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Abstract

Faculty of Engineering, Department of Computer Science

UNIVERSITY COLLEGE LONDON

Doctor of Engineering

by Christos Sakellariou

It is widely accepted that natural computation, such as brain computation, is far superior
to typical computational approaches addressing tasks such as learning and parallel
processing. As conventional silicon-based technologies are about to reach their physical
limits, researchers have drawn inspiration from nature to found new computational
paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a
bio-inspired model of computation. It incorporates natural characteristics and defines a
massively parallel non-von Neumann computer architecture that can model natural

systems efficiently.

This thesis investigates the viability and utility of a Systemic Computation hardware
implementation, since prior software-based approaches have proved inadequate in terms
of performance and flexibility. This is achieved by addressing three main research
challenges regarding the level of support for the natural properties of SC, the design of

its implied architecture and methods to make the implementation practical and efficient.

Various hardware-based approaches to Natural Computation are reviewed and their
compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs
are identified as the most appropriate implementation platform through critical
evaluation and the first prototype Hardware Architecture of Systemic computation

(HAo0S) is presented.

HAOS is a novel custom digital design, which takes advantage of the inbuilt parallelism
of an FPGA and the highly efficient matching capability of a Ternary Content
Addressable Memory. It provides basic processing capabilities in order to minimize
time-demanding data transfers, while the optional use of a CPU provides high-level
processing support. It is optimized and extended to a practical hardware platform
accompanied by a software framework to provide an efficient SC programming solution.
The suggested platform is evaluated using three bio-inspired models and analysis shows
that it satisfies the research challenges and provides an effective solution in terms of

efficiency versus flexibility trade-off.
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Chapter 1

Introduction

1.1 Introduction to Natural Computation

It has been claimed that everything computes [1], [2]. Biological systems appear to be
superb at performing something that resembles computation, although they accomplish
that by using methods fundamentally different from those used to perform conventional
computation [3], [4]. Supercomputers strive to simulate a microsecond of protein folding
[5], yet biology scales from molecules to cells, then to organisms, then to species and so

on to more complex structures.

Complex tasks, like DNA synthesis and sequencing, have been shown to outpace
Moore’s law [6]. Although the semiconductor industry has been making continuous
leaps in the past half century, silicon-based approaches seem weak in delivering more
raw power, as the physical limitations of this technology appeared quite some time ago
[7]. While engineers are left to devise workarounds to these issues (cache memory,
branch prediction, out-of-order execution, multi-core chips), modern computers seem to
be inefficient and too slow to model biological processes. This incompetence is not
surprising, since, although the advances in microprocessor technologies have been
numerous, the fundamental design principles have remained unchanged for almost a
century. The vast majority of computing devices today follow the design pattern revealed
in 1945 by John von Neumann [8]. This is a completely centralized partitioning,
comprising of a set of main building blocks: the Central Arithmetic (CA) unit, the
Central Control (CC) unit, the Memory (M) and Input/Output (I/O) devices. Von
Neumann believed that those “distinctions suggest themselves immediately” [8] and until
today the majority of those in the scientific community and the consumer industry agree

with this. However nature does not.

While computation in a conventional electronic computer is the outcome of a program,
which is a set of defined instructions that are sequentially executed, the rules are quite
different in nature. Nature seems to work in a massively parallel fashion instead. Natural

systems, viewed in different levels of abstraction, have a common characteristic. A
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massive number of subtasks are carried out at any given moment in order to accomplish
an operation. This operation can be any biological process. For example, under different
contexts, the process of photosynthesis from a leaf in a tree involves chemical reactions
among complex biochemical systems in order to convert carbon dioxide in organic
compounds [9]. This process is happening through all the leaves of the tree, and it is
vital for the tree itself. The tree comprises a system of leaves, branches and roots and
each is playing its role in accomplishing the survival of the tree. At the same time,
photosynthesis is not only vital for the tree but for all flora in the ecosystem, and in turn

for any living organism on the planet relying on oxygen for survival.

The human brain is another example. It is composed of billions of neurons which
continuously interact [10] with each other. The brain is just one of the organs that build
the nervous system, which in turn along with other systems compose the human body.

Groups of people form societies and all the societies, joined, build mankind.

Numerous examples like the ones mentioned above can be given: a herd of deer, an ant
colony, our planetary system, the immune system, a school of fish and even the Dow
Jones Index. All of them are composed from fundamental building blocks but also,
combined with others, constitute more complex structures. The underlying processes
seem to work without any centralised control method but with the coexistence and

interaction of their structural elements.

The observation of the success of nature in coping with such complex systems had a
significant impact in modern science, giving birth to several biologically inspired
research fields [11]: Evolutionary Computing (EC) [12], Artificial Neural Networks
(ANN) [13], Artificial Immune Systems (AIS) [14], Swarm Intelligence (SI) [15],
Particle Swarm Optimization (PSO) [16], Cellular Automata (CA) [17], L-systems[18],
Artificial Life (ALife) [19], DNA computing [20] and Quantum Computing (QC) [21]
are some of them. According to [11], these fields form three groups: the first five are
inspired by nature, the next two (CA and L-systems) simulate and emulate nature by
means of computing, while the rest use natural materials for computation. They are all
influenced/inspired by nature, serving computation and modelling purposes and hence

they constitute a super-group: Natural Computation [11], [22], [23].

Characteristics, embedded in natural systems, have been a rich source of inspiration for
the scientific community since it is commonly accepted that nature can outperform any
manmade device on factors like complexity, homoeostasis, self-organization, self-

replication, self-adaptation and fault-tolerance.
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Table 1.1. Properties that differentiate natural from conventional computation

Property Natural Conventional
Type Computation Computation
Stochastic Deterministic
Asynchronous Synchronous
Parallel Serial
Distributed Centralized
Computational | Continuous Batch
Approximate Precise
Embodied Isolated
Local Knowledge Global Knowledge
Circular causality Linear causality
Self-organised g)r(g:;llst?é
Fault tolerant Fault intolerant
Open-ended Limited
Behavioural Complex Simple
Autonomous Human-reliant
Homoeostatic Heterostatic
Robust Brittle

Various opposing properties that highlight the distinction between

natural and

conventional computation as they are separated in [22], [24] are given in Table 1.1.

Therefore, natural computation in general is/has [22]:

e Stochastic: The behaviour of natural systems is non-deterministic and their

interactions are randomised.

e Asynchronous: Mostly', behaviour is not synchronized. There are no clock

signals which determine the timing of every behaviour akin to our processors.

e Parallel: Interactions are usually concurrent among all systems.

e Distributed: Computation is spread and allocated across several systems to

achieve the result.

e Continuous: Natural systems are designed to keep working for as long as

possible; their behaviours are designed to work continuously for the lifetime of

each organism.

e Approximate: The notion of an exact number or quantity is meaningless.

1 . . .
There can be approximate synchronization to solar or lunar cycles or seasons.
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e Embodied: A natural system and its environment constantly affect each other.

e Local Knowledge: Knowledge is not stored in a centralised archive or library. An
interaction can occur among two systems at the same hierarchical level which are

within range of each other, implying scopes of interaction.

e C(Circular causality: Two interacting natural systems affect each other during

interaction.

e Self-organised: Natural systems define their own organization and architecture

without external interventions.

e Fault-tolerant: Natural systems are tolerant to partial failures and usually able to

also self-heal.
e Open-ended: Systems in nature are able to adapt and constantly evolve.

e Complex: Natural systems are organized over numerous hierarchical levels in a
bottom-up manner. Starting with basic elements at the lowest level, they built

successively more complex systems at the higher levels.

e Autonomous: Natural systems are self-reliant and independent of any external

authority.

o Homoeostatic: A natural system preserves the inner stability of its state(s) by

internal feedback mechanisms.

e Robust: Natural systems can handle and adapt to unforeseeable situations.

Influenced by the importance of those properties, a novel computation model was
conceived by Bentley [24]. The new model, systemic computation (SC), was proven to
be Turing complete [25] and attempts to embody the much sought characteristics of
biological systems found in nature as listed in the left column of Table 1.1% Turing
completeness was proved by implementing a rule 110 cellular automata algorithm [17],

[26], [27], stating the equivalence of SC to any other computation model.

1.2 Introduction to Systemic Computation

Systemic computation, further discussed in section 2.3, has its roots on the work of Jean-
Louis Le Moigne’s [28] on General System Theory [29]. The core notion that was

adopted by systemic computation can be found in the second percept [28] of Le

? In this work the focus will be on the computational properties.
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Moigne’s systemic method — interaction — as opposed to the corresponding percept on
Descartes’ analytical method [30] — reduction. Reductionism can be traced back to
ancient Greece [31]. It states that a complex system is a sum of its parts but it is known
to have limitations [32]. Holism on the contrary argues that a complex system is more

than the sum of its constituents.

Systemic computation adopts a holistic analysis approach of systems embracing the
significant importance of the interactions of their fundamental elements and their
environment. Its intention is to resemble natural computation in order to simulate
biological processes effectively. To accomplish this, it follows the conventions listed
below [24] :

e Everything is a system.

e Systems may comprise or share other nested systems.

e Systems can be transformed but never destroyed.

e Interaction between systems may cause transformation of those systems, where

the nature of that transformation is determined by a contextual system.

e All systems can potentially act as context and affect the interactions of other

systems, and also all systems can potentially interact in some context.
e The transformation of systems is constrained by the scope of systems.

e Computation is transformation.

According to these conventions, it is implied that in order to perform any computation in

SC, two main tasks are always involved:

e Identify the interacting systems and

e Transform the interacting systems according to the interaction determined by the

contextual system in the scope that this interaction is defined.

1.3 Systemic Computation in Practice

While the Systemic Computation paradigm has been designed to feature all the
properties of Natural Computation, as they are given in Table 1.1, a practical platform to
support SC has yet to be devised. Its highly unconventional nature makes the
implementation of such a platform very challenging, since it radically differs from the

notion of computation, as we have grown to perceive it. The validity of the concept has
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been proven in previous work [22], but in order to take advantage of its potential,

applying SC in a practical and efficient way is essential.

Three SC implementations have been developed so far (Original Sequential SC
Implementation [24], High-level SC Implementation [22] and the GPU SC
Implementation [34]). However, since their conventional design does not denote a
natural way of implementing the SC paradigm, they are just low and high level
simulations of a systemic computer, with only the latest implementation succeeding in
obtaining satisfactory results in terms of speed. As shown later, in section 2.4, these
software approaches are largely inappropriate to implement a SC platform, mainly due to
the conventional sequential nature of their underlying architecture which is incompatible
with the SC paradigm. As illustrated in Figure 1.1, there is no current implementation
that combines flexibility with efficiency. Consequently there is a clear need for a new

SC programming platform that is both efficient and flexible.

M Flexibility
M Efficiency

Original High-Level GPU

Figure 1.1. Comparison in flexibility and efficiency of prior software SC implementations. A
practical hardware-based implementation is expected to provide a balanced SC
programming solution

As previous work has demonstrated the incompatibility of conventional hardware for SC,
it seems likely that the most practical, viable and usable platform which addresses this

need would be a novel hardware-based implementation.

It is thus vital to investigate the trade-offs of available implementation platforms in order
to identify the substrate that a practical SC platform can be based on and then explore

how the practical features of conventional computation can be combined with the
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unconventional properties of natural computation and architectural features of SC. In
order to properly evaluate such a controversial design, it is required to identify the
requirements that define a practical platform for SC and the degree that each of them can

be satisfied.

1.4 Hypothesis

The hypothesis of this thesis is:

It is possible to implement a practical Systemic Computation hardware architecture

that is viable and useful.

The thesis will provide evidence to support this hypothesis through an investigation of
the viability and utility of a SC practical implementation. Yet, the unconventional nature
of SC may itself be proven to be partially incompatible with the practicality aspect of the
implementation, as practicality partially implies a conventional way of thinking and
undertaking well-studied and proven techniques to accomplish a feasible and usable

means to perform Systemic Computation.

In essence, this collision of the definitions of unconventionality and practicality, in a
computational context, formulates the main investigation that this work attempts to
tackle. It is suggested that investigating the features, advantageous and disadvantageous,
that modern hardware implementation platforms offer while exploring potential suitable
architectures for Systemic Computation, will result in a satisfactory compromise
combining the benefits of the inherent natural properties of SC with the usability and

utility provided by a practical platform.

This work will investigate the viability of a practical SC implementation and the trade-
offs between encompassing naturals properties against the feasibility and constraints of
the hardware taking into consideration flexibility, performance and scalability. The
supported programming model should provide a user-friendly interface to the underlying
architecture, which should be optimized in terms of speed and area while being able to

easily scale in size.

A practical SC hardware implementation is required because software approaches do not
seem to be able to efficiently handle the complexity or properly address the implied non-
conventional architecture of the SC paradigm (see sections 2.1, 2.4.1 and 2.4.2), since
they solely rely on conventional processors. The utility of such a custom hardware

design will be demonstrated by showing that natural processes can be modelled in a
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more native way by addressing these limitations and mapping more efficiently and

accurately the SC architectural features.

The outcome of this work should be a practical hardware implementation in order to be
easily reproduced and also be, at least partially, compatible with conventional
architectures, in terms of communications. This will enable reusability and enhance
flexibility in order to achieve a broader user community which in return can improve the
architecture and expand its functionality. This implies that the suggested implementation
should also address availability (meaning that a user should be able to relatively easily
access the selected enabling technology). Thus it should be based on a mature
technology, possibly using Commercial Off-The-Shelf (COTS) [33] components, with a

rich knowledge base which is broadly used both in academia and industry.

This work provides evidence to support its hypothesis by proving a proof of concept via
a realisation of a novel SC hardware implementation. Building on the discussion of the
three previous sections, it accomplishes this by focusing on three main research

challenges:

Chgl: How can a hardware platform support the natural properties that are

central to SC?

Specifically this challenge focuses on the inherent to SC natural properties of Table 1.1.
An ideal platform would be able to support a hardware implementation that would be
stochastic, asynchronous, parallel, continuous, distributed, approximate (in a high level)
and embodied while it would show circular causality and have only local knowledge.
Incorporating these properties, the SC implementation would be self-organized, fault-

tolerant, (at least virtually) open-ended, complex, autonomous, homoeostatic and robust.
Chg2: How can a hardware platform support the underlying architecture of SC?

Specifically this challenge focuses on the compatibility of the platform with the inherent
features of the implied SC architecture: systems, scopes, contexts and interactions among
systems should be able to be represented in a manner that allows efficient modelling of

systems interactions.

The first two research challenges refer to the viability of a SC implementation. It is
suggested that investigating the trade-offs of implementing and attempting to combine

the desired natural properties with the architectural features of SC will sufficiently
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explore how viable such an implementation is. The third challenge addresses the wutility

and practicality of the suggested design and the way of realizing it:

Chg3: How can a hardware platform meet the first two challenges while also being

practical and efficient?

Specifically this challenge focuses on the support of features to result in a practical
platform: the resulting solution should be user-friendly, taking into consideration
flexibility and adaptability, and efficient in terms of performance and required resources

which in extent will prove its utility.

Thus, this thesis proves its hypothesis by addressing its three research challenges. We
break down the investigation of the hypothesis and the three sub-challenges into a set of

objectives, listed in the next section. This is illustrated in Figure 1.2.

Hypothesis
A A A

Chg1 Chg?2 Chg3
Research Challenges

Objectives

Figure 1.2. Breakdown and organisation of thesis investigation. A set of objectives address
three main research challenges which provide evidence to support the hypothesis

1.5 Objectives

The main objectives for this research work can be identified as:

1. Review the work done on Natural Computation to date with a focus on hardware-

based approaches.

2. Review and assess the work done on Systemic Computation (theory and

implementations) to date.
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Investigate the suitability of available hardware implementation platforms for SC
by evaluating them in terms of their ability to support the natural properties of
SC (Chgl), the implied SC architecture (Chg2), and practicality/efficiency
(Chg3) and select the most appropriate.

Analyse the SC architectural features and create a prototype hardware

implementation designed to support the SC architecture.

Create a complete and standalone practical SC programming platform with the

ability to meet the three challenges.

Analyse and address the limitations of the hardware prototype by means of
optimizations and enhancements taking into consideration the research

challenges.

Evaluate the ability of the prototype SC platform to meet the research challenges

by simulating natural models against alternative solutions.

1.6 Publications

The work presented in chapter 3 has been awarded the Best Paper Award in the

international Annual Doctoral Workshop on Mathematical and Engineering Methods in

Computer Science (MEMICS 2011) and was published in the Lecture Notes for

Computer Science (LNCS) proceedings of the workshop. Overall this thesis resulted in

the refereed publication of two international conference papers, two international journal

papers, a book chapter and a research poster, listed below:

C. Sakellariou and P. Bentley, “Introducing the FPGA-Based Hardware
Architecture of Systemic Computation (HAo0S)”, in Mathematical and
Engineering Methods in Computer Science, Lecture Notes in Computer
Science (LNCS) vol. 7119, Z. Kotasek, J. Bouda, I. Cerna, L. Sekanina, T.
Vojnar, and D. Antos, Eds. Springer Berlin / Heidelberg, 2012, pp. 179-190.

C. Sakellariou and P. Bentley, “Describing the FPGA-Based Hardware
Architecture of Systemic Computation (HA0S)”, Journal of Computing And
Informatics, vol. 31, no. 3, pp. 485-505, 2012.

C. Sakellariou and P. Bentley, “Extending the Hardware Architecture of
Systemic Computation to a Complete Programming Platform”, in [/EEE
International Conference on Evolvable Systems (ICES 2013) - IEEE
Symposium Series on Computational Intelligence (SSCI 2013), Singapore,
April 2013.
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e (. Sakellariou and P. Bentley, “Demonstrating the performance, flexibility
and programmability of the Hardware Architecture of Systemic Computation
modelling cancer growth”, submitted to International Journal of Bio-Inspired

Computation, Special Issue on Bio-inspired Hardware, 2013.

e C. Sakellariou and P. Bentley, “Computing Nature at the Intersection with
Chemistry: Innovative Architectures”, Book Chapter to appear in Genesis
Engines: Computation and Chemistry in the Quest for Life's Origins, Springer,
2013.

e (. Sakellariou and P. Bentley, “Building a Bio-Inspired Computer: The
Hardware Architecture of Systemic Computation (HA0S)”, in Frontiers of
Natural Computing Workshop, York, 2012.

1.7 Thesis Organization

The thesis comprises six chapters, four lists (including list of figures, tables, listings and
algorithms), an extensive reference list and eight appendices. Chapter 2 reviews the
literature on the field of Natural Computation, critically focusing on hardware-based
approaches, and describes the SC theory, as it was introduced by Bentley [24]. It
illustrates how SC can perform computation and presents the three prior SC
implementations: Original SC Implementation, High-level SC Implementation and the
GPU SC Implementation. Furthermore, it identifies the most appropriate SC hardware
implementation platform among the various hardware-based approaches to Natural
Computation. Chapter 3 introduces the first FPGA-based Hardware Architecture of
Systemic computation (HAo0S), discusses the functionality of its structural elements,
justifies the design decisions which result in this prototype design, outlines the applied
optimizations and details a programming example. It also gives implementation statistics
of the suggested design on the intended FPGA development board and explains the
verification methodology used to confirm its functionality. Chapter 4 investigates
suitable approaches for the implementation of the communication interface between
HAoS and the CPU, revisits parts of the design providing enhancements taking into
consideration performance, I/O efficiency, user-friendliness and programmability. The
HAoS base design is combined with an embedded soft processor to provide a standalone
platform while a methodology for HAoS models development is suggested. Chapter 5
verifies and evaluates the functionality of the platform by illustrating how HAoS can be
used to simulate three natural models of increasing complexity: a genetic algorithm

optimization implementation solving the binary knapsack problem, a well-studied
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biochemical process involving enzyme-based protein activation and a more challenging
biological model simulating the effect of genetic anomalies and typical treatment
approaches to cancer growth. The provided models are given as SC model development
examples and the acquired results are compared against previous SC implementations
and other conventional programming approaches. The time complexity of the HAoS
schemata matching mechanism is also evaluated. Finally, chapter 6 summarizes the

thesis, states its contributions, provides a critical evaluation and discusses future work.
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Chapter 2

Background

The notion of natural computation [35] resulted in significant advances on research in
the field of natural computing [11], [23]. Adleman after successfully solving a seven-
point Hamiltonian Path problem [36] using DNA sequences in 1994 [20], concludes his

article:

“Biology and computer science —life and computation— are related. I am confident that
at their interface great discoveries await those who seek them.”
Leonard Adleman [20]

This chapter discusses various methods attempting to approach natural computation,
starting with a broad perspective and increasingly focussing on work more closely
related to the topic of this thesis. Section 2.1 provides an overview of some of the major
works in this area, and specifically in terms of software-based approaches and alternative
paradigms. Section 2.2 gives a critical review of literature related to hardware
approaches to natural computation. Conventional and unconventional ways and some
related hardware designs are presented in this section and initially assessed regarding
their compatibility with the Systemic Computation concept (a thorough analysis is given
in the next chapter). Their potential to become the basis of, or inspire the features and
requirements of a SC hardware implementation is discussed, as implied by the three
research challenges (section 1.4 - supporting natural properties and the SC architecture
and being able to facilitate an efficient and practical implementation). Section 2.3
elaborates on the SC paradigm as it was introduced by Bentley [24]. Finally, the three

prior SC implementations are overviewed in section 2.4.

Part of the work presented in this chapter has been accepted for publication in [37]. Also,
part of this work has been previously submitted for the degree of Master of Research as

part of the Doctor of Engineering degree in UCL.
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2.1 Approaches to Natural Computation

The Natural Computation research field is quite broad. Kari and Rozenberg, attempting
to provide a complete review on the field in [23], separate its individual fields and
computing paradigms in three groups using the role of nature as the differentiating
factor: nature as inspiration, nature as implementation substrate and nature as
computation. Especially for the last group, computation can both refer to quantitative
algorithms and qualitative approaches that investigate natural processes taking into

consideration communications and interactions [23].

Table 2.1. Approaches to Natural Computation and alternative paradigms

Software Approaches Computational Paradigms Hardware Approaches

Exception CGPs* Conventional | Nature-inspired
handling
n-calculus Multi-core / | Ubiquitous
Recovery ————— Multi-CPU computing
blocks Asynchronous
) N-version n-calculus High- Reaction-
Conventionall amming Stochastic availability | diffusion
—Expert Maths, n-calculus cluster computing
hysics & -
| systems fec}llmology Ambient Beowulf Speckled
Multi-agent inspired calculus cluster computing
systems ;
Y Petri nets GPU FPGA / ASIC
EIV"Ir‘;:L‘E:aW Statecharts’ Grid / Cloud | Evolvable
a'go S Bi N computing hardware
g igraphs
Artificial Pure POEtic /
EZ?;?)lrks Ons algebra Peer-to-peer | Ubichip
. . Wireless Sensor
Swarm 13;100 ’3112 lsalent Load-‘ Network
intelligence’ balancing —
Membrane cluster EOHSIOH' ,
: ased computin
Nature- Artificial computing prme
inspired mmune Brane calculi Molecular
systems (DNA)
Nature- CLS?® computing
Artificial Inspired :
Life Bio-graphs Super- Orgamc.
computers Computing
Fractal
Geometry Bacterial
(Cellular Systemic Computing
automata- computation Quantum
L-systems) computing

3 Ant colonies (ACO), Particle Swarm Optimization (PSO)

4 Constrained Generating Procedures

5 Just a flow graphical tool, not a computational paradigm

6 Calculus of Looping Sequences
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The various approaches to date on natural computation, which for this work are
separated into software-based methods, alternative paradigms to computation and
hardware-based methods are illustrated in Table 2.1. An extensive literature review can
be found in [11], [22], [23]. While the focus of this thesis lies on the hardware-based
approaches (discussed in the next sections), a summary (informed by [22]) regarding the
related software-based approaches and alternative concepts of Table 2.1 is provided

below.

2.1.1 Software Approaches

Computation based on software approaches is quite common since they provide great
flexibility and ease of use. Conventional software approaches, usually, do not take into
consideration natural properties while conventional hardware approaches consider them

by simulating them.

Conventional approaches address issues like reliability, robustness and autonomy.
Exception handling [38] provides a mechanism of controlling the execution flow in case
of foreseeable special cases. Recovery blocks [39] (the same programmer writes multiple
versions of some parts of a program — blocks of code) and N-version programming [40]
(multiple versions of a whole program are written by different programming teams)
exploit code redundancy in order to overcome failures and minimize errors. Expert [41]
and multi-agent [42] systems are used to perform autonomous tasks, the former by
performing an analysis on a given problem and providing answers, the latter by

diverging information and/or interests.

Computer scientists, inspired from nature, expanded on unconventional methods,
adapting their programs to create or simulate natural properties like self-organization,
self-adaptation and fault-tolerance. A Genetic Algorithm [12] (described in section 2.2.2
in the context of Evolvable systems) is a global heuristic search method and provides
distributed, parallel, local and autonomous computation. Artificial Neural Networks [13]
is a field inspired by biological neural mechanisms and shows distributed knowledge and
self-organization. Swarm Intelligence [15] mimics concepts, inspired by insect
civilizations, and based on their collective behaviour obtains self-organization and self-
adaptation. Those properties are also observed in Artificial Immune Systems [14], which
derive inspiration by (mostly) the adaptive and (less) the innate responses of biological
immune systems, and Artificial Life [19] which is a field of study (and an associated
form of art [43]) that employs a synthetic approach to the study and creation of life [11]

(typical subjects of this study are termites, flocks, herds, evolution and artificial
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chemistries). Fractal Geometry [11] deals with non-Euclidean objects of non-integer
dimensions which are characterized by self-similarity and infinite detail. In a
computational context, Fractal Geometry includes the fields of Cellular Automata [44],
[45], systems that are discrete in both time and space, showing properties like self-
replication and autonomy, and L-systems [18], a formalism to simulate the development
of multi-cellular organisms [11] employing parallel rewriting systems (able to modify an
existing word and generate new ones by applying various rewriting rules to its characters

in parallel) [23].

2.1.2 Alternative Paradigms

In order to further understand and exploit natural processes, new paradigms of
computation were developed, since conventional languages were not well suited for
effectively simulating nature [22]. Inspiration was derived by conventional sciences

(maths, physics and technology) and from nature.

CGPs [46] are finite state machines that can analyse complex systems by reducing them
(breaking them down) in mechanisms and constraints of interactions. n-calculus [47] and
its extensions (asynchronous n-calculus [48] and stochastic m-calculus [49]) are process
calculi used or adapted for biological systems simulation. Ambient calculus [50] is also a
process calculus which was developed to describe concurrent systems that include
mobility. Petri nets [51] are a graphical tool, with a corresponding mathematical theory,
that describes concurrent processes. Originally they were targeting chemical processes.
Statecharts [52] are commonly used to describe the data and control flow of state
machines in communication and, in general, hardware systems. Bigraphs [53] provide a
well defined form of concurrent computations and a graphical notation, that exploits
topographical and communication ideas, which is well suited for a number of the
aforementioned calculi. Systemic computation can be seen as equivalent to bigraphs
while the two paradigms share a similar graphical formalism. Ons algebra [54] is an
algebraic formalism attempting to reach the foundations of physical rules development
by using, in a metaphorical way, only two elementary particles, the particle of time and

the particle of space.

BioAmbients Calculus [55] was designed to allow modelling of biological systems,
having biological compartments as a central idea. Membrane computing [56] deals with
distributed and parallel computing models of systems (P systems), that use the analogy
of the organization of a cell being compartmented by membranes, creating this way

hierarchies. Brane calculus [57] identifies the importance of the membrane itself and
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gives it an active role on computation. The Calculus of Looping Sequences [58] and its
variants is another formalism that allows the description of biological membranes,
biomolecular systems and proteins interaction. Bio-graphs [59] were designed to model

biological systems in a molecular level and include a corresponding graphical notation.

Since the hypothesis of this work focuses on a hardware-based implementation of SC,
the reader is redirected to the work of Le Martelot [22] for a detailed description and a
critical review which compares SC with the software approaches and the computational
paradigms listed in Table 2.1. The various hardware approaches are described in the next

sections.

2.2 Hardware-based Approaches to Natural Computation

While computer applications become ever more computationally demanding, the
traditional Von Neumann [8] architecture, after serving humanity for more than half a
century, appears inadequate [2], [60], [61] when extremely complex tasks are involved
(brain function modelling, protein folding). Although refurbished designs keep
consumers happy, hardware designers and researchers realised that alternative
approaches should be followed for ground-breaking efficiency and performance

improvement.

As explained in the previous sections, researchers found inspiration in nature. This is
reflected in various hardware-based approaches. In this section, both conventional
(subsection 2.2.1) and unconventional (subsection 2.2.2) hardware-based approaches are
described’. In the context of this thesis, unconventional approaches do not conform to
the conventional von Neumann architecture or use standard technologies (and are usually
inspired by nature). Relevant silicon-based designs are discussed in subsection 2.2.3.
Each paragraph is concluded with a short discussion on the compatibility of each

approach to a practical SC implementation.

2.2.1 Conventional Hardware Approaches

Conventional hardware-based approaches to natural computation include multi-core
chips, supercomputers, computer clusters, peer-to-peer networks and GPUs. They are
usually based on some variation of the von Neumann architecture, except GPUs which

fall in this category since they are widely used in consumer desktops and laptops, and are

7 It is noted that because of different definitions for various technologies or for clarity reasons

there is some overlap between the technologies and methods described in next sections.
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attempts to provide more processing power using various design approaches explained

below.

Chip Multi-Processors

Chip Multi-Processor (CMP) [62] systems were the response of the semiconductor
industry, to the consumer market, when around 2003 the clock frequency of uniprocessor
systems reached the limits imposed by the physics of their underlying technology. CMPs
take advantage of the limited parallelism that multiple processors provide, often being
able to execute more than one instruction thread simultaneously each. The limitation of
CMPs to provide natural computation is evident, as their sequential architecture is
incompatible with any natural property (except maybe parallelism, but that is true only

when they are compared with their predecessor uniprocessor architectures).

CMPs are based on the conventional von Neumann architecture [62]. They are based on
the most widely used hardware implementation approach to computation, since their
deterministic sequential processors are highly flexible and easily programmable. Their
technology is more mature than any other. As such, there is a plethora of tools,
specifically designed for them. However, their flexibility comes at the expense of
performance, as their generic architecture cannot compete with custom designs,
optimized for specific applications. The nature of their architecture makes them
incompatible with almost any natural property (maybe except parallelism, since they
provide limited support), therefore they are unsuitable for a SC implementation. As
shown later in sections 2.4.1 and 2.4.2, CMPs were used for the first two SC
implementations, revealing the inefficiency of such an approach, as these
implementations could only simulate a systemic computer. Although the high-level SC
implementation provided programming flexibility, performance limitations make it

inadequate for modelling complex systems.

Supercomputers and Computer Clusters

While CMPs are targeted to the consumers, supercomputers [63] are used for
computationally super-demanding tasks, such as modelling climate change, nuclear
reactions and molecular interactions [63]. They were introduced by Seymour Cray in the
1960s. Modern supercomputer designs often consist of a cluster of Multiple Instruction
stream - Multiple Data stream (MIMD) multiprocessors, which have Single Instruction -
Multiple Data (SIMD) processors as building elements. The SIMD processors execute
the same instruction on different sets of data while the MIMD processors function

asynchronously, enabling the underlying SIMD units to perform different operations on
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different sets of data. According to Flynn’s “very high speed computing systems”
(supercomputers) taxonomy [64], which dates back to 1966 there are also MISD and
SISD supercomputers. According to a more modern dichotomy there are SIMD,
multiprocessor (all the processors under the same instance of operating system - OS) and

cluster computers (each processor under a different instance of the OS).

Supercomputers may appear as a possible SC implementation, although gaining access to
a modern supercomputer can be limited and that would mean that only privileged users
could use the SC paradigm. The code is usually specially written for such processors, in

order to be highly optimised, resulting in limited portability.

Computer clusters are a supercomputer type. While relying on sequential processors for
instruction execution, they follow a network structure resulting in a parallel architecture
that shows signs of fault-tolerance and distributed operation, as a failure in one of the
nodes will not terminate the operation of the cluster. The Commodity-of-the-shelf
(COTS) clusters [65] can be built from consumer parts but rely heavily on software to
deliver performance. A collection of representative projects on COTS can be found at

[66].

Other classifications of clusters are based upon their functionality. High-availability
clusters [67] use duplicates to survive individual computer failures. Computers provide
feedback to each other to detect failure. However, the detection scheme is susceptible to
failures as well. Beowulf clusters [35] use a one-server-multiple-clients organization to
achieve high performance but suffer from the centralized control that resembles the
multiprocessor architecture. Load-balancing clusters [68] adopt the server-client
approach as well but, additionally, they distribute the workload among them through
software. Server farms are load-balancing clusters where all the nodes are servers. Grid
computing is also a cluster based approach, although the nodes seem autonomous. The
user gains access to the processing power supply just by joining the network. Cloud
computing is very similar to grid computing. The main difference is that cloud

computing provides on-demand resource (and services) provisioning.
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Figure 2.1. Example organisation of a computer cluster

Supercomputers provide vast levels of parallelism [63]. They provide great performance
for specific applications tailored to their specialized hardware architecture. Computer
clusters, which are a type of supercomputer, appear to be strong candidates for a SC
hardware implementation as they show a level of asynchronous (in the cluster level) and
distributed computation, by forming a network of cooperating conventional synchronous
computers. Load-balancing clusters, in particular, show a low level of self-organization
(by using specialized software for task distribution), while high-availability clusters
provide fault-tolerance by having duplicate nodes for the same task. Computer clusters

are usually easily scalable, since nodes can join the network dynamically.

It appears that the vast number of computational resources, provided by a
supercomputer, would be sufficient for a SC implementation. However, their availability
can be very limited and their building blocks are based on conventional architectures
using centralized control making them incompatible with the SC paradigm, since it
provides limited support for natural properties. This limited support mainly derives (in
computer clusters) from their organization in a network pattern. Thus, this feature may

be employed by the SC implementation.

Pure Peer-to-Peer

Peer-to-Peer (P2P) networks [69] originally referred to networks that consisted of

identical nodes, lacking administrative elements. Pure P2P networks refer to networks of
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peers that exchange resources and execute operations in a decentralized manner. All
nodes can act both as a server and a client. Increasing the number of peers in a pure P2P

network increases its efficiency.

Pure P2P networks show the higher level of support for natural properties among the
evaluated conventional approaches. The peers can be regarded as autonomous nodes in
the network, relying in local knowledge and being organized in a decentralized manner.
A P2P network can provide asynchronous (at the network level), parallel and distributed
computation while it can show a high-level of robustness. A P2P network, as the
previous conventional approaches, is constituted by conventional synchronous hardware.
As such, it can be programmed, using traditional programming languages. The nodes of
a P2P network can correspond to SC systems, while they can interact through
exchanging information and performing computation. The notion of scopes could be
embedded in the communication (e.g. by the number of maximum hops). Thus, a P2P SC
implementation would be viable. Care would be required designing the networking
architecture following this approach as the numerous peers' communications in such a

platform would probably pose a performance bottleneck.

Graphics Processing Units (GPUs)

Using GPUs for general-purpose computation has lately become a trend since they offer
affordably significant gains in terms of speed for computationally intensive tasks [70].
Responsible for the speedup is their architecture that exploits applications parallelism.
Originally GPUs targeted only image rendering operations, yet the revolutionary change
was made when manufacturers made GPUs programmable and thus GPUs entered the
computing mainstream [71]. Evident for their success is the fact that GPU design was
adapted in order to improve their programmability and enhance their general-purpose
computation capabilities [34]. General-purpose GPU (GPGPU) languages [70] were

developed, reflecting the need of support for user-defined applications.

GPUs offer a great level of parallelism [70] at a (relatively) low cost. The vast parallel
power given by the multiple stream processors of a GPU is a property highly sought by a
SC implementation. In contrast with the previous approaches, they do not use the
conventional von Neumann architecture. However, the use of a CPU is obligatory to
provide centralized control. GPUs do not provide inherent support for other natural
properties (except for a limited form of local knowledge, at the level of its internal
parallel processing units). The development of GPGPUs provided flexibility to GPU

users. Further advancements in GPU architectures and performance are certain, since the
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main use of GPUs lies in the gaming industry which is ever-more demanding. The great
success of the general-purpose use of GPUs indicates that more advanced and optimized
programming languages will be created, while more tools will become available in the
future to ease application development. The first GPU SC implementation [34] is
described in section 2.4.3. Its performance proves that GPUs can support the SC
architecture efficiently. Scalability issues can be resolved by using the GPGPU
functionality on a computer cluster. Thus, a future SC hardware implementation could

exploit the great performance potential of a GPU cluster.

2.2.2 Unconventional Hardware Approaches

Nature has lately been the source for inspiration for designers since natural systems,
while being extremely complex, simply work. Usually they show high levels of stability
while remarkable properties like self-organisation, self-replication and fault-tolerance
are inherent to them. The next subsections describe emergent and promising
technologies, which do not follow conventional approaches and broadly-used paradigms,

and usually draw inspiration from nature.

Ubiquitous Computing

Ubiquitous computing [72] aims at a different human-computer interaction paradigm
than the one of the desktop user. Numerous interconnected devices (pocket-size tabs and
page-size pads) while providing various services appear effectively invisible to the user.
Waiser uses the term “embodied virtuality” [72] to describe the idea of computing
ubiquity. Pervasive computing [73] is another term similar to ubiquitous computing.
Traditional input devices, wireless mobile devices and smart devices form the pervasive
computing model that aims to build sensitive and adaptive digital environments. An
example would be a wireless health monitor, like the one presented in [74], which could
communicate the health status of a patient on-line with a hospital server that can detect

abnormalities.

Ambient Intelligence (Aml) [75] extends at ubiquitous and pervasive computing and
takes under consideration intelligent systems, context awareness and objects interactions
to build human-responsive environments that facilitate everyday life. An indicative
example would be the smart house. It is notable that AmlI initially attracted criticism [76]

since its anticipatory and adaptive nature raised societal and cultural concerns.

Ubiquitous computing can be implemented by emergent technologies as Speckled

Computing introduced in 2004 by Arvind and Wong [77]. Specks are semiconductor



Chapter 2. Background 39

grains which are connected wirelessly to form a vast parallel sensing and processing
network (Specknet). Numerous specks can be sprayed on any surface to convert them to
computational resources. The prototype in [77] consisted of programmable specks over

Zigbee radio.

Although more objects get interconnected nowadays, moving the Internet of Things [78]
closer to reality, further progress needs to be done in order for practical implementations
to be incorporated to everyday life. As Shadbolt concludes in [75], numerous
independent electronic devices form an ubiquitous clutter in the majority of living

rooms, which is far from the disappearance of computers in the background.

The Ubiquitous Computing paradigm is compatible with natural properties as
asynchrony, parallelism and should be able to provide distributed, continuous and
embodied computation. Ambient Intelligence and speckled computing should provide
systems that show self-organising, autonomous and homoeostatic behaviour. Ubiquitous
computing is an emergent field of research with great potential [72]. However, a
practical SC implementation could not be based on it since the technology is not yet
mature and basic practical requirements like programmability and design-friendliness are

not satisfied.

Wireless Sensor Networks

Wireless sensor networks (WSNs) [79] are an outcome of advances in wireless
networking, micro-fabrication and integration. They comprise numerous sensor nodes
which are heavily resource-constrained since they are usually required to function for
long terms on a finite on-board battery. Typically, sensor nodes, commonly referred as
motes, operate autonomously and are equipped with a low-end microprocessor and
limited amount of memory for local processing. Communication bandwidth is also
usually limited. Network abstractions have to be designed in order to reduce power
consumption and improve performance. Limited support is provided for software

development.

Initially, WSN research was military based. This led WSNs to be defined as large-scale,
ad-hoc, multihop networks of tiny, fixed-location (after initial placement), homogeneous
motes [80]. This definition changed with civilian WSNs applications (environmental and
species monitoring, agriculture, production, delivery and healthcare [80] — a more
specific collection of applications like vital sign monitoring, power monitoring and
rescue of avalanche victims among others can also be found in [80]). Mobile and

heterogeneous motes can form WSNs as well. The classification of a given WSN can
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vastly vary depending on its specific application. This is shown by the number of
different network topologies (star, ring, bus, tree, fully connected, mesh),
communications protocols, routing mechanisms, power management schemes, network

structures and multiple developed standards [81].

Sensors for various measurands [81] (pressure, temperature, humidity and position to
name a few) have been developed. The sensing elements can either be fixed on a mote or
able to be replaced by others (of the same or different type). The anatomy of a
commercial WSN node is illustrated in Figure 2.2 (taken from [82]). Compatibility
among sensors (of various types and different manufacturers) and the rest infrastructure
on a mote, along with communication interfaces to network those devices, is ensured by

the IEEE 1451 Family of Standards [83].
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Figure 2.2. Anatomy of a WSN node. From [82]

WSNs, comprise spatially distributed can provide an autonomous, parallel, distributed
and asynchronous (to some extent) form of computation. They can be responsive to the
environment and extract information from it through their sensing elements. The network
itself defines a system of nodes, each with some limited processing power performance
(since they are heavily resource-constrained), yet combined they can form a powerful,

asynchronous (at the system level), distributed and highly parallel computing machine
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[84]. The system can be easily programmed, since a microprocessor is always part of the
node configuration. Groups of autonomous nodes can show a level of self-organization.
Using the wireless link, the network can be easily expanded, while using the inputs of
the embedded sensors, it can show homoeostatic behaviour. These statements reveal the

compatibility of WSNs with the requirements of a systemic computer architecture.

The idea of WSNs as a possible hardware implementation platform for SC was
introduced in [84]. The author suggests that motes can be treated as systems, while their
resources can be treated as subsystems. Sensor inputs can provide environmental
feedback, which can be used either to evolve the systemic structure or as a fitness
function in a genetic algorithm [12], which is used to adapt the architecture in case of
damage or unforeseeable changes and to sustain functionality and optimize performance.
Systems, in the form of binary data, would be exchanged between motes, while the
network would dynamically be expanded or shrunk as new motes join it or fail. As motes
usually run some lightweight operating system, extensions to the existing
communication protocols, probably layered over the underlying communication stack,
would need to be designed in order to accommodate the systemic functionality. Some of
the tasks to be considered are the maintenance of the scope tables, systems interaction
within a mote, the mutual system exchange protocol between motes and supported

transformation function set [84].

It is concluded from the above that a WSN SC implementation would be viable. It was
shown that fault-tolerance could be accomplished with the aid of sensor input feedback.
Self-organization can also be accomplished, subject to cleverly written middleware
communication layers. Decentralized and leaderless computation is highly compatible
with the SC paradigm. The wireless link provides some scalability. Thus, WSNs are

strong candidates as a SC implementation platform in the future.

Field-Programmable Gate Arrays (FPGAs)

Although combining the high performance of a hardware implementation with the
flexibility of a circuit that can be programmable may have been conceived as early as
1967 [85], the idea was commercialized and patented [86] around two decades later by
Freeman, co-founder of Xilinx. FPGAs are reconfigurable integrated circuits. Generally,
hardware description languages, such as VHDL and Verilog, are used to provide the
source code which is then translated to a binary bitstream through specialized software,
which in turn is downloaded to the FPGA and programs it (enabling, disabling and

configuring accordingly its reprogrammable components) to behave as the target circuit.
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As opposed to Application-Specific Integrated Circuits (ASICs), which are fixed-
function circuits tailored for definite operations, they provide more flexibility, shorter
time to market and lower costs (when accounting for fabrication costs) and sometimes
power consumption. Lately, the semiconductor evolution and the advantages mentioned
above lead system designers to prefer FPGAs on an increasing amount of commercial

products.

The inner structure of modern FPGAs is similar for different vendors. They consist of a
great number of programmable logic cells and a reconfigurable interconnect network.
Commonly, logic cells include a Look-Up-Table (LUT) that can implement any logic
function (subject to the number of inputs of the LUT — typically 4 or 6), some memory
elements (a number of flip-flops) and some simple logic (a full adder and carry
propagation logic). The design is usually hierarchical, with a number of logic cells
forming logic blocks®. A set of modern FPGAs, called Platform FPGAs, also provide
other functional blocks, like multipliers, blocks for digital signal processing (DSPs) and
big chunks of RAM memory to optimize designs. Some high-end models even include
embedded processors, high-speed communication interfaces and/or simple analog

features. Special Input/Output cells (I/O pads) are used at the chip boundaries.

The versatile nature of FPGA-based systems led to their use in a plethora of fields. A
collection of applications for FPGAs is given in [87] and includes among others: multi-
mode implementations, various algorithms implementations (especially ones that can
exploit the provided fine-grain parallelism), multi-FPGA systems, mathematics
applications (as modular multiplication), physics applications (as real-time recognition
in high-energy physics), genetic optimization algorithms and genetic database searches,
stereo matching for stereo vision and Laplace equation solvers. A digital neuron model
for evolving spiking neural networks is presented in [88]. One of the applications with
great potential is logic emulation [87]. It provides considerable acceleration compared to
software simulation, lowering the time and cost of custom chip (ASIC) prototyping. A
complete and functional implementation® of a circuit can be available in seconds, once

the design has been adapted to be mapped on the FPGA.

FPGAs can also be added to standard computer systems as attached processing units,

coprocessors or even internal processing units, in the form of add-on cards, on-board or

¥ The naming varies among different vendors: logic cells are called Configurable Logic Blocks
(CLBs for Xilinx) or Logic Array Blocks (LABs for Altera)

? Performance validation and timing constraints cannot be assessed using logic emulation
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on-chip respectively. Add-on cards are used in the NetFPGA project [89] that enables
researchers to build high-performance networking systems in hardware. Extensive work
has also been done in the field of neural networks. As each of their basic elements needs
to be configured for a given problem [87], FPGAs provide an optimal implementation
platform. Modern FPGA families allow part of the circuit to be reconfigured during
normal operation (Dynamically Reconfigurable or Run-Time Reconfiguration) which

gave birth to Evolvable Hardware, described in the next subsection.

FPGAs can exploit fine-grain and coarse-grain parallelism because of their adaptive
nature [90]. The reconfigurability of the hardware liberates the designer to implement
new architectures, optimized for specific applications. This flexibility has shown that
properties as fault-tolerance [91], self-replication and self-repair [92] can be
accomplished on FPGAs. Asynchronous circuits have also been successfully simulated
on FPGAs [91]. Therefore, considering that FPGAs is a mature technology and that they
provide an intermediate trade-off between flexibility and performance, pose a strong
candidacy for a SC hardware implementation. Again, a cluster of FPGAs, probably
utilizing a crossbar [90] or a systolic chain [93] connecting the FPGAs, would be a
viable solution to accommodate any size of SC programs, thus design expandability
could be accomplished. The implementation could either comprise a systemic processor,
that would be able to run systemic programs, or following a totally different design
approach, a different circuit could be downloaded on the FPGA, according to the
systemic program, which would be highly optimized for the specific program. The latter
approach would require a SC-to-HDL translator program (a high-level SC synthesis tool)

to be written.

FPGAs are unique in the sense that they combine the flexibility of software on a
hardware medium, since they can be reconfigured and implement a different custom
circuit every time. A number of natural properties, mentioned above, can be
implemented using this feature. They can provide a medium for parallel and distributed
computation, while they can also implement sequential logic. The ability to self-
reconfigure is very important since it can be used to provide circuits that are adaptive
and robust. Various tools and standard design methodologies exist for FPGA -based
design. Thus, it is apparent that FPGAs are highly suitable for a SC hardware

implementation.
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Evolvable/Evolved Hardware

Evolvable hardware is defined in [94] as “a scientific field that integrates evolutionary
computation [12] and reconfigurable hardware devices” while similarly in the context of
a recent comprehensive review of the field [95], it is defined as “the design or
application of evolutionary and bio-inspired algorithms for the specific purpose of
creating physical devices and novel or optimised physical designs” [95]. Evolvable
hardware devices reconfigure themselves dynamically in an autonomous manner by
interacting with their environment, without human intervention, to sustain functionality
and increase performance. Two lines of research are identified in [94] on the subject, the
first involves self-reproduction and self-repair of existing circuits while the second
utilizes genetic algorithms [12] for autonomous reconfiguration leading to altered
circuits. Some indicative applications are human-competitive analog design, Micro-
Electro-Mechanical System (MEMS) fine-tuning and evolvable antennas for space
missions [94]. Hardware evolution has been applied to digital, analog and mechanical

systems resulting sometimes in human-competitive designs [94].

A central notion on evolutionary computation is a genetic algorithm (GA) [12]. A GA is
a search technique which tries to find a solution to a problem (exploring a search space)
in an incremental way. There is no need for a priori knowledge about the problem. The
process involves the preparation of a pool of candidate solutions (chromosomes), the
definition of an evaluation (or fitness) function and the search process. A solution is
selected to continue to the next evolution stage depending on its comparison with the
output of the evaluation function. During this process, an evolution cycle, giving a new
generation, is executed iteratively until some termination criteria are met'’. Solutions can
be evaluated by simulation (extrinsic evolution) or by physical realization (intrinsic
evolution). Each cycle involves generating a new chromosome, evaluating it according
to the fitness function and selecting the chromosomes to form the next generation
(usually the ones with higher fitness function, for example, roulette wheel selection).
Typical methods of generating new chromosomes, further explained later in section
5.1.2, are selective reproduction (genetic material from each parent create an offspring),
crossover (exchange of genetic material between chromosomes) and mutation (a bit, or
group of successive bits, is randomly chosen and flipped). The evolution process
described above, applied in the field of evolvable hardware, is illustrated in Figure 2.3

[96].

1% A fitness threshold value is reached or a loop count limit is reached
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Figure 2.3. Hardware Evolution using a Genetic Algorithm. Reproduced with permission
from [96].

For evolvable hardware, the bits in the configuration bitstream of an FPGA are regarded
as the chromosomes for GAs. If the fitness function is defined to map the behaviour of
the target circuit, then the GA, by continuously downloading altered configurations to
the FPGA, will ultimately produce a design that will match in some degree the required
functionality. A collection of research work on the field of evolvable hardware using
GAs is given in [94] and includes among others: a myo-electric hand control chip,
simple arithmetic circuits capable of built-in self-test, a clock-timing adjusting technique

and an evolvable image filter.

