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Abstract 

Familial Hypercholesterolaemia (FH) is a common autosomal dominant disorder of 

the defective plasma clearance of LDL-cholesterol (LDL-C). Mutations in three 

genes, LDLR/APOB/PCSK9, can be detected in 60-90% of definite FH patients. 

DNA-based testing for FH mutations has important clinical utility and is 

recommended by the UK and European guidelines to identify affected relatives. This 

thesis aimed to determine the frequency and spectrum of FH mutations in two 

independent cohorts of FH patients (from one Oxford lipid clinic, and of Indian 

background). The FH mutation spectrum was shown to be highly heterogeneous and 

the mutation detection rate was significantly dependent on the pre-treatment total 

cholesterol and triglyceride levels. This project also validated the findings that a 

proportion of clinically diagnosed FH patients have a polygenic cause of 

hypercholesterolaemia due to an accumulation of common mild LDL-C-raising alleles 

by analysing LDL-C gene score in 88 mutation negative and 21 mutation positive FH 

patients, and by replicating the results in further 231 FH patients. A high-throughput 

DNA sequencing method was assessed as a novel diagnostic tool for detection of 

FH mutations, and compared it with the currently used methods. This highlighted the 

need for updating the current FH mutation screening methods as well as the need for 

more efficient bioinformatics for the next generation sequencing data analysis. 

Lastly, whole exome sequencing of 125 definite FH patients with no mutations 

detected in known genes was performed to identify novel monogenic causes of FH. 

Variants in two genes, CH25H and INSIG2, were identified as potential novel FH 

mutations. Overall, the results of this thesis demonstrate the heterogeneous FH 

aetiology and help to understand the genetic architecture of the disease.
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1.1. Lipid metabolism 

1.1.1. Lipids and Lipoproteins 

Lipids are water-insoluble, structurally diverse, organic molecules 

characterized by a hydrocarbon backbone, which can be utilized or 

synthesized from the dietary fats. Several lipid subgroups can be 

distinguished, depending on their chemical composition. Triglyceride (TG) is 

an ester derived from glycerol and three fatty acids, stored in the adipose 

tissue, which is important for energy supply. TG, commonly named as fat, is 

the source of free fatty acids, which are the major substrate for the energy 

production (saturated fatty acids), precursors for tissue hormones 

(unsaturated fatty acids) (Bhathena 2006), or act as ligands for transcription 

factors, influencing gene expression (Lin et al. 1999, Hostetler et al. 2005, 

Hostetler et al. 2006). Cholesterol, the crucial component of cellular 

membranes, is the major sterol in human body, which also functions as a 

precursor for steroid hormones. Cholesterol regulates its own metabolism and 

biosythesis by inducing the activity of sterol regulatory element-binding protein 

(SREBP). Other lipid subgroups include lipophilic vitamins (vitamins A, D, E, 

and K), which also function as ligands for transcription factors and are 

important for regulation of genes involved in energy metabolism (McEwan 

2009), and phospho- and sphingolipids, which are structural membrane 

components. 

In order to be transported in the plasma, hydrophobic lipids are assembled in 

lipoprotein particles. Lipoproteins have a hydrophobic inner core containing 
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TG and cholesterol esters (CE), covered by a membrane-like structure formed 

by hydrophilic phospholipids, unesterified cholesterol and proteins called 

apolipoproteins. The role of apolipoproteins is to solubilize and stabilize lipids 

in the aqueous environment of plasma. Lipoproteins are divided into five 

classes, according to their origin and density: chylomicrons, very low density 

lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density 

lipoproteins (LDL) and high density lipoproteins (HDL). The plasma 

lipoproteins differ in their composition, as shown in Table 1.  

Lipoprotein trafficking can be divided in three pathways: the exogenous 

pathway, during which dietary cholesterol and fatty acids are absorbed, the 

endogenous pathway, when lipoproteins synthesized in the liver are 

distributed to peripheral tissues, and the reverse cholesterol pathway, which 

mediates transport of excess cholesterol from the periphery to the liver, 

summarized in Figure 1. 

 

Table 1 

Composition of the plasma lipoproteins (% total) (taken from (Feher and 

Richmond 1997)). 

  
Chylomicrons VLDL IDL LDL HDL 

protein 2 10 18 25 55 

TG 85 50 26 10 4 

cholesterol 1 7 12 8 2 

cholesterol 
ester 

3 13 22 37 15 

phospholipid 9 20 22 20 24 
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Figure 1 

Schematic representation of lipid metabolism. E= Apolipoprotein E, C= Apolipoprotein C, A= Apolipoprotein A, B-48=Apolipoprotein 

B-48, B-100=Apolipoprotein B-100, LPL=lipoprotein lipase, LCAT=lecithin-cholesterol acyltransferase, HTGL=hepatic triglyceride 

lipase (adapted from (Goldstein et al. 1983)).
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1.1.2. Exogenous pathway 

Exogenous transport of cholesterol and fats begins with the absorption of 

dietary lipids in the intestine, during which TGs are hydrolyzed to 

monoacylglycerols and fatty acids. After lipid diffusion across the microvillus 

membrane, cholesterol and fatty acids are re-esterified and packaged with 

apolipoprotein B-48 (ApoB-48), several apolipoproteins A (ApoA-I, ApoA-II, 

ApoA-IV) and other lipids to form chylomicrons. After their synthesis in the 

intestinal wall the chylomicrons enter the blood circulation via the lymphatic 

system where they acquire apolipoproteins E and C (ApoE, ApoC-I, ApoC-II, 

ApoC-III) from HDL-C. ApoC-II activates lipoprotein lipase (LPL), which 

rapidly hydrolyses TGs to produce free fatty acids (FFAs). The FFAs leave 

chylomicrons and are transported to different tissues such as muscle and 

adipose tissue. The remaining chylomicrons, much reduced in size, contain 

the core remnants rich in cholesterol esters, ApoB-48 and ApoE, and the 

surface remnants, mainly composed of phospholipids and Apo-C. The latter is 

transferred to HDL particles, while the core remnants are taken up by the liver 

via the LDL-receptor, an ApoB/E specific receptor, and via the LDL-receptor 

related protein (LRP) (Choi et al. 1991, Rohlmann et al. 1998).  

