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ABSTRACT

Ischaemic preconditioning (IPC) and insulin protect the heart against lethal ischaemia-reperfusion

(IR) by activating cardioprotective kinases such as PI3K-AKT. This thesis explores the effect of

endothelial dysfunction, as seen in diabetes - a major risk factor for ischaemic heart disease, on IPC

using the ESMIRO mice. These mice have dysfunctional vascular insulin receptors as well as

endothelial dysfunction similar to that present in diabetes. Further, the effect of vascular insulin

resistance on the ability of insulin to condition the heart against IR injury is investigated. The thesis

also investigates the post-translational modification of a proapoptotic protein, BNIP3, as a possible

mechanism of IPC. BNIP3 appears to a play a central role in mediating cell death in response to IR.

The Langendorff technique of perfusing isolated mouse hearts was used. No change was noted in

the total amount of BNIP3 in C57BL/6J mouse hearts in response to IR or IPC, though IR increased

the measured amount of the carboxy-terminal end of BNIP3, a crucial effector of BNIP3 mediated

cell death. IPC prevents this increase in the carboxy terminal end of BNIP3. BNIP3 phosphorylation

occured in response to both IPC and IR. Thus, IPC may lead to a post-translational modification in

BNIP3 preventing IR mediated increase in the carboxy-terminal of BNIP3. This is independent of

BNIP3 phosphorylation. The IPC protocols used failed to significantly protect the ESMIRO mice and

their wildtype littermates (WT) against IR injury or activate AKT. Furthermore insulin treatment did

not significantly protect the ESMIRO mice and the WT against IR injury though, unexpectedly, AKT

activation was seen in both with insulin. Finally, ESMIRO mice are more resistant than their WT

littermates to an increase in ischaemic period before reperfusion. Hence, insulin transport across the

endothelium appears to be independent of the insulin receptors. Ischemic tolerance noted in

ESMIRO mice has also been reported in diabetes, implying that a possible mechanism underlying this

ischemic tolerance may be vascular dysfunction which is common to both the ESMIRO mice and the

diabetic phenotype.
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BNIP3 levels in the various groups studied.

Table 6. Phenotypical characteristics of WT littermates and ESMIRO mice 107
used to compare the difference in the efficacy of ischaemic
preconditioning in the ESMIRO mice with their wildtype littermates

Table 7. Phenotype characteristics of WT littermate mice used to assess 111
cardioprotection against IR injury using various insulin concentrations
given prior to IR.

Table 8. Phenotypic characteristics of ESMIRO mice used to compare 113
cardioprotection against IR injury using 0.3 and 3 mU/mL insulin
concentrations given prior to IR.

Table 9. Phenotypic characteristics of WT littermates and ESMIRO mice 115
used to assess cardioprotection by insulin given at 100mU/mL
prior to ischaemia and throughout reperfusion. Ischaemia time
was increased to 45 min.

Table 10. Phenotype characteristics of WT littermate and ESMIRO mice used 120
for western blot analysis comparing AKT, PRAS40 and BNIP3
phosphorylation in these mice in response to IPC, Insulin
treatment (100 mU/mL)alone and Insulin treatment (100mU/mL)
in the presence of an inhibitor of PI3K (LY294002)
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Abbreviations

Ach Acetyl choline

AKT Alternate for protein kinase B

ANT Adenine nucleotide translocase

AMP Adenosine monophosphate

Apaf-1 Apoptotic protease-activating factor-1

APS Ammonium persulfate

ATP Adenosine triphosphate

Bad Bcl-2-associated death promoter

Bak Bcl-2 homologous antagonist/killer

Bax Bcl-2–associated X protein

BCA Bicinchoninic acid

Bcl 2 B-cell lymphoma 2

BH3 Bcl 2 homology domain 3

BH4 Tetrahydrobiopterin

Bid BH3 interacting-domain death agonist

BSA Bovine serum albumin

BNIP3 Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3

CAD Caspase-activated DNase

cGMP Cyclic guanosine monophosphate

CIP Calf intestinal phosphatase

CK2 Casein kinase 2

CMECs Cardiac microvascular endothelial cells
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CVD Cardiovascular disease

DISC Death-inducing signaling complex

DNA Deoxyribonucleic Acid

E2F-1 E2F transcription factor 1

ECL Enhanced chemiluminescence

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

ERK Extracellular signal-regulated kinases

ESMIRO Endothelium-specific mutant insulin receptor over-expressing

ET-1 Endothelin-1

eNOS Endothelial nitric oxide synthase

GC Guanylyl cyclase

GPCR Gi protein coupled receptors

GSK3-β  Glycogen synthase kinase-3beta

GTPCH Guanosine triphosphate cyclohydrolase

Hif Hypoxia-inducible factor

HR Heart rate

HRE Hypoxia response element

IAPs Inhibitor of apoptotic proteins

ICAD Inhibitor of caspase-activated DNase

IGF Insulin-like growth factor

IPC Ischaemic preconditioning

IR Ischaemia-reperfusion
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JNK c-Jun N-terminal proteing kinase

LV Left ventricular

LVEDP Left ventricular end diastolic pressure

LVPP Left ventricular peak pressure

MAP kinases Mitogen-activated protein kinase

MI Myocardial infarction

mPTPs Mitochondrial permeability transition pores

NO Nitric oxide

NOX NADPH oxidase

NHE-1 Sodium/hydrogen exchanger 1

PAGE Polyacrylamide gel electrophoresis

PCR Polymerase chain reaction

PI3K Phosphoinositide 3-kinase

PKB Protein kinase B

PKC Protein kinase C

PKG Protein kinase G or cGMP-dependent protein kinase

PPCI Primary percutaneous invervention

RISK Reperfusion Injury salvage kinases

ROS Reactive oxygen species

RPP Rate-pressure product

SAFE Survivor activating factor enhancement

SDS Sodium dodecyl sulfate

SAPK Stress activated protein kinase

STAT3 Signal transducer and activator of transcription 3
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TEMED Tetramethylethylenediamine

TG Transgenic

TM Trans-membrane

TNF Tumor necrosis factor

TTC Triphenyltetrazolium chloride

VDAC Voltage dependent anion channel

WHO World Health Organization

WT Wildtype
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Materials and Reagents

Acrylamide (Flowgen Bioscience)

Agarose - electrophoresis grade (Invitrogen)

Akt (pan) Rabbit monoclonal antibody (Cell Signaling cat. no. 4691)

Amersham Hybond ECL Nitrocellulose Membrane (GE Healthcare)

Amersham Hyperfilm ECL (GE healthcare)

Ammonium Persulphte (Sigma-Aldrich)

Anti-alpha Tubulin antibody [DM1A] - Loading Control (ab7291, Abcam UK )

Anti-BNIP3 antibody (ab38621, Abcam UK)

Anti-BNIP3 antibody - Carboxyterminal end (ab65874, Abcam Uk)

Anti-BNIP3 (phospho S95) antibody (ab83940, Abcam UK)

Anti-rabbit fluorescent secondary antibody (Li-Cor)

Anti-mouse fluorescent secondary antibody (Li-Cor)

Atropine (Sigma)

Blotting paper (VWR, Lutterworth, UK)

Bovine Serum Albumin (VWR, Lutterworth, UK)

Bicinchonic Acid (Sigma)

Calcium Chloride Dihydrate (AnalaR Normapur)

Chart 5 software (ADInstruments)

Copper Sulphate solution (Sigma-Aldrich)

D-glucose anhydrous (Fisher, UK)

Digital Eskape fixed camera (Eskape, NY, USA)

Dimethyl Sulfoxide (Aldrich)

Direct PCR lysis reagent ( Bioquote Ltd. )

DNeasy blood and tissue kit (Qiagen)

ECL Western Blotting analysis system (GE Healthcare)

Ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich)
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FLUOstar Omega - Multi-mode microplate reader (BMG Labtech)

Gilson Minipuls-3 pump

Glacial acetic acid (Sigma-Aldrick)

Halt phosphatase inhibitor cocktail with EDTA (Thermoscientific Pierce)

Halt protease inhibitor cocktail with EDTA (Thermoscientific Pierce)

Heparin sodium 25,000 IU/ml (Wockhardt)

Insulin solution 10mg/mL in 25mM HEPES (Sigma-Aldrich)

Ketaset –Ketamine Hydrochloride 100 mg/mL solution (Fort Dodge Animal Health)

Laemmli Lysis Buffer (Sigma)

LY294002 Lyophilized powder (Cell Signalling)

Magnesium Sulphate Heptahydrate (AnalaR Normapur)

Marvel original dried skimmed milk

N,N,N',N'-Tetramethylethylenediamine ( Sigma-Aldrich)

Odyssey 9120 Infrared Imaging System (Li-Cor)

Orbital Incubator (Stuart Scientific)

Phospho-Akt (Ser473) antibody (Cell Signaling cat. no. 9271S)

Phos-PRAS40 (Thr246) antibody (Cell Signaling cat. no. 2997S)

Ponceau solution 1% Ponceau S (w/v) in 5% acetic acid (v/v) (Sigma)

Potassium Chloride (Fisher, UK)

Potassium Dihydrogen orthophosphate (Fisher, UK)

PRAS40 Rabbit antibody (Cell Signaling cat. no. 2610S)

Processing chemicals for autoradiography – GBX Developer/replenisher (Kodak)

Processing chemicals for autoradiography – GBX fixer/replenisher (Kodak)

Precision plus protein dual layer color standards (Bio-Rad)

Quadbridge ML118 (ADInstruments)

Restore Plus Western Blot stripping buffer (Thermo Scientific,USA)

Rompum – Xylazine Hydrochloride 2% w/v (Bayer)



MD (Res) Thesis- Vikram Sharma

24

Saran barrier food wrap

Scientific Imaging Film (Kodak)

Sodium Chloride (AnalaR Normapur)

Sodium dihydrogen orthophosphate 1-hydrate (AnalaR Normapur)

Sodium Dodecyl Sulphate (Sigma)

Sodium hydrogen carbonate (AnalaR Normapur)

Sofsilk coated braided silk sutures 4-0 (Syneture, Tyco /Healthcare/United States Surgical)

STH pump controller ML 175 (ADInstruments)

SYTO® 60 Red Fluorescent Nucleic Acid Stain (Invitrogen)

Taq DNA Polymerase (Qiagen)

Taq PCR core kit (Qiagen)

Thermostat LE 13206

Trans-blot blotting media Nitrocellulose membrane sheets (Bio-Rad)

2,3,5-Triphenyltetrazolium chloride (Sigma)

TRIS base (Sigma-Aldrich)

TRIShydrochloride (Sigma-Aldrich)

Tween20 (Sigma-Aldrich)
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1 INTRODUCTION

1.1 GLOBAL BURDEN OF CARDIOVASCULAR DISEASE

Cardiovascular diseases pose an enormous challenge to healthcare systems around the world.

According to the World Health Organization (WHO), cardiovascular diseases were the leading cause

of death worldwide in the year 2004, responsible for 29% of global deaths1. This represented roughly

17.1 million deaths worlwide of which 7.2 million deaths were secondary to coronary artery

disease1. In United Kingdom (UK) as well, cardiovascular diseases(CVDs) represent the leading cause

of death. CVDs account for almost one-third of all deaths or roughly 191,000 deaths per year2 in UK

with coronary heart disease accounting for as many as 46% of these deaths 2. Cardiovascular

diseases not only cause significant mortality but also lead to considerable morbidity. A WHO

factsheet on cardiovascular diseases (2003) states that at least 20 million people survive heart

attacks and strokes globally each year and need access to expensive clinical care3. This number is

constantly expanding and represents a huge disease burden globally as well as in the UK,

highlighting the importance of ongoing research to address the rising prevelance, mortality and

morbidity from cardiovascular diseases.

1.2 ISCHAEMIC HEART DISEASE AND ACUTE MYOCARDIAL INFARCTION

Ischaemic heart disease accounts for around 42% of all cardiovascular deaths worldwide and is the

single largest cause of death in the developed world as well as one of the leading causes of death in

the developing nations1. Ischemic heart disease is projected to be responsible for 14.2% of all deaths

worldwide by the year 20301. The acute event that leads to a majority of the mortality and

morbidity in patients with coronary artery disease is acute myocardial infarction. Myocardial

infarction (MI) is defined as myocardial cell death secondary to myocardial ischaemia4. Myocardial

ischaemia occurs when the blood supply to the heart is reduced and cannot meet the metabolic
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needs of the myocardium. Myocardial infarction usually occurs as a result an acute obstruction of

the coronary blood flow, most commonly due to the formation of a thrombus in the coronary

circulation. Acute thrombi form in the coronary circulation as a result of rupture of pre-existing

coronary atherosclerotic plaques and lead to acute myocardial ischaemia and infarction5;6 (Fig. 1).

Currently early reperfusion of the ischaemic myocardium via primary percutaneous intervention

(PPCI), thrombolysis or urgent coronary artery bypass grafting is the mainstay of treatment for lethal

myocardial ischaemia and evolving acute myocardial infarction7;8 . Early reperfusion is essential to

overcome the deleterious effects of ischaemia and hence reduce the extent of myocardial infarction.

However the beneficial effects of reperfusion are limited by pathological processes that are

triggered by reperfusion itself. These pathological mechanisms lead to injury to the heart in a

number of forms such as myocyte cell death (also called lethal reperfusion injury) , vascular injury,

myocardial stunning and reperfusion arrhythmias9-11. These are collectively referred to as

“reperfusion Injury”. The development of thrombolysis and primary percutaneous coronary

intervention (PPCI) has helped to significantly reduce the extent of myocardial infarction occurring as

a result of lethal ischaemia as well as the mortality and morbidity associated with it . However,

reducing reperfusion injury remains a challenge which can help further improve the outcomes after

myocardial infarction.
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Fig 1. Disruption of a “vulnerable” atherosclerotic plaque leads to acute thrombus formation and is
the most common cause of an Acute Coronary Syndrome and Acute Myocardial Infarction . The
pathophysiology of acute coronary syndromes Heart. 2000 March;83(3):361-3666

1.3 PATHOLOGICAL CHANGES IN ISCHAEMIA

Ischaemia is associated with pathological changes in the myocardium that lead to myocardial injury

and cell death. Ischaemic injury can be reversible or irreversible based on the severity and duration

of ischaemia which determines whether the ischaemic myocytes can regain a viable functional state

after reperfusion or not12-14. Ischaemia initially causes contractile dysfunction in the ischaemic

myocardium which is reversible. This is followed by the onset of irreversible injury to the

myocytes12;15. Ischaemia is associated with depletion of creatinine phosphate12 and adenosine

triphosphate (ATP) reserves in the myocytes due to the inhibition of oxidative phosphorylation16.

While mild ischaemia leads to cessation of aerobic respiratory metabolism, ATP generation is still

maintained via anaerobic glycolysis though at a lower level as compared with oxidative

phosphorylation12. Anaerobic glycolysis in the presence of persistent ischaemia leads to the

accumulation of lactic acid and the development of severe acidosis in the ischaemic tissue. This
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ultimately leads to the failure of anaerobic glycolysis as well because of the inhibition of the

enzymes involved in anaerobic glycolysis as a result of the rise in lactic acid levels and fall in pH15.

The failure of both aerobic and anaerobic metabolism in persistent ischaemia leads to a profound

reduction in ATP levels and irreversible cellular injury due to the termination of a number of energy

dependent cellular homeostatic functions such as the maintenance of various ion concentrations by

ATP-dependant ion channels14.

The accumulation of toxic products such as lactic acid and protons as well as the fall in intracellular

pH during ischaemia15;17 also increases intracellular Na+ levels through the activation of Na+-H+

exchanger isoform 1 (NHE-1)which attempts to restore normal pH18;19 by pumping out protons from

the cell in exchange for Na+ uptake. Sarcolemmal Na+-K+ ATPase activity is impaired in ischaemia 20;21,

further contributing to Na+ overload in the ischaemic myocytes. Na+ entry into the cell during

hypoxia is also mediated via voltage gated Na+ channels 22. Extrusion of excess Na+ from the cell then

takes place in exchange for Ca++ entry via the Na+-Ca++ exchanger18;19 working in a reverse mode

leading to high Ca++ levels within the cell. Na+-Ca++ exchanger normally extrudes Ca++ from the cell in

exchange for Na+ utilizing the high gradient of extracellular to intracellular Na+ 22. This exchanger acts

in reverse in conditions of high intracellular Na+ and leads to Ca++ overload in the cell. This exchanger

is responsible for Ca++ influx into the cell both in ischaemia and reperfusion22. Ca++ overload has

several deleterious effects on the cell. The combination of high intracellular calcium and low ATP

levels leads to the development of ischaemic myocardial contracture that further impedes blood

flow to the ischaemic area14. Also, excess cytosolic Ca++ is taken up by the mitochondria. This leads to

the increased use of ATP by the mitochondria to pump out H+ ions in order to neutralize the

excessive positive charge in the mitochondria due to the high Ca++ load, accelerating ATP depletion14.

Ca++ also activates phospholipases and proteases that cause membrane damage to the sarcolemma

in addition to causing disruption of the cytoskeleton22;23. In a study done by Miyata et al , a critical

level of > 250 nM free cytoplasmic or mitochondrial Ca++ level during hypoxia predicted irreversible

myocyte injury 22;24. Ischaemia itself also activates phospholipase A2 leading to the formation of
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lysophosphoglyseride that causes sarcolemmal membrane dysfunction and arrhythmias14;25.

Reactive oxygen species are produced during ischaemia that also cause significant membrane

damage while further inhibiting glycolysis14;26;27. Sarcolemmal membrane damage is followed by the

release of intracellular content into the interstitial space which triggers inflammation in the

infarction area through activation of the complement cascade and facilitates the migration of

activated neutrophils into the infarct tissue28. These neutrophils cause further injury to ischaemic

myocytes through production of reactive oxygen species14. As a result of these pathological changes,

the irreversibly injured myocytes undergo necrosis, a form of cell death characterized by early

membrane damage and cellular swelling. Necrotic cell death is a characteristic mode of cell death

seen in ischaemia, though another mode of death called apoptosis may also be seen in this setting

and is further described in a later part of the thesis.

1.4 PATHOLOGICAL CHANGES IN REPERFUSION

Early reperfusion is essential to restore normal cell metabolism and ATP levels to prevent

irreversible cellular injury. However, as early as 1977, the concept of “reperfusion injury” emerged29,

whereby reperfusion itself was said to trigger pathological changes that could contribute to as much

as 50% of the final infarct size after lethal ischaemia30. Since then a significant amount of research

has taken place in this area that has helped to better define the exact pathological mechanisms that

cause reperfusion injury. Two degrees of myocardial cellular injury can occur following reperfusion

of ischemic tissue. Reperfusion injury after ischemia initially leads to “stunning” of the myocardium

which is reversible contractile dysfunction of the myocytes. This is followed by myocyte cell death

which is also referred to as lethal reperfusion injury31. In addition to “lethal reperfusion injury”,

reperfusion injury can also occur in the form of reperfusion arrhythmias32 and endothelial injury33.

One of the characteristic pathological features of reperfusion injury is the generation of free oxygen

radicals at the onset of reperfusion26;27 (Fig. 2). This generation of superoxide derived free radicals at

reperfusion was clearly demonstrated by Zweier et al. , who also showed that the production of free
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radicals was directly linked with the contractile dysfunction seen after ischaemia-reperfusion34.

Normally free radicals are neutralized by a number of enzymes present in the cell such as superoxide

dismutase and catalase as well as antioxidant molecules 26.However these mechanisms are

overwhelmed by the excessive free radical production associated with reperfusion26.

One of the pathological effects of free radical generation at reperfusion is dysfunctional Ca++

handling in the cell (Fig. 2). Okabe et al. showed that free radicals increase passive Ca++ permeability

across the sarcoplasmic reticulum membrane35. Free oxygen radicals, in the presence of acidosis,

also inhibit the activity of Ca++-ATPase located on the sarcoplasmic reticulum36. Hence free oxygen

radicals generated at the time of reperfusion lead to calcium overload in the myocytes22. In addition,

reperfusion is associated with an influx of Ca++ through reverse mode of Na+- Ca++ exchanger. As a

result of these processes, there is a massive increase in cytosolic and mitochondrial Ca++ at

reperfusion. This Ca++ overload in the presence of other conditions that exist at reperfusion such as

oxidative stress, high phosphate level and low adenosine nucleotide concentration leads to cell

death via opening of the mitochondrial permeability transitions pore (mPTP)37 (Fig. 2).

The mPTP is a non-specific ion channel located on the inner mitochondrial membrane37. Under

normal conditions the mitochondrial inner membrane is impermeable to solutes. However, IR injury

leads to the opening of this pore located on the mitochondrial inner membrane which allows the

entry of all molecules <1.5 kDa in size37. Movement of solutes into the mitochondria leads to their

osmotic swelling stretching the inner and outer mitochondrial membranes. Ultimately this

mitochondrial swelling culminates in the rupture of the outer mitochondrial membrane and release

of substances such as cytochrome C from the mitochondrial inter-membrane space that act as a

trigger for apoptotic cell death37. The opening of the mPTP also makes the inner mitochondrial

membrane permeable to protons. This leads to the uncoupling of oxidative phosphorylation and is

associated with reverse activity of proton-translocating F0F1 ATPase, which actively consumes

cellular ATP. Unless the mPTP opening is reversed quickly, there is depletion of ATP in the myocytes
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ultimately resulting in cell death. Studies done by Halestrap and colleagues have confirmed that

mPTP opening is an event that takes place during reperfusion and is a crucial mediator of

reperfusion injury37;38.

Surprisingly, rapid restoration of a normal pH with reperfusion itself can be detrimental to the cell

and this is termed as the “pH paradox” 30. Interventions that artificially maintain an acidic pH during

early reperfusion are protective against reperfusion injury and decrease the open probability of the

mPTP30;37;39;40. Rapid restoration of pH to a physiological level increases the likelihood of mPTP

opening and thereby accelerates cell death of susceptible myocytes in reperfusion37.

Apart from injury to the myocytes, free radicals also contribute to the development of reperfusion

arrhythmias41;42 and endothelial dysfunction through alterations to the glycocalyx after IR43. In

addition, neutrophils move into the ischaemic tissue during reperfusion (Fig. 2) and cause further

injury to the ischaemic myocardium through generation of free oxygen radicals and cytotoxic

substances44;45.

The sum result of all of these processes is the death of cardiomyocytes irreversibly damaged due to

ischaemia-reperfusion injury. It is important to note that restoration of normal oxidative

phosphorylation via reperfusion is essential to prevent further irreversible injury to the ischaemic

myocytes and limit infarct size after lethal ischaemia, but this beneficial effect is partially offset by

injury to the myocytes secondary to reperfusion itself.
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Fig 2. Mechanisms underlying ischaemia-reperfusion injury : IR injury in the heart causes a
number of pathological changes shown above leading to an increase in the cytosolic and
mitochondrial calcium levels along with generation of ROS at reperfusion leading to the
opening of mPTP, a critical event that triggers myocyte death
Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury
pharmacotherapy. Sharma V, Bell RM, Yellon DM. Expert Opin Pharmacother. 2012
Jun;13(8):1153-7546

1.5 The mPTP as the final effector of reperfusion injury

The structure of the mPTP is still under scrutiny, but research so far had identified Cyclophilin-D to

be key regulatory component of the mPTP37;47;48. Ca++ binding to the mPTP, in the presence of other

favourable conditions present at reperfusion, triggers a conformational change in the proteins of the

mPTP that leads to its opening. H+ ions can compete with Ca++ for the Ca++ binding sites on the mPTP

and hence low pH can inhibit mPTP opening37;47. This is responsible for the “pH paradox” described
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earlier, where restoration of a normal pH at reperfusion actually favours injury through opening of

the mPTP. Opening of the mPTP leads to uncoupling of oxidative phosphorylation and active

hydrolysis of ATP. If the mPTP opening is very transient and oxidative phosphorylation is restored

prior to the release of Cytochrome C, the myocyte is able to recover completely37 . However if the

mPTP opening is reversed after the release of cytochrome C and other apoptotic triggers, the cell

preferentially undergoes apotosis, an ATP-dependent mode of cell death37. If the open state of the

mPTP is sustained, myocytes undergo a necrotic cell death, which is a mode of cell death that does

not require ATP37. Thus the mPTP is a crucial regulator of cell death in reperfusion determining the

survival of myocytes as well as the mode of death of myocytes irreversibly injured due to IR injury.

1.6 Reperfusion injury and the endothelium

The endothelium is an important homeostatic organ and plays a significant role in the

pathophysiology of ischaemia-reperfusion injury. Endothelium produces vascular relaxing factors

such as nitric oxide (NO) and vaso-constrictive factors like endothelin-1 (ET-1)49 which regulate

vascular tone. NO plays an important role in the preservation of vascular function by inhibiting

vasoconstriction (Fig. 3) as well as reducing platelet aggregation and neutrophil adhesion49. IR causes

endothelial injury through a number of pathological processes and this constitutes an important

component of reperfusion injury. This endothelial injury is characterised by endothelial dysfunction,

which refers to a reduced endothelial vasodilatation response to acetyl choline and hyperaemia49.

