UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.

Foley, AR; Menezes, MP; Pandraud, A; Gonzalez, MA; Al-Odaib, A; Abrams, AJ; Sugano, K; ... Houlden, H; + view all (2013) Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain , 137 (1) , Article awt315. 10.1093/brain/awt315. Green open access

[img]
Preview
PDF
Brain-2014-Foley-44-56.pdf

Download (1MB)
[img] MS Word (Supplementary Data )
Supplementary_Material.docx

Download (1MB)

Abstract

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.

Type: Article
Title: Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/brain/awt315
Publisher version: http://dx.doi.org/10.1093/brain/awt315
Language: English
Additional information: © The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: Brown-Vialetto-Van Laere syndrome, RFVT2, SLC52A2, Childhood neuronopathy, Riboflavin therapy
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Pop Health Sciences > Inst for Women's Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Pop Health Sciences > Inst for Women's Health > Maternal and Fetal Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Pop Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Pop Health Sciences > UCL GOS Institute of Child Health > ICH Developmental Neurosciences Prog
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Pop Health Sciences > UCL GOS Institute of Child Health > ICH Genetics and Genomic Medicine Prog
URI: http://discovery.ucl.ac.uk/id/eprint/1415845
Downloads since deposit
507Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item