1750 units/hour summed over all movements. The graphs represent the average of 

nine simulations each running to a simulated duration of about 7 hours.  

 

Event-based simulation has the advantage of revealing the variability of queue sizes as well as 

avoiding an explosion in the dimensions of the probability distributions, though of course it can 

be difficult to get reliable averages. In Figure 6.5.2, individual simulation runs exhibit much 

greater variability than the averaged results. Figure 6.5.3 confirms that the statistics of the 

exponential event generator are accurate. An apparent slowing of the queue growth rates in the 

early growth part in Figure 6.5.1, and in Figure 6.5.2, is however illusory. Undersaturated cases 

have the same ragged appearance but without the secular growth trend, in fact variability is 

expected to be maximised around saturation (Taylor 2005a). 

 

 

Figure 6.5.1  Averaged oversaturated queues from event simulations on four movements 
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Figure 6.5.2  Detail of one of the event simulations for the above case showing variability 

 

 

Figure 6.5.3  Verification of exponential generator in simulation (100,000 events) 

 

6.5.2 Time-dependent estimation using the shearing method 

 

In the time-dependent case, demand intensities of arrivals no longer equal utilisations at the 

service points. The demand intensities are known from data, but it is the utilisations that 

determine the queue sizes. In the case of a single queue this is modeled by a kind of feedback 

between the time-dependent deterministic queue formula and the Pollaczek-Khinchin formula, 

leading to a quadratic solution. 

 

As described by Kimber and Hollis (1979) and elsewhere, shearing transforms the Pollaczek-

Khinchin steady-state mean queue formula to be asymptotic to the deterministic queue formula 

to create a closed-form time-dependent description that handles the transition between under 

and oversaturation seamlessly (also see earlier in Part B). It can be interpreted functionally as 

treating the dynamic queue as approximately quasi-static, with the degree of saturation at the 

service replacing the demand intensity (Taylor 2003). The simplest formulation, where L0 is the 

initial queue and C represents the statistical term (1+cb
2
), has an additional parameter a to allow 
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choice between calculating the final queue at time t (a=1), and the average queue over [0,t] 

(a=2), where these values rely on the fact that with constant parameters the average queue over 

time is approximately equal to the instantaneous queue at half time (Kimber and Hollis 1979): 
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Average values are needed when adjusting average traffic intensities for feasibility and also if 

the chosen benchmark is of relative stable time-averaged rather than highly variable final 

simulated queues. 

The solution of the modified problem (6.5.1) for the degree of saturation x is: 
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For M/M/1, where I
*
 =I = C = 1, and L0=0, the queue is now calculated in three steps: 

   











t

a
fg 12

2
1 ,        

2
22 fgfgx ,    

x

x
L




1
 (6.5.4) 

 

6.5.3 Practical algorithm for time-dependent lane queues with turning movements 

 

Interacting movements lead to complications that appear soluble only iteratively, particularly as 

it is impractical to solve for an explicit optimal proportion  of straight-moving arrivals that 

should use each lane according to whatever selection policy is adopted. Indeed, if component 

queues fail to grow in step this proportion could also vary with time. However, for the moment 

the concern is only to show it is possible to arrive at an internally consistent solution. 

 

The algorithm adopted is the following: 

 

1. Given the arrival (demand) rates on each movement, or total arrivals and turning 

proportions, and basic capacities for each movement, calculate ‘raw’ average 

utilisations (degrees of saturation) on each movement using the sheared queue method. 

If steady state is assured, x=, so this step can be omitted. 



295 

 

2. Calculate initial values of the effective utilisations on movements affected by shared 

service. This affects only the SL and SR movements in Figure 6.4.1. 

3. If the sum of effective utilisations on a lane exceeds 1 then they are infeasible and must 

be adjusted. This can be done by factoring the utilisations so their sum does not exceed 

the single utilisation derived from the total demand and average capacity on the lane, 

the latter being estimated from the basic capacities and raw effective utilisations 

according to (6.4.18), and the average utilisation in the lane estimated using the sheared 

approximation with a=2. 

4. Using adjusted effective utilisations, calculate effective capacities and demand 

intensities according to equations (6.4.20-25), then use the sheared method to calculate 

either the time-averaged or final component queues. 

This algorithm is somewhat circular, but solving analytically for feasible, mutually consistent 

component utilisations appears intractable, and it is felt that a stepwise analytical approach is 

more transparent than numerical solution. Although up to three evaluations of the sheared 

queue formula per lane are needed rather than just one, the sheared solution is quite efficient. 

 

However, results are very sensitive to the value of the left-right split factor  for the straight 

movement, which should normally be adjusted to achieve some pre-determined condition like 

equalising lane queues (if feasible). In test cases up to five iterations of the entire algorithm 

have been needed to get this value. The result appears insensitive to the starting estimate of , 

which therefore may as well be 0.5. In each iteration the factor can be adjusted using a descent 

direction calculated using derivatives of queue size with respect to . Based on a spreadsheet 

program, the main algorithm needs 52 function evaluations, and the descent direction adds 34. 

So five outer iterations multiply the basic algorithm work by a factor of about 8, possibly 

leaving room for some practical improvement. 

 

6.5.4 Results and discussion 

 

The method and algorithm described have been implemented in a spreadsheet and compared 

with event simulation. The test cases, defined in Table 6.5.1, are not intended to reflect typical 

realistic situations. In Table 6.5.1 and Figure 6.5.4 the estimation has been provided with the 

outturn simulated arrival rates and capacities rather than the specified values. This is arguably a 

fair test as results can be very sensitive to the inputs. ‘Reconstruction’ is a simplified 

application of the method based on outturn statistics such as equations (6.4.11), and therefore 

gives an indication of how well the method and event simulation correspond at a basic level 

without, for example, re-adjusting the straight-movement split factor . 
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Table 6.5.1  Results using specified arrival and capacity rates, with  estimated iteratively 

Movement Left Straight Right 

 

Capacities 500 1000 250 

Sub-Case Turning proportions 

A 0 1 0 

B 0.2 0.6 0.2 

C 0.35 0.5 0.15 

Case 
Total 

demand 
Event Simulation Reconstruction 

Modelled from 

simulation data
61 

 Q Hours  LL LR LL LR LL LR  

80A 800 19.571 0.555 2.1 2 2.9 1.9 2 2 0.5 

80B 800 19.561 0.708 2 3.4 2.5 5 3.2 3.2 0.853 

80C 800 19.543 0.487 2.7 2.4 3.9 2.7 3.4 3.4 0.395 

95A 950 18.506 0.512 10.1 10.1 12.3 9.6 9.2 9.2 0.5 

95B 950 18.49 0.757 5.4 8.9 6.8 18.1 9.9 10 0.856 

95C 950 18.49 0.437 7.8 6.9 12.6 8.9 13.2 13.3 0.396 

99A 990 18.174 0.502 35.6 35.6 52.1 47.2 38 38 0.5 

99B 990 18.164 0.788 9 13.8 12.1 33.5 18 18.1 0.865 

99C 990 18.203 0.421 13.4 12.2 23.3 14.2 28.2 28.4 0.381 

110A 1100 1.726 0.504 44.4 44.5 47.8 43.3 40 40 0.5 

110B 1100 1.732 0.803 27.3 34.1 28.4 61.8 34.2 34.3 0.827 

110C 1100 1.69 0.395 37.4 35.2 45.8 41.1 48.3 48.4 0.371 

 

 

Figure 6.5.4  Total queues in test cases simulated and calculated from simulation data 

                                                
61 The original simulated arrival and capacity values are used, but the left-right balance   has been hand-adjusted. 
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In Figure 6.5.5, the method is working with the specified data, which can be a few percent 

different from those actually simulated. There is some error in the estimated queue components 

relative to event simulation, and in particular the method appears to overestimate turning 

queues. Figure 6.5.6 plots the standard deviations of the component queues between the nine 

simulation runs with different random seeds, giving an idea of their inherent uncertainty which 

is around 30% of the average queue values and is of similar order to the estimation error, 

suggesting the latter may be in part irreducible. 

 

 

Figure 6.5.5  Test cases calculated from specification v. simulated component queues 

 

 

Figure 6.5.6  Standard deviations of simulated component queues between runs  
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Two particular questions arise concerning realism and possible further investigation. 

 

First, the degree of service sharing  can have a dramatic effect on queue sizes, and the 

implementation of the method allows it to be specified. What values would be realistic is a 

matter for further theoretical and possibly empirical study. For two lanes it may be possible to 

ascribe values to particular cases. For more than two lanes, a single value may not be 

meaningful, but if appropriate values between lane pairs can be established then the method of 

adding up independent contributions summarised by equation (6.4.4) should be able to cope. 

 

Second, it has been found in microscopic simulations that even if straight-moving arrivals 

select the shorter queue at their moment of arrival, lane queues may still end up unequal, the 

longer queue tending to occur on the lane where the turning flow is most dominant
62

. A 

possible explanation is that since lane selection affects only straight-movers, as a queue 

fluctuates they will tend to join it only when it is short, thereby tending to oppose downward 

fluctuations, but turners, having no choice, will not be put off when the queue is long, so 

tending to preserve upward fluctuations. Thus, queues with more turners will tend to increase. 