1.1.3. Endogenous pathway 

To maintain and regulate the energy supply for tissues, the liver is able to 

synthesize TGs from fatty acids produced from acetate of dietary 

carbohydrates (Gibbons 1990). TGs, which can also be derived from the 
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chylomicron remnants produced during the exogenous pathway, are 

packaged together with cholesterol, cholesterol ester, phospholipid, 

apolipoproteins B-100 and A to form VLDL. Newly assembled VLDL particles 

enter the circulation where, similarly to the chylomicrons, acquire more 

apolipoprotein (ApoC and ApoE) from HDL, which activates LPL to hydrolyze 

TGs and to release FFA. The cholesterylester transfer protein (CETP) 

controls the exchange of VLDL lipids with mature HDL, which enriches VLDL 

in cholesterol esters and forms the intermediate density lipoprotein (IDL). 

Further loss of TGs and phospholipids from IDL particles (mainly transferred 

to HDL) is accompanied by a loss of apoliporoteins C and E, which leads to 

an increase in the lipid density of the particles. Apolipoprotein B-100 (ApoB-

100) becomes the major carrier of the assembled LDL particles, which acts as 

a ligand for the LDL-receptors located on the surface of the liver cells or any 

other cells requiring cholesterol supply. Once bound to the receptor, LDL is 

internalized and undergoes lysosomal hydrolysis.  

1.1.4. Reverse cholesterol transport 

Excess cholesterol in peripheral tissues can be transferred back to the liver in 

high density lipoprotein (HDL) particles, in the metabolic pathway of reverse 

cholesterol transport (Glomset 1968). Apolipoprotein A-I produced by the liver 

circulates as pre-beta HDL particles to peripheral cells, where it picks up 

cholesterol and phospholipids. The ATP-binding cassette (ABC) transporter 1 

(ABCA1), described as the gatekeeper of reverse cholesterol transport 

pathway (Oram and Lawn 2001), transports cellular cholesterol and 

phospholipids to the cell surface where they can bind apolipoproteins (Oram 
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and Yokoyama 1996). While in the circulation, HDL accumulates more lipids, 

which reduces its density. It can also acquire ApoE, which enables it to bind to 

the ApoE receptors on hepatocytes. Lecithin-cholesterol acyltransferase 

(LCAT) is an enzyme that esterifies the cholesterol into cholesterol esters that 

accumulate in HDL particle (Roheim 1986). Cholesterol esters can be 

exchanged for TG from TG-rich lipoproteins by CETP or transferred to the 

liver by the scavenger receptor SR-B1 or ABC transporters (Acton et al. 

1996). Once in the liver cholesterol can be recycled to form lipoproteins, used 

for bile acid production or secreted directly into the bile. 

1.1.5. Cholesterol homeostasis  

The concentration of cellular cholesterol is controlled by the regulated 

transport of the ER membrane-bound transcription factor, called the sterol 

regulatory element-binding protein (SREBP), to the Golgi complex 

(Radhakrishnan et al. 2007). Once in the Golgi, SREBP is proteolytically 

processed to release its active fragments, which are imported to the nucleus 

to switch on the transcription of 3-Hydroxy-3-Methylglutaryl-CoA Reductase  

(HMGCR) and Low Density Lipoprotein Receptor (LDLR), and other sterol-

regulated genes (Goldstein et al. 2006). HMGCR encodes the hydroxymethyl-

glutaryl CoA reductase, the rate-limiting enzyme of cellular cholesterol 

biosynthesis, whereas LDLR codes for the LDL-receptor responsible for the 

uptake of LDL-C from plasma. Thus a regulation of the expression of 

SREBPôs target genes enables the cell to maintain a constant level of 

membrane cholesterol, which is important especially during periods of rapid 

cell growth. The activity of SREBP is regulated by the end product, 
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cholesterol, and by oxysterols, which are derivatives of cholesterol 

(Kandutsch et al. 1977, Brown and Goldstein 1974b, Kandutsch et al. 1978). 

Cholesterol and oxysterols can suppress cholesterol biosynthesis and 

cholesterol uptake by binding to Insulin-Induced Gene (INSIG) proteins or to 

Sterol Regulatory Element Binding Protein Cleavage-Activating Protein 

(SCAP, cholesterol only), the escort protein of SREBP (Radhakrishnan et al. 

2007). The excess of cholesterol or oxysterols initiates the formation of an 

INSIG/SCAP complex, which blocks the transport of SREBPs to the Golgi, 

hence HMGCR and LDLR are no longer transcribed (Goldstein et al. 2006). 

Inhibition of SREBP prevents toxic accumulation of cholesterol. 

