UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

A mystery solved? Photoelectron spectroscopic and quantum chemical studies of the ion states of CeCp3+

Coates, R; Coreno, M; DeSimone, M; Green, JC; Kaltsoyannis, N; Kerridge, A; ... Sella, A; + view all (2009) A mystery solved? Photoelectron spectroscopic and quantum chemical studies of the ion states of CeCp3+. DALTON T (30) 5943 - 5953. 10.1039/b902263e.

Full text not available from this repository.

Abstract

The electronic states of CeCp3+ have been studied experimentally by variable photon energy photoelectron spectroscopy, and computationally using multi-configurational ab initio methods. Relative partial photoionisation cross section and branching ratio data are presented to confirm our previous conclusion that bands A and D in the valence photoelectron spectrum, despite their 3.2 eV separation, are produced by ionization of the single 4f electron of CeCp3 [M. Coreno, M. de Simone, J. C. Green, N. Kaltsoyannis, N. Narband and A. Sella, Chem. Phys. Lett., 432, 2006, 17]. The origin of this effect is probed using the CASSCF/CASPT2 approach. While configurations based on the canonical CASSCF orbitals are found to be an unreliable description of the ground and excited states of CeCp3+, the state-specific natural orbitals and their occupations yield greater insight, allowing us to characterize ion states in terms of the presence or otherwise of a Ce 4f-localised electron. Neither the CeCp3+ ground state (assigned to band A), and two excited states ((E) over bar (1)A' and (1)A '' , associated with band D), possess such a metal-based electron, as expected of f ionization. The E (1)A' and (1)A '' states differ from the ground state in having a significant Ce 5d population, arising from Cp -> Ce charge transfer, which accompanies f ionization, and which is responsible for the energetic separation of bands A and D in the valence photoelectron spectrum.

Type:Article
Title:A mystery solved? Photoelectron spectroscopic and quantum chemical studies of the ion states of CeCp3+
DOI:10.1039/b902263e
Keywords:ELECTRONIC-STRUCTURE, PHOTOEMISSION SPECTRA, CERIUM COMPOUNDS, CEROCENE, CE, LANTHANIDE, CE(ETA-C5H5)(3), COMPLEXES, CHEMISTRY, SUBSHELL
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record