This effect will be masked by any algorithm that actively forces equality on the lane queues. 

 

  

                                                
62 Personal communication by Dr Helen Gibson, TRL 
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6.6. CONCLUSIONS ON QUEUING ON MULTIPLE LANES 

 

This Chapter 6 has been focused on the particular topic of multi-lane queues, which they arise 

frequently in practical urban networks, but it is believed have not previously been treated 

according to the shared service principle. The approach follows that of the preceding Chapters 

to the extent of trying to describe the lane queues in terms to which the time-dependent and 

Pollaczek-Khinchin methods can be applied.  

 

This has been done by developing formulae for the effective capacities of movements, where 

each movement can have a different exit capacity, and by defining utilisations in terms of the 

proportion of time available to each movement. This has been formulated in detail for two lanes 

with turning movements. For any number of lanes, a simple description in terms of service 

sharing has been proposed. 

 

The results have been derived for equilibrium queues, but are extendable to time-dependence 

and oversaturation through the sheared method because utilisations always lead to feasible 

results in the time-dependent queue formulae, subject to consistency checks on the 

utilisations themselves. The results agree fairly well with event-based simulations, bearing in 

mind the high variability evident in the latter. This Chapter has therefore extended the scope 

of the work in a direction that is practically relevant. It has also raised though not necessarily 

resolved issues that may be of theoretical interest, in particular the role of correlation between 

lane service processes, and how this can be handled in simple structural terms. These may 

provide topics for future research. 
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CHAPTER 7: COMPUTATIONAL ISSUES AND 

DEMONSTRATOR 

 

7.1. INTRODUCTION 

 

Practical traffic modelling applications generally require efficient computational methods 

because of the magnitude of problems addressed and the need to test and compare multiple 

options and to perform sensitivity analysis. What would be appropriate to different applications, 

and how it may differ from existing computational methods, is considered. Demonstrator 

software is described together with illustrations of results. 

 

7.2. FIELD OF APPLICATION OF THE METHODS 

 

The specific aim of this work is to predict the evolution of queues and delays for arbitrary 

traffic profiles of demand and capacity with useful accuracy. As far as can be ascertained from 

publications, macroscopic modelling currently uses four different methods: 

 

 Analytical static delay-volume functions, as used in traffic modelling suite SATURN 

(2012). In SATURN delay is estimated by a power function of the ratio of volume to 

capacity, and demand in the inner simulation is constrained not to exceed capacity. 

 

 Empirical speed-flow relationships, as used in COBA (2012), which also apply only in 

a static context with demand below capacity. An extension to allow for overcapacity 

was proposed in 1971 but not generally applied (see Taylor et al 2008). 

 

 Time-dependent queuing, as described in this dissertation and used in the CONTRAM 

dynamic assignment suite (Taylor 2003) and TRL's junction modelling software. 

 

 The Cell Transmission Method (CTM), which models queuing deterministically by 

considering inflows to and outflows from small network elements (cells) that are 

chained together to represent traffic streams (TRLSoftware 2012). Similar input-output 

flow-conservation methods are described in many published papers. A continuous 

variation of this approach that is widely studied but less used because of its 

computational difficulty is the Lighthill-Whitham-Richards (LWR) kinematic method, 

originated by Sir James Lighthill and Gerald Whitham (1955). 
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What methods are used in practice can be difficult to tell. Since traffic modelling software first 

appeared in the 1970s, it has become increasingly commercial and proprietary and tends to be 

sold on features and appearance rather than methodology, as a result of which the inner 

workings have become increasingly obscure. 

 

The enhancements to queue modelling described here lend themselves mostly to time-

dependent macro/mesoscopic tools like CONTRAM for assignment or for the design and 

modelling of junctions. The random queue calculation is a software module whose inputs are 

initial queue, demand, capacity, duration of period, and statistical parameters, and whose 

outputs are final queue size and average utilisation. An enhanced module will have additional 

inputs and outputs, the initial and final values of p0 and variance. All other new variables and 

calculations can be internal to the module. The computational burden for each queue in each 

time period is likely to be increased substantially compared to mean queue calculation
63

, so an 

increase in run time is also to be expected
64

. However, one would expect a parallel investment 

in more efficient assignment methods. Note that dropping the variance calculation is not an 

option if the improved accuracy of mean queue estimation that it enables is to be achieved. 

Estimation of the queue size probability distribution is likely to be optional because of its 

relatively high computational effort, but its inputs are simple: demand intensity 

(demand/capacity), statistical parameters, current values of p0, mean queue size and variance. 

 

7.3. DEMONSTRATOR 

 

Developing a computationally-efficient module or program to perform the calculations defined 

in this dissertation is considered to be outside the scope of the work. The reasons are similar to 

those put forward for not pursuing an independent solution algorithm for fitting queue size 

distributions. Instead a demonstration program has been constructed enabling scenarios to be 

tested and results examined. Use of a spreadsheet, while not necessarily computationally 

efficient, provides a transparent vehicle for computations as well as convenient access to the 

methods and intermediate results, not normally available from modular software. Comparison 

of estimation errors across all peak cases required the code to be replicated in a separate 

worksheet for each case along with its own case data and Markov similulated results, one set 

for M/M/1 and one set for M/D/1. The Demonstrator ‘Case’ spreadsheet has one calculating 

worksheet, which refers by lookup to either the M/M/1 or M/D/1 case database. Formulae are 

arranged vertically with each time slice occupying one column, this being more convenient for 

testing. In the transposed ‘Demo’ worksheet the calculations for each time slice occupy one 

row, which may be more convenient where the number of time slices is large. 

                                                
63 The Demonstrator calculation uses about 70 lines of Excel code compared to 20 for the sheared approximation. 
64 In CONTRAM as much as 80% of run time is devoted to the calculation of link and junction delays. 
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A sample of the ‘Case’ worksheet is shown in Figure 7.3.1. The green fields are data and 

steady-state values, and the black fields at the bottom are results. These are compared in the 

graphs of L, D and V respectively, below which errors are printed in red. The transposed and 

slightly rearranged ‘Demo’ version is illustrated in Figure 7.3.2. 

 

 

Figure 7.3.1 Part of Case worksheet for J3P9 (M/M/1) (one time-slice per column) 

 

 

Figure 7.3.2  Part of Demo worksheet for J3P9 (M/M/1) (one time-slice per row) 
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The ‘Distribution’ worksheet shown in Figure 7.3.3 is used to estimate the probability 

distribution for one time slice of the ‘Case’ worksheet, using Excel's ‘Solver’ method. 

 

 

Figure 7.3.3  Distribution worksheet example for J3P9 (M/M/1, Ts 12) 

 

The method described earlier in Chapter 5 is applied sequentially, as follows. The required case 

is first set up in the ‘Case’ worksheet, whose inputs can either be drawn from pre-defined data 

in the M/M/1 or M/D/1 database worksheet, or set up manually in input fields (not 

recommended). Switching to the ‘Distribution’ worksheet: 

 

1. Set required time slice (Ts) number in blue-bordered cell at top left 

2. Set ‘Enable m’ field to 1 so that all three parameters , m and s will be solved for 

3. Copy columns D:E to E:F - this initialises the solution column E to the starting values 

4. Run Solver - this estimates optimum parameters in column E 

5. Set ‘Enable m’ field to 0 so only parameters  and s will be solved, with m forced to 0 

6. Copy columns D:E to E:F - this copies the first solution to column F and re-initialises  

7. Run Solver again - this estimates new parameters in column E 

8. The optimum solution is selected automatically from either column E or F 

9. Optionally copy result values from the purple-bordered box to the ‘Repository’ area, 

enabling parameters to be collected and for each time slice and restored 

10. An option exists to compare with a simulated distribution stored in another worksheet. 

 

The target and variable cell addresses for Solver are embedded in the worksheet and do not 

need to be changed. The solution values used are forced to be non-negative. If Solver arrives at 

a negative value it is replaced by the corresponding initial value, but if Solver moves back into 

the feasible region then the variable is reconnected. The constraint rules in Solver are not used. 
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As explained in Chapter 5, the option to set  to zero, so forcing a pure exponential probability 

distribution, is not provided as it is considered unnecessary. If the calculated mean and variance 

or s.d. are consistent with an exponential/geometric distribution then the method is expected to 

return a very small value of , so a third run of Solver will not add anything. Of the two 

solutions the one with the minimum error is selected by default, but the choice can be forced by 

setting the appropriate ‘Use solution’ switch. 

 

The probability distribution corresponding to the solution in the larger purple-bordered box is 

plotted, with the exponential component shown in green, the (truncated but unnormalised) 

Normal component in maroon, and the combined estimated distribution in blue. A simulated 

distribution, if present, is indicated by crosses. The mean and standard deviation of the 

estimated distribution are given in the smaller purple-bordered box for comparison with 

analytically estimated values in the green-bordered box to its left, along with % RMS error 

giving equal weight to mean and standard deviation. 