1.2. Atherosclerosis 

Atherosclerosis derives its name from Greek words ósclerosisô (hardening) and 

óathereó (gruel). The condition remains to be the leading cause of mortality and 

morbidity in developed countries (World Health Organization, 

http://www.who.int/gho/publications/world_health_statistics/2012/en/). The 

process of atherogenesis is driven by many environmental and genetic 

factors. One of the major risk factors is hyperlipidemia, especially increased 

levels of LDL-C in the plasma. Retention of LDL-C in the vessel wall leads to 

oxidation, which promotes the recruitment of monocytes and lymphocytes and 

an increased production of cytokines and growth factors. Monocytes and 

lymphocytes convert to macrophages and take up the oxidized LDL, which 

leads to formation of foam cells (Figure 2(b)). Foam cells form a lesion of 

yellow appearance, also called the fatty streak, which activates inflammation 

by recruiting further inflammatory cells. The lesionôs growth is caused by the 

http://www.who.int/gho/publications/world_health_statistics/2012/en/
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infiltration and proliferation of smooth muscle cells (SMCs) and synthesis of 

extracellular matrix containing collagen, elastin and proteoglycans. Some of 

the macrophages go through apoptosis and die, releasing more lipids to the 

core of the lesion forming a so-called necrotic core (Figure 2(c)). Rupture of 

the atherosclerotic plaque causes release of its core components to the 

lumen, which triggers thrombosis and occlusion of the artery (Figure 2(d)), 

which can lead to myocardial infarction resulting in sudden death.   

CVD risk reduction by LDL-C-lowering therapy is well established (Baigent et 

al. 2005). In contrast, HDL-C has been thought to be atheroprotective (Figure 

3), thus low levels of HDL-C were considered to be the risk factor for 

atherosclerosis (Di Angelantonio et al. 2009). However, results of a recent 

mendelian randomization study demonstrated that a gene score including 14 

genetic variants associated with high levels of HDL-C was not associated with 

reduced risk of myocardial infarction, suggesting that HDL-C is not a 

causative factor for CHD (Voight et al. 2012). In addition, the Heart Protection 

Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events 

(HPS2-THRIVE) showed that raising HDL-C with niacin treatment has no 

benefits or can be even harmful for patients at risk of CHD 

(http://www.sciencedaily.com­/releases/2013/03/130311101827.htm accessed 

on 20 Aug 2013). Other CVD risk factors can be divided into the modifiable 

risk factors, such as high blood pressure, smoking, lack of physical activity, 

diet, obesity, diabetes mellitus (including abnormal lipids as mentioned 

before), and the non-modifiable risk factors, including age, gender and genetic 

predisposition, which is reflected by the family history in majority of the 

affected patients (Boer et al. 1999). Other risk factors with a strong genetic 

http://www.sciencedaily.com/releases/2013/03/130311101827.htm
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component include homocysteine (Rodgers and Conn 1990), haemostatic 

factors (Kannel 2005), lipoprotein(a) (Djurovic and Berg 1997) and systemic 

inflammation (Ross 1999). In the majority of patients, the multistep process of 

atherosclerosis development is likely to be caused by a combination of 

different risk factors, as well as gene-gene and gene-environment interactions 

(Do et al. 2011), however currently the robust statistical evidence to support 

this from single studies and their subsequent replication in larger studies is 

lacking. 
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Figure 2 

Stages in the development of atherosclerotic lesion (taken from (Libby et al. 2011)) and the normal artery (a).
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Figure 3 

Hazard ratios for CHD across quantiles of HDL-C and non-HDL-C plasma levels, based on 302,403 participants (including 12,785 

cases). Adapted from (Di Angelantonio et al. 2009). 
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Familial hypercholesterolaemia (FH) is a monogenic cause of atherosclerosis, 

which starts at a very early age, and eventually results in CHD. It was 

demonstrated that, if untreated, 30% of women and 50% of men patients with 

heterozygous FH will develop CHD by the age of 55 (Slack 1969). FH patients 

have five to eight times higher than average risk of developing CHD (Marks et 

al. 2003). Homozygous FH patients develop CHD very early in life and die 

before the age 20 if no treatment is provided. 

1.3. Overview of the molecular pathogenesis of FH 

Early work by the 1985 Nobel Prize laureates, Michael S. Brown and Joseph 

L. Goldstein, significantly broadened the understanding of lipid metabolism 

and the effect of its inborn errors. Extensive studies of the receptor-mediated 

endocytosis of low-density lipoprotein particles (LDL-C) explained the basis of 

cholesterol regulation within a cell system (Goldstein and Brown 1974). 

Because two thirds of human plasma cholesterol is contained within LDL 

particles, formation of atherosclerotic plaques was correctly linked with 

increased levels of LDL-C. Therefore answering the question: óWhat 

determines blood LDL-C levels in an individual?ô was crucial in order to 

prevent atherosclerosis and premature coronary heart disease (CHD).  

Brown and Goldsteinôs biochemical and structural studies resulted in the 

description of the sequential steps of LDL-C uptake by a cell surface receptor, 

called the LDL-receptor (Brown and Goldstein 1979). They discovered that 

LDL-receptors are located in clathrin-coated pits. Binding of the LDL-C 

particle to its receptor initiates internalisation of LDL-LDL-R complexes within 

coated vesicles, which rapidly fuse with lysosomes.  This is followed by the 
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lysosomal hydrolysis of LDL-C, resulting in the release of unesterified 

cholesterol to the cytoplasm while the receptor recycles to the surface. 

Understanding of the LDL-C pathway became the foundation for the 

investigation of FH pathogenesis, which in 1974 led to identification of the first 

FH mutations at the LDLR locus (Brown and Goldstein 1974a). 

Mutation in one of the two inherited genes, the heterozygous form of FH, 

leads to an approximately two-fold increase in plasma cholesterol level. 