Under the evolvable circuits category, apart from the GA-based designs, [94] provides a
collection of bio-inspired projects that target fault-tolerant, self-replicating and self-
repairing evolvable circuits like the Embryonics project [92], a multi-cellular universal
Turing machine [97] and one of its applications, the BioWatch [98], defining a cellular

and molecular architecture of a giant artificial organism. The Embryonics project drew
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inspiration from Ontogenesis, which is one of the three axes of bio-inspiration [99],
discussed in the next section in the context of the POEtic/PERPLEXUS projects, which
combined all three axes to provide circuitry designed to develop and adapt its

functionality through evolution, growth and learning [92].

An important difference is noted in [100] between evolved and evolvable circuits. An
evolved circuit is the outcome of continuous refinement, by using evolutionary methods,
but the architecture remains static once a satisfactory solution-design is identified.
Evolvable systems, on the contrary, can dynamically and autonomously be self-
reconfigured possibly throughout their existence [100]. They should be able to adapt
their structure according to environment changes, thus they are more tolerant to faults
and failures and more probable to optimize their performance according to these

changes.

Evolvable hardware shows natural properties such as fault tolerance, self-repair and self-
replication. It provides autonomous circuits that can potentially be parallel and provide
distributed computation. Therefore, evolvable systems would be a potential SC hardware
implementation platform. However, the definition of a representative fitness function

would not be trivial for such a complex design, using the GA approach.

POEtic/PERPLEXUS Projects

The three major axes of bio-inspiration, in analogy to nature, are Phylogenesis,
Ontogenesis and Epigenesis according to the POE model [99] of bio-inspired computing.
The phylogenetic axis involves the evolution of the species through time based on
alterations of the genetic code. The ontogenetic axis refers to the development (or
growth) of a single multi-cellular organism. This is accomplished through cellular
division (a mother cell, or zygote, divides, the resulting cells divide as well and the
process continues — each new cell contains a copy of the whole genetic material, or the
genome) and cellular differentiation (new cells acquire different functionality depending
on surroundings). Cells are continuously destroyed and generated in an organism. Self-
healing is based on this property [101]. The epigenetic axis involves the learning
processes during the lifetime of an individual organism and allows it to increase in

complexity as it grows.

The “Reconfigurable POEtic tissue” project [101] (or POEtic) targeted all three POE
axes. The goal of the project was the development of a multi-cellular, self-contained,
flexible and physical computational substrate, inspired by the evolutionary,

developmental and learning phases in biological systems, designed to interact with its
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dynamic environment, develop, adapt its functionality and self-repair [94], [101]. The
POEtic tissue was designed as a structure consisted of three layers [101] and it is

illustrated in Figure 2.4 (the layers are represented here next to each other):

e The Genotype Layer: Corresponds to the phylogenetic model processes. Each
cell contains the genome of the tissue. It consists of a set of operators, which
defines all the functions a cell can execute, and a differentiation table, which is
used to determine which operators each cell will use.

e The Mapping Layer: Corresponds to the ontogenetic model, implementing
cellular differentiation and growth. Self-repair functionality is also involved in
the layer. The selection of the operators to be used occurs in this layer as well.

o The Phenotype Layer: Corresponds to the epigenetic model, modifying the
operation of the organism during its operation. It consists of an execution unit, a
set of application-specific resources, and a communication unit to handle the

connectivity of the cells.
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Figure 2.4. The three organizational layers of the POEtic tissue. Based on [101]

INTERPRETER

Upon a given problem, the user can chose the required layers to be implemented. Cells
are implemented on a molecular substrate (programmable logic) to provide adaptability.
The chosen architecture is compatible with the three axes of biological organization
[101] and includes an input/output interface that permits each cell to modify its

environment.

A practical POEtic system architecture is described by [102]. The tissue is divided in

three main components illustrated in Figure 2.5 [103] :

e The environment subsystem, which manages the interactions with the
environment (using sensors and actuators) and implements processes related to

the phylogenetic axis. A microprocessor, which provides centralized control at
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the organism level and executes evolutionary algorithms, is part of this

subsystem.

The organic subsystem which manages the behavioural operation and learning
methods of the tissue by determining how ontogenetic and epigenetic processes
are physically realized. It consists of two layers: a 2-dimensional array of basic
programmable elements, the molecules, which can be configured to 8 different
modes of operation and enable various functionalities, and a dynamic routing
algorithm implementation for the creation of connection paths between

molecules.

The system interface, which provides the communication channel between the
two subsystems and mechanisms (interface bus, one active “master” environment
subsystem for multichip configurations, automatic coordinate propagation) that
permit the tissue to be scalable without constraining the number of POEtic chips
that can be employed. From a user perspective, a multi-chip POEtic tissue has

got one environment and one organic subsystem.
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Figure 2.5. Overview of the POEtic tissue architecture. Reproduced with permission from

[103].

Moreno et al. [102] demonstrated that real-time emulation of large-scale spiking neural

network models can be accomplished using the aforementioned design. Other

applications of the POEtic tissue include self-repairing hardware [104] (utilizing the

dynamic routing mechanisms of the environment subsystem), circuits that show fault-

tolerance [105] (in the form of error detection and recovery through dynamic routing,

reconfiguration and on-chip reprogramming), [106] (using hardware Gene Regulatory
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Networks) and an interactive artistic installation, called the POEtic-Cubes [107]

(autonomous robots controlled by POEtic chips).

The successor to POEtic was the PERPLEXUS project [108]. The goal of PERPLEXUS
was “to develop a scalable hardware platform made of custom bio-inspired
reconfigurable devices that will enable the simulation of large-scale complex systems
and the study of emergent complex behaviours in a virtually unbounded wireless
network of computing modules” [109]. At the heart of these ubiquitous computing
modules, ubidules, is a custom-designed reconfigurable chip, the ubichip [108], capable
of implementing bio-inspired mechanisms such as growth, learning and evolution. The
ubidule can be customized to use a set of peripherals (such as USB, SD card, Wi-Fi), to
satisfy the requirements of a given application, as modularity was a key design
consideration. The overall architecture is illustrated in Figure 2.6. The project targeted,
but was not bounded, to three applications: neurobiological modelling, culture

dissemination modelling and cooperative collective robots.

The limitations of the POEtic architecture were identified [103] and improved [108] in
the PERPLEXUS framework:

e The POEtic dynamic routing algorithm required long-distance combinatorial
links. The new algorithm better exploited existing paths, used an 8-neighborhood
approach to reduce congestion risk and allowed path destruction, allowing

unused connections removal.

e Further scalability: the wireless link combined with the Address Event
Representation (AER) scheme [111], which involves encoding/decoding a
sequence of events to/from a sequence of addresses to overcome communication
issues, caused by massively interconnected components, provides virtually

unbounded scalability.

e The partial self-reconfiguration in the POEtic chips allowed partial replication of
the circuit while they needed to be pre-programmed (preconfigured configuration
paths and reconfiguration units loaded by the microprocessor). PERPLEXUS
allows real self-replication employing the THESEUS mechanism [112], through
self-inspection (recovering the configuration bitstream, the genome, from the

replicator) and built-in reconfiguration-aiding units.

e Neural networks friendliness: The structure of the reconfigurable cells, called

Macrocells, in the ubichip, was defined around four 4-LUTs which could be
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configured as any four 4-input function or as a 4-bit ALU. The ALU, which was

provided with a neural-oriented instruction set, allowed the implementation of

basic neural processing elements and could be scaled to form a neural SIMD

multiprocessor.
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Figure 2.6. Organisation of the Ubichip architecture. Each ubichip contains an array of
reconfigurable cells called Macrocells. Each Macrocell consists of a pair of self-replication
(SR) and dynamic routing (DR) units associated with four ubicells. The ubicells are

composed of three switchboxes (for input, output and flag signals) establishing configurable
communication paths with their neighbours and a dedicated LUT/Memory section for each
4-bit configurable ALU. Reproduced with permission based on [108][110].

The POEtic and PERPLEXUS projects were collaborative attempts on implementing

hardware that can mimic natural properties on all three bio-inspirations axes. They

provide the most complete solutions in terms of circuits that embody a lot of the natural

properties of Table 1.1. They can provide vastly parallel autonomous systems, which can

be self-organised and tolerant to faults. Their architecture is distributed and partially

decentralized, as the cells show self-configuration abilities, yet a microprocessor is used

to provide control at the system level. They presented a refined, scalable and bio-friendly

solution. The architecture defines an array of reconfigurable blocks which may be used

individually as fine-grain logic functions or collectively as a parallel SIMD machine.
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Thus, the Ubichip would be a suitable platform for a SC hardware implementation.
However, the PERPLEXUS project was not continued after the introduction of the
architecture, so access to the final ASIC chip, including 100 Macrocells [110], would be
limited. An alternative solution would be to implement the design on an FPGA in order
to further take advantage of the additional design flexibility. Taking into consideration
that an array of 4 Macrocells required the equivalent of 25K logic cells [110][157] only
around 30 Macrocells would fit in a mid-range modern FPGA device''. Assuming that
each Macrocell would represent ideally 4 systems (mapping one system per Ubicell), we
would get less than 100 systems if we accounted for the additional requirements of the
SC architecture (scopes and matching functionality). This would imply that we would
need a network of FPGA devices to prototype any practical application following this
approach, increasing the cost of our research project. In addition, the ideal SC hardware
architecture would have to compete in terms of performance with alternatives
approaches, e¢.g. a modern GPU-based system or a high-end conventional CPU. Time-
multiplexing has been used in [102] to enhance the performance of the architecture while
emulating in real-time a 10000-neuron spiking neural network but this resembles the way
conventional CPUs implement parallelism. Nevertheless, the compatibility of the

Ubichip with the SC paradigm is evident.

Organic/Autonomic Computing Paradigm

Organic Computing (OC) is a research field which explores the feasibility of controlled
emergence [113]. The objective of OC is the technical usage of principles observed in
natural systems. Organic systems are independent, flexible, adaptive and autonomous
while they show natural properties like self-organization, self-configuration, self-
healing, self-protection, context-awareness and self-explanation (in order to inspect the
results of self-organization). Organic systems follow the observer/controller paradigm,
which observes the functional system and the environment and controls the parameters
of the functional system according to the observations, while a guard system prevents

illegal actions.

A collection of promising ongoing research projects on OC can be found at [114]. An
indicative project is “Digital on-demand Computing Organism (DodOrg): Stability and

Robustness” which is overviewed in the next section.

" Assuming 75% utilization in the mid-range Xilinx Virtex-6 LX240T FPGA device with 240K
equivalent logic cells [161]
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It is noted that Autonomic Computing (AC) [115], which was introduced by IBM
initially targeting IT systems, shares the same requirements and objectives with OC. The

two terms are used both in conjunction (AC/OC) and interchangeably.

AC shows a high level of compatibility with SC, in terms of the natural properties the
two paradigms target. AC only provides design aims by describing a vision. SC also has
a corresponding architecture. AC research projects target software and hardware
implementations. A SC hardware implementation could possibly draw inspiration from

designs provided by AC/OC projects if they shared the same implementation platform.

Computing with Unconventional Materials

Almost any electronic circuit nowadays is silicon-based. Researchers lately identified the
need to find its successor. As every broadly-used technology in the past (relays, valves,
transistors [11]), it will reach its limitations and will eventually need to be replaced.
Their research focuses on computation implementations on new physical substrates,
exploiting computational properties of various physical, chemical and biological media.

It comes under the broader field of non-classical, unconventional computation [3].

Computing based on unconventional material and methods shows great potential for
future developments. The majority of the approaches, described below, show promising
results and usually provide great performance gains. As most of them are either nature-
inspired or nature-based, they show inherent natural properties, so they can provide
massively parallel, distributed, autonomous and asynchronous computation. However,
they have a limited, if any, set of specialized applications and show several limitations
(for instance in flexibility, programmability and availability) when a practical hardware

implementation is concerned.

Thus, a SC hardware implementation based on an unconventional medium would not be
a viable approach (in the context of this thesis). It has to be noted that, since this section
sums up the current research trends on alternative media, it is possible that at least one of

those will become conventional in the future.

DNA or Molecular Computing

DNA computing [20] involves data encoded as biomodules, such as DNA strands, and
uses molecular biology tools to imitate operations on those data. The structure of the
genetic material provides vast data-parallelism, thus problems that can be adapted to this
method can be efficiently solved. As mentioned in section 2.1, Adelman was the first to

solve an NP-complete [116] problem in the lab [20], by using DNA molecules and
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biomolecular techniques to manipulate DNA. Based on this experiment, it was concluded
that any problem in NP (set of problems that can be verified in polynomial time) could
be efficiently solved with DNA computing [11]. A collection of DNA computing
applications (like graph coloring, protein conformation, matrix multiplication and

cryptography) is given in [11].

Quantum Computing

Atoms and molecules do not follow classical mechanics laws. Quantum physics explains
these non-classical behaviours of atomic-scale objects. Information representation in
quantum computers [11], [21], [23] is in the form of quantum bits, or qubits, in analogy
with bits in conventional computers. A qubit can hold any superposition of the two
classical states, 0 and 1. Thus, a set of n ordered qubits (a length-n quantum register) can
hold information equivalent with any superposition of 2" quantum states. Measurements
and manipulations alter the contents of a qubit and can be modelled as matrix
multiplications. Quantum gates are used for qubits manipulation, which translates to
quantum state transformations. Each type of gate implements a basic quantum algorithm.
Quantum computers are able to provide tremendous speed-up in solving problems
compared to their classical counterparts. Typical quantum applications are cryptography,
database search and combinatorial optimization problems [23]. Various methods have
been used for practical quantum computer implementations [23]: superconductors,
liquid-state nuclear magnetic resonance techniques and ion-traps to name a few, with the

latest practical designs reaching the capacity of 512-qubits [117].

Chemical Computing

Dittrich [118] defines chemical computing as computing with real molecules (real
chemical computing), as well as programming electronic devices using principles taken
from chemistry (chemical computing metaphor). Following this definition, molecular
computing is entwined with chemical computing. Along with molecule-based
approaches, this field includes computation achieved with chemical mediums like light-
sensitive chemical waves [119] (applied to image processing with the possibility of
realizing associative memories), a fluorescein dye [120] (capable of performing a full
scale of elementary addition and subtraction operations) and protein molecules which are
able to perform a variety of logical or computational operations [121]. The chemical
computing metaphor has inspired new architectures [118], such as computers based on
reaction-diffusion media [122]. Reaction-diffusion computers are regarded as massively
parallel devices, where tiny portions of the chemical media act as elementary processors

and information is stored and manipulated by means of local disturbances of
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concentrations. A set of logic gates and simple combinatorial logic based on chemical

compounds is presented in [123].

Bacterial Computing

A data storage and retrieval method, based on sequence alignment of the DNA of living
organisms, was introduced in [124]. Building upon that, the DNA computing paradigm
was extended in bacteria, to give birth to bacterial computing [125]. Bacteria can be
genetically programmed to execute various operations, forming bacterial computers,
which can be autonomous, responsive and self-reproducing [125]. The highly parallel
nature of this approach (each bacterium is a basic processing unit) allowed the solution
[125] of a Hamiltonian Path Problem [36], similar to the one solved by Adleman using
DNA computing. In vivo computing is a similar research field [23] with studies on the

computational capabilities of gene assembly in unicellular organisms.

Other Unconventional Media

A set of other computation media are reported in the literature. Collision-based
computing involves mobile self-localizations, travelling in space and executing
computation when colliding to each other [126]. An example implementation, introduced
in [126], uses fusion gates as collision points which were inspired by the above-
mentioned reaction-diffusion paradigm. In [127], a non-conventional paradigm is
introduced, where the logic values are carried by independent stochastic noise processes
(electronic noises) implying greatly reduced energy consumption. In [128], the authors
use computer controlled evolution to manipulate liquid crystals to evolve logic gates.
Other unconventional materials for implementations with computational purposes
proposed in the literature include molten metals and soft solids [129], carbon nano-tubes

and carbon nano-wires [130].

SC based on Unconventional Media

The implementation approaches which are based on unconventional material are more
compatible to natural properties than any other. The reason is really simple. The
implementation media that they use are natural. The disadvantage with these approaches
is that their underlying technologies are not mature. There are no design methodologies,
supporting tools and generic input/output interfaces yet. They would require specialized
knowledge from fields usually away from computer science and would entail access to a
modern scientific lab. This in turn would imply a more limited user space and an

elevated cost of development. Thus, while all of unconventional material approaches
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seem greatly promising, they could not be considered for a practical SC implementation

at the moment.

2.2.3 Other silicon-based designs

Silicon is arguably the most widely-used substrate for designs with computational
purposes. While current research attempts to identify other promising materials with
superior physical and chemical characteristics (an example that currently attracts
increased interest would be the carbon allotrope graphene [131]), suitable for integrated
circuits implementation, (processed) silicon is still the preferred material due to its

tolerance to high temperatures and electrical powers.

Using silicon as their base substrate, a vast number of relevant research papers attempt to
break conventional design patterns and, using various approaches, try to incorporate
natural properties. In this section, an indicative set of them was chosen to be overviewed
in order to designate relevant design techniques, from which inspiration can be drawn
provided that a silicon-based approach will be selected for the SC hardware

implementation.

SpiNNaker

The SpiNNaker Massively Parallel Computing System [132], [133] was mainly designed
for neural networks modelling. It will consist of a vast number of processing cores
(scheduled to exceed 1 million, distributed across 57600 chips with 18 cores each),
arranged in independently functional and identical power-aware ARM-based chip
multiprocessors to achieve parallel, robust and distributed computing [134]. Each core is
self-sufficient in terms of storage (it has a local “Tightly-Coupled Memory” (TCM)
[132]), while there is a shared off-chip memory, among the cores — connected to them
through a DMA controller with the help of an asynchronous Network-on-Chip (NoC), in
the CMP level. The off-chip memory is virtually local to each processor since it is
segmented into discrete regions and each processor has exclusive access to one region, a
specific address range, only. The organisation of each 18-core (16 application cores, 1

monitor and 1 spare) SpiNNaker CMP chip is shown in Figure 2.7 [133].
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Figure 2.7. SpiNNaker CMP chip organisation. Reproduced with permission from [133].

The system was provided with sufficient hardware resources redundancy, thus the
processing and communication infrastructure can show a high-level of fault tolerance. A
configurable asynchronous packet-switching routing network, based on a custom
designed on-chip multicast router, was used to support the high degree of
interconnection at the chip and system levels. Communication between processors was
based on Address-Event Representation [111] (as in the PERPLEXUS project).
Generating an interrupt, which is issued to the processor when it receives a new packet,
allows different clock domains for each processor eliminating the need of
synchronization, thus making the system virtually asynchronous (Globally Asynchronous
Locally Synchronous - GALS). The system can be reconfigured on the communications
side, by changing the routing table of the on-chip router, and on the processing side, by
changing the running code (altering the data part of the TCM). Its configuration is made

through an on-chip Ethernet link by a Host system (a personal computer) while board-to-
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board communication is realized with high-speed serial (3Gbps SATA) connections with

their communication interfaces implemented on Spartan-6 FPGAs [135].

The SpiNNaker project envisions a library-based development system which allows the
high-level description of a model and uses an automated design flow to create silicon
implementations, which are predesigned custom chips. This approach is interesting from
a SC point of view. The idea could not be directly mapped on a SC hardware
implementation, but a SC language (similar to those introduced in [24], [136]) could be
used in an automated design flow to create highly-optimized hardware SC

implementations dynamically on reconfigurable media.

The SpiNNaker architecture defines is a high-performance, low-power application-
specific platform optimized for neuroscience applications [133]. Essentially being a
massively parallel computing machine made from conventional CPUs, SpiNNaker
addresses mainly communication and power consumption challenges. As such, the
architecture may be suitable for exploration of unconventional computing paradigms that
require raw parallelism, thus making the platform a good candidate of a hardware SC
implementation. While the underlying architecture of the building nodes of this power-
aware “computer cluster in a box” would not be compatible with much of the required
natural properties of SC, regarding SpiNNaker as a whole might be useful in modelling
processes with asynchronous processing (yet locally synchronous) elements interacting
in a parallel fashion. However, the SpiNNaker platform is still on a development phase,
with prototypes gradually increasing the number of available cores an order at a time'” as
part of the ongoing Biologically Inspired Massively Parallel Architecture (BIMPA)
research project”. Thus, the completed architecture may be a suitable candidate for a
future SC implementation, especially if its benefits could be combined with the added
flexibility provided by reconfigurable hardware to better map the underlying

architectural features of SC.

"2 The project defines 10N milestone machine designations (where 10N stands for approximately
10~ supported cores). 101, 102 and 103 machines have been sampled where 104, 105 and finally

the 106 machine are yet to be implemented.

3 A scalable custom 64-FPGA machine, Bluchive [248], targeting also Neural Network
Simulation was developed under the BIMPA project, as an FPGA -based alternative architecture

to be used for evaluating the spiNNaker platform
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Molen

Molen [137] is a reconfigurable processor, following the tightly coupled co-processor
paradigm. It features a general-purpose fixed processor core (GPP) enhanced by user-
defined commands executed on reconfigurable hardware. Molen addresses issues like
opcode space explosion, modularity and limitations on the number of parameters for
operations mapped on FPGA [137]. It identifies blocks of software code that can be
efficiently mapped on reconfigurable hardware and replaces them with their hardware
equivalent executed on reconfigurable media. This is accomplished by the use of special
microcode (termed pp-microcode), which differentiates from traditional microcode,
since instead of being executed on fixed hardware, it is executed on custom hardware
that itself designs to operate on [137]. The reconfigurable co-processor, which is
consisted of the pp-microcode unit and the custom computing unit (CCU), is configured
by the general-purpose core. Therefore, it can be tailored to a different application each

time.

Molen exploits GPP-FPGA co-execution. It embeds application-specific functionality
without altering the GPP architecture. The architecture is essentially based on a
conventional CPU with the ability to off-load computation to the reconfigurable fabric of
an FPGA. While the nature of the sequential part of the design would be unsuitable to
perform SC background tasks in a parallel fashion (further explained in section 3.2.3),
the ability to enable user-defined hardware-supported instructions would be quite useful
(and is in fact suggested in section 3.1.3). Another interesting feature in this design is the
micro-programmable nature of the CCU reconfiguration that increases flexibility and

allows automation.

DodOrg

DodOrg (Digital On-demand Computing Organism) [138] is a bio-inspired self-
organizing architecture, which exploits parallel heterogeneous systems. It is an adaptive
system which is bound to natural self-x [138] properties (like self-adapting, self-healing
and self-configuring). DodOrg is organized in three levels: the cell, the organ and the

brain.

At the cell level, organic processing cells (OPCs) with various resources
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(microprocessor, DSP core, FPGA, FPFA'Y), announce their suitability (based on
monitoring system metrics like performance, network load and energy consumption) for
processing tasks. At the organ level, virtual organs are created using ‘“organic”
middleware, which implements decentralized closed control loops, in order to
accomplish decentralized and fault-tolerant task distribution. Organs are formed by a
number of neighbour cells with cooperating tasks, which exchange accelerator and
suppressor messages to handle task execution (this technique implements a variation of
the observer/controller paradigm). At the brain level, a software architecture uses input
and feedback from the environment to implement the targeted application, which is a
real-time control system for robot-based manufacturing. This hierarchy can be further

extended to groups of organisms (self-organizing robot swarm) [138], forming dynamic

societies.
Application e o o o o Application Brain Level
Virtual Organ o o o o o Virtual Organ
Organ Level
Procc::e:IIsing 5000 PfO(éeeslfinQ Prot(::e:ilsing ceeo Proréees"sing Ce” Level

Figure 2.8. Organic System Architecture. Suggested in [138]

DodOrg is an indicative example of an organic computing hardware implementation. It is
interesting, from a SC viewpoint, since the two paradigms, as stated earlier in the OC
section, share very similar aims and target nearly the same fundamental natural
properties. The similarities extend also in the hierarchical approach DodOrg adopts to

organize its control system, which are compatible with the systems hierarchy in SC.

The project defines the organization of an architecture supporting many bio-inspired
properties. While this layered approach (see Figure 2.8) is compatible with the SC

paradigm, the project focuses more on an organic control robot and specifically on robot-

'* Field-Programmable-Function-Arrays. Introduced as part of the Chameleon [246] System-on-
Chip, FPFAs are word-level reconfigurable datapaths consisting of multiple processor cores.
Each core includes 5 custom ALUs.
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based manufacturing. Decentralized hardware components are communicating over the
organic middleware and the individual autonomous robots can form a self-organising
robot swarm. Evidently, this specific level of abstraction is not suitable for a system
modelling low-level natural processes, as required by SC. In terms of organisation,
DodOrg moves towards the software domain as it scales up (middleware at the organ
level, software at the organism level). However, this approach may not be as distant from
the final SC implementation, since some high-level tasks (systems on the highest
hierarchy levels that realize advanced instructions) may need to be in the software

domain, in order to increase flexibility and programmability.

IBM Cell processor
The IBM Cell processor (or Cell Broadband Engine — Cell BE) [139] is a single-chip

multiprocessor based design which aims at high performance by exploiting parallelism at
all levels of the system: data-level (SIMD support), instruction-level, thread-level,
memory-level and compute-transfer-level. Workload is offloaded from the main
processor (PowerPC architecture), which mainly handles control tasks, onto the (eight)
Synergistic Processor Elements (SPEs — dual-issue in-order SIMD cores), thus the
system is heterogeneous. The SPE architecture focuses on data processing (wide
datapaths, more and wider registers, single use privilege level). The SPEs interconnect
network consists of four data ring buses, thus multiple concurrent transfers can be
handled. Computation and data transfer operations are executed concurrently, while
concurrent memory accesses from different cores are allowed to exploit memory-level
parallelism. The Cell BE is widely known for being used in a games console, yet it has
also been used in HDTVs, home servers, game servers and even, as a building element,

in supercomputers [140].

Larabee and the Intel MIC

The Intel Many Integrated Core (MIC) architecture [141] uses multiple in-order
(program execution stalls until the operands of an instruction are available) x86 CPU
cores extending previous work during the Larrabbee [142] project. The choice of in-
order CPUs is justified by the fact that one of the main design considerations was to
achieve a great level of parallelism'. It uses a bi-directional ring network to handle

inter-chip communication between the various cores. Scalability is accomplished with

5 Out-of-order architectures have improved performance since they explore instruction
parallelism but their die utilization factor is higher than their performance factor (1.5x-1.7x on
performance corresponds to 2x-3x on size [142]). Thus, those architectures are better suited for

single-stream performance aware designs.



Chapter 2. Background 61

multiple short-linked rings. Routing is simplified by following a simple convention: a
message is accepted by an agent (logic block connected to the ring network) from one

direction on odd clocks and from the other direction on even clocks.

Larrabbee initially targeted visual computing, essentially being a hi-end GPU with
extended programmability features, since it adopted a familiar programming model (with
some alterations) based on the traditional x86 architecture. While Larrabbee never
became a commercial product, its derivative, the MIC architecture, targets high-
performance computing and promises great gains for highly parallel applications, largely
reusing existing parallel code. The first MIC PCI-Express prototype board featured 32
in-order Aubrey Isle CPUs while its next revision, branded as the Xeon Phi, offers up to
61 cores with 244 threads, 256-bit vector units supporting 512 SIMD-instructions, on a
single chip [143].

SARC

The Scalable computer ARChitecture (SARC) project [144] is a research project with
aim to develop a general-purpose scalable integrated architecture, explore design and
compilers creation automation and develop new programming models compatible with
future architectures. According to [145], the SARC architecture will be a multi-node
heterogeneous architecture, very similar to the Cell BE. The main difference is that
SARC will consist of multiple cores and, instead of identical SPEs, application hardware

accelerators, each of which can be optimized for a different application.

SyNAPSE

SyNAPSE [146] is the acronym for Systems of Neuromorphic Adaptive Plastic Scalable
Electronics. SyNAPSE is a research project that aims to “investigate innovative
approaches that enable revolutionary advances in neuromorphic electronic devices that
are scalable to biological levels” [146]. It identifies the limitations of traditional
approaches to computation and seeks to break the programmable machine paradigms by
using neuromorphic [147] devices, which are based on adaptive analog circuitry
principles. The final deliverable of the project is a multi-chip neural system of ~10®
neurons and instantiate it into a robotic platform, which then should be an autonomous

entity and show indications of abilities like perception, cognition and response [147].

CPU-GPU Hybrids

The advantages and disadvantages of CPUs and GPUs are outlined in section 2.2.1.

While graphics applications became more intensive, communication between the two



Chapter 2. Background 62

components was provided with more bandwidth and lower latency (AGP to PCI-E
connections). Current design trends for consumer applications involve the integration of
CPUs and GPUs on a single chip. AMD recently presented the AMD Fusion architecture,
calling the CPU-GPU hybrid Accelerated Processing Unit (APU) [148].

This can be an important design, since if APUs (and later Intel-based hybrids), become
the conventional architecture of the near future, they will have native on-chip
parallelism, becoming more compatible with a vast number of applications, including

SC.

2.2.4 Hardware Approaches Summary

The explosive growth of technology in the last century enabled the conception, design
and fabrication of what we consider today conventional computer architectures.
However, from the very early stages of this revolution, pioneers in the field realised that
there is more than one ways to approach the definition and implementation of
computation. This is evident by the late work of one of the architects of the conventional
computer architecture, von Neumann, who after devising the sequential and centralized
design [8] which (with various optimizations and enhancements) became the basis for
virtually every contemporary computing device, started exploring the potential and
relation of biology to computation (and specifically between the computer and the
human brain [149]). Similarly one of the designers of the hugely successful ARM
processor - Steve Furber - now leads SpiNNaker [133].

While the conventional approaches have addressed the constantly increasing
computational needs for commercial, research and even more specialized purposes, with
designs and architectures also evolving and getting optimized and tailored to adapt to
these changing demands, they eventually reached their limitations, resulting in new
approaches and computational concepts being emerged. This section discussed how
conventional approaches attempted to provide more computational power and how
unconventional approaches, using nature as both inspiration and alternative
implementation substrate attempt to address natural features as parallel, decentralized

and distributed computation to name a few.

GPUs, chip-multiprocessors and supercomputers provide parallelism with different
levels of granularity, from the chip level to the cluster level while peer-to-peer networks
come closer to the natural computing paradigm providing a decentralized network of

cooperating nodes. Ubiquitous computing and wireless sensor networks define parallel
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and distributed systems of usually self-contained and adaptive interconnected devices,
with the ability to show self-organization and fault tolerance. FPGAs combining the
great flexibility, from the ability of being reprogrammed, with the performance, provided
by the fine-grained parallelism on the hardware level, became a useful tool for numerous
projects overviewed above to implement evolutionary and bio-inspired designs.
Alternative materials (molecules, chemical compounds, bacteria) show great potential in
a computational context but, still being at a proof-of-concept stage, are not ready yet for
a broad range of practical applications making silicon the norm when it comes to digital

circuitry.

The various approaches and paradigms of this chapter are presented in a Systemic
Computation context, taking into consideration that SC was designed to incorporate the
various natural properties in a more complete way. The next sections give more insight

in the SC paradigm and its three implementations prior to this work.

2.3 Systemic Computation

Systemic computation is designed to be a model of natural behaviour and, at the same
time, a model of computation. This approach was based on the generally accepted, but
still intuitive notion that natural systems are able to perform some form of computation
[24]. It is a computational model with characteristics similar to biological systems and

processes.

The link between biology and computer science under the SC prism can be found in the
last convention of SC (computation is transformation - section 1.2), enabling us to
identify a common denominator between them [22]. In SC, everything is regarded as a
system. This implies the notion of the inherent hierarchy in nature and enables SC
analysis in different levels of abstraction. Also, SC is designed to operate using any
system, meaning that, provided that the interaction pattern is the same, systems of
different levels of abstraction can perform the same calculation. Systems can never be
destroyed, reflecting the fundamental principle of conservation of energy (first law of
thermodynamics [150]). As a result, systemic computations imply metabolism and
ecology, since new systems need to be transformed and unwanted computation remnants
need to be removed, meaning that the “waste” of one program will have to be recycled as

“food” for another [24].

The interaction of two systems can be described by the systems themselves and a third

“contextual” system which denotes how/if the interacting systems are transformed after



Chapter 2. Background 64

their interaction [24]. The scope here, as in nature, is an important factor. The scope of a
system defines the neighbourhood (which can be other than spatial) in which the system
can interact with other systems in a certain way. SC attempts to capture the
characteristics of natural scopes by enabling partial or fuzzy memberships and scope

alteration after system interaction.

In order to represent a system in a modern computer, the choice of a binary format is
compulsory. For the first systemic implementation [24], Bentley used binary strings to
describe systems. Other descriptions [24] (m-calculus, bigraphs, brane calculus, Petri
nets, calculus of looping sequences and other emergent technologies [22], [24] like
speckled computing, DNA computing, membrane computing) were also considered but
they could not provide practical implementation platforms compatible with traditional

digital resources.

Bentley [24] used the notions of schemata and transformation function to describe
interacting systems and the way the systems are transformed through interaction. Thus,
each system comprises of three parts, two schemata and one function (see Figure 2.9),
also called a triplet. Both schemata may change after an interaction, which implies
circular causality (each system may affect the other). The model may support
interactions among more than two systems, since an n-ary interaction may be reduced to

n-1 binary interactions [24].

(d)

(a)
@ System
011 0110 @//' '\\@
VAN Oaab 0011 0110
schemata1 transformation function schemata 2

Figure 2.9. SC notation and systems representation: (a) a data system revealing its binary
contents; its transformation function is zero (b) alternative notation for a data system called
SYS (¢) Systems S1 and S2 interact according to the function of the context C; the notation
may optionally include the resulting systems S1' and S2' (d) The 3 elements of a system.
Reproduced with permission from [24]

A system in SC is represented as illustrated in Figure 2.9. The two interacting systems
(schemata 1 and 2) are positioned in the receptors and set the possibility (through
matching against the schemata of other systems) of the system to interact with them in

its context. The transformation function determines the outcome of the interaction. Data
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systems do not define an interaction, thus their transformation function is always zero.
The key notion of interaction here differentiates SC from conventional approaches since
it is not a sequential operation, as a set of instructions executed in a conventional
computer, but rather the sum of events that occur in a massively parallel and stochastic

fashion — implied by the constant simultaneous transformations of systems.

A simple demonstration of the computation of the sum over a pool of data systems is
given in [34]. Given a set of inert systems that can interact, but not act as context, with a
transformation function which replaces data in the one of the systems with the sum of
data of the two systems and zeroes the other system, and provided that enough time is
available, only one system will remain containing the sum of all systems while all the
rest will be zero. The operation is illustrated, using SC notations, similar to bigraphs, in

Figure 2.10.

Step 1

Figure 2.10. Ilustration of a sum operation on a pool of data systems using SC notations.
Based on [34]

In more detail, the only contextual system SUM (the only one with a non-zero

transformation function) defines a way that other systems may interact. The definition of
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this interaction involves providing a valid transformation function (in this case addition)
and also identifying two systems that will interact according to its schemata. In order to
qualify as possible interacting systems, these systems will need to match the templates
defined in the schemata of the context system. In this case (Figure 2.10), both schemata
of the SUM context define a template requesting a data system (its transformation
function should be zero - implied by the zero in the template AOx) of type A (its left
schema should correspond to type A - implied by the A in the template AOx) while it can
have any value on its right schema (denoted by the "don't care" x value in the template
AO0x). In the first interaction (at step 1 of Figure 2.10), two A systems (here systems
Datal and Data?2) will be chosen and one of them (Data2) will hold the sum while the
other (Data2) will be reset (as shown at step 2). The resulting system (Data2) will
interact with the third type A data system (Data3), the resulting sum will be again stored
in one of them (Data3) and the other (Data2) will be reset. The type B data system
(Data4) will never be part of an interaction in this example as it does not match any of
the schemata of the context SUM (since it only defines interactions between data

systems of type A).

The progression of a simple program which performs a nested parallel calculation is
shown in Figure 2.11 (A-C) [24]. The program calculates the expression ((A1-A2)*(A3-
A4)) and prints it. At first, the initial systems belong to scopes in different hierarchy
levels. Next, the subtract-escape context systems “-e” transform the pairs (Al, A2) and
(A3, A4) of data systems by means of subtraction (in their respective scopes ¢l and ¢2)
and change their scope one level higher in the hierarchy (effectively one of the
interacting systems “escapes” from the scope it belongs to), leaving calculation “waste”
in the initial scopes (c1 and ¢2), as no system can be destroyed. It is noted the (A1-A2) is
correctly performed, (instead of A2-A1). This is accomplished by a mechanism called
schemata matching, described in section 2.4.1, which identifies an appropriate
interacting system to each interacting position. A1 is selected here as the first interacting

system (the minuend) and A2 is selected as the second (the subtrahend).
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Figure 2.11. SC calculation of PRINT((A1-A2)*(A3-A4)). Reproduced with permission from
[24], [34]

Eventually, systems are transformed by the multiply function. Overlapping scopes which
share systems can be used for more compact representations of the same calculation (as
shown in Figure 2.11D [24]). The parallel nature of SC dictates that all the systems
interact continuously (function “print” will print the correct result upon completion of
the program but it will also print intermediate results at earlier stages). Thus, the tree of
scope memberships (Figure 2.11E) enables the correct calculation of complex
expressions. An example of how overlapping scopes can be used to accomplish linear
execution of such an expression is given in Figure 2.12 [24], with intermediate results

escaping to their outer scope until the expression is fully evaluated.
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Figure 2.12. SC calculation of the linear expression ((((A1-A2)*A3)+A4)/A5). Reproduced with
permission from [24]

2.4 Prior Systemic Computation Implementations

In [24], Bentley, along with introducing SC, provided a corresponding virtual computer
architecture and its first (software) implementation. This attempt included a basic
instruction set, an assembly language, a compiler and its resulting machine code.
However this implementation was merely a simulation of a systemic computer, although
it was a satisfactory proof-of-concept. To date, there are two more SC implementation
attempts. The first provides a complete SC platform (language, compiler, virtual
machine and visualization tools) [136]. However, it is also a SC simulation, although
based on high-level language. The second [34] is yet another PC-based implementation,
utilizing the inherent parallelism of graphics processors (GPUs) with considerable gains
(of the order of one hundred) in terms of speed compared to previous attempts. The
performance improvement is justified since this is the first implementation with a

hardware constituent (GPU cores) and the first step towards a real systemic computer.

2.4.1 Original SC Implementation

The original implementation was a low-level simulation of a systemic computer,
compatible with consumer processors. A more detailed description along with various
SC applications can be found in [24]. The various features of the design are presented

below.
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Where ? means “don’t care”.

Figure 2.13. System representation, schemata decoding scheme and scope table of the

original SC version. Reproduced with permission from [24]

As illustrated in Figure 2.13, characters ' to z where used to encode triplets of string

systems. Partial matches were accomplished by enriching the binary {0,1} set with an

wildcard (? — matching both a 0 and a 1), while the matching precision could be adjusted

by using thresholds.

Table 2.2. Features of the original SC implementation

Feature

Original SC implementation

Word-length

16-character word length
(systems consist of 48 characters)

Coding Method

characters of alphabet 29

Transformation Function Set

Thirty basic functions

Schemata Matching Method

Partial matching against thresholds

Interactions Order

Random (Biased — Prioritizes
recently changed systems)

Scope Definition Method

Global Scope Table

Matching was based on the Hamming distance (number of different characters) between

the schemata of the context and the systems. The transformation function, along with an

identifier (analogous to the opcode of conventional architectures instructions), and the

two matching thresholds (one for each system), also includes a NOT operator to set the

matching polarity.
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The membership of a system, set by the index of the respective column of the scope
table, in the scope of another system, set by the index of the respective row, was set by
the value at the corresponding position of the table (0 : not in scope, 1: fully in scope, 0

<value <1 : partially in scope).

Figure 2.13 illustrates the graphical representation of a context system, with ADD as its
transformation function. The schemata are decoded based on the decode table to match
the schemata of other systems with thresholds of 6 and 1 for systems 1 and 2
respectively. If the schemata is matched, the addition is not executed since the polarity is
negative (NOT is true). According to the scopetable, systems 3 and 4 are in the scope of

system 1. System 2 is partially in system 3.
2.4.2 High-level SC Implementation

The extensive work of Le Martelot on SC [136], [151], [152], [153], [154], [155], [156]
(which can be found collectively in [22]) provides outcomes in formalization, a complete
platform, natural-inspired models implementation, analysis of native SC features and a
description of the developed visualization tools. The implementation platform, called
“Systemic Computation Platform and Environment” (SCoPE), includes a full definition
for the SC programming language, a compiler and a virtual machine, the SC runtime

environment and the visualization framework (see Figure 2.14) [22].

Figure 2.14. Visualisation of a SC model using SCoPE. Reproduced with permission from [22]
Some differences are identified in this implementation as opposed to the original one

[22]: Recursive scopes, with a system containing itself, are supported. Fuzzy scopes are
not supported, since they would add overhead in the implementation for a feature that
was not critical and, thus, overlapping scopes are not supported either. Partial and

threshold matching are not supported for the same reason. There is always a supersystem
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— at the top of the hierarchy — called the universe. An active context can only change
during the current interaction only in cases that this action will provide significant
simulation gains. Also, unaltered interacting systems have a higher probability to interact

next.

The main difference is that this implementation is higher level, fully programmable and
more flexible than the original one. While the transformation function set, the string
length and the alphabet are fixed in the original version, they all can be customized by
the user for each model simulation in SCoPE. The flexibility is clearly reflected in the
corresponding SC language which uses the original one as ground and expands its
functionality and ease of use. Naturally, this flexibility comes in expense of execution
speed. User-defined functions are implemented as C++ plugins and loaded as dynamic
libraries at simulation initialisation and called for every function reference in the code.
Also, the scopes are not held in a global table, but every system stores locally, along

with its triplet, all the systems it contains and it is contained in.

2.4.3 GPU SC Implementation

The third SC implementation is GPU-based [34]. A GPU-based approach is completely
justified since the fundamental property of SC, parallelism, is an inherent GPU
architectural characteristic. While the first two implementations where just simulating
SC, the third one is much closer to an actual SC architecture since there is now native
hardware support. GPUs are well-suited for applications with numerous threads running

in parallel over a set of shared data. Here, the shared data are the systems.

The GPU implementation follows the original SC model in terms of specification. Only
implementation-specific minor differences (optimisation technicalities) differentiate
them. The parts of the original algorithm that could be parallelized were identified and
they are executed in the GPU cores, called devices, while the sequential parts are left to
be executed in the CPU, called the host [34]. So, this is a hybrid approach which utilizes

the advantages of both the sequential and the parallel domain.
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Figure 2.15. Overview of the task and data flows in GPU SC

The architecture developed in [34] is as follows: Two threads, which reflect the two
main parts of SC, run in parallel in the host. These are called the producer and the
consumer. The producer finds triplets with systems that match the schemata of a
contextual system and belong to the same scope, called valid triplets. It consists of six
successive steps which run sequentially on the host. Three of them are offloaded to the
GPU. The consumer consumes the valid triplets, by executing the transformation
function of the context, with the two interacting systems as the arguments. Valid triplets
are chosen completely randomly (without prioritization). Triplet validity is rechecked
before the interaction, since a previous transformation might have changed the systems
scheduled to interact. An overview of the GPU SC implementation is illustrated in

Figure 2.15.

2.5 Summary

This chapter provides a detailed discussion on various approaches to Natural and
Systemic Computation. It summarizes software approaches and alternative
computational paradigms and further critically focuses on conventional and

unconventional hardware approaches on Natural Computation with an initial assessment
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of their compatibility with SC. Moreover, an overview of the SC architecture, as it was
introduced in [24], is given and the work performed to date on SC is reviewed and
assessed. This work involves three software implementations, a simple proof-of-concept
sequential design with limited functionality and performance, a high-level fully-
parameterizable sequential design with limited performance but extensive modelling
capabilities and a hybrid design with increased performance, taking advantage of the

vastly parallel computational ability of a GPU, but limited features.

It is highlighted throughout the chapter that widely-adopted computational paradigms
and techniques are inherently incompatible with Natural Computation while mainly
unconventional approaches are generally best suited to model nature in a more native
way. Systemic Computation has been designed to be compatible with those
differentiating properties that can be noticed in computation happening in nature, thus a
SC implementation is expected to model those natural systems natively. Software
implementations of such an unconventional paradigm, being sequential in nature, fail to

properly map SC so they just simulate a systemic computer.

A custom hardware design, exploiting the freedom of tailoring its architecture away from
conventional approaches, is expected to more closely match the underlying SC
architectural properties. Thus, an investigation should be performed at first to determine
the most appropriate hardware implementation platform for such a design to be realized
on. Numerous alternative platforms, having been presented critically in a SC context
above, can now be compared and indicate the most suitable among them for a practical

SC implementation.

The ideal implementation platform should ideally be compatible with the natural
properties of Table 1.1. However, there are some limitations, as many of the hardware
approaches in Table 2.1 represent emergent fields of research and would not be suitable
for a practical implementation. In order to identify the most appropriate among them, the

suitability of each approach for a SC hardware implementation must be evaluated.

Therefore, the features incorporated in a practical SC hardware implementation should
be identified. After examining the SC paradigm and its corresponding architecture and
taking into consideration the hypothesis of this work and its research challenges,
focusing on the utility and viability of a hardware system computer, it was concluded

that these features, in the hardware domain, should be:
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e Compatibility with as many as possible of the natural properties central to SC

(research challenge Chgl).

e Compatibility with inherent architectural features of the SC (research challenge

Chg2).

And addressing the practicality and efficiency of the implementation (research challenge

Chg3):

e Efficiency of Input/Output Functionality: sufficient to result in a standalone

platform.
e Programmability: an (at least basic) instruction set should be provided.

e Design friendliness: the implementation platform should be supported by standard
design methodologies, tools and documentation to accelerate the design period,

decrease error-proneness and enable efficient design verification.

e Technology Maturity: the implementation platform should be based on a mature
technology in order to be able to provide a practical implementation. Furthermore, if
a rich literature exists on designs based on the technology, inspiration can be derived
from it while existing design methods can be improved to increase performance and

efficiency.

e Scalability: the implementation platform should be able to be efficiently scaled to

support modelling of large-scale natural systems.

Along with the hardware-related requirements, there are also some design considerations

in the software domain:

e Compiler Support: a compiler should either be available or created to enhance

programmability.

e Support for more advanced instructions/functions: in order to enhance flexibility and

programmability.

e Backwards-compatibility with at least one of the earlier SC versions: this would

allow reusability of functional code (including a compiler).

An ideal hardware implementation platform would satisfy all the above-mentioned
requirements and considerations. However, as discussed in this chapter and summarized

in Table 2.3, finding a platform that fully satisfies all of them is not realistic.
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Table 2.3. Detailed evaluation of the reviewed hardware-based approaches against the
implementation requirements implied by the research challenges. No dot represents the
absence of support for the requirement, while three dots indicate full support
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According to Table 2.3, three entries are more suitable for a practical SC implementation

than the others according to existing technologies, approaches and platforms. These are:

e Wireless Sensor Networks: WSNs appear to be one of the most suitable hardware
implementation platforms. The variety of supported natural properties, the
compatibility with the SC architecture, the maturity of the technology and the
satisfactory scalability offered by the wireless link are the advantages. Their main
disadvantage is the underlying fixed conventional architecture of their processor and

their restriction in terms of resources and computational power.

e FPGAs: FPGAs have the unique advantage of external reconfiguration and self-
reconfiguration. The limitation is really left to the designer to exploit all their
potential to implement various natural properties. There is also the advantage of the
big number of FPGA-based projects on the field of Natural Computation, where
useful ideas can be adopted and extended. Scalability issues may be addressed using

an FPGA cluster or with the addition of wireless connectivity on the FPGA board.

e GPUs: GPUs are among the most suitable implementation platforms without great
support for natural properties since it has already been proven that they provide great
performance. Additionally, their performance is certainly going to improve as new
GPU models are released, since GPU development is driven by the games industry.
However, the solution we have at present is a compromise that parallelises only some

parts of the SC process. GPUs are dependent upon a CPU for centralized control.

The only implementation platform among the three that does not solely depend on the
existence of a conventional von Neumann architecture CPU in the system is the FPGA
platform. FPGAs are the only platform that provides the flexibility to design and
implement a custom and dedicated hardware design from the very beginning until the
system level, in order to highly optimise it for the selected application (in our case the
Systemic Computation), and at the same time not compromise on performance. In
addition, taking into consideration that FPGAs would be practical in terms of the number
of systems they can support and also able to provide an easily-accessible standalone

platform leads us to decide that:

The selected hardware platform for the first practical hardware-based

implementation of systemic computation is the FPGA platform.

The next chapter further discusses the SC architecture properties and presents the first

(FPGA-based) hardware architecture of Systemic Computation.
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Chapter 3

Designing a Suitable Hardware Architecture for SC

This chapter focuses on the investigation of a hardware design to support the underlying
architecture of SC (research challenge Chg2, section 1.4) and suggests the first Hardware
Architecture of Systemic computation (HAoS), taking into consideration the natural
properties of SC (research challenge Chgl, section 1.4) and at the same time attempts to
provide an efficient, practical and user-friendly solution (research challenge Chg3,

section 1.4).

Various potential architectures are initially reviewed (section 3.1), while then the SC
architecture properties are analyzed and discussed in the context of a hardware
implementation (section 3.2). This discussion leads to the suggested design (sections 3.4
- 3.6) which is presented along with the proposed extendable instruction set (section 3.3)
and a basic programming model (section 3.7). This base design is initially verified in
section 3.8 and is used in the next chapter as the basis of the complete HAoS

programming platform.

Part of the work presented in this chapter has been published in [158],[159] and [160].