Formation of ROS is an important mediator of endothelial dysfunction associated with IR. Most of

the ROS produced in the endothelium is generated by NADPH oxidases (NOX) and uncoupling of

endothelial nitric oxide synthase (eNOS)49. eNOS is an endothelial enzyme that produces NO under

basal conditions. Tetrahydrobiopterin (BH4) is an important cofactor required for optimal eNOS

function and its deficiency leads to decreased NO production and increased superoxide production

by eNOS49. This situation, termed “eNOS uncoupling” (Fig. 3), can occur in conditions of oxidative

stress such as seen with IR which oxidises BH4 49. Superoxide radicals interact with NO available in
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the tissue producing peroxynitrite (ONOO-) which oxidises more BH4 further increasing eNOS

uncoupling49. NO deficiency due to eNOS uncoupling in turn leads to endothelial dysfunction

triggering vascular constriction, platelet aggregation and neutrophil adhesion.

A study by Beresewicz et al. using isolated guinea pig hearts showed that endothelial injury and

dysfunction was associated with a disruption of the endothelium glycocalyx43. The endothelial

glycocalyx is a network of membrane-bound proteoglycans and glycoproteins which covers the

vascular luminal surface and plays an important role in vascular signalling as well as the interaction

between blood cells and endothelium50. In the study by Beresewicz et al., ischaemia only led to a

slightly flocculent appearance of the glycocalyx, whereas reperfusion led to complete disruption of

the glycocalyx. Further, in their study, they showed that the glycocalyx disruption at reperfusion was

due to free radical injury and could be inhibited by a free radical scavenger43.

Duda et al. showed that endothelial injury post IR is additionally mediated via ET-1, which leads to

free radical production resulting in endothelial dysfunction, increased P-selectin expression and

neutrophil adhesion51. Other studies have shown that IR leads to endothelial dysfunction by

mechanisms leading to an increase in endothelial adhesion molecules and consequently increased

binding of polymorphonuclear cells to the endothelium52;53. Additionally, there is increased vascular

platelet binding and platelet aggregation which along with endothelial leukocyte adhesion leads to

microvascular plugging. This is responsible for the “no reflow phenomenon” seen after coronary

reperfusion where the reopening of a coronary blood vessel in an evolving myocardial infarction is

paradoxically followed by reduced flow in the reperfused coronary artery. IR also causes increased

endothelial neutrophil transmigration into the reperfused tissue and these activated neutrophils

then cause tissue injury by releasing reactive oxygen species, elastases and proteases in the

reperfused myocardium54.
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Fig 3. eNOS uncoupling and reduced NO lead to endothelial dysfunction in conditions of oxidative
stress such as in ischaemia-reperfusion

1.7 MODES OF CELL DEATH IN ISCHAEMIA-REPERFUSION

A number of pathological changes, described earlier, occur during ischaemia-reperfusion leading to

cell death. Three distinct modes of cell death have been described and each of these plays a role in

cell death seen in response to ischaemia and reperfusion. These modes are: necrosis, apoptosis and

autophagy55.

1.7.1 Necrosis

Necrosis is considered to be a non-programmed form of cell death that occurs in ischaemic

conditions when ATP is exhausted16;56. Necrosis is characterized by mitochondrial and cytoplasmic
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swelling which leads to the disruption of cell membrane and leakage of cellular contents57. Leakage

of cellular contents leads eventually to the activation of inflammation and migration of inflammatory

cells into the ischaemic tissue. Inflammation is a characteristic feature of necrosis which is absent in

apoptotic cell death.

1.7.2 Apoptosis

As compared with necrosis, apoptosis is an ATP-dependent form of cell death58 characterised by cell

shrinkage, condensation of chromatin and nuclear fragmentation without swelling of the

mitochondria or other cellular organelles59. As mentioned earlier, apoptosis is associated with no or

minimal inflammatory response. Reperfusion is associated with restoration of ATP content in the

ischaemic tissues and hence it has been suggested that cell death at reperfusion is predominantly

secondary to apoptosis16. Apoptosis plays an important role in normal physiological conditions such

as in embryonic development, homeostasis, host defence etc., in addition to mediating cell death in

pathological states like stroke, myocardial infarction and heart failure 55. Apoptosis is a highly

regulated form of cell death that involves sequential activation of a group of proteases called

caspases (cysteine aspartyl proteases). Caspases can be subdivided into upstream signalling caspases

(caspases 2,8,9 and 12) and downstream effector caspases (caspase 3,6 and 7)55. Apoptosis can be

triggered by two pathways – The death-receptor (extrinsic) pathway and the mitochondrial

(intrinsic) pathway (refer to Fig. 4 for a broad overview)56.
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Fig 4. Overview of apoptotic cell death highlighting the intrinsic and extrinsic pathways. Extrinsic
pathway involves binding of an apoptotis signalling ligand such as FAS[CD95/Apo-1] ligand, TNF-α or 
TNF-related apoptosis-inducing ligand to its surface receptor. This induces Death-Inducing Signaling
Complex (DISC) formation and activation of caspase 8 which activates caspace 3 in turn. Intrinsic
pathway involves release of pro-apoptotic triggers (SMAC/DIABLO, Aif and cytochome C) from the
mitochondrial intermembrane space in response to mPTP opening or activation of Bax/Bak. Bid is
activated by the extrinsic pathway and then translocates to the mitochondrial outer wall activating
Bax/Bak. SMAC/DIABLO binds with IAP which usually inhibits Apaf-1. Apaf-1 activates caspase 9,
forming an apaptosome with cytochrome C. This activates caspase 3 which is a common effector for
apoptosis for both the pathways

1.7.2a Death Receptor (Extrinsic) pathway

The death receptor or extrinsic apoptotic pathway is initiated though an external stimulus that

involves binding of a death ligands such as FAS[CD95/Apo-1] ligand, TNF-α or TNF-related apoptosis-

inducing ligand to their corresponding cell surface receptor (Fig. 4)55;60. A study by Jeremias et al.

using isolated perfused hearts showed that death-inducing ligands, particularly Fas[CD95/Apo-1]
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ligand, are produced and released in a soluble form in the heart after ischaemia-reperfusion and act

as a stimulus for apoptotic cell death in reperfusion 60. Binding of a pro-apoptotic ligand to its cell

surface death receptor induces the formation of a Death-Inducing Signaling Complex (DISC) which in

turn activates procaspase-8 to activated caspase-855. Activated caspase-8 in turn activates

procaspase-3 (to activated caspase-3) as well as activates a pro-apoptotic BH3 domain-only Bcl-2

protein Bid (BH3 interacting-domain death agonist)55. Bid activation by caspase-8 links extrinsic

apoptotic pathway to the intrinsic mitochondrial pathway as Bid translocates and binds to outer

mitochondrial membrane when activated and in turn activates pro-apoptotic Bcl-2 proteins Bax

(Bcl-2–associated X protein) as well as Bak (Bcl-2 homologous antagonist/killer)55. Bax and Bak

induce outer mitochondrial membrane injury and release of Cytochrome-C thereby activating the

mitochondrial apoptotic death pathway61. Activated caspase-3 is the final common effector of

apoptotic cell death for both the extrinsic and intrinsic apoptotic pathways. An overview of this

pathway is represented in Fig. 4.

1.7.2b Mitochondrial Death Pathway

The mitochondrial apoptotic pathway is triggered by an increase in mitochondrial outer membrane

permeability (MOMP) as a result of cellular insults such as IR injury and subsequent release of pro-

apoptotic substances such as cytochrome C from the mitochondrial inter-membrane space into the

cytoplasm (Fig. 4)56. MOMP can occur via the activation of Bcl-2 proteins Bax or Bad (Bcl-2-

associated death promoter) and BH-3 domain-only Bcl-2 proteins like Bid. Once activated, such as in

response to ischaemia-reperfusion, these proteins bind to outer mitochondrial membrane61 62. As

mentioned previously, mPTP opening at the time of reperfusion also leads to the release of

cytochrome C and other pro-apoptotic proteins due to the rupture of outer mitochondrial

membrane as a result of osmotic mitochondrial swelling after mPTP opening37. Other pro-apoptotic

factors released from the mitochondrial intermembrane space when the outer mitochondrial

membrane is permeabilized include SMAC/DIABLO and Aif37;62. SMAC/DIABLO binds to inhibitor of



MD (Res) Thesis- Vikram Sharma

39

apoptotic proteins (IAPs) that interfere with Apoptotic protease-activating factor-1 (Apaf-1)

activation62. Apaf-1 has an ATP binding site that activates caspases in an ATP dependent manner57.

In the presence of deoxy-ATP, Apaf-1 converts procaspase-9 to caspase-9. Caspase-9, Apaf-1 and

cytochrome C form a large multimeric complex , called as apoptosome, which in turn converts

procaspase-3 to caspase- 3 (Fig. 4)57;62.

Activated caspase-3 cleaves Inhibitor of caspase-activated DNase (ICAD) to free caspase-activated

DNase (CAD) that causes DNA fragmentation and destruction of cytoskeletal proteins57 guiding the

cell to apoptotic cell death. The apoptotic cell is then engulfed with minimal inflammatory response.

Apoptosis in the tissues can be detected by the presence of double-stranded DNA fragmentation or

identification of caspase activation58.

Despite their classification as separate modes of cell death seen in distinct conditions, there remains

a considerable overlap between these modes of cell death and they are present in varying

proportions both in ischaemia and reperfusion. Studies by Anversa et al. and Kajstura et al.

exploring the contribution of necrosis and apoptosis in ischaemic cell death found that apoptosis

was the predominant form of cell death in rat hearts at 4.5 hours after coronary occlusion whereas

necrosis was the predominant form at 1 day63-65. Apoptotic cell death was also seen adjacent and

remote to the ischaemic zone in their studies, with no visible necrosis suggesting that apoptosis may

also play a role in remodelling after IR injury63-65.

Other studies have also observed the presence of both apoptosis and necrosis in ischaemia, though

necrosis was found to be more prevalent in the initial ischaemic period66;67. Contrary to this, studies

by Zhao et al. and Gottlieb et al. found no evidence of apoptosis in the presence of ischaemia alone

and noted significant apoptosis only after the onset of reperfusion68;69. In the study by Zhao et al.

necrosis was found to be present in reperfusion as well69.
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Thus, though whether apoptosis is present or absent prior to reperfusion remains debated, there is

undoubtedly a significant increase in apoptosis with the onset of reperfusion. At the same time

necrosis is seen in both ischaemia and reperfusion to a varying degree and may play an important

role in early ischemia.

1.7.3 AUTOPHAGY

Autophagy involves the sequestration of cytoplasmic contents and organelles into double membrane

vesicles called autophagic vacuoles or autophagosomes70. Autophagic vacuoles or autophagosomes

dock and fuse with lysosomes to form autophagolysosomes in which the autophagosomes and their

contents are digested71. Three forms of autophagy are known: macroautophagy, microautophagy

and chaperon-mediated autophagy of which macroautophagy is the most prevalent form 72.

Autophagy, unless specified, denotes macroautophagy.

Autophagy can play a dual role in the cell. Under normal conditions, autophagy is a homeostatic

process involved in degradation and recycling of old proteins and dysfunctional cellular organelles

providing constituents which can be used as building materials or as energy resources 70;72;73..

Thereby it can actually protect the cells against any external stress. A study by Nakai et al. showed

using mice with cardiac specific deficiency of a protein essential for autophagy (Atg 5), that the

absence of this factor led to cardiac hypertrophy, left ventricular dilatation and contractile

dysfunction74. Autophagy is increased in response to low ATP levels and the resulting activation of

AMP-Kinase. Brady et al. showed that autophagy was increased in IR injury due to the induction of a

BH3 only protein, BNIP3 by IR injury 75. They also showed that this increase in autophagy may be an

adaptive response to mitochondrial injury caused by BNIP3 which helps by removing dysfunctional

mitochondria75. BNIP3 is a pro-apoptotic protein that plays an important role in mediating cell death

in response to hypoxia and is discussed in detail in the following section.
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Autophagy can also have a deleterious effect on the cell in certain conditions. Excessive stimulation

of autophagy in response to prolonged and severe stress, such as in lethal IR, may be detrimental by

causing excessive destruction of intracellular proteins and organelles71;76. However the exact role of

autophagy in IR injury is still under investigation.

1.8 BNIP3

1.8.1 Introduction

BNIP 3 (Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3), formerly NIP3, is a BH3-only pro-

apoptotic member of the Bcl-2 class of proteins77. BNIP3 has been shown to play a crucial role in a

number of disease conditions such as ischaemia/reperfusion injury and cancers78. In the heart, acute

cardiac ischaemia strongly induces expression of BNIP3 and the presence of IR leads to

homodimerization of BNIP3 and its integration into mitochondrial outer membrane leading to cell

death78. BNIP3 also plays a role in regulating mitochondrial turnover in baseline conditions i.e.

mitophagy78. BNIP3 is one of the hypoxia inducible genes which is most strongly upregulated in

response to hypoxia in the in cardiac myocytes79.

Fig 5. BNIP3 structure comprising of Transmembrane domain (TM domain) at the carboxy terminal
end, which is crucial for dimerization and mitochondrial targeting of BNIP3 and the PEST ( Proline,
Glutamic acid, Serine and Threonine) domain at the N terminal end, which may be involved in
targeting the protein for elimination via the ubiquitin-proteasomal pathway when phosphorylated.
Other domains (not represented) are the BH3 domain and a domain conserved from Caenorhabditis
elegans
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1.8.2 Structure and post translational modification

BNIP3 structure comprises of a Transmembrane(TM) domain at its –COOH end, a PEST domain at its

N-terminal end (-NH2), a BH3 (bcl-2 homology 3) domain and a domain conserved from

Caenorhabditis eleganson of unknown function 80 (Fig. 5). Bcl-2 proteins, which are crucial mediators

of apoptosis share one or more regions of homology (bcl-2 homology domains BH1-4). BH3-only

proteins share only one homology domain (BH3) and regulate apoptosis by binding with anti-

apoptotic bcl-2 proteins through their BH3 domain80. BNIP3 is one such protein. In the case of BNIP3,

it is debated whether its BH3 domain plays a significant role in regulation of apoptosis 81. However

the protein itself appears to play an important role in mediating the cell death in response to IR

injury, acting via its TM domain to cause mPTP pore opening80. Under basal conditions BNIP3 is

present as a 30kDa protein monomer in the cytoplasm loosely bound to the mitochondrial outer

membrane. Under conditions of oxidative stress, such as during IR, BNIP3 undergoes

homodimerization82 which drives it to bind more firmly to the mitochondrial outer membrane (Fig.

6). The TM domain of BNIP3 is integral for homodimerization and in a dimerized form BNIP3 is able

to act as a proton channel attached to the outer mitochondrial membrane, increasing ion

conductance through the membrane80. Hydrogen bond formation between Histidine 173 and Serine

172 residues in the TM domain of BNIP3 is crucial for dimerization83. Kubli et al. showed that a

mutation in the histidine residue of the –COOH (carboxy) terminal TM domain of BNIP3 almost

completely inhibited cell death activity of BNIP3 suggesting that the carboxy terminal end of BNIP3

was necessary for BNIP3-mediated cell death82. Kubasiak et al. showed that BNIP3 expression is

induced under conditions of chronic hypoxia and the additional presence of acidosis leads to the

translocation and binding of the BNIP3 protein to the outer mitochondrial membrane84. This cell

death by hypoxia-acidosis was prevented by antisense BNIP3 oligonucleotides84 . BNIP3-mediated

cell death involves extensive DNA fragmentation and has been shown to occur via mPTP opening
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independently of caspase activation and cytochrome C release 84;85. The cells transfected with BNIP3

also had early plasma permeability, mitochondrial injury and cytoplasmic vacuolation resembling

necrosis85. Kim et al. also showed similarly, that the C-terminal end of BNIP3 was crucial for its

action which involved mPTP opening, though in contrast to the previous two studies mentioned

above, involved cytochrome C release, typical of apoptosis 86. BNIP3 is also able to cause

permeabilization of mitochondrial independent of mPTP opening without release of cytochrome C as

well as through Bax/Bak activation 87;88. Thus BNIP3 plays a crucial role in mediating cell death in

response to IR injury that has features of both necrosis and apoptosis and can act both via a number

of mechanisms listed above including opening of the mPTP to cause cell death.

In contrast to it cell-death mediating function, BNIP3 can play a beneficial role in the heart by up-

regulating autophagy as a protective response to IR injury75;89 which is independent of intracellular

calcium levels, ROS generation and mPTP opening90. This induction of autophagy by BNIP3 can take

place in the absence of mitochondrial permeabilization and apoptosis91. Moreover, BNIP3 deficient

mice hearts accumulate dysfunctional mitochondria and this correlates with cardiac dysfunction,

suggesting that BNIP3 may have an alternative homeostatic role in the absence of oxidative stress

which involves controlling mitochondrial turnover via autophagy91.

1.8.3 Regulation of BNIP3 expression

As BNIP3 is a crucial mediator of cell death, its expression is very tightly regulated in the cell. Under

basal conditions NF-kB occupies the BNIP3 promoter binding site. In conditions of hypoxia NF-KB is

less abundant and the transcription factor E2F-1 competitively binds with the BNIP3 promoter

inducing its expression92. Shaw et al. showed that PI3K/AKT can inhibit BNIP3 expression by

activating NF-kB92. Stabilization of another transcription factor, Hif-1α, during hypoxia also induces 

BNIP3 expression in human epithelial-derived cells 93. BNIP3 expression was noted at 24 hours in

response to hypoxia in these cells and peaked at 72 hours. This increase in expression was through

direct binding of Hif-1α to a Hif-1α responsive element (HRE) site in the BNIP3 promoter region 94.



MD (Res) Thesis- Vikram Sharma

44

Growth factors such as EGF and IGF can reduce BNIP3 mediated cell death possibly via interaction

with its BH3 domain95.

1.8.4 Role of phosphorylation in post-translational modification of BNIP3

There is debate in the literature regarding the role of phosphorylation in the post-translational

modification of BNIP3 and hence its role in BNIP3-mediated cell death. In a study by Graham et al.

phosphorylation of BNIP3 correlated with BNIP3 induced cell death96. In this study cardiac myocytes

were exposed to hypoxia. Two major BNIP3 species were found on 12% SDS- polyacrylamide gel96.

These migrated at 31 and 60 kDa and representing monomeric and dimeric forms of BNIP396.

However, faster moving species were also noted when myocytes were exposed to hypoxia for long

periods of time and the fastest moving of these migrated at 21 kDa, which correlates with the

predicted size of monomeric BNIP3 (~21.5 kDa) based on its amino acid sequence96. They showed

that these faster migrating species were specific to BNIP3 as all of these species were eliminated in

the presence of BNIP3-directed siRNA96. Treatment of extracts from hypoxic cardiomyocytes with

calf intestinal phosphatase (CIP) resulted in the appearance of a number of faster migrating species

in a time dependent manner and this effect was blocked in the presence of a phosphatase inhibitor.

When cardiac myocytes were exposed to hypoxia in the presence of oxalic acid, an inhibitor of

protein phosphatase 2a, there was progressive reduction in the rapidly migrating BNIP3 species

suggesting that either phosphorylation of native 21 kDa BNIP3 led to the formation of the 31 kDa

BNIP3 phosphorylated species or that phosphorylation led to protein kinase(s) mediated post-

translational change in BNIP3 via proteolysis producing sub-31 kDa species96. However, they were

unable to elucidate the significance of phosphorylation of BNIP3 with regards to cell death96.

Mellor et al. also studied post translational regulation of BNIP3 in LS174T (human caucasian

adenocarcinoma) cells 97. They showed that phosphorylation did not affect localization of BNIP3 in

these cells but increased its stability 97. In cells exposed to hypoxia only, BNIP3 expression returned

to baseline in 24 hours after reoxygenation, whereas in cells where BNIP3 was maintained in a

hyperphosphorylated state, BNIP3 expression persisted 48 hr after reoxygenation. They showed that
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a mitochondrially active mitotic kinase was responsible for BNIP3 phosphorylation and suggested

that phosphorylation may reduce the proteasomal degradation of BNIP397.

Shaw et al. showed that BNIP3 was a phosphorylation target for an enzyme Caseine Kinase 2(CK2)

using ventricular myocytes 98. They showed that during (or after) hypoxic conditioning CK2

phosphorylated serine residues located on the PEST domain of BNIP3 and this suppressed

mitochondrial defects and cell death of the myocytes in hypoxia98. Further, mutations in the CK2

phosphorylation sites of the BNIP3 PEST domain increased BNIP3 protein levels and cell death during

hypoxia, suggesting that phosphorylation at these sites reduces BNIP3 mediated cell death during

hypoxia.

Hence the role of phosphorylation in regulation of BNIP3 remains unclear and studies so far show

conflicting role of phosphorylation with regards to increase or decrease in BNIP3 cell death activity.

Fig 6. Dimerization of BNIP3 via its carboxy-terminal end, targets it to bind to the mitochondrial
outer membrane triggering cell death
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Though a lot is known about the mechanism of action of BNIP3 as well its role in ischaemia-

reperfusion, very little is known about the effect of pre-conditioning on the activation (via

dimerization) and post-translational modification including phosphorylation of BNIP3, aspects which

will be investigated in this thesis.

1.9 PRECONDITIONING & POSTCONDITIONING

1.9.1 Introduction

Early reperfusion is currently the best intervention for reducing the various forms of cell death

associated with lethal IR described in section 1.7. The recognition of reperfusion as an important

contributor to the myocardial infarct size after lethal IR has led to significant research into means of

attenuating reperfusion injury. Preconditioning and postconditioning are two such means of

reducing reperfusion injury and are described in detail in this section. In 1986, Murry et al. described

a phenomenon whereby exposing the myocardium to multiple repeated episodes of intermittent,

short and sublethal ischaemia protected the myocardium from injury secondary to subsequent

sustained ischaemia99. The group showed that, in dog hearts, 4 cycles of myocardial ischaemia-

reperfusion, each comprising of 5 mins of ischaemia followed by 5 mins of reperfusion significantly

reduced infarct size when the heart was subsequently exposed to 40 minutes of ischaemia as

compared with control hearts which were directly subjected to 40 minutes of ischaemia. This was

termed “ischaemic preconditioning” and was effective in reducing myocardial infarction against IR in

a number of of basic science studies100-102. Subsequently, studies have also shown that exposing the

myocardium to episodes of ischaemia and reperfusion at the onset of reperfusion after a lethal

ischaemic episode also protects the myocardium from cell death103-106. This phenomenon has been

termed ischaemic postconditioning105;106. Myocardial protection against reperfusion injury can also

be imparted by making a tissue remote from the heart undergo cycles of brief ischaemia and
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reperfusion either before an episode of lethal myocardial ischaemia (termed remote ischaemic

preconditioning) or at the time of reperfusion (termed remote ischaemic postconditioning).

Extensive research into these phenomena of direct or remote ischaemic preconditioning and

postconditioning has led to the discovery of a number of innate cardioprotective pathways that

underlie the protection offered by them against reperfusion injury. These pathways, such as the

Reperfusion Injury Salvage Kinase (RISK) pathway107;108 and the Survivor Activating Factor

Enhancement (SAFE) pathway109;110 , have been shown to not only be activated by mechanical

interventions (i.e.: ischaemic pre- and post-conditioning), but also by a wide number of

pharmacological agents that now promise effective therapy against reperfusion injury. Thereby,

mechanical or pharmacological “conditioning” of the heart against ischaemia- reperfusion injury

promises to be potentially useful clinically with regards to reducing infarct size after lethal ischaemia

in patients. Hence this is an area of extensive ongoing research, as pharmacological “conditioning”

agents could be useful adjuncts to current standard reperfusion therapy in improving patient

outcomes by limiting reperfusion mediated myocardial injury. Mechanisms underlying these

phenomena are discussed in detail in the following sections.

1.9.2 Triggers of ischaemic preconditioning

Ischaemic preconditioning leads to the production of autocoids such as adenosine, bradykinin and

delta-opioids. The signal transduction pathways involved in preconditioning are triggered by the

binding of these autocoid factors to their respective receptors111-115. Each of these three autocoids

implicated in cardioprotection binds to Gi protein coupled receptors (GPCR)116 , which triggers

downstream signalling. Protein Kinase C (PKC) appears to be a common target of all of these

autocoids116, though intermediate steps might be different for the respective autocoids. Bradykinin

and opioids lead to cardioprotection by pathways that involve mKATP channel opening and ROS

production whereas adenosine’s effect is independent of this pathway117. Adenosine is able to

activate PKC directly 118. Opioid binding to their peripheral receptors leads to activation of
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metalloproteinase, which in turn leads to activation of PI3K/AKT and ERK 1/2, through epidermal

growth factor receptor (EGFR)119. As compared with opiods, bradykinin causes phosphorylation of

PI3K and ERK 1/2 , independent of EGFR119.