However, the homozygous FH is characterised by much greater cholesterol, 

even four- to five-fold the normal level. This occurs when an FH mutation is 

passed to the offspring from both his/her mother as well as from the father. An 

individual with two identical mutations, the true homozygote, or with two 

different mutations (the compound heterozygous FH) suffers extreme lipid 

levels from a very young age and require aggressive lipid-lowering treatment 

to prolong his/hers life.  

1.4. Clinical diagnosis of FH 

There are currently three FH diagnostic algorithms used in lipid clinics around 

the world. In the UK, the Simon Broome Heart Research Trust, which was 

originally founded by Mrs. Katherine Broome, widow of Simon Broome, who 

died prematurely of heart disease, created the Simon Broome register of 

patients suffering from FH. On the basis of the Simon Broome register, its 

Steering Committee ('Risk of fatal coronary heart disease in familial 

hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon 

Broome Register Group'  1991) developed the UKôs clinical diagnostic criteria 

for FH. The criteria distinguish two types of the disease: definite FH (DFH), 
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and possible FH (PFH). Both DFH and PFH patients should have total 

cholesterol (TC) greater than 7.5 mmol/l, and/or LDL-cholesterol (LDL-C) 

greater than 4.9 mmol/l (Table 2). The criteria also account for the difference 

in cholesterol levels between adults and children, thus the pre-treatment 

cholesterol cutoffs are appropriately lowered for patients under the age of 16 

(Table 2). Positive family history of myocardial infarction (MI) is also one of 

the criteria, although the specificity of this criterion depends on the prevalence 

to MI in the studied population. In addition, definite FH patients or their 

relatives (first or second degree) have observable lipid deposition in the 

tendons forming tendon xanthomata, as shown in Figure 4, although these 

are becoming increasingly uncommon due to improvements in early diagnosis 

and treatment. Presence of a variant known or predicted to affect function in 

one of the known FH genes (discussed in section 1.11) also classifies a 

patient as DFH (Marks et al. 2003). Approximately two thirds of all FH patients 

in the UKôs lipid clinics fall under the diagnosis of possible FH (Hadfield et al. 

2008). 
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Table 2 

Simon Broome diagnostic criteria for FH (Marks et al. 2003).  
 
 
 
 

Criteria                   

A 
Plasma cholesterol measurements of 
either:     

 
TC >7.5 mmol/l (adult) or >6.7 mmol/l (child <16 

years)   

 
LDL-C >4.9 mmol/l (adult) or >4.0 mmol/l (child <16 

years)   

B 
Presence of tendon xanthomata in patient or in a relative (first or second 
degree) 

C DNA-based evidence of a mutation in an FH gene 
   

D 
Family history of MI in a second degree relative <50 years or 
in a first degree relative <60 years of age   

E Family history of plasma TC >7.5 mmol/l ina first or second degree relative 

                    

Diagnosis Criteria required 
      

Definite FH A + B or C 
       

Possible FH A +D or A + E 
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Figure 4 

Tendon xanthoma shown in A. is the clinical feature of DFH; xanthelasmas 

and arcus corneae (B) and xanthomata of the extensor tendons (C) are also 

commonly observed in older FH patients, however they are not diagnostic 

features for FH (all taken from (Liyanage et al. 2011) )
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A similar FH diagnostic system has been developed by the Dutch Lipid Clinic 

Network (DLCN). The algorithm uses numerical scores and classifies patients 

into three sub-groups (Marks et al. 2003). The definite FH patients have a 

score greater than 8, the probable FH - between 6 and 8, and the possible FH 

- between 3 and 5 points. No diagnosis is made if the score is below 3. 

Similarly to the Simon Broome FH criteria, DLCNC score is based on a family 

history of premature CHD, LDL-C levels, presence of tendon xanthoma/ 

corneal arcus, and DNA analysis, as summarized in Table 3. A possible 

advantage of the DLCN score over the Simon Broome FH criteria is that the 

DLCN does not require tendon xanthoma to be present for the diagnosis of 

DFH patients (if a mutation has not been identified). As shown in Table 3, a 

definite FH diagnosis can be made on the basis of an extreme LDL-C 

measurement only. 
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Table 3 

The FH diagnostic criteria, as defined by the Dutch Lipid Clinic Network. The DLCN score distinguishes three forms of FH: possible 

(3-5 points), probable (6-8 points), and definite (>8 points) 

Dutch lipid clinic network diagnosis of FH Points 

Family history 
 

A First degree relative with known premature (<55 years men; <60 years women) coronary and vascular disease 1 

B First-degree relative with known LDL-cholesterol >95th percentile and/or2 
 

A First degree relative with tendon xanthomata and/or arcus cornealis 2 

B Children below 18 years with LDL cholesterol >95th percentile 
 

Clinical history 
 

A Patient has premature (<55 years men; <60 years women) coronary artery disease 2 

B Patient has premature (<55 years men; <60 years women) cerebral or peripheral vascular disease 1 

Physical Examination 
 

A Tendon xanthomata 6 

B Arcus cornealis below 45 years 4 

Laboratory analysis 
 

A LDL-cholesterol   > 8.5 mmol/l 8 

B LDL-cholesterol   6.5-8.4 mmol/l 5 

C LDL-cholesterol   5.0-6.4 mmol/l 3 

D LDL-cholesterol   4.0-4.9 mmol/l 1 

 
(HDL-cholesterol and triglycerides are normal) 

 
 DNA analysis  

A Functional mutation  8 
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An early approach to diagnose FH was developed by the MEDPED study 

(Make Early Diagnoses and Prevent Early Deaths), in the USA (Williams et al. 

1993). The MEDPED criteria were based on age- and sex- adjusted total 

cholesterol levels, however it has been demonstrated that in order to avoid a 

high false positive rate the diagnosis of FH should generally not be made 

using total or LDL cholesterol levels alone. The MEDPED cholesterol cut-offs 

for each age group are shown in Table 4. 