3.1 Potential Architectures

The optimal solution for the hardware implementation of SC would be highly flexible
and at the same time highly efficient. The user would be able to write SC programs in an
unrestricted manner (following just the SC language rules). The key SC notion of
parallelism should be implemented for both functional and background system tasks
(systems update and storage, scopes update and storage, systems comparison and
communication). A number of candidate architectures (given that the implementation
platform is an FPGA), taking into account the implementation feasibility and viability,

were considered before concluding to the final design. These are overviewed below:

e Virtual SC: offloading functional computation to the CPU.
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e Fundamental Processing Element: SC performed solely on the FPGA but providing
support for an extremely restricted instruction set that will be implemented by

elementary processing elements.

e Reconfigurable Predetermined Processing Elements Array: Providing a more rich

instruction set but assuming low reconfiguration frequency.

e SC2HDL: Translate the SC code into hardware, using a tool that takes source code
written in the SC language as input and performs translation in a Hardware
Description language (HDL)', synthesis and Place-And-Route (PAR) in an

automated way.

e GPUplusFPGA: preserve the functionality of the GPU wversion (background
parallelizable tasks performed on the GPU) and offload computation to the FPGA
(by means of an predefined instruction set realized on hardware or a dynamic

instruction set by use of the SC2HDL tool).

3.1.1 Virtual SC

It is evident (see section 2.3) that the use of a conventional CPU is not compatible with
SC. However, the power of a custom design which is highly optimized to perform the
background SC system tasks, as they are mentioned above, could take advantage of the

flexibility and performance provided by a CPU.

Provided that a modern FPGA is used, an estimation of the highest frequency of an on-
chip implementation could be claimed to be in the order of 600MHz [161]. For the
purposes of this analysis, we may assume that the final design may achieve 1/3 of the
maximum frequency (200 MHz). Assuming 10 on-chip flexible processing elements and
taking into account any delays caused by off-chip communication, it would be safe to
claim that a conventional single-core CPU could cope with the computational load,
provided that the communication interface is able to cope with the communication load.
While the background system tasks will optimally run on hardware, the functional tasks
will be executed on “virtual” on-chip processing elements, simulated by the CPU.
Extending this strategy, a modern multi-core multi-threaded processor with 4 cores and 2
threads for each core could provide the computational equivalent of up to approximately

a hundred processing elements (assuming a 2-3GHz frequency for each core) by

' Most probably VHDL.
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consuming on-chip resources just for the communication infrastructure. Nevertheless, it
is noted that the communication overhead could become substantial for a large number

of systems.

Embedding a sequential processor aside, the disadvantage of this approach is its
resemblance with the GPU implementation (see section 2.4.3). Modern GPUs are
becoming more powerful, embedding typically hundreds or even thousands'’ of
processing elements but yet preserving a more centralized architecture than the one that
a custom FPGA design can provide. However, the GPU architecture still needs to be
fairly generic in order to support any parallelized task. This can be avoided with a highly

optimized FPGA design.

Despite of the above-mentioned disadvantages, the virtual SC architecture, shown in
Figure 3.1, could be considered as an entry-level design that is focused on realizing the

background system tasks on hardware and emulate the functional subsystem in the CPU.

CPU Dedicated Hardware
Executes cPU
Transformation ) INTERFACE Performs SC
Functions Background Tasks

Figure 3.1. Virtual SC architecture simplified block diagram

3.1.2 Fundamental Processing Element

In contrast with the previous approach, instead of offloading computation to the CPU,
this implementation severely restricts flexibility by keeping functional complexity to a
minimum but keeps computation on-chip. The instruction set is limited to basic functions
that can be realized in a combinatorial way. Sequential processing elements are avoided
as they are not compatible with the SC paradigm. Also, basic functions realizations have
lower area requirements and thus a larger number of them may be implemented on-chip.
Restricting all SC functionality on-chip makes communication interfaces on the chip

boundaries obsolete, with the exception of possible chip-to-chip interfaces that will

'” The NVIDIA GeForce GTX TITAN GPU has 2688 CUDA cores while the AMD Radeon HD
7990 GPU has 4096 stream processors.
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enable expanding the functionality on multiple chips. A simplified block diagram of the

architecture is given in Figure 3.2.
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Figure 3.2. SC Fundamental Processing Element architecture simplified block diagram

The limitation of this approach is obviously its restricted functionality. Nevertheless, it
could be argued that it could serve as an intermediate step towards the final design.
Provided that the background system tasks are developed for the Virtual SC design, they
could be reused for this implementation. The functional difference of the two designs is
the supported flexibility and the relative location of performing the computation. In
essence, the extended functionality of the Virtual SC design is traded with the ability of
having a standalone design that complies with the non-sequential rule of the SC

paradigm.

3.1.3 Reconfigurable Predetermined Processing Elements Array

Having moved computation on-chip in the previous approach severely limited
functionality. To address this issue a reconfigurable predetermined processing elements
array'® can be used, essentially meaning that each transformation function can be pre-
mapped to custom logic and loaded on the reconfigurable logic on-demand. Since, after
the SC source code is compiled, the initial required functional elements are known, those
can be realized in a chosen on-chip area that is configured to perform the required form
of computation. Provided that the required instructions do not imply a restrictive area

overhead, this design can potentially support any predefined processing element. The set

' Analogous to the approach followed in the Molen reconfigurable processor (section 2.2.3) and
a similar design providing an Algorithm-on-Demand implementation (relying on a host CPU,

thus provided in a co-processor form) suggested in [249].
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of supported functions can be optimized for hardware implementation and can either be
statically realized on chip or dynamically chosen from a pool of functions, stored either
on-chip or off-chip (depending on size) in the form of configuration bitstreams. The

architecture is shown in Figure 3.3.

Bitstreams for Processing Units
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Reconfigurable
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Background Tasks
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Figure 3.3. SC Reconfigurable Predetermined Processing Elements Array architecture

simplified block diagram

The limitations of this implementation are the area overhead due to the functional
elements and the design complexity. Restricting the supported instruction set and the
number of on-chip instances of processing elements could reduce the required on-chip
area. The use of partial chip reconfiguration will inevitably lead to following vendor-
specific design methodologies that will restrict the design to a vendor-specific
implementation (the vendor being the chosen FPGA platform supplier). The
reconfiguration time highly depends on the size of the partial bitstream being loaded to
the FPGA and the selected configuration mode'® and it can vary greatly (from the order
of 10 ps down to the order of 100 ms) [162]. Thus, a low reconfiguration frequency must

be assumed for this implementation to be functional.

Another consideration is that a predefined array implies that a functional element can

only be altered to become another already existing block in the provided function pool.

" For example, if a Xilinx Virtex FPGA is chosen, the maximum provided configuration
bandwidth is 3.2 Gbps for the vendor-specific ICAP mode, and 100 Mbps and 66 Mbps for the

more common Serial and JTAG modes, respectively [162].
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Assuming a limited number of different types of functions being realized for any given
SC program, functions being changed during execution (as shown in [151] with the
genetic operator adapter) is not essentially supported. Along with having a prearranged
set of functions, a predetermined area of the chip will need to be pre-allocated in order to
realize the partial reconfiguration functionality. This implies that, depending on the

functions being realized, part of the reserved hardware resources may need to be unused.

This design could potentially be the base of the final SC hardware implementation. The
majority of the aforementioned limitations are bound to the restrictions imposed by the
chip size. Further improvements will have to address chip-to-chip communication to
resolve this issue. Any high level SC instructions will have to be mapped to hardware
processing elements by a translation step on the software side that decomposes those

instructions to basic instructions supported by the hardware instruction set.

3.1.4 SC2HDL

A SC to HDL tool would translate a SC program to a circuit that would be optimized to
execute this program only. Effectively, this approach could maximize the on-chip
hardware resources utilization. Also, it could be applied either for a predefined set of
instructions (following the first SC implementation) or, targeting a more generic and
flexible approach, it could be developed as a high-level SC synthesis tool (following the
SCoPE implementation). It is noted that following this approach, every SC program

would result in a different custom design.

This implementation would probably be the most flexible and area-aware. The size is
again the limiting factor. This approach assumes that the user has acquired a license for
the required tools that will manage the backend realization process (synthesis and PAR).
The development process will require a conventional microprocessor to download the
circuit on the FPGA. Extra care should be taken when developing the SC2HDL* tool
since, while the FPGA-vendor tools have been developed to make the backend tasks
automated, user feedback input is typically required before having a fully-functional

implementation.

In order to realize any function, and thus get maximum flexibility, the high-level source

code will have to be translated to an HDL. However, none of the SC language versions

2 SC2FPGA might be more clear in describing the whole flow. SC2FPGA would insist of the
SC2VHDL tool for the front-end and vendor-specific tools for synthesis and PAR.
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to date provide inherently the ability to describe new functions, but rather, those are
described by means of a software high-level language (C/C++) (either predefined in the
code or dynamically created as plugins). This implies the need of a C2ZHDL compiler. A
few C2HDL compiler attempts have already been made and the majority of them are
commercially available [163], [164]. A viable solution for an SC2HDL tool would be to
incorporate one of the available compilers and combine this with the vendor-specific
tools. The main disadvantage of this approach would be the limited control of the
resulting HDL. A possible solution to this issue would be to develop an intermediate tool
that accepts the automatically extracted HDL code and alter it in a way that it is
synthesizable and ensure that the backend tools will not encounter any problems, taking
always into consideration the development speed of such an approach. Yet, this may be
an infeasible task since further (especially automated) optimizations may be prohibited

depending on the level of abstraction.

3.1.5 GPUplusFPGA

This is a rather novel approach. Since the power of a GPU performing background SC
system tasks has been demonstrated in [165], the idea of reusing the advantages of this
implementation is highly appealing. The GPU will still be used as a co-processor, but the
place of the sequential processor will be taken by a pool of processing elements
implementing on the FPGA. Various attempts can be found in the literature that use both
FPGAs and GPUs as coprocessors [166], [167], even combining them on the same board
[168], suggesting transferring the GPU logic on the FPGA [169], communicating directly
through a PCI-Express switch [170] and translating directly a GPU programming
language (CUDA or OpenCL) on FPGA resources [171][172]. Yet, all these attempts
rely on a host CPU. Offloading computation on an FPGA that acts as a host for the GPU,
illustrated in Figure 3.4, could be a potential solution for the SC hardware

implementation but probably it would not be trivial.

FPGA GPU
Control Tasks & Iﬁtﬁ'g?e
Transformation ) Performs SC
functions Background tasks

Figure 3.4. GPUplusFPGA architecture simplified block diagram
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The main disadvantage would be the lack of supported tools for an implementation like
this and the need for development of drivers for the GPU. The idea is to emulate the
control flow provided by the CPU on a typical CPU-GPU system on the FPGA.
Inevitably, the GPU-FPGA interface would have to be sequential and might even cancel
the benefits of avoiding using a CPU when considering the development effort, FPGA
required resources and limited flexibility due to lack of programming and debugging

tools for a configuration like this.

3.1.6 Summary

The hardware systemic processor could potentially be implemented on an FPGA
following one or more of the aforementioned ways. It is noted that combining more than
one of those approaches (e.g. the first three) can result in a more modular design process.
In contrast, the last two approaches can be considered as standalone solutions.
Nevertheless, it should be underlined that there are overlapping design elements for all
approaches (the hardware realization of the SC background system tasks is required for
all approaches except the last one while the SC2HDL tool could potentially be used for
the Predefined Elements Array or the GPUplusFPGA approach).

The main advantages and limitations of each approach are outlined in the preceding
sections. It can be claimed that the most modular solution of going through the first three
approaches is more feasible based on the required work load against the available time
frame of this research project. The addition of the SC2HDL tool (or part of it - with
support for a predefined set of instructions) can be reconsidered in the future as an
expansion to this work. The last approach may not yet be feasible due to the lack of

support tools.

A fully non-sequential SC hardware implementation would not be practical since, even if
the majority of on-chip logic could be combinatorial, the nature of the memory elements
and the interfaces with the off-chip resources will have to be sequential. Also, chip size
imposes limitations to the hardware resources that can be utilized in order to implement
the required functionality of a SC program. The sequential alternative may need to be

used (especially for a single-chip SC hardware implementation) in such cases.

As a result of the analysis above, an appropriate solution would combine the Virtual SC
and the Fundamental Processing Element approaches by embedding dedicated processing
elements on-chip but also providing the option of work-load offloading to an (internal or

external) CPU in order to handle the functional (data-processing) system tasks. The
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background system tasks are executed natively on-chip. The suggested hybrid design is

illustrated in Figure 3.5 and detailed throughout the rest of this chapter.
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Figure 3.5. The suggested hybrid design
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3.2 Design Analysis of the SC Architecture

The proposed Hardware Architecture of Systemic computation (HAoS) attempts to
satisfy the basic SC requirements, taking into consideration the desired features of a
practical implementation: programmability, design friendliness, technology maturity, I/O
functionality efficiency, advanced processing features, compiler support and scalability.
It preserves partial backwards compatibility with the original SC implementation in
order to take advantage of the available compiler but expands on the supported
functionality by adding new features. Thus, SC source code targeting the original

implementation (and the GPU-based version) can be natively executed on HAoS.

The SC concept dictates that any three systems are eligible to form a valid triplet. A fully
parallel implementation would generate a valid triplet of systems, in a random manner,
for all contexts, in all scopes during an iteration of a SC program. In addition, all
interactions would happen instantaneously, provided that adequate parallel processing
resources were available. Resource limitations forbid a practical implementation of this
approach on an FPGA. It is evident that the main two tasks that would ideally be
executed in parallel are valid triplet generation (finding triplets of interacting systems)

and system transformation (the actual data processing).

This section mainly addresses research challenge Chg2, as it discusses various features

of the SC architecture, and analyses their respective design decisions. Related natural



Chapter 3. Designing a Suitable Hardware Architecture for SC 86

properties are also discussed (research challenge Chgl), where applicable, while as
shown below practicality and efficiency are major decision factors (research challenge

Chg3).

3.2.1 Local Knowledge & Scope Definition Method

One of the assumptions (and supported natural properties) of the SC paradigm is that
systems have “local knowledge”. This can both refer to local storage of the internal state

of each system and awareness in terms of its membership within other systems' scopes.

However, local knowledge is a feature that cannot be efficiently mapped on on-chip
logic. The system bit representation and the scopes it belongs to could potentially be
stored in registers which do not reside in the same area of the chip. Yet, storing this
information in local registers was not adopted but it was decided that the proposed
design should store it in system RAM instead. The use of a RAM in this design is
justified by the fact that RAM storage volumes are greater than those provided by
registers in modern FPGAs and since no more fabric would need to be consumed for
address decoding logic. Moreover, only a finite number of systems can be stored on a
single RAM, which defines a neighbourhood for its systems, while the total number of
systems can be spread over multiple RAMs. As a result, a potential failure in one of the

RAMs would leave the rest of systems of the program unaffected.

Apart from its binary contents, every system can belong to any number of scopes defined
by other systems. In SCoPE [22], local knowledge is correctly simulated as each system
holds a list of all its parents (the scopes it belongs to). In order to fully support this
feature, HAoS would need to locally store the parents' information in registers, which
would result in a considerable increase in the number of required on-chip registers as the
number of maximum supported systems scaled up. It was decided that it is more
important to preserve scalability (research challenge Chg3) than fully support local
knowledge (research challenge Chgl), so the global scopetable approach was selected as
the scope definition method, with the parents of each system stored in RAMs.

3.2.2 Scopes Support

In the original SC implementation (see section 2.4.1), scopes are infinitely recursive;
they have fuzzy boundaries and may overlap. Recursive scopes may contain themselves
and other systems which in turn contain themselves and other systems and so on. Fuzzy
scopes enable partial membership of a system into another system while overlapping

scopes partially belong to each other.
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In this work, a system containing itself is supported but fuzzy or overlapping scopes are
not. This decision was made in order to reduce the amount of required storage for the
program scopetable. Enabling fuzzy or overlapping scopes would require a fractional
value to be stored in the scopetable, increasing the number of bits to represent the scope
membership. This would enable a more accurate control of interaction probabilities;
however multiplying the size of the scopetable would limit scalability (research
challenge Chg3). Thus, a one-bit representation was preferred, denoting that a system
can either belong to a scope as a whole or not belong at all. The interaction possibility
control can either be embedded in the implementation of the transformation function of
the executed instruction (as shown in [22]) or by appropriately setting the number of
identical systems in the scope (assuming all individual systems share the same

interaction possibility).

In SCoPE [22], the notion of the universe is also introduced to define a super-scope
which includes all other systems in the SC program. The notion of universe here is
analogous to the “main” function of a typical conventional C program. This super-scope
is indirectly supported and used in all HAoS programs to include all used systems of a
HAoS SC model (yet allowing floating systems - systems that do not belong in any
scope). The universe system can also have a physical meaning in future work, as it can
be used to describe all the systems that are stored on a single FPGA device. For a multi-
FPGA configuration, each universe can correspond to one FPGA device, each with its
own scopetable and systems. Then, all universes would belong to a root scope or
“multiverse” (forming a multi-FPGA SC program) enabling communication between

them with the form of mutual systems exchange.

3.2.3 Valid Triplet Generation & Schemata Matching

One of the main limitations of the software-based implementations was the way valid
triplets were generated. The common strategy was to randomly select three systems (one
of which acted as context) in a scope and then check triplet validity (by examining if the
operand systems matched the schemata of the context). In [34], this task is assigned to

the GPU which handles it in parallel, resulting in great performance gains.

The most straightforward hardware implementation for the valid triplet generation
mechanism would be a sequential design with an optimized comparator iteratively trying
to match the templates defined by the schemata of the context system to all valid systems
in the selected scope. This approach would result in minimal area utilization, as the same

comparator would be reused for all comparisons, and possibly a very fast circuit as the
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required combinatorial logic would be minimal too. However, the overall latency of such
a sequential design would be increased proportionally to the number of systems and

would prove impractical for SC programs involving a big number of systems.

Thus, a parallel schemata matching mechanism is crucial for the design, if we want to
minimize latency and handle valid triplet generation optimally (research challenge
Chg3). In addition, as parallelism is one of the desirable natural properties, employing a
parallel design would also address research challenge Chgl. Thus, in order to identify
which systems may interact during each iteration of the systemic program, a parallel
binary matching mechanism, matching the templates of context systems against the
schemata of all interaction candidates, would be the most suitable solution. This
essentially implies the use of a comparator which, given a binary input, has the ability to
match this input (the template) against the contents of an array of elements (storing the
systems) in a parallel fashion. In addition, it should also support full and partial

matching, meaning that some parts may need to be ignored during comparison.

These requirements for optimal valid triplet generation are fully satisfied by exploiting
the inherent parallelism of a Ternary Content Addressable Memory (TCAM). While
traditionally used Random Access Memories (RAMs), when provided with an address
return the data stored in this address, CAMs compare their input data with the data which
they store and provide all matching addresses in parallel. This is illustrated in Figure 3.6.
Moreover, CAMs can be efficiently implemented on modern FPGAs, utilizing on-chip

memory resources [173].

0
0x00 0x01 0x00| 10101001 |—=p
Address In Data Out Data In o Addresses Out
—— 0X01 0x23 > P 0x01 11001011 —_— | e—r
0x27 0x67 00X01101 1 010000100
. 0x02| 00101101 |—»
ox03| 10111011 |9
0x26 0x45 0x04| 10000010 |94
0x27 0x67 0x05| 00001001 |4
0x28 0x89 ox06| 11101011 |2y
0x07| 00001101 |p
ox08| 10101110 |2

Figure 3.6. Typical RAM and TCAM usage

Prior implementations compared each character of the given template of a context (see
Figure 3.8) to the corresponding character of a candidate system separately, yet HAoS,

by using a CAM, compares the given template as a whole (all its characters) with all the
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systems that the program defines and gives all the matching systems in parallel (see
Figure 3.7). Moreover, TCAMs have the ability to perform ternary comparisons,
meaning that both the input and stored data can include “don't care” bits. As shown in
Figure 3.6, data stored in both addresses 0x02 and 0x07 of the TCAM match the input
binary data word 00X01101 as its “don't care” bit, written as an “X” wildcard, can match
both a 0 and a 1 bit. These features allow parallel partial schemata matching which
enables a guaranteed match of systems to the schemata of the given context, provided

there are such systems in the scope of the context.

HAO0S

System

Matching
Template

Systems

TCAM

Figure 3.7. HAoS TCAM usage

3.2.4 Threshold Matching

As mentioned in section 2.4.1, the original SC implementation, along with partial
matching, defines threshold-based matching in order to control the schemata matching
precision by comparing the Hamming distance between the two schemata against the
matching threshold. Effectively, this means that systems similar to the ones indicated by

the schemata template can be selected to interact (the threshold adjusts the similarity).

Since schemata matching is performed as a parallel operation in this design, as explained
above, supporting this functionality would require an array of Hamming distance
hardware blocks equal to the maximum number of supported systems instead of using

the highly efficient and more compact solution of the TCAM.

Thus, in order to minimize the area requirement of the circuit (research challenge Chg3),
the TCAM was chosen instead, disabling threshold matching for HAoS. However, the
user can use fixed-position wildcards in order to partially adjust the similarity (by setting

the position in which the systems may be different but nevertheless match).

3.2.5 Systems Representation & Coding Method

As explained in section 2.3, the SC paradigm defines interactions between any two
systems according to the transformation function of a third contextual system. Thus,
HAoS supports three types of systems, as shown in Figure 3.8: (a) data systems,

comprised of two schemata (with 16 effective bits each) and a zero (32-bit) function
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part, (b) context systems, comprised of a (32-bit) transformation function and two
schemata templates (used for matching with data systems and thus occupying the size of
a whole data system, 64-bits, each but with zero transformation functions) and (c)
context adapter systems which have the same structure with context systems (but each of
their templates can match a data system or a context). Since all the systems have the
same size, each bit in a schema of a data system is padded with three zero bits to form a

4-bit element or character.

(a) A Data System

|-7 Data System Template 14{ |-7 Data System Template 24-|
0(00|b| 16 elements/effective bits 32 Zero bits . 16 elements/effective bits
transformation function
——
4bits per
element
(b) A Context System
|-7 System 1 Template4-| |-7 System 2 Template4—|
16 bits 32 bits zero 16 bits 32 bits 16 bits 32 bits zero 16 bits
schemata1 transformation function schemata2 context function schemata1l transformation function schemata2

(c) A Context Adapter System

|-7 System 1 Template4-| |-7 System 2 Template4—|

16 bits 32 bits non-zero 16 bits 32 bits 16 bits 32 bits non-zero 16 bits
schemata1 transformation function schemata2 context adapter function schemata1 transformation function schemata2

Figure 3.8. HAoS Systems Representation

While the word length of the schemata (system templates) and transformation function is
equal (16 one-byte characters) in the original implementation, as shown in Figure 2.13, it
was decided that HAoS should adopt a different approach in order to optimize the
required size of representing each system. Since a system template has to indicate a
prototype for a whole system to match, it should have a size equal to the effective bits
(which are the bits used for matching purposes) of this system. If schemata and
transformation function had the same size, this would imply a compression scheme
(compression of a whole data system, in order to have the same size with the template,
by using only the effective bits of each schema) with compression ratio 3:1. This, then
would denote that each character (or element) of the template should have at least three
bits in order to be compressed into the minimum storage space (one bit). However, four
bits per character were selected instead, in order to resolve any byte-alignment issues
that a choice of three bits might cause, simplify the control logic and, by providing a 4:1
compression ratio, enable the use of a greater transformation function size. This allows
more distinct instruction opcodes and provides more space for future uses (for example a

variable part, see Table 3.3).
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Table 3.1. HAoS Compression Code. Each HAoS assembly code ASCII character (C) is
compressed internally into a 4-element ternary value (Val). Each element is composed of 2
bits representing 0, 1 and (?) ternary bits (tbits)

Val. C | Val C|Vval C| Val C|[Val C|Vval C |  vVal C| Val C | vVal C
0000 ! (0100 / |0?00 : | 1000 @ |1100 I [1?200 R |?000 ° | ?100 i | ??200 r
0001 # |[0101 2 |0?01 ; | 1001 A |1101 J [1?01 S |?001 a |?101 j | ??201 s
000? % | 010? 3 |0?0? < | 100? B |110? K | 120? T |?00? b | ?210? k | ?220? t
0010 & (0110 4 |0?10 = (1010 C | 1110 L |1?10 U |?2010 ¢ | 2?2110 1 | 2?10 u
0011 * (o111 5 |0?11 > [1011 D |1111 M | 1?11 V |?2011 d | 2111 m | 2211 v
001? + | 011? 6 | 0?21? [ | 101? E |111? N |[1?21? W |?201? ¢ | ?211? n | 2217 w
0070 , | 01?20 7 [0??20 ] | 10?20 F |11?20 O | 1?20 X | 2?0?20 f | 2170 o | 7?7?20 x
00?1 - | 01?1 8 (0?21 ~ | 1071 G |11?21 P | 1?21 Y [ 2?20?21 g | 21?71 p | 7771 y
00?? . 01?2 9 | 0?22 _ | 10?2 H | 11?2 Q | 1?2?72 Z |?0?? h | 21?27 q | 277? z

In order to support this four bits per character compression scheme a different code table
is used (given in Table 3.1) from the one used in the original SC implementation (shown
in Figure 2.13). This code table is used to compress the SC assembly code which is
generated from the SC compiler (in ASCII format) into a ternary format using 0, 1 and
ternary (?) bits (matching both 0 and 1) to give machine code for the HAoS digital

architecture. Each ternary bit is represented internally with two binary bits.

3.2.6 The Compiler

The SC compiler of the original SC version was written in C [24]. Targeting practicality
and efficiency (research challenge Chg3), the compiler was updated to support the extra
functionality that HAoS offers (context adapters, signed numbers), efficiently handle
memory management for programs with a big number of systems and support the
required compression code of Table 3.1. As the compiler program needs to be executed
on a machine which is able to run compiled C code, the use of a conventional CPU is

inevitable if this architecture is to remain backwards compatible with earlier versions.

Once the SC source code is compiled in HAoS human-readable assembly code, the
assembly code which corresponds to the systems which are defined in the HAoS
program must be compressed (according to the HAoS compression code) into a
representation which is tailored to the underlying hardware architecture (optimized

HAo0S machine code) and loaded on on-chip memory (see section 3.6.1).

3.2.7 Interactions Order

One of the fundamental properties of natural systems that SC supports is that they are
stochastic (see section 1.1), denoting that interactions happen in a random order. All

previous SC versions attempt to implement this property by randomly selecting the next
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interacting systems, but result in just simulating the process. This is because the random
selection should be combined with parallel execution of interactions or, even more
accurately, there should be no selection but just random parallel interactions to truly
implement the stochastic property. However, in practice, the random selection process is
inevitable, as it is a means of controlling the systems interaction flow. This implies the
requirement for a source of randomness and some associated circuitry (this random

selection logic is presented later in section 3.6.2) to implement this process.

This requirement for on-chip randomness denotes the implementation of a random
number generation (RNG) scheme. RNG on FPGAs has been extensively addressed in
the literature with approaches targeting pseudo-random numbers sequences (PRNG)
[174], [175], usually involving some post-processing logic if non-linearity is required,
true RNG (TRNG), which relies on some source of natural randomness (as thermal input
or jitter from on on-board or on-chip ring-oscillators [176], [177]) and Quasi-RNG
(QRNG) which covers some multi-dimensional space uniformly (usually used for

Monte-Carlo simulations).

Since typically more randomness quality involves more complex circuitry, a Linear
Feedback Shift Register (LFSR) pseudo-random generator is assumed to be sufficient for
random selection in HA0S, as it provides a well-balanced solution in terms of utilization,
throughput and randomness [178] for non-security applications, especially as a starting
point for the suggested prototype implementation. The implementation of the PRNG
block may be revised, should increased randomness quality is required, and replaced

with one of the more advanced approaches mentioned above.

Prior SC implementations used priority queues that either gave priority to systems that
had recently interacted [24] (in order to increase execution efficiency by enabling a
diffusion effect for subsequent interactions involving the same system) or had not
recently interacted [136] (ensuring a more “fair” interaction allocation since all systems
share the same interaction probability). HAoS also uses a pseudo-random number
generator to randomly identify valid triplets but this operation is not biased by previous
interactions. All matching systems have the same interaction probability (resulting in
reduced control logic complexity) while, as explained above, the use of the TCAM
ensures maximum matching efficiency. While future work may target parallel processing
capabilities, true parallel interaction is currently not supported by HAoS, since writing to

the TCAM is limited to one system at a time in order to improve its area and enable
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ternary comparisons (assuming that parallel interactions would transform the interacting

system simultaneously).

A fully asynchronous design might enable the true implementation of the stochastic
property, but such an implementation would require that all systems, matching and
control circuitry and interconnections would be realized in combinatorial logic which
would pose a great area requirement and increase the possibility of timing hazards [179].
However, it is noted that ongoing research is been carried on providing practical
asynchronous FPGAs [180][181], conversion methodologies from synchronous designs
to their functional asynchronous equivalents [182] and hybrid approaches like Globally

Asynchronous Locally Synchronous [183] circuits.

3.2.8 SC Architectural Features Summary

The SC architectural features to be implemented by HAoS, and discussed in the previous
sections, are summarized in Table 3.2 along with the corresponding solutions used by
prior implementations. The analysis above addresses research challenge Chg2 by

explaining how HAoS will support the underlying architecture of SC.

Table 3.2. Implementation-specific features of HAoS and prior implementations

Feature Original SCoPE GPU HAoS
Software (CPU), | Hardware (FPGA),
Implementation Software Software (CPU), hardrvare- written in VHf]?L,
Platform (CPU), ‘ written in C++ acce erateq supporting so'tware
written in C (GPU), written (CPU) extensions
in CUDA (C/C++)

Word-length

16-character
word length,

1
byte/character
(systems
consist of 48
characters)

variable length

(1 byte/character),
customizable for
each program

16-character
word length,
1 byte/ character
(systems consist
of 48 characters)

16 4-bit characters
schemata length,
32 1-bit characters
function length
(systems consist
of 64 characters)

characters of

customizable for

characters of

81 (3%
(4 ternary bits each,

alphabet 29 each program alphabet 29 .
Coding Method | (ASCII (default is ASCII | (ASCII 3 values cach tbit)
ASCII characters
characters 0,1 characters # and | characters 0,1 .
and ' to z) ato z) and ' to z) ! to z excluding
characters 0 and 1
customizable for | Thirty basic and | Basic, hardcoded
Transformation Thirty basic cach program, seven hgrdcoded appll'catlon-
Function Set functions functions defined | application- specific and user-
as C++ plugins specific defined functions
(DLLs) functions support




Chapter 3. Designing a Suitable Hardware Architecture for SC

94

Table 3.2.(Continued) Implementation-specific features of HAoS and prior implementations

Feature Original SCoPE GPU HAoS
Schemata Partial matching . . Part.1a1 matching Parallel Partial
Matching acainst thresholds Partial matching | against matchin
Method gal thresholds &
Pseudo-Random Ps§udo—Random Pseudo-Random
. (Biased — .
. (Biased — Lo (Biased — Pseudo-

Interactions C. Prioritizes .

Order Prioritizes recentl Prioritizes Random
recently changed Y recently changed | (Unbiased)
systems) unchanged systems)

y systems) y
Local Scope
Simulation
Scope Definition | Global Scope (scopes Global Scope Global Scope

Method

Table

including a

Table

Table

system are part
of its definition)

As indicated by the design choices of the last column of Table 3.2, explained throughout
this chapter, HAoS attempts to optimize the efficiency versus flexibility trade-off,
providing the user with a flexible architecture which takes into consideration
performance and programmability in order to provide a practical solution, addressing in

this way research challenge Chg3.

3.3 HAoS Instruction Set

It is necessary to provide an instruction set for HAoS, and the solution proposed here is
to use an on-chip hardware-supported RISC-like set of simple functions. Furthermore, in
order to enhance flexibility, this core instruction set can be further extended by both
extra hardware-supported application-specific instructions or software-implemented
functions (see section 3.4). It is noted that a HAoS instruction does not share the
definition of an instruction found in a conventional ISA but rather expresses the type of
transformation that systems undergo when they interact. These interactions happen in a
random manner; the execution probability of each SC interaction depends solely in the

number and types of systems in the SC program.

The instructions are given by the transformation function (middle) part of a system (see
Figure 3.8). Their respective fields are explained in Table 3.3. In this prototype HAo0S
implementation, the transformation function is given by a 32-bit field. The first (LSB) 22
bits give the function identifier, the next bit (at position ESC BIT POS) enables the
hardware-supported escaping functionality (to be explained later) which can be executed
in parallel with any instruction except the CAPTURE instructions (also to be explained

later), the next 8 bits are reserved (they may be used to store variables as part of the
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instruction) while the MSB enables the NOT functionality which reverses the matching
requirement of an instruction (when enabled, the systems that do not match the provided

schemata are selected).

Table 3.3. HAoS Instruction Fields

Bits Meaning

FUNCTIONID-2..0 (21..0) Function Identifier
ESC BIT POS (22)
FUNCTIONSIZE-2..ESC_BIT _POS+1(30..23)

FUNCTIONSIZE-1 (31)

If Set Then system also escapes from parent scope

Reserved (variable part)

If Set then the matching requirement is reversed

The prototype implementation of HAoS supports the instruction set given in Table 3.4. It
is noted that this is an example instruction set, as more instructions can be supported
according to user requirements. Table 3.4 comprises three sections: the SC Core
hardware instructions which are supported natively from HAoS Function Unit (these
were supported in software by the prior fixed instruction-set SC implementations
[24][34]), SC Extra instructions, which are also implemented on-chip but can be
application-specific or realized outside the FU (e.g. on dynamically reconfigurable fabric
or DSP blocks) and software-based instructions implemented on the (on-chip or off-chip)
CPU (these instructions are defined to have an opcode above a predetermined threshold

in order to simplify HAoS control logic).

Table 3.4. HAoS Instruction Set

Context
Adapter
Flag

Mnemonic Code(hex)  Short Description Operation

SC Core HW Functions

(Non-zero to differentiate from data

NOP 0000000F  No Interaction -
systems)
System escapes from parent scope
ESCAPE 0040000F  to all scopes the parent scope - Scopetable manipulation
belongs to
ADD 00000001 Add schematas of interacting R sysl.sch2 i sysl.sch2 + sys2.sch2;
systems sys2.sch2 = 0;
SUBTRACT 00000002 Subtract schematas of interacting : sysl.sch2 i sysl.sch2 - sys2.sch2;
systems sys2.sch2 = 0;
. . . _ * .
MULT 00000003 Multiply schematas of interacting B sysl.sch2 = sysl.sch2 * sys2.sch2;
systems sys2.sch2 = 1;
DIV 00000004 Divide schematas of interacting } sysl.sch2 = sysl.sch2 / sys2.sch2;
systems sys2.sch2 =1;
. < cvel < = avel < 0/ «ve?) < .
MOD 00000005 Modulvof schematas of R sysl.sch2 = sysl.sch2 % sys2.sch2;
interacting systems sys2.sch2 = 1;
Check if schemata of system is if sysl.sch2 =0 =>
ISZERO 00000006 zero B SET sysl.schl[schematasize-1]
AND 00000007 AND schematas of interacting } sysl.sch2 = sysl.sch2 AND sys2.sch2;

systems

sys2.sch2 = sysl.sch2 AND sys2.sch2;
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Table 3.4. (Continued) HAoS Instruction Set

Context
Mnemonic Code(hex)  Short Description Adapter Operation
Flag
SC Core HW Functions
OR schematas of interacting sysl.sch2 = sysl.sch2 OR sys2.sch2;
OR 00000008 systems ° sys2.sch2 = sysl.sch2 OR sys2.sch2;
XOR schematas of interacting sysl.sch2 = sysl.sch2 XOR sys2.sch2;
XOR 00000009 systems sys2.sch2 = sysl.sch2 XOR sys2.sch2;
00 sysl.schl = sys2.schl;
sysl.sch2 = sys2.sch2;
01 sysl.function = (sys2.sch2,sys2.schl);
COPY 0000000A  Copy parts of interacting systems
10 sys2.function = (sysl.sch2,sysl.schl);
11 sysl.function = sys2.function;
00 sysl.schl =0; sysl.sch2 =0;
sys2.schl =0; sys2.sch2 =0;
01 sysl.schl =0; sysl.sch2 =0;
ZERO 0000000B  Zero parts of interacting systems
10 sysl.schl =0; sysl.sch2 =0;
11 sysl.function = 0;
sys2.function = 0;
System is removed from parent
CAPTURE 0000000C  scope and captured to capturing - Scopetable manipulation
scope
SC Extra HW Functions
ADDxc¢ 00000011  Add schematas & exchange N sysl.sch2 = sysl.sch2 + sys2.sch2;
sys2.sch2 = sysl.sch2;
ADDuc?2 00000012  ‘*dd schematas but keep the second sys1.sch2 = sysl.sch2 + sys2.sch2;
unchanged
SC Example CPU Functions (Above SC_SW_THRESHOLD=512)
XESCAPE 00000200 tsa‘;f(‘ware emulation of ESCAPE - Scopetable manipulation
XCAPTURE 00000201 tsa‘;f(‘ware emulation of CAPTURE Scopetable manipulation
PRINT 00000202  Print system in standard output - -
POWER 00000203  Exponentiation - sysl.sch2 = math.pow(sysl.sch2,sys2.sch2)
ROOT 00000204 Arithmetic root - sysl.sch2 =

math.pow(sys1.sch2,(1.0/sys2.sch2))

KNAPSACK* 00000280 Knapsgck Problem Related B }
Functions

For each instruction, its mnemonic (codename), opcode (in hexadecimal notation), a
short description of the interaction they represent based on the Context Adapter Flag
(discussed below) and its operation (their effect on the state, data and scope of the
interacting systems) are given in the respective columns of Table 3.4. For example, the

Multiply instruction has MULT as a mnemonic, its opcode is 0x00000003 while schema
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2 of system 1 (sysl.sch2) gets the product of the multiplication of the schemata 2 of both
systems (sysi.sch2 * sys2.sch2) while schema 2 of system 2 is set to 1 (sys2.sch2 = I).

Various systems parts are altered after an interaction according to the Operation column.
For some instructions there is the option to define a different type of interaction
depending on the type of the two interacting systems. This option is controlled by the
Context Adapter Flag - CAF (4th column). The CAF is a 2-bit field which states the
types (data or context) of the interacting systems. Each bit corresponds to one of the
system templates of a context adapter system (see Figure 3.8c). The LSB corresponds to
template 1 while the MSB corresponds to template 2. A set bit in the CAF implies a

context system template while a zero bit implies a data system template.

Thus, a context system is essentially a context adapter system with both its system
templates representing data systems (CAF = 00). When CAF is 01 or 10, the context
adapter system is in mixed mode with a data system interaction with a context system

and vice versa respectively, while when CAF is 11 two context systems interact.

Two instructions are SC-specific and perform scopetable manipulation meaning that they
alter the relationship or membership [24] of one system to another. These two
instructions are ESCAPE and CAPTURE and are both optimized to be executed natively
in HAoS.

The ESCAPE instruction moves the escaping system (which, by convention, is the
system that matches template 1) one level up in the membership hierarchy by removing
it from its parent scope (which is the active scope for the interaction) and then inserts it
to all the scopes that the parent scope belongs to (or parent scopes of its parent scope or
in short the grandparents). The grandparents are conveniently provided in parallel (as a
bus of length equal to the maximum number of scopes with set bits at the positions of the
grandparents), as a part of the scopetable (SCOPES OF SYSTEM - see Figure 3.11). The
ESCAPE task is further optimized by avoiding looping through all the possible scopes to
identify the grandparents but rather only the positions of set bits are selected (using

BITPOSSEL, see section 3.6.2) resulting in great performance gain.

The CAPTURE instruction, as the name implies, is the reverse of the ESCAPE task
where the captured system is removed from its parent scope and added in the scope of
the capturing system(s) which are selected based on matching template 2 of the
CAPTURE system. A less efficient software implementation of the scopetable

manipulation tasks is also provided to the user as an option (see Table 3.4).
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3.4 HAo0S Architecture

Having provided an overview of the HAoS design and justified the choices with respect
to the research challenges, this section provides more detail of the implementation of the
architecture. HAoS consists of the SC core (CORE), the Control Unit (CU), the
Functional Unit (FU) and a set of configuration and data registers (REG BANK) for

communication with the optional CPU (see Figure 3.9).

CONF/IDATAREGS | CORE
FPGA CONTROL J ‘ ‘
FSM PROCESSING
UNITS
cu
FU
CONF/DATA | CONF/DATA
REGS :ﬂw REGS
Az |
CPU
L INTERFACE REG BANK

¢

Figure 3.9. HAoS Top-Level Architecture

The CORE contains the optimized logic for the parallel schemata matching and the
memory elements. The CU handles the execution sequence of the SC program and the
communication with the optional CPU. The REG BANK provides a control and debug
interface between the CPU and the local registers of the SC sub-modules. The FU
provides basic local processing functionality. A set of simple instructions is supported to
avoid expensive data transfers between the REG BANK and the CPU. The prototype
implementation includes only one FU, but future implementations can take advantage of
the plethora of DSP processing cores which are available on the FPGA, and give the
option to be used as a simple ALU each, to provide multiple parallel processing

resources.

The CPU is provided to the system in order to make more complex high-level functions
available. This functionality was available only in SCoPE [136], since the other
implementations had a fixed instruction set. This hardware architecture increases
flexibility by letting the user define new instructions, when this is necessary, in an

unrestricted way. The SC compiler, which preserves backwards compatibility with the
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compiler presented in [24], is written in C and translates SC source code in SC assembly.
Apart from the extra usability, the CPU in the prototype design is used to load the SC
assembly code into the memory elements of the CORE during initialization or in the case
of a hardware reset. A possible enhancement would be to provide the option for
assembly loading through an external memory card, thus making the CPU link
completely optional, depending on the high-level functionality requirements of the user.
The CPU can reside either on the FPGA, with the form of a soft IP processor
communicating with the design using a shared internal FPGA bus, or be an external
conventional processor connecting to the design through a standard communication
interface, as illustrated in Figure 3.9. Since the main SC program runs on the FPGA, the

CPU is used as a co-processor in HAoS.

A further performance and flexibility boost could be achieved if we take advantage of
the reconfigurability capabilities provided by the FPGA (see section 3.1.3). A set of user
defined pre-synthesized hardware functions can be stored on an external memory and
dynamically loaded when needed. This technique could be applied for applications that
do not frequently change the function part of contexts as reconfigurability speeds are
quite low and would require the use of an embedded CPU to handle the reconfiguration

of a reserved area on the FPGA.

3.5 The Control Unit

The CU handles the flow of the user-defined SC program. As systems can never be
destroyed, the program runs in theory indefinitely, although practically it halts when
systems become stable and no further interaction is possible*’. The main control flow for

each iteration of the program can be seen in Figure 3.10.

Upon a hardware reset, the SC assembly code is loaded into the core. For each iteration
of the SC program, four consecutive steps are performed. A scope is randomly selected,
and then a valid triplet of systems is randomly chosen, the selected systems are retrieved
from memory, they interact (the actual computation is performed) and then the outcome
of the interaction (the computation results) is written back to memory (the random
system selection logic is described in the next section). At the end of each iteration, the
user is granted access to pause execution. This optional step is mainly provided in order

to facilitate the extraction of debug information. All the optimized low-level SC micro-

2! This implies a closed system. The halting mechanism may be disabled for a SC program with

an open system which might receive input or communications from an external source.
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routines (for scope and memory manipulation) are available to ensure maximum

flexibility.

All Systems
Stable?

Select Valid
Scope

St -
Load Trigr:t (Select Context in Scope
Program
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(Compare Schemata 1

Hardware
Reset
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Figure 3.10. HAoS Program Control Flow : HAoS enters an infinite computation loop after
the SC program is loaded, which involves finding valid triplets and transforming the
selected systems

Various optimizations have been applied in order to ensure optimal performance. When
the selected context system gives a mismatch, meaning that both its schemata do not
match any two systems in the scope, it gets disabled and becomes an invalid context for
this scope to prevent future mismatches (see next section). Moreover, once a scope is
selected, if it contains less than three systems or of it does not contain any valid contexts
(any contexts that have not recently given a mismatch), it also gets disabled and becomes
an invalid scope until a new system is added to it. If all scopes have been disabled, no

further transactions can occur and the program halts.

3.6 The SC Core

The CORE is mainly responsible for the efficiency of the design due to the way it
handles the task of schemata matching. Its main components are the various memory
elements including the TCAM, the system memories, the scopetable memories, the

system status registers and the random selection logic, as illustrated in Figure 3.11.
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Figure 3.11. HAoS Core basic building blocks

3.6.1 The Core Memory Elements

The full contents of a system are stored in two separate RAMs, one of them holds the
binary part while the other stores the ternary part (the “don't care” bits). Since the
function part of a system is always binary, it is not stored in the ternary RAM. The
various parts of a system are located in the same address in all memories in order to

simplify the required address-decoding logic.

The global scopetable information is stored in three RAM-based structures. One of them
stores the systems that belong in each scope at the corresponding to the scope address,
the second stores the scopes that each system belongs to at the corresponding to the
system address while the third stores a mask for all the invalid contexts in a scope. The
first two structures, although effectively storing the same information, provide parallel
access to two different aspects of the scopetable (systems in scope and parent scopes of a

system).

The TCAM is loaded with the regions of the systems, which may be compared (see
Figure 3.12), during initialization. For data systems, the function part is always zero, so
only the binary representation of their two schemata may be compared while for context
systems only their function part (which is double the size of a schema) may be

compared. This implies that context systems can interact with other context systems or
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data systems, which greatly enhances functionality since it denotes that context adapting
(where context systems can interact with other systems and be changed) is supported (a
feature only supported previously in the highly flexible SCoPE implementation). Context
adapter systems may not interact with other systems in HAoS. The restriction of
comparing only parts of a system is posed by the fact that the TCAM resource
requirements increase really fast when the maximum number of supported systems is
scaled up.

(a) Data System
[ Schemata 1 + Schemata 2

- A

16 bits 16 bits

(b) Context / Context Adapter System

32bits
context (adapter) function

Figure 3.12. The TCAM contents: Filled with the systems' regions that may be compared

3.6.2 The Random Selection Logic

The random selection logic (RSL) accepts a bus as an input and returns the address of a
randomly selected set bit. It consists of an optimized module that counts the set bits of
the bus, a maximal-length Linear Feedback Shift Register (LFSR) for pseudo-random
number generation, a combinatorial divider (which also performs integer division when
required in the Transform state - see Figure 3.10) and a module (BITPOSSEL) that given
a bus and the rank of a set bit of this bus (the position of the set bit with rank 2 is 3 in
01007101 - when rank starts from 0 and position 0 is the rightmost one), it returns its
position (inspired from an optimized implementation found in [184], combining a
parallel bit count and branchless selection method). A random number, provided by the
LFSR, is divided by the sum of the set bits of the bus. The remainder of this division is
used as the rank of the random set bit that is given to BITPOSSEL in order to identify its

position.

Counting the Set Bits

The COUNTONES block design implements a counter of the set bits of the input bus
(also known as sideways sum or population count [185]) using a divide-and-conquer
approach (inspired by a low-level software optimization presented in [184]). The parallel
bit-count is performed in /og,N steps for an N-bit wide input bus (where N is a power of

two). In each step, the sum of adjacent groups of bits is calculated - the length of the



Chapter 3. Designing a Suitable Hardware Architecture for SC 103

groups of the first level is 2 and is doubled for every successive step. In the final step,

the total set bits sum is accumulated on the least significant bits of the bus.

This parallel bit count mechanism is illustrated in Figure 3.13 for an example 16-bit
input bus. Adjacent bits are summed to formulate the 2-bit fields in step 1. The resulting
pairs of bits are then summed to formulate the 4-bit bit-groups is step 2 which are in turn
summed to give the 8-bit sums of step 3. This is repeated until the final step 4, when the
final sum of set bits of the input bus (6 in this example) has been accumulated in the

LSBs of the output.

1514 13121110 9 8 7
0/1/0(0|1|1]0|0]1

01 00 10 00 01 01 01 00 Step 1

o O
TN
- W
o N
o =

Input Bus

0001 0010 0010 0001 Step 2
00000011 00000011 Step 3
0000000000000110 Step 4

Figure 3.13. Parallel Bit Count Example. Adjacent bit groups are summed in successive
steps until the sum of all set bits is accumulated in the LSBs of the output. Using the partial
sums enables positioning a set bit given its rank (counting from right to left and starting
from 0)

The summation of the adjacent bit groups is implemented by first masking the right
group of bits in each bit group pair, then right shifting the bus by a number of bits equal
to the length of each bit group for the specific step and then masking the shifted version

and adding the two values.

This mask-and-shift approach is illustrated in Figure 3.14 explaining how the adjacent
bit-groups are summed in the first two steps of the example of Figure 3.13. Each step has
an associated mask (to isolate the target bit-group) and a related shifting constant. For
step 1, the mask follows the pattern 0x0505 and the shifting constant is 1. The two
versions of the input bus which are added to get the output of step 1 are obtained: one by

ANDing it with the mask and the other by shifting it by the shifting constant (1) and then
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masking it. The same actions are performed in each step. As shown in Figure 3.14, in

step 2 the mask follows the pattern 0x0303 and the shifting constant is 2.

PIOINIM|L|K|J|I|HIG|F|E|D|C|BJ|A Input Bus

0O(1{0|1(0|1]|0|1({0|1]|0[1]|0[1]0]1 Step 1 Mask

0|O|0|M|O|K|O|I|O|G|O|E|O|C|O|A Masked Input Bus

+|o(P|o|N|o|L|0|J[0|H|O|F|o|D|0o|B| | Siifted(by)&then
Masked Input Bus

O+P |[M+N | K+L | I+J | G+H | E+F | C+D | A+B J Step 1 Output

00 | 11 | 00 | 11 | 00 | 11 | 00 | 11 Step 2 Mask
00 |M+N| 00 | I+J | 00 | E+F | 00 | A+B Masked Step 1
Output

Shifted (by 2) & then
+| 00 [O+P| 00 |K+L | 00 |[G+H| 00 |C+D Masked Step 1 Output

J o\ J o\ J
v g \g Y

M+N+O+P [+J+K+L E+F+G+H | A+B+C+D Je Step 2 Output

Figure 3.14. Shift-and-Add implementation of the parallel bit-count mechanism (only two

steps shown). A mask and a shifting constant correspond to each step. Two versions of the

input of each step are obtained and added: one by masking it and the other by first shifting
it and then masking it

Effectively with this method we position the left bit group in each adjacent bit group pair
under the right one in order to perform the addition of their set bits. The approach is
scalable to any input bus width. However, the implied adder tree for long input buses
will increase the latency of the unit when implemented in a purely combinatorial way.
However, this does not impose a problem, as the critical path of the COUNTONES block
can be refined using pipelining later, being fine-tuned according to the critical path of

the whole design.