1.9.3 Cardioprotective pathways involved in preconditioning and post-conditioning

First coined by Yellon’s group, the RISK (Reperfusion Injury Salvage Kinases) pathway involves a

cascade of events starting with the activation of crucial kinases PI3K (Phosphatidylinositol-3-OH

kinase)/AKT and ERK 1-2 as well as the recruitment of a number of downstream effectors that make

the myocardium more resistant to reperfusion injury120 (Fig. 7) . The RISK pathway is activated by

both ischaemic pre and postconditioning104. As mentioned previously, apoptotic cell death is a

critical pathway of cell death in reperfusion and hence has been considered an important target of

cardioprotective strategies against reperfusion injury. Growth factors were found to exhibit anti-

apoptotic activity in the setting of acute stress such as in ischaemia and reperfusion121. This growth

factor anti-apoptotic activity was based on the activation of p42/p44 MAP kinases or ERK 1/2 which

are extracellular signal regulated serine-threonine protein kinases, whose activity is most strongly

increased by growth factors that activate tyrosine kinase122. They belong to a family of serine-

threonine kinases that includes c-Jun N-terminal protein kinase (JNK), stress activated protein kinase

(SAPK) and p38 MAP kinase in addition to ERK 1/2123. AKT is a downstream target of PI3- Kinase

124and is responsible for the cardioprotection seen with PI3- Kinase activation123. AKT , also known as

Protein Kinase B, when activated promotes survival thorough phosphorylation of multiple

downstream targets directly involved in apoptosis123. ERK 1/2 and PI3K/AKT, when phosphorylated,

inhibit caspase-3 and other pro-apoptotic factors such as Bad as well as activate pro-survival p70S6

Kinase leading overall to a reduction in apoptotic cell injury seen with reperfusion121. A study by

Fryer et al. using isolated perfused rat heart model, showed that ERK was activated by ischaemic

preconditioning and that the infarct reducing effect of IPC after IR injury was abolished by inhibition

of ERK using a selective inhibitor125. In a study by Tong et al. on Langendorff isolated perfused rat
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hearts , the protective effect of preconditioning on the recovery of left ventricular developed

pressure after IR injury was abolished by using an inhibitor of PI3K126. This study also identified PKC-

Epsilon translocation and increase in NO production as downstream targets of PI3K activation126. In a

separate study using a similar model of isolated perfused rat hearts, Tong et al. also identified that

Glycogen Synthase Kinase-3Beta (GSK3-β) was a downstream target of PI3K in ischaemic  

preconditioning that was inhibited through phosphorylation by PI3K127. Mocanu et al. using isolated

perfused rat hearts showed that PI3-Kinase and not p42/44 cascade was responsible for infarct

sparing cardioprotection offered by preconditioning against reperfusion injury128. A subsequent

comprehensive study by Hausenloy et al. demonstrated that preconditioning caused a biphasic

activation of both ERK and AKT (downstream target of PI3K) signal cascades and that the activation

of both of these cascades at reperfusion was required for preconditioning129. These studies suggest

that cardioprotection offered by preconditioning against reperfusion injury is mediated via the RISK

pathway.

A study by Tsang et al. using an isolated perfused rat heart model showed that postconditioning also

involved the activation of PI3K/AKT, endothelial NO synthase (eNOS), and p70S6K. Further, they also

showed that inhibition of PI3K activity, by a PI3K inhibitor LY294002, at reperfusion prevented AKT

phosphoryation and also led to abrogation of cardioprotection offered by preconditioning, thereby

showing that postconditioning was reliant on PI3K/AKT activation. A study by Yang et al. using

anaesthetized rabbits also showed that postconditioning required the activation of ERK and opening

of mitochondrial KATP channels(mKATP channels) 130.

ERK 1/2 and PI3K /AKT have a number of downstream targets (Fig. 7). Insulin is a canonical activator

of Akt. Jonassen et al. used insulin as a post-conditioning mimetic at reperfusion and showed that it

protected against reperfusion injury through activation of PI3K/AKT 131. They also showed that p70

S6 Kinase and Bad were phosphorylation targets of PI3K/AKT activation131. P70S6 Kinase promotes

cell survival by phosphorylating Bad132. Bad is a pro-apoptotic member of the bcl-2 family of
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proteins133 which heterodimerizes with anti-apoptotic proteins BCL-X (L) or BCL-2 in its non-

phosphorylated state, thereby promoting apoptosis133. When phosphorylated, such as via AKT or

p70S6K activation, Bad forms a complex with the protein 14-3-3 in the cytoplasm which prevents its

dimerization with BCL-X (L) or BCL-2, thereby promoting cell survival. Another substrate of AKT

activation is PRAS40 (Proline-rich AKT substrate of 40 kDa)134. PRAS40 inhibits mammalian target of

rapamycin complex 1 (mTORC1) kinase activity and also acts as it substrate. PRAS40 is

phosphorylated both by AKT and mTORC1 and this phosphorylation leads to separation of PRAS40

from mTORC1. AKT activation in response to Insulin has been shown to phosphorylate PRAS40 at

Thr246 135-137 and hence PRAS40 phosphorylation at this site can be used as a marker of AKT activity.

mTORC1 causes phosphorylation of PRAS40 at Ser183138.

Using bradykinin as a post-conditioning agent at reperfusion, Bell et al, showed that eNOS

activation was also a downstream target of AKT111 (Fig. 7). Dimmeler et al. showed that eNOS activity

is increased through phosphorylation by AKT139. eNOS activation leads to increased Nitric Oxide (NO)

levels, which in turn leads to cardioprotection through opening of mKATP channels with NO mediated

stimulation of guanylyl cyclase(GC), GC mediated cGMP production and cGMP induced PKG activity

acting as intermediate events leading to mKATP channel opening140. Another target of the PI3K–AKT

signal cascade is the inhibition of the translocation of pro-apoptotic protein Bax to the mitochondria

in response to ischaemia-reperfusion141. If not inhibited, this Bax translocation leads to

mitochondrial membrane injury and release of pro-apoptotic substances like Cytochrome C

triggering apoptotic cell death.

The ultimate target of the RISK pathways is prevention of the opening of mPTPs during reperfusion,

an event which has been described in previous sections to be a critical step leading to cell death at

the onset of reperfusion (Fig. 7). A study by Davidson et al. using adult rat cardiomyocytes showed

that activation of PI3K/AKT leads to inhibition of mPTP opening and suggested that this was crucial

for cardioprotection offered by the RISK Pathway107. Both hypoxic preconditioning and
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postconditioing lead to cardioprotection though inhibition of mPTP opening through activation of

the RISK pathway142;143.

As presented in earlier sections, the formation of reactive oxygen species plays a crucial role in

ischaemia-reperfusion injury. However, ROS also play a role in cardioprotection offered by IPC.

Infusion of slow flow oxygen free radicals in an isolated rabbit heart system subsequently exposed

to ischaemia and reperfusion reproduced the beneficial effects of ischaemic preconditioning and this

beneficial effect was dependent on PKC activation144. In a study by Zhang et al. ischaemic

preconditioning was found to generate H2O2 and inhibition of H2O2 production associated with

preconditioning blocked the cardioprotection afforded by IPC145. In this study H2O2 generation led to

opening of mKATP channels and activation of PKC-ε isoform145. Liu et al. showed that using a ROS

scavenger at reperfusion blocked infarct reduction seen with ischaemic preconditioning and that

ROS generation was upstream of PKC activation146. Thus ROS can have a dual role in ischaemia-

reperfusion where it contributes to IR injury as well as acts as a trigger for cardioprotective

pathways. The difference may be the localization of production, or level of production.

Recent research has suggested an important role of an alternative cardioprotective pathway called

the SAFE (Survivor Activating Factor Enhancement) pathway in postconditioning (Fig. 7). The SAFE

(Survivor Activating Factor Enhancement) pathway involves TNF-alpha mediated activation of STAT-

3 (signal transducer and activator of transcription-3)
109;110

. It is activated by post-conditioning and has

been shown to provide protection against IR injury independent of the RISK pathway
109;110

.

1.9.4 Endothelium as a target of ischaemic preconditioning and postconditioning

The endothelium itself is a target of ischaemic preconditioning147. Ischaemia–reperfusion causes

endothelial dysfunction and injury by a variety of mechanisms described in section 1.6. In cultured

rat aortic endothelial cells, anoxia and reoxygenation causes increased expression of endothelial

adhesion molecule ICAM-1, which was prevented by preconditioning148. Preconditioning also

partially prevented the adhesion of neutrophils to reoxygenated endothelial cells148. The reduction in
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ICAM-1 expression by preconditioning was blocked by an inhibitor of PKC, suggesting that this

protection was mediated through PKC activation by preconditioning. Thus PKC mediated reduction

in ICAM-1 expression and prevention of neutrophil adhesion to the endothelium were involved in

the protective action of preconditioning on the endothelium. Duda et al. explored the mechanisms

underlying the protection of endothelium against IR injury by preconditioning using guinea-pig

hearts perfused in a Langendorff mode and showed that preconditioning reduced ET-1 induced

endothelial dysfunction, P-selectin expression and neutophil adhesion seen after IR51. A study by

Beresewicz et al. also showed that preconditioning prevents endothelial dysfunction seen with IR by

reducing free radical mediated disruption of the endothelial glycocalyx 43. A number of studies have

shown that ischaemic preconditioning also reduces endothelial injury and dysfunction seen in

response to IR through increase in eNOS activity and global NO bioavailability106;149-151.

A study by Zhao et al. showed that postconditioning was also able to prevent endothelial

dysfunction and neutrophil adhesion post IR in a manner similar to preconditioning106.
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Fig 7. Innate cardioprotective pathways involved in preconditioning and postconditioning
Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury
pharmacotherapy. Sharma V, Bell RM, Yellon DM.Expert Opin Pharmacother. 2012 Jun;13(8):1153-
7546

1.10 Pharmacological conditioning with Insulin

1.10.1 Introduction

Insulin is a peptide hormone secreted by the beta cells of the pancreas in response to high blood

glucose levels and is the main hormone that regulates glucose metabolism152. Insulin has been

shown to have cardioprotective properties against ischaemia-reperfusion injury153-156. In basic

studies, insulin has been shown to reduce myocardial injury in response to ischaemia-reperfusion

injury when given both prior to ischaemia and at the time of reperfusion153;157. Baines et al.
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investigated the mechanisms underlying this protection offered by insulin153. They used isolated

perfused rabbit hearts and compared the infarct size in response to ischaemia- reperfusion injury

when these hearts were treated with 5 mU/mL of insulin given for 5 minutes followed by a 10

minute period of washout prior to ischaemia against control hearts which had no insulin treatment

prior to ischaemia. Insulin treatment was associated with a significant reduction in infarct size (14.7

+/- 2.1% Vs 32.6 +/- 2.3%, p < 0.05). This protection was lost when insulin was administered along

with a tyrosine kinase inhibitor or wortmannin, a PI3Kinase inhibitor153. Insulin treatment also

significantly reduced infarct size compared with control hearts when given only at reperfusion153.

Fischer-Rasokat et al. gave insulin in a concentration of 1mU/mL at reperfusion and this improved

cardiac contractile function after lethal ischaemia in an isolated rat heart model 154. Fuglesteg et al

gave 3 cycles of insulin infusion at a concentration of 50 mU/mL prior to lethal ischaemia in an

isolated perfused rat heart model and at 3 mU/mL at reperfusion leading to significantly reduced

infarct size in response to IR155.

Jonassen et al. used an isolated perfused rat heart model to further delineate the signalling

pathways involved in cardioprotection offered by insulin. They showed that insulin treatment at

reperfusion significantly reduced infarct size after IR injury. This protection was lost when insulin

treatment at reperfusion was delayed by 15 minutes, suggesting that early initiation of treatment is

required for protection. Jonassen and colleagues showed that this protection was mediated by

activation of AKT/PI3 Kinase and downstream targets of AKT like p70s6 kinase131;158. In a separate

study, using rat neonatal cardiomyocytes, Jonassen et al. showed that insulin treatment (0.3 mU/mL)

at reoxygenation after hypoxia also reduced apoptosis in the myocytes through PI3-K activation156.

Fuglesteg et al. Investigated the role of JAK-STAT pathway in the cardioprotective ability of insulin159.

They used an isolated perfused rat heart model as well as myocytes isolated from STAT 3 deficient

mice (compared with the wild types). Insulin was given in a dose of 0.3mU/mL to rat hearts perfused

in a Langendorff mode at the onset of reperfusion either in the absence or presence of a JAK-STAT

inhibitor (AG490). They showed that insulin treatment at reperfusion led to phosphorylation of both
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STAT3 and AKT. They also showed that STAT3 activation may be required for insulin to be able to

activate AKT via phosphorylation 159.

While, there are a number of papers in literature regarding use of insulin as a pre- or post-

conditioning agent in an isolated perfused rat model , no papers were found where insulin was used

as a cardiac conditioning agent in an isolated perfused mouse heart model .

1.10.2 Insulin transport across the endothelium

Insulin is a peptide hormone in plasma and needs to cross the endothelium in order to reach

receptors on the surface of cardiomyocytes for its action. Two modes of transport have been

suggested for insulin’s movement across the endothelium. One is saturable insulin receptor-

mediated transport which involves insulin binding to an endothelial surface receptor160 . The insulin

receptor belongs to the family of receptor tyrosine kinases and has two extracellular alpha subunits

along with two beta transmembrane subunits161 (Fig. 8). IGF-I receptors are structurally similar to

the insulin receptors. Insulin can also bind to and act via these receptors, though insulin has much

lower affinity to these receptors compared with the insulin receptors161.

The other mode of insulin transport is through the intercellular spaces in the endothelium not

involving binding to a receptor, such as via simple diffusion162. Studies have shown conflicting

results regarding which of these two modes of transport plays a more important role in insulin

transport.
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Fig 8. The insulin receptors and the IGF-I receptors belong to the receptor tyrosine kinase family.
Insulin binding with the extracellular alpha units of the insulin receptor triggers tyrosine kinase
activity of the receptor. AKT activation via phosphorylation is one of the targets of this receptor
activation
Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction.
Dupont J, LeRoith D. Horm Res. 2001;55 Suppl 2:22-6161

King et al. used dual chambers separated by a monolayer of cultured bovine aortic endothelial cells

to study the transport of iodine-125-labeled-insulin across the endothelium160. They showed that

insulin was transported across the endothelial layer by a receptor mediated process, which was

temperature dependant and was inhibited by an antibody to the insulin receptor160. Bar et al. used

an isolated perfused rat heart model to study the transport of insulin across the endothelium163. At a
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concentration of 0.1nM/l or 0.016 U/L infused insulin transport was dependent on binding with

endothelial insulin receptor in their study.

In contrast to these studies, a number of studies have shown that endothelial receptor binding is not

required for insulin transport across the endothelium. Salvetti et al. used bovine aortic endothelial

cells grown in a hollow fiber apparatus in a dynamic model, where the endothelium was constantly

exposed to flow, to study insulin transport across enothlium162. They argued that this was a more

physiological system, as compared with static endothelial models used by others. They showed that

insulin transport was not saturable and was rather a paracellular movement not involving

endothelial surface receptors. Much earlier, Brunner et al. had used an isolated perfused rat heart

model to study the role of endothelium in insulin transport from plasma to the interstitium164. They

showed similarly that insulin transport across the endothelium was not a saturable receptor

mediated process but rather a bi-directional, non-saturable process similar to inulin transport across

the endothelium. The presence of the endothelium, however, did slow the rate of transfer of insulin

to the interstitium in their study. They used a much higher concentration of Insulin ( 0.05-1 U/L ) for

their study as compared with the study by Bar et al. perhaps suggesting that receptor mediated

insulin transport may be important at lower concentration of insulin. Steil et al. used an in-vivo

model involving anaesthetized dogs to investigate the nature of insulin transport across the

endothelium. They estimated the insulin concentration in hind limb muscle interstitial space by

measuring insulin levels in hind-limb lymphatics of anaesthetized dogs165. The dynamics of insulin

transport into and clearance from interstitial space was studied in the presence of physiological or

pharmacological insulin plasma levels. In their study the plasma/lymph insulin gradient was lower at

the pharmacological concentration of insulin as compared with the physiological concentration,

ruling out a saturable receptor mediated transport process for insulin movement across the

endothelium in which case this gradient would be expected to go up in the presence of

pharmacological insulin concentrations. Further, this reduction in gradient was due to an increase in

the fractional transport of insulin rather than a reduction in insulin clearance from interstitial space.
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Hamilton-Wessler et al also provided more evidence regarding the transport of insulin across the

endothelium into the intersitium being a non-saturable, non-receptor dependent process166. In

addition, Wang et al. showed that IGF-I receptors can also mediate insulin transport across the

endothelium into rat skeletal muscles when insulin was given in a concentration of 10 mU/min/kg
167.

Thus, a number of mechanisms have been proposed for insulin transport across the endothelium,

though there is still debate in literature about the exact significance of these in various conditions.

1.11 Diabetes, ischaemia-reperfusion and preconditioning

Diabetes mellitus is a rising problem globally, especially amongst developing nations. According to a

WHO report on Global Health Risks published in 2009, high blood glucose level ranked third in the

leading global risks for mortality, being responsible for 6% of all deaths globally168. According to the

report high blood glucose along with alcohol intake, high blood pressure, tobacco use, high BMI,

reduced physical activity, low fruit/vegetable intake and high cholesterol accounts for more than

3/4th of all ischaemic heart disease seen globally168. By itself, high blood glucose accounted for 22%

of all ischaemic heart disease, according to the report168. Much of this is attributed to a significant

increase in prevalence and incidence of type 2 diabetes mellitus as a result of multiple factors

related to reduced physical activity, longer life spans and increasing obesity globally169. As much as

half of the mortality due to diabetes is due to cardiovascular disease169. One of the main contributing

factors to development of cardiovascular disease in people with diabetes is the development of

atherosclerosis as a result of reduced global Nitric Oxide availability seen in diabetes170. Endothelial

dysfunction as a result of atherosclerosis in diabetes leads to micro- and macrovascular

complications seen with diabetes49;170. In a clinical study involving 147 patients, Schachinger et al.

showed that vascular endothelial dysfunction and reduced coronary vasodilatory response was a

predictor of progression of atherosclerosis, cardiovascular event rates and prognosis171. There are a

number of mechanisms that underlie development of vascular dysfunction in diabetes. High glucose

levels promote superoxide production in the endothelium which leads to increased production of
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peroxynitirite that in turn oxidizes BH449. This leads to eNOS uncoupling and reduced NO availability

causing endothelial dysfunction. Insulin has a vascular vasodilatory effect secondary to AKT

phosphorylation that in turn causes eNOS phosphorylation and increases NO bioavailability49;172;173.

Insulin also increases BH4 levels and thereby eNOS activity through activation of GTPCH. These

effects are reduced/absent in diabetes , thereby preventing vascular relaxing actions of insulin and

leading to hypertension and endothelial dysfunction49. Duncan et al. using the IRKO (Insulin receptor

knock out) mice, that have a haploinsufficiency of insulin receptor and a mild insulin resistance,

showed that even mild insulin resistance seen in pre-diabetic states is a potent inducer of

endothelial dysfunction through increase in endothelium derived ROS 170.

A number of important differences have been noted in diabetes with regards to the effect of

ischaemia-reperfusion on diabetic myocardium as well as the ability of IPC to protect the diabetic

myocardium. It is rather peculiar that though diabetes itself a risk factor for development of

ischaemic heart disease, a number of studies including in-vivo and Langendorff studies using

experimental models of diabetes have shown that diabetic myocardium is more resistant to

prolonged ischaemic injury compared with healthy hearts174-177. The study by Kristiansen et al. using

a lean and obese rat model of type 2 diabetes and Langendorff preparation showed that in both

these models diabetic myocardium was lesser susceptible to IR injury178. Similarly in a clinical study,

diabetic patients had a trend towards lower CK-MB levels after myocardial infarction compared with

non-diabetic patients , irrespective of treatment179.

Diabetes also alters the ability of ischaemic preconditioning to protect the heart against IR injury. A

number of studies have shown that ischaemic preconditioning is less effective in protecting a

diabetic myocardium from IR injury. Tsang et al. compared the IPC protection in isolated perfused

Wistar (non-diabetic) rat hearts against diabetic Goto-Kakizaki rat hearts. They found that diabetic

rat hearts needs a more potent IPC stimulus to activate the cardioprotective PI3K-AKT pathway

implying a raised IPC threshold in diabetes180. Study by Kristiansen et al. mentioned above using
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obese and lean rat models of type 2 diabetes showed that IPC stimulus did not protect the diabetic

hearts and that diabetic hearts had reduced IR susceptibility178. Using a human atrial model,

Hassouna et al. showed that IPC could not protect diabetic hearts and that this could be secondary

to mitochondrial dysfunction seen in diabetes181.

One possibility is that the increased level of caveolin seen in diabetes affects eNOS and IPC. Caveolin

forms a complex with eNOS reducing its activitiy. This role of increased caveolin seen in diabetes in

eNOS activity and preconditioning was explored by Ajmani et al. 182. They induced diabetes in rats

using streptozocin and then, 4 weeks after streptozocin treatment, used the Langendorff model of

isolated perfused hearts for their study. They found that cardioprotection with IPC and NO release

(assessed by measuring nitrite content in coronary effluent) were significantly reduced in diabetic

rats. Also, NO release and IPC protection was restored by pretreating with Daidzein, a caveolin

inhibitor and perfusion with sodium nitrite, a NO precursor, thereby implying a role for caveolin in

reduced IPC efficacy in diabetes182.

In conclusion, IPC is impaired or absent in diabetes and a number of mechanisms listed above have

been proposed for this. It is not clear from research so far, whether the lack of conditioning in

diabetes is secondary to the diabetes related changes in the myocardium or secondary to insulin

resistance and endothelial dysfunction seen in diabetes.

1.12 The ESMIRO mice183

The ESMIRO (Endothelium Specific Mutant Insulin Receptor Overexpressing) mice were generated by

Duncan et al. through a collaboration between the Cardiovascular Division, Department of

Cardiology, King’s College London (UK); the Division of Cardiovascular and Diabetes Research,

Multidisciplinary Cardiovascular Research Centre, University of Leeds (UK) and the Maternal and

Fetal Research Unit, Division of Reproduction and Endocrinology, King’s College London, London

(UK). The ESMIRO mice over-express an insulin receptor in the vascular endothelium that has a
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mutation (Ala-Thr1135) in its tyrosine kinase domain which prevents insulin signaling183. Humans with

this mutation are insulin resistant184. The ESMIRO mice were generated using a Tie-2

promoter/intronic enhancer construct which is active only in endothelial cells. Initial founders were

backcrossed eight times with C57BL/6J mice to ensure a stable genetic background. The group

confirmed expression of the mutant receptor with RT-PCR and immunohistochemistry. Interestingly

the ESMIRO and the wildtype (WT) littermates had no gross morphological differences. ESMIRO and

WT mice had similar fasting blood glucose and serum insulin levels. Glucose tolerance was similar in

both these groups. They also had similar lipid profile and systolic blood pressures.

The ESMIRO mice lacked insulin-mediated blunting of phenylephrine induced vasoconstriction in

isolated aortic rings as compared with WT mice in which this insulin vascular relaxation was

preserved. This vasodilatory response is through AKT mediated phosphorylation of eNOS by insulin

that leads to increase in NO production. Basal levels of eNOS protein expression were found to be

similar in both groups. However on exposure to insulin there was a significant increase in phospho-

eNOS/eNOS ratio in the WT mice, a change which was not present in the ESMIRO mice. ACh and

calcium ionophore A23187 mediated vasorelaxation was also blunted in the ESMIRO mice compared

with the WTs. Thus the ESMIRO mice had significant endothelial dysfunction compared with the WT

mice.

MnTMPyP, a SOD mimetic, restored ACh mediated vasorelaxation in the ESMIRO animals, suggesting

that the endothelial dysfunction in the ESMIRO mice was due to increase in vascular superoxide

formation. This was confirmed using lucigenin-enhanced chemiluminescence that showed increased

superoxide production in the ESMIRO mice compared with WTs in the endothelial cells.

eNOS mRNA expression was similar in cardiac microvascular endothelial cells (CMECs). However,

there was a significantly higher expression of NADPH oxidase isoforms Nox2 and Nox4 mRNA in

ESMIRO aortae and CMECs compared with their WT counterparts, which are the likely source of the

increased superoxide production in the ESMIRO mice endothelial cells.
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Thus the ESMIRO mice represent a good model to study in isolation the impact of endothelial

dysfunction and the absence of vascular insulin signalling, which is also present in diabetes, on

ischaemic preconditioning and on pharmacological conditioning with insulin.

1.13 Hypotheses

1.13.1 Hypothesis 1: Preconditioning may lead to cardioprotection against IR through post-

translational modification of BNIP3

Method:

Subjecting isolated C57/BL6J mouse hearts to preconditioning protocol and harvesting

hearts at different time points – baseline, after IPC (before lethal IR and after lethal IR) and

comparing with control hearts subjected to lethal IR without IPC to assess the impact of

preconditioning on BNIP3 in hearts subjected to IR

Model used:

1. Global ischaemia-reperfusion model using isolated mouse hearts perfused in a

Langendorff mode

2. Freeze-clamping mouse hearts with liquid nitrogen for western blot analysis

End Points:

1. Infarct size in IPC hearts subjected to lethal IR vs control hearts subjected to lethal IR

without IPC

2. Levels of total BNIP3, phosphorylated BNIP3 and carboxy terminal (–COOH terminal) end

of BNIP3 determined by western blot analysis
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1.13.2 Hypothesis 2: Normal endothelial function may be a pre-requisite for preconditioning.