The sensitivity and specificity in identifying FH patients with a mutation using 

all three clinical diagnostic algorithms was compared in a study of 408 

patients, which showed that the Simon Broome criteria and the DLCN score 

did not differ much, but both performed better than the MEDPED diagnosis 

(Damgaard et al. 2005). 

Table 4 

MEDPED program TC cut-offs for diagnosis of FH in relatives of a patient and 

their comparison with the general population (Williams et al. 1993).  

  Total cholesterol (mmol/L) 

Age 
(years) 

      

First degree 
relative 

Second degree 
relative 

General 
population 

(Utah) 

<20 5.7 5.9 7.0 

20ï29 6.2 6.5 7.5 

30ï39 7 7.2 8.8 

>40 7.5 7.8 9.3 
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1.5. Genetic diagnosis of FH 

A DNA-based test can give a definite diagnosis of FH and it is particularly 

useful at identifying affected relatives of a patient, especially those at a young 

age. Because of the difference in the FH mutation spectrum between 

populations, different screening methods have been applied. Methods used in 

the UK, a country with high genetic heterogeneity, originally included the 

commercially available Amplification Refractory Mutation System (ARMS) kit 

(Elucigene FH20, Gen-Probe, Oxford, UK), which was designed to screen for 

the most common UK FH variants including18 LDLR mutations, the APOB 

p.R3527Q, and the PCSK9 p.D374Y. Taylor et al. reported that the ARMS 

assay detected over 44% of the UK FH mutations (Taylor et al. 2010b), with 

the APOB p.R3527Q being the most commonly observed accounting for 12% 

of all detected mutations.  

Because of the wide spectrum of FH mutations in the UK, high resolution 

melting (HRM) of the entire coding region of LDLR, followed by Sanger 

sequencing, has been used to screen patients for less common mutations 

(Whittall et al. 2010b). The method was shown to be effective, however its 

sensitivity decreases in some regions depending on the nucleotide 

composition of the fragment. An additional method was developed to test for 

large deletions and duplications within the LDLR gene (Taylor et al. 2009). 

The multiplex ligation-dependent probe amplification (MLPA) (MRC-Holland) 

is a rather laborious and costly method, but it allows the detection of large 

deletions and insertions, which account for up to 10% of all UK FH mutations 

(Futema et al. 2013). Another commercially available FH diagnostic kit, which 
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test for over 250 FH mutations is LIPOchip (Progenica Biopharma, Spain), 

was shown to detect an FH mutation in 66% of over 800 screened Spanish 

FH patients (Alonso et al. 2009). Although Elucigene FH20 and LIPOchip 

have been widely used as a simple diagnostic tool, a recent review funded by 

The National Institute for Health Research Health Technology Assessment 

programme highlighted the need for novel comprehensive FH mutation 

detection methods, and demonstrated that the off-the-shelf diagnostic kits 

may be less cost-effective in comparison to the novel emerging methods 

(Sharma et al. 2012).  

Next generation sequencing (NGS) has certainly revolutionised molecular 

diagnostic labs, with the costs of custom design targeted deep sequencing 

methods, provided by for example Illumina or Agilent, steadily decreasing. 

Novel NGS approaches, which include PCR-free methods such as the TruSeq 

DNA PCR-free sample preparation kit from Illumina, can provide reliable 

results in two days, however their sensitivity and specificity is still being 

tested.   

The development of more efficient and cheaper screening methods for FH will 

lead to higher mutation detection rate. However, another reason for low 

mutation detection rate in some of the lipid clinics could be due to 

misdiagnosis of the monogenic hypercholesterolaemia with the polygenic form 

of the disease. A recent report demonstrated that at least 20% of the patients 

diagnosed with FH but with no detected mutation may have had high 

cholesterol due to polygenic factors (Talmud et al. 2013).  Finally, the 

detection rate can be low due to a presence of novel FH loci, located outside 

of the screened regions.
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Table 5 

FH mutations included in the ARMS test. The list contains cDNA position 

starting from ATG. 

 

Mutation and protein change 

c.259T>G (p.W87G) 

c.301G.A (p.E101K) 

c.313+1G>A 

c.551G>A (p.C184Y) 

c.654_656delTGG (p.G218del) 

c.680_681delAC (p.D227Gfs*12) 

c.662A>G (p.D221G) 

c.681C>G (p.D227E) 

c.682G>T (p.E228X) 

c.932_933delAA (p.K311Rfs*20) 

c.1048C>T (p.R350X) 

c.1150C>T (p.Q384X) 

c.1285G>A (p.V429M) 

c.1436T>C (p.L479P) 

c.1444G>C (p.D482H) 

c.1444G>A (p.D482N) 

c.2029T>C (p.C677R) 

c.2054C>T (p.P685L) 

APOB c.10580G>A (p.R3527Q) 

PCSK9 c.1120G>T (p.D374Y) 
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1.6. Clinical utility of DNA testing 

DNA testing for FH mutations can provide an unequivocal diagnosis in 

comparison to diagnosis based on clinical observations and lipid 

measurements. This has been confirmed in several studies (Soutar and 

Naoumova 2007, Varret et al. 2008, Campagna et al. 2008). The genetic 

diagnosis overcomes the overlap problem of LDL-C levels between the 

affected and not affected individuals. It was reported that the LDL-C overlap in 

children (5-15 years old) leads to false negative rate of FH diagnosis in 15% 

of patients (Figure 5), and it gets worse with age (Starr et al. 2008).   
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Figure 5 

LDL-C levels in FH patients (with genetic diagnosis) vs. not FH patients aged 5-15 years. The LDL-C overlap leads to 8% mutation 

negative individuals being falsely diagnosed with FH based on their LDL-C level, and 15% of mutation positive patients not being 

diagnosed with FH based on their LDL-C level. Taken from (Starr et al. 2008).
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One of the main benefits of identifying the disease-causing variant is that it 

allows for diagnosis of affected relatives. In a family with a monogenic disease 

like FH, 50% of the first-degree relatives are expected to carry the mutation. 