The Divider

The hardware divider implements a slightly modified restoring division algorithm.
Restoring division algorithms [186] compare part of the dividend with the divisor and
when that specified part of the dividend is greater than the divisor (their difference is
positive), they set the corresponding bit in the quotient and pass the difference in the
next stage. If the difference is negative, the result is restored to the value of the partial

dividend prior to the subtraction before being passed in the next stage. In the hardware
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divider of the RSL, both the comparison and the subtraction are performed by the same
logic. Left-shifted versions of the divisor are given as input to the successive (16 in this
prototype) stages of the division logic, each stage being responsible for generating one
bit of the quotient. The remainder of the division is the (positive) comparison result of
the last stage. Where typical restoring division implementations add the divisor back to a
negative comparison result in order to restore a negative intermediate result to a positive
value (as only positive values are propagated to the next stage), in this design a
multiplexer is used instead. A block diagram of the divider (excluding some logic
handling signed numbers), its individual stages and their corresponding inputs are given

in Figure 3.15.

31 16 15 0
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16-bit Divider made by 16 identical stages

Figure 3.15. HAoS Divider based on a modular approach. Each stage gives one bit of the
quotient. The design essentially unrolls the loop of the classic shift-and-subtract method and
can be further fine-tuned to balance its latency and throughput

As opposed to restoring division algorithms, non-restoring algorithms waive the
restriction of accepting only positive partial remainders, saving the restoring step.

However these algorithms need an additional step in the final stage to restore a possible
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negative final remainder. Both restoring and non-restoring algorithms belong in the digit
recurrence family of algorithms [186] which generally rely on subtraction to perform
division. Other approaches involving pre-normalization of the division operands (SRT
algorithms) and/or use of higher radixes to give multiple quotient bits in each step are
also commonly found in the literature along with division algorithms based on
multiplication (division by convergence or reciprocation using Taylor series expansion
and Newton-Raphson or Goldschmit approximation) [187][188]. The non-restoring
algorithm was selected to implement the required divisions in HAoS due to its
simplicity, scalability and the ability to easily fine-tune its critical path according to the

overall latency of the complete design at a later stage.

Random Number Generation

The choice of using an LFSR for random number generation is discussed in section
3.2.7. The implementation of the LFSR is straight-forward as it typically involves a shift
register either with a feedback line to one of its most or least significant bits, resulting by
XORing some of its bits, called taps, for external feedback (Fibonacci LFSRs), or
XORing the bits in the tap positions with the serial output resulting this way in internal
feedback (Galois LFSRs) [174]. The arrangements of the taps correspond in finite field
arithmetic to a polynomial mod 2 (its coefficients may be 0 or 1). The LFSR will be
maximal-length (with maximum period before the output repeats) for a set of well-
defined primitive polynomials [189]. HAoS uses a Fibonacci LFSR and its design
ensures the maximal-length property for any number of maximum supported systems as

it always implements an appropriate primitive polynomial.

Fibonacci LFSR

151413121110 9 8 7 6 5 4 3 2 1 0
o{1/0(0}1(1(0fO0Of1|0|0|1|1|/0]{0]|O0

ARNES =D

15 14 13 12 11 109 8 765 43 210
01F)D1?D10FD00010011000—‘
Galois LFSR

Figure 3.16. 16-bit Fibonacci and Galois type LFSRs



Chapter 3. Designing a Suitable Hardware Architecture for SC 107

Finding the position of a set bit given its rank

The BITPOSSEL block returns the position of a set bit of its input bus given its rank
again based on a divide-and-conquer approach, similar to the one discussed above for
counting the set bits. Using Figure 3.13 to explain the operation of BITPOSSEL for an
example input bus of 16 bits, we again perform a parallel bit count keeping all the
intermediate steps. As seen in Figure 3.13 the input value is 0100110010011000. As
previously mentioned, the desired rank is the remainder of the division of a random
number from the LFSR with the sum of set bits from COUNTONES. For this particular

example, we will suppose that the desired rank is 3 (starting counting from 0).

Since the partial sums are known for each step in Figure 3.13 (the selected bit-groups in
the following analysis are highlighted with a bold outline), starting from bottom up
(from the last step), we set a virtual pointer (which will hold the position of the desired
bit according to the rank in the end) at position 0 and then the desired rank is compared
with the total number of set bits. Since the rank is less than the total sum, we move to the
previous step (if it was greater or equal, that would imply that there would not be a set
bit corresponding to the requested rank). Looking at step 3 of Figure 3.13, three set bits
(00000011) exist on the left half of the bus and another three on the right half. If the
requested rank is less than the bit sum of the right group, it means that the targeted set
bit is part of that group. In this case we would select that group and leave the virtual
pointer unchanged. However, since for our example the desired rank is 3, this implies
that the requested bit lies on the left half. When the desired rank is greater or equal to the
sum of the right (least significant) bit group, we select the left group, we move the
virtual pointer at the middle (add to it a value equal to the length of each bit group at the
current step - at step 3 the length is 8) and subtract the bit sum of the right half from the
rank. So, now the virtual pointer gets the value old virtual pointer + bit-group length = 0

+ 8 = 8 and the rank becomes old rank - right group sum = 3 - 3 = 0.

Following the same methodology, moving to the previous step (step 2), the rank (now 0)
is less than the bit sum of the right part (which is equal to 2), so the right part is selected
and both the rank and the virtual pointer remain unchanged (rank = 0, pointer = 8). In the
next step up (step 1 with bit-group length 2), the rank is equal to the sum of the right part
(which is 0), so the left part is selected, the rank becomes old rank - right group sum = 0
- 0 = 0 and the virtual pointer gets the value old virtual pointer + bit-group length = 8 +
2 = 10. In the last step examining the input bus, the rank (0) is less than the right bit (1),

so that bit is selected and the virtual pointer remains unaltered giving its position (10).
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As easily noticed, this bit is the targeted bit with rank 3 and the virtual bit position
pointer contains its location (counting from right to left the bit with rank 0 is at position

3, the bit with rank 1 is at position 4 and bit with rank 2 is at position 7).

RSL functionality

The function of the RSL (the result of the selection) is controlled by a multiplexer
(MUX) which feeds the RSL with one out of five possible input buses (see Figure 3.11).
When we need to choose a system that matches the first schema of the context, the input
bus (SCH1) is generated by ANDing the output of the TCAM with valid SYSTEMS IN
SCOPE (which of them are valid depends on the type of the context system and is
identified based on the SYSTEM STATUS REGS). The same bus is used for the second
schema match (SCH2) after masking out the selected system for SCH1 (a system may
not interact with itself). When a random scope is needed the input bus (SCOPES) is the
result of ANDing valid scopes (scopes with more than two systems) with scopes with
contexts (scopes that are not disabled at that time). Finally, when we need to randomly
identify a context in a previously selected scope, the input bus of the SRL is generated
by ANDing the contexts in the scope (ISCONTEXT status register AND SYSTEMS IN
SCOPE) with INVALID CONTEXTS IN SCOPE (in order to mask out previously used
contexts that resulted in a mismatch). The fifth input of the MUX serves a low-level

optimization for the ESCAPE task, as mentioned in section 3.3.

3.7 Programming HAoS

The HAoS programming model is based on the one of the original implementation [24].
This decision was made in order to retain backwards compatibility with prior
implementations and take advantage of the available SC language definition and
accompanying compiler. The SCoPE platform [190] was also considered, but it was
decided that the original version was more suitable for the prototype HAoS architecture
due to its simplicity and more hardware-suitable resulting assembly code. However,
some functionality of the SCoPE platform (like high-level function plugins generation) is
supported by HAoS to increase its user-friendliness and flexibility. The SC source code
(see Listing 3.1) of the simple PRINT((A1-A2)*(A3-A4)) program that was discussed in

section 2.3 (Figure 2.11A-C) is given below as a programming example.

The user should first state the transformation functions which are embedded in the
context and context adapter systems of the program. This is done by using the keyword

“function”, the name of the function and its 32-bit binary opcode (Listing 3.1, lines 4-6).



Chapter 3. Designing a Suitable Hardware Architecture for SC 109

1. #systemic start

2.

3. // define the functions

4. #function SUBTRACTe %b01000000000000000000001000000000
5. #function MULT $11000000000000000000000000000000
6. #function PRINT $p01000000010000000000000000000000
7.

8. // define some useful labels

9. #label dontcare Fo222272222222272°2°2°7

10. #label numl $p1000000000000000

11. #label num2 $b0100000000000000

12. #label num3 $p1100000000000000

13. #label num4 $b0010000000000000

14. #label scp $b1111111111111111

15.

16. #label zero $pb00000000000000000000000000000000
17.

18. // and the program begins here:

19. main (scp %d0 %d0) // system 0

20. // system 1

21. minus ([numl zero dontcare] SUBTRACTe (0,0) [num2 zero dontcarel])
22.

23. cl (scp %d0 %d1l) // system 2

24. datal (numl %d0 %d10) // system 3

25. data2 (num2 $%$d0 %d3) // system 4

26.

27. #scope cl

28 {

29 datal

30 data2

31. minus // 10-3=7

32. 1}

33.

34. c2 (scp %d0 %d2) // system 5

35. data3 (numl %d0 %dl6) // system 6

36. datad4 (num2 %d0 $d4) // system 7

37

38. #scope c2

39. {

40. data3

41. data4

42. minus // 1l6-4=12

43. }

44

45. // system 8: 12*7=84

46. times ([numl zero dontcare] MULT(0,0) [numl zero dontcarel])
47. output ([numl zero dontcare] PRINT(0,0) [numl zero dontcare]) //sys 9
48.

49. #scope main

50 {

51 cl

52. c2

53. times

54. output

55. }

56

57. #systemic end

Listing 3.1. HAoS Source Code Example: PRINT((10-3)*(16-4))

Then the user can optionally define labels (Listing 3.1, lines 9-16), equivalent to

constants of conventional programming languages, which can be used instead of
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frequently used immediate values. Then, the systems and scopes are defined. Data
systems are defined by their name and the values of their schemata while their function
part is always zero (Listing 3.1, lines 19, 23-25, 34-36). Context systems define their
schematas either by using the data system definition method (Listing 3.1, lines 21, 46-

47) or by referencing other data systems.

// number of functions

3

// number of systems
10

// scope table
0000O0O0OOO0OO0ODO
0010010000
1000000O0O00O
001 0000O0O00O
001 000O0OO0O0DO
1000000O0O00O
0000010O0O00
0000010O0O00
1000000O0O00O
1000000O0O00O

// function definitions

SUBTRACTe 01000000000000000000001000000000
MULT 11000000000000000000000000000000
PRINT 01000000010000000000000000000000

// system definitions

1111111111111111 00000000000000000000000000000000 0000000000000000
@rrrrrrrrtilzzzz 01000000000000000000001000000000 /1t lz277
1111111111111111 00000000000000000000000000000000 1000000000000000
1000000000000000 00000000000000000000000000000000 0101000000000000
0100000000000000 00000000000000000000000000000000 1100000000000000
1111111111111111 00000000000000000000000000000000 0100000000000000
1000000000000000 00000000000000000000000000000000 0000100000000000
0100000000000000 00000000000000000000000000000000 0010000000000000
@rrrerrrrritlzzzz 11000000000000000000000000000000 @Mttt lizzzz
@rrrrrrrrrtlzzzz 01000000010000000000000000000000 @MYL ENIN Il ZzZ77

Figure 3.17. Human-readable HAoS Assembly Code for PRINT((10-3)*(16-4)) Example
Program

Their transformation function is defined by referencing one of the declared functions.
Context adapter systems are defined as context systems do, but their schemata can also
be a context system prototype (having a non-zero function). Two numeric fields (in
parentheses) follow the function of a system. These were used in the original version to
define the matching thresholds and are preserved here for backwards compatibility. All
functions support the (matching polarity) NOT functionality (see section 3.3) by having
an exclamation mark following the parentheses. By convention, all functions that include
the ESCAPE functionality (see end of section 3.3) have the suffix -e (SUBTRACTe
denotes the ESCAPE-enabled SUBTRACT function).
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A scope is defined by the “scope” keyword and the systems that belong to it in brackets
(Listing 3.1, lines 27-32, 38-43 and 49-55). It is noted that all systems, regardless of
their type, have a scope, meaning the ability of including other systems within them. If
the scope of a system is not defined in the program, then this system does not contain

any other system, and all its corresponding entries in the scopetable are zero.

When the source code of Listing 3.1 is compiled, the annotated HAoS assembly
language of Figure 3.17 is generated. As mentioned in the compiler related discussion of
section 3.2, the parts of the assembly code that are loaded on HAoS are the global
scopetable and system definitions. The scopetable, which contains a number of rows and
columns equal to the maximum number of supported systems (equal to 64 for this
prototype HAoS implementation), is partially shown in Figure 3.17 as the remaining
entries are all zero. Context schemata are compressed according to the mapping given in

Table 3.1.

SUBTRACTe {HAOS}:

sysl@3(schl:1,k:0,sch2:10) - sys2@4(schl:2,k:0,sch2:3) =>
sysl(schl:1,%k:0,sch2:7),sys2(schl:2,%k:0,sch2:0) <sc:2,cxt:1,it:1>
SUBTRACTe{HA0S}:ESC:sys (3) from scope(2) to scope(s) (pos:0)
<sc:2,cxt:1,it:1>

SUBTRACTe {HAOS}:

sysl@6(schl:1,k:0,sch2:16) - sys2@7(schl:2,k:0,sch2:4) =>
sysl(schl:1,%k:0,sch2:12),sys2(schl:2,k:0,sch2:0) <sc:5,cxt:1,it:2>
SUBTRACTe {HAoS}: ESC : sys(6) from scope(5) to scope(s) (pos:0)
<sc:5,cxt:1,it:2>

PRINT {CPU}: sys2@6{12:-:1}, sysl@3{7:-:1} <sc:0,cxt:9,it:3>

PRINT {CPU}: sys2@3{7:-:1}, sysl@6{12:-:1} <sc:0,cxt:9,it:4>

PRINT {CPU}: sys2@3{7:-:1}, sysl@6{12:-:1} <sc:0,cxt:9,it:5>

PRINT {CPU}: sys2@3{7:-:1}, sysl@6{12:-:1} <sc:0,cxt:9,it:6>

PRINT {CPU}: sys2@6{12:-:1}, sysl@3{7:-:1} <sc:0,cxt:9,it:7>

MULT {HA0S}: sysl@6(schl:1,k:0,sch2:12)* sys2@3(schl:1,k:0,sch2:7)
=> sysl(schl:1,k:0,sch2:84),sys2(schl:1,k:0,sch2:1) <sc:0,cxt:8,1it:8>
PRINT {CPU}: sys2@6{84:-:1}, sysl@3{l:-:1} <sc:0,cxt:9,it:9>

PRINT {CPU}: sys2@6{84:-:1}, sysl@3{l:-:1} <sc:0,cxt:9,it:10>

MULT {HRAoS}: sysl@6(schl:1,k:0,sch2:84)* sys2@3(schl:1,k:0,sch2:1)

=> sysl(schl:1,k:0,sch2:84),sys2(schl:1,k:0,sch2:1) <sc:0,cxt:8,it:11>

MULT {HA0S}: sysl@6(schl:1,k:0,sch2:84)* sys2@3(schl:1,k:0,sch2:1)
=> sysl(schl:1,k:0,sch2:84),sys2(schl:1,k:0,sch2:1) <sc:0,cxt:8,1it:12>

Figure 3.18. HAoS Sample Output from the Simulation Environment for the PRINT((10-
3)*(16-4)) Example Program
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Finally, a sample of the output (with extended debugging information obtained by the
verification environment - section 3.8.1) of the example program, discussed above, is
shown in Figure 3.18. The annotations from Figure 3.18 and Listing 3.1 are given in

different font without parentheses in the analysis below for clarity.

At iteration 1 it:1, the system defined at position 1 (indexes start at 0), called from now
on system 1 for simplicity, is selected as context cxt:1 in the scope of the system at
position 2, called from now scope 2, sc:2. System 1 is the second system under
“systems definitions” in Figure 3.17 and corresponds to the system which is called minus
and defined at line 21 of Listing 3.1. Once the context and active scope systems are

selected HA0S performs a number of actions, listed below:

e Two data systems are selected according to the schemata of the minus context.

e System 3 is selected as the first interacting system sysi1e3 because its definition
datal (numl %d0 $d10), Listing 3.1, line 24 - also found as
(schl:1,k:0,sch2:10) in Figure 3.18 - matches the prototype which is defined
by schema 1 of the minus context [numl zero2 dontcarel, Listing 3.1, line 21.

e System 4 is selected as the second interacting system sys2e4 because its
definition, data2 (num2 %d0 %d3), Listing 3.1, line 25 - shown as
(schl:2,k:0,sch2:3) in Figure 3.18, matches the prototype which is defined
by schema 2 of the minus context [num2 zero2 dontcarel, Listing 3.1, line 21.

e After the subtraction (10-3=7), the result is stored in the first interacting system
=> sysl(schl:1,k:0,sch2:7) while the second interacting system gets value
Zero sys2(schl:2,k:0,sch2:0) according to the operation of SUBTRACT
instruction in Table 3.4.

e However, since the transformation function is SUBTRACTe, the first interacting
system, which is system 3 (EsC:sys (3)), escapes from the active scope, which
for this iteration is scope 2 from scope (2) to the scope(s) that the active scope
belongs to (see Figure 2.11B). According to the third line of the scopetable (see
Figure 3.17), this is scope 0 to scope (s) (pos:0) because there is only one bit
set in this line, which is the line which corresponds to the scope of system 2, and
this bit is at position 0. If more than one bit were set, this would indicate that the
active scope would belong to more than one scope, and it would escape to all of
them.

e Finally, since system 3 has escaped from scope 2, or scope ¢l (Listing 3.1, line

27), this scope now contains only two systems (data2 and minus) which cannot
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define a triplet and, thus, no interaction can happen in it. HAoS detects this and

disables scope 2.

In a similar way, skipping the detailed analysis, during iteration 2 it:2, system 6
sys1@6(schl:1,k:0,sch2:16) interacts with system 7 sys2@7(schl:2,%:0,sch2:4)
by means of subtraction, and the result (16-4=12) is stored in system 6
=>sys1(schl:1,k:0,sch2:12) while system 6 also escapes from the active scope 5 EsC

sys (6) from scope (5) to scope 0. Scope 5 now contains only two systems, so it is

disabled.

Since scopes 2 and 5 have been disabled, interactions can only occur in scope 0. While
the two previous SUBTRACTe interactions were executed on HAoS ( {Haos}: in Figure
3.18), the next five are PRINT interactions, which just show the contents of the
interacting systems, are executed on the CPU ({cpu} :). Each system is printed according
to interacting system @ position (schemata2 : transformation function (-
if zero) : schemata 1.Eventually the times context (Listing 3.1, line 46) is selected,
system 6 interacts with system 3 and the expected product (12*7=84) is stored in system
6 (see Figure 2.11C). From then on, the systems in scope 0 continue interacting for ever

without further noteworthy changes to their contents.

3.8 Initial Testing

Before the final design is implemented and tested in silicon, it is possible to verify its
functional behaviour and assess its performance by using standard industry EDA tools.
The selected FPGA evaluation board to implement HAoS is the Xilinx ML605 board.
HAo0S was described in VHDL and synthesized targeting the on-board Virtex-6 LX240T
FPGA device by using the Xilinx ISE v13.3 design suite. The verification environment

was written in SystemVerilog and Mentor Graphics QuestaSim was used for simulation.

3.8.1 Functional Verification

In order to achieve system-level functional coverage closure, a series of SC programs
were designed to test and stress the design in various ways. The collection of these SC
test programs is given in Table 3.5. As shown, basic (the core transformation functions
and scope handling) and more advanced (context adapting, sequential flow emulation,
high-level user-defined functions) functionality is verified, targeting mainly research

challenge Chg2 (SC architecture support).
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An indicative set of test programs is further explained below and their SC source code is

given in Appendix A (the source code for all test programs can be found in the official

HAoS webpage [191]). For each reviewed test program, an excerpt from the verification

environment output, validating the functional correctness of the design, and their

corresponding SC graphical notations are given in Listing 3.2 and Figure 3.19

respectively. The three test programs, selected as verification examples here, are:

Table 3.5. Simulated SC test programs

Systems Description of the SC Test Program

Functions Used

20 Additions in 4 different scopes ADD
20 Dummy program testing all basic non-escape transformation functions in one All non-escaping core HW
scope. Eventually all systems are killed (zeroed) functions
20 Dummy program testing basic escape transformation functions. Systems interact ADDe, MULTe, MODe,
and escape from various scopes into the same and then, they are printed SUBe, DIVe, PRINT
20 Systems escape from scope. Then multiplied & result printed ESCAPE, MULT, PRINT
20 Systems subtract & escape from scope. Then multiplied & result printed SUBe, MULT, PRINT
. . . . ADDe, PRINT,
9 Incrementing counter example (testing capture functionality)
CAPTURE, OR
6 Optimized incrementing counter using scopes to control the sequential flow ADDuc2e, CAPTURE
4 Extra optimized incrementing counter using just one context ADDuc2
12 Systems escape and multiplied based on NOT functionality ESCAPE, MULT, PRINT
24 Two systems subtract-escape from different scopes to main scope and then SUBe, CAPTURE,
they are recaptured back in the same initial sub-scopes MULT, PRINT, ESCAPE
24 Same as above but also testing a scope included in itself same as above
95 Subtraction context systems are transformed to addition context systems by a ADD, SUB, COPY
COPY context adapter
37 Subtraction-escape context systems are transformed to addition systems by ADD, SUBe, COPY
COPY context adapter
Subtraction systems are transformed to addition systems by a context adapter
39 . ADD, SUB, COPY
and then they are killed (transformed to NOP)
Subtraction systems are transformed to addition systems by a context adapter
41 . ADD, SUB, COPY
and then they are transformed back to subtraction systems
37 Mnhced-_mode con_text adapter transforms subtraction contexts to data systems ADD, SUB, COPY
which interact with other data systems
Mixed-mode context adapter transforms subtraction contexts to data systems ADD, SUB,
37
and then retransforms the data systems back to context systems COPY, ZERO
33 Part qf schemata 1 o_fa context is changed. This change makes it match ADD, ZERO
(previously unmatching) data systems
. . . . ADDxce, COPY, PRINT,
12 Fibonacci numbers generator (using a special add-and-exchange context) CAPTURE
user-defined: INIT,
. . . » OUTPUT,
58 A 16-element binary knapsack problem solver based on a genetic algorithm CROSSOVER,
MUTATE

2 Further explained in section 5.1
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e Testl: Tests simple interactions in multiple scopes (using systems in 4 different
scopes). The expected sums are 1024, 1155, 1187 and 1200 for scopes 0, 1, 2 and 3
respectively.

e Test2: Tests interactions involving escaping. Systems resulting after subtraction in
scopes cl (10-3=7) and c2 (16-4=12) escaping to the parent scope main and get
multiplied to give 84 as a final result.

e Test3: Tests context adapting - transformation of context systems through a context
adapter. Here, a COPY adapter transforms subtraction contexts into addition by
performing binary copy of their contents, so after all the transformations only

addition interactions are possible.

Selected Output from Testl:

#431820ns :: PRINT {CPU}: sys2@17{1024:-:1}, sysl@l6{0:-:1} <sc:0,cxt:19,1it:19>
#489260ns :: PRINT {CPU}: sys2@9{1187:-:1}, sysl@l0{0:-:1} <sc:2,cxt:19,it:32>
#611340ns :: PRINT {CPU}: sys2@7{1200:-:1}, sysl@5{0:-:1} <sc:3,cxt:19,it:61>
#789420ns :: PRINT {CPU}: sys2@15{1155:-:1}, sysl@14{0:-:1} <sc:1l,cxt:19,it:104>

Selected Output from Test2:

#427580ns ::SUBTRACTe{SCC}: sysl@1ll(schl:1,k:0,sch2:16) SUB sys2@12(schl:2,k:0,sch2:4)
=> sysl(schl:1,k:0,sch2:12),sys2(schl:2,k:0,sch2:0) <sc:10,cxt:9,it:1>

#427580 ns ::SUBTRACTe{SCC}: ESC : sys(ll) from scope(1l0) <sc:10,cxt:9,it:1>

#436620ns ::SUBTRACTe{SCC}: sysl@2(schl:1,k:0,sch2:10) SUB sys2@3(schl:2,%k:0,sch2:3) =>
sysl(schl:1,k:0,sch2:7),sys2(schl:2,k:0,sch2:0) <sc:1l,cxt:9,it:4>
#436620ns ::SUBTRACTe{SCC}: ESC : sys(2) from scope (1) <sc:1l,cxt:9,it:4>

#443420ns ::MULT {SCC}: sysl@2(schl:1,k:0,sch2:7) TIMES sys2@ll(schl:1,k:0,sch2:12) =>
sysl(schl:1,k:0,sch2:84),sys2(schl:1,k:0,sch2:1) <sc:0,cxt:18,it:7>
#468940 :: PRINT {CPU}: sys2@2{1l:-:1}, sysl@l1{84:-:1} <sc:0,cxt:19,it:14>

Selected Output from Test3:

#602540ns ::SUBTRACT {SCC}: sysl@l13(schl:3,k:0,sch2:1030) SUB sys2@5(schl:3,%k:0,sch2:110)
=> sysl(schl:3,%k:0,sch2:920),sys2(schl:3,k:0,sch2:0) <sc:0,cxt:19,it:1>

# 606220ns ::SUBTRACT {SCC}: sysl@6(schl:3,k:0,sch2:120) SUB
sys2@12(schl:3,k:0,sch2:1020) => sysl(schl:3,k:0,sch2:-900),sys2(schl:3,k:0,sch2:0)
<sc:0,cxt:21,1it:2>

#656us ::COPY{SCC}:sysl@22(schl1:61441,k:2,sch2:61441) CP
Sys2@23(schl:61441,k:1,sch2:61441) =>
sysl(schl:61441,k:1,sch2:61441),sys2(schl1:61441,k:1,sch2:61441) <sc:0,cxt:24,it:17>
#687us ::COPY{SCC}:sysl@19(schl:61441,k:2,sch2:61441) CP
Sys2@22(schl:61441,k:1,sch2:61441) =>
sysl(schl:61441,k:1,sch2:61441),sys2(schl:61441,k:1,sch2:61441) <sc:0,cxt:24,it:27>

#749260ns ::ADD {SCC}: sysl@l2(schl:3,k:0,sch2:0) PLUS sys2@13(schl:3,k:0,sch2:940) =>
sysl(schl:3,k:0,sch2:940),sys2(schl:3,k:0,sch2:0) <sc:0,cxt:21,it:46>

#752940ns ::ADD {SCC}: sysl@7(schl:3,k:0,sch2:0) PLUS sys2@11l(schl:3,k:0,sch2:0) =>
sysl(schl:3,k:0,sch2:0),sys2(schl:3,k:0,sch2:0) <sc:0,cxt:23,1it:47>

#755980ns ::ADD {SCC}: sysl@5(schl:3,k:0,sch2:0) PLUS sys2@12(schl:3,k:0,sch2:940) =>
sysl(schl:3,k:0,sch2:940),sys2(schl:3,k:0,sch2:0) <sc:0,cxt:17,1it:48>

Listing 3.2. Selected output from the 3 example SC test programs verifying the functionality
of HAoS by simulation. Refer to section 3.7 to be reminded how to extract all the
information from the output of the verification environment. In this listing, the parts that
verify the functionality of the design according to the expected results, as they are given in
the bullet descriptions of the test programs above, are emboldened: (Testl) the expected
final result is printed in each correct scope, (Test2) the expected subtractions (16 suB 4 =>
12 and 10 suB 3 => 7) and escapes (Esc) lead to the correct multiplication (7 TiMES 12 =>
84) and the expected result (84) is printed (prINT), (Test3) While initially only subtractions
(suBTRACT) are performed, the transformation function of addition (k:1) is copied (cp) in all
subtraction contexts (k:2), so in the end only additions happen (apD)
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Figure 3.19. The three verification example SC programs
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It is also noted that the equivalent of a conventional program (like a counter) can be
executed by HAoS (sequential flow emulation). However, as the architecture is designed
to model parallel systems, it can just simulate such sequential programs (experimental
results show that although the prototype runs at approximately 1% of the speed of a

modern Intel i7 core clocked at 2GHz, counts up in average 500 times slower).

Successful simulation results, similar to the ones given in Listing 3.2, have been
obtained for all test programs of Table 3.5. Thus, the system passed all the functional
verification tests, proving this way the validity of the design.

3.8.2 Implementation Statistics

Xilinx design tools provide accurate area and timing implementation statistics. Thus, we
can present precise performance metrics before downloading the design on the FPGA.
As shown in Table 3.6, the prototype design occupies just 15% of available slices (10%
of slice LUTs and 1% of slice registers), 23% of available I/O blocks and just 1% of
available RAM. HAoS is divided into two clock domains : the REG BANK, which is
connected to the CPU INTERFACE (see Figure 3.9), runs on a higher clock rate (100
MHz) in order to provide faster read/write operations to the CPU, while the rest of the
design is clocked in a (8 times) slower rate. The performance of the design of this initial
stage is increased later by various enhancements and optimizations (detailed in the next
chapter).

Table 3.6. HAoS Prototype (64 systems) Implementation Statistics on Virtex-6 LX240T
FPGA. Excludes the CPU interface and the optional on-chip CPU

Used Available %

Slices 5759 37680 15

Slice LUTs 15487 150720 10
Slice Registers 6019 301440 1
1/0 Blocks 143 600 23
RAMs 5 416 1
DSP Blocks 1 768 1

3.9 Summary

In this chapter, the first Hardware Architecture of Systemic computation (HAoS) was
introduced. An investigation was presented on how a hardware design can practically
encompass the architectural properties of SC, addressing research challenge Chg2, while
the support for several of the natural properties of Table 1.1 are also discussed,

addressing Chgl. A number of FPGA-based potential architectures were initially
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considered while section 3.2 explained the design decisions that lead to the base HAoS

system and instruction set, presented in sections 3.3-3.6.

HAO0S is a custom but generic computer architecture implementing the SC paradigm. In
contrast to conventional architectures that sequentially execute a set of instructions, it
defines a pool of operands and operations, which in SC terms are systems and
transformation functions, and detects in a parallel fashion which of them may result in an
operation, or SC interaction, based on enabling patterns, or SC schemata, embedded in
the operands. HAoS accomplishes this parallel detection by using a Ternary Content
Addressable Memory, which matches templates of potential interacting systems to the

available systems defined by the SC program.

A basic programming model was presented in section 3.7 while the functional behaviour
of the first systemic processor is verified using a set of test programs, covering various
scenarios, presented in section 3.8 along with initial implementation estimates. The base
HAo0S system is optimized and extended to a complete SC programming platform in the
next chapter, resulting to an increase in efficiency and user-friendliness, and thus making

our solution more practical and viable.
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Chapter 4

The HAoS Programming Platform

Having verified the core functionality of the base design by simulation in section 3.8.1,
the next steps are to investigate the most suitable, considering current technologies,
implementation for the communication interface to the optional CPU, further optimize
the performance of HAoS and complete the design by providing the CPU, its interface to
HAoS and supporting development software in order to have a complete, viable and

practical standalone SC programming solution.

Following those steps, this chapter addresses research challenges Chg2 (SC specific
architecture support) and Chg3 (targeting a practical and efficient implementation),
focusing mainly on Chg3, as special attention is given to the efficiency of the
communication interface, the HAoS logic attached to it and various other blocks of the
base design while the implementation of some of the architectural features of SC
(schemata matching and random system selection) are revised. A set of software tools

were developed to ease programmability and increase user-friendliness.

Part of the work presented in this chapter has been published in [159] and [192].

4.1 HAo0S-CPU Communication Interface Investigation

As mentioned in section 3.4, the use of the CPU after the SC program is loaded is
optional for the HAoS prototype and depends on the user processing requirements. Since
HAo0S on-chip processing capabilities are limited by the basic instruction set in Table
3.4, it is safe to assume that the CPU may be useful for a wide range of practical user
applications. Thus, addressing the design practicality and overall system efficiency
(Chg3), an investigation of the implementation of the communication interface between
HAo0S and the CPU, given below, is important in order to avoid having a communication

overhead as the performance bottleneck.

The main design requirements for the communication link are high throughput, low
latency and user-friendliness, meaning that it should be based on a widely used interface

in order to minimize user effort. Since the maximum supported clock rate of our
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prototype is estimated at 100 MHz (based on the implementation statistics given by the
Xilinx development tools) on the CPU INTERFACE boundary (see Figure 3.9), if we
assume for simplicity that only single-byte data accesses are supported, a minimum data
rate requirement of 100 MB/s is posed on the communication link in order to have full
utilization. Latency is also crucial, as some off-chip communication interfaces may

provide adequate bandwidth but nevertheless pose an unacceptable latency constraint.

We should further consider that the selected communication interface will determine the
use of either an external more powerful CPU (using a commonly used but slower
communication protocol) or a less powerful embedded (on-chip or on-board) CPU, using
a relatively faster local bus. For a more realistic performance estimate, we should not
only consider the maximum performance potential of the hardware but we should
combine this with the actual response times caused by the software (operating system,

drivers and user application programming interface implementation).

Another significant consideration is that the HAoS-CPU communication will comprise
quite small packets. Typically these will be less than 10 bytes for control instructions
(low-level accesses of HAoS control registers which will be frequently used by the
driver and also offered as part of the API to the user to enhance accessibility) and
considerably less than 100 bytes for data exchange (input and output arguments of the
transform task, see Figure 3.10). The availability of IP cores to support these interfaces
and the effort required for drivers development is also important. Finally, the selected
interface should be supported by the available FPGA development board (in our case, the
Xilinx ML605).

The external CPU option seems more appropriate since modern CPUs run more than one
order of magnitude faster than embedded ones (the Intel i7 range runs typically at
frequencies of 2-3GHz while the maximum frequency for a modern on-chip CPU, e.g.
the Xilinx MicroBlaze, is 100-250 MHz [193]). The most commonly used
communication interfaces for modern computers are USB, PCI-Express and Ethernet
(see Table 4.1). All of them are mature technologies which are constantly revised to
support greater bandwidths. While Hi-Speed USB (or USB 2.0) is currently the most
widely adopted interface, it specifies a maximum bandwidth of 480 Mbits/s [194]. Its
successor, SuperSpeed USB (or USB 3.0) specifies a maximum theoretical full-duplex
communication rate of 5 Gbits/s [194]. PCI-Express, featuring a point-to-point topology
with separate full-duplex byte streams (1-32 lanes) connecting the device to a root

complex [195], has had four revisions that gradually increased bandwidth (the theoretical
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maximum per lane is [195]: 250 MB/s for the older Genl, 500 MB/s for the widely used
Gen2, 1GB/s for the more recent Gen3 and 2 GB/s for the recently announced Gen4).
Gigabit Ethernet is the last option supporting 1 Gb/s while higher bandwidths (10G
recently got more industrial interest, while 40G, 100G and 400G solutions are also
currently sampled) are also supported for specialized network devices (usually using
optical mediums).

Table 4.1. Commonly used interfaces for off-board communication and their nominal raw
bandwidths

USB PCI-Express (per lane) Ethernet

Revision 2.0 3.0 1.0 2.0 3.0 4.0 Gigabit

Nominal Max 60 625

Raw Bandwidth MB/s MB/s 250 MB/s | 500 MB/s | 1 GB/s | 2 GB/s | 125 MB/s

The theoretical maximum bandwidth that the most recent versions of all the
aforementioned interfaces provide appears to be sufficient for the HAoS-CPU data rate
requirement. However, their sustained performance in a working system can be
considerably less due to various software and hardware sources of overhead. An
quantitative example is given in [196], where a bus mastering design (implemented on a
Virtex-5 FPGA) over PCI Express is measured on a Windows system. Sustained
software performance can be nearly 17 times slower than the theoretical maximum for a
PCI Express Genl x1 link [196], mainly due to the very slow interrupt response rate of
the operating system and the fact that transaction requests wait for transaction
completions. Although techniques for minimizing those overheads (use of a linked list or
a circular buffer of transaction descriptors for interrupts and employing a parallel
transaction handling state machine) are suggested in [196] and implemented in [197],

[198], [199], there is still an inevitable deviation from the theoretical maximum.

While USB 2.0 would be the most convenient option from the viewpoint of the user, it
does not satisfy our bandwidth requirement. USB 3.0 provides adequate bandwidth, but
it has not yet been widely adopted, so FPGA development boards with this feature are
still rare and, moreover, a USB 3.0 device IP is not offered with standard industrial
design tools (while designing such a complex core would require considerable effort).
An implementation of the Gigabit Ethernet approach as a PC-FPGA communication
interface, sending UDP datagrams over IP, is given in [200] and refined in [201]. The
design leaves reliability to be implemented at the user level but combines a Look Up
Table (LUT), which stores all the static fields that need to keep being resent during

communication, with hardware-aware optimizations which make it more attractive than
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alternative reliable, but more complex, full TCP/IP implementations which require an

embedded CPU [200].

However, even such a light-weight protocol suffers from a big overhead when really
small packets are frequently sent. These small packets carry HAoS control-related
information and may not be grouped together to form larger contiguous blocks (in order
to provide a flexible API to the user). Even sending minimally-sized raw Ethernet
packets, considering that their minimum size is 64 bytes (accounting for header and
framing bytes - preamble, start of frame, MAC destination and source, ethertype, frame
check sequence and interfame gap), results in more than 85% overhead for control
packets (typically less than 10 bytes). While they are slightly smaller, similar protocol
overheads exist for the other external communications interfaces mentioned above. PCI
Express Genl and Gen2 specify a 20% overhead due to their 8b/10b symbol encoding
scheme (used for clock recovery), consume 20-28 bytes for their header and framing and
also suffer from traffic, link and flow control protocol overheads [202]. Due to these
overheads, latency is increased (practically 20-30us for a Genl x8 4-byte transfer [197])
while the actual throughput is decreased, negating the performance advantage of external

interfaces for typically-sized data traffic.

Table 4.2 gives examples of the sustainable bandwidth of the interfaces discussed in this
section for various configurations. It is noted that the final real system bandwidth is the
result of various factors, including protocol selection and overheads but also

implementation choices, system integration, software support and optimizations.

In order to minimize protocol overheads, the alternative is to use a local communication
interface, placing the CPU on-board. While FPGA development boards that provide an
off-chip hard processor cores are not new, another approach (recently commercially
available at the time of writing) attempts to overcome overheads caused by off-chip
communications by combining relatively powerful hard (ARM-based) CPUs and
programmable logic on the same die [206], [207]. This is a quite promising approach, as
it is the first step towards practical low-latency embedded applications. While still in its
infancy, the power of the processors used are still limited and the cost of
reprogrammable logic comparatively high. Moving to smaller fabrication processes in
the future can make revisions of this hybrid technology a very strong candidate for truly-

optimized heterogeneous processing.
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Table 4.2. Sustainable Bandwidth Results for various practical configurations implementing

common communication interfaces on FPGAs

Protocol /
Interface USB 2.0 PCI-Express 1.0 x1
n
Reference [203] [199]
,5 Xilinx Altera Stratix IV G/ééti:rahﬁrrllg.(gg Altera Stratix II Altera Stratix II
i SpartanlI-E GX to Intel X58 Cl?i sef on GX to Dell 490 GX to Nvidia
5 through Chipset on Wir‘f e 5000X on CK804 on
“g CY7C68001 Windows. WS- Windows. Windows.
o USB cgntroller Full-Duplex Ful.l—Dl.Jplex Full-Duplex Full-Duplex
g on Windows. |t Gize: 100KB File size: File size: 100KB | File size: 100KB
g Write to FPGA 100KB
E T Max Payload: Max Pavload: Max Payload: Max Payload:
5 File size: Read 256b, Write Road 2566 | Read 64b, Write | Read 64b, Write
400MB >
s 512b Write 512b 256b 128b
Sustainable 54 (W) 219(RY21L(W) | 217(R)204(W) | 162(R)/224(W) 185(R)/207(W)
Bandwidth MB/s MB/s MB/s MB/s MB/s
Protocol / UDP/IP over
L PCI-Express 2.0 x1 PCI-Express 2.0 x4
Interface Gigabit Ethernet
Reference [200], [201] [199] [198] [199] [198]

Experimental Configuration

Xilinx Virtex-5
SX95-1 on
HTG-V5-PCIE
board to Dell
Latitude €4300
on Linux.

Full-Duplex

Altera Stratix IV
GX to Intel X58
Chipset on
Windows.
Full-Duplex

File size: 100KB

Xilinx Virtex-5
on ML555 board
to Dell Power
Edge with Intel
ES000P Chipset
on Windows

Full-Duplex.
File Size: 32KB

Altera Stratix IV
GX to Intel X58
Chipset on
Windows.
Full-Duplex

File size: 100KB

Xilinx Virtex-5
on ML555 board
to Dell Power
Edge with Intel
E5000P Chipset
on Windows

Full-Duplex.
File Size: 32KB

Payload: 1472 Max Payload: Max Payload:
bytes Read 256b, Write Max Payload: Read 256b, Max Payload:
Success Rate: 512b Read 64b, Write Write 512b Read 64b, Write
~99% 128b 128b
, 113.11(R) / 1691(R) /
%ust?im?;tl}? 111.67(W) 438(R) / 425(W) 164(R) / 222(W) 1631(W) 680(R) / 864(W)
andwi MB/s MB/s MB/s MB/s MB/s
Protocol / .
PCI-Express 2.0 x8 AXI4 AXI4-Lite
Interface
Reference [199] [198] [204] [205]

Xilinx Virtex-6

Xilinx Virtex-6

Xilinx Kintex-7 on
KC705 board.

Xilinx Kintex-7

_§ Altera Stratix IV on ML605 on ML605 From 16 on-chip on KC705
E GX to Intel X58 board to Intel board to Intel 1080p video board.
_E’n Chipset on X38 Chipset on | X58 Chipset on sources Interconnect
’*g Windows. Windows Windows 32bits/pixel @ handling 32
o Full-Duplex Full-Duplex. Full-Duplex. 75Hz slaves during
= File size: 100KB File Size: File Size: To off-chip video
2 Max Payload: 512KB 512KB memory and on- demonstration
g Read 256b, Max Payload: Max Payload: chip video IP Data Width:
3 Write 512b Read 64b, Write Read 128b, Data Width: 32bits running
128b Write 256b 512bits running @ @ 100 MHz
200 MHz
. 2956(R) / 1686(R) / 3297(R) /3297 180(R) / 180
Sustainable 2955(W) 1691(W) (W) 9492 (R) (W)
Bandwidth MB/s
MB/s MB/s MB/s MB/s
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The other option is to use an embedded soft CPU. While this approach has minimal
overheads, since all communications are happening at wire speed, part of the available
programmable resources is occupied by the relatively low-performance soft processor.
Advantages of this approach are that the design tools provide full support on embedded
design, the processor can be customized to include only the features that are required
(optimizing speed and area) and that bare-metal applications are also supported, since an
operating system is optional, depending on user requirements. An indicative collection of
soft processor architectures, appropriate to be embedded on an FPGA is given in Table
4.3. It is noted that some of the metrics below are given for reference as they are highly
dependent on the device being used and the revision of the implementation tools.
Considering the available area and performance figures below, LEON4 and MicroBlaze
are the most dominant choices. While the former is an open-source solution, the inherent
compatibility of MicroBlaze with the Xilinx toolchain makes it a more favourable option

for the prototype HAoS implementation.

Out of the supported on-chip interconnect interfaces [208], the Processor Local Bus
(PLB) mainly targets PowerPC processors and is now outdated while the Fast Simplex
Link (FSL) is a point-to-point FIFO-like interface; thus they are both inappropriate for
the MicroBlaze memory-mapped control register interface for HAoS. The other options
are the three variations of the Advanced eXtensible Interface (AXI) of the ARM AMBA

v4.0 interconnect protocol specification (in short AXI4).

The three types of AXI4 are [225]: (a) AXI4 for burst-enabled memory-mapped
communication, (b) AXI4-Lite for simple memory-mapped communication ideally to
and from control and status registers and (c) AXI-Stream for high-speed streaming data.
Considering the mainly controlling nature of the HAoS interface, the small size of the
data to be communicated to and from the CPU and the substantially greater area
footprint of the AXI4 interface compared to AXI4-Lite while providing adequate
bandwidth (supporting a 32-bit interface running up to 200MHz on Virtex-6) and
minimizing latency, it was decided that the latter was the optimal option. It is noted that,
as AXI protocols are the industry standard for FPGA interconnect interfaces, choosing
this option makes the design more future-proof (the hybrid approach in [207] also
employs an AXI interface to connect its hard dual-core ARM CPUs with the

programmable fabric).
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Table 4.3. Indicative Collection of Available Soft Processors. CPI: Cycles Per Instruction,
MMU: Memory Management Unit, MUL: Hardware Multiplier, FPU: Floating Point Unit,
Area: given for specific family and corresponding metric, DMIPS/MHz: Dhrystone Millions

of Instructions per Second Per MHz, (MHz): Max Frequency for family stated in Area

column
Soft Core Pipeline Area DMIPS
Architecture Bits License P CPI MMU MUL FPU Family /MHz Comments
[Reference] Depth .
Metric (MHz)
Sirocco Open- Zgigg Single-core
S1 SPARC-v9 64 source 6 + + 37K(ME) - version of
[209] (GPL) Virtex5 LUTS UltraSPARC T1
LEON3 Open- 3.5K & 4K 1.4(125)
&[210] SPARC-v8 32 source 7 + + + Virtex5 1'7(150)
LEON4 (GPL) LUTs )
2.4K to
OpenRISC 1 RISC Open- 4K (60-
1200 1000 2 source 5 ot Virtex5 125)
[211] (LGPL) Slices
1.03-  Limited to Xilinx
MicroBlaze . . 546 to 1201 1.38  devices,
[193] MicroBlaze 32 Proprietary 3,5 opt opt opt Virtex6 LUTSs (100-  Zero-cost for
250) limited version
acMB ' Open- 1268 (88- Open-source
[212] MicroBlaze 32 source 3 - opt - Vllitex4 136) cl(_)nes of
(LGPL) Slices MicroBlaze
. Open- 641
O}f[)zer11§]1re MicroBlaze 32 source 3 - opt - VirtexII-Pro ((}gg)
(MIT) Slices
Nios I/ 1020 1183 Limited to Altera
[214] Nios II 32 Proprietary 6 + + opt StratixIII (é90) devices
ALUTs
; 1030 .
ng? 411/5 Nios IT 32 Proprietary 5 - + opt StratixITI (()221)1) L‘lmlted to Altera
[214] ALUTS evices
Nios Il/e 500 0.138  Limited to Altera
[214] Nios II 32 Proprietary no - - opt StratixIII (540) devices
ALUTs
Open- 5444 -
E‘;ﬁ MIPS2.0 32  source 6 + 4+ 4+ Stratixlll (‘2'5221) Limited 1o Aliera
OpenCore+ ALUTs
Lattice . 2370 .
M L O o Lwee i Nolmiede
[216] LUTs
2600
Cortex-MI ARMVvV6 32 Proprietary 3 - + - Cyclonelll 0.8
[217] LE (100)
s
Diamond o . Zero-cost for
. Tensilica Proprietary. 1.22 .
106Micro 32 ’ 1 - + - - Synplicity
[218] Xtensa ReadyIP (180) Synplify Users
Freescale V1 16 Proprictar 5000 Zero-cost to
Coldfire Coldfire 32 zell?o—costy, 2 - - - Cyclonelll (80)  Altera devices
[219] 48 LEs (32bits) only
DSPuval6 Open- 635
DSPuval6 16 P no - + - Spartanll (40)  DSP-oriented
[220] source .
Logic Cells
Open- 2953
hy‘?;rﬁ?M ARMv4 32 source 3 - - - ViredlPro o
(AL/GPL) Slices
. . 26 .. ..
PicoBlaze PicoBlaze Proprietary, o } ) ) Virtex6-3 (238) L1m_1ted to Xilinx
[222] zero-cost . devices
Slices
Open- 200 An open-source
Pa‘[:;?;?ze PicoBlaze 8 source no - - - SpartanIl (46)  clone of
(BSD) Slices PicoBlaze
181
Lattice Mico8 . . Open- Cyclone Not limited to
[224]  LatticeMico8 8 0 e no - LFE2-5 ©92) Lattice devices

Slices
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Following the analysis above, the embedded soft CPU interface appears to be one of the
most dominant candidates for the implementation of the HAoS-CPU communication
link. It is noted that this is a recommendation, rather than a definite conclusion
(considering the requirements stated in the beginning of this section and currently
available technologies) and it depends on the processing requirements of the user
application and the flexibility of the provided API (control packets could be potentially
eliminated if all the software driver logic was mapped on hardware, effectively
eliminating the API since the user would be provided with just one function

(transform () ) to interface to hardware).

For applications that utilize heavy-weight functions, the function processing time may
overrule the communication overhead, thus making an external CPU interface preferable.
This can either be the latest revision of PCI Express (due to the lower overhead and
higher bandwidth), if compatible hardware (motherboard, development board) is
available or a custom Ethernet-based interface implementing a custom light-weight
protocol and a Network Interface Card capable of supporting such a protocol or USB 3.0
(subject to availability) or a future FPGA development board featuring a high-end

processor.