Preconditioning may be less effective in protecting the myocardium in hearts from ESMIRO

mice which have inherent vascular insulin resistance and endothelial dysfunction similar to

that seen in the setting of diabetes.

Method:

Comparing cardioprotection with ischaemic preconditioning in the ESMIRO mice with their

wild type littermates

Model used:

1. Global model of ischaemia reperfusion using isolated mouse hearts perfused in a

Langendorff mode

2. TTC staining of isolated perfused hearts and planimetry analysis to quantify infarct size

End point:

Size of myocardial infarction in the ESMIRO mice compared with WT littermates

1.13.3 Hypothesis 3: Insulin treatment may not be able to protect the ESMIRO mice hearts

compared with WT littermates due to the absence of functional vascular insulin receptors

Method:

Assessing cardioprotection against IR injury after pharmacological conditioning with Insulin

in the ESMIRO mice compared with their WT littermates
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Model used:

Global model of ischaemia reperfusion using isolated mouse hearts perfused in a

Langendorff mode

End point:

1. Size of myocardial infarction in ESMIRO mice compared with WT littermates after IR with

pharmacological conditioning using Insulin

1.13.4 Hypothesis 4: IPC and insulin conditioning are less effective in activating AKT in the

ESMIRO mice because of the presence of vascular dysfunction and vascular insulin

resistance in the ESMIRO mice compared with their WT littermates

Method:

Western blot analysis of ESMIRO and WT mice hearts subjected to IPC and insulin

conditioning (both in the presence and absence of LY294002, a PI3K inhibitor) for AKT and

PRAS40 phosphorylation.

Model used:

1. Langendorff model of perfusing isolated mice hearts to induce IPC and Insulin

conditioning

2. Freeze clamping mice hearts with liquid nitrogen for western blot analysis

End Point:

Levels of total AKT, total PRAS40, phosphorylated AKT and phosphorylated PRAS40 in

ESMIRO and WT littermate hearts subjected to IPC or insulin conditioning ( in the presence

or absence of LY294002 – to identify if differences seen with insulin treatment are specific to

PI3K activation) compared with control hearts.
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1.13.5 Hypothesis 5: Activation of AKT/PI3K using ischaemic preconditioning and insulin

conditioning may lead to post translational modification of BNIP3 via phosphorylation

Method:

Comparing BNIP3 phosphorylation and AKT activation with IPC and insulin conditioning (in

the presence or absence of LY294002, a PI3K inhibitor) in the ESMIRO mice and their WT

littermates

Model Used:

1. Global model of ischaemia reperfusion using isolated mouse hearts perfused in a

Langendorff mode

2. Freeze clamping mice hearts with liquid nitrogen for western blot analysis

End point:

Levels of total AKT, phosphorylated AKT, total PRAS 40, phosphorylated PRAS40 (PRAS40

phosphorylation is a surrogate marker of AKT activity) as well as phosphorylated and total

BNIP3 in the ESMIRO mice compared with WT littermates.
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2. Methods:

2.1 General

All procedures were carried out at The Hatter Cardiovascular Institute, University College London in

strict accordance with the Home Office Guidance on Research and testing using animals and the

Animals (Scientific Procedures) Act 1986. A list of chemicals and reagents used is provided at the

beginning of the thesis.

2.2 Choice of Model

A wide range of basic science models including in-vivo studies, cell based models, isolated myocyte

models and isolated perfused heart (Langendorff) models are currently available to test a range of

hypotheses. No model is perfect in itself and every model has its advantages and disadvantages. Cell

based and isolated cardiac myocyte models are less physiological and hence have lesser clinical

correlation. The model which replicates clinical conditions most closely is in-vivo study. However,

several studies cannot be carried out in an in-vivo model as the experimental protocol may be lethal

or not tolerated in the in-vivo environment. Isolated Mouse Heart Perfusion (Langendorff

technique) has proven to be a validated and well-characterized model to study ischaemia and

reperfusion and hence was the preferred model to test out the hypothesis outlined in the previous

chapter. The technique of perfusing isolated hearts was first developed by Carl Ludwig and Wild in

1846185 where heart perfusion was maintained by connecting the aorta of a killed animal with the

carotid artery of a living animal. This technique was further developed by Elias Cyon and Carl Ludwig

185using excised frog hearts. Henry Newell Martin first carried out perfusion of isolated mammalian

hearts using a heart-lung preparation. Oscar Langendorff further modified the technique whereby

isolated mammal hearts were perfused retrogradely via a canula attached to the aorta185;186.

Retrograde pressure in the aorta by flow of perfusion buffer (resembling plasma in composition and
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with similar O2/CO2 concentrations) closes the aortic valve and causes the perfusion buffer to flow

down the coronary ostia located in the aortic root from which the coronary blood vessels originate.

This re-establishes coronary perfusion and heart contraction186. Flow of buffer can be stopped

simulating global heart ischaemia186.

This technique has been widely employed in a wide range of studies including studies related to

heart physiology, pharmacological interventions as well as to study pathological and protective

mechanisms using transgenic mouse models. It is a widely accepted, well validated and highly

reproducible model for mammalian heart studies187;188. With this model it is possible to study the

impact of various pharmacological and ischaemic interventions on the heart in isolation, free from

other neuro-humeral responses seen in vivo186. As mentioned earlier, some of these interventions

cannot be studied in an in-vivo model at all as they might be lethal for the animal 186. At the same

time this makes the experiments less clinically relevant as it is not possible to study the impact of

various pathophysiological and homeostatic processes on these interventions that would normally

be seen in-vivo186. In addition, from the time of harvesting the heart for perfusion, the heart is in a

state of gradual deterioration as it is not possible to fully replicate a physiological circulation with

the Langendorff apparatus as is seen in-vivo186. Hence protocols have to be brief lasting 2-3 hours in

duration. Keeping in mind these shortcomings, it is still a widely used model for simulating

ischaemia-reperfusion ex-vivo which is well accepted by the scientific community.
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Fig 9. The Langendorff apparatus setup used in these experiments A. Storage chamber for modified
Kreb’s buffer with O2/CO2 mixture bubbling through from the bottom of the chamber B. Outer
heating chamber to keep the buffer at physiological temperature C. Canula to attach to aorta of
mouse hearts for perfusing the heart retrogradely D. Heated Glass jacket to immerse the hearts to
maintain temperature E. Transducer to monitor perfusion pressure F. Transducer to monitor LV
pressure attached to a balloon inserted in LV cavity G. Tube connecting the heated buffer to the
perfusing canula H. Tubing to connect the outer heating chamber to the heated glass jacket
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Fig 10. The work desk showing my Langendorff apparatus and computer setup used to gather
experimental data with the Chart 5 software purchased from ADInstruments

Fig 11. Close-up image showing steel canula with aorta mounted and tied on to the canula (left)
and a balloon mounted on a blunted hollow needle inserted into the LV cavity via left atrium (right)
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2.3 Choice of Animals

Though a range of mammalian hearts can be perfused in the Langendorff mode, using mouse hearts

has the advantage of being able to use transgenic models in addition to pharmacological agents to

test a variety of hypotheses. Hence isolated mouse heart Langendorff preparation was used. Male

C57BL/6J mice ordered from Charles River (UK) were used to establish a preconditioning protocol

and then study the effect of preconditioning on post translational modification of BNIP3. ESMIRO

(Endothelium Specific Mutant Insulin Receptor Over-expressing mice) mice described in detail in

Chapter 1 were used to study the impact of vascular insulin resistance and endothelial dysfunction

on ischaemic preconditioning and pharmacological conditioning with insulin. Two breeding pairs

were kindly gifted to us by Prof. Kearney’s group from University of Leeds and bred in UCL animal

house. The impact of AKT activation via ischaemic preconditioning or insulin conditioning on

phosphorylation of BNIP3 was then assessed using the ESMIRO mice and their wildtype littermates.

2.4 Langendorff Setup

The Langendorff model was set up using a standard mouse heart Langendorff kit provided by

ADInstruments as shown in Figures 9 and 10. This setup included two glass chambers for carrying the

perfusion medium. These chambers were surrounded by a heated water jacket to maintain a desired

perfusate temperature of 37 +/- 0.5 °C. Perfusion medium was modified Krebs Hanseleit buffer

containing 118mM NaCl, 25mM NaHCO3, 11mM Glucose, 4.7mM KCl, 1.22mM MgSO4.7H2O,

1.21mM KH2PO4 and 1.84mM CaCl2.2H2O. After preparation the buffer was filtered as even small

quantities of particulate contaminants can cause microemboli and consequently affect infarct sizes.

An O2/ CO2 mixture (95% O2 / 5% CO2) is bubbled through the modified Kreb’s medium maintaining

O2 and CO2 concentration at physiological levels. pH was checked with a blood gas analyser and

maintained at 7.42 +/- 0.2. The buffer was pumped through a coiled tube and re-circulated through

the heater water jacket. It then perfuses the heart coronary circulation via a 20 G murine canula to
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which the mouse heart aorta is tied. The mouse heart attached via its aorta to the canula (Fig. 11)

was submerged in a heated glass chamber carrying warmed modified Kreb’s medium to maintain its

temperature at 37.0 +/- 0.5 °C. The perfusion pressure was constantly monitored via a transducer

and fixed between 80 and 90 mm Hg. A balloon mounted on a blunted hollow needle was inserted

into the Left ventricular (LV) cavity (Fig. 11) to monitor the heart rate , LV peak pressure(LVPP), LV

End Diastolic Pressure (LVEDP) and Rated Pressure Product [HR x (LVPP-LEEDP)]. Both glass

chambers containing perfusion buffer were connected to the perfusion canula and it was possible to

switch between the two for instance for pharmacological interventions. Ischaemia was simulated

simply by switching off the perfusion pump, which made the whole heart ischaemic. The setup

constantly adjusted the buffer flow rate to keep the pressure fixed in the target range. Flow-rate was

calibrated at the beginning of the experiment by measuring the amount of buffer coming though the

canula in one minute at a certain flow rate and the set-up was then able to constantly calculate the

flow rate though out the experiment. Similarly the perfusion pressure and LV transducers were

calibrated every day before the start of experiments.

2.5 Model Characterization

2.5.1 Technique

Mice were given terminal anaesthesia using 0.01ml/g intra-peritoneal injection of a mixture of

Ketamine (10mg/ml), Xylazine (2mg/ml) and Atropine (0.06mg/ml). Mice were also administered an

intra-peritoneal injection of 500 units of unfractionated heparin to prevent formation of intra-

vascular clots which can obstruct coronary flow. Deep anaesthesia was confirmed by checking for

complete loss of feet pad reflexes prior to heart excision. After confirmation of anaesthesia, skin

overlying the thorax and upper abdomen was removed exposing the thoracic cage. Clamp-shell

thoracotomy was performed to expose the underlying heart and lungs. All the lung lobes were

removed quickly. Descending aorta and inferior vena cava were identified and cut. The heart was

then excised by lifting the cut end of the above mentioned vessels. Using a fine scissor, the heart
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was mobilized out of the thoracic cavity cutting off any connective tissue between the heart and the

rest of the thoracic viscera. The heart was then placed on a tray filled with ice-cold Modified Kreb’s

medium to induce immediate cardioplegia thus minimizing any hypoxic injury to the heart. The

aorta was trimmed and mounted on a 20 G murine canula using 4-0 silk sutures and attached to the

ADInstruments fixed –pressure system. The hearts were perfused at a constant pressure of 80- 90

mm of Hg. All hearts with an ischaemic period of greater than 5 minutes (between the termination

of normal corporeal circulation and the start of perfusion of the mounted heart with Kreb’s were

discarded. This was to prevent any unintentional pre-conditioning in this initial period.

2.5.2 Inclusion /Exclusion criteria

To ensure all experiments were carried out in standardized conditions and to reduce variability,

following exclusion criteria were used and adhered to strictly:

- Time to perfusion >5 minute

- Coronary Flow Rate < 1ml/min or > 6.5 ml/min

- Heart Rate <300 beats/min

- Sustained arrhythmia lasting > 3minutes

All Langendorff studies began with an initial stabilization period during which hearts were strictly

monitored for the exclusion criteria. Hearts were subjected to a wide range of pre-conditioning

protocols and pharmacological interventions using this standardized model. Individual experimental

protocols are described in the results section to prevent duplication.
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2.5.3 Measurement of Infarct Size

Infarct sizes in the hearts were measured using triphenyltetrazolium chloride (TTC) staining and

planimetry analysis. At the end of the period of reperfusion the hearts were perfused with 5 ml of

1% TTC warmed to 37.0 °C via the canula on which the aorta is mounted. Hearts were then

submerged in TTC maintained at 37.0 °C in a water bath for a period of 20 minutes. The hearts were

then weighed and frozen at -20 °C for later analysis.

Hearts frozen at -20 C were cut into thin slices while still frozen, typically 5-7 slices each around 1mm

in thickness and fixed in 10% Formaldehyde solution overnight. With the TTC staining infarct area

appears pale white whereas the viable heart area appears bright red (Fig. 12). Viable cells are able

to retain TTC and the intracellular dehydrogenases reduce TTC in the presence of NADPH giving the

viable tissue a red colour. Non viable cells with ruptured membranes are unable to retain TTC and

lose their dehydrogenases. Hence the infarct tissue remains unstained. Exact infarct size in each

heart slice was accurately quantified by taking pictures of each slice using a perspex mounting block

and a digital EsKape(Eskape, NY, USA) fixed camera. The images are analysed using the NIH image

1.63 software with a macro program written specifically for this purpose and validated by Dr. Rob

Bell, a former PhD student and currently a Lecturer at The Hatter Institute (Fig. 13).
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Fig 12. Pictures of heart slices stained with TTC and fixed in formaldehyde showing on the left a
control heart slice with substantial pale white infart area and on right a preconditioned heart slice
showing predominantly dark red viable myocardium

Fig 13. Planimetry analysis using the NIH image software to accurately quantify the total slice area
and area of infarction
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Total infarct percentage in the heart is calculated after adding up the total slice areas of all heart

slices and the total infarct areas of all the slices.

2.5.4 Freeze Clamping for Western Blot analysis

Whole hearts for western blot analysis were freeze-clamped with liquid nitrogen at the end of the

experimental protocol and stored at -80 C for western blot analysis.

2.6 Establishing breeding colony for ESMIRO mice

2 ESMIRO breeding pairs were gifted by Prof Kearney from Leeds University. On genotyping,

Breeding pair 1 comprised of TG+/- (ESMIRO) male and female mice and pair 2 comprised of wildtype

(WT +/+) male and female mice. The PCR reaction protocol for genotyping was provided by Prof.

Kearney’s group. This shows the presence or absence of the ESMIRO gene mutation but it was not

possible to determine if the animals were homozygous or heterozygous for the ESMIRO gene with

this protocol. Hence the initial pairs were shuffled to have in each breeding pair one mouse

heterozygous for the ESMIRO gene mutation and one wildtype mouse. Pairing a heterozygous

ESMIRO mouse with a wildtype mouse in the breeding pair ensured that all the ESMIRO mice used in

the studies were consistently heterozygous. A breeding colony was set-up in the UCL biological

services unit. Further breeding pairs and triplets were established from subsequent litters. Both

male and female mice were used. All the ESMIRO mice used for the studies were heterozygous for

the insulin receptor gene mutation. Prof. Kearney’s group had also used heterozygous ESMIRO mice

for the characterization of the mice and for all subsequent studies with these mice.

2.7 ESMIRO genotyping

Genotyping was carried out for the ESMIRO breeding pairs and subsequent litters to differentiate

ESMIRO mice from WT littermates. Genotyping the mice is a two step process comprising of DNA

extraction from mice ear snips and then running a Polymerase chain reaction (PCR) reaction and gel

electrophoresis to identify the genotype .
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2.7.1 DNA Extraction

Two different techniques were used for DNA extraction from mice ear snips.

Initially DNA extraction was done using Qiagen DNeasy kit (Qiagen, UK). This involved the following
steps:

1. Ear snips were placed in microcentrifuge tubes

2.  180 μL of Buffer ATL and 20 μL of Proteinase K was added to each sample  

3. Samples underwent 5 mins of vortexing twice

4. Samples were then incubated overnight at 55 OC in an oven for lysis of tissue and release of

DNA from tissue sample

5. Samples were vortexed next morning and then 400 μL of 50:50 mix of Buffer AL and ethanol 

was added and mixed well

6. Samples were transferred into DNeasy Mini spin columns placed in 2 ml collection tubes

7. Spin columns in collection tubes were centrifuged at 8000 rpm for 1 min

8. Spin columns were then transferred to a new collection tube and 500 μL of Buffer AW1 was 

added

9. Spin columns in collection tubes were centrifuged further at 8000 rpm for 1min

These centrifugation steps ensured that DNA gets bound to spin columns and impurities are

collected in the collection tubes and discarded

10. Spin columns were then placed in new collection tubes and 500 μL of Buffer AW2 was added 

11. Spin columns in collection tubes were centrifuged at 14000 rpm for 3 minutes. This step

ensures that all ethanol is removed from the spin columns as it can interfere with further

steps

12. Spins columns were now placed in Eppendorf tubes and 100 μL of Buffer AE was added  

13. Samples were centrifuged further at 8000 rpm which allowed DNA bound to spin column

membrane to elute into the appendorf tubes.

14. Appendorfs were stored at -80 OC for genotyping
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Subsequently Direct PCR Lysis kit (Bioquote Limited, UK) was used for DNA extraction. This

comprised of the following steps:

1. Ear snips were placed in microcentrifuge tubes.

2. To each sample 180 μL of Direct PCR Lysis reagent and 20 μL of Proteinase K were added 

followed by incubation overnight at 55 OC for lysis of tissues and release of DNA.

3. Samples were vortexed next morning and incubated at 85 OC for 45 minutes to make

Proteinase K inactive

4. Samples were centrifuged at 14000 rpm for 10 seconds and then the supernant was

separated and stored at -80O C for genotyping

Using the Direct PCR Lysis kit involved no purification steps. However on two occasions the DNA

obtained by Direct PCR Lysis kit did not provide clear results with genotyping and hence samples

were purified with Qiagen DNeasy kit yielding better results.

2.7.2 PCR reaction for genotyping

2.7.2a Overview

Polymerase chain reaction allows exponential amplification of a DNA sequence and can be used for

genotyping of animals to establish the presence or absence of a gene/ DNA sequence. Mouse DNA is

extracted from ear snips as explained above. DNA Primers which are complementary to the

gene/DNA sequence to be amplified are required for PCR. For the ESMIRO mice, primers for

genotyping were provided by Prof. Kearney’s group along with a standardized protocol which was

further optimized for the PCR kit used at the Hatter institute.

ESMIRO genotyping primers were as follows:

Forward 5’-TGGCAGCTTTCCCCAACACT-3’

Reverse 5’-CCGTTCCTCAGGGGTGTCC-3’

The product was about 200 bp in size.
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Additionally there were GAPDH primers as follows:

Forward 5’-CGTAGACAAAATGGTGAAGG-3’

Reverse 5’-GACTCCACGACATACTCAGC-3’

The GAPDH product was around 300 bp in size.

The GAPDH primers generated a band distinct from the ESMIRO primers and acted as a positive

control to show that DNA was present. All the primers were added together in the same reaction.

Following steps were followed for the PCR reaction:

1. PCR reagents were thawed and vortexed. All reagents were kept on ice (especially the Taq

enzyme).

2. A master mix was prepared for the number of DNA samples to be genotyped and additional
master mix was prepared for a sample containing H2O only (to act as -ve control to show lack
of contamination). An extra 10% was made to allow for loss during pipetting.

3. Master mix composition was as follows:

Per well per 5 wells Reagent

2.0  μl    10 μl   Qiagen 10x PCR buffer CL 

0.4  μl      2 μl   10 mM dNTP’s (giving 200uM final conc) 

0.5  μl   2.5 μl   ESMIRO-F primer 

0.5  μl   2.5 μl   ESMIRO-R primer 

0.2  μl      1 μl   GAPDH-F  primer 

0.2  μl      1 μl   GAPDH-R  primer 

0.2  μl      1 μl   Taq polymerase 

15   ul    75 μl  distilled water 

19 μl of master mix was added per PCR tube. 

1 ul of each DNA sample (or H2O) was pipetted into each tube, making sure that all ingredients were

at the bottom of the tube.
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2.7.2b PCR protocol

PCR tubes containing the master mix and DNA from respective samples were subjected to a PCR

protocol as follows:

(35 cycles, 57 °C annealing temperature and 30 seconds extension). PCR machine with heated lid

was used to prevent evaporation of samples. Qiagen (UK) PCR kit was used for the PCR reaction.

Step Temperature/duration Purpose

1 94 °C for 5 min Initial denaturation/separation of
dsDNA

2 94 °C for 30 s Separate double stranded DNA

3 57 °C for 30 s Annealing of primers

4 72 °C for 30 s Optimum Taq temp for DNA synthesis)

5 go to step 2 x 34 cycles (Amplification)

6 72 °C for 7 min

7 4 °C for ever

Table 1. The ESMIRO PCR protocol

2.7.2c Analysis of PCR products with 2% agarose gel

PCR products were analysed using a 2% agarose gel. Agarose gel was prepared with 2 g agarose

(ultrapure DNA grade agarose) added to 100 ml of 1x TAE buffer ( Tris, Acetate, EDTA buffer) in a

250ml flask. [Tris acetate (TAE) buffer 50x in 1 Litre (Working concentration = 0.04M Tris acetate +

0.001M EDTA) was made as follows : 242gTris base was added to 57.1ml glacial acetic acid in 100ml
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of 0.5M solution of EDTA (pH 8). This was made up to 1 L with distilled water and diluted 50 times as

required to make 1x solution.]

Steps involved in agarose gel electrophoresis and analysis of PCR amplification products are as

follows:

1. Flask with agarose and TAE was microwaved for 90sec on a high setting to dissolve the agarose.

2. The flask was carefully removed and left on bench to cool to ~60-70 °C.

3. Agarose gel plate was prepared by sealing ends and adding well forming comb.

4. 1 μl of SYTO60 was added and mixed by swirling taking care not to introduce bubbles. SYTO 60 is 

a nucleic acid stain that gives out a bright red fluorescence on binding with nucleic acids. SYTO60

dye gave better results with the Odyssey Scanner compared with conventional techniques using

the ethidium bromide dye.

5. Flask contents were poured slowly into the agarose gel plate.

6. Any bubbles were removed with a 200ul tip.

7. When cooled and set, sealing tape was removed and gel plate placed in gel tank.

8. Agarose gel plate was completely covered in 1x TAE and well forming comb was removed

9. 15 ul of each PCR reaction was pipetted into the wells

10. 6 ul of DNA ladder was pipetted into last well

11. Agarose gel was run at 120 V for ~60 min.

12. Agarose gel was carefully removed and scanned at 800nm on an Odyssey reader

The PCR amplification product resulting from the primers targeted towards the ESMIRO gene was

seen at around 200 bp in the ESMIRO transgenic mice. This amplification product was absent in the

wildtypes. The PCR amplification product resulting from the GAPDH targeted primers was present in

all samples containing DNA at around 300bp. This is shown in Fig. 14.
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Fig 14. Scan showing from Left to Right: Lane 1 DNA ladder (L1), Lane 2 and 3 (L 2-3): Presence of

PCR amplification product resulting from primers targeted to identify the ESMIRO gene (middle

band) along with the PCR amplifcation product from GAPDH targeted primers (Top band) suggestive

of ESMIRO transgenic genotype , Lane 4 and 5 (L 4-5): The absence of the PCR amplification product

from primers targeted to identify the ESMIRO gene and the presence of the PCR amplification

product resulting from GAPDH targeted primers suggestive of wildtype phenotype, Lane 6 (L6) –ve

control with H20 only showing primer-dimer reaction at the bottom and no PCR amplification

products.

2.8 Western Blotting

Western blotting is a technique used to quantify and compare the amounts of a protein of interest in

a variety of tissue samples. Western blot analysis involved the following steps:
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2.8.1 Sample Collection

1. Whole heart samples perfused in a Langendorff mode were cut off below the level of the

atrial appendages at the end of the experimental protocol and dropped into an aluminium

foil. These were freeze-clamped with liquid nitrogen.

2. The samples are kept frozen at -80 degrees celcius till ready for being processed for western

blot analysis.

2.8.2 Tissue homogenisation and protein quantification

The next step involved lysis of whole heart samples to release their protein content and then to

homogenize the tissue samples. As soon as lysis has taken place proteolysis and dephosphorylation

of proteins starts. This is inhibited by keeping the samples frozen until the addition of a suspension

buffer with a protease and phosphatase inhibitor cocktail that stops these processes. Heart samples

were homogenized after adding 500 μL suspension buffer to each sample kept on ice. The 

suspension buffer contains NaCl (100 mM), Tris (10 mM, pH-7.6), Halt Protease inhibitor cocktail

with EDTA (Thermoscientific Pierce catalogue no. 78438) and Halt phosphatase inhibitor cocktail

(Thermoscientific Pierce catalogue no. 78427).

