UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Analysis of Dictyostelium discoideum Inositol Pyrophosphate Metabolism by Gel Electrophoresis.

Pisani, F; Livermore, T; Rose, G; Chubb, JR; Gaspari, M; Saiardi, A; (2014) Analysis of Dictyostelium discoideum Inositol Pyrophosphate Metabolism by Gel Electrophoresis. PLoS One , 9 (1) , Article e85533. 10.1371/journal.pone.0085533. Green open access

[thumbnail of journal.pone.0085533.pdf]
Preview
PDF
journal.pone.0085533.pdf

Download (4MB)

Abstract

The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP6 or Phytic acid) and its derivative inositol pyrophosphates, IP7 and IP8. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP9 in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP5) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP8 was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba revealed the absence of developmentally-induced synthesis of inositol pyrophosphates, suggesting that the alternative class of enzyme responsible for pyrophosphate synthesis, PP-IP5K, doesn't' play a major role in the IP8 developmental increase.

Type: Article
Title: Analysis of Dictyostelium discoideum Inositol Pyrophosphate Metabolism by Gel Electrophoresis.
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0085533
Publisher version: http://dx.doi.org/10.1371/journal.pone.0085533
Language: English
Additional information: © 2014 Pisani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PMCID: PMC3887064
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Lab for Molecular Cell Bio MRC-UCL
URI: https://discovery.ucl.ac.uk/id/eprint/1413274
Downloads since deposit
182Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item