The two options may further be combined in a “smart” system that offloads computation
to the appropriate CPU depending on the required processing workload. Implementing
such a configuration would involve a manual, or ideally automated, computation
dispatching mechanism that would assign low-level processing, supported by the
hardware-accelerated part of the HAoS instruction set (upper part of Table 3.4), to the
built-in on-chip FU, high-level functions of low complexity to the low-end on-chip
embedded processor and computation-intensive tasks to the off-board high-end CPU.
High-level tasks would be assigned to the appropriate CPU depending on the comparison

between the actual computation latency and the communication overhead according to:

If Instruction Supported on Hardware Select HAoS FU
If Loyt Opy < Lo+ O Select  On-Chip CPU
If Lnn + ODn > Lo]]"" Ooff Select Of];Chlp CPU

where L and O would be the computation latency and communication overhead,
respectively, for on-chip (embedded) and off-chip (and probably off-board) processor,
accounting for the trade-off between the computational performance and the

communication latency of the two solutions.
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In summary, the systemic computer is designed for highly parallel software, that
resembles natural systems. For such a computer to be practical it must also support
sequential operations (e.g. longer mathematical expressions) and thus needs the support
of a conventional CPU. The analysis here shows that current communication protocols
are largely unsuitable for the task of linking a SC hardware architecture to a CPU. There
is a clear need for a more integrated solution for development purposes. An FPGA board
with a high-end on-board processor may be one such suitable option in the future
(extending the processing capabilities in [207]). For now an embedded soft CPU
provides the ability to prototype the HAoS-CPU interface. An optimal solution would be
an ASIC, combining HAoS and a hi-speed CPU on-chip, which will minimise the

bottlenecks caused by existing technologies.

4.2 CPU Subsystem Integration

Building on the discussion of the previous section, the soft Xilinx MicroBlaze processor
was connected, using Xilinx development tools (Embedded Development Kit - EDK and
Xilinx Platform Studio - XPS), through one of its available communication interfaces to
the base HAoS architecture to result in the first practical hardware Systemic

Computation platform.

The available tools enable great flexibility as virtually all the features of the MicroBlaze
soft processor are user-defined, letting the user tailor a balanced embedded CPU design
in terms of frequency, area and performance. The configuration of the processor
embedded in the HAoS platform maximizes the performance of the soft CPU with the
inclusion of dedicated hardware blocks (a barrel shifter, a floating-point unit (FPU) also
supporting type conversions and square root, 64-bit integer multiplier and divider and a
pattern comparator), instruction and data caches (64 KB each) with stream buffers (for
instruction prefetching), saved cache victims (faster fetching of recently evicted cache
lines) and write-back storage policy (data are not written back to memory immediately
but only when needed), and math (FPU and integer divide) exceptions. A hardware
debug module was also included, enabling breakpoints and memory address watchpoints,
to ease debugging. A dedicated Memory Management Unit (MMU) was not added in the
system as it would increase significantly its size and because its provided features, as
virtual memory and memory protection, are more useful when an operating system is
used. As discussed later in section 4.3.5, an operating system will not be used in the
HAo0S programming platform as it would run inefficiently on an embedded processor and

negatively impact the latency of SC applications.
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After the architecture of the MicroBlaze CPU was configured to suit the requirements of
the HAoS platform, the custom HAoS logic was connected to the CPU through its AXI4-
Lite interface as a peripheral. The connection was implemented using standard Xilinx-
provided IP blocks. The MicroBlaze is connected to the AXI4 Interconnect core (IC),
which implements the required AXI4-Lite protocol and uses a crossbar topology to route
traffic between the various masters and slaves of the bus. Further details on the CPU

subsystem integration are given Appendix B.

4.3 Optimizations and Enhancements

Focusing on research challenges Chg2 and Chg3 regarding supporting the implied SC
architecture and addressing the efficiency and practicality of HAoS respectively, various
optimizations and enhancements were made, both into the hardware and the software
domain, to the initial design (presented in the previous chapter) in order to increase its
performance and also make the prototype more user-friendly and flexible, towards a

more practical and viable design.

4.3.1 Refining the Random Selection Logic

The most obvious performance optimization for HAoS, as for any clock-based circuit,
was to increase its operating frequency. After analysis of the critical path of the design,
the longest combinatorial path was, as expected, in the Random Selection Logic (see
Figure 3.11 and section 3.6.2). The RSL was redesigned to incorporate resource sharing

along with pipelining.

As mentioned in section 3.6, the BITPOSSEL module of the RSL, combines a parallel
bit count with a branchless selection method. The parallel bit count is used to provide
partial sums which are then appropriately masked and passed through a barrel-shifter to
provide the position of a bit with a given rank in the input bus, resulting in a divide-and-
conquer technique. The COUTNONES and BITPOSSEL modules of the RSL are now
merged, as the parallel sum-of-bits counter in COUNTONES is reused for the generation
of the partial sums during the identification of the position of the selected bit. The length
of the barrel shifter is equal to the size of the longest input bus to the RSL which is in
turn equal to the number of maximum supported systems. Thus, when this number is
increased, the number of logic levels required for the barrel shifter implementation have
a considerable impact to the delay along the critical path. For this reason, the
conventional barrel shifter is replaced with a parallelized and pipelined version which

instead uses an array of multiplexers with registered pre-shifted (by the required pre-
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calculated number of bits) versions of only the possible subset of shifting combinations
of the input buses. While this results in a slightly higher resource utilization as the
number of maximum supported systems increases, it provides the ability to minimize its
latency and moreover make it independent of the maximum number of systems, making

its performance deterministic.

Moreover, since registering the inputs of the RSL or the output of its input selection
multiplexer would not further noticeably decrease the critical path, as the combinatorial
logic from the TCAM to the input of the RSL adds minimal timing overhead, these
registers were not included in the design saving Number of RSL Input Buses x Input Bus

Length bits (for 512 maximum supported systems: up to 5x512=2560 registers).

The critical path delay of the RSL was also greatly affected by the combinatorial divider.
Thus, the divider was pipelined (one-level deep), dividing its 16-stage structure (see

Figure 3.15), in two groups of 8 stages each with registered inputs and outputs.

After the changes mentioned above were implemented, a static timing analysis revealed
that other parts of the design (the TCAM and the Function Unit) also had latencies in the
range of 15-20 ns. Thus, since the level of pipelining throughout the RSL achieved to
match the critical path outside the RSL, it was decided that a latency of 20ns (which
translates to SOMHz of operating frequency) was adequate for the prototype, as deeper
pipelining, although possible, would require considerable changes in the control logic
and would probably affect resource utilization in order to achieve timing closure. Further

details on the optimisations of the RSL are given in Appendix C.

4.3.2 Minimizing the Schemata-Matching Overhead

Standard FPGA CAM design techniques include registered-based, RAM-based and
Look-Up- Table-based approaches [173], [226]. Moreover, Xilinx provides a reference
design which combines the LUT technique with the optimized shift-register blocks
(SRL16E) found in its FPGAs [173]. Although RAM-based CAMs are the most efficient
in terms of resource utilization [173], they do not support the ternary mode required for

partial schemata matching in SC.

The base HAoS design used the suggested (by Xilinx) SRL16E-based approach which,
according to [173], provides efficiency in terms of the trade-off between required area
and operating frequency. It was noticed, that as the number of entries for the TCAM
increased, depending on the number of maximum supported systems, for deep TCAM

implementations (>128 entries) the area footprint of the LUT-based approach was not
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substantially smaller from the one of the simple register-based design (15%-25% area
overhead depending on size) while the two implementations has similar operating
frequency (up to ~100MHz). Thus, since the size difference was not prohibitive, the
much simpler register-based TCAM structure was preferred. Further details on the

TCAM design revision are provided in Appendix D.

The main advantage of this optimization® was the reduction of the overall latency of the
matching mechanism resulting in increasing the efficiency of valid triplet generation.
Since the TCAM is written every time a system is altered during an interaction, replacing
the SRL16E-based TCAM with an array of registers and comparators, provided single-
clock read and write operations, saving 15 clock cycles for every interaction which

changed one system and 30 clock cycles when both systems are changed.

4.3.3 Further Addressing 1/O Efficiency

The investigation of the capabilities and limitations of various communication interfaces
between HAo0S and a CPU, discussed in section 4.1, makes evident the crucial role of the
performance of the design on the I/O boundary. Various optimizations have been made
in order to obtain faster CPU accesses and minimize the overhead of extracting real-time

(during the execution of a SC program) logging information.

As shown in Figure B., the registers in the REG BANK are accessed by the CPU through
the AXI4-Lite communication link to, among other functionality, read the active triplet
and write back any system which is changed by the current interaction (see Figure 3.10).
As the parts of an active triplet that will be used during an interaction depend on the
transformation function, HAoS makes available to the user its full contents (shown in
Figure 3.8) along with some more useful information (addresses of systems, active scope
and active context). In the initial design all this user data are read from and written back
to the REG BANK, and then the CU handles updating the local memories and the TCAM
with the changed systems.

Looking for a more efficient way, the mechanism that is used when the program is
loaded to the local memories was slightly changed in order to enable the CPU to directly
write changed systems to HAoS memories. However, since writing a triplet to the

memories is performed in one clock cycle, to reduce latency, the whole user data would

3 Practically here we traded area for performance, choosing the bigger but faster registered -based

TCAM.
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have to be updated when a change was made. Enabling the option of independently
writing parts of the triplet would greatly increase the control logic complexity and the

required area footprint.

Further addressing this communication challenge, a write-detection mechanism was
devised, inspired by the “dirty-bit” scheme commonly used in page replacement and data
caches [227]. As mentioned above, since all user data are available in the beginning of
an interaction, the user may read only the parts of the triplet that are going to be used in
his custom transformation function. The great enhancement comes when writing the
transformed triplet back to the memories.

0 2 4 8 10 18 26 34 40
TEMPL—BIN—SCH1. TEMPL—TER—SCH’I. TEMPL—BIN—SCH2. TEMPL—TER—SCHZ.

SCH1|SCH2| FUNCTION |[ADDR

SCH1-BYTE-ARRAY SCH2-BYTE-ARRAY

ACTIVE ACTIVE
SYS1 TRA’:LSJZ%):?:\QAI\\‘TION SYS2 SCOPE CONTEXT
ADDR ADDR

0 40 44 84 86 88

ACTIVE TRIPLET
READ-ONLY USER DATA

CPU
INTERFACE CONTROL UNIT
)\ WRITE-DETECTION - &

— LOGIC LOCAL
MEMORIES

HAo0S

i

REG
BANK

TRANSFORMED TRIPLET E—
READ-WRITE USER DATA

Figure 4.1. Revised Triplet Memory Map and Write-Detection Mechanism. In the upper

part, the revised registers organization for each system in a triplet shown along with the
sizes (in bytes) for each field. Fields from left to right: schemata 1 & 2 (for data system),
transformation function, system address, binary and ternary parts for each schemata of a
context system share the same address space with a byte-array formatted version of the
respective schemata of a data system. All fields have an associated write-detection flag
(shown here with a dot) which is set when a field is modified. In the middle, the two systems
along with the active interaction function, scope and context addresses form the user data.
In the bottom, when writing-back the transformed triplet after an interaction, the write
address from the CPU is used to update only those fields that have actually been changed
while the rest are copied over from the local copy (active triplet), minimizing the required
CPU 1/0 operations
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Each field of the transformed triplet is now associated with a write-detection flag. This
flag array is reset when an interaction is assigned to the CPU. The address of the
registers that hold each individual field of the transformed triplet (see Figure 4.1) is
already given in the predetermined memory map of the CPU (the memory management
subsystem of the CPU accesses the REG BANK as any other memory location). While in
“Transform” state (see Figure 3.10), when each such field is altered by the CPU, the
decoded write address from the memory subsystem is matched against each field address
and sets its respective flag. At the end of the “Transform” state, the active triplet (user
data before interaction) is copied to the transformed triplet (user data after interaction)
address space, updating at the same time only the fields that were actually changed by
the CPU. Using this relatively simple write-detection approach, the need of accessing
individual fields when writing the triplet is avoided, preserving the low area footprint of
the HAoS memories writing logic, but also minimizing the required user accesses to

enable the write-back of the interaction result.

In order to further minimize the user effort while manipulating the HAoS user data,
taking into account that each SC schema (16-bit in this implementation) may be used as
a whole (e.g. a 16-bit number) or as a bit-array (e.g. a 16-element chromosome), each
schema can be accessed (read/written) in both modes (2-byte value and 16-byte array
with one effective bit each). This provides the user with the flexibility of being able to
avoid time-consuming bit-manipulation through bit-masking while processing the data
by operating on an array and also saving bit-to-byte software conversions as this is

handled by hardware.

Furthermore, the parts of a compressed template of a context system (see Figure 3.8)
were carefully re-arranged from SCH1-FUNCTION-SCH2 to SCH1-SCH2-FUNCTION
to get more compact memory utilization and faster accesses as the respective registers in
the REG BANK were also re-arranged in order to overcome any compiler byte-
alignment restrictions. This way, the whole template can be accessed by 2 consecutive 4-
byte memory read operations rather than three separate ones (one for each of the three

fields).

4.3.4 Further Addressing User-Friendliness with a Functional Model

While the developed simulation environment provides extended debugging capabilities,
it requires access and expertise on electronic design tools which should not be a
requirement for developing SC models to run on HAoS. Furthermore, such low-level

system simulations can be extremely time-consuming. Thus, in order to expedite natural
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SC models development, a software equivalent functional model of the suggested HAoS
architecture (a high-level simulator of the HAoS circuitry) was built, making possible to
quickly verify the functional behaviour of a SC program even without the need of having

the hardware platform.

The HAoS functional model is based on the original implementation in [24], but
provides a software interface to develop abstract high-level interaction behaviours,
similar to the (C/C++) plug-in approach in SCoPE. Once the functionality of the required
contextual behaviour is verified, the user can easily reuse the plug-in (with minimal

implementation-specific changes) in the compatible HAoS development flow.

4.3.5 Further Addressing Programmability

In order to also enhance the user experience and further address the programmability of
HAOoS, the challenge of loading the program to the platform, being able to extract debug
information during runtime and storing this log information for post-processing were
carefully examined taking into consideration that it would be preferable if HAoS was a

stand-alone self-contained solution.

As discussed in section 3.7, SC models are first developed using the SC language (see
Listing 3.1). The compiler has been updated to incorporate abstract transformation
functions in order to enhance flexibility by supporting high-level processing through the
CPU, resulting in human-readable assembly code (see Figure 3.17). However, this
format is not optimal for the program to be loaded to HAoS. Thus, a post-compiler tool
was developed to transform the human-readable assembly code to binary format with
minimum size in order to minimize the amount of data to be transferred to the HAoS

local memories and the processing time during program loading.

This SC binary generator tool effectively assigns one bit for each element of the
scopetable, while cleverly separates data from context systems as the former can be
further compressed while the latter may not, since system templates of contexts carry
already compressed information. Therefore, each line of the scopetable (see Figure 3.17)
requires the number of systems contained in the program to be divided by 8 and rounded
up to the closest integer amount of bytes, the transformation function is always 4 bytes
as it can never have a ternary part, each schemata of data systems is compressed to 2
bytes while each template of a context system requires 16 bytes, 8 for its binary part and
8 for its ternary part. The transformation function information is not included in the

binary SC format, as all interactions supported natively by HAoS have a predetermined
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opcode while all CPU-supported interactions can be checked for validity during runtime

through the software backend.

After the SC binary file, containing all required information, is prepared, the program
should be loaded to HAoS memories. The most straight-forward solution would be to
store the SC program on either the on-chip Block-RAM or the on-board DDR3 RAM
memory resources of the soft CPU. While the first option would enable the fastest
loading time, this would reduce the already limited available on-chip memory resources.
While this size limitation could be resolved by using the bigger on-board RAM memory,
a connection of the platform with a conventional computer would still be implied and

required in order to transfer the developed program to HAoS.

Thus, in order to enhance flexibility and make HAoS a standalone platform, it was
decided that the program should be stored on and loaded from a form of non-volatile
memory. Since the selected FPGA development board featured a Compact Flash card
controller (a common feature for development boards), this was chosen to be used as the
main storage of the prototype, since when it is FAT-formatted, it can also support a basic

file system.

Using the Compact Flash card and its file system, also addresses another very important
programmability aspect. This is the ability to efficiently log runtime information in a
console-like manner. Although access to a real-time console is possible during live
hardware debugging (using Xilinx tools), this results in excessive run times as all text is
communicated to a separate computer through a high-latency UART channel. For SC
applications which require that results are logged throughout the execution of the
program, just the data-logging overhead can account for the majority of the run time.
Storing any output data on the onboard CF card drastically reduces the required runtime

due to logging and again results in a standalone platform.

It is noted that in order to ease development, SC programs with low size requirements
can be hardcoded in software and loaded on HAoS on-chip memories along with the
accompanying low-level driver. A tool converting the SC binary file to ASCII text (in
order to be embedded in the user code) was developed to enable this functionality which
can be very useful during the first stages of development of a SC model, as initially a
lightweight version of the model can be more easily and quickly verified through
multiple revisions of the code until the desired behaviour is achieved. An example of the
resulting translated SC binary to ASCII is given in Appendix H for the example SC

program discussed in section 3.7 (see Figure 3.17).
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As explained in section 4.1, having decided that a soft processor will be used in the
HAOoS prototype platform, using the Xilinx MicroBlaze processor was the most straight-
forward decision as this offers a complete solution which is supported by the available
Xilinx design tools out of the box, in contrast with other open source and proprietary
alternatives. As the overhead of a complete operating system would have a high impact
on the performance of the platform, especially on such a low-performance processor, it
was decided that SC high-level interaction processing should be run as a bare-metal
application (referred to as “standalone” operating system option by Xilinx), which is a
set of low-layer software modules used to access processor specific functions. Therefore,
a low-level driver had to be developed in order to achieve communication between the

MicroBlaze and HAoS.

reset()

comms_init()

4 load_program_from_CF()
user_init() load_program()
load_hardcoded_program()
OR
check status() Iflnterrupt< transform()
Detected
OR
user_finish() halt() if stable or
user limit reached
! N

print_stats()

Figure 4.2. HAoS driver flow diagram

The HAoS driver handles all required background functionality. Its flow diagram is
given in Figure 4.2. It resets HAoS at the beginning, initialises any used communication
interfaces and loads the program either externally, from the CF card, or internally, from
the embedded user code, and then the loaded SC program starts executing. Then the
driver waits for an interrupt from HAoS, by constantly reading the predetermined HAoS
status register, to either pass control to the user code to perform some high-level
interaction or halt the system in case all systems have become stable or the user-defined
maximum number of interactions has been reached or a user-defined condition has been
satisfied. At the end of the execution, it also optionally gives some useful statistics

(execution time, percentages of aborted iterations due to either schemata mismatches or
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unavailable matching contexts in the selected scope, executed transformation functions,
number of interactions and average execution times). Effectively, all these background
processes are transparent to the user, which only has to define the transformation
functions that are defined in the SC source code and are supposed to be executed on the

CPU.

The HAo0S software framework is completed by a basic but comprehensive API, in order
to enhance the flexibility of the platform and the accessibility of the user to the internal
state of HAoS. The API among others, provides the user with read and write access to
any HAoS memory-mapped control register, and also offers optimized low-level access
routines to the schemata byte-arrays, scopetable manipulation, direct access to the full
contents of the HAoS local memories (TCAM and system RAMs) and the high-precision
(10ns resolution) HAoS real-time counter while it gives to the user the option of
executing initialization and termination code, respectively, before and after the execution
of the main SC program. A summary of the functions provided by the API is given in
Appendix E while more detailed information can be found on the official HAoS webpage

[191].

Post-Compiler I
Compiler Binary Generator Compact Flash
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Figure 4.3. HAoS programming toolchain and software framework illustrating the complete
suggested programming platform

The discussion above is summarized in Figure 4.3. The provided toolchain to convert the
SC source to the final HAoS binary is shown in the upper part, while the lower part gives
an overview of the software framework (and its association to the partitions of the
hardware platform), where the program is loaded from either the CF or part of the user

code, the driver handles background processes while the user just focuses on writing the
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high-level implementations of the required interaction transformation functions,

communicating, when needed, with HAoS through the provided APIL

4.3.6 Refinements Results

Various optimizations made to the prototype HAoS architecture are discussed in the
previous sections. These enhancements are made to address mainly research challenge
Chg3 (see section 1.4), in order to increase performance, in terms of latency and
operating frequency, and I/O efficiency but also improve qualitative aspects as user-

friendliness and programmability.

Table 4.4. Benchmark timing improvements reflecting various architectural optimizations,
using the 64-system base configuration with MicroBlaze running at 200MHz. Results given
are averaged over 10 runs. Reported timing for each row is obtained using optimizations
stated in all rows preceding it. On average, the CPU consumes ~40ms for the
transformation functions and ~15ms for the low-level driver functionality.

Benchmark
Optimization Description

Timing (ms)
No Optimization - CPU Writes Back the Triplet to HAoS Memories in consecutive writes
Writing logging information (20 ASCII characters) to off-board terminal through debug 768.213
UART and USB
CPU Writes Back the Triplet to HAoS Memories in consecutive writes - 186,315
Writing logging information (20 ASCII characters) to on-board Compact Flash card .
CPU Writes the Triplet to HAoS Registers - HAoS then writes it back to memories 176.613
CPU reads/writes only what is needed since Hardware Write-Detection is enabled 135.928
HAOS offers byte-aligned schematas in software-aware formatted registers for optimized 121.428
CPU access '
Enable hardware random numbers from the LFSR instead of using standard PRNG 109,431
software functions '
Optimised read/write functions using full data width for CPU schemata access 105.877
Minimized schemata-matching overhead using a register-based TCAM (single clock 101.704
write latency) ’
Replaced barrel-shifter in BITPOSSEL with parallel pipelined shifter and multiplexers 08,704
fed with pre-calculated constants accounting for every possible shifting combination ’
Increased HAoS operating frequency from 12.5MHz to 50MHz. Merged COUNTONES 22934
with BITPOSSEL to form RSL and optimized its critical path ’

In order to quantify the performance improvements, a classic computational problem (the
binary knapsack problem solved using a genetic algorithm optimization - see section 5.1)

is used here as a benchmark and the performance of the 64-systems HAoS is measured in
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terms of the duration of the execution of the program until 10000 interactions have been
reached. In this configuration the MicroBlaze runs at 200MHz while accurate (+10ns)
timing measurements are obtained by the dedicated real-time counter on HAoS. The

optimizations results are given in Table 4.4.

As shown above, while all optimizations have a positive contribution to overall system
performance, the ones that provide the most major improvements are the Hardware
Write-Detection mechanism (see section 4.3.3) and the optimizations on the critical path
of the RSL (see section 4.3.1) that allowed a higher operating frequency. Furthermore,
printing logging information on an off-board terminal (e.g. a laptop connected to the
board through USB), would heavily impact the performance of the system due to the
increased latency of the UART while disabling logging would negatively impact the user
experience. The solution of storing real-time information locally on the SD card enables

logging with a minimal impact to performance (compared to the terminal approach).

Further addressing Chg3, ease-of-use is improved by the functional model which enables
users to start developing and verify the basic functionality of SC programs without the
need of the hardware platform, while a complete software framework is also provided to
improve programmability and forms the base for the formal HAoS model development
methodology, introduced in the next section, to enhance user-friendliness and support the

utility and viability of the HAoS prototype platform.

4.4 Addressing Scalability for Single-Chip Implementations

It is important to note that depending on the number of systems required for a SC model,
the HAoS architecture can be easily scaled to accommodate any number of systems as
long as the design area can fit on the selected FPGA device (assuming a single-FPGA
implementation). HAoS has been written in highly-parameterized VHDL code. Thus,
scaling the design is a matter of changing a single parameter, the length of the address
bus (which is equal to the base-2 logarithm of the number of maximum supported
systems). In this way, the size of the SC model, in terms of systems, is limited solely by

the size of the available FPGA device.

As mentioned in section 3.8, the available Xilinx ML605 development board, features
the Virtex-6 LX240T FPGA which is a mid-range 40-nm based device, with high-end
devices built on 28-nm processes offering even 10 times more reprogrammable fabric
real estate and significant performance potential [228]. Table 4.5 shows the

implementation statistics of the available variations of the HAoS platform of Figure B.2,
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scaling the number of systems, including also the case of the area footprint of the
platform without HAoS (number of systems equals zero, just the MicroBlaze subsystem -
18% of available slices). These figures are in agreement with the initial estimates of
Table 3.6 and give the utilization of slices, LUTs, registers, Input/Output ports and DSP
blocks for designs ranging from 32 to 1024 systems.

Table 4.5. HAoS platform implementations statistics as the number of maximum systems
increases. Figures based on Virtex-6 LX240T utilization. The MicroBlaze subsystem
including all peripherals except HAoS requires approximately 18% of available area.

Numbers of slices, LUTSs, registers, I/Os, RAMs and DSP blocks with respective percentages
used are given for designs supporting 32-1024 systems (1024-systems configuration does not
include the latest design changes)

Maximum 0 32 64 128 256 512 1024*
Systems
Total | Used | % | Used | % | Used | % | Used | % | Used | % | Used | % Used %
Slices 37680 | 6841 | 18 | 12235 | 32 | 13492 | 35 | 15525 | 41 | 18269 | 48 | 24882 | 66 34522 | 91
I_S,ECTes 150720 | 14283 | 9 127636 | 18 | 29972 | 19 | 34338 | 22 | 43146 | 28 | 61481 | 40 98511 | 65
Sl'lce 301440 115061 | 4 22733 | 7 |25400| 8 |30818 |10 |41727 | 13 | 63768 | 21 108361 | 35
Registers
/o 600 193 | 32 193 |32 193 32 193 |32 193 32 193 32 193 32
Blocks
RAMs 416 56 13 58 13 61 14 64 15 70 16 106 25 148 35
DSP
Blocks 768 6 1 7 1 7 1 7 1 7 1 7 1 7 1

It is interesting to note that the size of the design appears to scale linearly (considering
the limits imposed by a single-chip implementation) as the number of systems increases,

as illustrated in Figure 4.4.

This implies that, assuming availability (and affordability) of the largest modern FPGA
device (Virtex-7 2000T with 305400 slices), SC models with up to 8196 systems may be
efficiently modelled with the single-FPGA HAoS platform (based on a projection of the
number of slices required according to the linear regression equation for the used slices

of Figure 4.4).

While the performance of HAoS will be identical for designs supporting different
maximum number of systems, fine-tuning the size of the design for a particular
application may permit more functions to be hardware-accelerated, increasing overall
performance. If such an addition is not required, the design featuring the greatest number

of systems may always be used.
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Figure 4.4. Linearity on area utilization as the number of maximum supported systems is
increased. Linear regression lines and determination coefficients given for slices, LUTs,
registers and RAMs

It is also noted that while the MicroBlaze processor of the hardware platform is clocked
at 100MHz, higher operating frequencies are achievable and have in fact been tested to
be fully operational, running at 200MHz, near the lower bound of the design sizes. This
is expected as, when the area utilization is low, the implementation tools have more
flexibility and achieving timing closure is more feasible. However, the lower 100MHz
CPU frequency has been selected for the evaluation purposes of this section in order to

have a uniform performance along all the size variations of the platform.

The discussion above makes evident that the specification (number of maximum
systems, performance of the soft processor, operating frequency of the HAoS subsystem)
of the HAoS platform strongly depends on the characteristics of the FPGA device it is
implemented on and that the prototype is merely an example of what a mid-range device
can accomplish. It is expected that as new FPGA technologies emerge, the custom HAo0S
logic, having been written in completely vendor-agnostic fully-synthesizable code, can

be adopted with minimal effort to achieve greater performance.

4.5 HAoS Model Development Methodology

Building upon the discussion of previous sections and further focusing on the practical

aspect of using the platform, a methodology for developing natural models targeting
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HAOS is suggested in this section and illustrated in Figure 4.5 with a layered format to

separate the distinct development phases.
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Figure 4.5. HAoS model development methodology (* implies user input)

Assuming that an existing natural system or process needs to be simulated, it is
important to first understand its behavioural dynamics and identify its quantitative
characteristics in order to conceptualize it (Conceptual Layer). At this stage, a systemic
analysis is necessary to identify the interacting systems, the interactions among them
(any contextual behaviour defining their transformation functions) and their organisation
(using scopes). The SC calculus notation can be used to describe the interactions, while
the SC model may be visualized using the SC graphical notation (see Figure 2.9). Having

a proper SC graphical notation of the model can make writing of the SC source code
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(*.sc - see Listing 3.1) quite trivial as each element in the SC graph corresponds directly
to a specific part of the code. This fact implies that source code extraction from SC
graphs can be automated in the future, enabling building SC models by using a high-
level SC graph tool. This direct mapping also extends in the SC calculus notation making
the transition from the Conceptual Layer to the next layer, the Application Layer, fully

automated once these SC high-level tools are developed.

The Application and Link Layers form the software framework discussed in sections
4.3.4 and 4.3.5. In the Application Layer, the SC source code is translated to human-
readable assembly code (*.scp), which is then used as input to the HAoS functional
model along with the high-level processing plugins, implied by transformation functions
not supported natively by HAoS (not included in the HAoS instruction set - see Table
3.4). The source code and plugins are then revised until the desired behaviour is
accomplished. The Link Layer is the back-end phase were the SC binary (*.scb) is
generated by the post-compiler and, depending on how the program is going to be
loaded, it is either transferred to the Compact Flash Card or converted to ASCII text
(*.txt) to be embedded to the user code. Slight modifications may be needed at this point
to the interaction plugins prepared in the Application Layer to account for low-level
communication to HAoS through the provided API. Finally, the user code is linked with
the HAoS driver (using the Xilinx Software Development Kit) to generate the bare-metal

executable (*.elf) which will run on the MicroBlaze processor.

At the Physical Layer, the HAoS platform is implemented on the target FPGA board.
Based on the number of systems of the SC model, the appropriate configuration
bitstream (*.bit) is selected and combined with the output executable of the Link Layer
to form the final bitstream to program the FPGA device. The SC model simulation starts
by asserting the on-board hardware reset. The CF card acts as the storage unit of the
platform, storing the HAoS binary program (*.scb) and runtime log information (*.log).
A summary of the various file types used along the suggested HAoS model development

framework is given in Appendix F.

Before the final deployment of the SC model, live hardware debugging is also supported
through the Xilinx Software Development Kit (SDK) [225] following a typical
debugging flow in an Eclipse-based environment. The choice of the MicroBlaze
processor (section 4.1) ensured that software development is seamlessly integrated in the
HAoS embedded system design flow, as the complete architecture can be exported from

the hardware environment directly to the software environment. The SDK tools take
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advantage of this compatibility and configure the compiler and the debugger according
to the underlying hardware design in an automated way while the memory mapping of
the various peripherals is configured by auto-generated linker scripts. The maturity of
the tools and the inclusion of the specialized hardware Xilinx MicroBlaze Debug Module
in the system enable full source-level debugging capabilities as all typical debugging
features (like setting breakpoints and watchpoints, examining program variables and the
contents of system memory, stepping through program execution and viewing the call
stack) are supported. During debugging, access to the internal state of the HAoS custom
logic is obtained through reading the appropriate registers of the REG_BANK using the
provided API functions (see Appendix E) while the host computer running the SDK
communicates with the FPGA development board through the UART of the embedded
system using a standard USB cable.

4.6 Summary

In this chapter, the base HAoS system is extended to a practical hardware platform
accompanied by a software framework to provide a complete SC programming platform.
A thorough investigation of potential communication interfaces is provided in section
4.1. The analysis suggests that current technologies and protocols are widely
inappropriate for the real low-latency high-bandwidth solution required for linking the
SC architecture to a hi-end CPU. Thus, the suggested design makes a compromise based
on the latency-bandwidth trade-off that current technologies support, and it is concluded
that the ideal configuration would involve a high-performance CPU and the
reprogrammable logic on the same die, communicating at wire speed (acknowledging the

fact that current industrial trends have started adopting this approach).

The rest of the chapter addresses Chg2 (SC architecture support), by revising the
random-selection and schemata-matching hardware blocks, and Chg3 detailing
optimizations and enhancements that increase the efficiency of the design in terms of
latency and area, quantifying the results in sections 4.3.6 and 4.4. Combining the
updated hardware design with a complete software framework, developed mainly to
enhance user-friendliness and programmability, a HAoS model development
methodology is then formulated in 4.5 and demonstrated in the next chapter, giving
examples of simulating a natural process from conception to obtaining the final results.
The time complexity of the schemata matching mechanism is evaluated in section 5.1.5

and reveals that the optimized architecture achieves the task in near constant time.
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Chapter 5

Verification and Evaluation

Low-level simulations of the hardware design have previously (section 3.8.1) verified
the functional behaviour of the base HAoS design testing various simple scenarios.
However, system-level verification is also important to stress the architecture and ensure
that the complete platform (including the embedded CPU subsystem and communication
interface) is behaving as expected. Since the hardware platform is available, live testing
(SC programs executed on hardware) can be much faster than the extremely time-
consuming RTL simulations, enabling the testing of more advanced functionality and
more complex SC models. System-level hardware verification addresses research
challenge Chg?2 as it validates the support of the underlying SC architecture from the
suggested design.

Furthermore, executing more complex SC models on the final hardware platform can
also be used to evaluate HAoS against alternative simulators, in terms of efficiency -
addressing this way research challenge Chg3. Thus, after successfully executing the
simple test programs of Table 3.5 on hardware, three practical bio-inspired models,
presented in this chapter, are simulated with our prototype platform, and the results are
compared with the outcome of alternative simulation environments confirming that
HAO0S can be used as a practical simulation solution (addressing the second requirement

of Chg3).

The selected models attempt to cover a wide range of possible SC applications. First, a
genetic algorithm optimization of the binary knapsack problem gives an example of how
evolutionary methods can be implemented with SC to solve a classic synthetic
computational problem. Then, moving to a more practical application, we model a well-
studied biochemical process, the MAPK signalling cascade. Finally, increasing
significantly the complexity, a SC application modelling the effect of chromosome
missegregation during cellular division and typical treatment approaches on cancer
growth is presented. All the models presented below, have been previously introduced

targeting different platforms and are reused for a thorough verification and evaluation of
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HAoS. The first two models are based on previously developed SC applications,
retargeted here to the HAoS platform, while the cancer SC application has been

developed from scratch.

Part of the work presented in this chapter has been published in [37], [160] and
submitted for publication in [230].

5.1 A Genetic Algorithm Optimization of the Binary Knapsack
Problem

The most complex test case among the initial verification scenarios of Table 3.5 is the
genetic algorithm (GA) optimization of the binary knapsack problem [231]. The
knapsack (or rucksack) problem is a classical example of combinatorial optimization
[232] which involves finding an optimal object in a finite set of objects, essentially
exploring a search space for the best solution to a given problem. Other typical examples
in this category of problems are the Travelling Salesman Problem, Minimum Spanning
Tree Problem and Job Assignment Problem [232] having in common that an optimum
instance is required, but examining all the possible permutations to identify it is not

usually desirable or feasible.

For this reason, alternative approaches and numerous algorithms can be found in the
literature [232] addressing the various types of combinatorial problems. Among them, a
Genetic Algorithm (described earlier in the context of Evolvable systems, section 2.2.2)
is a well-suited method for solving the binary knapsack problem, as it uses evolutionary
search techniques to identify a sufficiently good solution. The SC model presented below
follows the approach introduced in [34], running on the GPU-based SC implementation,
in order to directly compare the performance results obtained by HAoS to prior SC

implementations.

5.1.1 The Binary Knapsack Problem

In the general knapsack problem, there are n types of items. Each type i, has an
associated non-negative value v; and weight w;. The maximum combined weight of items
that can fit in the knapsack is W. The binary (or 0-1) knapsack problem also poses a
restriction on the number x; of copies of each type of object to zero or one. The problem

is mathematically formulated as:

n n
Maximize Zvix,- where Zwixi <W and X; € {091}

i=1 i=1
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@

Figure 5.1. 16-Element Binary Knapsack Problem where W = 80kg

The configuration of the specific test case for the binary knapsack problem is shown in

Figure 5.1 with W = 80 kg, n =16 (i = 0—15) and various randomly selected

combinations of weight and value for the available items.

5.1.2 Applying a Genetic Algorithm to the Binary Knapsack Problem

In order to solve a problem with a GA-based approach, a population of candidate
solutions is evolved by altering a set of properties for each candidate. For the binary
knapsack problem, each solution may or may not include one copy of each available
item. Each solution is represented by an n-bit binary string, where n is the number of
available items and each bit represents if a specific item is (if the bit is set) or is not (if
the bit is cleared) selected to be part of the solution. Thus, the string, or chromosome,

holds the binary decisions making up each distinct solution for the given problem.

This representation is illustrated in Figure 5.2, giving as an example the optimal solution
of the 16-element binary knapsack problem of Figure 5.1. The position of each bit in the
chromosome corresponds to the distinct type of each item (shown at its top facet in

Figure 5.1). The weight and value for each solution, according to its chromosome, is
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calculated by summing the weights and values of the items at the corresponding
positions with set bits. For the configuration of Figure 5.1, the optimal chromosome

gives a maximum value of 124 for a total weight of 79.

15(14{13({12({11{10{9 |8 |7 |6 5|4 |3 | 2| 1| 0 | Position - Type

Optimal
Chromosome

974118/ 5(10{19|11|17|16]2 |8 |3 | 1|20({15| Weight (79)

311512 [13|19 4 |11 1|6 |7 |17| 5|9 [12{14]|20| Value (124)

Figure 5.2. Representation of the optimal solution for the Binary Knapsack Problem

Following a classical GA methodology, a set (or population) of solutions is initialized
with random values for each bit in their chromosomes. Then, a set of genetic operators is
used to alter the genetic material of each solution. For simplicity, only three standard
genetic operators, illustrated in Figure 5.3, are applied to the candidate solutions of the
Binary Knapsack Problem™: Binary (or Single Point) Mutation which performs a random
bit flip, One-Point Crossover that swaps the genetic content of the two parents around a
randomly selected point and Uniform Crossover where each bit of the resulting solution

may come from each parent with a 50% probability.

The selection of solutions to propagate to the next generation is straightforward as the
fitness function in this case simply gives the weight of the chromosome, so valid
solutions with greater weight are fitter. However, it is noted that as the genetic
alterations are random, the resulting offspring may become invalid if its total weight
exceeds the predetermined threshold W. For this reason, each genetic operation also
includes a guarding functionality to prevent invalid solutions by selectively decreasing

the weight of an unacceptable chromosome until its weight is below W.

1t is noted that other types of mutation (as boundary, uniform and Gaussian) and crossover (as
two-point, cut-and-slice and half-uniform) are also commonly used. Moreover, other genetic
operators (as regrouping, colonization-extinction and migration) are also suggested in the

literature [250]
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(A) Binary Mutation

Random Bit-Flip
(B) One-Point Crossover
= o
CrossovTer Point
(C) Uniform Crossover
= o

Figure 5.3. Standard genetic operators: Binary Mutation, One-Point and Uniform
Crossover

5.1.3 Systemic Analysis

Having described the genetic optimization approach of the binary knapsack problem in
the previous sections, a systemic analysis is required in order to identify the systems, the
interactions among them and the scopes they belong to before building the corresponding
SC model (implementing the conceptual layer of the suggested model development

methodology, see Figure 4.5).
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In this case, associating the data systems with the candidate solutions is a
straightforward choice, as the similarity of the binary representation of a chromosome
(see Figure 5.2) with the representation of a HAoS data system (see Figure 3.8a) is
evident. Thus, the genetic content of each chromosome is stored in one of the schemata
of a SC system. This implies that as the size of each schema is set to 16 bits in this
HAoS implementation, a restriction of a maximum of 16 items is posed to this knapsack

problem.

As systems are initialized to random values after the beginning of the program, the SC
model should initially include only non-initialized solutions. Moreover, the fittest
solution should be uniquely stored in a different type of system, which will be updated
only when required (only when a fitter solution than the previously fittest solution has
been found). Thus, three distinct types of data systems, stored in the second schema of
each data system, are required to represent all possible solution: non-initialized,

initialized and fittest.

The obvious context systems needed, defining interactions between the parent solution
systems, correspond to the three genetic operators used in our problem (see Figure 5.3).
Additionally, following the discussion above, a context handling the initialization of
solutions (an “initializer” context) is also required, setting the bits of the chromosome-
representing schema randomly to 1 or 0 (with 50% probability each) and changing their
type-representing schema from non-initialized to initialized. Moreover, another “output”
context should be responsible for updating the fittest solution, by comparing its weight
with the weight of a randomly chosen initialized system and updating it when a new

maximum weight is found.

Considering the required scopes of interaction, since the main transformation activities
of this SC model are performed by the genetic operator contexts on initialized solutions,
a dedicated “computation” scope is defined to separate them from the secondary tasks of
initialization and output. This implies that non-initialized solutions can be part of the
root (or “main”) scope but they need to be moved in the computation scope when
initialized by the initializer context. The output context (along with the fittest solution)
can also be contained in the root scope. However, since interacting systems must be in
the same scope, and since the fittest solution belongs to the root scope, initialized
solutions should also be part of the main scope (in order to be able to interact with the

final solution during updating). This denotes that initialized solutions are part of both the
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computation and the main scopes. The genetic optimization binary knapsack SC model,

according to the systemic analysis above is summarized in Figure 5.4.
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Figure 5.4. The binary knapsack SC model. Non-initialized solutions are initialized by the
initializer context and added into the computation scope where they are transformed
through genetic operations. The output context updates, if necessary, the fittest solution.

5.1.4 SC Binary Knapsack Model Implementation

The HAoS binary knapsack model (and the two other bio-inspired models presented later
in this chapter) has been implemented applying the suggested development
methodology® of section 4.5. The systemic analysis performed at the Conceptual Layer,

resulting in laying out the model on SC graphical notation, makes the development of the

* The low level details of the implementation of the Application, Link and Physical Layers will

be omitted here. All source code and configuration bitstrings can be found in the official HAoS

webpage [191].
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SC source code straightforward. In order to show this, the source code of the binary
knapsack model is given in Listing 5.1. Its direct mapping to Figure 5.4 is evident as,
after the functions and some useful labels are defined, the data systems, contexts and
scopes are defined exactly as represented graphically. A description of the SC contexts

functionality is given in Table 5.1.

Listing 5.1. Binary Knapsack SC model source code (50 solutions)

#systemic start

// define the functions

#function Output $p00000001010000000000000000000000
#function Initialize $p10000001010000000000000000000000
#function UniformCrossover $b01000001010000000000000000000000
#function OnePointCrossover $b11000001010000000000000000000000
#function BinaryMutation %$p00100001010000000000000000000000

// define some useful labels

#label zero $b0000000000000000
#label dontcare Fb?2222222722222°27272°7
#label comp $p1111111100000000
#label Sol %$b1000000000000000 // Initialized Solution System Type

#label nonInitSol %b0100000000000000 // Non-Initialized Solution System Type
#label FittestSol %b1100000000000000 // Fittest Solution System Type
#label zero2 %$b00000000000000000000000000000000

// declare the scopes
main (%$d0 $d0 %dO0)
computation ( comp %d0 comp )

// data systems
OutSolution ( zero %d0 FittestSol ) // Fittest Solution
[1:50]solution ( zero %d0 nonInitSol ) // Non-Initialized Solutions

// context systems

// The initializer context defines an interaction between a non-initialized
// solution and the computation scope

initializer ([zero zero2 nonInitSol] Initialize(0,0) [comp zero2 comp])

// The output context defines an interaction between an initialized solution
// and the fittest solution

output ([dontcare zero2 Sol] Output(0,0) [dontcare zero2 FittestSol])

// The genetic operator contexts define interactions between initialized solutions

uniformCross ([dontcare zero2 Sol] UniformCrossover (0,0) [dontcare zero2 Sol])
onePointCross ([dontcare zero2 Sol] OnePointCrossover (0,0) [dontcare zero2 Sol])
binMutation ([dontcare zero2 Sol] BinaryMutation(0,0) [dontcare zero2 Sol])

// set up the scopes
#scope main
{
OutSolution
[1:50]solution

initializer
output

computation

#scope computation

uniformCross
onePointCross
binMutation

}

#systemic end
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Table 5.1. Summary of the Knapsack SC model functions. All functions run on the CPU.

Function Name Description

Initializes an non-initialized solution with random bit values, transforms

Initialize . A . . . .
it to initialized and inserts it also in the computation scope

Performs Uniform Crossover (each child bit can come from any of the
UniformCrossover | parents with 50% probability - see Figure 5.3) using two initialized
solutions as parents

Performs One-Point Crossover (the child is produced by two
consecutive parts, one from each parent, while the point that defines the
length of the parts is chosen randomly - see Figure 5.3) using two
initialized solutions as parents

OnePointCrossover

Performs Uniform Crossover (a random bit-flip is performed to the
BinaryMutation parent to result in the child - see Figure 5.3) using one initialized
solution as parent

Compares a random solution with the fittest and updates the fittest if
Output ded
neede

Experiment Setup

The setup of the binary knapsack experiment replicates the configuration presented in
[34], and shown earlier in Figure 5.1, in order to enable a direct comparison and
evaluation of the performance of HAoS against prior SC implementations. In particular,
identical copies®® of the SC source code are used to run the experiment on HAoS, the
original sequential (section 2.4.1) and the GPU-based (section 2.4.3) implementations.
SCoPE (section 2.4.2) is excluded here, as it uses a different SC language and compiler.
It is noted that the CPU is heavily used in this case, as the available low-level hardware-

supported HAoS instructions are not suitable for the required high-level GA tasks.

The experiment involves running the 16-item SC binary knapsack model using 50, 100,
200, 400, 800 and 1000 solutions. As the time of convergence to the optimal
chromosome can vary greatly for different runs and since this metric is mainly affected
by the sequence of the selected genetic operations applied to the candidate solutions, it
was decided that the three platforms would be evaluated based on reaching a certain
amount of interactions, set in this experiment at 10000 (following the setup in [34]). An
Intel® Core™ i7 950 CPU at 3.06GHz with 4 GB of RAM running on 32-bit Windows 7
and an NVIDIA GeForce GTX 260 GPU with 192 CUDA cores where used for the

sequential and GPU versions. HAoS, as mentioned in sections 4.2 and 4.3.6, uses a

%% The source code was not optimized for HA0S in order to enable a more fair comparison.
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MicroBlaze processor with 64KB of RAM running at 100 MHz while the custom logic is
clocked at S0OMHz.

5.1.5 Results

The binary knapsack problem was one of the initial verification tests (see Table 3.5) that
validated the functionality of HA0S by simulation. The verification environment lacked®’
precise timing information, as the CPU INTERFACE (see Figure 3.9) was emulated by a
generic register-based mechanism implementing a handshake protocol and the timing of
functions running on the processor was estimated by averaging the results of intrusive
software-based profiling. Thus, timing results presented in this chapter will be solely

based on live testing on the hardware platform.

However, in order to show that the verification environment can be used, if required
(mostly for debugging purposes), even for such a high-level model, an excerpt from its
output near the end of the simulation is given in Listing 5.2 showing that the optimal
chromosome, with right weight and value (see Figure 5.2), is correctly identified (also

noting the relatively long run time).

Listing 5.2. Verification environment output for Binary Knapsack SC model

IF DIFF THEN BETTER (22587,225¢
sch2:1=>1,

#Time 52098245ns :: The SC program was loaded at 2613975.
m

#Binary Knapsack Problem Solution is 0101100000111111 (found at iter. 2259
@13929180ns>)

#It has a weight of 79.000000 and a value of 124.000000

i

to schemata mismatch out of 10000 iterations.

compare Ratio : 0.11%

#Process time 305.01 seconds (simulation real time duration)

The comparison results for the different experiment configurations in terms of number of
systems are given in Figure 5.5 as a semi-log graph (left) in order include the

exponential growth of runtimes for the sequential implementation, while on the right

7 Applies for behavioural (RTL) simulations. Precise and very precise timing can be obtained in
the verification environment by running post-synthesis and post-place-and-route simulations

including the processor subsystem but this results in excessive run times.
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HAoS performance is compared only with the GPU-based version. All the

implementations eventually identify the correct solution.
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Figure 5.5. Binary knapsack problem experimental results across a range of number of
systems comparing the sequential, GPU and HAoS SC implementations (left - semi-log) -
zoomed in (right)

5.1.6 Analysis

Since the code implementing the transformation functions of the SC model is
intentionally identical to the code running in the other implementations, the comparison
results mainly represent the efficiency difference of the three platforms on valid triplet
generation, affected mainly by the implementation of the schemata matching mechanism.
As the number of system increases, the sequential implementation struggles as it handles
schemata matching with an inefficient loop-based approach resulting in time complexity
of O(n’), while the GPU version, by utilizing multiple stream processors, parallelizes
part of this loop and achieves to decrease it in O(n) [34] (shown in Figure 5.5 if the
minimal highest orders factors are ignored). The truly parallel nature of the TCAM is the
differentiating feature for HAoS since schemata matching is executed in constant time

(one clock cycle — implying O(1)), shown in Figure 5.5.

As more clearly shown in Figure 5.6 (illustrating the normalised performance of HAoS
in relation with the sequential and GPU SC versions), the superiority of the HAoS
platform against prior implementations is evident as HAoS performs more than 1000x
better than the sequential solution in the best case and approximately 8x-9x when

compared with the GPU implementation.
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Figure 5.6. Binary knapsack experiments HAoS normalised performance compared to the
sequential and GPU implementations

Moreover, it is important to be noted that, these results do not apply only in the problem
class which the knapsack experiment belongs in, but they can be generalized to any
problem that may be solved with SC given that HAoS provides sufficient computational
resources when compared to alternatives. This is attributed to the importance of the
schemata matching mechanism. The performance during the simulation of any natural
system under the SC paradigm always rely on valid triplet generation (finding the two
systems to interact according to the schemata templates of a, third, context system) and
the actual computation which changes the systems according to the transformation
function of the context system. Being able to perform the computational part, by
executing code written in some well-established high-level language, is essential in order
to achieve a generic and practical architecture not limited to the complexity of the
computation. However, attempting to also simulate the schemata matching step, which is
highly-parallel in nature, to the same sequential logic results in the findings of Figure 5.5
when compared to the suggested HAoS architecture for ascending number of systems,

due to the inherent parallelism of the employed TCAM.