Homogenization was done using a polytron homogenizer. Homogenized samples were centrifuged at

10000 rpm for 10 mins. Following centrifugation 10 μL of the supernatant was taken for 

Bicinchoninic Acid (Sigma, UK) protein assay to measure protein concentration in each sample.

Western blotting uses antibodies directed against a specific protein to measure the amount of that

protein in the tissue sample. The antibodies are targeted against a specific sequence of the protein

and hence it is necessary to unfold the proteins in the tissue sample to facilitate binding of the

antibodies to their target. This is done by using a loading buffer called Laemmli buffer that contains

an anionic denaturing detergent sodium dodecyl sulfate (SDS).
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The supernatant after the centrifugation step mentioned above is mixed with equal quantities of

Laemmli buffer (Sigma catalogue no. 38733), boiled for 10 mins at 100oC and then stored at -80 oC

until use. Protein concentration in each heart sample needs to be accurately measured to allow for

equal quantities of protein to be loaded for western blotting. This is done using the BCA protein

assay.

This involves formation of a Copper-protein complex and subsequent reduction of Cu++ to Cu+. The

peptide bonds in proteins are able to reduce Cu+2 to Cu+1. The amount of reduction of Cu is

proportional to the quantity of protein in each sample. Reduced Cu forms a complex with BCA

which is purple coloured and has an absorption maximum at 562 nm189. The absorbance at 562 nm is

directly proportional to the protein concentration and can be measured with a spectrophotometer.

This allows the determination of the protein content in the tissue samples by comparison with a

standard curve of absorbance (Fig. 16) against protein concentration generated by using incremental

concentrations of a standard Bovine Serum Albumin (BSA) stock solution.
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Table 2. BCA Protein assay plate : Duplicates/Triplicates of each sample are taken to ensure there is

no significant variation, A to E : Using increasing concentrations of a Standard BSA stock a standard

curve of absorbance is generated allowing quantification of proteins in the study samples (Unknown

1-n) by comparing their absorbance levels

After adding the reagents and proteins as shown in Table 1, 200 microlitres of BCA protein reagent

[10 ml of BCA (Sigma-Aldrich catalogue no. B9643-1L):200 uL of Cu2So4 ( Sigma-Aldrich catalogue no.

C2284)] is added to each well and the 96 well plate is then put in a shaker oven at 37oC for 30 mins

before being read in the Omega 96 well (BMG-Labtech) plate reader (Fig. 15).

Elisa plate

triplicates

Elisa plate

triplicates

Elisa plate

triplicates

A A A

9 µl of water + 1 µl of suspension buffer +

0 µl of BSA

B B B

7 µl of water + 1 µl of suspension buffer +

2 µl of BSA

C C C

5 µl of water + 1 µl of suspension buffer +

4 µl of BSA

D D D

3 µl of water + 1 µl of suspension buffer +

6 µl of BSA

E E E

1 µl of water + 1 µl of suspension buffer +

8 µl of BSA

unknown1 unknown1 unknown1

9 µl of water + 1 µl of sample1 in

suspension buffer

unknown2 unknown2 unknown2

9 µl of water + 1 µl of sample2 in

suspension buffer

unknown3 unknown3 unknown3

9 µl of water + 1 µl of sample3 in

suspension buffer
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Using a standard excel sheet template, the amount of each sample to be loaded to the gel for

western blot analysis is calculated.

Fig 15: Measurement of protein concentration in each sample using BCA assay to determine quantity
of sample to be loaded in each lane for Western Blots

Fig. 16 Standard protein curve generated using increasing quantities of BSA to calculate protein
concentration in each sample and the amount of sample to be added to each western blot lane to
ensure equal protein loading

SampleTreatment Abs A Abs b Abs C Mean Abs SD ug in 1ul ul for ug *2 due to sample buffer

1 Unknown 1 0.643 0.74 0.000 0.692 0.069 6.97 4.30 8.61 CWT1

2 Unknown 2 0.456 0.467 0.000 0.462 0.008 4.41 6.80 13.60 CWT2

3 Unknown 3 0.38 0.434 0.000 0.407 0.038 3.81 7.88 15.76 CWT3

4 Unknown 4 0.607 0.621 0.000 0.614 0.010 6.11 4.91 9.82 CTG1

5 Unknown 5 0.346 0.359 0.000 0.353 0.009 3.20 9.37 18.75 CTG2

6 Unknown 6 0.563 0.519 0.000 0.541 0.031 5.30 5.66 11.33 CTG3

7 Unknown 7 0.426 0.516 0.000 0.471 0.064 4.52 6.64 13.28 IPCWT1

8 Unknown 8 0.607 0.557 0.000 0.582 0.035 5.75 5.21 10.43 IPCWT2

9 Unknown 9 0.471 0.68 0.000 0.576 0.148 5.68 5.28 10.56 IPCWT3

10 Unknown 10 0.335 0.432 0.000 0.384 0.069 3.55 8.46 16.93 IPCTG1

11 Unknown 11 0.509 0.555 0.000 0.532 0.033 5.20 5.77 11.55 IPCTG2

12 Unknown 12 0.503 0.521 0 0.512 0.013 4.97 6.03 12.06 IPCTG3

13 Unknown 13 0.428 0.565 0 0.497 0.097 4.80 6.25 12.49 INWT1

14 Unknown 14 0.571 0.517 0 0.544 0.038 5.33 5.63 11.26 INWT2

15 Unknown 15 0.629 0.604 0 0.617 0.018 6.14 4.89 9.78 INWT3

16 Unknown 16 0.639 0.567 0 0.603 0.051 5.99 5.01 10.02 INTG1

17 Unknown 17 0.495 0.49 0 0.493 0.004 4.76 6.31 12.61 INTG2

18 Unknown 18 0.471 0.421 0 0.446 0.035 4.24 7.08 14.15 INTG3

19 Unknown 19 0.65 0.713 0 0.682 0.045 6.86 4.37 8.75 LYINWT1

20 Unknown 20 0.448 0.461 0 0.455 0.009 4.33 6.92 13.84 LYINWT2

21 Unknown 21 -0.004 -0.008 0 -0.006 0.003 -0.79 -38.09 -76.19 Blank

22 Unknown 22 0.685 0.731 0 0.708 0.033 7.15 4.19 8.39 LYINTG1

23 Unknown 23 0.622 0.64 0 0.631 0.013 6.30 4.76 9.53 LYINTG2

24 Unknown 24 0.471 0.507 0 0.489 0.025 4.72 6.36 12.72 LYINTG3

y = 0.0899x + 0.0648
R² = 0.9951

A
b

s
b

5
6
2
n

m

ug BSA
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2.8.3 SDS PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)

SDS denatures the proteins in the study tissue samples and imparts a uniform negative charge

density to various polypeptides in the sample. Hence when an electrophoretic current is applied

across the Polyacrylamide gel (PAGE gel) on which the tissue samples are loaded, proteins in the

sample migrate and are separated along the length of the gel based on their molecular weight.

Polyacrylamide gels are made by polymerization of acrylamide and N,N-methylene bis-acrylamide.

The polymerization takes place after addition of ammonium persulfate (APS) and

tetramethylethylenediamine (TEMED). The polyacrylamide gel has uniform pores in a 3D matrix that

allow migration of proteins along an electrical gradient that is applied across the gel.

The steps involved are as follows:

Glass plates in pairs were stacked vertically and filled with a 12.5% running gel (consisting of 12.5%

acrylamide, 0.4M Tris, 0.1% SDS, 0.1% TEMED and 0.05% APS). A 5% stacking gel (consisting of 5%

acrylamide, 0.125M Tris, 0.1% SDS, 0.2% TEMED, 0.1% APS and 0.02% bromophenol blue) is then

poured on top of the running gel with plastic combs in place to create wells for protein loading. Gels

are allowed to set. Standard precision plus protein dual colour marker (BioRad, UK) is loaded onto

the first well in the stacking gel followed by equal quantities of protein from each of the study

samples based on the BCA protein assay. Gels are submerged in 1x running buffer (10x = 144.2g

glycine, 10g SDS, 30.3g Tris in 1 litre of dH20) and a 200V electrical gradient is applied across the gels

leading to migration of proteins based on their molecular sizes. Bromophenol Blue in the stacking gel

migrates the fastest of all components and allows visualization of the protein migration front. Once

the bromophenol blue has reached the bottom of the gel, current is turned off.
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2.8.4 Protein Transfer

Once separated on the polyacrylamide gel, the proteins are transferred onto a nitrocellulose

membrane (GE Healthcare Hybond ECL Nitrocellulose Membrane) using an electrical gradient. The

gel containing the separated proteins is sandwiched with the nitrocellulose membrane in contact

with it between wet Whatman papers ensuring that there are no air bubbles as well as that there is

no separation between the gel and the membrane. These are locked in a cassette surrounded by

sponge sheets in a transfer tank with 1X transfer buffer. 100 mA (0.1 Amps) current is applied across

the gel overnight leading to migration of protein from the gel towards the positive electrode on to

the nitrocellulose “blotting ” paper that traps the proteins. Protein transfer is confirmed by staining

the membrane with ponceau red stain as shown below (Fig. 17).

Fig 17. Nitrocellulose membrane stained with ponceau red stain after protein transfer from
polyacrylamide gel showing protein separated in bands based on molecular size. Each column
represents one of the study samples. 2 multicolored lanes represent the protein markers
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2.8.5 Protein Quantification

Protein quantification via western blotting relies on antibody binding to the target protein. The more

selective the binding, the more accurate is the quantification. The nitrocellulose membrane used for

protein transfer has the capacity to non-selectively bind with the antibodies used in the western blot

process. A Blocking buffer [5% marvel milk in 1x Tris buffered saline (TBS) containing 0. 1%Tween20

(TBS-Tween20) (10x TBS = Tris base 24.2g, NaCl 80.0g, pH7.60)] is used to prevent non-specific

binding of the antibodies to the membranes. The membranes were incubated initially with primary

antibodies directed towards the protein of interest followed by washes with TBS-Tween 20 and then

again incubated with secondary antibodies directed against the primary antibodies. Membranes

were again washed with TBS-Tween 20. Protein quantification was then carried out using the ECL

technique or using a Licor odyssey scanner.

Western Blot protocol used for measurement of levels of total BNIP3, carboxy terminal end of BNIP3

and phosphorylated BNIP3 is as follows:

1. Membranes were initially blocked with 5% blocking buffer for 2 hrs to saturate the non-selective

binding sites on the membrane. The membranes were then washed 3 times with 1x TBS

Tween20.

2. Primary and secondary antibodies were also made in blocking buffer. The membranes were

immersed in blocking buffer containing BNIP3 primary antibodies as following :

a. Anti-BNIP3 antibody (ab38621, Abcam UK), Rabit polyclonal to BNIP3, Peptide selected

from within the aa 1-100 (BH3) domain of human NIP3 – 1:100 concentration



MD (Res) Thesis- Vikram Sharma

89

b. Anti-BNIP3 antibody - Carboxyterminal end (ab65874, Abcam Uk), Rabbit polyclonal to

BNIP3 - Carboxyterminal end, corresponds to a sequence near the C-terminal of human

BNIP3 - 1:2000 concentration.

c. Anti-BNIP3 (phospho S95) antibody (ab83940, Abcam UK) , specific for phosphorylation

at Serine 95- 1: 2000 concentration

d. Anti-alpha Tubulin antibody [DM1A] - Loading Control (ab7291, Abcam UK )- 1:5000

3. Membranes were kept immersed in the blocking buffer with the primary antibodies for 2 hrs

followed by 4 washes with 1xTBS Tween 20.

4. Secondary horseradish peroxidise antibody for ECL analysis, directed against rabbit polyclonal

BNIP3 primary antibodies was prepared in 1:1000 concentration. The membranes were then

immersed in the blocking buffer with secondary antibody for 1 hr. This was again followed by 4

washes with 1xTBS Tween 20 for 15 min each.

The membranes were then analysed by using ECL technique.

2.8.5a ECL (enhanced chemiluminescence) Technique for protein quantification

Membranes were put in Healthcare ECL reagent and then transferred into saran wraps. These were

processed further in a dark room. Membranes were put in close contact with ECL Hyperfilm (GE

Health care, UK). The secondary antibody is attached to a horseradish peroxidase, which reacts with

the chemiluminescence agent to produce lumiscence. The Hyperfilm generates a black band after

incubation in a developer and fixer solution which is proportional in density to the amount of

luminescence generated by the secondary antibody attached to the membrane. This reflects the

quantity of protein under study that is present in a given quantity of the total tissue sample. This

allows for comparison of the level of protein under evaluation between samples. The photofilm can
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be scanned and then analysed using Image J software which allows an accurate quantification of the

size of the protein band in various samples and this can be subjected to statistical analysis.

Membranes were stripped to remove the primary and secondary antibodies using Restore Plus

Western blot stripping buffer (Thermo Scientific, USA) for 4.5 min followed by 3x 5 min washouts

with 1xTBS Tween 20. The membranes were then incubated with primary antibody for α-Tubulin 

(1:5000 concentration) followed by secondary antibody. Protein loading in each membrane was

quantified using ECL technique as above to allow for normalization of measured quantities of protein

of interest based on the total amount of protein loaded in each sample.

2.8.5b Western Blot Protocol for measurement of BNIP3, AKT and PRAS40 phosphorylation using

the Odyssey Scanner

This involved the following steps:

1. An initial 1 hr blocking period with 5% blocking buffer was used followed by washes as

mentioned above.

2. Following primary antibodies were used made up at the specified concentrations in blocking

buffer [5% marvel milk in 1x Tris buffered saline (TBS) containing 0. 1%Tween20 (TBS-

Tween20)] and incubated with the membranes for 3 hrs followed by 3x 10 min washouts

with 1xTBS-Tween 20:

a. Akt (pan) (C67E7) Rabbit mAb (Cell Signaling cat. no. 4691) -1:1000

b. Phospho-Akt (Ser473) antibody (Cell Signaling cat. no. 9271S) - 1:1000

c. PRAS40 Rabbit antibody (Cell Signaling cat. no. 2610S) -1:1000

d. Phos-PRAS40 (Thr246) C77D7 (Cell Signaling cat. no. 2997S) - 1:1000

e. Anti-alpha Tubulin antibody [DM1A] - Loading Control (ab7291, Abcam UK )-

1:10,000
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f. Anti-BNIP3 antibody (ab38621, Abcam UK), Rabbit polyclonal to BNIP3, Peptide

selected from within the aa 1-100 (BH3) domain of human NIP3 – 1:100

g. Anti-BNIP3 (phospho S95) antibody (ab83940, Abcam UK) - 1: 2000

3. Membranes were incubated with secondary fluorescent antibodies at the specified

concentrations (made up in blocking buffer) for 1 hour :

a. Anti-rabbit fluorescent secondary (green) - 1 in 20000 dilution

b. Anti- mouse fluorescent secondary (red) – 1 in 40000 dilution

4. This was followed by 2 washes for 10 mins each with TBS- Tween and 1 wash with TBS only

for 10 min

5. The membranes were then analysed using the Odyssey Licor IR scanner to quantify the

proteins being studied as well as to measure protein loading with α-Tubulin. 

Signal intensity (measured in arbitrary units) was measured for each sample in all the groups and

normalized to the signal intensity of tubulin to take into account the protein loading in each

lane.

2.9 Statistical Analysis

Statistical analysis was carried out with the SPSS software (IBM SPSS statistics 20). Graphs were

generated using the GraphPad PRISM 5 software. 1 way ANOVA was used to identify statistical

significance in groups and Bonferroni post test analysis was carried out to compare between

individual groups.
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3. RESULTS

3.1 Model characterization and establishing the pre-conditioning protocol

It was first necessary to establish a preconditioning protocol. Male C57BL/6J mice ordered from

Charles River (UK) and maintained at UCL biological services were used as study animals for this

purpose. The Langendorff isolated mouse heart model has been well characterised in the Hatter

Institute and a standard protocol for stablization, ischaemia and reperfusion was already in place at

the Hatter institute. Using the standard ischaemia/reperfusion protocol involving 35 min ischaemia

and 30 min reperfusion, isolated mice hearts were subjected to 2, 4 and 6 cycles of ischaemic

preconditioning, each cycle comprising of 5 mins of ischaemia and 5 mins of reperfusion. Sham

hearts were just perfused without any ischaemia/reperfusion for 2 hours to establish if perfusion

with the Langendorff system itself for the duration of the experimental protocols itself caused any

infarct in the heart (Fig 18).

A. SHAM – perfusion only for 2 hrs

B. IR – Stabilization 55 min, ischaemia (represented in black)35 mins (I), reperfusion 30
mins(R)

C. IPC 2 cycles – Stabilization 35 min, IPC 2 cycles with 5 min ischaemia and 5 min
reperfusion each followed by IR

D. IPC 4 cycles - Stabilization 15 min, IPC 4 cycles with 5 min ischaemia and 5 min
reperfusion each followed by IR

E. IPC 6 cycles - Stabilization 15 min, IPC 6 cycles with 5 min ischaemia and 5 min
reperfusion each followed by IR

Fig 18. Preconditioning characterization comparing control hearts exposed to lethal
ischaemia and reperfusion (IR) without preconditioning against hearts exposed to 2,4 or 6
cycles of preconditioning prior to lethal IR
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Table 3. Phenotypical characteristics of the C57BL6 mice used for establishing the ischaemic
preconditioning protocol using the Langendorff isolated perfused heart model

Fig 19. Mean infarct sizes in the C57BL6 mice comparing the sham, control and IPC subjected hearts
(using 2,4 and 6 cycles of preconditioning). There was progressive reduction in infact size in the
isolated perfused hearts subjected to lethal IR after 2 and 4 cycles of preconditioning compared with
control hearts. Protection was lost with further increase in the number of IPC cycles to 6

Groups

Characteristics

Sham IR IPC 2

cycles

IPC 4

cycles

IPC 6 cyles Statistial

Significance

Age (weeks) 7-17 7-16 9-13 7-13 8-13 ns

Weight (g) 24.47+/-

0.8

27.28+/-

1.6

23.97+/-

1.0

27.44+/-

0.8

23.25+/-

0.6

ns

Weight of isolated

hearts (g)

0.128+/-

0.008

0.136+/-

0.006

0.134+/-

0.005

0.132+/-

0.006

0.127 +/-

0.007

ns
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The mean infarct size in the sham group (n=3) subjected only to perfusion for 2 hours was 5.6+/-

0.9% (Fig. 19). The mean infarct size in the IR group (n=7) subjected to 35 mins of ischaemia and 30

minutes of reperfusion after a stabilization period was 41+/- 5.8 % (Fig. 19). Significant reduction in

infarct size was seen in the group given 4 cycles of preconditioning (n=7). The mean infart size in this

group was 17.9 +/-3.6 % (p=0.0009, 1 way Anova, significant for IR Vs IPC 4 cycles) (Fig. 19). There

was also a non-significant trend towards reduction in infarct size in the group subjected to 2 cycles

of pre-conditioning (n=6) prior to lethal IR with the mean infarct size in this group being 29.4+/- 5.3

%(Fig. 19). Further increasing the number of cycles of preconditioning to 6 cycles led to the loss of

the cardioprotective effects that had been seen with 4 cycles of pre-conditioning (Fig. 19). In this

group subjected to 6 cycles of preconditioning prior to lethal IR (n=4), mean infarct size was 44.8+/-

7.7 % similar to that seen in the IR group (Fig. 19). Thus, in the C57BL/6J mice 4 cycles of

preconditioning were needed to maximally protect the heart against IR injury, though 2 cycles of

preconditioning also protected the heart to some extent. Further increase in cycles of

preconditioning led to loss of cardioprotection suggesting that the cumulative effect of sublethal

ischaemia may overcome the benefitial cardioprotective effects seen due to upregulation of

cardioprotective RISK pathway due to preconditioning. The IPC protocol involving 4 cycles of IPC

which offered maximum protection against IR injury in the C57BL/6J mice was used to next assess

the effect of preconditioning on post-translational modification of BNIP3 using western blot

analysis.
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3.2 Effect of pre-conditioning on the post translational modification of BNIP3 :

Hearts from C57BL/6J mice were isolated and subjected to perfusion in a Langendorff mode. Hearts

were divided into 4 groups as follows (Fig. 20) :

– Group 1 (Baseline) Subjected to stabilization for 15 mins

– Group 2 (IPCx4) Subjected to stabilization followed by 4 cycles of preconditioning

(No lethal ischaemia/reperfusion)

– Group 3 (IR) Subjected to stabilization followed by 35 minutes of ischaemia and 5

minutes of reperfusion

– Group 4 (IPCx4+IR) Subjected to 4 cycles of preconditioning after stabilization, followed

by 35 minutes of ischaemia and 5 minutes of reperfusion

Hearts were only reperfused for 5 min post lethal ischaemia to minimize the extent of myocardial

infarction due to reperfusion as this can lead to falsely lower levels of protein of interest measured

by western blot analysis as altered protein levels may be detected in the infarct area. It is known

that activation of cardioprotective pathways takes place within first few minutes of reperfusion and

hence 5 mins is considered to be sufficienct period of time for this model to activate the RISK

pathway.

At the end of the experimental protocol, whole hearts were freeze clamped for western blot

analysis. Western blot analysis was carried out using antibodies to total BNIP3, phosphorylated

BNIP3 and to the carboxy terminal end of BNIP3 as mentioned in Chapter 2. Antibody to the carboxy

terminal end of BNIP3 was used in addition to antibody for total BNIP3 as the –COOH is the crucial

end of BNIP3 that plays an integral role in dimerization and binding of BNIP3 to the mitochondrial

outer membrane. Hence this may be a target for post-translational modification by preconditioning

independent of changes in the total amount of BNIP3 protein.
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Table 4. Phenotypical characteristics of the C57 mice used for western blot analysis comparing the
levels of total BNIP3, carboxy-terminal end of BNIP3 and phosphorylated BNIP3 at baseline, after 4
cycles of IPC (prior to IR), IR without IPC and after 4 cycles of IPC followed by IR

Preliminary results obtained with the above mentioned protocol are presented here. The western

blot scans are shown in Fig. 21(i-iii). Densitometry analysis was carried out for these blots. For total

BNIP3 , only one band was observed at 60 kDa representing the dimeric form of BNIP3. Typically

two bands are noted with western blotting for BNIP3 corresponding to the dimeric and monomeric

forms of BNIP3. However, the anti-BNIP3 antibody used ( Abcam anti-BNIP3 antibody ab38621) did

Groups

Characteristics

Baseline IPC 4 cycles IR (no IPC) IPC 4 cyles+

IR

Statistical

significance

Age (weeks) 10-13 9-13 11-13 11-13 ns

Weight (g) 24.4 +/-2.2 25.3+/-2.0 23.98 +/-1.4 25.8+/-1.4 ns

Fig 20. Hearts were freeze clamped with liquid nitrogen at various time points to investigate the role

of preconditioning in post-translational modification of BNIP3. A. Stabilization for 15 min (n=4) B.

Stabilization followed by 4 cycles of IPC (n=4) C. Stabilization 55 min followed by 35 min ischaemia

and 5 min reperfusion (n=4) D. Stabilization followed by IPC 4 cycles followed by 35 min ischaemia

and 5 min reperfusion

Freeze-clamped with liquid N2 for western blot analysis

A.

B.

C.

D.
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not produce the band for monomeric BNIP3, though two bands at 30 and 60 kDa were identified

using the antibody for the carboxy terminal end of BNIP3 (Abcam ab65874). The two antibodies are

targeted towards different epitopes on the BNIP3 protein. The anti-BNIP3 antibody (ab38621)

recognises a peptide sequnce in the BH3 domain of human NIP3 (located at aa 1-100) whereas the

antibody used to assess the changes in the carboxy terminal end of BNIP3 (ab68574)identifies a

sequence located at the carboxy terminal end of BNIP3 (aa 176-193). The absence of the 30 kDa

band with the antibody used to assess changes in the total BNIP3 suggests that this antibody was

able to interact with the monomeric form of BNIP3 protein to a lesser extent than its dimeric form.

This is an important limitation as the absence of a band for monomeric form of BNIP3 with the

antibody for total BNIP3 makes the analysis of changes in total BNIP3 with this antibody less reliable

as it was not possible to ascertain whether the changes in the total quantity of the monomeric form

of BNIP3 were also similar to the changes in the dimeric form. Also, while the 60 kDa band obtained

with the antibody directed towards the carboxy-terminal end of BNIP3 can be reliably compared

with the 60kDa band obtained for total BNIP3, similar comparison of the changes in the 30 kDa band

for the carboxy-terminal end of BNIP3 with the 60 kDa band for total BNIP3 may not be entirely

valid. These limitations must be considered before interpreting the results presented in this section.