For comparison, a study showed that only 25.6% of relatives of FH patients 

without a detected mutation were given the FH diagnosis, which suggests a 

polygenic rather than monogenic cause of hypercholesterolaemia (Humphries 

et al. 2006a). The DNA testing has been recommended by the National 

Institute for Health and Clinical Excellence (NICE) as a tool to identify affected 

relatives in cascade testing, as discussed in the next section.  

Genetic diagnosis of FH in children can help to implement life-style changes, 

such as diet, exercise, no smoking, at an early age, which can reduce the risk 

of developing premature CHD. The use of statins in pediatric patients was 

demonstrated to be beneficial (Eiland and Luttrell 2010, Arambepola et al. 

2007, Avis et al. 2007), although its long-term efficacy have not been 

established. The need for a long-term randomized controlled trial in children 

has been highlighted (Vuorio et al. 2010). 

Furthermore, identification of an FH mutation is beneficial for the patients 

monitoring and for the management of LDL-C-lowering therapy (Humphries et 

al. 2006a, Umans-Eckenhausen et al. 2001).   

1.7. Cascade testing to identify FH patients 

 
In 2008, the National Institute for Health and Clinical Excellence (NICE) 

published guidelines and recommendations on the diagnosis and 

management of FH in the UK (CG71) (Wierzbicki et al. 2008). The guidelines 
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state that healthcare professionals should offer a referral for cascade testing 

to every FH patient, in order to identify affected relatives of the patient. This 

should include at least the first- and second- and, when possible, third-degree 

biological relatives. Cascade testing is of high public health interest and its 

goal is to reduce morbidity and mortality from heart disease in persons with 

FH through early diagnosis and effective disease management. A 

combination of DNA testing (for families where the causal mutation is already 

identified), which provides unequivocal diagnosis (Campagna et al. 2008), 

and measurement of LDL-C levels (in the remaining families) has been 

demonstrated as the most cost-effective current approach (Nherera et al. 

2011). This strategy has been successfully applied in the Netherlands in 

families of familial hypercholesterolaemia probands with a detected mutation, 

thus allowing statin treatment of family members at risk of early coronary 

heart disease (Umans-Eckenhausen et al. 2001). A recent case-control study 

on the use of LDL-C SNPs score to identify patients with polygenic 

hypercholesterolaemia (Talmud et al. 2013) suggested to implement the LDL-

C SNPs score calculations (discussed in section 2.3) before beginning the 

cascade testing in the mutation negative patients (Figure 6). The proposed 

strategy needs to be tested further, however it is predicted to increase the 

cost-effectiveness of the cascade testing. Despite clear benefits of the early 

identification of FH patients recently highlighted by the HEART UK charity 

(http://heartuk.org.uk/files/uploads/documents/HUK_HealthEconomics_FINAL

2012_2702.pdf, accessed on 20 Aug 2013), cascade testing has not been 

widely implemented in England. 

http://heartuk.org.uk/files/uploads/documents/HUK_HealthEconomics_FINAL2012_2702.pdf
http://heartuk.org.uk/files/uploads/documents/HUK_HealthEconomics_FINAL2012_2702.pdf
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Figure 6 

The proposed diagnostic workflow for cascade testing in patients with FH 

(taken from (Talmud et al. 2013)). *as recommended by NICE (Leren et al. 

2004)
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1.8. Problem of FH underdiagnosis 

 
In 2000, a prospective study in an Oxford based patients registry, highlighted 

the problem of FH underdiagnosis (Neil et al. 2000), which was further 

confirmed in a census estimating that only 15% of FH patients in the UK were 

identified (Marks et al. 2004). A recent report of the European Atherosclerosis 

Society demonstrated that in the majority of studied countries the proportion 

of FH patients being diagnosed is below 1% (Nordestgaard et al. 2013). The 

highest proportion of diagnosed patients was reported in the Netherlands 

(71%), followed by Norway (43%), Iceland (19%), Switzerland (13%), the UK 

(12%) and Spain (6%) (Figure 7). Authors estimated the proportions based on 

the FH prevalence of 1 in 500, however the differences in the frequency 

between some countries were not accounted for. The report suggested that 

there are between 14 and 34 million individuals affected by FH worldwide, 

which highlights the extent of FH underdiagnosis. Early diagnosis should lead 

to the introduction of statin treatment, patient education and advice on diet 

and life-style as well as cascade testing to identify affected relatives. Well-

operated cascade testing system would lead to an increase in the efficiency of 

CHD prevention and safe in the UK only an estimate of £6.9 million per year 

from avoiding cardiovascular events, as stated by the HEART UK charity 

(http://heartuk.org.uk/files/uploads/documents/HUK_HealthEconomics_FINAL

2012_2702.pdf, accessed on 20 Aug 2013). 

http://heartuk.org.uk/files/uploads/documents/HUK_HealthEconomics_FINAL2012_2702.pdf
http://heartuk.org.uk/files/uploads/documents/HUK_HealthEconomics_FINAL2012_2702.pdf
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Figure 7 

Estimated per cent of individuals diagnosed with familial 

hypercholesterolaemia in different countries/territories, as a fraction of those 

theoretically predicted based on a frequency of 1/500 in the general 

population. As most countries do not have valid nationwide registries for 

familial hypercholesterolaemia, several values in this figure represent 

informed estimates from clinicians/scientists with recognized expertise in and 

knowledge of familial hypercholesterolaemia in their respective countries. 