 

Further options exist: 

 

 To select ‘Continuous’ mode that suppresses the h correction (not recommended) 

 To select ‘Repository’ that displays the distribution using stored data for the selected 

time slice instead of the Case data 

 To force the choice of solution for purposes of comparison or checking. 

 

The Repository will need to be copied and saved before a different case is analysed. 

Alternatively the entire worksheet can be copied, bearing in mind that Excel graphs retain links 

to the original worksheet, so these will need to be edited using <right-click>Select Data. 
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7.4. SUMMARY OF BENCHMARKING AND TEST PROGRAMS 

 

A number of compiled Fortran 95 programs have been written to simulate queue development. 

Series and Qsim are described in Chapter 2 and pseudo-code of their principal algorithms 

given in Appendices A and B. These and other programs are summarised in the Table below. 

 

Table 7.4.1  Summary of simulation and other programs 

Program Purpose Command inputs Input files Output 

Series Evaluates 

Morse’s 

M/M/1 series 
formula 

options, 

resolution, L0, , 

, t 

n/a .tab=dimension (max i), 

p0, L, D, V 

.out=probabilities{pi} 
[by time slice] 

Qsim Markov 

simulation of 

M/M/1, 

M/D/1, 

M/D/1[G] and 

various Erlang 

processes 

data name, [], 
process, step size, 

initial queue, with 

optional modifiers 

.dat= 

{, , t} 
with 

various 

options by 

sign 

.sum={ p0, L, D, V } 

.dis=probabilities {pi} 

[by time slice] 

LodefV Evaluation of 

Gaussian 

peaks and 

synthesis of 

time-sliced 
data for other 

programs 

‘JxPy’ junction 

ID, peak length, 

number of time 

slices 

n/a .lod=L, V 

.sin= data for Series 

.dat=data for Qsim 

LaneMultiRandom Random event 

simulation of 

queuing on 

one or more 

lanes with 

variable 

degree of 

selectivity of 

shortest queue 

[randomise_seed], 

case_code, lanes, 

, , selectivity, 
number_of_trials, 

[number of run-up 

trials not counted] 

n/a Multi<case>.txt= 

detailed record of arrival 

and service events and 

queue sizes, 

Multi<case>.tot= 

summary statistics for 

each lane including 

correlations 

LaneMultiStates Synthesises 

recurrence 

relations for 
up to six 

lanes, then 

applies them 

in Markov 

simulation to 

estimate 

probability 

distributions 

, lanes, step size, 
maximum total 

queue, number of 

cycles, modifier 
for selective 

arrivals 

n/a Table of recurrence 

relation coefficients for 

first few distinct 
recurrence relations. 

 

Ensemble and lane 

probability distributions. 

 

Joint probability matrix 

for two lanes. 

LaneTurningRandom Random event 

simulation of 

queuing on 

two lanes with 
turning 

movements 

turnsin.txt=output filename, 

proportion of ahead movement 

using right lane, exit capacities, 

total demand, turning 
proportions, random seed, 

number of cycles, FIFO option65 

Queue size probability 

distributions: total, left-

lane, right-lane, left-

turning, left-lane ahead, 
right-lane ahead, right-

turning 

  

                                                
65The FIFO option means that rather than just storing the number of units in each queue, the program records their 
actual positions dynamically in a large array, at the cost of some loss of speed. 
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CHAPTER 8:  SUMMARY AND CONCLUSIONS 

 

8.1. ACHIEVEMENTS 

 

8.1.1 Extension and demonstration of tools for estimating time-dependent queues 

 

Main results 

By deriving and applying a new deterministic formula for queue variance, the tools available 

for macroscopic estimation of time-dependent queues have been extended, improving their 

accuracy and range of application, and enabling estimation of variance and reliability. Methods 

of fitting probability distributions to equilibrium and calculated time-dependent non-

equilibrium moments have been developed, providing detail particularly for ‘tails’. 

 

Guiding principles 

An objective throughout has been to develop or enhance methods that are computationally 

efficient, robust, and as general as possible, by exploiting the underlying structures of queuing 

systems rather than seeking statistical matches to simulation benchmarks. 

 

Validation and demonstration 

The methods show good agreement when tested against Markov simulations of M/M/1 

(priority-like) and M/D/1 (signal-like stochastic/overflow) processes based on recurrence 

relations. The M/M/1 Markov simulation method is itself validated against calculation based on 

the exact series formula as given by Morse, and random event simulation. Application to a 

range of oversaturated peak and other cases is demonstrated. A spreadsheet demonstration 

program enables mean queue size, delay and variance to be evaluated from piecewise time-

dependent demand/capacity profiles, and includes a procedure for estimating instantaneous 

queue size probability distributions from the time-dependent moments. 

 

8.1.2 Main innovations 

 

New deterministic and equilibrium queue variance formulae have been derived. These 

respectively partner the deterministic and Pollaczek-Khinchin (P-K) equilibrium mean queue 

formulae, enabling the variance of a queue to be estimated at any point in time, and giving 

improved queue estimation accuracy through their role as asymptotic constraints. 

 

The new variance formulae have been used with inherent structural features of queue processes 

to correct the sheared queue formula, a convenient and computationally efficient approximation 

that seamlessly combines time-dependent deterministic and equilibrium queue formulae. 
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A new approximation for queue decay based on exponential functions has been developed, that 

also relies on structural features of queuing processes, but avoids the quasi-static implication of 

the sheared method that appears inappropriate to the decay regime. 

 

Mean queues with Erlang arrival/service have been parameterised in the Pollaczek-Khinchin 

formula, using the results of Markov simulations based on appropriate recurrence relations, 

confirming that these processes can be brought into the time-dependent approximation scheme. 

 

New empirical formulae relating the mean and variance of a stochastic equilibrium queue at a 

signal to throughput capacity in the green period have been developed, based on an extended 

M/D/1 process defined by recurrence relations. These results are compatible with time-

dependent modelling and provide moment expressions needed for estimating time-dependent 

queues and equilibrium probability distributions taking into account green capacity. 

 

A new doubly-nested geometric approximation to discrete equilibrium probability distributions 

by fitting parameters to three queue moments has been developed and demonstrated. It is 

considered that three critical moments are necessary and sufficient to characterise a queue 

process for present practical purposes: the utilisation or its complement the probability that the 

queue is zero, mean queue size and variance. 

 

A new method of fitting a dynamic queue size probability function to queue moments using a 

combination of exponential and Normal functions has been developed and demonstrated. The 

continuous distribution function can be discretised numerically or by integration.  

 

A new method for estimating capacities and queues on shared lanes with turning movements 

has been described. The method based on a general approach, shows fair agreement in 

estimating the resulting time-dependent queues when compared against simulation. 

 

8.1.3 Review of relevant past work and underlying issues 

 

Relevant past work has been reviewed, and a number of issues related to the above methods 

and topics discussed. General discussion in the Introduction has been supported by reviewing 

and addressing specific issues in the appropriate sections. Particular issues include the 

generality of the deterministic variance formula, sources of inaccuracy in the sheared formula, 

alternative types of equilibrium distribution, the significance of initial probability distributions 

and the significance of utilisation or the probability of zero queue, the traffic and statistical 

parameters needed to characterise the subsequent evolution of a queue, methods applicable to 

multi-lane queues, and diffusion approximations to queue size probability distributions.  
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8.2. IMPACTS 

 

8.2.1 More reliable traffic and assignment modelling 

 

Microscopic simulation has gained in popularity in recent years, because of the apparent 

realism of its disaggregate approach, and its ease of visualisation. It has been criticised on the 

grounds that it delivers random samples rather than averages and uses internal models that are 

not directly verifiable. Macroscopic and mesoscopic, including agent-based and cell-

transmission, methods make use of validated closed formulae, giving them the advantages of 

efficiency and providing average results in a single pass, potentially with uncertainty ranges. 

 

8.2.2 Better treatment of variability and unreliability 

 

Transportation traffic behaviour is variable and to a degree unpredictable. While microscopic 

simulation embodies randomness and variability at source, the large number of possible 

outcomes means it cannot explore the effects of variability efficiently and accurately. With 

reliability of transport becoming increasingly important as the scope for infrastructure provision 

decreases, an ability to evaluate the reliability of outputs as a function of the variability or 

uncertainty of inputs and processes becomes increasingly necessary. Although variability in 

queue and delay processes cannot embrace all possible types of uncertainty, such as ‘heavy 

tails’ or rare events, it may provide a base description to replace simple averages that could be 

misleading. Queuing theory has many applications apart from road traffic, including systems 

that do not conform to an AM/PM peak pattern but have systematic features in their arrival and 

service patterns, like airports and health care facilities. Robustness of queue estimation methods 

is essential where arrival and service profiles may be arbitrary. Estimation of variance means 

that critical points can be identified more reliably and potentially mitigated. 