Total BNIP3 levels (measured through densitometry analysis of the 60kDa band observed for total

BNIP3) in groups 1 to 4 were 0.37+/- 0.06, 0.4+/- 0.03, 0.21+/- 0.01 and 0.34 +/- 0.05 arbitrary units

respectively (Fig 22). Using 1 way Anova there was no significant difference in the four goups

(p=0.6). The level of total BNIP3 in the IR group appeared lower than that seen in other groups,

though this difference was not significant statistically. The total BNIP3 levels in the IR group may

have been falsely low due to a larger volume of infarct tissue in the IR hearts.
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Fig 21iii. Western blots for carboxy terminal end of BNIP showing two bands at 60 kDa (A)
and 30 kDa (B) respectively along with the tubulin loading control band at bottom(Lanes
from left to right: 1-4 Baseline, 5-8: IPC 4 cycles (No IR), 9-12: IR (without IPC), 13-16: IPC 4
cycles followed by IR)

Fig 21i. Western blot for phosphorylated BNIP3 band seen at 40 KDa on top and tubulin
loading control at the bottom (Lanes from left to right: 1-4 Baseline, 5-8: IPC 4 cycles (No
IR), 9-12: IR without IPC, 13-16: IPC 4 cycles followed by IR)

Fig 21ii. Western blos for total BNIP3 (60kDa band) on top and tubulin loading control at
the bottom (Lanes from left to right: 1-4 Baseline, 5-8: IPC 4 cycles (No IR), 9-12: IR
without IPC, 13-16: IPC 4 cycles followed by IR)
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Fig 22i. Densitometry western blot analysis for total BNIP3 showing no significant change in total
BNIP3 after 4 cycles of IPC, IR without IPC and IR following IPC compared with baseline. Only 60 kDa
band was observed for total BNIP3 representing its dimeric form and the densitometry analysis of
this band is presented here. No band was obtained for the monomeric form of BNIP3 and hence
changes in the monomeric form of BNIP3 could not be assessed.

Fig 22ii. A. Densitometry quantification using phospho-BNIP3 antibody showing significant increase
in phosphorylated BNIP3 after 4 cycles of IPC, IR without IPC and IR after IPC compared with baseline
B. Ratio of phosphorylated BNIP3 vs total BNIP3 showing an increase in this ratio after 4 cycles of IPC
and IR following IPC compared with baseline; also this ratio is significantly higher after IR compared
with baseline and also compared with both 4 cycles of IPC and IR following IPC (Only 60 kDa band
was noted for total BNIP3 and hence this was used to assess changes in the phosphorylated
fraction of BNIP3).

A B
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Fig 22iii. A. Densitometry analysis of the 60 kDa band for the carboxyterminal end of BNIP3 showing
a significant increase after IR compared with all other group; B. Ratio of the carboxyterminal end of
BNIP3 (60kDa band) vs total BNIP3 (60 kDa band). There was a significant increase in this ratio after
IR compared with all other groups; C. Western blot analysis of 30 kDa band of carboxyterminal end
of BNIP3 also showing much higher level in the IR group compared with other groups (though not
significant p=0.06); D. Ratio of the carboxyterminal end of BNIP3 (30 kDa band) vs total BNIP3 (60
kDa band) showing a significant increase in this ratio after IR compared with other groups. It would
have been more valid to compare with a corresponding 30 kDa monomeric band for total BNIP3 but
the anti-BNIP3 antibody was unable to generate a monomeric BNIP3 band.
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Only one band was noted for phosphorylated BNIP3. This was around 40 kDa in size which is much

higher than the predicted molecular weight of BNIP3 (21.5 kDa). In studies done by other groups,

phosphorylation of the native BNIP3 has been shown to produce slower moving bands ( around 25,

30 and 40 kDa in size) for phosphorylated BNIP396;97. They postulated that multisite phosphorylation

led to formation of progressively heavier species . We were able to identify only one bands using the

phospho-BNIP3 antibody with the ECL technique (at 40 kDa). However, in experiments with the

ESMIRO mice and their wild-type littermates we were able to pick up multiple bands for phospho-

BNIP3 ( at 30, 35 and 40 kDa) using the odyssey infrared scanner, which are described in later part of

the thesis. Dimeric BNIP3 has been shown to be a phosphoprotein producing a band 60 kDa in size97.

The Abcam S95 phospho -BNIP3 antibody used did not identify the 60 kDa band for dimeric BNIP3.

In our study described above, the mean values for phosphorylated BNIP3 (40 kDa band) in Groups 1-

4 were respectively 0.46+/- 0.02, 1.12 +/-0.06, 0.89+/-0.02 and 0.97+/-0.07 arbitrary units (Fig 22).

Using 1 way Anova, there was a statistically higher quantity of phosphorylated BNIP3 detected in

each of Groups 2-4 as compared with baseline (P<0.0001) . As, the only estimation available for total

BNIP3 in these groups was the densitometry analysis of the 60 kDa band identified for total BNIP3,

we took a ratio of phosphorlated BNIP3 with the 60 kDa fraction of total BNIP3 to assess the changes

in the phosphorylated fraction of BNIP3 in the different groups. It is important to note that since

changes in the monomeric form of total BNIP3 could not be studied, these ratios may not be

completely reliable and must be considered only as an indicator of the changes in the

phosphorylated fraction of BNIP3. The ratio of the phosphorlated BNIP3 vs total BNIP3 (60 kDa band)

in Groups 1-4 was respectively 0.6 +/- 0.15, 1.17+/-0.1, 1.8 +/-0.08 and 1.24+/- 0.18(Fig 22). 1 way

Anova analysis showed that there was a significantly higher ratio of phoshorlylated BNIP3 in Groups

2-4 compared with the baseline (p=0.0005). In addition, the ratio of phosphorylated BNIP3 vs total

BNIP3 in the IR group (Group 3) was not only significantly higher than the baseline, but also

significantly higher than both groups 2 and 4. Groups 2 and 4, between themselves had no

significant difference in the ratio of phosphrylated BNIP3 vs total BNIP3. This suggests that IPC itself
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led to an increase in phosphorylation of BNIP3 compared with baseline. However, exposure to lethal

IR also led to increase in phosphorylation of BNIP3 which was significantly higher than in the

preconditioned hearts (both before and after lethal IR). This suggests that both IR and IPC are

associated with phosphorylation of BNIP3. Hence, phosphorylation of BNIP3 with IPC may not be

specific to the activation of the RISK pathways by IPC, but rather may just be a result of the sublethal

ischaemia associated with IPC as phosphorylation was also noted with IR. The antibody used was

specific for phosphorylation at the Serine 95 residue of BNIP3. There are 4 BNIP3 Serine residues (at

positions 86, 92, 93, and 95) which can be phosphorylated. It was not possible to establish with this

antibody whether there were other phosphorylation targets of IPC and IR apart from Serine 95 and

whether there was any difference in BNIP3 sites phosphorylated in response to IR compared with

those phosphrylated with IPC.

With regards to the carboxyterminal end of BNIP3 two bands were noted (Fig 21iii). The more

prominent band was at 60 kDa. A second band was noted at 30 kDa. These represent dimeric and

monomeric forms of BNIP3 respectively. Analysis of the 60 kDa band revealed a significantly higher

level of the carboxyterminal end of BNIP3 in the IR group ( Mean 1.18 +/- 0.90 arbitraty units,

p<0.0001, 1 way Anova) as compared with the baseline (Mean 0.10+/- 0.01 arbitrary units), Group 2

(Mean 0.16+/-0.06 arbitrary units) and Group 4 (Mean 0.22 +/- 0.06 arbitrary units) (Fig 22iii).

Densitometry analysis of the carboxyterminal end of BNIP3 (30kDa band) also showed a higher

level of the carboxy terminal end of BNIP3 in the IR group compared with the other groups (Fig 22iii)

though not significant statistically (p=0.06). The mean values for the carboxyterminal end of BNIP3

(30 kDa band) quantified by densitometry analysis in the Baseline, IPC (4 cycles, no IR), IR and IPC (4

cycles)+IR groups were 0.006+/-0.003, 0.027+/-0.019, 1.403+/-0.508, 0.691+/-0.553 arbitrary units

respectively. We had anticipated that the quantity of total BNIP3 may not change in the heart as the

IR protocol used is brief and there is insufficient time for expression or elimination of the protein in

this protocol. However, we had hypothesized that the carboxy-terminal end of BNIP3 itself may
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undergo modifications in response to IR. This was the rationale for using an antibody specific for the

carboxy-terminal end of BNIP3. Hence to further look at how significant the carboxy-terminal end

changes were when taking into account the measured quantity of total BNIP3 in samples, we also

calculated the ratio of the quantity of the carboxyterminal end of BNIP3 in each group against the

amount of total BNIP3 in the respective groups. This ratio was significantly higher in the IR group

compared with the other groups both for both 60 kDa and the 30 Kda bands of the carboxy-terminal

end of BNIP3 (Fig. 22iii). The ratios of the carboxyterminal end of BNIP3 vs total BNIP3 for the 60 kDa

band in groups 1-4 were 0.14+/-0.05, 0.19+/-0.09, 2.43+/-0.43 and 0.28+/-0.09 (p<0.0001)

respectively. For the 30 kDa band these ratios were respectively 0.007 +/-0.002, 0.027+/-0.018,

2.969+/-1.128 and 1.019+/-0.863 (p=0.03). It is important to note that the comparison of ratios of the

30 kDa band for the carboxy-terminal end of BNIP3 with the 60kDa band of total BNIP3 may not be

entirely valid. It would have been more appropriate to compare the 30 kDa carboxy-terminal BNIP3

band with the corresponsing monomeric total BNIP3 band. However, only one band was identified for

total BNIP3 at 60 kDa. Hence, this is used as a representative of the changes in total BNIP3, though

this can not be considered definitive without having assessed the changes in the monomeric form of

total BNIP3. A summary of the densitometry analysis of the changes in BNIP3 using the various

antibodies discussed above is presented in Table 5.
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Groups
Protein analysed
(Arbitrary units)

Baseline IPC 4 cycles

(no IR)

IR (No IPC) IPC 4 cycles

+IR

Statistical

significance

Total BNIP3 (60
kDa band)

0.37+/- 0.06 0.4+/- 0.03 0.21+/- 0.01 0.34 +/- 0.05 p=0.06

Phospho-BNIP3 0.46+/- 0.02 1.12 +/-0.06 0.89+/-0.02 0.97+/-0.07 p<0.0001

Phospho-BNIP3
vs total BNIP3
ratio

0.6 +/- 0.15 1.17+/-0.1 1.8 +/-0.08 1.24+/- 0.18 p=0.0005

Carboxy-terminal
end of BNIP3 (60
kDa band)

0.10+/- 0.01 0.16+/-0.06 1.18 +/- 0.90 0.22 +/- 0.06 p<0.0001

Carboxy-terminal
end of BNIP3 (30
kDa band)

0.006+/-

0.003

0.027+/-0.019 1.403+/-0.508 0.691+/-0.553 p=0.06

Carboxy-terminal
end of BNIP3 (60
kDa band) vs
total BNIP3 ratio

0.14+/-0.05 0.19+/-0.09 2.43+/-0.43 0.28+/-0.09 P<0.0001

Carboxy-terminal
end of BNIP3 (30
kDa band) vs
total BNIP3 ratio

0.007 +/-

0.002

0.027+/-0.018 2.969+/-1.128 1.019+/-0.863 P=0.03

Table 5: Summary of the densitometry analysis of changes in total BNIP3 (60kDa band), phospho-
BNIP3 and carboxyterminal end of BNIP3 at baseline, after IPC 4 cycles (No IR), IR (no IPC) and after
IPC 4 cycles +IR (all values measured in arbitrary units). Only 60 kDa band was identified for total
BNIP3 and was used to compare the changes in phospho-BNIP3 and the carboxy-terminal end of
BNIP3 taking into account the total BNIP3 levels in the various groups studied.

This rise in the carboxyterminal end of BNIP3 after IR compared with the other groups is surprising,

since there was no significant difference in measured total BNIP3 in the groups. Infact total BNIP3

appeared lower in the IR group compared with others in contrast to the densitometry quantification
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for carboxy-terminal end of BNIP3 which was higher in the IR group compared with other groups.

This supports our hypothesis that exposure to lethal IR may lead to changes in the carboxy-terminal

end of BNIP3 itself without affecting the total amount of BNIP3 present in the myocytes such as by

unmasking binding sites for dimerization of BNIP3 in response to IR. This change was prevented by

IPC as exposure to IPC prior to lethal IR did not lead to a similar increase in the measured intensity

for the carboxy terminal end of BNIP3 as in the control group. This is discussed further in later part

of the thesis.
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3.3 Ischaemic preconditioning of the ESMIRO mice

A breeding colony was setup for the ESMIRO mice. Both male and female mice were used for the

studies. The pre-conditioning protocol established for the C57BL6 mice was applied to ESMIRO mice

and their wild type littermates to assess the impact of vascular dysfunction and vascular insulin

resistance seen in ESMIRO mice compared with their wildtype littermates which have no vascular

insulin resistance or vascular dysfunction. ESMIRO mice and their wild type littermates were

randomized to the following groups (Fig. 23) :

ESMIRO IR

ESMIRO 4 cycles of IPC

ESMIRO 2 cycles of IPC

WT IR

WT 4 cycles of IPC

WT 2 cycles of IPC

Fig 23. Ischaemic preconditioning (IPC) protocol tried on the ESMIRO mice and their WT littermates
to assess the impact of endothelium dysfunction and vascular insulin resistance on the efficacy of
IPC

Ischaemia
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Table 6. Phenotypical characteristics of WT littermates and ESMIRO mice used to compare the
difference in the efficacy of ischaemic preconditioning in the ESMIRO mice with their wildtype
littermates

Given that 4 cycles had been successful at preconditioning the C57BL/6J mice, this protocol was used

as the initial protocol to precondition the ESMIRO and WT mice. Surpisingly, 4 cycles of

preconditioning in both the ESMIRO and the WT littermates did not have any effect on the infarct

size seen in reponse to lethal ischaemia reperfusion. The mean infarct sizes in the ESMIRO IR group

(n=9) and ESMIRO IPC 4 cycles group(n=6) were 32.47 +/- 3.5 % and 32.48+/-5.1% repectively (Fig.

24). In the WT littermates the mean infarct size in the IR group (n=9) was 31.98+/- 3.9% and in the

WT IPC 4 cycles (n=6) the mean infarct size was 33.98+/- 4.8% (Fig. 24). There was no significant

difference in the infarct sizes among these groups.

Groups

Characteristics

WT IR WT IPC 2

cycles

WT IPC 4

cycles

ESMIRO

IR

ESMIRO

IPC 2

cycles

ESMIRO

IPC 4

cycles

Stastical

significance

Age (weeks) 7-16 11-13 7-15 7-12 11-14 7-11 ns

Weight (g) 22.8+/-

1.5

22.27+/-

1.6

21.76+/-

1.8

21.81+/-

1.1

21.94+/-

1.7

23.85+/-

1.3

ns

Heart weight

(g)

0.12+/-

0.00

0.37+/0.15 0.10+/-

0.00

0.12+/-

0.01

0.259+/-

0.13

0.13+/-

0.00

ns

Sex 3M6F 2M6F 1M5F 3M6F 2M6F 4M2F
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Fig 24. No protection was seen with 4 cycles of IPC in either the WT littermates or the ESMIRO mice

The protocol was then modified to 2 cycles of IPC rather than 4. When subjected to two cycles of

ischaemic preconditioning prior to lethal ischaemia and reperfusion, the size of myocardial infarction

in the preconditioned group in the WT littermates was lower than the IR group (23.07 ± 2.703 %, n=8

vs 31.98 ± 3.979%, n=9; ns, 1 way ANOVA) (Fig. 25). In the ESMIRO mice as well, there was lesser

infarction in hearts subjected to 2 cycles of preconditioning prior to lethal IR compared with the IR

group though this was not significant statistically using 1 way ANOVA (27.82 ± 4.06 %, n=8 vs 32.47 ±

3.54%, n=9; p=0.25, 1 way ANOVA)(Fig. 25)
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Fig 25. A comparison of infarct sizes after 2 cycles of IPC followed by lethal IR in the ESMIRO mice
and the wildtype littermates with their respective IR groups subjected to lethal IR without IPC

The extent of protection seen with 2 or 4 cycles of IPC in the ESMIRO WT littermates was much less

compared to the C57BL/6J mice. This was surprising because ESMIRO mice are regarded as having a

C57BL/6J background as they were backcrossed eight time with C57BL/6J mice. In the C57BL/6J

mice there was a 56% reduction in infarct size with 4 cycles of preconditioning compared with the IR

group. In comparison, in the ESMIRO WT littermates the maximum protection seen was with 2 cycles

of preconditioning and there was just 28% reduction in infarct size compared with the IR group,

much lower than the 56% seen in the C57BL/6J mice. In the ESMIRO mice, the extent of
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cardioprotection was even lower - a mere 15%. To attempt to explain why no significant protection

was seen in the ESMIRO mice and the WT littermates with IPC, we measured the extent of AKT

activation after two cycles of preconditioning in these groups.

3.4 Insulin conditioning of the ESMIRO mice

Insulin is an activator of AKT and is thereby able to provide cardioprotection against IR injury when

given both prior to lethal ischaemia as well as at the time of reperfusion131;153;156;190. We assessed

the cardioprotective role of insulin as a pre-conditioning mimetic agent in an isolated perfused

mouse heart model using the ESMIRO mice and their WT littermates. To establish the protocol for

pharmacological conditioning with Insulin, insulin was given in a concentration of 0.3 mU/ml,

3mU/mL and 30 mU/mL for 15 min followed by a 5 min washout prior to lethal ischaemia and

reperfusion to mouse hearts isolated from WT littermates and perfused in a Langendorff mode (Fig.

26). This was compared with hearts from WT littermates which had no insulin prior to IR.

Fig 26. Pharmacological preconditioning protocol with insulin given at 0.3, 3 and 30 mU/mL. A. IR
group subjected to lethal ischaemia/reperfusion without insulin treatment B. Hearts subjected to
insulin pre-conditioning followed by washout prior to lethal ischaemia/reperfusion

IschaemiaInsulin treatment

A

B
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Table 7. Phenotype characteristics of WT littermate mice used to assess cardioprotection against IR
injury using various insulin concentrations given prior to IR

Isolated perfused hearts from WT littermates were given insulin in a concentration of 0.3 mU/mL

(n=4), 3 mU/mL (n=4) and 30 mU/mL (n=4) for 15 min after 35 minutes of stablization. The hearts

were then perfused with modified Kreb’s buffer without insulin for 5 minutes to washout the insulin.

This was followed by global ischaemia for 35 min and reperfusion for 30 minutes. These were

compared with hearts from WT littermates which were subjected to 35 minutes of ischaemia

followed by 30 minutes reperfusion after a 55 min stabilization period without any insulin treatment.

The mean infarct sizes in the groups treated with insulin were 35.9 +/- 3.9 %, (n=4) at 0.3 mU/mL of

insulin, 38.9 +/- 3.7% (n=4) at 3 mU/mL of Insulin and 44.4 +/- 6.5 % (n=4) at 30 mU/mL (Fig. 27).

There was no significant difference in the infarct sizes between these insulin treated groups

themselves as well as compared with the mean infarct size seen in the WT littermate hearts

subjected to IR without insulin conditioning (mean infarct size 31.98 +/- 3.9%, n=9) (Fig. 26).

Groups

Characteristics

WT IR WT insulin 0.3

mU/mL

WT insulin 3

mU/mL

WT

insulin

30

mU/mL

Statistical significance

Age (weeks) 7-16 10 11-14 14-16 ns

Weight (g) 22.84+/-

1.5

28.85+/-1.0 28.2+/-3.2 25.4+/-

3.07

ns

Heart weight

(g)

0.121 +/-

0.00

0.151+/-0.00 0.14+/-0.00 0.16+/-

0.00

P=0.01 (WT insulin

30mU/mL vs WT control)

Sex 3M6F 4M 4M 2M2F
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Fig 27. There was no
significant change in the
infarct size seen in response to
IR with insulin pretreatment
prior to IR in isolated perfused
hearts from WT littermate
mice using 0.3, 3 and 30
mU/mL concentrations of
insulin

Similarly, ESMIRO mice hearts were randomized to recieve insulin in a concentration of 0.3 and 3

mU/mL in an identical procol to the wild type littermates and compared with ESMIRO hearts which

had undergone lethal ischaemia–reperfusion without insulin treatment (Table 7). There was no

significant difference in the mean infarct size with insulin pre-treatment prior to lethal IR at 0.3

mU/mL (mean infarct size 43.26 +/- 3.1% , n=2) or at 3mU/mL (mean infart size 41.64 +/- 1.9%, n=4)

compared with the Esmiro hearts subjected to lethal IR without insulin pretreatment (mean infarct

size 32.47 +/- 3.5%, n=9)(Fig. 28).
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Table 8. Phenotypic characteristics of ESMIRO mice used to compare cardioprotection against IR
injury using 0.3 and 3 mU/mL insulin concentrations given prior to IR.

Fig 28. Insulin treatment prior
to IR at a concentration of 0.3
and 3 mU/mL did not lead to
any significant change in
infarct size in response to IR in
the ESMIRO mice.

Groups

Characteristics

ESMIRO IR ESMIRO 0.3 mU/mL

Insulin

ESMIRO 3 mU/mL

insulin

Stastical

Significance

Age (weeks) 7-12 10-11 11-16 ns

Weight (g) 21.81+/-1.15 25.2+/-1.8 22.43+/-2.9 ns

Heart Weight

(g)

0.12+/-0.01 0.13+/-0.00 0.13+/-0.01 ns

Sex 3M6F 2M 2M2F
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The infarct sizes in the WT littermates and the ESMIRO mice in response to IR were low (~30%)

compared with the infarct size seen in C57BL/6J mice (~ 40%) with 35 min ischaemia. This makes it

more difficult to detect a significant protective effect with any cardioprotective intervention as the

extent of cardioprotection seen with ischaemic preconditioning varies with the duration of

ischaemia191. Therefore, prior to proceeding to a higher concentration of insulin, the ischaemia-

reperfusion protocol was made more intense by making the ischaemia-reperfusion duration longer

(45 minutes ischaemia followed by 35 minutes reperfusion) compared with the IR protocol used so

far that comprised of 35 minutes of ischaemia and 30 minutes of reperfusion (Table 8). Also, a study

by Guo et al. has suggested that gender can have an effect on the extent of myocardial injury in

respose to IR as well as cardioprotection seen with ischaemic preconditioning in some strains of

mice192. Statistical analysis of the heart infarct sizes in respose to lethal IR, IPC (2 or 4 cycles) prior to

IR as well as insulin conditioning (using 0.3,3 and 30 mU/mL dose) prior to IR so far did not show any

significant difference between the male and female mice in either the ESMIRO mice or their wild

type littermates using 1 way ANOVA analysis. However, to optimize the protocol for the next study

only male mice were used.
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Table 9. Phenotypic characteristics of WT littermates and ESMIRO mice used to assess
cardioprotection by insulin given at 100mU/mL prior to ischaemia and throughout reperfusion.
Ischaemia time was increased to 45 min.

Increase in ischaemia time was associated with a significant increase in the infarct size in the WT

littermates (31.98+/-3.9 % vs 55.77 +/- 4.3%, p=0.005 , 1 way Anova)(Fig. 29). As compared with this

there was no significant increase in infarct size with a similar increase in ischaemia time in the

ESMIRO mice (32.47+/- 3.5% vs 39.97+/-7.1% , 1 way ANOVA)(Fig. 29). The extent of infarction with

45 minute ischaemia in the WT littermates was significantly higher than that seen in the ESMIRO

mice(1 way ANOVA).

Groups

Characteristics

WT

littermates

45 min

ischaemia

WT littermates,

Insulin

conditioning

100mU/mL

ESMIRO

mice 45 min

ischaemia

ESMIRO mice

Insulin

conditioning 100

mU/mL

Statistical

significance

Age (weeks) 9-15 13-14 8-15 8-14 ns

Weight (g) 29.12+/-1.4 27+/-1.1 28.2+/-1.2 26.4+/-1.5 ns

Heart weight

(g)

0.17+/- 0.01 0.17+/-0.00 0.16+/-0.00 0.17+/-0.01 ns

Sex 6M 6M 6M 6M
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Fig 29. There was a significant increase in myocardial infarct size with an increase in duration of
ischaemia in the WT littermates. Surprisingly, similar increase in duration of ischaemia in the
ESMIRO mice was not associated with a significant increase in infarct size.
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To maximize cardiac protection that could be achieved with insulin, it was given both as a

preconditioning agent for 15 minutes prior to lethal IR as well as a postconditioning agent

throughout reperfusion. To reduce any detrimental effect of insulin that may not have washed out

of the hearts , washout time was increased further to 10 minutes (Fig 30a). Using this protocol,

treatment with 100 mU/mL of insulin given for 15 min followed by a 10 min washout period prior to

lethal IR and continued during reperfusion, there was a trend towards cardioprotection in the WT

mice hearts treated with insulin compared with the WT IR group, though not significant with 1 way

ANOVA (39.9+/- 7.6% , n=6 Vs 55.7 +/-4.3%, n=6, not significant by 1 way ANOVA)(Fig. 30b). In

comparison, in the ESMIRO mice there was little difference in the infarct size between the IR and

insulin treated groups using the same experimental protocol (39.97+/- 7.1% vs 46.3+/- 6.4%, NS - 1

way ANOVA)(Fig. 30b).