Numbers were provided by Michael Livingston, Steve E. Humphries (UK), 

Olivier S. Descamps (Belgium). (Taken from (Nordestgaard et al. 2013). 
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1.9. Treatment of FH 

The most common therapy for FH patients includes daily use of statins, which 

are lipid-lowering compounds, which stimulate expression of the LDL-receptor 

gene (LDLR) by inhibiting HMG-CoA (hydroxymethylglutaryl co-enzyme A) 

reductase activity. Although use of statins in FH patients was shown to be the 

most effective (see the next paragraph), alternative medications are available, 

when a patient does not tolerate the statin treatment. These include bile acid 

sequestrants, fibrates, nicotic acid, all in conjunction with low-fat diet. Lifestyle 

changes, in particular quitting of smoking, are advised to every FH patient. A 

combined FH therapy is also in use. Ezetimibe is a recently introduced lipid-

lowering drug, which acts by decreasing cholesterol absorption in the intestine 

(Toth and Davidson 2005). Ezetimibe can be used in combination with statins, 

which can result in additional cholesterol reduction (Morrone et al. 2012), and 

it has been recommended as an alternative and additional therapy by the 

NICE guidelines (2007), although a recent study of over 3,800 patients 

showed no significant mortality benefit over the use of statins alone (Patel et 

al. 2013). 

The efficacy of statins in heterozygous FH patients was assessed by the 

Simon Broome Scientific Steering Committee in a study of over 3,000 FH 

individuals, who were followed up for 26 years, until the end of 2006 (Neil et 

al. 2008). The standardized mortality ratio (SMR), which was expressed as a 

percentage (%), was compared between different age groups of patients 

before and after the statin treatment was introduced in 1992. The authors 

reported that the statins, when used as the primary prevention, reduced the 
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SMR for CHD over 59% in the middle age group (40-59) of participants (Table 

6). There was also a beneficial effect in the younger age group; however the 

result may be imprecise because of the small sample size hence large 

confidence intervals. In addition, it was shown that the secondary prevention 

reduced the number of deaths from the CHD in the whole group by 25%, with 

a larger effect in women. Overall, the study validated the significant impact of 

the early identification and treatment of heterozygous FH patients, and 

confirmed the importance of the early identification of FH patients for example 

by cascade testing (discussed in section 1.7.). 

 

Table 6 

The effect of the use of statins (primary prevention) in heterozygote FH 

patients (SMR for CHD, SMR=100 for the reference population) [adapted from 

(Neil, Cooper et al. 2008)]. 

Age 

groups 

(years) 

1980-1991 1992-2006 

SMR 95% CI P-value SMR 95% CI P-value 

20-39 3750 773-10 959 <0.001 1153 238-3372 <0.01 

40-59 342 148-674 <0.01 141 75-242 0.28 

 

Similar findings were reported by Versmissen et al., who mimicked a statin 

clinical trial by following up around 2,000 FH patients, for an average of 8.5 

years, before and after the statin treatment (Versmissen et al. 2008). The 

authors observed a 76% reduction in the risk of CHD in treated versus 
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untreated FH patients, which led to a significant improvement of the event-

free survival. Even more, when the risk of myocardial infraction (MI) in statin-

treated FH patients (older than 55) was compared with the data of a general 

population (the Rotterdam study), the event-free survival of FH individuals 

was not different from the general population (Figure 8). 
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Figure 8 

Kaplan-Meier curve of cumulative MI-free survival among FH patients (older than 55) according to the statin treatment (the 

Rotterdam study represents the general population) (Versmissen et al. 2008).
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Although most patients respond well to currently available treatments, the 

development of novel pharmacotherapies specific to particular defects in the 

LDL-C pathway is on its way. Inhibition of PCSK9 by human monoclonal 

antibodies (REGN727 and AMG 145), which prevent the degradation of LDL-

receptors, has been recently demonstrated as a safe, well-tolerated and 

effective way of lowering plasma LDL-C (Koren et al. 2012, Stein et al. 2012b, 

Dias et al. 2012, Raal et al. 2012). The promising outcomes of PCSK9 

targeting led to further developments of the antisense oligonucleotide (ASO) 

(Graham et al. 2007), locked nucleic acid (LNA)-ASO (Gupta et al. 2010), 

siRNAs (Frank-Kamenetsky et al. 2008), and mimetic peptides (Shan et al. 

2008), all aiming to silence the activity of PCSK9. The safety and efficacy of 

these new therapeutic approaches is currently being tested. 

Targeting ApoB as a novel FH treatment has also shown some signs of 

success. The overproduction of ApoB in FH patients can be lowered by an 

antisense oligonucleotide (known as Mipomersen) or by microsomal transfer 

protein (MTP) inhibitor (known as Lomitapide). A recent clinical trial showed 

that Mipomersen can effectively reduce ApoB-containing lipoproteins in FH 

patients, when used in combination with statins (Stein et al. 2012a) and in 

statin-intolerant patients (Visser et al. 2012). The use of an MTP inhibitor also 

resulted in a significant LDL-C reduction, despite an increased hepatic fat 

accumulation in some of the treated individuals (Cuchel et al. 2007), 

Lomitapide together with Mipomersen have recently been approved by the 

Food and Drug Administration (FDA) for use as an adjunct to diet and statin 

therapy in homozygous FH patients. 
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The emerging novel therapies target specific defects in the cholesterol 

metabolism, thus knowing the precise mutation, hence the defect in the 

pathway, may be required for choosing the effective therapy. For example, 

patients carrying a mutation affecting the LDL-receptor recycling process are 

less likely to respond to the PCSK9 inhibitors. The same prediction applies to 

homozygous FH patients with a null mutation in the LDLR gene. 