 

8.3. POTENTIAL FUTURE WORK 

 

This work has aimed to provide practical tools for estimating traffic and similar queues in 

which variability is an integral part, supported by certain methodological extensions. Topics for 

future research in this area could include: extension at least approximately to more general 

arrival and service patterns including platooned arrivals; calculation of higher moments of 

distributions with possible application to ‘heavy tails’ or to further constrain queue 

development; other improvements to approximations to reduce the need for calibrated 

adjustments; application of the new methods to network assignment modelling. These may also 

lead to a fuller understanding of relevant mechanisms and increased confidence in predictions. 
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APPENDIX A – DERIVATION OF MEAN AND VARIANCE 

FORMULAE 

 

A.1 TIME DERIVATIVE AND DETERMINISTIC MEAN OF THE M/M/1 

QUEUE 

 

The dynamic recurrence relations for the M/M/1 queue, which can be formulated on an 

infinitesimal service time period, are: 
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The rate of change of the first moment is: 
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A.2 DETERMINISTIC VARIANCE OF THE M/M/1 QUEUE 

 

The rate of change of the second moment is: 
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Integrating:
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Hence, on introducing the boundary conditions at t=0, and t= where D=Le: 
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A.3 TIME DERIVATIVE AND DETERMINISTIC MOMENTS OF THE M/D/1 

QUEUE 

 

If notional states i = -1,0 are admitted, so that the real p0 = p(0) + p(-1), then the recurrence 

relations of the M/D/1 queue, which is formulated on a finite service time interval, are: 
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If the average rate of change is then taken to be given by the finite difference: 
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only derivatives of pi for i > 0 contribute to the mean, but a singleton p0 term arises from the 

sum of all the p0 terms in the differential relations, so: 
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At equilibrium each expression must be zero, as for M/M/1, so: 
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But as explained in the main dissertation this is the p0 at the end of the service period, not the 

average 0p in the service period that determines the utilisation. The second moment is: 
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This is the same as the M/M/1 formula (A.6) except for the first term. Integrating, again: 
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Le is of course the equilibrium mean, but in principle we ought to prove this! 
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A.4 EQUILIBRIUM RECURRENCE RELATIONS OF THE M/D/1 QUEUE 

 

Formulae for Le and Ve can be found by evaluating the second and third moments of 

equilibrium probabilities respectively. Deriving them from a generating function may be 

more efficient, but in the main dissertation this results in a unit-in-service component. 

Exhaustive evaluation confirms the link between the recurrence relation formulation and the 

generally accepted result without unit-in-service.When the LHS and RHS of the time-

dependent recurrence relations are equated, the following steady-state relations are obtained: 
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When p0 is added to p1 a pattern appears: 
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Some general results can now be stated,where Mk is the kth moment. Noting that p1 appears 

as itself in any expression for a moment, if for some X: 
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A.5 EQUILIBRIUM MEAN OF THE M/D/1 QUEUE 

 

Taking the first moment simply recovers p0, which is already available from (A.13): 

 

      10 ep       (A.22) 

 

Taking the second moment, expanding multipliers to match the probability indices: 
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The M2terms cancel, and after dividing through by e, and substituting for p0 the M/D/1 

mean, without unit-in-service, is left: 
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A.6 EQUILIBRIUM VARIANCE OF THE M/D/1 QUEUE 

 

Taking the third moment: 
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So: 
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The M3 terms cancel, and using previous results for p0 and Le and dividing through by e: 
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Many terms cancel leaving: 
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Hence, the M/D/1 variance without unit-in-service is: 
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A.7 SPECULATION ON THE GENERALITY AND MEANING OF THE 

VARIANCE RESULT 

 

The deterministic variance formula derived for both M/M/1 and M/D/1 seems as universal as 

the deterministic mean formula, but in principle other queue processes could lead to 

variations that also satisfy the boundary conditions, for example through modification of the 

(1-) factor or the form of the polynomial expression in L. In main Chapter 5, it is shown that 

the exact form of the deterministic variance formula, equation (5.4.13), as derived from the 

diffusion equation, depends on the step size between fractionally discrete states, although this 

is a relatively minor adjustment, and arises from a mathematical artifice, not a different 

physical process. The derivation nevertheless supports the generality of the deterministic 

variance formula. 
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Since moments are linear in probabilities, if a process whose mean is described by the P-K 

function with some statistical parameters could be represented by a weighted linear 

combination of M/M/1 and M/D/1 having the form of equations (4.3.2-3), as in equation 

(A.31) with the weighting factor  after eliminating the common factor /(1-), it could be 

inferred that the variance result also applies to it.  
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If this holds for all , so that corresponding terms can be compared, while its value is 

independent of I, eliminating  between the resulting equations shows that C depends on I: 

 

  
4
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If I is taken to represent the choice between working with finite or infinitesimal service 

intervals, it can be only 0 or 1, which restricts C to two possible relationships with Ia, so 

unless the restriction on the values of I can be relaxed the arrival and service processes can no 

longer be independent. But it is not clear what relaxing this restriction would mean in terms 

of defining an actual process capable of producing the target distribution. So this approach 

seems artificial.

 

 

A more fundamental argument considers that, while the M/M/1 and M/D/1 calculations both 

arrive at the same deterministic formulae, as they must if the fornulae are general, there is no 

explicit account of randomness in the variance apart from the presence of Le as the limiting 

value of D. Therefore, whatever random processes are involved, their effects apart from Le 

must somehow be eliminated. In both M/M/1 and M/D/1 cases, evaluating the second 

moment of either the time-dependent or the equilibrium probability distribution yields the 

equilibrium mean, with the deterministic variance as a bonus in the first case. Therefore the 

deterministic variance calculation leaves the equilibrium variance indeterminate, just as the 

deterministic mean formula leaves the equilibrium mean indeterminate. 
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An (almost philosophical) question is then: if a queue process is such that analysis from first 

principles turns out to be intractable, its equilibrium moments being only emergent, as they 

could in principle be since an infinite number of infinitely long trials is required to determine 

them physically, how can it then lead to the deterministic formulae unless these are already 

guaranteed by a deeper set of principles? For any queue process, this is true of the 

deterministic mean queue formula since it represents conservation of queuing units. 

Conjecturing that this applies to higher moments (or sums of moments) may be a step too far, 

but it would be gratifying to find a physical quantity that is conserved by the variance. 

 

The mean of a distribution is also the point on the state axis with the minimum probability-

weighted sum of squared differences (PWSSD) from all possible states. As a queue develops 

from its initial to a final state this property applies along the whole path of the mean. The 

principle of least action says that any system follows the path of least action out of all 

possible paths. If the PWSSD is identified with action, then the path of the mean can be 

identified with the path of least action in the ‘field’ defined by the state probabilities, and the 

variance is a measure of this minimum action.This may be somewhat egregious because the 

probability distribution at each point depends on that at an earlier point, so the ‘field’ is not 

independent of the thing that ‘moves’ through it, but this could also be true of other systems. 

 

In physics, action is the integral of the Lagrangian, which is the difference between kinetic 

and potential energy. The simpler form of the variance equation, equation (2.3.29), describes 

the time development of the sum of the first two raw moments. If the path of the mean is 

treated as determined then this sum could be analogous to action. However, what is the 

‘Lagrangian’ in this case, and the connection with ‘energy’? The hypothesised general 

differential formulae for the second moment in equations (A.6) and (A.15) generalise to: 

 

        eLLLM  122
     (A.33)

 

 

Speculatively, the first term on the RHS could be identified in some sense with ‘kinetic 

energy’, as the queue changes (gains ‘energy’ as it falls, loses as it rises), and the second term 

with ‘potential energy’, as the queue approaches or diverges from its equilibrium state which 

represents ‘zero potential’. In (A.33), both kinds of ‘energy’ can have either sign. This could 

be a topic for future research. 
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APPENDIX B – M/M/1 PROBABILITY DISTRIBUTION 

ALGORITHM BASED ON SERIES FORMULA 

 

Private Sub Series_Distribution(T As Double) 

' Dim T As Double             ' Absolute or relative time 

 

' Calculate the queue size probability distribution as given by Morse (1958) 

 

' Public NP as Integer       ' Dimension of arrays = maximum resolution 

' Public NQ as Integer       ' Half of NP, for one Sin & Cos quadrant 

' Public NR As Integer       ' Resolution of calculation 

' Public NN As Integer       ' One less than NR – i.e. maximum queue size 

' Public N0 As Integer     ' Actual maximum queue size in distribution 

' Public calcs As Long          ' Number of major operations performed 

' Public Pe(NP) As Double       ' Equilibrium distribution 

' Public Pm(NP) As Double       ' Base distribution 

' Public Pn(NP) As Double       ' Calculated distribution 

' Public srho(-NP To NP) As Double  ' Powers of sqrt(rho) 

' Public Const Pi As Double = 3.14159265358979 

' Public Const STOPON As Boolean = True 

' Public Const STOPP As Double = 0.0000001    ' Minimum value of Pn 

 

Dim i As Integer 

Dim m As Integer 

Dim n As Integer 

Dim addexp As Double 

Dim sumexp(NP) As Double 

Dim sumP As Double 

Dim Pmin As Double 

Dim Pmax As Double 

Dim force_zero As Boolean 

 

force_zero = False 

Pmin = 0 

Pmax = 0 

sumP = 0 

 

 

' Initialise with equilibrium distribution 

For n = 0 To NN 

    Pn(n) = Pe(n) 

Next n 
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' Add time-dependent terms 