A.

B.

C.

D.

Insulin treatment Ischaemia

Fig 30a. Protocol to compare cardioprotection with insulin (100mU/mL) given prior to 45 min lethal
ischaemia and throughout reperfusion with a 10 min washout prior to lethal ischaemia compared
with IR hearts with no insulin treatment subjected to similar duration of lethal IR the WT littermates
(A,B) and the ESMIRO mice (C,D).
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Fig 30b. A comparison of the infarct size seen after lethal IR with insulin conditioning in the WT
littermate and ESMIRO isolated perfused hearts compared with respective WT littermate and
ESMIRO hearts subjected to lethal IR without insulin conditioning
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3.5 Western Blot Analysis for AKT activation and BNIP3 phosphorylation in the ESMIRO mice and

the WT littermates with IPC and insulin conditioning

To explain the results so far in the ESMIRO mice and their WT littermates with IPC and Insulin

conditioning, AKT activation via phosphorylation along with PRAS40 phosphorylation (as a marker of

AKT activation) was assessed in the WT littermates and the ESMIRO mice. BNIP3 phosphorylation in

response to AKT activation with insulin conditioning and IPC in these mice was also measured to

determine if BNIP3 phosphorylation was specific to AKT activation or perhaps related to exposure to

IR.

Hearts were divided into following groups (1-4) both for the ESMIRO mice and the WT littermates

(Fig. 31):

1. Control Hearts – stabilization for 30 minutes, no treatment

2. Ischaemic preconditioning : Stabilization followed by 2 cycles of IPC involving 5 min of

ischaemia and 5 min reperfusion

3. Insulin treatment at a concentration of 100 mU/mL for 15 minutes after stabilization for 10

min, followed by washout for 10 minutes.

4. Similar protocol to 3 but in addition, an inhibitor of PI3 Kinase (LY294002) was given

throughout the experimental protocol added to the modified Kreb’s buffer in a

concentration of 15 μM (made in DMSO). Thus the LY294002 treatment was started 15 

minutes prior to the Insulin treatment, continued during the Insulin treatment and during a

10 minute washout prior to the hearts being harvest for Western Blot analysis. This was to

test if any AKT activation noted with Insulin treatment was specific to activation of the RISK

pathway.
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Table 10. Phenotype characteristics of WT littermate and ESMIRO mice used for western blot
analysis comparing AKT, PRAS40 and BNIP3 phosphorylation in these mice in response to IPC, Insulin
treatment (100 mU/mL)alone and Insulin treatment (100mU/mL) in the presence of an inhibitor of
PI3K (LY294002)

Groups WT

Control

WT IPC WT

Insulin

WT

LY

294002

+Insulin

ESMIRO

Control

ESMIRO

IPC

ESMIRO

Insulin

ESMIRO

LY

294002

+Insulin

Statistical

Significance

Age in

weeks

16 10-14 14-16 15-16 16 14 16 16 Significant
(WT
Control vs
WT IPC;
WT IPC vs
ESMIRO
LY294002
+Insulin)-
All animals
were in
acceptable
age group

Weight

(g)

25.8+/-

4.7

21.6+/-

0.17

24.2+/-

2.0

24.6+/-

0.2

23.2+/-

2.4

20.93+/-

0.6

22.87+/-

2.7

23.7+/-

0.6

ns

Sex 1M2F 3F 1M2F 1M2F 1M2F 3F 1M2F 1M2F
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Hearts were harvested at the end of the experimental protocol and subjected to western blot

analysis as described in Chapter 2. Western blot analysis was carried out for total AKT,

phosphorylated AKT, total PRAS40, phosphorylated PRAS40, total BNIP3 and phosphorylated BNIP3

respectively.

1. WT Control

2. WT 2 cycles of IPC

3. WT given Insulin(100mU/mL ) for 15 min

4. WT given Insulin(100mU/mL ) for 15 min
in presence of LY294002

1. ESMIRO Control

2. ESMIRO 2 cycles of IPC

3. ESMIRO given Insulin(100mU/mL) for

15 min

4. ESMIRO given Insulin(100mU/mL ) for
15 min in presence of LY294002

Fig 31. Protocols to assess for AKT, PRAS40 and BNIP3 phosphorylation in the ESMIRO mice and
the wild type littermates respectively: 1. Control group – no treatment 2. IPC (2 cycles) 3. Insulin
(100 mU/mL) treatment for 15 min followed by 10 min washout 4. Insulin (100 mU/mL)
treatment in the presence of PI3K inhibitor LY294002 (given throughout the study protocol)

Ischaemia Insulin

LY294002
Hearts harvested for
Western Blot
Analysis
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3.5.1 Western blot analysis for AKT phosphorylation

Fig 32: Western blot scan using odyssey scanner for total AKT showing AKT band in green and tubulin
band in red from left to right. A. (Lane 1) Protein ladder B. (Lanes 2-4) WT control C. (Lanes 5-7) WT
IPC 2 cycles D. (Lanes 8-10) WT insulin treated E. (Lane 11-12) WT Insulin treated in presence of
LY294002 F. (Lane 13) protein ladder G. (Lanes 14-16) ESMIRO control H. (Lanes 17-19) ESMIRO IPC 2
cycles I. (Lanes 20-22) ESMIRO insulin treated J. (Lanes 23-25) ESMIRO hearts insulin treated in
presence of LY294002 . Overall there was no change in total AKT level in any of the groups

Fig 33. Western blot analysis for total AKT, showing overall no significant change in total AKT levels
in any of the groups

The mean signal intensity for total AKT normalized to tubulin in the WT littermates was 0.120 +/-

0.003 AU in the control group, 0.130 +/- 0.007 AU in the IPC group, 0.140 +/- 0.200 AU in the Insulin

treated group and 0.120 +/- 0.007 AU in the group treated with insulin in the presence of LY294002
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(Fig. 32,33). In the ESMIRO mice the respective values for total AKT normalized to tubulin in Grps 1-4

were 0.130 +/- 0.004, 0.120 +/- 0.002, 0.130 +/- 0.016 and 0.130 +/- 0.006 AU (Fig. 32, 33). Overall,

there was no significant difference in the mean total AKT levels with IPC (2 cycles), Insulin treatment

(both in the presence or absence of LY294002) in either the WT littermates (p=0.73) or the ESMIRO

mice (p=0.98) using 1 way ANOVA.

Fig 34: Western Blot comparing AKT phosphorylation (top green band) with ischaemic
preconditioning and insulin treatment in the WT littermates vs the ESMIRO mice. Lower red band is
tubulin. Left to right: A. (Lane 1) Protein ladder B. (Lanes 2-4) WT control C. (Lanes 5-7) WT IPC 2
cycles D. (Lanes 8-10) WT insulin treated E. (Lane 11-12) WT Insulin treated in presence of LY294002
F. (Lane 13) protein ladder G. (Lanes 14-16) ESMIRO control H. (Lanes 17-19) ESMIRO IPC 2 cycles I.
(Lanes 20-22) ESMIRO insulin treated J. (Lanes 23-25) ESMIRO hearts insulin treated in presence of
LY294002

A scanned image of AKT phosphorylation in the different groups is shown above (Fig 34). This was

quantitavely analyzed. The ratio of phosphorylated AKT to total AKT (both normalized to tubulin

band) in the WT littermate control group was 0.030 +/- 0.001 AU (Fig 35). There was no significant

increase in the ratio of phosphorylated AKT vs total AKT in the WT IPC group (Mean ratio 0.030 +/-

0.001 AU, p= 0.998) compared with the control group (Fig. 35). However, with Insulin treatment

there was significant activation of AKT indicated by a significant increase in the ratio of

phosphorylated AKT against total AKT in the WT littermate isolated perfused hearts (Mean 0.130 +/-

0.013 AU , p<0.001)compared with the control group(Fig. 35). In the presence of PI3 Kinase inhibitor
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LY294002 (E) there was a significant reduction in AKT phosphorylation in response to insulin

treatment (Mean 0.080 +/- 0.008 AU, p=0.02) compared with insulin treatment alone (Fig. 35).

Fig 35. Western blot analysis for the ratio of phosphorylated AKT: total AKT in the ESMIRO mice and
WT littermates control group, IPC group, insulin treated group (without LY294002) and insulin
treated group (in the presence of LY294002) respectively

In the ESMIRO mice as well, 2 cycles of IPC did not lead to AKT phosphorylation compared with the

control group (H vs G in Fig 33, Mean ratio of phosphorylated AKT to total AKT 0.030+/- 0.001 Vs

0.037 +/- 0.001, p=1.0, 1 way ANOVA) (Fig. 34,35). However, unexpectedly, treatment with Insulin
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(marked I in Fig. 33) led to significant increase in AKT phosphorylation compared with the control

group (Marked G in Fig. 33) (Mean ratio of phosphorylated AKT against total AKT was 0.118 +/- 0.008

vs 0.037+/- 0.001 AU repectively, p< 0.001, 1 way ANOVA). This suggests that insulin was able to act

on the target tissue, in this case the myocytes, without functional vascular insulin receptors. Again,

treatment with LY294002 significantly reduced AKT phosphorylation in response to insulin compared

with insulin treatment alone, confirming that this AKT phosphorylation was specific to activation of

RISK pathway by insulin (Mean ratio of phosphorylated AKT against total AKT was 0.070+/- 0.010 vs

0.118 +/- 0.008 respectively, p= 0.04, 1 way ANOVA) (Fig. 35).

3.5.2 Western blot analysis for PRAS40 phosphorylation

Fig 36. Western blot showing bands for total AKT (top green), tubulin loading (red) and total PRAS40
(lowest faint green band). Left to right: A. (Lane 1) Protein ladder B. (Lanes 2-4) WT control C. (Lanes
5-7) WT IPC 2 cycles D. (Lanes 8-10) WT insulin treated E. (Lane 11-12) WT Insulin treated in
presence of LY294002 F. (Lane 13) protein ladder G. (Lanes 14-16) ESMIRO control H. (Lanes 17-19)
ESMIRO IPC 2 cycles I. (Lanes 20-22) ESMIRO insulin treated J. (Lanes 23-25) ESMIRO hearts insulin
treated in presence of LY294002

Western blot analysis was also carried out for PRAS40 phosphorylation as a surrogate marker of AKT

activation. Results were similar to that seen for AKT activation. There was no difference is total

PRAS40 in any of the groups in either the WT littermates (Mean values of total PRAS40 in Grps 1-4

were 0.0093+/-0.0003, 0.0095 +/- 0.0007, 0.0104+/- 0.0003 and 0.0113 +/- 0.0007 AU respectively,

p=0.178, 1 way ANOVA)(Fig. 36, 37) or the ESMIRO mice (Mean values of total PRAS40 in Groups 1-4
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were 0.0109+/- 0.0011, 0.0104+/- 0.0002, 0.0104+/- 0.0007, 0.0113+/- 0.0009 AU respectively,

p=0.8, 1 way ANOVA) (Fig. 36, 37).

Fig 37. Western blot analysis showing no difference in total PRAS40 in either the WT littermates or
the ESMIRO mice with IPC, insulin treatment alone and insulin treatment with LY294002 compared
with the respective control groups

Fig 38. Western blot for PRAS40 phosphorylation: Left to right: A. (Lane 1) Protein ladder B. (Lanes 2-
4) WT control C. (Lanes 5-7) WT IPC 2 cycles D. (Lanes 8-10) WT insulin treated E. (Lane 11-12) WT
Insulin treated in presence of LY294002 F. (Lane 13) protein ladder G. (Lanes 14-16) ESMIRO control
H. (Lanes 17-19) ESMIRO IPC 2 cycles I. (Lanes 20-22) ESMIRO insulin treated J. (Lanes 23-25)
ESMIRO hearts insulin treated in presence of LY294002
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Fig 39. Western blot analysis for PRAS40 phosphorylation used as a surrogate marker for AKT activity
showing significant increase in PRAS40 phosphorylation with insulin treatment in both the ESMIRO
mice and the WT littermates. There was no PRAS40 phosphorylation with IPC in the ESMIRO mice or
the WT littermates. PRAS40 phosphorylation in response to insulin was inhibited by LY294002 to a
significant extent in the WT littermates but not in the ESMIRO mice

In the WT littermates, Insulin treatment was associated with a significant increase in PRAS40

phosphorylation compared with the control group (Mean ratio of phosphorylated PRAS40 Vs Total

PRAS40: 7.1+/-0.3 vs 1.2+/-0.1 AU, p<0.001, 1 way ANOVA) (Fig. 38, 39). PRAS40 phosphorylation in

response to insulin treatment was significantly reduced in the presence of LY294002 compared with

insulin alone (5.2+/-0.5 vs 7.1+/- 0.3 AU, p=0.01, 1 way ANOVA) (Fig. 38, 39). IPC failed to

significantly increase the extent of phosphorylation of PRAS40 in the wildtype littermates compared

with the WT control group (1.15 +/- 0.01 vs 1.20 +/- 0.14 AU, p=1, 1 way ANOVA) (Fig. 38, 39). In the
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ESMIRO mice as well, Insulin treatment led to significant increase in PRAS40 phosphorylation

compared with the respective control group ( Mean phosphorylated PRAS40 ratio against total

PRAS40: 6.33+/-0.18 vs 2.02+/-0.7 AU, p=0.006, 1 way ANOVA) (Fig. 38, 39). PRAS40 phosphorylation

in response to Insulin was reduced in the presence of LY294002 compared with Insulin treatment

alone but was not significantly lower statistically (5.25 +/- 0.22 vs 6.3 +/- 0.08 AU, p= 0.7, 1 way

ANOVA) (Fig. 38, 39). Again IPC in the ESMIRO mice failed to significantly increase the extent of

phosphorylation of PRAS40 compared with the control group (Mean ratio of phosphoPRAS40 against

total PRAS40: 1.57 +/- 0.48 vs 2.02 +/- 0.7 AU, p=1.0, 1 way ANOVA) (Fig. 38, 39).

3.5.3 Western blot analysis for BNIP3 phosphorylation

There was no difference in the total BNIP3 level in any of the groups in the ESMIRO mice or the WT

littermates (Fig 40). Only one band was picked up for total BNIP3 and this was at 60 kDa. The mean

values for total BNIP3 in the wild type littermates in groups 1-4 were 0.026+/- 0.001, 0.023+/- 0.001,

0.024+/- 0.001 and 0.027+/- 0.001 AU respectively (p=0.25, 1 way ANOVA)(Fig. 41). The mean

values for total BNIP3 in the ESMIRO mice in groups 1-4 were 0.028 +/- 0.001, 0.023 +/- 0.001, 0.022

+/- 0.002 and 0.025 +/- 0.001 AU respectively ( p=0.12, 1 way ANOVA)(Fig. 41).

Fig 40. Western blot for total BNIP3 (only 60kDa band was noted) showing no change in total BNIP
3: Left to right: A. (Lane 1) Protein ladder B. (Lanes 2-4) WT control C. (Lanes 5-7) WT IPC 2 cycles D.
(Lanes 8-10) WT insulin treated E. (Lane 11-12) WT Insulin treated in presence of LY294002 F. (Lane
13) protein ladder G. (Lanes 14-16) ESMIRO control H. (Lanes 17-19) ESMIRO IPC 2 cycles I. (Lanes
20-22) ESMIRO insulin treated J. (Lanes 23-25) ESMIRO hearts insulin treated in presence of
LY294002
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Fig. 41 Western blot analysis for total BNIP3 (only 60 kDa band was observed) showing overall no
change in total BNIP3 in the isolated perfused hearts from either the WT littermates or the ESMIRO
mice with IPC , insulin treatment alone or insulin treatment in the presence of LY294002 compared
with the respective control hearts

Fig 42. Western Blot for phosphorylated BNIP3 showing Tubulin band (red) on top at 50 kDa and
green bands for phospho-BNIP3 at 40 kDa (top green), 35 kDa (middle green) and 30 kDa (bottom
green)Left to right: A. (Lane 1) Protein ladder B. (Lanes 2-4) WT control C. (Lanes 5-7) WT IPC 2
cycles D. (Lanes 8-10) WT insulin treated E. (Lane 11-12) WT Insulin treated in presence of LY294002
F. (Lane 13) protein ladder G. (Lanes 14-16) ESMIRO control H. (Lanes 17-19) ESMIRO IPC 2 cycles I.
(Lanes 20-22) ESMIRO insulin treated J. (Lanes 23-25) ESMIRO hearts insulin treated in presence of
LY294002
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Fig 43. Western Blot analysis for BNIP3 phosphorylation: Three prominent bands were noted
corresponding to phosphorylated BNIP3. The most prominent band was the 40 kDa band. In the
ESMIRO mice there was no difference in BNIP3 phosphorylation in response to IPC or insulin
treatment (either in the presence or absence of LY294002). In the WT littermates, there was a
significant increase in BNIP3 phosphorylation with insulin treatment, but there was no difference in
BNIP3 phosphorylation in any of the other groups

Three bands were noted with phosphorylated BNIP3. The most prominent band was noted at 40

kDa. Two other faint bands were seen at around 35 and 30 kDa (Fig 42). In the WT littermates, there

was a significant increase in the ratio of phosphorylated BNIP3 to total BNIP3 with Insulin treatment

compared with control group (19.78+/-0.11 vs 16.25 +/-1.05 AU, p=0.03, 1 way ANOVA) (Fig. 43).

However there was no significant reduction in phosphorylated BNIP3 to total BNIP3 ratio with

LY294002 given along with Insulin compared with insulin treatment alone ( 17.36+/- 3.7 vs 19.78+/-

0.11 AU p=0.3, 1 way ANOVA)(Fig. 43), suggesting that this effect was not specific to PI3K activation
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with insulin. There was no difference seen in BNIP3 phosphorylation with 2 cycles of IPC compared

with control (pBNIP3/total BNIP3 ratio: 17.69+/- 0.53 vs 16.25 +/- 1.05 AU respectively, p=1.0, 1 way

ANOVA) in the wild type littermates (Fig. 43). In the ESMIRO mice there was no significant difference

in the phosphorylated BNIP3/total BNIP3 ratio with IPC (Group 2), insulin treatment alone (Group 3)

and with insulin treatment in the presence of LY294002 (Group 4) compared with the control group

(Group 1). The measured values for the phosphorylated BNIP3/total BNIP3 ratio in the 40 kDa band

in Groups 1-4 in the ESMIRO mice were 16.51 +/- 0.98, 17.46 +/- 0.22, 19.14+/- 0.71 and 17.98 +/-

0.42 AU respectively (p=0.08, 1 way ANOVA)(Fig. 43).

Fig 44. There was no significant difference in the 35 kDa band for level of phosphorylated BNIP3 with
IPC (Group 2), insulin treatment alone (Group 3) and insulin treatment in the presence of LY294002
(Group 4) either in the ESMIRO mice or the WT littermates compared with the respective control
groups (Group 1)
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In the 35 kDa band for phosphorylated BNIP3 there was no significant difference in the extent of

BNIP3 phosphorylation in Groups 1-4 in either the WT littermates or the ESMIRO mice (Fig. 44). In

the WT littermates, the measured values of the phospho-BNIP3/total BNIP3 ratio in the 35 kDa band

in Groups 1-4 were 2.32 +/- 0.25, 2.55 +/- 0.03, 2.75 +/- 0.28 and 1.96+/- 0.04 AU respectively (

p=0.16, 1 way ANOVA). In the ESMIRO mice, the measured values for phospho-BNIP3/total BNIP3

ratio in the 35 kDa band for Groups 1-4 were 2.22 +/- 0.14, 2.28 +/- 0.13, 2.41+/- 0.16 and 2.33+/-

0.29 AU respectively (p=0.9, 1 way ANOVA).

Fig 45. There was no significant difference in the 30 kDa band for the level of phosphorylated BNIP3
with IPC, insulin treatment alone and insulin treatment in the presence of LY294002 either in the
ESMIRO mice or the WT littermates compared with the respective control groups
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In the lowest band noted at 30 kDa as well, there were no significant changes in the level of

phosphorylation of BNIP3 in any of the treatment groups compared with the control group either in

the WT littermates or the ESMIRO mice (Fig. 45). The measured values for the phosphorylated BNIP3

: Total BNIP3 ratio in Groups 1-4 in the WT littermates were 2.12 +/- 0.19, 2.17+/- 0.18, 2.80+/- 0.28

and 1.69+/-0.04 AU respectively (p=0.053, 1 way ANOVA) and in the ESMIRO mice were 2.20+/- 0.12,

2.56+/0 0.38, 1.98+/- 0.88 and 2.54+/- 0.20 (p= 0.298, 1 way ANOVA).

4. Conclusions

Preconditioning using repeated cycles of sublethal ischaemia and reperfusion in the isolated

perfused hearts from the C57BL/6J mice clearly demonstrated a reduction in infarct size in response

to subsequent lethal IR compared with C57BL/6J control hearts subjected to lethal IR alone. The

extent of infarct reduction increased progressively as the number of cycles of preconditioning was

increased from 2 cycles to 4 cycles reaching a significant level with 4 cycles. This phenomenon of

ischaemic preconditioning is already known and well documented in the literature99;142;193-196.

However in our experience, further increase in cycles of preconditioning to 6 cycles in Langendorff

isolated perfused mouse heart model led to the loss of cardioprotection seen with 2 or 4 cycles of

preconditioning. Similar results were seen by Iliodromitis et al. who used an in-vivo rabbit model to

show that beyond 4 cycles of ischaemic preconditioning, further increase in the number of

preconditioning cycles to 6 or 8 led to progressive decrease in the extent of cardioprotection 197. A

possible explanation for this is that the cumulative detrimental effects of sub-lethal ischaemia may

overcome the cardioprotective benefits of preconditioning beyond a certain number of ischaemic

preconditioning cycles197. As explained in the introductory chapter, sublethal ischaemia leads to

reversible ischaemic injury and the heart is able to quickly overcome the cessation of respiratory

metabolism at the onset of reperfusion. However, it is likely that with multiple episodes of sub-lethal

ischaemia and reperfusion, the myocardial tissue eventually fails to recover completely and hence

loses the cardioprotective benefits offered by ischaemic preconditioning.
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4.1 The effect of IPC on BNIP3 carboxyterminal end and phosphorylation

Overall, using the isolated perfused mouse heart model, in the C57BL/6J mice, there was no

difference in total BNIP3 levels compared to baseline in response to IPC cycles only (hearts

harvested prior to IR) as well as with IPC followed by IR. Similarly there was no change in the total

BNIP3 after lethal IR in the absence of IPC. The duration of the study protocol in the Langendorff

isolated perfused mouse heart model was too brief for there to be an effect on the expression of

BNIP3 or its elimination via the proteasomal pathway to see a difference in the total BNIP3 level. It

would be interesting to assess whether using a longer protocol of ischaemia/reperfusion in a

different model, there would be any changes in total BNIP3 with IPC compared with the IR group.

The antibody used here (Abcam anti-BNIP3 antibody ab38621) is made from a peptide sequence in

the BH3 domain of human NIP3 (located at aa 1-100). We also used an antibody specific for the

carboxy-terminal end of BNIP3 to look at changes to the carboxy terminal end of BNIP3 in response

to IPC and IR (Abcam ab68574). This antibody is targeted against a sequence located at the carboxy -

terminal end of BNIP3 (aa 176-193). The rationale for using two antibodies to look at the total

protein was to assess if there might be post-translational changes at the carboxy-terminal end of

BNIP3 itself independent of the changes in total BNIP3. The BH3 domain of BNIP3 is not involved in

the process of BNIP3 dimerization and its mitochondrial localization in response to IR injury as

compared to the carboxy-terminal end of BNIP3 which is crucial for this process198. The signal for the

carboxy terminal end of BNIP3 with this antibody was much higher in the control group subjected to

IR alone as compared to baseline as well as to the groups subjected to IPC (with or without

subsequent IR) both in the 30kDa and the 60 kDa bands. As explained in Chapter 1, carboxy terminal

end of BNIP3 is crucial for homodimerization and binding of BNIP3 to the mitochondrial outer wall.