The schemata matching task can be viewed as a lookup in a 3-dimensional search space
for each scope, where each dimension represents the indexes of each system in the valid
triplet (s1 for first interacting system axis, s2 for second interacting system axis and ¢ for

context axis), or a 4-dimensional search space with the fourth dimension (s) representing
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the scopes of each system. In the current configuration the coordinates on s and c axes
(valid scope and active context) are chosen randomly, as explained in section 3.5, and
then HAoS locates the appropriate coordinates on axes sl and s2 by performing two
consecutive lookups using the TCAM to identify the interacting systems, and thus
pinpoint the next valid triplet. Using a second TCAM, would enable the identification of
both interacting systems at the same time, while using such a double TCAM structure (or
effectively a dual-port TCAM) for each context system would enable a one clock cycle
latency of finding all active triplet points in the 3-dimensional search space for each

scope.

Extending this thought, again multiplying the number of TCAMs with the number of
scopes would allow a truly parallel schemata matching mechanism that would give all
interacting systems pairs for all contexts in all scopes at once. Such a structure would
increase the number of required TCAM storage exponentially. Whereas the TCAM in the
current prototype requires (N is the number of maximum supported systems):
Sizercay = (Lengthrcqy) * ( Widthrcan) = (2 * Sizeschemaa)* (N) = (2 *16) * 1024 = 4KB
in the hypothetical 4-dimensional TCAM scenario it would require :
Sizercayaa = 2 * N * N * Sizercay = 4 * Sizesehomara * N° = 8GB

which is an enormous size when considering on-chip distributed memory today but may
become feasible in the future or using an alternative TCAM implementation approach,
e.g. an external TCAM configuration. The HAoS prototype, in this context, is a
compromise between the inefficient sequential approach and the truly parallel but

currently infeasible 4d approach for schemata matching.

Apart from the encouraging evaluation results, it should be noticed that the knapsack
problem here acts as more than an example of a common synthetic computational
problem being solved. Implementing a genetic algorithm in such a native way implies
that the design encompasses, to some level, a lot of the natural properties of Table 1.1,
addressing research challenge Chgl. As it has been shown in [22], such a system can
present behavioural natural properties as self-adaptation, self-organization, fault-
tolerance and self-maintenance while also implementing a stochastic, distributed and
approximate computational model. Moreover, the successful execution of this first high-
level SC model confirms the support of the suggested design for the underlying
architecture of SC, addressing research challenge Chg?2. The results additionally address
research challenge Chg3 by verifying the efficiency of HAoS against prior SC

implementations.
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5.2 Simulation of a Biochemical Process with HAoS: the MAPK
Signalling Cascade

Enzymes regulate various cellular functions by catalyzing chemical reactions among
biological molecules. One of the enzymes known to be responsible for gene expression
and cell fate induction is the protein kinase which adds phosphate groups to proteins (a
process called phosphorylation). Extracellular stimuli (mitogens) can activate protein
kinases (Mitogen Activated Protein Kinases - MAPK) and start a chain reaction known
as the MAPK signalling cascade [233], resembling the behaviour of a biological

ultrasensitive switch which can bring the cell to discrete states.

The MAPK cascade model presented in this section was introduced by Huang and Ferrell
in [233]. The authors give estimated results based on the numerical solution of rate
differential equations derived by the involved biochemical reactions which are in
accordance with in vitro experimental results presented in the same paper. The same
model was used later in [234] as an application for their stochastic n-calculus simulator
and in [22] as a case study to demonstrate the visualization framework of the high-level
SCoPE implementation (see section 2.4.2 - Figure 2.14 actually represents a MAPK

cascade model).

5.2.1 The MAPK Signalling Cascade

During the process involved in the MAPK signalling cascade, mitogens activate a
MAPKKK (mitogen-activated protein kinase kinase kinase or MAPKKK or for
simplicity here KKK) which in turn phosphorylates a MAPKK (mitogen-activated
protein kinase kinase or MAPKK or KK) which itself phosphorylates a MAPK (mitogen-
activated protein kinase or MAPK or K). The product of the first step, the activated
KKK, is denoted as KKK*. In the next steps, one or two phosphate groups (P) are added
to K and KK and result in single (KP and KKP) and double (KPP and KKPP)
phosphorylated kinases.

The cascade can return to its initial state with the addition of phosphatase enzymes
(KKPase and KPase) which remove a phosphate group from its substrate (this reverse
process is called dephosphorylation). The phosphorylation and dephosphorylation

processes along with their associated chemical reactions are illustrated in Figure 5.7.



Chapter 5. Verification and Evaluation 158

K+KPase <— KP-KPase = KP+KPase <— KPP-KPase = KPase+KPP

t

KK+KKPase — KKP-KKPase = KKP+KKPase «— KKPP-KKPase = KKPP+KKPase

Dephosphorylation

[

0

0

0

0

]

0

]

* KKK+E2 <« KKK-E2 = KKK*+E2

Products — Reactants
Reactants — Products
= : Chemical Equilibrium

KKK+E1 = KKK*-E1 — KKK*+E1

I
! v v
KK+KKK* = KK-KKK* = KKK*+KKP = KKK*-KKP — KKK*+KKPP
J

Phosphorylation

$eccccccaa

K+KKPP == K-KKPP — KKPP+KP == KKPP-KP — KKPP+KPP

Figure 5.7. Simplified biochemical description of the MAPK signalling cascade ignoring
phosphate groups. The cascade is traversed forwards during phosphorylation (lower half,
left-to-right) to result in a high concentration of activated kinases KKK*, KKPP and KPP
and backwards during dephosphorylation (upper half, right-to-left) to return to its initial

state. E1 and E2 represent the mitogens which activate KKKs and deactivate KKK*s,
respectively. The intermediate product of each reaction (written here as the reactants
connected by a hyphen) may either give the final products or be transformed back to the
initial reactants®.

5.2.2 Systemic Analysis

Taking into consideration the chemical reactions of the cascade (see Figure 5.7), a
systemic analysis of the model is performed to identify the systems to interact and the
form of the interactions between them. Since this is a biochemical model involving
enzyme activity, selecting the level of abstraction of the SC model at the enzyme level is

a straightforward decision.

Considering first the phosphorylation process, looking at the bottom half of Figure 5.7,
since the addition of the mitogens E1 performs the activation of proteins KKK and
transforms them in activated proteins KKK*, it is evident that the mitogens act as
context systems, defining the interaction of a data system KKK with an implied free
phosphate group (PF) resulting either on the KKK binding the PF and becoming KKK*
with a bound phosphate group (PB) or no system being transformed. This binding of a

* To be more exact, the intermediate products are in chemical equilibrium state with the
reactants, meaning that no real transformation can happen between them as both reactants and

products are present at concentrations which have no further tendency to change with time.
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PF and its transformation to a PB is implied for every reaction during the

phosphorylation process and will not be repeated in the following analysis.

Moving in the next pair of reactions, a KKK* may transform a KK into a KKP and if this
reaction is performed, the KKK* may also further transform the product KKP into a
KKPP. Thus KKK* acts as a context, defining interactions between KK or KKP data
systems and the implied PFs. It should be noted that while KKK is a data system, it is
transformed to a context system (KKK?*) when activated by E1 in the previous step. This
implies that the context adapting functionality (discussed in section 3.6.1 and tested in

section 3.8.1) is required by this SC model.

Looking at the last set of reactions, the product of the previous reaction KKPP (which
has resulted from data system KKP) acts as a context, defining interactions between K or
KP data systems and the implied PFs. The possible products of these interactions are
respectively KP or KPP data systems. Thus the data system KKP is transformed to the
context system KKPP. As shown in the bottom right part of Figure 5.7, KKPP and KPP
are the last products of the phosphorylation process, so monitoring their concentration
can give the state of the MAPK signalling cascade biological switch (the two distinct
states of the switch are represented by either very high or very low concentration of

these products) during an experiment using this model.

Using the same thought process and the chemical reactions of the top half of Figure 5.7,
a systemic analysis can also be performed for dephosphorylation. For each reaction
during this process, an unbinding of a bound phosphate group PB and its transformation
to a free phosphate group PF is implied. Skipping the detailed explanation, the
phosphatase enzymes KPase and KKPase and the mitogen E2 act as contexts. KPase may
transform data systems KPP and KP to data systems KP and K, respectively. KKPase
may transform data systems KKP to data systems KK but may also transform context
systems KKPP to data systems KKP. This dual functionality cannot be represented by
one system. Thus, a context should be used to model the former behaviour of KKPase,
while a context adapter system should be used to model the later. Finally, context

adapter E2 may transform KKK* contexts back to data systems KKK.

After identifying the systems involved in the SC MAPK cascade model above, the last
part of the systemic analysis is with regards to the required scopes of interaction. An
exact representation of the model would require that once a phosphate group P, modelled
as a separate system, is bound by a protein kinase during phosphorylation, this P could

not be able to be re-bound by another kinase. Furthermore when this specific kinase
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would interact during dephosphorylation, it would need to unbind the specific P that had
bound before. This functionality, representing the physical location in a real biochemical
system could be implemented using scopes. However, it would add considerable

complexity to the SC model.

Since the main focus of this MAPK model lies on the concentrations of the activated
kinases, representing the phosphate groups as a distinct system each is not a firm
requirement. The total of Ps can also be modelled as a container system holding in its
schemata counters for the number of the free groups PF and of the ones bound to a
kinase PB. Furthermore, this model assumes that an adequate number of Ps is available,
equal or greater than |KKK|+2*(|KK|+|K|) (as one P can be bound by a KKK and two Ps
can be bound by KKs and Ks), which would be enough to phosphorylate all kinases.
Thus, the way Ps are modelled becomes irrelevant as it would only have an effect on the
outcome of the model only in the case of having a shortage of P, since this would disable
some reactions. So, in order to avoid adding unnecessary complexity to the SC model, all
phosphate groups can be modelled by a single system taking part in all interactions or
even be safely ignored, as long as the contexts appropriately alter the kinase systems.
Following this approach, the number of total required systems is drastically decreased

and also no additional scopes are needed, apart from the root scope.

In order to make the systemic analysis more clear, the systems and interactions of the
HAoS MAPK model are described in SC calculus notation [22] in Table 5.2. The
designations (P[F]) and (P[B]) as the second interacting system denotes that a free or
bound phosphate group, respectively, would be used if each P was represented by a
separate system while all interactions would involve the same P system if all Ps were
represented by a container system. The parenthesis reminds us that the P system may
even be ignored (in that case, the second template would match with any system). The

simplified SC model discussed above is given in SC graphical notation in Figure 5.8.
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Phosphorylation Steps:
A-B-C-D-E

Dephosphorylation Steps:
E-D-C—-B-A

Figure 5.8. The HAoS MAPK model in SC graphical notation. During phosphorylation, E1
mitogens activate KKKs, which become KKK*s and phosphorylate KKs, which, when
double phosphorylated, become KKPPs and phosphorylate Ks. This process is reversed
during dephosphorylation with KPase and KKPase phosphatases and E2 mitogens bringing
the cascade to its initial state. Systems with the same colour or connected with a dotted line
may represent the same system (redrawn here for clarity). Phosphate groups may be
modelled as separate systems including information about their binding ([F]:free,
[B]:bound) or as one counter system representing all of them (P) or may even safely ignored
as they do not have an impact on the behaviour of the model.
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Table 5.2. The HAoS MAPK model interactions in SC calculus notation. The notation S; }-
C -{ S, indicates that the systems S; and S, match the schemata of a context system C and
they interact in the scope of C according to its transformation function, while the | symbol
separates different outcomes that an interaction may have. During phosphorylation a free
phosphate group (PF) becomes bound (PB) to a kinase, while it is released during
dephosphorylation when phosphate groups are included in the model. The different types of
systems according to the systemic analysis are represented as follows here: Bold for
contexts, italic for context adapters and normal for data

Interacting Systems — Result
5 | KKK }- El -{ (P[F)— KKK* (P[B])| KKK (P[F])
§§ KK }- KKK* -{ (P[F])— KKP (P[B]) | KK (P[F])
§ KKP }- KKK* -{ (P[F])— KKPP (P[B]) | KKP (P[F])
S|k ) KKPP «{ PIF)—  KP(P[B] K (PF))
KP  }- KKPP -{ (P[F])— KPP (P[B]) | KP (P[F])
Interacting Systems — Result
S | KPP }- KPase -{ (P[B))—  KP (P[F]) | KPP (P[B])
§ KP  }- KPase -{ (P[B)— K (P[F])|KP (P[B])
S
2 | KKPP }- KKPase -{ (P[B))—  KKP (P[F]) | KKPP (P[B])
§ KKP }- KKPase-{ (P[B])— KK (P[F]) | KKP (P[B])
KKK* }- E2 -{ (P[B)— KKK (P[F]) | KKK* (P[B])

5.2.3 SC MAPK Signalling Cascade Model Implementation

Following the systemic analysis of the previous section, the MAPK HAoS model
includes all types of supported systems: data, context and context adapters. Observing
the systemic interactions of Table 5.2, data systems are differentiated by the number of
protein kinases (Ks) and phosphate groups (Ps). So a straightforward approach to
represent this information is to assign one bit for each K and each P in each data system.
If separate phosphate groups are included in the model, another pair of bits can be used
to represent the P data system type and its binding state. Furthermore, noting that
contexts KKK*, KKPP and KPase can define interactions performing the same
transformation on two different types of data systems (KKK* can select KKK or KK,
KKPP can select K or KP and KPase can select KPP or KP), these interactions can be
grouped together. Ternary bits (denoted with a question mark: ?) can be used in the data

template defined in the schemata of these contexts, so that both possible data system
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types can be selected during schemata matching. This is shown in the labels section of

the SC source code of the model, given in Listing 5.3.

Listing 5.3. MAPK Signalling Cascade SC model source code

#systemic start

// define the functions needed according to the systemic interactions

#function PHOSPH El %$b00000010010000000000000000000000 // Phosphorylation EI

#function PHOSPH_KKK %$010000010010000000000000000000000 // Phosphorylation KKK*
#function PHOSPH_KKPP %$001000010010000000000000000000000 // Phosphorylation KKPP
#function DEPHOSP E2 %$b11000010010000000000000000000000 // Dephosphorylation E2

#function DEPHOSPH KKPASE %b00100010010000000000000000000000 // Dephosphoryl. KKPase
#function DEPHOSPH KPASE $b10100010010000000000000000000000 // Dephosphoryl. KPase

// define some useful labels

#label zero $b0000000000000000
#label dontcare $b27222222222722°222°7
#label zero2 %b00000000000000000000000000000000

//// #label phosfree $b0000001000000000 // uncomment to include phosphate groups
//// #label phosbound %b0000001100000000 // uncomment to include phosphate groups
#label kkk %$b1110000000000000

#label kk $b1100000000000000

#label k $p1000000000000000

#label kkp $p1100100000000000

#label kp $p1000100000000000

#label kpp $p1000110000000000

#label kkORkkp $b1100200000000000 // using ternary bit to match both kk and kkp
#label kkpORkkpp %$b1100120000000000 // using ternary bit to match both kkp and kkpp
#label kpORkpp %$01000120000000000 // using ternary bit to match both kp and kpp
#label kORkp $b1000200000000000 // using ternary bit to match both k and kp

main (%d0 %d0 %d0) // declare the main scope

// data systems

[0:9]1kkk ( zero %d0 kkk )

[0:99]kk ( zero %d0 kk )

[0:99]k ( zero %d0 k )

//// [0:409]phosphate ( zero %d0 phosfree )

// uncomment commented contexts and comment the line above them to include Ps

// context systems

// Phosphorylation

el ([dontcare zero2 kkk] PHOSPH E1(0,0) [dontcare zero2 dontcare])

//// el ([dontcare zero2 kkk] PHOSPH E1(0,0) [dontcare zero2 phosfree])

kkkst ([dontcare zero2 kkORkkp] PHOSPH KKK (0,0) [dontcare zero2 dontcare])

//// kkkst ([dontcare zero2 kkORkkp] PHOSPH KKK(0,0) [dontcare zero2 phosfree])
kkpp ([dontcare zero2 kORkp] PHOSPH KKPP(0,0) [dontcare zero2 dontcare])

//// kkpp ([dontcare zero2 kORkp] PHOSPH KKPP(0,0) [dontcare zero2 phosfree])

// Dephosphorylation

e2 ([kkkst] DEPHOSP_E2(0,0) [dontcare zero2 dontcare])

//// e2 ([kkkst] DEPHOSP E2(0,0) [dontcare zero2 phosbound])

kpase ([dontcare zero2 kpORkpp] DEPHOSPH_KPASE (0,0) [dontcare zero2 dontcare])

//// kpase ([dontcare zero2 kpORkpp] DEPHOSPH KPASE (0,0) [dontcare zero2 phosbound]
kkpasekkp ([dontcare zero2 kkp] DEPHOSPH KKPASE (0,0) [dontcare zero2 dontcare])

//// kkpasekkp ([dontcare zero2 kkp] DEPHOSPH KKPASE(0,0) [dontcare zero2 phosbound])
kkpasekkpp ([kkpp] DEPHOSPH KKPASE (0,0) [dontcare zero2 dontcare])

//// kkpasekkpp ([kkpp] DEPHOSPH KKPASE(0,0) [dontcare zero2 phosbound])

#scope main // set up the main scope
{

el

e2

kpase

kkpasekkp

kkpasekkpp

[0:9]kkk

[0:99]1kk

[0:99]1k

//// [0:409]phosphate
}

#systemic end
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Table 5.3. Summary of the MAPK SC model functions. All functions run on the CPU.

Function Name Description

Represents the functionality of enzyme E1, transforming KKK to

PHOSPH _E1
- KKK* or leaving them unchanged

Represents the functionality of activated kinases KKK*,
PHOSPH KKK transforming KK and KKP to KKP and KKPP respectively, or
leaving them unchanged

Represents the functionality of activated kinases KKPP,
PHOSPH_KKPP transforming K and KP to KP and KPP respectively, or leaving them
unchanged

DEPHOSP E2 Represents tbe functionality of enzyme E2, transforming KKK* to
- KKK or leaving them unchanged

Represents the functionality of phosphatases KPase, transforming

DEPHOSPH KPASE . .
- KPP and KP to KP and K respectively, or leaving them unchanged

Represents the functionality of phosphatases KKPase, transforming
DEPHOSPH_KKPASE | KKPP and KKP to KKP and KK respectively, or leaving them
unchanged

Context adapter systems e2 and kkpasekkpp, which respectively transform kkkst
(KKK*) and kkpp contexts back to data systems, match the context systems according
only to their transformation function, so the name of the systems to be matched are used
in the SC source code instead of separate templates. Finally, not all defined systems need
to be part of the main scope at the beginning of the SC program, as contexts KKK* and

KKPP are products of interactions which occur along the execution of the model.

As discussed in the previous section, the MAPK model used in this experiment is a
simplified® version, in terms of the representation of the phosphate groups. While this
version ignores Ps, the SC source code given in Listing 5.3 includes for completeness the

changes (in comments) that would be needed to include Ps in the model*’.

¥ If the simplification of the model (resulting in decreasing the overall number of required
systems) was not possible, the size of the model would be restrictive for execution on the
implemented prototype HAoS platform, which after the last revisions of the design officially

supports models involving up to 511 systems.

3% The inclusion of a data system representing all phosphate groups would also be quite simple as
this system would need to be defined and included in the main scope. Moreover, a single

matching label (e.g. "phos") corresponding to the type of this phosphate system would replace
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On the high-level software development side of the model, context transformation
functions plugins (Application Layer, Figure 4.5) were developed to implement the
transformation activity of each interaction. These functions, running on the embedded
processor, mainly handle the required systems' type alterations (see Table 5.2 and Table
5.3) and the logging of the output from the model (concentration, represented by the
number of systems, of the final products of the chemical reactions) on the SD card. It is
noted that in the case of context adapting the software should notify the hardware
(through appropriately setting a configuration register) that a system has changed its type

(from data to context or vice versa).

Experiment Setup

The MAPK signalling cascade model has been previously simulated with the Stochastic
Pi Machine (SPiM) simulator in [234] and with the high-level SC implementation
(SCoPE) in [22]. Thus, modelling the MAPK cascade with HAoS using the same
configuration and initial conditions previously used in the experiments presented in
[234] and [22] enables the direct comparison and evaluation of our prototype platform
against these alternative simulators in terms of quality of results and performance (based

on execution speed).

The common configuration used in all three modelling environments, in accordance with
the experiment in [234], involves 10 KKKs, 100 KKs and 100 Ks kinases, 1 E1 and 1
E2 enzymes, and 1 KKPase and 1 KPase phosphatases. All protein kinases are initialized
to a non-phosphorylated state. All chemical reaction rates (which in this model are
translated to interaction probabilities) are set to a nominal value of 1. This implies that
since every interaction may either change the interacting systems or leave them

unchanged, each outcome has a probability of 0.5.

5.2.4 Results

Since the results of the SPiM simulator, modelling the cascade, have been shown in
[234] to be in agreement with the actual response of this signalling network, observed in
a wet lab, we can use them as a reference to validate the functionality of HAoS. As

illustrated in Figure 5.9, the simulated behaviour of the cascade is shown to be in

all "phosfree" and "phosbound" labels in all context definitions, as all interactions would involve

this single P data system.
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agreement for all three used simulation environments ((a) SPiM, (b) SCoPE and (c)

HAo0S).

However, while all three simulators capture the functional behaviour of the cascade
correctly, their simulation running times vary significantly. Simulating biological
processes was the key consideration for their design but their performance depends
heavily on their implementation. While, as previously discussed, SCoPE is a high-level
software (C++) implementation of SC, the SPiM simulator is a functional programming
[235] (F#) software implementation of the SPiM language, developed by Microsoft
Research, which is based on stochastic m-calculus [49] and standard kinetic theory of
physical chemistry [234]. HAoS being a hardware-based implementation, it benefits
from the inherent parallelism of the TCAM and low-level hardware latency-aware
optimizations. As seen in Table 5.4, HAoS outperforms the alternative software-based
simulators: SPiM by a factor of 17.3 and SCoPE by a factor of 11323.6 in the case of the
MAPK cascade.
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Figure 5.9. Traversing the MAPK signalling cascade with (a) SPiM, (b) SCoPE and (¢)
HAoS with initial state: 10 KKKs, 100 KKs, 100 Ks, 1 E1, 1 E2, 1 KKPase and 1 KPase
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Table 5.4. Performance of the HAoS, SPiM (v1.13) and SCoPE simulators based on
simulation duration, simulating 50 seconds of the MAPK cascade evolution, with initial
conditions as stated in Figure 5.9. Values shown are the average over 20 runs acquired

using PowerShell on Windows 7 64-bit, Core i7 Q840 CPU with 8 GB RAM for the

software-based simulators, while HAoS is implemented on a Xilinx Virtex-6 FPGA utilizing
a MicroBlaze soft processor running at 100MHz with 64KB of dedicated memory.

HAoS SPiM SCoPE
msec 58.1 1004.9 657902.5
factor 1 17.3 11323.6

5.2.5 Analysis

As shown in Figure 5.9, the behaviour of the MAPK signalling cascade as a biological
switch that can bring the cell in discrete states is captured by all three used modelling
environments, as all instances of KK and K kinases are double phosphorylated and result
in KKPP and KPP respectively. However, minor differences can be observed in the
output of the three simulators regarding the signal response sensitivity of the model in
terms of the rate of KPP production as a result of KKPP activations near both states and
especially as the concentrations reach the total number of the available kinases plateau.
It is noticed that the SPiM simulator reflects more accurately the decrease in available
kinases, resulting in reaching the final state (after a decrease in the activation rate) in a
more gradual manner presenting a more rounded sigmoidal finish. Both SC simulators
present a more abrupt finish as the chemical rates are translated to interaction
probabilities in the software level, resulting in a less sensitive behaviour as fine-tuning
their values is also affected by the interaction order mechanism employed in the

implementation.

The timing results of Table 5.4, also illustrated as the performance factor provided by
HAoS against SPiM and SCoPE (after normalisation) in Figure 5.10, reveal the low
efficiency of the high-level SCoPE implementation, as a result of its increased provided
flexibility and the ineffective brute-force schemata matching mechanism which iterates
through random triplets of systems until one that can define an interaction is identified.
The SPiM simulator, while running on a conventional CPU, achieves a considerably
better performance due to its optimized implementation of stochastic m-calculus. It
models the various interactions with separate processes communicating through
predetermined channels with dynamically adjusted interaction rates, affected by the
number of possible combinations of inputs and outputs on each channel [234]. It is

important to notice that while the SC models set the level of abstraction at the enzyme
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level, modelling each kinase as an individual entity, the SPiM model simulates all
instances of the same type of kinases in a separate unified group, resulting in a reduced

simulation complexity and increased performance.
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Figure 5.10. MAPK cascade experiment HAoS normalised performance compared to the
SPiM and SCoPE simulators

Yet, in spite of this relative difference in the implementation of the MAPK model, HAoS
still achieves to outperform SPiM due to its highly parallel nature and low-level
optimizations which implement the implied SC architecture efficiently. Thus, these
results confirm that research challenges Chg2 and Chg3 have been adequately addressed
since the suggested platform provides support for the architectural features of SC while
achieving this with efficiency. This is shown by the capacity of HAoS outperforming not

only prior SC implementations, as SCoPE, but also rival simulators, as SPiM.

5.3 Modelling the Effect of Chromosome Missegregation and
Typical Cancer Therapy Approaches in Tumour Evolution

with HAoS

Medical research is given a high priority amongst all research activity, mainly because it
usually addresses issues that may have a profound role in the course of human life. A
cure for cancer may be called the “holy grail” of medical research on life-threatening
diseases, due to the increasing levels of cancer-related mortality being observed during

the last decades. Cancer is a group of diseases, having in common irregular cell growth,
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which are commonly associated with multiple external factors but without a registered
common cause [236]. The ultimate goal of cancer research is to provide an effective way
of prevention, diagnosis and therapy for the large number of individual cancer diseases,
but in order to accomplish that, researchers should first gain understanding of the
complex underlying tumour development pathways. The explosive technological
advancements of the past century have been enabling this by means of wet lab
experiments but also by more efficient computational models (in silico) to assist and
sometimes guide in vivo (in living biological organisms) and in vitro (in a test tube)

experimental research.

While there is a wide range of types of cancers, usually classified according to the organ
developing unregulated cell growth, most of them have been linked to a variety of
genetic irregularities along the development of the tumour [237]. Whether this
abnormalities play a causal and initiatory role or if they are just consequences of cancer
is still an open question [237]. An example of such a genetic anomaly is aneuploidy -
defined as a cellular state of having an abnormal number of chromosomes [238]. One of
the mechanisms associated with this lack or excess of chromosomes in cells is
chromosome missegregation - the erroneous duplication of chromosomal genetic
material during cell division [238], resulting in a change in the number of chromosomes

in daughter cells, also known as aneuploid cells.

This section presents a reimplementation of a model encapsulating the role of
chromosome missegregation in the development of a tumour. In order to further show
the modelling capabilities of SC and HAoS, we are not limiting the biological model in
just simulating the interactions between the cells in a tissue, but also demonstrate that
external stimuli can also be integrated in it, by means of human-induced changes in the
internal state of the tissue - caused by typical cancer treatment approaches,
chemotherapy and surgery. The chromosome missegregation reference model is
presented in [238] and is implemented optimally in a high-level software programming
language (C++). This test case attempts to show how we may approach the
implementation of such a high-level model using SC and the HAoS development tools
presented earlier and evaluates the functionality and performance of HAoS and its high-
level functional model (essentially the HAoS functional simulator) against an optimal
high-level software implementation. The selected reference biological model is not
demonstrated just as a real-world application but it was specifically chosen as a worst-

case scenario, as explained later, in terms of performance comparison with a rival



Chapter 5. Verification and Evaluation 170

software implementation approach in order to stress the HAoS programming platform to

its computational limits.

5.3.1 The Cancer Model

The reference cancer model, drawn from [238], is an agent-based model. An agent, in a
computer-based simulation context, is defined as a self-contained entity with a set of
pre-defined initial characteristics, according to a number of base behavioural rules, and
with the potential of being self-adaptable - adjusting its behaviour by learning from
experience and altering its base rules [238]. The agents are chosen according to the
selected level of abstraction of the model, and in this case the agents are the cells of an

organ or biological tissue.

Description of the Reference Model

The behaviour of the tissue is regulated by the intrinsic characteristics of the population
of cells. Each cell initially contains two sets of identical chromosomes with a set of
regulatory genes, each responsible to control a specific cellular process. A pair of each
type of gene is distributed among the pair of chromosomes to reflect the nature of the
simulated diploid genome. The key cellular processes modelled and regulated by the

genes are [238]:

o Cellular Division: The biological process where a cell duplicates its DNA and
then separates the two copies giving birth, to two genetically identical daughter

cells, replacing the parent cell.

e Cellular Apoptosis: The process of regulated cellular death to prevent excess
growth and maintain a homeostatic state - preserving a stable cell number and

tissue structure.

o Chromosome Segregation: The process of redistributing genetic material (DNA)
between daughter cells during the mitotic step of division. Errors during this
process may result in an asymmetrical distribution of chromosomes - commonly
known as missegregation. Genes regulating this process are known to increase

fidelity when present.

Cellular division genes are an abstraction of proliferation controlling genes, known as
proto-oncogenes, apoptosis genes are an abstraction of tumour suppressor genes while
chromosome  segregation regulatory genes represent genes that control reliable
segregation [238]. Following this brief introduction, the reference cancer model as

described above is illustrated in Figure 5.11.
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Cells in Tissue Chromosomes in a Cell

as agents. (Right) Each cell includes a pair of chromosomes; each of them initially has the

same genetic content - number of genes. Each gene controls a specific cellular process:
Division, Apoptosis and Chromosome Segregation

In addition, in order to explore the effects of the initial genetic configuration and gene
linkage (genes being part of the same chromosome) in cell growth and genetic diversity,
three different chromosomal gene distributions are used. Initially, each chromosome pair
has two copies of the gene or genes it contains. The segregation regulatory genes are
always part of the second chromosome pair. Division genes are genetically linked with
apoptosis genes (both being part of the first chromosome pair) in Chromosome
Distribution A. In Distribution B, apoptosis genes are contained in the first chromosome
pair while division genes are part of the second chromosome pair. In distribution C these
positions are reversed (division genes in the first pair and apoptosis genes in the second).

The three chromosomal distributions are illustrated in Figure 5.12.

Chromosome Chromosome Chromosome
Distribution A Distribution B Distribution C
fChrom.\ fChrom.\ [Chrom.\ fChrom.\ ("Chrom. ) (Chrom.\
Pair 1 Pair 2 Pair 1 Pair 2 Pair 1 Pair 2
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Figure 5.12. The three genetic configurations, employing different gene chromosomal

linkage, are used to explore the effect of the initial genetic distribution in the overall tissue

growth and behaviour
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The reference model also investigates the response of the simulated tissue in typical
cancer treatments. Thus, four therapy-related scenarios are examined for each

chromosome distribution simulated:

e Therapy Scenario A: No therapies
e Therapy Scenario B: Surgery only - localized tumour removal

e Therapy Scenario C: Chemotherapy only - drug or radiation based attack on
excessively dividing cells, usually using bio-markers
e Therapy Scenario D: Both therapies - a combination of surgery followed by

chemotherapy

Implementation of the Reference Model

The specific mechanics of the reference model, as it was implemented in [238], are

described in Algorithm 5.1.

For each iteration of the simulation (which implements a separate experiment), and
according to the simulated chromosome distribution, the regulatory genes control the
fate of each cell in the tissue. The corresponding process for each gene is executed
according to a probability p proportional to the number of copies N of the specific
regulatory gene in the chromosome, and in extent in the specific cell, and a fixed
parameter » associated with the empirical rate of the process, derived from relative
literature and experiments performed in a lab environment. The probabilities of
apoptosis p,p, division pgi, and missegregation P, (Pmse 1S adjusted to the number of
different chromosomes to be selected, in this case 4: chrla, chrlb, chr2a, chr2b) are

given according to Equations 5.1.

Pap=Tap Nap
pdiv=rdideiv (51)
pmsg = rmsg (4'Nmsg)

Thus, the selected reference model, with behaviour of considerable complexity, will
serve as a realistic demonstration application modelling a biological system taking into
consideration a multitude of factors, constraints and abstractions. Evidently, agent-based
models are suitable candidates for a SC implementation, as the notion of an agent aligns
well with the notion of the fundamental SC element, the system. While interactions
between cells are not modelled, the fate of the tissue is determined by the behaviour of

each cell, controlled by genetic and external stimuli.
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Algorithm 5.1. The reference cancer model algorithm [238]. Different experiments are
executed in sequence. Each experiment runs until the tissue has reached a threshold size in
number of cells (THgyp) or a maximum number of generations. During each generation (or
timeslot), each living cell in the tissue may die, divide (and missegregate or not) or remain

unchanged according to the corresponding probabilities.

Initialize the model with random seed
Set the carrying capacity of the tissue to a fixed number
for all experiments do
Create tissue with an initial population of cells, each with two diploid chromosomes.
Each chromosome in each cell is given one or two genes based on chromosome distribution
repeat
for all cells in tissue do
if during surgery then
Kill current cell if tissue size (total cells) exceeds its initial size
else if no chromosomes in the cell (mitotic checkpoint) then
kill current cell
else if total cells > tissue capacity and apoptosis probability p., satisfied then
kill current cell
else if division probability pgiv satisfied then
if during chemotherapy (lasts fixed number of timeslots after cancer detection) then
kill current cell
else
Add mitotic cell (birth of new daughter cell, identical to current parent cell)
if missegregation probability ppsy satisfied then
randomly select r : one of the four chromosomes in the cell

perform asymmetrical division instead (increment daughter r, decrement parent r)

end if
end if
else

current cell remains unchanged
end if
go to next cell
end for
Update number of cells
if number of cells > cancer detection threshold (THpgr) and no previous therapy then

initiate therapy (surgery and/or chemotherapy)

end if
Increment timeslot t (generation counter - abstract time)
until reached maximum number of generations or cells (End Threshold - THgyp)

print output results

end for

The reference model is constructed in [238] as a linked list with each of its elements

representing a cell, making traversing through all cells during each generation, or
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timeslot of simulation, trivial and optimal. In contrast with previous test cases, the
reference model does not require that a search space is explored for potential
interactions, but only that each cell function, during each abstract time step, may have an
outcome according to the nested-if statement of Algorithm 5.1. However, in order to
implement the model in SC, the interactions among cells and the tissue should be
explicitly defined, thus a systemic analysis of the model is required, given in the next
section. It is noted that, since the agents (cells) are selected in a sequential manner (just
by visiting the next node of the linked list), their selection process is a best-case

scenario, making the model a worst-case scenario in terms of comparison for HAoS.

5.3.2 Systemic Analysis

Following the suggested model development methodology in section 4.5, the previous
paragraph describing the reference cancer model corresponds to the initial conceptual
layer, since a thorough understanding of an existing model to be implemented in SC is
crucial prior to any development effort. As with the previous models presented in this
chapter, the next step is a comprehensive systemic analysis to identify the level of

abstraction, systems and the contextual interactions among them.

As mentioned before, working on an agent-based model simplifies this task as the level
of abstraction and most interacting systems are given as the agents. However, it is
important to analyze the dynamics among them to define an optimal way to represent
their interactions, which can commonly be an iterative process. Due to the increased
complexity of the cancer model, a detailed description of the thought process and
decisions leading to a number of possible suitable SC model variations is presented

below.

This systemic analysis will result in four SC cancer model alternatives, implemented and
compared with the reference model later in this chapter. In order to reach these four final
SC models, the analysis will begin with a set of intermediate steps which will add the

specific features of the reference model gradually.

SC Cancer Model Development Step 1: The Base SC Cancer Model

Starting with Algorithm 5.1, and retaining the level of abstraction at the cellular level, it
is quickly noticed that a pool of data systems is required to represent the living cells. The
obvious cellular functions that can act as transformation functions in contextual systems

are cell death and cell division. Considering initially therapy scenario N (no therapies),
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a cell may die at the mitotic checkpoint (when no chromosomes are left in it) or when the

tissue has grown over its carrying capacity and the apoptosis probability is satisfied.

The death context mainly tries to identify a living cell and kills it under the conditions
mentioned above, where initially the second interacting system may be any other cell
(since this is unaffected - death examines a cell at a time). SC rules explicitly state that
systems can be transformed but never destroyed so a living cell is transformed to a dead

one (or waste system) by the death context if killed.

The divider context, in contrast to death, may affect both interacting systems. The notion
of division implies that a new cell will be created, which will ideally be reproduced as an
identical copy of the parent cell. As this new cell cannot be created from nothing, the
divider will define an interaction between a living cell representing the parent and a
waste system that may be transformed to a new living cell through division, representing
the daughter cell. The notion of waste systems (possibly previously killed cells) being
transformed to living cells is biologically plausible as during the division process the
parent cell consumes energy acquired by nutrients in its environment. This initial SC

cancer model is illustrated in Figure 5.13.

Living
Cell
(Parent)

Living
Cell

Figure 5.13. Initial SC cancer model. A death context transforms living cells to non-living
ones while non-living cells act as daughter cells in division interactions, transformed in
living cells by a division context.

SC Cancer Model Development Step 2: Integrating the Tissue

The next step is to integrate the notion of the tissue to our SC model. As the total of the
cells makes up the tissue, another data system is needed to represent the tissue which has

in its scope all the cell systems. The size of the tissue, in terms of cells, is an important
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metric for the model. While the total number of cells could be stored in a global variable
in the user code portion of the HAoS program, in order to comply with the SC feature of
systems having local knowledge, it is instead stored locally in one of the schemata of the
tissue data system. Thus, a mechanism for updating the size of the tissue should be added
to the SC model - incrementing the total number of living cells with every division and
decrementing it with every cell death. Furthermore, while each living cell belongs to
(meaning it is in) the scope of the tissue, every non-living cell (either dead or nutrient
cell) should be out of its scope. Thus, the processes of cell death and division are broken
in two steps: (a) perform the process and (b) update the total number of cells in the tissue

and the scope memberships of the interacting systems.

Tissue

Non-
Living
Cell

Non-
Living
Cell

Cell
(Parent)

Living
Cell

Figure 5.14. Revised SC cancer model with tissue and two-step cell death and division
processes. During death a living cell is transformed to a non-living one which is then
discarded from the tissue. During division, a non-living cell is absorbed in the tissue and
then it is transformed to a living one, becoming the daughter cell

For this reason, two contextual systems are added to the model to handle the tissue size
and scopes updating. For each possible cell division, a non-living cell interacts with the
tissue through an “absorb” context and if the probability of division is satisfied, it is
transferred from the tissue external environment inside its scope changing its type to
being (yet) undivided resulting to the size of the tissue being incremented. This
undivided cell then interacts with a living cell through the division context in the scope

of the tissue and acts as the division daughter cell - becoming a copy of the parent living
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cell. Cell death is performed in a similar two-step process. A living cell interacts with
the tissue through the death context and if the death conditions (from Algorithm 5.1) are
satisfied, it is transformed to a dead (non-living) cell. This non-living cell then interacts
with the tissue through a “discard” context and it is transferred back to the external
environment of the tissue (outside the tissue scope), becoming a nutrient non-living cell
(and a valid candidate for division). This discard context also decrements the size of the

tissue. Following these thoughts, the updated SC cancer model is shown in Figure 5.14.

As noticed in Figure 5.14, missegregation is not explicitly controlled by a context. This
was decided as segregation is part of the division process (happening when the genetic
content of the parent cell is copied to the undivided daughter cell to become a new living
cell), and as such this functionality is integrated in the division context. Also, while it
seems visually suitable to have only living cells as part of the tissue and non-living ones
making up its environment, it is reminded that non-living cells are used here as an
abstraction for energy consumed or released by the tissue during cell division and death.
Taking into consideration that the implied scope manipulation (cells constantly changing
scopes as they are discarded from or absorbed into the tissue) may have a considerable
computational impact, degrading the (timing) performance of the model, and since this
membership does not have an active biological role for the model, it was decided that all
systems may be part of the tissue. This way, meaningless scope alterations are avoided

as all systems belong to the scope of the tissue.

SC Cancer Model Development Step 3: Integrating the Cancer Therapies

Returning to Algorithm 5.1 and as mentioned in the previous section, the reference
model also includes human-induced interference in terms of common cancer treatments,
surgery and chemotherapy. Therapies are applied to the tissue following cancer detection
- when the number of living cells reaches a predetermined detection threshold (THpgr in
Algorithm 5.1). Surgery is performed during one timeslot, immediately after detection
and removes a number of living cells, bringing the tissue back to its initial size.
Chemotherapy is performed during a fixed duration of timeslots (9 in our experiments, in
accordance to [238]), either after detection (therapy scenario C) or after surgery (therapy
scenario D). During chemotherapy, cells that are meant to divide, instead die. Thus, cell
death during chemotherapy is included in the division process while surgery requires
effectively the same functionality by the death context but is executed only during the
surgery timeslot. This also implies that the surgery context has priority over all other

contexts during surgery if the number of living tissue cells exceeds its initial size.
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In order to control the therapy processes, the therapy state of the tissue is embedded, as
corresponding flags, in one of its schemata. This is sufficient for controlling
chemotherapy (being integrated in division) but not for controlling surgery. The reason
is that the division context already defines two interacting cell systems, the parent cell
and another one to become the daughter cell, so the state of the tissue cannot be used to
block divisions while it is in surgery state, as required by the reference model. Thus an
additional intermediate (preparatory) step is needed, defining an interaction between the
parent cell and the tissue, in order to be decided if this cell can proceed to division
depending on the tissue state. This is accomplished with another “fertilizer” context,
which transforms a living cell to a parent cell if the therapy state of the tissue is not in-
surgery. The parent cell then interacts with a nutrient cell (the non-living cell to be used
during division as a daughter cell) and both cells are transformed by the division context:
the parent cell to a living cell and the daughter cell to a divided cell. The divided cell,
being the product of the division process, then interacts with the tissue and is finally
transformed to a living cell by the absorb context which also updates the size of the
tissue. Thus, division is now a three-step process. The therapy-enabled cancer SC model,

described above, is shown in Figure 5.15.

Figure 5.15. Therapy-Enabled SC cancer model. The therapy state of the tissue is locally

stored in its data system to enable controlling the surgery and chemotherapy processes.
Division is executed in three steps: (i) fertilize a living cell to become a parent, (ii) perform
division and segregation of this parent cell to produce a divided cell (iii) the tissue absorbs
the divided cell which becomes living and the tissue size is updated
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SC Cancer Model Development Step 4: Integrating the Notion of Time

The last consideration before we have a complete SC cancer model reflecting the
reference one is integrating the notion of simulated time. The reference model uses
abstract time, counted in abstract time units called generations or, during this analysis,
timesteps or timeslots. A generation has finished when the main loop in Algorithm 5.1
has visited all living cells and decided their individual fate. It is importance to notice that
the model does not use any feedback from this time variable affecting its behaviour. The
abstract time is mainly used for convenience as an index when logging simulation output

data.

The way the list of living cells is traversed in the reference model is completely different
from the approach used in HAo0S. As the living cells are stored in a linked list in the
software implementation, the list is traversed in the same relative order. This traversal
order changes slightly with the local addition of new nodes (daughter cells are placed
immediately after parent cells during division) and the removal of nodes (during cell
death). In HAoS, the order of the selected cells to be evaluated against the available
genetic processes is random, as all matching systems to the template defined by the
schemata of the active context system have the same probability of being selected to
interact. Evaluation of a cell here stands for the evaluation of the probability of this cell
interacting through one of the given context systems and according to this interaction, it
might get transformed during one of the genetic processes or remain unaltered. The
inherent randomness of HAoS is desirable as the goal of the experiment is to model a

stochastic biological system.

However, this means that there is not a convenient way to ensure that all cells are
selected before any of them is re-selected. Thus, this functionality needs to be
implemented on the SC model level. In order to accomplish this, a dual-phase approach
was devised, called here a tic-toc approach. During each phase, the execution follows the
flow shown in Figure 5.15 with a main difference. The products of each genetic process
are marked (the current phase state of each cell is stored locally in its schemata) and can
only interact in the next phase. In essence, all the context systems of the SC model of
Figure 5.15 are duplicated, with each of their two copies being able to define an

interaction only during one of the two distinct phases.

In this way, the two phases of the model create two “virtual” scopes which are

implemented by using the phase state of each system during valid triplet generation.
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Ensuring that all living cells are selected during each phase and then the phase finishes is
accomplished by storing the current phase state in the tissue system along with a counter
which is set equal to the number of total living cells of the tissue in the beginning of
each timeslot and is decremented after each cell is evaluated. Essentially, this counter
monitors the number of remaining living cells to be evaluated in the current timeslot,

ensuring that the timeslot can finish and the phase can change only when it reaches zero.

SC Cancer Model 1: Time-Enabled Model

According to the discussion above the functionality of the time-enabled SC cancer model
is summarized as follows: All living systems and the tissue are initialized in the tic
phase. The tic-marked contexts can only define interactions when the tissue is on the tic
phase. Thus, all tic-marked contexts are enabled and all toc-marked contexts are
disabled. Division is executed in three steps as in the therapy-enabled model of Figure
5.15 (intermediate products are also tic-marked) but its final products, the new living cell
(daughter cell in division) created by the absorb context and the living cell (parent cell in
division) transformed by the division context are marked as toc, disabling any further
interactions during this tic phase. In the case of cell death, the dying cell also gets toc-
marked in order to be disabled for the current phase. However, since the final product of
cell death is a nutrient cell, which can be used in both phases, it does not need to get
phase-marked. It is noticed, that interacting cells are always phase-marked in the first
step of any genetic process, even if the associated probability with this process is not

satisfied

This means that any cell that is evaluated is changing phase, even if it remains
unchanged, to avoid interacting twice during the same phase and ensure the remaining
living cells counter is correctly updated. After the last tic-marked cell has been
evaluated, all living cells should be toc-marked and the remaining living cells counter
should be zero. At this point, the counter is updated to the number of total cells and the
tissue changes its phase state to toc. All toc-marked contexts are now enabled while all
tic-marked contexts get disabled as they can no longer define interactions as the tissue is
now toc-marked. A mirror process to the one described above (toc instead of tic) is
executed until the toc phase ends, and tic phase begins again. The time-enabled (tic-toc)

model is illustrated using SC graphical notations in Figure 5.16.
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Tic
Divided
(Daughter)
Cell

Toc
Fertilizer

Divided
(Daughter)
Cell

Figure 5.16. Time-Enabled (Tic-Toc) SC cancer model. Two mutually-exclusive phases are
used to ensure all cells are evaluated exactly once before advancing to the next timeslot.
Both phases are part of the tissue scope, yet the phase state of the tissue determines which
one is enabled at each timeslot

When an interaction results in intermediate products of a genetic operation, these
products remain in the same phase until they are consumed. A cell changes phase when
the resulting system is the final result of a genetic operation or if the initiating context of
cell death or division (death or fertilizer contexts respectively) leaves the evaluated cell
unchanged (meaning that the respective death or division probability is not satisfied). All

contexts involving the tissue except the division context may change the phase of the
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tissue after the last cell in a timeslot is evaluated. This implies that the fertilizer and
death contexts can change the tissue phase when the evaluated (last) living cell remains
unaltered while absorb and discard contexts may change it when they consume the last

intermediate result (divided and dead cell respectively).

Table 5.5. Time-Enabled (Tic-Toc) cancer SC model interactions

Interacting Systems Results

( Toc Living Cell | Tic Parent Cell | Tic Dead Cell )

Lo T P g —
Tic Living Cell  }- Tic Fertilizer -{ Tic Tissue ( Toc Tissus | Tic Tissue )

Tic Parent Cell  }- Tic Division -{ Nutrient Cell — ( Toc Living Cell) ( Tic Divided Cell)

( Toc Living Cell )

% Tic Divided Cell }- Tic Absorb -{ Tic Tissue —» ( Tic Tissue | Toc Tissue )

=

.2 | TicLiving Cell }- Tic Death -{ Tic Tissue —» ( Toc Living Cell | Tic Dead Cell )

= ( Tic Tissue | Toc Tissue )
Tic Dead Cell ~ }- Tic Discard -{ Tic Tissue —» E IP;Iilitr_;?;lstu(éellsz)c Tissue )
Tic Living Cell  }- Tic Surgery -{ Tic Tissue —» E"IIECTI:SI;/JE% ic“gil'l“izlsi?;ad Cell)
Toc Living Cell }- Toc Fertilizer -{ Toc Tissue —» E 1:2 %i:;ﬁg F;(l)lcl,;;z:u];a)rent Cell | Toc Dead Cell )
Toc Parent Cell }- Toc Division -{ Nutrient Cell = ( Tic Living Cell) ( Toc Divided Cell)

© .. ) ) . ( Tic Living Cell )

é) Toc Divided Cell }- Toc Absorb -{ Toc Tissue —> ( Toc Tissue | Tic Tissue )

=»

1) .. . ( Tic Living Cell | Toc Dead Cell )

g Toc Living Cell }- Toc Death -{ Toc Tissue —» ( Toc Tissue | Tic Tissue )

. . ( Nutrient Cell )
Toc Dead Cell ~ }- Toc Discard -{ Toc Tissue —» ( Toc Tissue | Tic Tissue )
( Tic Living Cell | Toc Dead Cell )

Toc Living Cell }- Toc Surgery -{ Toc Tissue —» (Tic Tissue | Toc Tissue )

In more detail, a fertilizer context may leave the type of the interacting living cell
unaltered (changing only its phase) or change it to a parent cell with the same phase in
case of the first step of normal division or kill it (change it to a dead cell) also with same
phase, in case of division during chemotherapy. As mentioned above, it may also change
the phase of the tissue at a timeslot transition. The division context always transforms
the parent interacting cell to a living cell changing its phase and also changes the
interacting nutrient cell to a divided cell (setting its phase to the current one). The absorb
context, in the last step of division, changes the divided cell to a living cell with different
phase while it may also change the phase of the tissue. Death and surgery contexts
change the phase of the interacting living cell when they do not kill it, while they leave
its phase unchanged when they do (changing its type to dead). They may also alter the
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tissue phase when changing timeslot. Finally, the discard context always transforms the
dead interacting cell to a nutrient cell and may also change the tissue phase. The calculus
notation of the time-enabled SC cancer model representing its behaviour in terms of SC

interactions, as it is explained above is given in Table 5.5.