For n = 0 To NN 

    N0 = n 

    If force_zero = True Then 

        Pn(n) = 0 

        Exit For 

    Else 

        For m = 0 To NN 

            If Pm(m) > 0 Then 

               sumexp(n) = 0 

               For i = 1 To NN 

                   addexp = S(i, m) * S(i, n) * Exp(-X(i) * T) / X(i) 

sumexp(n) = sumexp(n) + addexp 

               Next i 

               Pn(n) = Pn(n) + 2 * Pm(m) * srho(n - m) * sumexp(n) / NR 

End If 

        Next m 

        sumP = sumP + Pn(n) 

        If Pn(n) >= Pmax Then 

            Pmax = Pn(n) 

        Else 

            Pmin = STOPP 

        End If 

        If STOPON And (n > 1 And Pn(n) < Pmin) Then force_zero = True 

    End If 

Next n 

 

' Normalise probabilities 

For n = 0 To N0 

    Pn(n) = Pn(n) / sumP 

Next n 

 

End Sub 
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Private Function Sine(i As Long, NS As Integer) As Double 

 

' Interpolate value of Sine in any quadrant, where i is relative to NS, representing 

Pi radians 

' N should be a power of two and not exceed 2 NQ 

 

Dim nquadrant As Integer 

Dim j As Long 

Dim k As Integer 

Dim l As Long 

Dim qn As Integer 

 

' Determine quadrant within one cycle and equivalent point within quadrant 

 

' Following tricks avoid overflow 

If NS >= NQ Then 

qn = NS / NQ 

    l = (2 * i) / qn 

Else 

qn = (2 * NQ) / NS 

    l = i * qn 

End If 

k = Int(l / NQ) 

j = l Mod NQ 

k = k Mod 4 

 

Select Case k 

Case 0 

    Sine = SI(j) 

Case 1 

Sine = SI(NQ - j) 

Case 2 

    Sine = -SI(j) 

Case 3 

    Sine = -SI(NQ - j) 

End Select 

 

End Function 
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Private Function Cosine(i As Long, NS As Integer) As Double 

 

' Interpolate value of Cosine in any quadrant, where i is relative to NS, 

representing Pi radians. N should be a power of two and not exceed 2 NQ 

 

Dim ic As Long 

 

ic = i + NS / 2 

Cosine = Sine(ic, NS) 

 

End Function 

 

 

 

Private Sub Fill_Sines() 

 

' Fill in Sines at (public) NQ points between 0 and Pi/2 

' NQ should ideally be a power of 2 

 

Dim Piover2 As Double 

Dim i As Integer 

 

Piover2 = Pi / 2 

SI(0) = 0 

SI(NQ) = 1 

For i = 1 To NQ - 1 

    SI(i) = Sin((Piover2 * i) / NQ) 

Next i 

calcs = calcs + NQ - 1 

 

End Sub 
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APPENDIX C – MARKOV PROBABILITY DISTRIBUTION 

ALGORITHM AND EXAMPLES 

 

Sub Markov_Distribution(rho As Double, T As Double, step As Double, NN As Integer, r 

As Integer, m as Integer, G As Integer, Pm As Double) 

 

‘ Dim rho As Double     ' Demand intensity 

‘ Dim mu As Double     ' Capacity rate parameter 

' Dim T As Double                     ' Absolute or relative time 

' Dim step as Double                  ' Iterative time step 

' Dim NN As Integer                   ' Maximum queue size 

‘ Dim r As Integer     ‘ Erlang arrivals parameter 

‘ Dim m As Integer     ‘ Erlang service parameter 

‘ Dim G As Integer     ‘ Process / Green period throughput 

‘ Dim Pm(0:NN) As Double    ‘ Initial distribution/state proxy 

 

Dim exprho, tt, s, sumP As Double 

Dim i, j As Integer 

Dim Pn(-100:NN), dP(-100:NN), Pp(0:NN), Poisson(0:NN) As Double 

 

‘ G should be >= 1 for M/D/1 and zero otherwise 

‘ Bulk parameter is negative of Erlang parameter in reversed position 

erho = rho * Max(-r,1) / Max(-m,1) 

 

' Poisson terms for M / D / 1 

exprho = Exp(-G*rho) 

Poisson(0) = 1 

For j = 1 To NR 

    Poisson(j) = (G*rho)^j * exprho / j 

Next j 

 

tt = 0 

' Initial distribution 

For i = -G To NN 

    Pn(i) = Pm(i) 

Next i 

Pn(NN + 1) = 0 

 

 

‘ Each time step 

 

While tt <= T 

 

    N0 = 0 
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‘ Each queue state in the distribution 

    For i = -G To NN 

 

 

‘ Process to be simulated 

       If G = 0 Then 

‘ Calculation of new probabilities at each time step 

 

 

' Mm / Mr / 1 or Er / Em / 1 (only one of r and m may be  1) 

 

      If i < NN 

 

              dP(i) = Max(m,1) * Pn(1+Abs(r)) – Max(r,1) * erho * Pn(i) 

              If i = 0 Then 

       For j = 1 to –(r+1) 

                    dP(i) = dP(i) + Pn(j) 

       Next j 

    Endif 

    If i >= Max(r,1) Then 

..               dP(i) = dP(i) – Max(m,1) * Pn(i) 

    If i >= Abs(m) Then 

..               dP(i) = dP(i) + Max(r,1) * erho * Pn(i-Abs(m)) 

 

      Else 

 

              dP(i) = - Max(m,1) * Pn(i) + Max(r,1) * erho * Pn(i - m) 

 

     End If 

           dP(i) = dP(i) * step * mu 

 

        Else 

 

 

' M / D / 1 

 

            s = 0 

            If i = 0 Then s = Pn(0) 

            For j = 0 To i + G 

                s = s + Poisson(j) * Pn(i + G - j) 

            Next j 

            dP(i) = (s * exprho - Pn(i)) * step * mu 
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        End If 

 

        N0 = i 

        If Pn(i) + dP(i) < 0.0000000001 Then Exit For     

 

    Next i 

 

‘ Note that range of loops can be limited if higher probabilities are zero 

‘ For M / D / 1 processes notional negative states are absorbed into p0 

 

    For i = 1 to –G 

 dp(0) = dp(0) + dp(i) 

    Next i 

 

‘ Changes are accumulated to absolute probabilities that are normalized 

 

    sumP = 0 

    For i = 0 To N0 

Pn(i) = Pn(i) + dP(i) 

        sumP = sumP + Pn(i) 

Next i 

    If sumP > 0 Then 

        For i = 0 To N0 

            Pn(i) = Pn(i) / sumP 

        Next i 

    End If 

 

 

‘ For Erlang processes convert ‘stages’ probabilities to ‘customers’ 

 

   If r > 1 or m > 1 Then 

 For i = 0 to NN 

    Pp(i) = Pn(i) 

    Pn(i) = 0 

 Next i 

   Endif 

 

   If r > 1 Then 

 

 For i = 0 to NN/r + 1 

    For j = i*r to (i+1)*r–1 

  Pn(i) = Pn(i) + Pp(j) 

    Next j 

 Next i 
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Else if m > 1 Then 

 

 For i = 0 to NN/m + 1 

    For j = Max((i-1)*m+1,0) to i*m 

  Pn(i) = Pn(i) + Pp(j) 

    Next j 

 Next i 

 

   Endif 

 

‘ Finishing calculations for this time step 

 

    tt = tt + step 

 

Wend 

 

End Sub 
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Following a listing of Qsim parameters and options, and a typical data file, examples of the 

output of Qsim are given below, for growth of a queue starting from zero with ρ=0.9 

measured at several points, and various processes. The first example (M/M/1) recalculates 

each time point from zero, the next and subsequent calculate in time slices starting with the 

probability distribution from the previous time slice. Results of the two methods are very 

close. The ‘mean’ and ‘variance’ are calculated from the probability distribution, ‘delay(s)’ is 

calculated by averaging the mean queue during the calculation step, ‘delay(t)’ relates to the 

time from zero, and ‘delay(v)’ is back-calculated from the variance using the variance 

formula. Mean and variance of (average) p0 are practically relevant only to M/D/1[G>1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1  Qsim condensed help listing 

 

Qsim grow9.dat 1.1 0.1 0 [data file, M/M/1, step=0.1, initial queue=0] 

 

Figure C.2  Qsim command and data file for simple growth problem 

 

 

 

Figure C.3  Markov calculation of M/M/1 growth from zero over increasing time periods 

Program Qsim version 15/05/12, run on 12/08/12 
General command form: Qsim<data> [/output] [=<rho>] <process><step><init_q> 
<data_file> default extension is .DAT 
<process> = E.E.[][.G] where 0 reads as infinity so: 
 1.1 is M/M/1, 1.0 is M/D/1, 1.0.G is M/D/1[G] 
 E values not both >1. Numerical parameters in range 0-99 
<step_size> is 1 by default, but may need to be reduced 
<initial_queue> exact value used once, then reset to zero 
 if <0 then pure state, if >=0 then equilibriated 
 if fractional "m.s" then Normal p.d: mean=m, sd=m*(.s) 
 Step size = seconds between evaluations of recurrence 
 relations, and may need to be reduced. 
 .DAT format: Title_line / {rho mu t} .. : 
 rho(+continue previous distribution, -reset to zero queue) 
 mu (+as given, -multiplied by relaxation time) 
 t (+absolute time, -slice length) 
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Figure C.4  M/M/1 growth in successive time slices of increasing duration, compare C.3 

 

 

 

Figure C.5  Markov calculation of M/D/1 queue growth, note larger p0, smaller L, same p0(ave) 

 

 

 

Figure C.6  Markov calculation of M/D/1 [G=10] growth. Time points and step size must be 

reduced by factor of G to compensate for lengthened service intervals. 
Note even larger p0, smaller L, but again same p0(ave) (delay back-calculated from variance is 

no longer valid) 

 

 

Figure C.7  Data for a peak case J2P4, (, , t),where the first time slice is equilibrated 
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In the following three figures, the distributions settle as time progresses. The last two figures 

have not been smoothed to avoid undershoot. 