1.10. FH frequency  

The estimated frequency of FH in most populations is 1 in 500 for 

heterozygous individuals, and about 1 in 1 million for homozygotes (Goldstein 

et al. 1973). However significant differences have been observed between 

populations. A recent study on a general population in Denmark population 

using the DLCN diagnostic score above 5 (the lowest point for probable FH) 

found an FH frequency of 1 in 137, which is much higher than commonly 

perceived (Benn et al. 2012). A study performed on a cohort of Afrikaners 

living in the region of Johannesburg, in South Africa, revealed a much higher 

prevalence of the disease, estimating its heterozygous frequency to be 

around 1 in 100 (Seftel et al. 1980). Similar observations were made by 

Khachadurian et al (Khachadurian and Uthman 1973), who reported an even 

higher heterozygote frequency (1 in 85) in the Christian Lebanese population, 

with projected occurrence of homozygotes higher than 1in 100,000. On the 

other hand, Japanese citizens appear to have much lower incidence of FH, 

calculated to be approximately 1 in 900 individuals (Mabuchi et al. 1977). 

These clear differences in FH frequency are mainly due to founder effects, 

which occur when a small cohort is genetically isolated during evolution, 
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leading to a so-called population bottleneck. Such isolation can be caused by 

for example linguistic, geographical or religious barriers. The frequency of FH 

in South-Indian population remains unexamined. A study of Indians living in 

South Africa suggested the prevalence to be even higher than 1 in 100 but 

this would be due to a founder effect specific to the Indians in South Africa 

who derived from 150,000 South and East Indian immigrants, who settled 

there between 1860 and 1911 (Rubinsztein et al. 1993). However, the number 

of deaths from CVD is steeply increasing in India (Yusuf et al. 2001, Setia et 

al. 2012) and there is an urgent need for identification of FH mutations in the 

Indian population (Setia et al. 2012).  

When molecular diagnoses of FH were developed it became clear that in 

populations with a higher prevalence, FH is caused by a much smaller 

number of LDLR mutations. For instance, almost 90% of FH patients in the 

North Karelian region of Finland carry the same mutation, which has been first 

seen in Finland around 400 years ago (Vuorio et al. 1997). Several other 

cohorts with higher FH frequency are caused by just a few mutations including 

western Scotland (Lee et al. 1998), northwestern Greece (Miltiadous et al. 

2001), people in central and southern Tunisia (Jelassi et al. 2009) and Iceland 

(Gudnason et al. 1997). Countries with a much lower population stratification, 

such as those in central Europe, have in contrast a much bigger variety of 

LDLR mutations (Dedoussis et al. 2004).  

Knowing the FH frequency and spectrum of the mutations can help to design 

a simple and cost-effective strategy to identify affected individuals, specially in 

isolated populations. Over 1,200 unique LDLR variants known to cause FH 

have been logged into a database maintained by Dr Sarah Leigh, at UCL, 
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which can be accessed at http://www.ucl.ac.uk/fh (Leigh et al. 2008). 

1.11. FH genes 

1.11.1. Low Density Lipoprotein Receptor gene (LDLR) 

The first identified FH mutations were found to affect the function of the low-

density lipoprotein receptor (LDL-R), encoded by the LDLR gene. LDLR, 

which is located on chromosome 19p13.2, was called the ñmosaic of exons 

shared with different proteinsò (Sudhof et al. 1985). It comprises of 18 exons 

that are transcribed and translated into several distinct domains, which 

together form a cell surface receptor for the LDL particle, as shown in Figure 

9. Exon one (not shown in Figure 9) codes for a 21-amino-acid-long signal 

domain, which is cleaved from the mature protein during its synthesis in the 

endoplasmic reticulum. Exons 2-6 code for the cysteine-rich region, which 

once translated forms disulfide bridges and functions as the ligand-binding 

domain for ApoB- the major protein of LDL-C (discussed later).  Exons 7-14 

are highly similar to the human epidermal growth factor (EGF) precursor 

gene, and the domain encoded by this region acts during receptor recycling, 

when lipoproteins dissociate from the LDL-R in the endosome. Davis et al. 

(Davis et al. 1987) also shown that the EGF precursor homology domain 

positions the ligand-binding domain of LDL-R to the cellular surface and 

therefore enables it to bind LDL-C. Exon 15 encodes 58 amino acids, mainly 

threonine and serine, which function as an attachment site for O-linked 

carbohydrate chains. However, a study on cultured hamster fibroblasts 

suggested that the O-linked carbohydrate chains domain is not essential for 

http://www.ucl.ac.uk/fh
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the normal functioning of LDL-R (Davis et al. 1986).   The LDL-R membrane-

spanning domain is composed of 22 hydrophobic amino acids, and is 

encoded by exon 16 and the 5ô of exon 17. The final 50 amino acids function 

to localise the receptor into coated pits on the cell surface, and are encoded 

by exons 17(3ô) and 18 (Chen et al. 1990). 
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Figure 9 

Domain structure of the human LDLR protein and its relation to the exon 

organisation of the gene [adapted from (Hobbs et al. 1990)]. The signal 

peptide encoded by exon 1 of LDLR is not shown. 

 

 
 
 

  
 




















































































































































































































































































































































































































































































