UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Auroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations

Cowley, SWH; Arridge, CS; Bunce, EJ; Clarke, JT; Coates, AJ; Dougherty, MK; ... Talboys, DL; + view all (2008) Auroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations. Annales Geophysicae , 26 (9) 2613 - 2630. 10.5194/angeo-26-2613-2008. Green and gold open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4Mb

Abstract

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space Telescope (HST) in January 2007. These data have shown that the southern auroral oval near noon maps to the dayside cusp boundary between open and closed field lines, associated with a major layer of upward-directed field-aligned current (Bunce et al., 2008). The results thus support earlier theoretical discussion and quantitative modelling of magnetosphere-ionosphere coupling at Saturn (Cowley et al., 2004), that suggests the oval is produced by electron acceleration in the field-aligned current layer required by rotational flow shear between strongly sub-corotating flow on open field lines and near-corotating flow on closed field lines. Here we quantitatively compare these modelling results (the 'CBO' model) with the Cassini-HST data set. The comparison shows good qualitative agreement between model and data, the principal difference being that the model currents are too small by factors of about five, as determined from the magnetic perturbations observed by Cassini. This is suggested to be principally indicative of a more highly conducting summer southern ionosphere than was assumed in the CBO model. A revised model is therefore proposed in which the height-integrated ionospheric Pedersen conductivity is increased by a factor of four from 1 to 4 mho, together with more minor adjustments to the co-latitude of the boundary, the flow shear across it, the width of the current layer, and the properties of the source electrons. It is shown that the revised model agrees well with the combined Cassini-HST data, requiring downward acceleration of outer magnetosphere electrons through a similar to 10 kV potential in the current layer at the open-closed field line boundary to produce an auroral oval of similar to 1 degrees width with UV emission intensities of a few tens of kR.

Type:Article
Title:Auroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations
Open access status:An open access publication. A version is also available from UCL Discovery.
DOI:10.5194/angeo-26-2613-2008
Publisher version:htttp://dx.doi.org/10.5194/angeo-26-2613-2008
Language:English
Additional information:This work is distributed under the Creative Commons Attribution 3.0 License. Anyone (the author, his/her institution/company, the publisher, as well as the public) is free to copy, distribute, transmit, and adapt the work as long as the original author is given credit.
Keywords:Magnetospheric physics, auroral phenomena, magnetosphere-ionosphere interactions, planetary magnetospheres, polar ionospheric flows, solar-wind, oval, spectrometer, corotation, density, region
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Space and Climate Physics

View download statistics for this item

Archive Staff Only: edit this record