 

 

Figure C.8  Development of Markov-simulated distributions for M/M/1 queue growth  

 

 

Figure C.9  Development of Markov-simulated distributions for M/D/1 queue growth  

 

 

Figure C.10  Development of Markov-simulated distributions for M/D/1 [G=10] growth  
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APPENDIX D – HEIDEMANN’S SIGNAL QUEUE FORMULA 

 

This Appendix compares a result obtained by Heidemann (1994) for the queue size at a signal 

with a one-lane approach that draws on work of other authors including Meissl (1963), with 

that of Webster and Cobbe (1966). Heidemann’s formula is time-dependent and claimed to be 

exact for any green period length, whereas as explained Chapter 2 of the main text Webster’s 

stochastic term applies only to the nominal case where each service period can serve only one 

customer (M/D/1). However, it is asserted that Webster’s empirical correction term, which 

depends on the service period throughput capacity G, compensates for this. The objective 

here is to show that when the M/D/1[G] mean is inserted into Heidemann’s result under 

equilibrium, the match to Webster’s result is fair. Because the notation used by Heidemann 

differs from that used in this Dissertation and one symbol overlaps, a glossary is provided. 

Equations given by Heidemann (1994) are recognised by an additional “(H.-)” marker. 

 

Table D.1  Glossary of variables 

Quantity represented Heidemann’s symbol Local symbol 

Service interval T 1/s 

Saturation flow 1/T s 

Cycle time TCy c 

Red period T r 

Green period T g 

Red period input capacity  rs 

Green period throughput capacity  gs=c=G 

Green proportion /(+) =g/c 

Probability Generating Function P(y) P(y) 

Mean arrival rate f=P’(1)/T  

Capacity C=/((+)T) =s 

Degree of saturation f/C x=/ 

Mean arrivals in one service interval P’(1) /s=x 

Ave. overflow queue at start of red R’(1) Lv[G] 

 

The Probability Generating Function of the queue size is: 

     





0i

i
i ypyP   where   (D.1) 

 pi = probability of i arrivals in a time interval that equals one service time 
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The queue size given by Meissl (1963) is quoted by Heidemann as his equation (17): 
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To evaluate this, Heidemann first determines the derivative of R(1) as his equation (25):  
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where the {xk} are the (-1) zeros lying within the complex unit circle of the function: 

 

       1..1exp   xPxx    (D.4=H.~) 

 

It is assumed that arrivals are Poisson distributed (exponentially distributed intervals): 
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 so, as P’(1) is the derivative of P(y) evaluated at y=1:
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 (D.6) 

 

Using equations (D.5) and writing LV[G] for the stochastic (‘overflow’) queue R’(1), 

Heidemann’s expression for the mean steady-state queue (D.2) translates to: 
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where LV[G] is the stochastic queue component, and the Webster-Cobbe phase component can 

be discerned in the middle of the expression. While G and c are actually identical, both are 

used in (D.7) in order to retain the original form of each term. To evaluate the stochastic term 

it is necessary to translate equation (D.3), in which: 

 

      Gx
g

c
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 where the {yj} are the roots of:   1exp  yGxyG
   (D.10) 

 

If G=1, the sum and the final element of (D.9) vanish, leaving the usual M/D/1 mean steady-

state queue formula. In general LV depends on G as one would expect, but in a way that does 

not appear convenient to evaluate. The middle term in (D.7) is recognisable as the phase 

queue in Webster’s formula, equation (3.7.1) in main text, with a modification that vanishes 

when the absolute green period capacity is very large. However, a peculiarity of (D.7) is that 

the stochastic component is modified by a factor that does not depend explicitly on G. 

 

The problem is to decide which modifications should belong to individual terms and which 

should be corrections to the whole formula. LV may be taken as given, but there is no obvious 

reason why the phase term, being derivable deterministically, should differ from Webster’s. 

The modifications to it and the LV[G] term and the last term of (D.7) may therefore be 

identified with Webster’s correction term. Equation (D.7) can now be rearranged into the 

traditional Webster form, with a modified correction term involving the stochastic queue: 

 

  HGVP LLLL   where 
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12

21
 (D.11) 

 

Figure D.1 shows fair agreement between (D.11) and Webster’s formula, using the 

approximate formulae for LV[G] developed in Chapter 3. The cases are defined in Table D.2. 

 

 

Figure D.1  Comparison with Webster-Cobbe queue for cases based on Heidemann’s Figs. 3 

and 4, using equation (D.11) and estimated formula for M/D/1[G] mean queue 
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Table D.2  Parameters used to generate cases in Figure D.1 

 

Parameter/Case 1 2 3 4 5 6 

G 15 30 45 15 30 45 

x 0.9 0.9 0.9 0.5 0.5 0.5 

 0.25 0.5 0.75 0.25 0.5 0.75 

The slight rise in the graphs in Figure D.1 at G=30 can be traced to the artificial manoeuvre 

of keeping x constant in each group of cases. 

 

A feature of equation (D.7) is that the phase and stochastic components appear to get ‘mixed 

up’, but a different interpretation may be possible. In view of the derivation, it is tempting to 

suggest that the whole middle term of (D.7) be taken as the phase queue, reducing to the 

Webster-Cobbe form when the green capacity is large. Calling this modified term L
*

P, the 

correction term takes a more suggestive form: 
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In equation (D.12), the M/D/1 form has reappeared in the component L
*

H but with the 

average degree of saturation x replaced by the true saturation level in the green period, during 

which the actual capacity is not  but s. However, the physical meaning of the second term in 

L
*

H is obscure, and the separation into three components is itself artificial.  
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APPENDIX E – COMPARISON OF SOME ALTERNATIVE TIME-

DEPENDENT QUEUE/DELAY FORMULATIONS 

 

In the following, the notation used in the main body of the dissertation is used, so formulae of 

other authors have been ‘translated’ where necessary. 

 

E.1 CATLING’S FORMULATION OF SHEARING 

 

Catling (1977) approaches the problem from the point of view of delay to individuals. Delay 

is related to queue size by Little’s formula (E.1), where x is average degree of saturation, and 

equilibrium delay (E.2) is a case of the Pollaczek-Khinchin equilibrium mean formula: 

 

    
x

L
d


      ` (E.1) 

    





1

C
Ide      (E.2) 

 

The time-dependent ‘coordinate transformed’ function of Doherty (1977) is then given as a 

quadratic solution, which when converted back into the quadratic and rearranged into the 

quasi-static pattern has the form: 
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This clearly gives the right result as t. It appears to blow up at t=0, but in fact the solution 

requires d=I at this point, so the first bracket shrinking to zero and the second bracket tending 

to infinity combine to produce the finite RHS. The degree of saturation ‘x’ in the original has 

been interpreted as  here because that is understood to be the intention. The formulation 

does not tackle or resolve the ambiguity between the demand intensity  and the degree of 

saturation of service x. This is germane if converting from delay to queue size, because 

Little’s formula involves the degree of saturation of service, not the demand intensity. 

 

Another important difference from the sheared queue as presented in main Chapter 3 is that 

equations (E.2-3) include delay incurred during the run-out period. While individual delay is 

a true out-turn value its relationship to queue size, which is statically measurable at any 

instant, depends on the behaviour of capacity. The same queue size will result in different 

individual delays if the capacity changes before the queue is fully discharged. 
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However, assume that the capacity remains constant. Catling points out that the queue 

function has to be evaluated by equating the average individual delay to the integral under its 

envelope as shown in Figure E.1, leading to a somewhat intractable expression. 

 

Catling proposes an alternative by shearing the queue itself, getting a result identical to Ls in 

equations (4.2.8), but with L0=0 and I=0. He then goes on to derive expressions for the delay 

to individual arrivals when the arrival rate varies. Whether capacity is allowed to vary is 

unclear since the traffic pattern is described in terms of degrees of saturation, interpreted here 

as demand intensities. 