SC Cancer Model 2: Timeless Model

The time-enabled SC cancer model of Figure 5.16 satisfies all the requirements and
features all the characteristics of the original model. However, in order to accurately
model its abstract time, the complexity of the model was considerably increased. Taking
into consideration that time, although convenient for logging output information, should
not otherwise greatly affect the model behaviour, a timeless variation of the cancer
model was also implemented to determine the level of this effect. The timeless model is
equivalent in terms of SC graphical notation with the therapy-enabled model, illustrated
in Figure 5.15, and overcomes the problem of sampling the internal state of the tissue
(total number of cells and number of chromosomes) by continuously monitoring and
storing all changes in the relevant internal variables immediately after each alteration is

caused by any genetic process (instead of only sampling it at the end of the timeslot).

In the case of the timeless SC cancer model, the systemic interactions are similar to the
ones of the time-enabled model excluding any phase-related features. The calculus
notation of the timeless model is given in Table 5.6, making this similarity obvious when

compared to Table 5.5.

SC Cancer Model 3: Approximate Time Model

In order to further explore the effect of abstract time and reduce the complexity of the
time-enabled model of Figure 5.16, a hybrid model in terms of time was also
implemented. This “approximate time” model waives the restriction of all cells being
evaluated at each time-step but keeps the remaining living cells counter functionality to
keep track of approximate time. Essentially, it ensures that a number of cells equal to the
size of the tissue are evaluated before advancing to the next time timeslot. As living
interacting cells are selected on a purely random manner with the same probability, it is
expected that the behaviour of the model will remain concise - while not all cells may be
evaluated during a single time-step, all of them will interact with the same probability
and approximately the same frequency over the duration of the experiment. Thus, the
main difference of this model compared to the timeless one is that it keeps the notion of
the timeslot (implying that an adequate number of cells are evaluated before advancing

time), but it uses a less strict mechanism to achieve this (since not every cell is evaluate
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exactly once in each timeslot). In terms of the SC graphical notation, this hybrid model,
attempting to address the trade-off between complexity and functionality, is also
represented by Figure 5.15. Additionally, since no change has been made to the
approximate time model in the way systems interact with each other, when compared to

the timeless model, the calculus notation is the same for both models.

Table 5.6. Timeless and Approximate Time cancer SC models interactions

Interacting Systems Results

( Living Cell | Parent Cell | Dead Cell)

Living Cell ~ }- Fertilizer -{ Tissue — ( Tissue )

Parent Cell }-  Division -{ NutrientCell — (Living Cell ) ( Divided Cell)

Divided Cell }- Absorb -{ Tissue — (Living Cell ) ( Tissue )
. . ( Living Cell | Dead Cell )

Living Cell }-  Death  -{ Tissue — ( Tissue)

Dead Cell }-  Discard -{ Tissue — ( Nutrient Cell) ( Tissue )

Living Cell ~ }- Surgery -{ Tissue — (Living Cell | Dead Cell )

(Tissue)

SC Cancer Model 4: Optimized Approximate Time Model

While developing a SC model, ensuring that it behaves correctly (in this case, in a
similar way to the reference model) is crucial. However, the SC model developer should
take into consideration the performance of the model as well. In an attempt to
demonstrate example optimizations that can be made on the SC model side, an optimized

version of the approximate time model was also developed.

The most evident way to optimize a SC model is to ensure that valid triplet generation is
performed in an optimal way. This means that HAoS should be able to identify triplets of
interacting systems without (or, more realistically, without numerous) mismatches (see
section 3.5). The hardware ensures that even in cases that only one pair of systems can
match the templates defined by the schemata of the context, this pair will be efficiently
identified, if such a pair exists. If a pair does not exist, this results in a schemata
mismatch and another context is selected. Effectively, while the hardware attempts to
find triplets, from an interaction (or processing) point of view, mismatches result in idle
time as no interactions are performed. The SC model should take this fact into
consideration and try to minimize mismatches, in order to increase efficiency and

consequently overall performance.

Taking a closer look at Figure 5.15 and according to the discussion integrating therapies

in the cancer model, we notice that the surgery context performs the exact same task
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with the death context in a different occasion. However, while the death context can
define interactions along the course of the simulation, the surgery context is only
functional during the surgery timeslot. This implies that, as the surgery context is
randomly chosen with the same probability as every other context during the execution
of the HAoS cancer program, it produces mismatches on the majority of the times it is
selected. Thus, embedding the surgery task in the death context increases the efficiency

of the SC program.

In addition, an extra optimization can be made with regards to the transition from a
timeslot to the next one. After all the cells have been evaluated in any timeslot, there
may be outstanding interactions to be made in order for intermediate products of the two
main genetic operations (cell division and death) to be consumed (dead cells in the case
of death or parent and divided cells in the case of division - see Figure 5.15). This
ensures that each genetic operation finishes in the timeslot it was initiated and the total
number of cells is reported correctly for each timeslot. Effectively, once the remaining
living cells counter reaches zero, the fertilizer and death contexts do not define any
further interactions until the next timeslot commences, waiting for the division, absorb
and discard contexts to consume the cells produced in the intermediate cells. Thus, in
order to reduce mismatches in this case, an extra flag, stored in the tissue system, is used
to disable the selection of the fertilizer and death contexts when no more interactions
initiating division or death may be performed in the current timeslot. This way, we

achieve optimal timeslot transitions in terms of performance.

Another observation regarding to the optimal flow of the SC program can be made when
we take a higher-level view on the execution of tasks in terms of interactions. A high-
level task is broken down in more than one interaction in two cases. Either the task
requires that more than two systems must interact under a single context to accomplish
the expected functionality or a succession of steps should be performed, implying a
number of contexts being selected sequentially, to implement a chain of events.
Supporting a context type that could define interactions among multiple systems would
be impractical form an implementation point of view as it would increase the size of
such context systems (an extra schema would be added to such contexts, to define a
template for matching systems, for every extra supported system). However, the two
cases could be merged, as multiple interacting systems could be selected by subsequent

contexts.
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Nevertheless, as the selection of contexts happens in a random manner to reflect the
stochastic behaviour of natural systems, breaking down a task in elementary steps will
usually result in suboptimal performance. While the subsequent contexts will eventually
be selected, the implied sequence of interactions defines a pipeline which stalls until the
next context (the next step in the correct order along the desired chain of events) is
randomly chosen. Thus, having a way to control the selection of contexts in the case of
chained interactions, effectively implementing micro-interactions (analogous to micro-

instructions in micro-programmable control units), would greatly increase efficiency.

______________________________________________________________________________________

i Cell i Cell
Death , Division
. Tissue : Chain |

.....................................................................................

Figure 5.17. Optimized SC cancer model. The surgery functionality is now embedded in the
death context while the contexts implementing the two main genetic operations, death and

division, are now chained

Table 5.7. Optimized Approximate Time cancer SC model interactions

Interacting Systems Results

Living Cell ~ }- Fertilizer -{ Tissue — g I,Ei:;ﬁg )Cell | Parent Cell | Dead Cell)

Parent Cell }-  Division -{ Nutrient Cell > (Living Cell) ( Divided Cell)

Divided Cell }- Absorb -{ Tissue — (Living Cell ) ( Tissue )
.. . ( Living Cell | Dead Cell )
Living Cell  }-  Death  -{ Tissue — ( Tissue)

Dead Cell }-  Discard -{ Tissue — ( Nutrient Cell) ( Tissue )




Chapter 5. Verification and Evaluation 187

Returning to the cancer model, the two main genetic operations involved, cell division
and death, are broken down to three and two steps respectively. If context chaining was
supported, cell division would be defined as a fertilizer-divider-absorb context chain
while cell death would be implemented as a death-discard context chain. As described in
the next paragraph, the context-chaining feature was added in HAoS, realized mainly in
the user software domain, to showcase this functionality. The optimized approximate-
time cancer SC model (integrating the surgery functionality in the death context,
implementing optimal interaction transitions and context chaining) is shown in Figure
5.17. Its calculus notation is given in Table 5.7. In terms of SC interactions, its main
differences with the previous models are the omission of the surgery context and the

inclusion of context chains (implied by the vertical arrows).

Systemic Analysis Summary

To sum up, as in traditional software programming, there is more than one way to build a
SC model representing a natural system. This section has demonstrated this, taking a
complex biological model, a tissue developing cancer caused by genetic defects - and
provided a thorough explanation of the thought process while building such a SC model.
In this case, four candidate cancer SC models are presented: a time-enabled model, a
timeless model, an approximate time model and an optimized approximate time model.
The building elements in these resulting SC models have distinct biological meanings
representing, in the form of SC systems, biological structures or processes, shown in
Table 5.8. The next section focuses on the implementation of those models while the

comparison experimental results are presented later in this chapter.

5.3.3 SC Cancer Model Implementation

Following the discussion of the previous paragraph, the four resulting cancer SC models
attempt to explore the trade-off between functionality, performance and convenience.
Before presenting the results evaluating these metrics in the next section, some
implementation-specific topics need to be addressed. These include some considerations
to be made before developing the final SC source code and performing the setup of the

cancer experiments.

Developing the SC source code
While using SC graphical notations to present the four suggested cancer models is
visually appealing and straightforward, using their SC calculus notations, to describe

their systemic interactions, can greatly expedite the development of the SC source code.
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Table 5.8. Biological representation of the systems of the SC cancer models

SC . . .
System Biological Representation (Analogous to)
Living A cell of the biological tissue
Cell & '
Death is the context in which a living cell interacts with the tissue; it combines
Death pressure for space, apoptosis and therapeutical interventions in one abstract form
Context | and may result in the living cell becoming a dead cell, representing the Programmed
Cell Death (PCD) [239] biological process.
Discard is a context in which a dead cell interacts with the tissue; representing the
biological mechanism (termed as efferocytosis [240]) which is responsible for the
removal of apoptotic bodies (dead cells), by special cells, called phagocytes, that
engulf and consume the dead ones. Phagocytes, using special receptors in their
Discard | surface, identify dead cells by recognising special molecules which are placed to
Context | their cell surface in the last stages of cell death [240]. Matching the phagocytes
receptors with these compatible special molecules is similar to the schemata
matching mechanism of SC, with systems matching their schemata to the templates
of context systems. This process releases energy to the environment, represented
here in the form of a nutrient cell.
Dead The result of cell death; a cell showing organized degradation of cellular organelles
Cell which is finally broken into (several) apoptotic bodies [240]
Nutrient | Nutrient cells represent the energy and nutrients in the tissue environment that may
Cell be released by cell death and may also be used to make new cells during division
- Fertilizer is the context in which a living cell interacts with the tissue; representing
Fertilizer s . 31 .
the preparatory step for division, known as the interphase” [241], making the parent
Context L o . . .
able to initiate the mitosis process. Errors during this phase may kill the cell.
Division is the context in which a living (parent) cell interacts with a nutrient cell;
Division | representing the mitotic phase of division [241], resulting in two daughter®* cells
Context | with identical genetic information if no errors occur or different genetic information

in the case of missegregation (resulting in aneuploid cells).

The SC calculus notations of the cancer models, shown in Tables 5.5 (time-enabled

model), 5.6 (timeless and approximate time model) and 5.7 (optimized approximate time

model), define their respective interactions and in addition include information about the

phase of systems (in the case of the tic-toc model) and the type of interacting cells.

However, in order to write the final SC source code, some additional information must

be included in order to correctly implement the selection of appropriate cells in the

therapy cases (surgery and chemotherapy). As explained in the previous section this is

accomplished with the inclusion of flags regarding the therapy state of the tissue in its

3! The first part of this phase, called G, is regulated by the MAPK cascade [241], presented in

section 5.2.

32 However, only one of the resulting cells is tagged as daughter in this SC model.
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schemata. The format of the bit-fields stored in the data systems of the SC cancer models

is illustrated in Figure 5.18.

|<7 Schemata 1 TF»|<7 Schemata 244
T T T T°1 T T

Tissue ) gt I Il?erlnai:ﬂnl Nlon-lEvaIIualtedI I T
System Tissue Size (Total Living Cells) 00..00 Living C%IIS in Timeslot 1S|Che
Bit 0 15 32 0 4 7 10 13 15
Cell T T T T T T T T T T T T 171 T T T T T T
Age 00...00| Chr1a | Chr1b | Chr2a | Chr2b |g| Cell
System Number | Number | Number | Number Type

Figure 5.18. SC cancer model data systems and their contents. Bit 13 of schemata 2 defines
the system as tissue or cell. The tissue size and cell age are stored in the respective schemata
1. Their 32-bit transformation function (TF) is zero. Schemata 2 holds the remaining non-
evaluated cells counter, the surgery state (S), the chemotherapy state (C) and the phase
state (tic-toc, TT) in case of the time-enabled model or the optimal timeslot ending flag (TE)
in the case of the optimized approximate-time model. For cell systems, it stores the number
of the different chromosome types of the cell and also the cell type (living, parent, dead,
nutrient or divided along with its phase in the case of the time enabled model).

The proper system selection for the model is accomplished by appropriately using “don't
care” bits in the respective therapy state bits in the templates defined by the schemata of
each context. According to this, since the fertilizer context may initiate division during
either a non-therapy timeslot or a chemotherapy timeslot, the tissue will be selected (and
thus a fertilizing interaction can be defined) if its surgery bit (S) is set to 0 (since it is not
in surgery) and for any value of its chemotherapy state bit (as it may or may not be in

chemotherapy).

In a similar fashion, the absorb context may not consume divided cells only during
surgery, so in this case: S is set to “don't care” (or “X”) and C is set to 0. The same
principle is applied to the rest of the contexts. The death context will not kill living cells
during surgery if the surgery functionality is not embedded to it. In this case, the surgery
may kill living cells only during the surgery state while their total number exceeds the
initial tissue size (see Algorithm 5.1). If the surgery and death functionalities have been
merged, then the death context, similarly to the discard context (as cells may die at any
time point), can interact with the tissue in any therapy state (both C and S are set to
“X”). The complete SC code of the cancer models, according to the discussion above, is

given for reference in Appendix G.

SC Models' Parameters Setup

In the reference cancer model experiments, as they are presented in [238], two

parameters of the model (introduced in section 5.3.1, Algorithm 5.1) representing
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number of cells thresholds, THgyp (the end of the simulation threshold) and THpgr (the
cancer detection threshold), are set higher than the systems capacity of our HAoS
prototype. For this reason these two parameters have been scaled down during our
experiments. This, however, does not have an impact in the model behaviour as these
parameters just define checkpoints in time for those two specific events. Thus, the main
difference observed with the original simulations is with regards to the timeslot which
cancer is detected (the tissue reaches a cancerous state as the total number of cells
exceeds THpgr) and the duration of the simulation (which runs until the tissue size
exceeds THgyp). Since the first change implies just a shift of the cancer detection time
and as the model does not change its behaviour towards the end of the simulation, these

modifications are assumed to be acceptable.

While the parameters mentioned above have a minimal impact on the model behaviour,
the parameters setting the intrinsic rates of apoptosis r,,, division rg, and chromosome
missegregation I, (see Equations 5.1) have a major effect on the model, as they affect
the respective genetic operations probabilities and in extent the cell population of the
tissue. The nested-if structure in Algorithm 5.1 implies that each cell may result in the
outcome of any of the possible cases but importantly also implies a selection priority.
Obviously this does not apply in systemic interactions, which happen in a stochastic
way. Due to the complex nature of the algorithm and mainly because of the conditional
feedback mechanisms (the probabilities are affected by the number of chromosomes
which are affected by the probabilities), deriving the intrinsic rate constants r with an

analytical way was avoided and a brute-force approach was followed instead.

Thus, in order to derive the adjusted values of the intrinsic rate constants r to be used in the
four SC cancer models, the original algorithm was altered to reflect the different nature of
interactions when these are implemented in a systemic way (the resulting “systemic style”

algorithm is given in

Algorithm 5.2). The main changes to the original algorithm involved the removal of any
priority in the selection of the genetic operation that may be performed on the cell and
also taking into consideration the number of context systems involved. Since the rate
constant for apoptosis should always be equal to the rate constant for division, to
preserve the homeostatic behaviour of the tissue, the goal was to find a pair of constants
Tapidiv - Tmsg (@poptosis/division and missegregation rate constants) to result in a similar

behaviour to the one given by the reference model.
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Algorithm 5.2. The reference cancer model algorithm written in a “systemic way” in order
to derive adjusted values for the parameters setting the intrinsic rates of the genetic
operations due to the difference on probability mechanics between all four SC models and
the reference one. The priority selection of the original model is broken. Interactions that
may initiate cell death / division have the same probability.

Initialize the model with random seed
Set the carrying capacity of the tissue to a fixed number
for all experiments do
Create tissue with an initial population of cells, each with two diploid chromosomes.
Each chromosome in each <cell 1is given one or two genes based on chromosome
distribution
repeat
for all cells in tissue do
if during surgery then
Kill current cell if tissue size (total cells) exceeds its initial size
else
if context that may initiate cell death is selected then
if total cells > tissue capacity and apoptosis probability p., satisfied then
kill current cell
else
current cell remains unchanged
end if
else if context that may initiate cell division is selected then
if division probability pg;v satisfied then
if during chemotherapy then
kill current cell
else
Add mitotic cell (birth of new daughter cell, identical to current parent cell)
if missegregation probability ppsy satisfied then
randomly select r : one of the four chromosomes in the cell
perform asymmetrical division instead(increment daughter r,decrement parent r)
if no chromosomes left in parent cell (mitotic checkpoint) then
kill parent cell
end if
end if
end if
else
current cell remains unchanged
end if
go to next cell
else
re-evaluate current cell (until a genetic operation is attempted)
end if
end for
Update number of cells
if number of cells > cancer detection threshold (THpgr) and no previous therapy then

initiate therapy (surgery and/or chemotherapy)

end if
Increment timeslot t (generation counter - abstract time)
until reached maximum number of generations or cells (End Threshold - THgyp

print output results

end for




Chapter 5. Verification and Evaluation 192

A series of simulations using the altered algorithm were executed for a range of different
Tap/div - I'msg Pairs, comparing the similarity to the reference algorithm based on metrics
relevant with the constants: mean number of generations run until simulation finish,
mean number of missegregations per generation and mean cancer detection (or
diagnosis) generation. The qualifying pair was the one with the minimum value for the
root mean square of the differences of the corresponding values to these metrics between

the altered and the original algorithm.

The “systemic” variation of the reference model thus enabled the discovery of the
parameters to be used by all models. For the final setup of all the experiments, the end of
the simulation threshold (7Hgyp) was set at 200 generations, the initial size of the tissue
was set at 100 cells, the cancer diagnosis threshold was set at 200 cells and the tissue
carrying capacity was set at 150 cells. For the original cancer model the genetic
operation constants for apoptosis, division and chromosome missegregation were set at

[238]:
Tap = Vaiv =0.045, 15 = 0.02

while for the SC cancer models, using the methodology mentioned above, they were set

respectively at:
Pap = Vary =0.09, Fyge = 0.02

Experiments Setup

In order to get a fair comparison in terms of both functionality and performance, the
same methodology presented in [238] was followed to obtain the results of each batch of

simulations.

Due to the complexity of the experiment, it was decided that this test case is also ideal
for the evaluation of the functionality of the developed HAoS functional model
(functional model of the hardware circuitry, not to be mistaken with the simulated
biological models) which is essentially a high-level HAoS simulator. All SC cancer

models were tested both live on hardware with HAoS and using its simulator.

As discussed in the cancer model presentation section, three gene distributions (see
Figure 5.12) with different gene chromosomal linkage and four therapy scenarios
(with/without surgery and/or chemotherapy) are examined. In total, ten cancer models
are involved in the experiments: the four SC cancer models described in the previous

section (time-enabled, timeless, approximate-time and its optimized variation) running
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both on hardware and on the HAoS simulator®, the reference model from [238] and, for
completeness, its altered variation (coded in a systemic-aware way). Each of these ten
models was executed in batches of 20 experiments®* for each possible gene distribution
and therapy scenario combination and the mean of those simulations is used to represent

the final results.

Due to the high number of possible comparison metrics, a set of indicative selections
were made to compare the cancer models for the multitude of simulated configurations.
The behavioural features compared along the duration of the simulations were the tissue
size (in cells) and the number of regulatory genes for each genetic operation (division,
apoptosis and segregation) in the case of the non-therapy scenario. For the therapy
scenarios, the models were compared based on the average apoptosis-to-division gene

ratio, which is characteristic of the model behaviour according to [238].

Following the methodology in [238], for each batch of experiments, the output from the
models (tissue size and number of genes) was stored in separate text files for each
simulation. These log files were then used for post-processing (using Mathematica),
transforming the results in a form more suitable for statistical analysis (analyzed then

with Excel).

5.3.4 Results

The comparison results are given below for all the cancer models: the original one from
[238], the original recoded in a systemic style (OriginalSystemicStyle) and the time-
enabled (TicToc), timeless (noTime) and approximate time (ApproxTime) with and
without optimizations (opt and nopt) for both the HAoS simulator (simHAoS) and the
hardware platform itself (HAo0S).

In the case of the models simulating a therapy scenario, the results are re-aligned taking
the diagnosis time as a common reference time point to make the comparison more
comprehensive. Also in the case of the timeless SC cancer models, since the notion of

time is missing, a direct comparison of the genetic evolution of the tissue with the other

33 While a model runs on the HAoS hardware platform and its software simulator unaltered, it is
expected to give slightly different results in terms of behaviour and quite different results in

terms of performance. Thus, it is accounted as two separate models in the context of this analysis.

3 Each experiment here is a simulation of one of the resulting cancer models for a specific pair of

gene configuration - therapy scenario.
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models is not possible. For this reason, the number of the main genetic operations (in the
form of tissue interactions) is used to monitor their growth instead of time. In order to
enable their visual comparison, the results from the timeless models are plotted along

with the ones acquired by the other models - appropriately scaling the respective axes.

Point-to-Point Model Behaviour Comparison Results

The point-to-point comparison results, giving simulation results for all ten cancer models
in the same graph for each experiment configuration, are presented in Figures 5.19 -
5.23. Figures 5.19 - 5.21 give the output of the models when no therapy is used for all
chromosome distributions comparing the resulting average number of cells and all three
types of genes. Figures 5.22 - 5.23 compare the apoptosis-to-division gene ratio only for
chromosome distributions B and C (as distribution A shows a homeostatic tissue
behaviour which does not require treatment) for therapy scenarios B, C and D involving

surgery, chemotherapy and both therapies, respectively.

As seen in Figures 5.19 - 5.23, the behaviour of the tissue is correctly captured by the SC
cancer models, since the results are quite similar in most cases. Especially in the
experiments without therapies involved (Figures 5.19 - 5.21), the similarity regarding the
tissue size and numbers of regulatory genes is evident, as all models converge on the
same results. A slight difference is observed only in the case of the number of cells for
gene distribution A. Since all simulations carry on until the maximum number of
generations, the tissue shows the expected homeostatic behaviour but the inherent
randomness in SC causes a wider oscillation in the evolution of the number of total cells,

resulting in the tissue converging in a slightly higher number of cells.

Same observations can be made for the therapy-enabled results (see 5.22 - 5.23)
comparing the apoptosis-to-division gene ratio since there is a high degree of correlation

between the SC cancer series and the reference one.
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Figure 5.19. Non-therapy cancer models comparison for gene distribution A. The results

shown give the average from 20 runs taken by each of the ten models for the tissue size in

cells (first row), division genes (second row), apoptosis genes (third row) and segregation

genes (fourth row) for gene distribution A.
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Figure 5.20. Non-therapy cancer models comparison for gene distribution B. The results

shown give the average from 20 runs taken by each of the ten models for the tissue size in

cells (first row), division genes (second row), apoptosis genes (third row) and segregation

genes (fourth row) for gene distribution B.
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Figure 5.21. Non-therapy cancer models comparison for gene distribution C. The results

shown give the average from 20 runs taken by each of the ten models for the tissue size in

cells (first row), division genes (second row), apoptosis genes (third row) and segregation

genes (fourth row) for gene distribution C.
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Figure 5.22. Therapy-enabled cancer models comparison near cancer diagnosis for gene

distribution B. The results shown give the average from 20 runs taken by each of the ten

models for the ratio of the number of apoptosis regulatory genes to the number of division

regulatory genes for therapy scenario B (only surgery - first row), C (only chemotherapy -

second row) and D (both therapies - third row) for gene distribution B. The results are

plotted from 25 timeslots before until 25 timeslot after cancer detection for models
supporting time and from 750 tissue interactions before until 750 interactions after

detection for the timeless models.
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Figure 5.23. Therapy-enabled cancer models comparison near cancer diagnosis for gene
distribution C. The results shown give the average from 20 runs taken by each of the ten
models for the ratio of the number of apoptosis regulatory genes to the number of division
regulatory genes for therapy scenario B (only surgery - first row), C (only chemotherapy -
second row) and D (both therapies - third row) for gene distribution C. The results are
plotted from 25 timeslots before until 25 timeslot after cancer detection for models
supporting time and from 750 tissue interactions before until 750 interactions after
detection for the timeless models.
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Performance Comparison Results

While all suggested cancer models have been able to give results similar to the expected
ones, their performance is the differentiating factor that will enable us to select the most
optimal implementation. The average absolute and normalized (in terms of each
generation) execution times for all cancer models, gene distributions and applied

therapies are given in Table 5.9.

Table 5.9. Absolute and normalized average execution times for all simulated cancer
scenarios

Absolute Execution Time (ms)

Gene Distribution Distr. A Distribution B Distribution C

Therapies None None Surgery  Chemo Both None Surgery  Chemo Both
Original 1192.1 336.8 460.2 478.2 362.0 328.4 457.4 463.4 345.6
OriginalSystemicStyle 1648.7 3532 393.0 405.0 398.0 366.1 363.4 359.6 378.7
simHAo0S-TicToc 81862.0 | 19536.0 40969.0 20000.2 18013.0 | 16646.0 18194.0 39619.0 41590.0

simHAo0S-ApproxTime-nopt | 25880.0 | 4387.0 4965.0  5243.0 5622.0 4106.0 4890.0  4765.0 5195.0
simHAo0S-ApproxTime-opt 7362.0 2182.0 2234.0  2338.0 2407.0 3239.0 2006.0  2262.0 2599.0

HAoS-TicToc 422.6 146.6 146.0 167.3 155.3 136.7 139.8 139.9 156.0
HAoS-ApproxTime-nopt 384.5 126.7 136.1 148.3 149.7 124.4 125.6 145.4 136.9
HAo0S-ApproxTime-opt 328.5 112.3 111.6 139.9 1353 105.3 104.9 122.0 137.2
simHAoS-noTime 29218.0 | 19084.0 18438.0 20625.0 19362.0 | 11272.0 11878.0 13281.0 15077.0
HAoS-noTime 310.7 172.0 177.2 187.0 378.0 160.2 167.8 182.5 170.0

Normalized Execution Time (Per Generation)

Gene Distribution Distr. A Distribution B Distribution C

Therapies None None Surgery  Chemo Both None Surgery  Chemo Both
Original 3.97 4.33 5.14 4.49 3.28 4.30 5.19 4.73 3.15
OriginalSystemicStyle 5.50 4.33 4.25 3.75 3.48 458 4.17 3.60 3.50
simHAo0S-TicToc 284.39 302.65 523.23  225.74 190.31 261.52 259.54  481.98  439.87

simHAo0S-ApproxTime-nopt 86.30 70.93 70.58 61.21 60.22 69.36 68.01 60.58 59.88
simHA0S-ApproxTime-opt 24.46 29.37 27.50 24.07 24.45 44.22 26.55 25.70 26.07

HAo0S-TicToc 2.10 2.23 2.08 1.88 1.77 2.18 2.06 2.08 1.74
HAoS-ApproxTime-nopt 1.91 2.11 1.95 1.76 1.65 2.03 1.92 1.75 1.61
HAo0S-ApproxTime-opt 1.63 1.49 1.29 1.46 1.38 1.44 1.43 1.35 1.47

Normalized Execution Time (Per Tissue Interaction)

simHAo0S-noTime 5.84 7.24 6.83 7.36 6.84 4.80 4.42 5.12 5.60

HAoS-noTime 0.06 0.06 0.07 0.07 0.13 0.06 0.07 0.07 0.07
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5.3.5 Analysis

Model Behaviour

As observed in all charts, the apoptosis genes gradually become less than the division
genes (the ratio is always below 1). The reason is that the cancer model implies a
positive feedback on division genes growth. This means that as the number of genes
grows, the probability of division grows as well (as this probability is proportional to the
number of genes) resulting in cells with at least the same number of division genes
(since genetic material gets written from the parent to the daughter cell). However, in the
case of death, when the number of apoptosis genes grows, the probability of the cell
dying grows as well, meaning its genes are lost and not carried in the next generation, as
in the case of division. As seen in the therapy related results, the SC models tend to
overestimate the gene ratio compared to the original one - implying that the positive
division gene feedback in the SC models is weaker, mainly due to the lack of priority in

selecting the genetic operation to each cell.

Another, less noticeable difference, is that the reference series tend to have a greater
change in the gene ratio at the time of therapy from the SC model ones, especially for
therapies involving surgery. This is an artefact of the structural design of the original
cancer model as daughter cells (new nodes in the linked list) are positioned next to
parent cells creating locally elevated concentrations of division genes, due to the positive
feedback mechanism. While cells are evaluated as the linked list is traversed, surgery
removes a range of cells adjacent to each other in the reference model, making it more
probable that all the cells of such clusters of higher division genes will remain or be
removed from the tissue after surgery. In the SC models however this does not happen as
the selection of cells created during division and killed during surgery happens in a

random manner.

Finally, a notable difference between the models supporting the notion of time and the
timeless ones can be found on the way the various metrics are monitored and illustrated
in the figures above. As mentioned earlier, the values for each metric are sampled in the
end of each timeslot for the models supporting timeslots while they are continuously
sampled in the timeless models. This is most evident in the surgery timeslot where a big
number of cells are killed, changing considerably the genetic state of the tissue. While
for the time-supporting models the surgery happens in one timeslot and is plotted as a
sudden change of the tissue, for the timeless models the surgery operation is unravelled

as a big number of subsequent cell deaths that are shown in the resulting figures.
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Since a stochastic biological model is simulated, some variation in the results is naturally
expected. To compare the level of behavioural similarity of the SC cancer models to the
reference one in a more clear way, the differences of the averages of all time-supporting
models to the values of the original one are plotted in Figures 5.24 - 5.28 while their
respective mean error, standard deviation and correlation are given in Table 5.10. The
timeless models are excluded from these comparisons as a point-to-point comparison
between timeslot and tissue interactions would not be beneficial. To further support the
fact that some level of variation is natural and acceptable, a second batch of experiments
using the reference model (Original2) was conducted and their difference to the

reference simulations is also included in the analysis below.

As seen in Figures 5.24 - 5.28, a clear pattern cannot be identified in the behaviour of
each model when compared to the original one due to the stochastic nature of this cancer
model and the variability of the intermediate states due to its complexity. In general, the
second batch of experiments using the reference model gave, as expected, results that are
more similar to the original ones. However, notably this was not always the case (when
taking into consideration the results from all the different scenarios). This is also

confirmed by the statistical comparison results of Table 5.10.

This test case has stressed the simulating abilities of both the HAoS functional simulator
and the hardware platform itself. As shown in Figures 5.19 - 5.28 and Table 5.10 the
developed high-level HAoS simulator succeeds on modelling the behaviour of the
platform, capturing within an acceptable statistical error the results given simulating a

complex biological model.

Following the discussion above, we can conclude that HAoS (and its accompanying
simulator) can adequately model a fairly complex biological system. As in traditional
programming, more than one ways can be used to describe such a system. While
capturing the functionality of such a model is essential, its performance in terms of

execution speed is also usually critical.
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Figure 5.24. Non-therapy cancer time-supporting models results differences for gene
distribution A against the reference model on tissue size and regulatory genes
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Figure 5.26. Non-therapy cancer time-supporting models results differences for gene

distribution C against the reference model on tissue size and regulatory genes
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Table 5.10. Statistical comparison of the time-enabled cancer models to the reference one in
terms of mean error (ME), standard deviation (STD) and correlation (COR)

Total Cells

Distr. A Distr. B Distr. C
ME STD COR ME STD COR ME STD COR
OriginalSystemicStyle -41.097 19.962 0.407 | -5.413 4913 0981 | -3.426  3.663  0.991
simHA0S-TicToc 22118 14377 0.639 | -15.150 11.645 0.948 | -16.714  16.597  0.931
simHAoS-ApproxTime-nopt ~ -32.314 15975 0.443 | -17.253 15534 0939 | -20.041  21.199  0.892
simHAoS-ApproxTime-opt ~ -15.489  9.433  0.548 | -8.120 7.975 0.985 | -11.090  9.118  0.964
HAoS-TicToc -27.836 15299 0.560 | -19.570 18229 0.964 | -16.166  15.406  0.937
HAoS-ApproxTime-nopt 21457 11770 0.623 | -25.431 26779 0935 | -17.555  17.025  0.916
HAoS-ApproxTime-opt -27.597 16510 0.537 | -7.084  5.607 0.992 | -7.827  7.664  0.982
Original2 0.143 2738 0.900 | 2.220 4362 0992 | -1.036 3311  0.994

Average Division Genes

Distr. A Distr. B Distr. C
ME _ STD COR | ME _ STD _ COR ME STD___ COR
OriginalSystemicStyle 20.175  0.135 -0.743 | 0.032  0.022  0.997 0.007 0.008  0.999
simHA0S-TicToc -0.038  0.022 0830 | -0.011 0.017 0997 | -0.014 0018  0.998
simHAoS-ApproxTime-nopt ~ -0.190  0.105  0.341 | -0.013  0.014 0998 | -0.047  0.047  0.998
simHA0S-ApproxTime-opt 0132 0.117 0410 | 0.020 0012  0.991 0.006 0.006  0.998
HAoS-TicToc -0.066  0.053 0.732 | 0.000 0016 0.992 | -0.021 0.024  0.997
HAO0S-ApproxTime-nopt -0.094  0.078 -0.791 | -0.027  0.037 0995 | -0.018  0.026  0.995
HAoS-ApproxTime-opt -0.081  0.061 0433 | -0.009 0.013  0.999 0.006 0.012  0.990
Original2 -0.028  0.031  0.977 | 0.004  0.007  0.997 0.009 0.007 _ 0.998

Average Apoptosis Genes

Distr. A Distr. B Distr. C
ME STD COR ME STD COR ME STD COR
OriginalSystemicStyle -0.175  0.135 -0.743 | -0.041  0.047 0993 | -0.036  0.030  0.998
simHAoS-TicToc -0.038  0.022  0.830 | -0.001  0.004 0.998 0.011 0.025  0.995
simHA0S-ApproxTime-nopt ~ -0.190  0.105  0.341 | 0.002  0.010  0.996 0.016 0.022  0.998
simHA0S-ApproxTime-opt -0.132 0.117 0410 | -0.002  0.008  0.997 0.017 0.022  0.997
HAoS-TicToc -0.066  0.053 0732 | -0.005  0.007  0.998 0.020 0.030  0.997
HAoS-ApproxTime-nopt -0.094 0078 -0.791 | 0.021  0.022  0.997 0.025 0.028  0.999
HAoS-ApproxTime-opt -0.081  0.061 0.433 | -0.039  0.039  0.998 0.004 0.007  0.998
Original2 -0.028  0.031 0977 | -0.024  0.026  0.997 0.026 0.032  0.999

Average Segregation Genes

Distr. A Distr. B Distr. C
ME _ STD _COR | ME __ STD _ COR ME STD___ COR
OriginalSystemicStyle -0.033  0.038 -0.241 | 0032 0022 0997 | -0.036  0.030 0.998
simHA0S-TicToc -0.060  0.046 -0.862 | -0.011  0.017  0.997 0.011 0.025  0.995
simHAoS-ApproxTime-nopt ~ -0.037 ~ 0.034 -0.350 | -0.013  0.014  0.998 0.016 0.022  0.998
simHA0S-ApproxTime-opt -0.085  0.043 -0340 | 0.020 0012 0.991 0.017 0.022  0.997
HAoS-TicToc -0.050  0.029 -0.382| 0.000 0.016 0.992 0.020 0.030  0.997
HAoS-ApproxTime-nopt -0.026  0.025 0.158 | -0.027  0.037  0.995 0.020 0.025  0.999
HAoS-ApproxTime-opt -0.025 0013  0.826 | -0.009  0.013  0.999 0.004 0.007  0.998
Original2 -0.037  0.022  0.150 | 0.004  0.007  0.997 0.026 0.032  0.999
Average Apoptosis to Division Ratio (Gene Distribution B)

Surgery Chemotherapy Both Therapies
ME STD COR ME STD COR ME STD COR
OriginalSystemicStyle -0.086  0.035 0.996 | -0.090 0022 0982 | -0.068 0.029  0.996
simHA0S-TicToc -0.093  0.024 0995 | -0.080 0.011 0987 | -0.136  0.035 0972
simHAoS-ApproxTime-nopt ~ -0.134  0.031 0980 | -0.106  0.021 0907 | -0.079  0.030  0.974
simHAoS-ApproxTime-opt -0.096  0.024 0998 | -0.084 0.019 0973 | -0.070  0.029  0.987
HAoS-TicToc -0.059  0.013 0988 | -0.094 0.014 0975 | -0.102  0.031  0.989
HAoS-ApproxTime-nopt -0.085 0017 0984 | -0.087 0.009 0990 | -0.100  0.041 0911
HAoS-ApproxTime-opt -0.097  0.033 0987 | -0.056 0.013 0975 | -0.114 0031  0.954
Original2 -0.028  0.020 0996 | -0.005 0014 0978 | -0.036  0.029  0.975
Average Apoptosis to Division Ratio (Gene Distribution C)
Surgery Chemotherapy Both Therapies

ME STD COR ME STD COR ME STD COR
OriginalSystemicStyle 0,039 0013 00988 | -0.138 0.033 0994 | -0.067  0.021 0948
simHA0S-TicToc -0.013 0024 0994 | -0.120  0.021 0998 | -0.043 0.006  0.973
simHAoS-ApproxTime-nopt ~ -0.066  0.010  0.995 | -0.095  0.006 0.996 | -0.053 0.008  0.971
simHAoS-ApproxTime-opt -0.029 0016 0.994 | -0.095 0.011 0990 | -0.044 0011 0978
HAoS-TicToc -0.049  0.019 0985 | -0.093  0.046 0.863 | -0.071 0.007 0973
HAoS-ApproxTime-nopt -0.043  0.023 098 | -0.120 0.024  0.991 20.049 0015  0.944
HAoS-ApproxTime-opt -0.051 0018 0992 | -0.073 0012 0998 | -0.030  0.015  0.951
Original2 0.034 _ 0.014 0996 | -0.006 0.014 _ 0.979 0.053 0.026 _ 0.967
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Model Performance

As seen on the top portion of Table 5.9, simulations are lengthier for gene distribution A
as the models reach the maximum number of generations (since the homeostatic
behaviour of the tissue keeps its size well under the maximum cells threshold). As
expected, the execution times for the software implementations are similar (10-15%
variation). The HAoS simulator needs considerable more time to identify interacting
systems triplets. Comparing the (normalized) results from the cancer models executed on
HAOo0S, the time-enabled model requires additional time to implement the tic-toc time
phase mechanism. The timeless model cannot be directly compared (its timing is
provided in Table 5.9 for reference) as it is normalized against tissue interactions rather
than timeslots and also logs more output information as it monitors more events. The
approximate time models are faster than the time-enabled, while as expected the few
optimizations of its optimized variation (HAoS-ApproxTime-opt) result in it having the

best execution times.

While HAoS still outperforms the reference cancer simulation program, the
outperforming factor (relative difference in the performance) is smaller than the ones
achieved in the previous sections (knapsack problem and MAPK cascade). This is
however expected as the cancer model was a corner case, comparing the simulation
capabilities of HAoS with a dedicated software implementation running on a high-end
desktop computer and identifying interacting systems in a trivial way. Yet, as shown in

Figure 5.29, HAo0S achieved on average more than 60% performance incresase.
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Figure 5.29. Cancer growth experiment HAoS normalised performance against the
dedicated c++ implementation
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Moreover, further profiling the optimized SC cancer model running on hardware,
showed that an additional performance increase can be achieved with a purely-hardware
implementation of context-chaining. Since the current context-chaining approach relies
on the user to explicitly define the next context to be executed in the chain by software,
this results in many time-consuming and execution-blocking memory accesses which
may be avoided by a smart implementation preloading the possible (or permitted) chains
in the HAoS memories along with the SC program loading. However, this implies that
several changes would be required in the hardware, driver and compiler code and, thus

the more simplistic current approach was preferred for our prototype.

The complexity of this high-level cancer model and its successful execution on the
HAOoS platform confirms that the implied SC architecture (systems, scopes, contexts,
schemata matching) is effectively supported, meeting this way research challenge Chg?2.
The cancer experiments proved that HAoS can compete with dedicated solutions on
modelling real-world biological models, confirming that research challenge Chg3 has

also been adequately met, in terms of both practicality and efficiency.

5.4 Summary

This chapter presented the implementation of three bio-inspired models, using the
developed prototype HAoS programming platform, in order to verify its functionality
and evaluate its performance against alternative solutions. The three models were
carefully selected to represent verification test cases of increasing complexity, testing all
aspects of the suggested architecture, both in the hardware and the software domain.
These demonstration HAoS applications were developed using the suggested
development methodology of section 4.5. Each of the preceding sections provides an
introduction to the bio-inspired model, followed by a systemic analysis, details on the

model implementation, the experimental setup and the obtained results.

First, a SC application implementing a genetic algorithm optimization of the binary
knapsack problem showed the suitability and compatibility of the SC hardware
architecture with standard evolutionary methods. This test case was used to evaluate the
performance of HAoS against the original sequential and the GPU-based
implementations of SC. The results showed the superiority of HAoS, mainly based on

the fine-grained parallelism of the TCAM, even when compared with a powerful GPU.

The next application modelled a well-studied biochemical process, the MAPK signalling

cascade. Being more complex in nature, it tested more advanced functionality like
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context adapting and enabled the evaluation of HAoS against the flexible high-level
SCoPE SC implementation and a stochastic n-calculus simulator written using functional
programming. HAoS again matched the behaviour of the alternative simulators providing

a considerable performance gain.

The last HAoS application modelled the effect of genetic abnormalities and therapeutic
approaches on cancer growth. In this test case, a comprehensive analysis on the thought
process required to build a considerably complex SC model was provided, along with
examples of optimizations that can be made at the SC source code and transformation
function plugin level to take full advantage of the underlying hardware architecture. The
notion of context chaining was introduced as a means of controlling SC interactions that
define a chain of events. Additionally, this model was used to validate the functionality
of the developed high-level HAoS simulator (a program with functional behaviour
similar to the circuitry). The performance of HAoS was evaluated against an optimized
dedicated software implementation and showed a competitive advantage, considering
that this case represented a worst-case scenario in terms of comparison, due to the

straightforward selection of the agents.
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Figure 5.30. Performance Evaluation Results Summary

Analysis for all three HAoS applications showed that research challenges Chg2 and
Chg3 have been met, as the suggested programming platform successfully simulated a
range of SC models of increasing complexity, confirming the support for the implied SC
architecture. The evaluation results, as collectively shown in Figure 5.30, show that
HAOoS consistently outperformed the rival simulators in all cases, confirming it shows

the capacity to be used as an efficient and practical simulation solution alternative.
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Chapter 6

Conclusion

This final chapter summarises and concludes the thesis. At first, a summary of the work
presented in this thesis is provided while revisiting its objectives. Then the contributions
of the thesis are listed, followed by a critical evaluation of the research outcomes. Future
work is suggested for further investigation and development of the HAoS programming
platform. The thesis finishes by describing how the contributions address the three main

research challenges and provide evidence to support its hypothesis.

6.1 Summary of Work Revisiting the Objectives

This thesis focuses on the practical hardware implementation of the Systemic
Computation paradigm. The objectives of this work, identified and listed in section 1.5,

are reviewed below summarising the work presented in this study.

1. Review the work done on Natural Computation with a focus on hardware-based
approaches.

An introduction to Natural Computation was given in section 1.1. The computational and
behavioural properties of Natural Computation were listed, against the opposing
properties of conventional computation, in Table 1.1 (page 19), and they were outlined at
the end of the same section. Understanding the concept of those properties is very useful

because, in essence, they define natural computation.

Chapter 2 provided a thorough literature review on several approaches to Natural
Computation. Various, software and hardware, approaches and computational paradigms
on Natural Computation were listed in Table 2.1 (page 30). The software approaches and
the computational paradigms were briefly discussed in section 2.1, while conventional
(Chip Multiprocessors, supercomputers, pure peer-to-peer networks and GPUs) and
unconventional (ubiquitous computing, wireless sensor networks, FPGAs, computing
with unconventional materials) hardware-based approaches to natural computation were

critically described in section 2.2. An overview of a set of indicative projects (POEtic,
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PERPLEXUS, SpiNNaker, Molen, DodOrg) was also given to show how various

approaches are applied to accomplish, model or mimic natural computation.

2. Review and assess the work done on Systemic Computation (theory and
implementations) to date.

A brief introduction on the SC theory was provided in section 1.2 giving its roots. In
addition, the conventions followed by SC in order to model biological processes
effectively, were listed. In essence, those conventions define the SC paradigm. SC was
further described in section 2.3, as it was introduced in the original paper by Bentley.
The SC conventions were discussed and the SC graph notation and systems
representation was illustrated. A simple demonstration of computation and the

progression of a simple SC program were also given to illustrate how SC can be used.

The three prior SC implementations were discussed in section 2.4. The original SC
implementation was a low-level simulation of a systemic computer and provided a proof-
of-concept for the SC theory. It provided a basic instruction set, an assembly language
and corresponding compiler. The second SC implementation was a high-level simulation
of a systemic computer and provided flexibility with a high-level SC programming
language, a compiler and a virtual machine, a complete runtime environment and
visualization tools. The third implementation used the power and parallelism of a GPU,
to accelerate SC programs execution with great success, compared to the two previous

attempts, since the acceleration factor was in the order of one hundred.

3. Investigate the suitability of available hardware implementation platforms for SC by
evaluating them in terms of their ability to support the natural properties of SC
(Chgl), the implied SC architecture (Chg2), and practicality/efficiency (Chg3) and
select the most appropriate.

In order to evaluate and investigate the suitability of the available implementation
platforms, the features that should be incorporated by a practical SC hardware
implementation platform, taking into consideration the research challenges, were
determined in section 2.5. These included the compatibility of the platform with the SC
natural properties (section 1.1) and the SC architecture features (systems, scopes,
contexts and interactions), and also 1/O efficiency, programmability, design friendliness,

technology maturity and scalability.

Signifying and understanding the advantages and disadvantages of each available
hardware implementation approach to natural computation in Chapter 2 was crucial to

identify which of them could be used as a suitable implementation platform for SC. For
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this reason, a critical discussion concluded the description of each approach, with regard
to their compatibility with the SC paradigm, and those that could define a SC hardware
implementation platform were evaluated against the identified implementation
requirements. The summary of the evaluation was given in Table 2.3 which was used to
discard the less suitable platforms for a SC implementation. FPGAs were finally selected

among the two other candidates, GPUs and wireless sensor networks.

4. Analyse the SC architectural features and create a prototype hardware
implementation designed to support the SC architecture.

The first Hardware Architecture of Systemic computation (HAoS) was introduced in
Chapter 3. The main SC architectural features, focusing more on the computational
rather than the behavioural aspects of Natural Computation (see Table 1.1), were
depicted and discussed in section 3.2, while potential architectures had been listed earlier
in section 3.1. HAoS is a novel custom digital design, which addresses the SC
architecture parallelism requirement by exploiting the inbuilt parallelism of an FPGA
and by using the highly efficient matching capability of a Ternary Content Addressable
Memory (TCAM). Basic processing capabilities were embedded in HAoS, in order to
minimize time-demanding data transfers, while the optional use of a CPU provides high-
level processing support. The suggested architecture was detailed and its underlying
building blocks were discussed in sections 3.4 - 3.6. The CPU interface (see Figure 3.9)

was only simulated at this point.

The functional simulation-based verification methodology along with a set of test
programs was given in section 3.8.1. Since the target development board had been
identified (based on the supported functionality and maturity of the FPGA device family
it includes) to be the Xilinx ML605 board, accurate implementation estimates of HAoS
for the on-board Virtex-6 LX240T FPGA device were acquired through Xilinx
developments tools and summarized in Table 3.6 (section 3.8.2). This first HAoS

implementation supported a maximum number of 64 systems.

5. Create a complete and standalone practical SC programming platform with the
ability to meet the three challenges.

After a thorough investigation of the most suitable implementation approach for the
HAo0S-CPU communication interface in section 4.1, it was decided that a soft embedded
processor, implemented on the reconfigurable logic, minimized the communication
overhead and provided the ability to prototype the communication link. The CPU

subsystem, along with various peripherals, was integrated to the HAoS initial design (in
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section 4.2) through an AXI4-Lite based interface, which was well-suited to handle
communications involving control and status registers, as the ones in the register bank of

HAoS.

After the custom design was combined with the on-chip soft processor, the Compact
Flash Card interface was added to the platform to enable SC programs loading and
runtime information logging, making the prototype a standalone solution for simulating
natural processes. The initial design was expanded to support the maximum number of
systems, being limited only by the size of the target FPGA device while scaling became
a matter of changing a single parameter as fully-parameterizable code was used
throughout the system. The usability and viability of the platform was also greatly
enhanced by the accompanying software framework and the suggested model

development methodology.

The prototype has the potential of adding great educational value in the academic
community as it combines practical aspects of hardware and software engineering with

an unconventional computational paradigm focusing on natural systems modelling.

6. Analyse and address the limitations of the hardware prototype by means of
optimizations and enhancements taking into consideration the research challenges.

