UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Elucidating an essential role for β-arrestin 1 in regulating Golgi morphology

Webb, KF; (2014) Elucidating an essential role for β-arrestin 1 in regulating Golgi morphology. Doctoral thesis , UCL (University College London).

Full text not available from this repository.

Abstract

β-Arrestins are multifunctional signalling adaptors, facilitating and regulating many signalling pathways in a variety of sub-cellular locales. This thesis work describes a novel role for β-arrestin 1 at the Golgi where it acts as a homeostatic regulator of Golgi morphology and function. β-Arrestin 1 knock-out MEFs have a more dispersed Golgi morphology when compared to WT MEFs, a difference in Golgi morphology that cannot be explained by differences in cell size or the cytoskeleton. Consistent with this observation, the overexpression of β-arrestin 1 in MEFs and HT29 cells causes Golgi compaction, suggesting a regulatory role for β-arrestin 1 at the Golgi. Furthermore, immunofluorescence experiments confirm that endogenous β-arrestin 1 is localised to this organelle. Mutants of β-arrestin 1 with characterised disruptions in protein binding abilities were expressed in HT29 cells and Golgi morphology was assessed by immunofluorescence. A mutant of β-arrestin 1 previously shown to lack the ability to bind AP2 failed to induce the compact Golgi phenotype associated with wild-type β-arrestin 1 expression. We confirmed by co-immunoprecipitation that β-arrestin 1 binds to AP1 suggesting that the association of β-arrestin 1 with AP1 is required for maintenance of a tightly packed Golgi structure. Conversely, the expression of a previously reported non-Src binding mutant produced an excessively compact Golgi. Inhibition of ERK, but not Src, activity recapitulated this phenotype suggesting this mutant may be defective in both Src and ERK binding, and implicating ERK in β-arrestin 1-mediated Golgi dispersal. Trafficking of the ts045-VSV-G protein is also perturbed when these β-arrestin 1 mutants are expressed, suggesting a functional role for β-arrestin 1 at the Golgi. β-Arrestin 1/AP1 complex formation is potentiated by active Src and serves to negatively regulate anterograde trafficking in addition to preventing Golgi dispersal. Conversely, β-arrestin 1 mediates ERK activation to facilitate anterograde trafficking and promote Golgi dispersal. β-Arrestin 1 thus likely plays a homeostatic role at the Golgi maintaining Golgi structure in the face of highly variable membrane flux through this organelle.

Type: Thesis (Doctoral)
Title: Elucidating an essential role for β-arrestin 1 in regulating Golgi morphology
Language: English
Keywords: Golgi, Arrestin, β-arrestin 1
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/1418064
Downloads since deposit
1Download
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item