 

Figure E.1  Original Figure 2 from Catling (1977), relating to Doherty’s method 

 

The analysis runs up against the same complication of run-out periods noted above. In 

computer implementations like ARCADY, PICADY and OSCADY for junctions and 

CONTRAM for networks (see main References), this complication is avoided by calculating 

average individual delay either by dividing total population delay by total throughput, or by 

following each individual (or ‘packet’ of notional individuals) through the queue discharge 

process. However, it is apparent that Catling developed the sheared queue formula 

virtually simultaneously with and independently of Whiting, Kimber and Hollis. 

 

E.2 VOLUME-DELAY AND CONICAL FUNCTIONS 

 

Volume/delay or volume/travel-time functions can take various forms of varying complexity, 

but one of the simplest is the US Bureau of Public Roads (BPR) formula for travel time when 

the demand intensity is  and t0 is free-flow travel time: 

 

     10tt       (E.4) 
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In the formula,  is 1 in the case of BPR, but could have some other calibrated value (e.g. as 

in the case of the SATURN software). Volume/delay functions are not time-dependent and 

hence of limited interest in this context. However, where they are used it is recognised that 

the power can cause escalation of delay if demand exceeds capacity substantially. A way to 

moderate this is to use a conical function. This defines a hyperbolic function on axes derived 

from a conic section, as sketched in Figure E.2, which looks remarkably similar to shearing 

(see main Chapter 4). The hyperbolic function before transformation of the axes is 1/(1-), 

which is not dissimilar from the M/M/1 equilibrium mean queue. 

 

 

Figure E.2  Sketch of conical volume-delay function 

 

The delay function is now asymptotic to a linear relationship when >> 1, and its formula is a 

quadratic (Spiess 1990): 

 

    




  222

0 112tt  where 
22
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


  (E.5) 

 

Time-dependent shearing takes this a step further, not only by using a physically meaningful 

equilibrium queue function but by making the asymptote time-dependent to reflect the 

deterministic conservation constraint. 

 

Equation (E.5) has only one parameter , which determines both the slope of the asymptote 

and the sharpness of the curve. This may be an advantage when calibrating the function to 

empirical data or simulation outputs, so it can be used as a component of a smooth, 

differentiable objective function to be minimised for an entire traffic pattern. However, it 

does not have room for time-dependence. 
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E.3 THE HIGHWAY CAPACITY MANUAL DELAY FUNCTION 

 

The US HCM/Canadian delay function (Cheng et al 2003, Akgüngör and Bullen 2007), 

equation (E.6), is time-dependent, and consistent with the M/D/1 equilibrium queue value 

(E.7) if C=0.5 and the upstream filtering factor  is given its default value of 1: 

 

     



















t

C
sign

t
d

8
111

4

2
  (E.6) 

 

   





1

2C
Le

 (since deLe, assuming =1)  (E.7) 

 

It is not certain that this is the intention since C is described as an ‘incremental delay factor 

dependent on actuated control settings’. On the other hand, values > 0.5 make the equilibrium 

queue excessively large. Note that in (E.6) and similar equations here the factor sign(1-) is 

applied to the (positive) square-root to give sensible asymptotic results when t. This is 

not normally found in the references. However, in the case >1 the formula predicts: 

 

    td 1
2
1        (E.8) 

 

which is wrong because the factor ½ should apply to average delay over the growth period, 

not to delay expected by the current arrival. As in Section E.1, no distinction is made between 

demand intensity and degree of saturation. There is a problem in how to translate (E.6) to 

queue length, as Little’s formula requires utilisation, which in general is not identical to . 

The Federal Highway Administration quotes the formula (FHWA): 
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where Z is a ‘composite factor’ for whose definition the reader is referred elsewhere. This 

appears to assume that utilisation equals 1, which is realistic only for ‘heavy traffic’. Akçelik 

(2001) quotes an interpretation that appears to be an extension of the HCM formula as 

implemented in his SIDRA software (see also next). Z in its simplest form can broadly be 

identified with the last term in (E.6), but this no longer gives the M/D/1 equilibrium queue. 

Either the term or the whole formula needs to be multiplied by  to give that result. 
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E.4 THE AUSTRALIAN FORMULATION 

 

Akçelik (1998a) considers a signal queue, that can be decomposed into a red/green phase 

queue and a stochastic (random and oversaturation) queue, as described in main Chapter 2. 

He formulates the stochastic queue in such a way that it incorporates a term involving the 

absolute green period, addressed empirically in main Chapter 3. Akçelik’s formula is: 

 

      
 























t
sign

t
L 02 12

111
4

(if >0) (E.10) 

 

 
600

67.00

G
  where G = saturation flow * green time  (E.11) 

 

Again ‘x’ has been translated into . This predicts no stochastic queue if  is less than a 

certain positive value. Rearranging (E.10) as (E.12) and expanding the square root to first 

order, it is easier to see that when <1 and t, the equilibrium queue is given by (E.13): 
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Although the approach is simpler than M/D/1[G], the empirical lower limit on demand 

intensity, equation (E.11), represents a drawback in our view. The results of the empirical 

M/D/1[G] Section in main Chapter 3 can be used to compare equilibrium queue predictions. 

As shown in Figure E.3, the results are significantly different for smaller values of  and G, 

although the queues there are so small this may not matter much in practice. 

 

Akgüngör and Bullen (2007) summarise how Akçelik (1980) generates a smooth sheared 

delay function taking into account the average uniform (phase) queue acting as a lower 

bound, the situation where Bin Han (1996) finds an issue in producing a continuously 

differentiable combined function. 
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Figure E.3  Akçelik (A) and M/D/1[G] (M) equilibrium stochastic queues compared 

(graphs sink with increasing G, broken lines relate to Akçelik’s formula) 

 

The phase queue differs from an initial queue in that it is dependent on <1. However, the 

phase delay is is a separate component added to the sheared delay, whose modified statistical 

parameter C in the Pollaczek-Khinchin formula takes account of the effect of green capacity. 

Akçelik and his collaborators estimate this parameter as follows: 

 

   
22.022.1  GCG  

    (E.14) 

 

It is unclear whether this is actually applied in the Australian queue formula, but if it is, this 

should more closely resemble the HCM formula, becoming: 
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If a statistical parameter is to be used it should either be 1.5 from (E.13), or CG as above, 

since it compensates to some extent for 0. A value C=0.5 would be much too small. 

 

E.5 COMPARISON OF THE METHODS 

 

Figure E.4 compares four different formulae for queue growth with =0.9 and G=1, showing 

that the Australian method estimates a shorter queue. For smaller values of  the difference is 

much greater, as is to be expected because of the substantial value of 0. 
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Figure E.4  Different methods compared for theoretical minimum green case 

 

Figure E.5 compares the same methods for a high value of green capacity, showing greater 

differences between the methods. In this case M/D/1[G] lies between the two possible 

Australian curves (the upper one being the standard version). As far as it is possible to tell, 

the HCM method does not allow for green capacity, so estimates a much greater queue. 

 

Reports like Akçelik (1998a) contain a large amount of empirical factors and adjustments to 

allow for things like junction geometry, turning movements and signal control algorithms. So 

interpreting narrowly-focused comparisons like the above is problematic, as is drawing any 

conclusion about which method is most realistic. This analysis is therefore intended mainly to 

draw attention to structural features and assumptions that justify adopting M/D/1[G] in the 

present theoretical line of research. 

 

 

Figure E.5  Different methods compared for a case with a long green time 
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E.6 COMMON BEHAVIOUR AND UNDERLYING STRUCTURE 

 

The most fundamental issue is the explicit quasi-static assumption. All the methods described 

satisfy the following relationship with their equilibrium queue value Le, as can be seen by 

evaluating (E.16/17) using first-order Taylor expansion of the square root when t is large. 
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This formula most certainly does not work for quasi-static sheared M/D/1, which has a far 

lower initial growth rate. Average rate of growth can be calculated by differentiating the 

deterministic queue formula, and thence average utilisation over the period concerned, 

according to equation (E.18), where u is used rather than x since it applies between pairs of 

calculation points, which in the calculations giving Figures E.3-4 advance logarithmically. 

 

     u
dt

dL
      (E.18) 

 

Utilisations are graphed in Figure E.6, where it is evident that the negative initial utilisations 

of the Australian and HCM functions are unphysical, although they persist for a short time. 

 

 

Figure E.6  Behaviour of utilisations of the different methods  
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The generic non-M/D/1 equation (E.17) is the solution of: 
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This simple formula is problematic when t approaches zero. Assuming no initial queue, as 

above, and on the basis that average utilisation must satisfy the deterministic formula: 

 

     txL        (E.20) 

 

after some manipulation at an expression for L(t) in terms of x(t) without t is arrived at: 
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The Le corresponding to the HCM formula is that for M/D/1, so if the method were quasi-

static it should be possible to replace every instance of  by x (or some function of 

instantaneous utilisation) that can then be calculated from the L values. Figure E.7 shows how 

these are initially very different but converge once x gets close enough to . It is possible to 

show that the initial rate of change of the queue at t=0 is infinite, and obviously both the 

instantaneous rate and its time average change very rapidly at first, so many methods in the 

main dissertation that depend on the initial utilisation or on p0 could not be used. 