Various optimizations applied in the initial HAoS architecture in terms of speed and area
were discussed in section 4.3. The optimizations included refining the Random Selection
Logic by pipelining and careful resource sharing, minimizing the schemata matching
overhead by using a register-based TCAM which features a single-clock cycle read and
write latency and further addressing I/O efficiency by devising a write-detection
mechanism. These optimizations enabled the increase of the operating frequency and
throughput and the decrease of the overall latency compared to the initial design.
Timing-based verification was conducted to validate the optimizations before the design
was implemented on hardware (downloaded on the FPGA). The enhancements included
addressing user-friendliness, by providing a HAoS functional simulator to expedite and
ease SC models development, and programmability by introducing a complete HAoS
programming toolchain and an accompanying software framework, which were then

used to formulate a HAoS model development methodology (in section 4.5).

7. Evaluate the ability of the prototype SC platform to meet the three challenges by
simulating natural models against alternative solutions.
An initial evaluation against prior SC implementations was provided in section 5.1,

where the same SC source code solving a typical genetic algorithm optimization
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problem, the binary knapsack problem, was executed by the original SC implementation,
the GPU SC implementation and HAoS. SCoPE was excluded from this evaluation since
it uses a different version of the SC language but it can be safely assumed that its
performance would be similar to the original version (both being purely software
implementations relying solely on conventional hardware architectures). Experimental
results showed that HAoS provides an effective solution in terms of efficiency versus

flexibility trade-off and can potentially outperform prior implementations.

A well-studied biochemical process, the MAPK signalling cascade, was the second SC
model, developed using the methodology of section 4.5 and presented in section 5.2,
simulated with the HAoS prototype platform. Although this experiment was used as a
means of verification and evaluation of the platform against alternative high-level
simulators, SCoPE and SPiM, it also provided an example of simulating a highly

stochastic and approximated model.

The third and most complex SC model, out of the models presented in this thesis,
examined the role of chromosome missegregation, a cellular anomaly of genetic origin,
in the development of a tumour. External stimuli were also modelled in the form of
typical cancer therapies, chemotherapy and surgery. In contrast with the other models,
presented in the first two sections of Chapter 5, which retargeted previously introduced
SC models to the HAoS programming platform, the cancer SC model was developed
from scratch in the context of this thesis. For this reason and due to the increased
complexity of this model, a thorough explanation and a detailed systemic analysis were
provided before reaching the alternative ways of approaching and implementing such a
model. Thus four variations of this SC model were presented, all representing the
functionality of the reference model, trying to identify a balanced choice in terms of
accuracy and efficiency. This test case was also used to evaluate the correctness of the
HAo0S functional simulator. The results showed that HAoS can outperform the optimized

C++ reference model while correctly modelling its complex behaviour.

6.2 Contributions

This work contributes to the fields of systemic computation, natural computation and, in

general, computer science by providing:

e A critical review of hardware-based approaches to systemic and natural
computation and identification of the requirements of an implementation

platform, in order to support a practical SC hardware implementation.
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e C(ritical analysis of natural computation implementation platforms with respect to

SC and the derived requirements.

e Determination of the most appropriate hardware implementation platform for a

practical SC implementation.

e Design of the first hardware SC architecture taking into consideration the

flexibility and performance trade-off.

e Introduction of a complete and practical standalone platform to simulate natural

systems, accompanied by
o aprogramming toolchain,
o asoftware framework and
o amodel development methodology

e A custom hardware write-detection mechanism used to decrease CPU accesses to

a local resister file.

e A custom random selection circuit that selects a set bit from a given bus and

returns its position.
e Introduction of the concept of context chaining in SC applications.

e SC programming examples executed on hardware showcasing efficient natural

systems modelling.

e Introduction of a SC cancer model focusing on chromosome missegregation and

including genetic and external stimuli.

6.3 Critical Evaluation

The various design decisions and choices involved in the development of the resulting
prototype, from the selection of hardware implementation platform to the layout of the
hardware architecture and then the development of its accompanying software, have
been explained throughout chapters 2 to 4. These decisions have been primarily based on
finding a balance between efficiency and flexibility and were driven by currently
available technologies and design methodologies. Yet, it has been evident from the
analysis given before any decision was made, that there was usually no single correct

answer to each design challenge faced along this work.
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Implementation Platform Selection

According to the analysis of section 2.5, FPGAs were selected as the most suitable
platform for a hardware implementation of SC. While this decision was made due to
maturity of the FPGA technology and its great potential for fine-grained parallelism,
advancements in emerging technologies as Quantum and DNA computing may enable

the implementation of SC in a more natural substrate in the future.

Regarding the other strong candidates for realizing SC, from the discussion of section
2.5, both Wireless Sensor Nodes and GPUs provide advantages that would make them
suitable candidates. The comparison between the FPGA-based HAoS prototype and the
GPU SC implementation using the binary knapsack test case (section 5.1) reveals the
superiority of a dedicated hardware architecture over the power of a GPU. However,
while FPGAs are widely used having a plethora of commercial applications, GPU design
advancements are mainly driven by the power-hungry and ever-demanding gaming
industry. Thus, the two fields should continue evolving with the same pace for the FPGA
platform to continue being the most favourable option. A quantitative comparison
between the FPGA-based and a WSN-based approach was not possible as such an
implementation is not available yet. Thus, since the features of a WSN network are well-
aligned with the natural properties of SC, a WSN SC implementation may still prove

useful to realize.

Hardware Architecture

As stated in section 1.2, the two main tasks implied by SC are the identification of the
interacting systems and then the transformation of those systems. The competitive
advantage of the suggested hardware architecture lies on the efficiency of the TCAM
performing schemata matching in a parallel manner, regarding the first implied task, and
the low-latency communication with the embedded CPU, regarding the second.
However, it is clear that there is still great performance gain potential regarding the
parallelization of the transformation task which may be addressed by using on-chip

available resources or additional off-chip processing elements.

The rationale behind choosing the soft processor in section 4.1 is the extremely low
communication overhead which can however be negligible when the runtime of a task
increases. While the embedded processor approach was proven sufficient to prototype
the suggested hardware architecture (according to its evaluation against alternative
simulators in Chapter 5), more computationally intensive natural models may require

more raw processing power which may be addressed by the computation-offloading
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hybrid approach suggested in section 4.1 and further low-level hardware optimizations

and enhancements.

While the suggested hardware architecture was designed to implement the SC paradigm
in an efficient and practical way, it is acknowledged that it does not fully support all the
natural properties that are implied by SC. Evidently, the focus of this work was more
towards the computational rather than the behavioural properties supported by the SC
concept in theory. The FPGA platform was selected for the increased level of support it
can provide for these implied properties and some of them like parallelism and stochastic
interactions have been implemented on the hardware level. The behavioural properties
are left to be simulated by the SC applications running natively on the HAoS platform,
e.g. self-adaptation and fault-tolerance can be sufficiently demonstrated using a genetic
algorithm [22] which being greatly compatible with SC, it can be easily simulated and

efficiently mapped to the underlying architecture of HAoS as shown in section 5.1.

Prototype Implementation

The suggested hardware design has been written in highly-parameterized VHDL code,
enabling its effortless migration to any FPGA device. The selected FPGA development
board featured a midrange FPGA device in terms of size and included a rich set of
features. As FPGA technology evolves and modern devices provide more efficient
reprogrammable solutions, HAoS is not constrained to a specific vendor, it can be easily
scaled just by changing a single parameter in the source code (as long as the design fits
to the target device) and is fairly future-proof as it uses an industry-standard
communication interface to its embedded CPU. Using this flexibility, the number of
maximum supported systems using a single device may be adequate to simulate fairly
complex natural systems. However, scaling the architecture further than a single FPGA
device, realizing a distributed architecture of HAoS nodes, may be beneficial for real-

world modelling scenarios.

SC Model Development and HAoS Programming
The three SC models presented in Chapter 5 attempted to cover a wide®® range of SC

applications with varying levels of behaviour complexity. The suggested model

3 As various communication interfaces (PCI Express Gen2, USB 2.0, Gigabit Ethernet and
DDR3 memory interface) and on-board peripherals (FMC expansion connectors, SD card

controller and an LED screen).

3% Wide in the context of a research thesis.
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development methodology can facilitate further exploring new models while the
provided programming toolchain and software framework can assist in making HAoS
programming straightforward for potential SC programmers, familiar with conventional
programming methodologies and techniques. However, an understanding of the main
concepts of SC, the basic mechanics of the underlying hardware and software
development for an embedded processor is encouraged for efficient HAoS model

development.

6.4 Future Work

Although the current prototype has been proven to be fully functional, there are several
further improvements that could be made to increase its efficiency. The following
suggestions address the deficiencies of the HAoS platform, identified in the critical

evaluation section above.

Hardware Architecture

In order to maximize the utilization of on-chip resources, the vast number of available
DSP building blocks can be used as discrete parallel processing elements and any
remaining FPGA fabric can be used as a dynamically reconfigurable area for
predetermined hardware-supported functions. As FPGAs provide the flexibility to
partially reconfigure the device to implement a different circuit every time on a
predetermined area of the available fabric, a different circuit could be downloaded on the
FPGA, according to the requirements of a systemic program, which then would highly
optimize the performance of the system. The supported reconfigurable function set could
either include only predetermined hardware functions or any supported function by a
high-level synthesis tool or C-to-HDL compiler [164], [242], [243]. Essentially this
feature would imply that instead of having a fixed instruction set supported by the FU
(see Figure 3.9), the FU would be itself reconfigurable and tailored to the specific SC

application, maximizing this way resources utilization.

Another enhancement to the suggested hardware architecture would be the addition of an
extra communication interface on the platform to provide the possibility of HAoS
offloading computationally-intensive tasks to a conventional CPU through a PCI-Express
link. The motivation behind this is the acknowledgement that a low-performance soft
processor can be a poor choice if a heavy computational task is required. A smart
solution would execute hardware supported tasks within the HAoS FU, low-demanding
general-purpose processing tasks to the low-latency low-throughput on-chip processor

and computationally expensive processing tasks to the high-latency high-throughput off-
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chip conventional CPU. Thus, adding this option to the platform, would give the user the
choice between having a standalone solution and fine-tuning the system performance

according to the processing requirements of the given application.

More low-level enhancements that would increase the efficiency and flexibility of the
architecture are also possible. Some examples would be supporting variable parts next to
the transformation function section of a system holding auxiliary program information,
an efficient implementation of context chaining supported inherently by hardware and
also further increasing the size of the schemata of a number of systems in order to be

able to hold more local information.

Prototype Implementation

Naturally, the raw performance of the platform may also be increased by retargeting the
HAOoS architecture to the latest FPGA family, using a bigger and faster FPGA device to
enable more systems to be modelled (using a single device) and the operating frequency
of the custom logic to be increased without further architectural changes to the design.
Also the operating frequency of the processor may also be increased by an order of
magnitude, if the selected FPGA device makes use of a powerful hard CPU, instead of
the low-end soft CPU of the HAoS prototype, implemented next to the reconfigurable
logic (as it is the case for the recently commercialized Xilinx Zynq’ Extensible
Processing Platform [202] and the recently announced Altera Stratix 10 FPGA platform
which includes a quad-core A53 64-bit ARM processor fabricated on an Interl 14-nm 3D
Trigate Transistor process, as discussed in section 4.1). This approach would maintain
the low-latency communication advantages of the suggested design. A migration to such
a platform would not impose altering the suggested communication interface, as the
selected AXI4 based communication protocol (being an industry standard) used by
HAO0S, is readily supported by such modern solutions. However, minor changes would

be required on the software side.

37 The configurable logic provided by these devices is still limited since a full dual-core ARM
CPU is also implemented on the same chip. The largest currently available Zynq device (Z-7100)
provides 444K reconfigurable logic cells while the midrange Virtex-6 FPGA used for
implementing HAoS includes 241K cells. However, with FPGA manufacturers moving to smaller
technology nodes (currently announced down to 14-16nm), these limitations will be more
efficiently addressed as the technology matures. The highest operating frequency for the ARM
Cortex-9 CPU in the Zynq family is currently 1GHz (Z-7045-3 device) [202].
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An investigation on the scaling of the HAoS platform beyond the single-FPGA
implementation is also suggested. This could be accomplished with using an external
CAM configuration in order to address the increasing number of systems requirement.
This approach would have a performance penalty but it would enable a broader range of
SC applications. As the on-chip CAM is the most area-consuming block of HAoS, its
absence will provide a high number of maximum supported systems, even when only one
FPGA device is used. Moreover, external TCAMs can easily be incorporated to an
FPGA-based design through dedicated or generic communication interfaces and also be
scaled by cascading multiple devices [244][245]. A second approach that could address
the scalability of the HAoS architecture is an FPGA cluster [93], with each FPGA
defining a separate scope or part of a scope and system transfers/exchanges happening
between the discrete FPGA nodes. Taking into consideration budget limitations of a
hardware realization of this approach, the functionality may be simulated and tested on a
configuration initially using a small number of FPGAs. A network interface will
probably have to be designed at the bounds of each chip. A shared bus topology or a
wireless link may help addressing the communication-related scalability issues. Address-
Event Representation [111] may also be considered to be adopted by the design in order

to compensate for the limitation of the I/O pins of the FPGAs.

SC Natural Models Development and HAoS Programming

A natural extension of this work would involve exploring more natural models and
developing SC applications which would fully exploit the efficiency of the suggested
programming platform. Specifically, SC applications showing the level of support for the
behavioural properties of Natural Computation would be especially interesting, using the
work presented in [22] (exploiting self-adaptation, robustness, fault-tolerance,

homoeostasis and self-organisation) as a starting point.

The HAoS programming framework could also be greatly enhanced by further
automating parts of the Conceptual and Application Layer (see Figure 4.5) with the
addition of a high-level SC graph tool which would translate the graphical notation of a

SC model to calculus notation and the corresponding SC source code.

Implementation Platform
As noted in the previous section, it would be interesting to also explore additional
suitable implementation platforms and evaluate their performance and compatibility with

the SC paradigm. An obvious candidate would be a WSN-based [79] approach while



Chapter 6. Conclusion 223

alternatively a SpiNNaker-based [132] implementation would also be appealing once the

final platform is available.

6.5 Closing Words

The hypothesis of this thesis was to prove the viability and utility of a practical SC
hardware implementation. In order to accomplish this, an overview was first given on the
fields of Natural and Systemic Computation to introduce their base concepts and non-
conventional nature. Then, in order to provide evidence to support the hypothesis, three

research challenges had to be addressed:
Chgl: How can a hardware platform support the central SC natural properties?

Acknowledging the fact that the implementation of a hardware platform that fully
supports all the SC inherent natural properties is not yet realistic, this thesis attempted to
identify a compromise based on the various trade-offs provided by current technologies
and design techniques. A critical analysis of hardware-based approaches to natural
computation was presented, followed by the identification of the key requirements for an
implementation platform which would provide sufficient support for as many as possible
of the implied natural properties of SC, focusing more on the computational part. The
investigation of the compatibility of the various available implementation platforms with
the desired properties led to the selection of FPGAs as the most suitable choice to
implement the first Hardware Architecture of Systemic computation (HA0S). The natural
properties were also taken into consideration along the design of the custom hardware
and its accompanying software. After analysis of the available options, constraints and
trade-offs, a few of the properties (as stochastic execution and parallelism) were
incorporated to the suggested hardware platform, while the rest remained to be supported

on a software level (e.g. by using a genetic algorithm).
Chg2: How can a hardware platform support the underlying architecture of SC?

In order to support the underlying SC architecture, a hardware platform should be
implemented on a substrate which is compatible with the specific features of SC:
systems, scopes, contexts and interactions®®. For this reason, the compatibility with these
features was also considered in the implementation platform investigation. Since the
FPGA platform was selected, a design analysis concluded that systems and scopes would

be stored on system RAM to optimize area utilization, while register-based constructs

* Including schemata matching and random selection
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would provide parallel access to performance-critical status information. A new, more
hardware-friendly, systems representation and coding method was devised in order to
optimally map the architecture to the hardware resources. A Ternary Content
Addressable Memory was selected to handle the demanding task of schemata matching
to implement valid triplet generation in a purely parallel manner. An optimized and
dedicated hardware state-machine was implemented to control the interaction flow. In
addition, a custom circuit was designed to handle the random selection task, which was
used to randomly identify a valid scope among all scopes in the SC program, a context
among all contexts in a scope and a pair of interacting systems among all matching
systems. The support for the SC architecture was further revised with low-level
optimizations and it was also evaluated and verified using high-level bio-inspired SC

models running live on the suggested hardware platform.

Chg3: How can a hardware platform meet the first two challenges while also being

practical and efficient?

Practicality and efficiency were also considered during the investigation of the most
appropriate technology/substrate, which would be used to implement HAoS. The
requirements regarding this challenge were identified to be I/O efficiency,
programmability, design-friendliness, technology maturity and scalability. After the
selection of the implementation platform and the introduction of the base HAoS
architecture, the design effort was focused on optimizations and enhancements targeting
a more practical and efficient simulation platform. A critical analysis regarding the
HA0S-CPU communication interface led to the selection of an embedded CPU due to the
minimal communication latency. Low-level optimizations in the RSL, the TCAM and the
I/O boundary increased significantly the efficiency of the platform. Additionally, the
user experience and the level of practicality where substantially enhanced by the
functional model of the design (HAoS simulator), the programming toolchain, the
software framework and the programming methodology, which greatly expedited SC
models development targeting HAo0S. The efficiency of the platform was evaluated by
simulating natural models and it was validated by outperforming prior SC

implementations and alternative simulation environments.

To sum up, this thesis met all three research challenges since the resulting prototype was
realized on the most compatible to the desired natural properties implementation
platform (Chgl) and implemented the SC paradigm and its implied architecture (Chg2)

in a practical way, employing widely-used programming techniques and methodologies
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(using C/C++ for transformation functions implementation) on a mature technology
(FPGAs combined with embedded processing). Additionally, the efficiency of the
platform (Chg3) was shown through evaluation, as HAoS has been shown to have the
capacity of outperforming competing solutions proving the viability and utility of the
suggested design (illustrated in Figure 6.1). Thus, by meeting the research challenges,
this thesis provides compelling evidence to support the hypothesis that it is possible to
implement a practical Systemic Computation hardware architecture that is viable and

useful.

M Flexibility
M Efficiency

Original High-Level GPU HAoS

Figure 6.1. Comparison in flexibility and efficiency provided by the HAoS programming
platform, contributed by the work presented in this thesis, against to prior SC
implementations. The suggested practical hardware-based implementation provide a
balanced SC programming solution

Throughout this study, it has been highlighted that nature seems to work in a massively
parallel fashion. The creation of new computer architectures better suited to model
natively natural systems is the dream of many hardware engineers. This thesis is a

stepping stone towards that goal.
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Appendix A. SC Example Test Programs Source Code

Listing A.1. Addition in Multiple Scopes (Testl Example) Source Code

#systemic start

// define the functions

#function ADD %$b10000000000000000000000000000000
#function PRINT %$b01000000010000000000000000000000

// define some useful labels

#label num $b1000000000000000
#label zero $b0000000000000000
#label dontcare %b?222222222222°272°2°?
#label printnum $b222222?222212°2?2°2°
#label zero2 %$b00000000000000000000000000000000

// and the program begins here:
// declare the scopes
scopel (%d0 %d0 %d0)

scopel (%d0 %dO0 %dO0)
scope2 (%d0 %d0 %dO0)
scope3 (%d0 %d0 %dO0)

// data systems
data0l (num %d0 %$d1000)
data02 (num %d0 %d24)

datall (num %d0 %$d1000)
datal2 (num %d0 %$d130)
datal3 (num %d0 %d25)

data2l (num %d0 %$d1000)
data22 (num %d0 %$d130)
data23 (num %d0 %d25)
data24 (num %d0 %d32)
data3l (num %d0 %$d1000)
data32 (num %d0 %$d130)

(
(
data33 (num %d0 %d25)
data34 (num %d0 %d32)

data35 (num %$d0 %d13)

// context systems

sum ([num zero2 dontcare] ADD(0,0) [num zero2 dontcare])
output ([num zero2 zero] PRINT(0,0) [num zero2 printnum])

// set up the scopes
#scope scopel
{
datall
data02
sum
output // should print 1024
}

#scope scopel
{

datall

datal2

datal3

sum

output // should print 1155
}

#scope scope?2
{

data2l

data22

data23

data24

sum

output // should print 1187
}

#scope scope3
{
data3l
data32
data33
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data34

data35

sum

output // should print 1200
}

#systemic end
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Listing A.2. Subtraction-escape and then multiply and print (Test2 Example) Source Code

#systemic start

// define the functions

#function SUBTRACTe %b01000000000000000000001000000000
#function MULT %11000000000000000000000000000000
#function PRINT %01000000010000000000000000000000

// define some useful labels

#label zero $b0000000000000000
#label dontcare $b?2?2722272222222°2°2°2°?
#label numl $b1000000000000000
#label num2 $b0100000000000000
#label num3 %$b1100000000000000
#label numé $b0010000000000000
#label scp $p1111111111111111
#label zero2 $p00000000000000000000000000000000

// and the program begins here:
main (scp %d0 %dO0)

// Scope cl

cl (scp %d0 %dl)
datal (numl %d0 %d10)
data2 (num2 %d0 %d3)

dataxl (num3 %d0 %d110) // dummy - does not match
datax2 (num3 %d0 %d120) // dummy - does not match
datax3 (num3 %d0 %d130) // dummy - does not match
datax4 (num4 %d0 %$d140) // dummy - does not match
datax5 (num4 %d0 %$d150) // dummy - does not match
minus ([numl zero2 dontcare] SUBTRACTe (0,0) [num2 zero2 dontcare])
#scope cl
{

datal

data2

minus // 10-3=7

dataxl

datax?2

datax3

datax4

datax5b
}
// Scope c2
C2 (scp %d0 %d2)
data3 (numl %d0 %d16)
datad4 (num2 %d0 %d4)
datayl (num3 %d0 %d1010) // dummy - does not match
datay2 (num3 %d0 %d1020) // dummy - does not match
datay3 (num3 %d0 %d1030) // dummy - does not match
datay4 (num4 %d0 %$d1040) // dummy - does not match
datay5 (num4 %d0 %d1050) // dummy - does not match
minus ([numl zero2 dontcare] SUBTRACTe(0,0) [num2 zero2 dontcare])
#scope cl
{

data3

data4d

minus // 16-4=12

datayl

datay?2

datay3

datay4

datay5b




// Scope main
times ([numl zero2 dontcare] MULT(0,0) [numl zero2 dontcare]) // 12*7=84
output ([numl zero2 dontcare] PRINT(0,0) [numl zero2 dontcare])

#scope main
{
cl
c2
times
output
}

ES

systemic end

Listing A.3. Context Adapting (Test3 Example) Source Code

#systemic start

// define the functions

#function SUBTRACT %$b01000000000000000000000000000000
#function ADD %$b10000000000000000000000000000000
#function COPY %$b01010000000000000000000000000000

// define some useful labels

#label zero $p0000000000000000
#label dontcare %b?2222222222?222°2°
#label num3 $p1100000000000000
#label scp $p1111111111111111
#label zero2 $p00000000000000000000000000000000

// and the program begins here:
main (scp %d0 %d0) // main scope

// data systems
dataxl (num3 %d0 $d110)
datax2 (num3 %d0 $d120)
datax3 (num3 %d0 $d130)
(
(
(

datayl (num3 %$d0 %d1010)
datay2 (num3 %d0 %$d1020)
datay3 (num3 %d0 %$d1030)

// context systems
minusadapt ([num3 zero2 dontcare] SUBTRACT (0,0 [num3 zero2 dontcare]

)
[num3 zero2 dontcare])

)

minusadaptl ([num3 zero2 dontcare] SUBTRACT (0,0)

minusadapt2 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])
minusadapt3 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])
minusadapt4 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]
minusadapt5 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])
minusadapt6 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])
addadapt ([num3 zero2 dontcare] ADD(0,0) [num3 zero2 dontcare])

// context adapter system: transforms subtraction systems to
// additions ones by copying the contents of add to sub systems
killminus ([minusadapt] COPY (0,0) [addadapt]

#scope main

{
minusadapt
minusadaptl
minusadapt2
minusadapt3
minusadapt4
minusadapt5
minusadapt6
addadapt
killminus
dataxl
datax?2
datax3
datayl
datay?2
datay3

}

#systemic end
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Appendix B. CPU Subsystem Integration Details

The custom HAo0S logic connects to the IC through a point-to-point bidirectional slave
interface block, the user IP Interface (IPIF) which in addition to the data and address
buses provides a set of standardized control signals (like chip select, chip enable, byte
enable and acknowledgements). A simplified block diagram of the HAoS CPU
communication link (the CPU INTERFACE of Figure 3.9) is shown in Figure B.1.

Other Masters

ﬁ HAo0S
MicroBlaze AXl4-Lite AXl4-Lite REG
sy | R (| Pl |
(Slave)

Other Slaves

Figure B.1. The AXI4-Lite based HAoS-MicroBlaze communication link

A slight modification was required to the IPIF logic as the Xilinx AXI4-Lite interface
natively supports up to only 32 4-byte registers. In order to waive this restriction, the
default read/write address decoding logic (the register address would be decoded to give
a one-hot 32-bit bus with the set bit at the position of the register to be read/written) and
the 32 register-array was replaced by an interface to the HAoS REG BANK providing
just the exact access address. This address is then decoded in the REG BANK to give
access to any set of the HAoS control registers, depending on the size of the data to be
accessed (1-, 2- and 4-byte accesses supported here as the Xilinx AXI4-Lite bus has a
width of 4 bytes) and importantly without the requirement of data being aligned on 4-
byte words. This results in a slightly increased size of the decoder due to the bigger
number of multiplexers needed, but it can enable a more compact usage of the registers
since non-word aligned memory accesses of the HAoS register space are now also

supported.

Apart from the soft CPU and the communication interface, the hardware platform is
completed with some other useful peripherals, shown in Figure B.2. From top to bottom,
we have the local Block-RAM based instruction and data memories (64KB), the
MicroBlaze processor with its various communication interfaces, the AXI4 interface and
its associated bus connecting the processor with the external DDR3 memory (512MB)

and the AXI4-Lite interface and its bus to all other peripherals. These are an Ethernet
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Controller, on-board switches and push-buttons and LEDs control blocks, the on-board
LCD controller, the Flash EEPROM configuration memory controller, the interrupt
controller, the Compact Flash card controller, a timer and the UART control block. It is
noted that, from the processor point of view, HAoS is just another peripheral in terms of
connectivity and accessibility, as it uses a specific address space of the processor
memory map.

ram, block
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Figure B.2. Top-level On-Chip HAoS Platform Block Diagram
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Appendix C. RSL Optimisations Details

The critical path was identified by performing static timing analysis using standard
Xilinx tools (PlanAhead). The longest path was implementing valid triplet generation
and originated from the TCAM (context template matching result to identify interacting
systems), entered the RSL through the input MUX and then it passed from the
COUNTONES block to count the number of set bits of the bus. Since the sum of the set
bits is used as the divisor of the random number from the LFSR to give the rank of the
randomly selected set bit, the critical path then passes from the 16-stage divider to the
BITPOSSEL. There the rank is translated to the address of the randomly selected system
and the critical path finishes at the memories (binary and ternary RAMs) where this
address is used to obtain the interacting system. The critical path, before the

optimizations listed below, is illustrated in Figure C.1.
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Figure C.1. Critical path of initial HAoS design based on static timing analysis

As mentioned in section 3.6.2, the BITPOSSEL module of the RSL, combines a parallel
bit count with a branchless selection method. The parallel bit count is used to provide
partial sums which are then appropriately masked and passed through a barrel-shifter to
provide the position of a bit with a given rank in the input bus, resulting in a divide-and-
conquer technique. As seen in Figure C.2, the COUTNONES and BITPOSSEL modules
of the RSL are merged, as the parallel sum-of-bits counter in COUNTONES is reused for
the generation of the partial sums during the identification of the position of the selected

bit.
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Figure C.2. The Revised RSL module. P stands for pipeline registers. COUNTONES and
BITPOSSEL modules have been merged to share the adder tree. The RSL has been
carefully pipelined having in mind the trade-off between minimizing latency and excessive
resource utilization reducing the critical path from 80ns to 20ns

The length of the barrel shifter is equal to the size of the longest input bus to the RSL
which in turn is equal to the number of maximum supported systems. Thus, when this
number is increased, the number of logic levels required for the barrel shifter
implementation has a considerable impact to the delay along the critical path. For this
reason, the conventional barrel shifter is replaced with a parallelized and pipelined
version which instead uses an array of multiplexers with registered pre-shifted (by the
required pre-calculated number of bits) versions of only the possible subset of shifting
combinations of the input buses. Referring back to Figure 3.13 and the discussion of

section 3.6.2 regarding finding the position of a set bit given its rank, the BITPOSSEL
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includes an array of comparators (comparing the intermediate rank to the remaining sum
of bits or partial sum of each level, implemented with subtraction) and multiplexers
selecting appropriate values for the position (or address) virtual pointer and rank

depending on the result of the comparison (middle and bottom part of Figure C.2).

However, for each level, only a subset of shifting combinations of the partial sums is
possible (according to the bit-group length of a given level). By replacing the barrel
shifter with an array of multiplexers along with using pre-shifted versions of the
intermediate sums of the adder tree, we obtain all inputs to the array of units in the
BITPOSSEL in parallel (see Figure C.2). Registering those inputs, breaks the critical
path after the adder tree and before the comparator tree of the BITPOSSEL, giving the

same depth and a latency of less than 20 ns.
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Appendix D. Revising the TCAM Design

Each SRL16E primitive is implemented by a LUT and can effectively store one
matchable 4-bit data value by driving its output with a set bit only for the corresponding
input value (out of the 16 possible permutations). When the SRL16E-based CAM is
written, the data input is compared against the output of a counter that cycles through all
16 possible values, and when a match occurs, a 'l' is shifted in the SRL16E while zeroes
are shifted when the values do not match [173]. Thus, since this design is effectively
constructed by a chain of parallel 16-bit shift registers, each write operation, shifting
data in, one bit at a time, requires 16 clock cycles. The read operation (which in a CAM
is equivalent to a comparison with its input) is performed in a single clock as the data
input is partitioned in 4-bit chunks and the chunks are fed as addresses to an array of
cascaded SRL16E blocks. Each SRL16E gives a match (a set bit at its output) if its input

corresponds to a location that stores a set bit.

Read Operation """ SRL16

~.. |ABcD out
; .~"Data=10|  Ternary | 0000
A ABCD = 0011 { 0001
X Encoder — 0010
o1 - = [ 0011

~.... Mask=01 | (custom encoding) o100

......................................................... | 0101
....................... ! {0110
Ternary : %88

4-bit Cnt
> Comparator 5 1001
Counter < 11010
OUT = (CntsA) + (Cnit*B) + (Cnt,C) + (CntD) | .~ 1011
1100
------------------ » 1101
: Write Operation 1110
- 1111

y.

Match

V-

G N e JE QU G G o, TR QR G G o SR G G G o §

Figure D.1. The SRL16E-based building block of the base HAoS TCAM. The SRL16Es and
their associated logic are cascaded using the carry chain between the FPGA slices as a wide
AND gate to form wider CAMs. The ternary encoder (using a custom encoding mapping
[173]) is used in both read and write operations. Write operation require that all states of a
4-bit counter are “compared” with the encoded value, resulting in a 16 clock cycles write
latency

In addition, ternary CAMs support more input combinations as some of the input bits
may be “don't care” (X) bits. This implies that the data need to be encoded at the 4-bit
input of the SRL16E where data (or binary) bits are combined with mask (or ternary) bits

to give a 2-bit ternary-encoded value. Also, the addition of ternary bits also implies that
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more than one set bits may be stored in an SRL16E as more than one entry may give a

match to a ternary value. The SRL16E-based design is summarized in Figure D.1.

The revised design includes a register array which has two partitions, one to hold the
data bits and another to store the mask bits. Using registers, write operations are now
performed in a single clock cycle. The result of a CAM read operation is available

immediately as all comparisons are performed in parallel according to:
Match_bus(i) = and _reduce (data_in xnor binary regs(i)) or mask_in or ternary regs(i)

Match_bus is the resulting bus carrying one 1-bit matching flag for each word, i is the
position of the word, and reduce is a wide AND gate since all the individual bits of the
comparison result should be set (a set bit implies a match at that position in the word) in
order to have a word match and data in is the input binary word which is tested for
bitwise equality against the binary word stored in position i of the register array
(binary regs(i)). A bit in a word can still be flagged as matched even if the
corresponding binary bits do not match if any of the (input - mask in or locally stored -
ternary regs(i)) ternary bits are set. An extra benefit of using such a parallelized
structure for the ternary comparison is that its latency is independent of the depth of the

CAM.
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Appendix E. Provided HAoS API

Table E.1. Summary of the provided functions (simplified) in the HAoS API

Function Name Description
scReadX() Read a HAoS register. X can be 8, 16 or 32 for 1-, 2- or 4-byte read operation
scWriteX() Write a HAO0S register. X can be 8, 16 or 32 for 1-, 2- or 4-byte write
operation
Optimised (uses maximal-length memory access and unrolls the access loop)
readSysXScY Arr() function to read schema Y of system X where X and Y can be 1 or 2
writeSysXScY Arr() Sptlmlsed function to write schema Y of system X where X and Y can be 1 or
writeScope() Write Entry or Entries in HAoS scopetable
loadSumReg() Write HAoS scopetable sum - Number of systems in a scope
camWrite() Write Entry in HAoS Ternary Content Addressable Memory
Reads System from the RAMs that hold the full contents of the TCAM
camRead()
systems
displayBeats() S‘tores. Execution Time. May display gumber‘ of real timer (@100MHz) ticks
since it was last reset. Also supports time units
resetReal Timer() Resets HAoS real time counter
setSwReset() Asserts HAoS Software Reset
clearSwReset() Clears HAoS Software Reset
displayStats() Displays program execution statistics as duration, number of interactions and
play number of abortions due to context or schemata mismatch
uSleep() The CPU waits for a user-defined number of us.
lcdPrintString() Write the lines of the On-board LCD display
printHAoSConstants() Print all constants defined in the code
encodeSchemata() En.codes (decompresses) schemata to the appropriate format in order to be
written to on-chip memory
Reads the valid triplet, that is the matching systems, transformation function,
readValidTriplet() active scope and context address, and extracts the various user-accessible
fields in the triplet driver data structure
writeBackTriplet() Writes transformed triplet back to HAoS memories

haveTripletWrittenBack()

Transfers transformed triplet back to HAoS registers and lets the hardware do
the write-back to the memories.

loadIniSim() Software Simulation of loading the Initialisation File (for debugging only)
sysAceFReadSim() Software Simulation of reading the Compact Flash Card

schemataPartTol() Transforms 1 bits of binary schemata, starting from bit s, to integer
iToSchemataPart() Transforms integer into binary with length 1 and places it in schema starting at

bit s
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Appendix F. File Types used along HAoS Model Development

Table F.1. Summary of file types used along HAoS model development

File
Generated by Description Format
Type
HAo0S model source code written in the SC .
- . . Listing 3.1,
.sc | User language defining transformation functions, .
Section 3.7
systems and scopes
sep | HAoS Compiler SC human-readable assembly code corresponding Figur‘e 3.17,
to .sc file Section 3.7
Post-Compiler Size optimized binary repres.ent?tion of the .scp Bin?ry txt
.scb Binarv Generator file. The exact contents of this file are loaded to Equivalent,
y HAoS memories Section 4.3.5
ASCII file, replacing each bit of the .scb file with a
'0" or '1" ASCII character. The resulting string can Same with .scb
Binary-to-ASCII | be embedded in the user code, loading the SC but in ASCII,
Axt . . .
Converter program to the HAoS memories directly from Section 4.3.5,
MicroBlaze Block RAMs (achieves minimum SC Appendix H
program loading time, convenient for debugging)
Xilinx SDK . .
MicroBlaze GNU Thﬁ HAo0S program .exe'cutable, 1nclud.1ng the Standardized
elf . driver and any code if high level functions are
Compiler & . [229]
. used, executed by MicroBlaze
Linker
. FPGA configuration bit-string. The reconfigurable
Xilinx ISE . . . . .
. . logic of the FPGA is programmed according to this Proprietary
.bit | Implementation . . :
Tools file which represents an image of the hardware (Xilinx)
circuit to be implemented
A log stori text output while the HA.
Jog | HAoS executable og storing any text output while the HA0S N/A

program runs
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Appendix G. Cancer Models SC Source Code

Listing G.1. Time-Enabled Cancer Model SC Source Code

#systemic start

// define the functions

#function KILLCELL $b10001000010000000000000000000000
#function DIVIDECELL $p01001000010000000000000000000000
#function ABSORBCELL %$p11001000010000000000000000000000
#function DISCARDCELL $b00101000010000000000000000000000
#function FERTILIZE %$p10101000010000000000000000000000

// define some useful labels

#label zero $b0000000000000000
#label dontcare $b222222222222°2°2°2°7
#label zero2 %$b00000000000000000000000000000000

#label dontcare?2 Sp222222222222222222°2°222222°2°?2°2°2°2°2°?

// must embed initial cell population number in tissue
// initial living cells : 100 (dec)

// 001100100 (binary) : 001001100 (binary-reversed)
#label tissue %$00010011000001000

#label tissuet $b?22222222°2?22?212?2°?

#label cellt $b?222222222222022°?

#label tic normaltissuet $b?222222222221000
#label tic surgerytissuet $0?27222222222221100
#label tic maysurgerytissuet %b?2?2?222?2222?221200
#label tic chemotissuet %b2?22222?2222221010
#label tic maychemotissuet %b2?222222222221020
#label tic anytissuet %b?2222222222212°20
#label toc normaltissuet $b?7222222222221001
#label toc surgerytissuet $p27222222222221101
#label toc maysurgerytissuet %b?2?2?222?2222?221201
#label toc chemotissuet $b?2?2222222222721011
#label toc_maychemotissuet $b?2222222222221071
#label toc_anytissuet $b??222?22222722°21727?1

#label tic_livingcellt %b?2?22?222?2222220100
// initial chromosome values are((1,1),(1,1)):100100100100
#label tic_livingcell %b1001001001000100
#label tic_parentcellt %b2?22?222?2222220010
#label tic_parentcell %b1001001001000010

#label deadcellt %b?2?22222222220110
#label deadcell %01001001001000110
#label nutrientcellt %b?222222222220001
#label nutrientcell %01001001001000001

#label toc_livingcellt %b?2?22?222?2222?20101
#label toc livingcell %$b1001001001000101
#label toc parentcellt %$b??2?2?222?2222220011
#label toc parentcell %$b1001001001000011
#label dividedcellt $b??222222222220111
#label dividedcell $b1001001001000111

// and the program begins here:
main (%d0 %d0 %d0)
organic_tissue (%d100 %d0 tissue )

[0:99]tissueCells ( zero %d0 tic_livingcell
[0:299]environmentCells ( zero %d0 nutrientcell )

// account for extra living tissue cells in the end
[0:79]spareEnvironmentCells ( zero %d0 nutrientcell

// tic phase

[0:2]tic_fertilizer ([dontcare zero2 tic_livingcellt] FERTILIZE (0,0)
[dontcare zero2 tic _maychemotissuet])

tic_divider ([dontcare zero2 tic_parentcellt] DIVIDECELL(0,0)
[dontcare zero2 nutrientcellt])

tic_absorb ([dontcare zero2 dividedcellt] ABSORBCELL (0,0)

[dontcare zero2 tic _maysurgerytissuet])

[0:2]tic_death ([dontcare zero2 tic livingcellt] KILLCELL(0,0)
[dontcare zero2 tic _maychemotissuet])
tic discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 tic_ anytissuet])

tic_surgery ([dontcare zero2 tic_livingcellt] KILLCELL(O0,0)
[dontcare zero2 tic surgerytissuet])
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// toc phase

[0:2]toc_fertilizer ([dontcare zero2 toc_livingcellt] FERTILIZE(0,0)
[dontcare zero2 toc_maychemotissuet])

toc_divider ([dontcare zero2 toc_parentcellt] DIVIDECELL(0,0) [dontcare zero2
nutrientcellt])

toc_absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0)

[dontcare zero2 toc_maysurgerytissuet])

[0:2]toc_death ([dontcare zero2 toc livingcellt] KILLCELL (0, 0)
[dontcare zero2 toc_maychemotissuet])
toc_discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 toc_anytissuet]

toc_surgery ([dontcare zero2 toc_livingcellt] KILLCELL(O0,0)
[dontcare zero2 toc_surgerytissuet])

// set up the scopes
#scope main
{

organic_tissue

}

#scope organic_tissue

{
organic_tissue
[0:99]tissueCells
[0:299]environmentCells
[0:79]spareEnvironmentCells

[0:2]tic_fertilizer
tic divider
tic_absorb
[0:2]tic_death

tic _discard
tic_surgery

[0:2]toc_fertilizer
toc_divider
toc_absorb
[0:2]toc_death
toc_discard
toc_surgery

}

#systemic end

Listing G.2. Timeless Cancer Model SC Source Code

#systemic start

#function KILLCELL %$010001000010000000000000000000000
#function DIVIDECELL $p01001000010000000000000000000000
#function ABSORBCELL $p11001000010000000000000000000000
#function DISCARDCELL %$000101000010000000000000000000000
#function FERTILIZE $p10101000010000000000000000000000

// define some useful labels

#label zero $p0000000000000000
#label dontcare §b?2222222222?222°2°
#label zero2 %p00000000000000000000000000000000

#label dontcare2 3$b?222222222°222222222222222222222°?

// must embed initial cell population number in tissue
// initial living cells : 100 (dec)

// 001100100 (binary) : 001001100 (binary-reversed)
#label tissue $b0010011000001000

#label tissuet $b22222222222°21°2°2°?

#label cellt $b222222222222072°2°?

#label normaltissuet $b??22222222222100?
#label surgerytissuet $p?2222222?27222110°?
#label maysurgerytissuet %$b??2?2?2222222?22120?
#label chemotissuet $b??22222222222101°?
#label maychemotissuet $b222222222222102°?

#label anytissuet Sb22222222°222°217272°?
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#label livingcellt %b2?222222222220100
// initial chromosome values are((1,1),(1,1)):100100100100
#label livingcell %$01001001001000100
#label parentcellt %b2222222222220010
#label parentcell %$01001001001000010
#label deadcellt %b?222222222220110
#label deadcell %$01001001001000110
#label nutrientcellt %b?2722222222220001
#label nutrientcell %$01001001001000001
#label dividedcellt %b??22222222722720111
#label dividedcell %$01001001001000111

// and the program begins here:
main (%d0 %d0 %dO0)
organic_tissue (%d100 %d0 tissue )

[0:99]tissueCells ( zero %d0 livingcell )
[0:299]environmentCells ( zero %d0 nutrientcell )

// account for extra living tissue cells in the end
[0:79] spareEnvironmentCells ( zero %$d0 nutrientcell

fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2 maychemotissuet])
divider ([dontcare zero2 parentcellt] DIVIDECELL(O0,0) [dontcare zero2 nutrientcellt])
absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 maysurgerytissuet])

death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 maychemotissuet]
[0:1]discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet])

surgery ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 surgerytissuet])

// set up the scopes
#scope main
{

organic_tissue

}

#scope organic_tissue

{
organic_tissue
[0:99]tissueCells
[0:299]environmentCells
[0:79] spareEnvironmentCells

fertilizer

divider
absorb

death
[0:1]discard
surgery

}

#systemic end

Listing G.3. Approximate-time Cancer Model SC Source Code

#systemic start

// define the functions

#function KILLCELL %$010001000010000000000000000000000
#function DIVIDECELL $p01001000010000000000000000000000

#function ABSORBCELL %$011001000010000000000000000000000
#function DISCARDCELL %$000101000010000000000000000000000
#function FERTILIZE %$010101000010000000000000000000000

// define some useful labels

#label zero %$b0000000000000000
#label dontcare %b2?222222222°222°2°2°?
#label zero2 %b00000000000000000000000000000000

#label dontcare2 Fb2222222222°22222°202°22°2°2°2°2°2°2°2°2°2°2°2°2°

// must embed initial cell population number in tissue

// initial living cells : 100(dec) : 001100100 (binary) : 001001100 (binary-reversed)
#label tissue %$00010011000001000

#label tissuet $b2222222222221°2°2°7

#label cellt $b22222222222202°27

#label normaltissuet $pb2222222222221007
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#label surgerytissuet Sb?222222222221107
#label maysurgerytissuet %b?2?222?222?222?22120?
#label chemotissuet $b?2?222?22222222101°?
#label maychemotissuet Sb?2222222222210°?°7
#label anytissuet $pb?2?222222222221°22°?
#label livingcellt $b?2?222222222220100
// initial chromosome values are((1,1),(1,1)):100100100100
#label livingcell $b1001001001000100
#label parentcellt $b?2?222222222220010
#label parentcell $01001001001000010
#label deadcellt %b?2?22222222220110
#label deadcell %01001001001000110
#label nutrientcellt %b?222222222220001
#label nutrientcell %01001001001000001
#label dividedcellt %b?2?22222222220111
#label dividedcell %01001001001000111

// and the program begins here:
main (%d0 %$d0 %d0)
organic_tissue (%d100 %d0 tissue )

[0:99]tissueCells ( zero %d0 livingcell
[0:299]environmentCells ( zero %d0 nutrientcell )

// account for extra living tissue cells in the end
[0:79]spareEnvironmentCells ( zero %$d0 nutrientcell

[0:2]fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2
maychemotissuet])

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt])
absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2
maysurgerytissuet])

[0:2]death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 maychemotissuet])
discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet])

surgery ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 surgerytissuet])

// set up the scopes
#scope main
{

organic_tissue

}

#scope organic_tissue

{
organic_tissue
[0:99]tissueCells
[0:299]environmentCells
[0:79]spareEnvironmentCells

[0:2]fertilizer
divider

absorb
[0:2]death
discard

surgery

}

#systemic end

Listing G.4. Optimized Approximate-time Cancer Model SC Source Code

#systemic start

// define the functions

#function KILLCELL %010001000010000000000000000000000
#function DIVIDECELL $p01001000010000000000000000000000
#function ABSORBCELL $p11001000010000000000000000000000
#function DISCARDCELL $p00101000010000000000000000000000
#function FERTILIZE $p10101000010000000000000000000000

// define some useful labels

#label zero $p0000000000000000
#label dontcare $b2272222222222222°7
#label zero2 $b00000000000000000000000000000000

#label dontcare2 SD2222222202722222222°22222°2°2°2°2°2°2°2°2°2°

// must embed initial cell population number in tissue
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// initial living cells : 100 (dec)
// 001100100 (binary) : 001001100 (binary-reversed)

#label tissue $b0010011000001000

#label tissuet Sb??2222222°222212°2°

#label cellt Sb??2222222?222202°2°

#label normaltissuet $b?22222222222100°7
#label surgerytissuet $b??2222222?2222110°7
#label maysurgerytissuet $b??2222222?2222120°7
#label chemotissuet $b??22222222222101°?
#label noendmaychemotissuet %$b??22?222?2222221020
#label noendanytissuet $b?2222222222212720
#label anytissuet $b?2222222222°217272°?
#label livingcellt $b2?222222222220100

// initial chromosome values are((1,1), (1,1)):100100100100
#label livingcell %$b1001001001000100
#label parentcellt $b?2?222222222220010
#label parentcell %$p1001001001000010
#label deadcellt $b2?222222222220110
#label deadcell %$01001001001000110
#label nutrientcellt $b2222222222220001
#label nutrientcell %$01001001001000001
#label dividedcellt $b2?22222222?722720111
#label dividedcell $p1001001001000111

// and the program begins here:
main (%d0 %d0 %d0)
organic_tissue (%d100 %d0 tissue )

[0:99]tissueCells ( zero %d0 livingcell )
[0:299]environmentCells ( zero %d0 nutrientcell )

// account for extra living tissue cells in the end
[0:79] spareEnvironmentCells ( zero %d0 nutrientcell

fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2
noendmaychemotissuet])

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt])
absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 maysurgerytissuet])

death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 noendanytissuet])
discard ([dontcare zero2 deadcellt] DISCARDCELL (0,0) [dontcare zero2 anytissuet])

// set up the scopes
#scope main
{

organic_tissue

}

#scope organic tissue

{
organic_tissue
[0:99]tissueCells
[0:299]environmentCells
[0:79] spareEnvironmentCells

fertilizer
death
}

#systemic end
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Appendix H. HAoS Binary-To-ASCII Conversion Resulting Text
File Format

Figure H.1. Annotated HAoS ASCII program example, corresponding to the SC program of
section 3.7. The exact representation of the binary file is written in ASCII, separated in
bytes (hex form)

0x03, 0x00, ¢————————— Number of Functions
0x0a, 0x00, €———————— Number of Systems

0x00, 0x00,
0x24, 0x00,
0x01, 0x00,
0x04, 0x00,
0x04, 0x00, Scopetable (1 bit/entry)
0x01, 0x00,
0x20, 0x00,
0x20, 0x00,
0x01, 0x00,
0x01, 0x00,

0xFF, OxFF, 0x00, 0x00,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, 0x02, 0x00, 0x40, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0xOF, OxOF

O0xFF, OxFF, 0x01, 0x00,

0x00
0x01, 0x00, 0x0A, 0x00

8300, Data System

oxos, 0x00, 0x03, 0xo0 Y » 0x02, 0x00, 0x03, 0x00,
R URTPT L : N\ J J
0x00 Y Yo

0xFF, OxFF, 0x02, 0x00, Schemata 1 Schemata 2

0x01, 0x00, 0x10, 0x00,

0x02, 0x00, 0x04, 0x00,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO0F, OxOF

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, 0x02, 0x02, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxXFF;=F
%, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0xOF, OxOF :

Ternary Part Binary Part

l l
Context | e Y
System T Interacting System 1 '
’ Schemata 1 Transformation Function Schemata 2
A A A
r N\ N N\

Interacting System 1 «—=— 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF,
0x02, 0x02, 0x00, 0x00,— Transformation Function

Interacting System 2 «—— 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF,
: N J J J

M Interacting System 2 M
nteracting System
) Schemata 1 Transformation Function Schemata 2
Y e
Schemata 1 Transformation Function Schemata 2 ’
A A A
r N N N\

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF,—— Interacting System 1

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0xOF, OxOF :i;'blnteractingSystemZ
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