 

 

Figure E.7  Effective versus quasi-static utilisations for HCM queue function 
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E.7 ANALOGOUS FORMULATION OF M/D/1 SOLUTION 

 

The quasi-static sheared M/D/1 formula is more complicated than the HCM and similar 

formulae. From the expressions in main Chapter 4, the equivalent of (E.19) is: 
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When t is very large, LLe as it should. Unlike (E.19), when t 0, the RHS vanishes, and 

the LHS is consistent with L starting from zero and initially growing linearly. 

 

E.8 POSSIBILITY OF EXPONENTIAL APPROXIMATIONS 

 

The exponential formula developed in main Chapter 4, constrained by time constants derived 

from initial and asymptotic states, appears to approximate queue decay quite well, though not 

queue growth. Although a similar function is used to estimate the variance of a decaying 

queue, the mean queue and variance formulae are not formally consistent. A simplified 

version of the mean queue function, growing from zero with unvarying time constant, is: 
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However, the time development of (E.23) does not match simulation well, as shown by 

Figure E.8, where it converges to the equilibrium value much too quickly.  

 

 

Figure E.8  Exponential alternatives to the M/D/1 function 
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Realistic behaviour seems to demand a more complex function. The exponential function of 

inverse time, (E.24) can fit the general shape of the M/D/1 function
66

, as shown in Figure 

(E.8), but cannot reproduce the initial rate of change, and involves calibration constants: 
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Returning to equation (E.23), the delay-per-unit-time is: 
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To get the value at t=0 it is necessary to take a limit, and only the second-degree term in the 

exponential survives, giving D½t as t0. Putting (E.25) into the variance equation: 
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When t, in the cases of M/M/1 and M/D/1 respectively, the limiting values are: 

 

 





1

2
eW  the correct M/M/1 value being  

 21

2




eW

 

 (E.27) 

 

 
 



12

3

eW  the correct M/D/1 value being  
 
 2

22

16

46




eW  (E.28) 

 

So this simple model is not consistent with variance. It is asserted that an extension of (E.23) 

with a weighted sum of two exponential terms, satisfying the initial rate of change, also 

cannot be made consistent with variance. Referring to the series formula given by Morse 

(1958), an infinite weighted sum of exponential functions represents M/M/1 exactly, so 

perhaps there is some finite number of terms greater than two that can make mean and 

variance consistent, though not necessarily higher moments. This is a question that might be 

investigated in further research. 

 

  

                                                
66As noted elsewhere, the Markov simulation may not be completely reliable near equilibrium. 
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E.9 SUMMARY 

 

The quasi-static shearing approach seems better able to match all the structural properties of 

queue growth than the simpler HCM formula or its more empirical Australian development, 

or ostensibly simpler exponential functions that would require calibration constants. Further 

investigation of the consequences of the quasi-static assumption could be of interest, though 

not materially affecting this work whose objective is to make the minimum adjustments to the 

sheared queue method necessary to allow variance also to be calculated. The same applies to 

further investigation of exponential approximations. 
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APPENDIX F - STANDARD ERROR OF EQUILBRIUM MEAN 

QUEUE ESTIMATE 

 

To predict the accuracy of the mean in a simulation of an equilibrated queue process, as a 

function of the number of events simulated, we consider the relationship between the run 

length of sequences of events and the variance of the means of runs, for various run lengths. 

This analysis is required to confirm that simulation results with a given number of events are 

consistent with what would be expected, and there can be confidence in the simulation. 

 

In a run of events of an equilibrated queue, the mean of run means is the same as the overall 

mean, and assuming the total number of events is large this should approach the expected 

mean. The variance of run means will start equal to the overall variance of queue sizes when 

run length is 1, should eventually decrease to zero as run length is increased. In a sequence of 

random observations, where there is no correlation between successive observations, the 

usual standard error formula should apply. However, successive queue sizes are not 

uncorrelated, and the relationship with run length is therefore likely to be quite different. In 

principle, we would expect the ‘standard error’ to be greater than that for uncorrelated 

observations, meaning that more events must be simulated to get an accurate estimate of the 

mean than would be the case for a random sequence. 

 

In a simulation of a single-lane M/M/1 queue with =0.9, mean queue size averaged over 

900,000 arrival and service events (not just service events), numbered from 100,001 to 1M to 

allow an initial period of stabilisation, is L=8.834 which is not far from the expected value of 

9.0. Variance V is 82.61 which is somewhat less than the expected value of 90.0 but at least 

comparable. In terms of standard deviation, =9.09 compared to expected 9.49. 

 

Considering that N observations {xi} are divided into m runs of n successive observations, 

and assuming that observations in any run can be considered equivalent to those in any other, 

the variance between runs is estimated by: 
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Here  is the ensemble mean, 1

~
VV   is the ensemble variance, and Xn

2
 is the mean excess 

value of any product of two different elements xi and xj in a run after subtraction of 
2
. 
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Clearly, when n=1, this expression reduces to the ensemble variance, and for n>1 if the last 

term were absent it would give the standard error result. 

 

Considering just adjacent queue measurements, the probabilities of the next observed queue 

size being greater or less than the current value are in the ratio :1 (on the assumption that 

arrivals and service do not occur literally simultaneously, queue size cannot be unchanged). 

So if the initial queue size is i then the expected result of the next queue observation is: 
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Therefore the mean value of products of successive (n=2) observation pairs is given by: 
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For =0.9, the theoretical value is 170.53. Using the simulated values of mean and variance, 

it is 160.18. The actual value from the simulation is 158.65. The final term in (F.3) makes 

only a small contribution. The important point is that the mean value of the product is greater 

by around the variance than would be expected if successive observations were uncorrelated, 

which would be just the square of the mean, i.e. 81.0 expected or 78.04 as simulated. 

 

When n>2, the products in Xn
2
 are not all of adjacent observations. Queue size observations 

become progressively less correlated the farther they are apart, but the degree of correlation 

should continue to depend on . For example, if 1 then if xi is large xi+k is likely to be large 

also. For more modest values of , and eventually for sufficiently large k, the second term in 

the product will tend towards the mean queue size, and it is not unreasonable to suppose that 

relaxation should be approximately exponential. 

 

A simple function to predict the mean value of queue size observations k events away from 

an observation i, which satisfies the end constraints and has roughly the right initial rate of 

change, is: 
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The mean value of j can be estimated as the integral of (F.4) broadly within the range [0,n], 

divided by the range, though there may be an issue whether the range ought to be [1,n] or 

[0,n-1] which can perhaps be ignored if n is sufficiently large. The approximate result is 

given by (F.5) which has extremal values i at n=0 and  at n=, and gives the correct value 

(F.2) for n=1 when approximated to second order: 
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The evaluation of the product moment (F.3) as an integral of a continuous function looks 

awkward because of the exponential function of i in (F.5), which leads to a factor involving i
3
 

and an exponential term containing both i and its inverse. Alternatively, (F.5) might be 

converted to a discrete form. Either appears tedious, and in practice the desired numerical 

results can be obtained by direct calculation, the variance between runs being estimated by: 
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Figure F.1 compares the simulated and estimated standard deviation between runs as a 

function of run length, showing that they match closely but are substantially different from 

the  /n  standard error for uncorrelated observations, which is also shown. This confirms 

the model and predicts  error in the mean of 0.216 for n = 1M events. It is reasonable to 

expect that, if the simulation is accurate, the error in the simulated mean will be of similar 

order, the actual value being 0.162. 

 

 

Figure F.1  Standard error of mean queue estimate as function of no. of events, M/M/1, =0.9 
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A useful observation is that, for sufficiently large n, the expected error decreases as 1/n, 

allowing it to be extrapolated to any greater range, although it is displaced from the 

uncorrelated case by several orders of magnitude. 

 

For n=10,000, the number of events simulated in earlier experiments which were considered 

unsatisfactory, the predicted error in the mean is 2.16, implying a one-sigma range of 6.84-

11.16, so the result is likely to be substantially different from expectation. This is evident in 

Table F.1, which may be compared with Table 6.2.1 in main Chapter 6. On the face of it this 

is a surprising result since the stochastic relaxation constant should be only around 1.9*379.7 

 722 events (including both arrival and service events).  

 

Table F.1  Queue sizes in earlier multi-lane simulations (=0.9, =1.0, 10,000 events) 

No. of 

Lanes 

Capacity  

and type of 

process 

Total 

Queue 

Individual Lane Queues Correlation of 

Queue 

Sizes(R
2
) 

Lane 1 Lane 2 Lane 3 Lane 4 

1 1.00 random 7.317 7.317 - - - n/a 

4 0.25 indep. 
41.633 10.772 8.823 10.377 11.661 

-0.033 

4 1.00 shared 
6.743 1.467 1.796 1.673 1.806 

0.237 

4 1.00 shortest 
6.743 1.644 1.687 1.693 1.719 

0.844 

 

 

In conclusion, the foregoing analysis has provided a means of estimating the expected 

accuracy of a simulated M/M/1 equilibrium queue as a function of the length of simulation, 

or conversely providing an indication of how many events need to be simulated to get a result 

of given accuracy, and has shown that this number can be several orders of magnitude greater 

than would be expected on the basis of the usual standard error rule. 

 