Significant increase in signal intensity for the carboxy terminal end of BNIP3 in response to IR

compared with baseline suggests that IR may lead to unmasking of binding sites on the carboxy

terminal end of BNIP3 which may be involved in homodimerization. There was no increase in the

measured signal intensity for the carboxy terminal end of BNIP3 after IPC alone or with lethal IR
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after IPC. This may suggest that the unmasking of C-terminal binding sites involved in dimerization

and activation of BNIP3 may be attenuated by preconditioning. It is important to note that the

epitopes recognised by the anotbody used to measure total BNIP3 and the carboxy-terminal end of

BNIP3 are totally different. This would explain why the results obtained with the western blots for

total BNIP3 are different from those for the carboxy-terminal end of BNIP3. In contrast to the

western blot analysis for total BNIP3 which showed overall no significant change in BNIP3 and

perhaps a slightly lesser level of total BNIP3 in the IR group compared with the other groups, the

western blot analysis for the carboxy-terminal end of BNIP3 showed an increase in the quantity of

the carboxyterminal end of BNIP3 in the IR group compared with baseline which was prevented by

IPC. The carboxy-terminal end of BNIP3 is an integral component of BNIP3 and so it is unlikely that

the changes in the quantity of the carboxyterminal BNIP3 sequence would be different from the

changes in the total protein. One of the possibilities that would explain the difference in the blots, as

mentioned above is that there may have been modifications in the protein at the carboxy-terminal

end of BNIP3 after IR (which were prevented by IPC) that may have allowed better binding of the

antibody to the carboxy-terminal end of BNIP3 after IR, while the BH3 domain of BNIP3 remains

unchanged thus no change was seen after IR with the antibody used to measure total BNIP3. Also,

the anti-BNIP3 antibody only identified the 60 kDa band for BNIP3 while the antibody to the

carboxy-terminal end of BNIP3 identified two bands at 60 and 30 kDa corresponding to both the

monomeric and dimeric forms of BNIP3. Antibodies targeted at different epitopes can vary in their

sensitivity to identlfy changes in the protein and/or its isoforms based on their ability to bind with

their target epitope. The anti-BNIP3 antibody was unable to bind to the monomeric form of BNIP3

which must be a limitation of the antibody itself and not of the tissue or protocol used in the

western blotting as the carboxy-terminal BNIP3 antibody was able to identlfy the two forms of BNIP3

with the same protocol.

We also carried out western blot analysis to study the phosphorylation of BNIP3 in response

to IR and IPC. The antibody used to assess phosphorylation of BNIP3 was specific for phosphorylation
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at its Serine 95 site (Abcam ab83940). Using this antibody only one band was found at around 40

kDa. This is much bigger in size than the predicted molecular weight of BNIP3 (21.5 kDa) and also

bigger than the 30 kDa band of BNIP3 that is usually seen for its monomeric form. Mellor et al.

showed that multi-site phosphorylation of native 21.5 kDa BNIP3 produced slower moving species at

26 kDa, 30 kDa and 40 kDa97. Thus this 40 kDa band represents a slower moving monomeric BNIP3

phosphoprotein. The antibody did not detect a 60 kDa band for phospho-BNIP3.

Analysis of this phospho-BNIP3 band showed that exposure of the mice hearts to both

preconditioning cycles (with or without subsequent lethal IR) as well as to lethal IR (without IPC) led

to phosphorylation of BNIP3. Taking a ratio of phosphorylated BNIP3 vs total BNIP3, the level of

phosphorylation in response to lethal IR alone was much higher that the extent of BNIP3

phosphorylation in the presence of IPC (with or without subsequent IR). These results indicate that

phosphorylation may not be specific to preconditioning. The antibody used only assessed for

phosphorylation at Serine 95, hence it was not possible to establish if there are other

phosphorylation targets of IR or IPC on BNIP3. Possibly, phosphorylation of BNIP3 may be occurring

secondary to ischaemia/reperfusion (sublethal IR in the case of IPC) itself and may be a marker of

oxidative stress. This is supported by the fact that there was less phosphorylation in myocardium

exposed to IPC prior to IR, as these hearts are protected by IPC. These findings are consistent with

the observation by Graham et al. that the level of phospho-BNIP3 correlates with BNIP3 mediated

cell death activity96.

However there was no significant difference in the extent of phosphorylation of BNIP3 in the group

subjected to IPC alone without lethal IR compared with the group exposed to IR following IPC. This

suggests that though IPC led to phosphorylation of BNIP3, IPC prevented further phosphorylation in

response to subsequent IR possibly secondary to cardioprotective effect of IPC. Studies have shown

that BNIP3 may be a direct phosphorylation target of casein kinase 2 , which phosphorylates serine

residues on the N-terminal PEST domain of BNIP398. This phosphorylation reduces mitochondrial
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defects and cells death in ventricular myocytes exposed to hypoxia98. Casein kinase 2 is one of the

kinases activated by IPC, but has not been shown so far to be involved in cardioprotection 199.

Activation of casein kinase 2 with IPC was demonstrated by Kim et al. but they concluded that this

was an epiphenomenon rather that a mechanism underlying IPC199. In contrast to these studies

showing a protective effect of BNIP3 phosphorylation at its N-terminal end PEST domain, other

studies which have shown that BNIP3 phosphorylation increases its stability and is associated with

its cell death activity.It is possible that there may be multiple phosphorylation targets for BNIP3 and

that the site of phosphorylation may be different in the case of IPC (such as mediated through casein

kinase 2) and IR leading to opposite effects on BNIP3 cell death activity. However, we were unable to

explore this aspect any further due to lack of appropriate tools or antibodies to assess other

potential phosphorylation sites on BNIP3.

A further study was set up to check whether phosphorylation of BNIP3 was specific to the activation

of the RISK pathway by preconditioning using insulin to activate the RISK pathway rather than using

ischaemic preconditioning. This allowed the assessment of the impact of the activation of PI3K/AKT

on phosphorylation of BNIP3 independent of the effects of ischaemia itself. This is discussed in the

next section.



MD (Res) Thesis- Vikram Sharma

138

4.2 Effect of IPC and insulin conditioning on BNIP3 phosphorylation in the ESMIRO mice and WT

littermates.

Levels of total BNIP3 and phosphorylated BNIP3 were measured in the hearts isolated from ESMIRO

mice and the wild type littermates perfused in a Langendorff mode and harvested after perfusion

only (Group 1), after two cycles of IPC (Group 2), after insulin treatment for 15 min followed by 10

min washout (Group 3) and after Insulin treatment in the presence of LY294002 (an inhibitor of PI3K)

(Group 4). Overall, there was no significant difference in the measured level of total BNIP3 in any of

the groups. As in the previous western blot analysis for total BNIP3 in the C57BL/6J mice, only one

band was noted at 60 kDa. This is a typical band size for the dimeric form of BNIP3. We could not

identify a band at 30 kDa corresponding to the monomeric form of BNIP3. Western blot analysis for

the phosphorylation of BNIP3 in the ESMIRO mice and the WT littermates using the odyssey scanner

showed three bands at 40, 35 and 30 kDa. The most prominent band was noted at 40 kDa. Similar

size 40 kDa band was also noted using the ECL technique for western blot analysis for BNIP3

phosphorylation in the C57BL/6J mice. The presence of additional bands at 35 and 30 kDa compared

with the ECL technique used earlier indicates the higher sensitivity of the odyssey infra-red scanner

for western blot analysis. As explained in the previous section this 40 kDa band represents a slower

moving monomeric BNIP3 phosphoprotein. Mellor et al. showed that phosphorylation of the native

BNIP3 protein produces slower moving species at 26, 30 and 40 kDa97. Graham et al. similarly

showed that phosphorylation of the 21.5 kDa BNIP3 protein produced slower moving species 25 and

30 kDa in size. We picked up phospho-BNIP3 bands at 30, 35 and 40 kDa suggestive of slower moving

phoshphorylated monomeric forms of BNIP3. These are much smaller in size than the 60 kDa band

seen for total BNIP3 corresponding to its dimeric form. This would explain the discrepancy in the

location of BNIP3 bands in relation to the tubulin band in section 3.5 of the thesis as the western

blot for total BNIP3 and phosphorylated BNIP3 have evaluated respectively the dimeric and

monomeric form of BNIP3.
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With 2 cycles of IPC, no significant difference was noted in the extent of phosphorylation of BNIP3.

This was not surprising, as clearly the IPC protocol had also failed to show significant

phosphorylation of AKT. As compared to the protocol used in the C57BL/6J mice, the ESMIRO/WT

hearts were exposed to less sublethal IR as the number of cycles was 2 in this case compared with 4

cycles used in the C57BL/6J mice, which could be another reason why no significant BNIP3

phosphorylation was seen with IPC in these animals, assuming that phosphorylation could be

secondary to oxidative stress due to myocardial ischaemia as discussed previously.

In the WT littermates there was a significant increase in the measured intensity of phospho-BNIP3

(40kDa band) exposed to insulin compared with the baseline. However, this was not significantly

reduced in the presence of LY294002 suggesting that this effect was not specific to the action of

PI3K/AKT by insulin. There was no significant difference in the extent of phosphorylation of BNIP3 in

the ESMIRO mice hearts treated similarly with Insulin and shown previously to cause a similar

increase in AKT phosphorylation as in the WT littermates, again suggesting that this BNIP3

phosphorylation was not specific to PI3K/AKT activation. It is difficult to explain this finding or

postulate a mechanism underlying this finding. It would be worthwhile to repeat the study to see if

the results are persistent, in which case further follow-on studies would be required to understand

the mechanisms underlying this increase in BNIP3 phosphorylation with Insulin treatment noted only

in the WT littermates and not in the ESMIRO mice which also had similar AKT activation as the WT

littermates. There was no significant difference in the level of phosphorylated-BNIP3 in either the

ESMIRO mice or the WT littermates in the 35 and 30 kDa bands.

Thus, overall the results did not support the hypothesis that BNIP3 phosphorylation (on Serine 95)

may be a direct result of AKT activation, either via IPC or using insulin conditioning. However, this

does not rule out other phosphorylation targets of IPC on BNIP3.



MD (Res) Thesis- Vikram Sharma

140

4.3 Ischaemic preconditioning and insulin conditioning of the ESMIRO mice

Establishing Ischaemic preconditioning in the ESMIRO mice proved challenging. Preconditioning

protocol involving 4 cycles of preconditioning which was most effective for protecting the heart

against IR injury in the C57BL/6J mice did not work for the ESMIRO animals. Hearts from various

strains of animals within the same species differ in their susceptibility to IR192. Also certain strains

can exhibit lower infarct sizes and high degree of innate cardioprotection suggesting that extent of

myocardial injury from IR and the extent of cardioprotection with IPC protocols can vary between

different mouse strains192. The ESMIRO mice and the WT littermates had lower control infarct size (~

30%) compared with C57BL/6J mice, suggesting that this could indeed be one of the reasons for the

IPC protocol that was effective in C57BL/6J mice to have failed in the ESMIRO mice and their WT

littermates. Additionally, genetically engineered mice such as the ESMIRO mice and their WT

littermates may have other unintentional alterations in their genome which can affect the

preconditioning characteristics of the myocardium.

After 4 cycles of IPC failed to protect the myocardium against IR in the ESMIRO mice and the WT

littermates, the number of cycles of preconditioning was reduced to 2 cycles. Using 2 cycles of IPC, in

the WT littermates of the ESMIRO mice, there was a 27% reduction in the infarct size compared with

the respective WT control hearts which were subjected to IR without preconditioning. There was

also a 17% reduction in infarct size in the ESMIRO mice subjected to IR after 2 cycles of

preconditioning compared with the respective control group. However, overall using a 1 way

ANOVA analysis to compare all of these groups (WT control, WT IPC 2 cycles, ESMIRO control and

ESMIRO IPC 2 cycles) there was no significant difference in the mean measured infarct in any of

these groups. In view of the small sample size, it is difficult to establish whether this lack of

significance with ANOVA was related to actual lack of difference in protection in these groups or

simply related to a small sample size. The statistical power provided by this number of animals (n=6-

9)is usually significant to detect a difference using this method, as demonstrated by previous studies
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in our laboratory 111;200. Preconditioning appeared to be less effective in reducing the infarct size

seen in response to IR in the ESMIRO mice compared with the WT littermates, though this was not

significant by ANOVA.

Overall, the extent of myocardial protection seen with IPC was much lower in the WT littermates of

the ESMIRO mice compared with the extent of infact reduction seen with IPC in the C57BL/6J mice.

While it can be postulated that in the ESMIRO mice, the endothelial dysfuntion seen as a result of

insulin resistance may have had an impact on the extent of cardioprotection seen, this should not be

an issue for the wildtype littermates. Ofcourse, genetic manipulation to create a transgenic strain

can unintentionally lead to modifications in other genes and affect other physiological functions

even in the WT littermates. This could be the case for the ESMIRO mice. The other possibility is that

the ESMIRO mice and the wildtpe littermates may need a completely different protocol to be

preconditioned involving different duration of ischaemia/reperfusion in the preconditioning cycles

or more number of cycles of preconditioning to be protected to the same extent of C57BL/6J. As

mentioned in Chapter 3, the duration of ischaemia can determine the extent of protection seen with

an IPC protocol and it is possible that using a longer ischaemia time may show more robust cardiac

protection with IPC in the ESMIRO mice and their WT littermates191.

Insulin has been proven to be effective in protecting the heart against IR injury when given both

before ischaemia and after reperfusion in a variety of basic models153;155-157;159;190. Baines et al.

showed using isolated perfused rabbit hearts that 5 min infusion of 5 mU/mL of Insulin followed by

a 10 min washout period given prior to lethal IR significantly reduced myocardial injury153. They also

showed that insulin given only during reperfusion was also cardiprotective153. Further they showed

that this protection was dependent on activation of PI3K153. Fuglesteg et al. similarly using

Langendorff isolated perfused rat hearts showed that insulin in a concentration of 50mU/mL prior to

IR or at a concentration of 3mU/mL at reperfusion was protective against IR injury155. In a different

study they showed that Insulin protection at reperfusion was dependent on activation of STAT3159.
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Jonassen et al. also used an isolated perfused rat heart model to show that 0.3, 1 and 5 mU/mL of

Insulin given at reperfusion significantly reduced infarct size in response to lethal IR compared with

control hearts131. 0.3mU/mL (but not 1 or 5mU/mL) of insulin started 10 min prior to lethal IR,

continued in ischaemia and reperfusion was also cardioprotective131. Surprisingly there were no

papers in the literature where insulin had been used as a cardioprotective agent in isolated perfused

mice hearts, even though there were a number of papers where insulin had been used as a pre-

conditioning mimetic in isolated perfused rat heart models.

Using an isolated perfused mouse model, we failed to see any protection with insulin given only

before ischemia (insulin administered for 15 min followed by a 5 min washout) at a dose of 0.3, 3 or

30 mU/mL in the WT littermates or with 0.3 and 3 mU/mL dose in the ESMIRO mice. However in

these studies, the control infarct size itself was rather low (compared with control infarct size in the

C57BL/6J mice). In a study by Jenkins et al. using an isolated perfused rabbit heart model, there was

only 11% reduction in infarct with an IPC protocol with 15 min of ischaemia as compared with 57%

infarct reduction with 20 min ischaemia duration and 37% infarct reduction with 30 mins of

ischaemia191. Thus low control infarct size may be one of the reasons why cardioprotection could not

be seen at these concentrations of insulin. In order to increase the infarct size seen in the control

group, the duration of ischemia was increased from 35 to 45 minutes. Reperfusion time was also

increased from 30 minutes to 35 minutes. An interesting observation was made with this increase in

duration of ischemia/reperfusion. In the wildtype littermates there was a significant increase in the

volume of infarction seen in the hearts in response to the longer duration of ischemia and

reperfusion. However, in the ESMIRO mice similar increase in the duration of ischemia/reperfusion

did not lead to a significant increase in infarct size. This was very surprising. Literature search

revealed that similar reduced infarct sizes in response to lethal IR have also been noted in diabetic

animals, which have endothelial dysfunction and vascular insulin resistance similar to the ESMIRO

mice. Hadour et al. induced diabetes in rabbits using an alloxan method176. They found that with a

similar duration of myocardial ischemia/reperfusion, diabetic hearts had a lower infarct size
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compared with the control (normal) rabbit hearts in-vivo176. Similarly, Tani et al. found that diabetic

rat hearts were more resistant to the effects of ischaemia201. Liu et al. found that in a streptozotocin-

induced rat model of non insulin dependent diabetes mellitus, infarct sizes were significantly lower

with a similar period of ischemia compared with control rats with no diabetes202. A detailed review

of the reduced sensitivity of diabetic hearts to ischemia was presented by Feuvray et al203. A number

of mechanisms have been proposed for this such as reduced accumulation of products of glycolysis

like lactate and protons as well as reduced Na+/H+ exchange activity in diabetic animals but none

conclusively proven. This resistance to ischemia of the ESMIRO mice hearts suggests that endothelial

dysfunction and/or vascular insulin resistance might underlie similar infarct resistance seen in

diabetes. Interestingly, not only is there less injury in the diabetic hearts in response to ischemia-

reperfusion, ischemic preconditioning is less effective in inducing cardioprotection in the setting of

diabetes180;182;204-209.

Apart from using a longer duration of ischemia-reperfusion, an attempt to make the insulin

conditioning protocol more effective was made by giving insulin both prior to ischemia and at the

time of reperfusion. Additionally the washout period for insulin prior to lethal ischemia-reperfusion

was increased to 10 min. Using this modified protocol, there was a non-significant trend towards

cardioprotection in the wildtype littermates using 100 mU/mL of insulin given both before ischemia

and at reperfusion. There was no apparent reduction in the infarct size in the ESMIRO mice treated

with insulin compared with the ESMIRO control mice. However, this was secondary to significantly

lower infarct size in the control group in the ESMIRO mice. In the studies evaluating cardioprotective

potential of insulin mentioned earlier, a much lower concentration of insulin was used at reperfusion

as compared to the concentrations used for cardioprotection with insulin prior to lethal IR in the

isolated perfused rat model131;155;157 . Possibly, giving a lower concentration of insulin at reperfusion

as compared to that given prior to lethal IR may show better cardiac protection. However, due to

limitation of time, further characterization of IPC or insulin conditioning in the ESMIRO mice and the

WT littermates could not be performed.



MD (Res) Thesis- Vikram Sharma

144

To understand why there was lack of significant cardioprotection in the WT littermates as well the

ESMIRO mice with IPC as well as to delineate the differences in the activation of PI3K/AKT with

insulin conditioning in the ESMIRO mice compared with the wild type littermates, western blot

analysis was carried out comparing the extent of phosphorylation of AKT and PRAS40 (as a surrogate

of AKT activation) with IPC (2 cycles) and insulin treatment (at a concentration of 100 mU/mL given

for 15 min followed by 10 min washout). PRAS40 is a phosphorylation target of AKT activation (via

phosphorylation) and hence can be used as a surrogate marker of AKT activity134-137;210. As AKT

activation after preconditioning can be transient129 it was reasoned that PRAS40 phosphorylation

might offer a more stable or stronger readout of Akt activation after IPC.

There was no difference in the extent of phosphorylation of AKT or PRAS40 with 2 cycles of

preconditioning in the WT littermates or the ESMIRO mice. Hearts were harvested immediately after

IPC and not after IR. Hausenloy et al. showed that phosphorylation of AKT occurs in a biphasic

manner with an initial increase in phosphorylation immediately after administration of the IPC

protocol and a second peak at reperfusion subsequent to lethal IR in hearts subjected to IPC prior to

lethal IR129. Further, they showed that the second wave of AKT phosphorylation at reperfusion was

crucial for cardioprotection129. Hence it would be important to study whether there is absence of

AKT phosphorylation with this protocol in the ESMIRO mice and the WT littermates following IR

subsequent to the IPC protocol as well. However, the lack of AKT phosphorylation after IPC protocol

in the WT littermates suggests that the IPC protocol used was perhaps not robust enough to activate

AKT, hence invalidating any previous inferences made regarding the difference in cardioprotection

with IPC in the ESMIRO mice compared with their wild type littermates. A number of different IPC

protocols including an increase in the number of cycles and perhaps also the duration of

ischemia/reperfusion may be required to establish a more effective IPC protocol in this strain of

mice.

Interestingly, western blot analysis suggested that insulin was able to phosphorylate AKT in both the

ESMIRO and WT littermates. This AKT phosphorylation was the result of activation of PI3K by insulin
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in the mice hearts as the extent of phosphorylation of AKT in both groups of mice (ESMIRO and WT)

was significantly reduced in both cases by co-administration of a PI3K inhibitor (LY294002) along

with Insulin. This suggests that in both these groups of mice, insulin was able to cross the

endothelium and act on the target tissue (the myocardium in this case) implying that at this

concentration (100mU/mL), insulin transport across the endothelium is not an insulin receptor

dependent process. As mentioned in Chapter 1, there is debate in the literature about the

mechanism of insulin transport across the endothelium. Some studies have indicated that insulin

transport across the endothelium is dependent on insulin binding with insulin receptors160;163, some

have indicated that insulin transport across the endothelium is a non-saturable receptor-

independent process162;164-166 while others have indicated a role of IGF-I receptors as an alternate

means of insulin transport across the vascular endothelium167. Our study has shown that insulin

transport across the endothelium is independent of insulin receptors in the ischaemic-reperfused

heart and hence may either be a receptor independent process or may be mediated via IGF-I

receptors rather that insulin receptors. The reason for the lack of cardio-protection in the ESMIRO

mice and the WT despite activation of AKT is difficult to explain and may indicate that Akt activation

alone may not be sufficient for insulin mediated cardiac conditioning against IR.

There are a number of possible variables which may have had to have been altered to see a

significant difference which was unfortunately not possible to investigate.This meant that the thesis

was unable to provide exact answers to the hypotheses outlined at the beginning of the thesis. It

was surprising that despite trying a number of protocols, it was not possible to show significant

cardioprotection in the ESMIRO mice and the WT littermates with IPC or insulin conditioning, though

this in itself was an interesting finding and may indicate an unexpected change in the genotype of

the ESMIRO mice and the WT littermates in the process of generating these animals that may be

affecting the ability to condition the hearts of these mice against IR injury. There were several other

useful results that have provided some insight into the topics that were investigated and can be a

basis for further research. A summary of these findings is provided in the next section.
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4.4 Summary of conclusions:

1. Ischemic preconditioning (IPC) can significantly reduce myocardial injury secondary to

lethal ischemia-reperfusion (IR) in the isolated in vito mouse model

2. Beyond a certain threshold, further increases in the number of cycles of IPC leads to the

loss of cardioprotection seen with IPC

3. Initial results suggested that IPC was less effective in protecting the heart against IR injury

in the ESMIRO mice compared with the wild type littermates. However, subsequent

western blot analysis demonstrated that even in the WT littermates, IPC protocol involving

2 cycles of 5 min each of ischemia and reperfusion had failed to significantly phosphorylate

AKT prior to lethal IR. AKT activation is a crucial component of the activation of RISK

pathway responsible for IPC. Hence the IPC protocol needs further characterization for the

ESMIRO mice.

4. Insulin was able phosphorylate AKT both in the WT littermates as well as the ESMIRO mice

despite the fact that the ESMIRO mice did not have functional endothelial insulin

receptors. Thus insulin transport across the endothelium in an isolated perfused mouse

heart model at the concentration used (100mU/mL) is independent of vascular insulin

receptors and may be taking place either via IGF-I receptors or by a receptor-independent

process.

5. ESMIRO mice were resistant to the effect of an increase in the duration of ischemia-

reperfusion and had significantly lower infarct sizes than the WT littermates. Similar

findings have been noted in the setting of diabetes, though the mechanism has not been

established. It is possible that vascular dysfunction and vascular insulin resistance,

common to the ESMIRO mice and to a diabetic phenotype, may be responsible for this

resistance to ischemia.



MD (Res) Thesis- Vikram Sharma

147

6. BNIP3 phosphorylation was noted both with IPC and with lethal IR in the C57BL/6J mice,

suggesting that this was not specific to IPC. There was a significantly higher signal for the

carboxy-terminal end of BNIP3 in the C57BL/6J mice exposed to lethal IR as compared to

baseline and hearts subjected to IPC (both in the absence or presence of subsequent lethal

IR). Lethal IR may expose binding sites on the carboxyterminal end of BNIP3 which may

play a role on homo-dimerization and this may be prevented by IPC. This appears to be

independent of phosphorylation.

7. Insulin treatment in the WT littermates led to a significant increase in the level of

phosphorylated BNIP3 but this was not inhibited by LY294002 (an inhibitor of PI3 Kinase).

ESMIRO mice which had similar AKT phosphorylation as the WT littermates did not exhibit

a significant increase in BNIP3 phosphorylation. Hence, BNIP3 phosphorylation appears

not to be specific to PI3K/AKT activation.

5. Study limitations and future research:

It is important to highlight some of the limitations of the studies described above.

5.1 Firstly, some important issues regarding the western blot analyses assessing the effect of

ischaemic preconditioning on the post-translational modification of BNIP3 in C57BL/6J as

well as the ESMIRO mice and their wildtypes merit discussion. These are as follows:

5.1.1 The western blot analysis was carried out only once and in one model of ischaemia

reperfusion only (Langendorff isolated mouse heart preparation). Also, ECL technique was

used for the western blot analysis in C57BL/6J mice, which proved less sensititive than the

odyssey infrared scanner in detecting the phospho-BNIP3 bands. Hence, a repeat of these

western blot analyses in the C57BL/6J mice using the odyssey scanner, not only in the same

Langendorff model but also using a different model of ischaemia-reperfusion such as an in-
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vivo study or using cardiac myocytes/cell lines would have been very useful in confirming the

findings discussed in this thesis as well as to explore any changes not identified with the ECL

technique, though this was not permitted by time constraints. Similarly, western blot

analyses carried out in the ESMIRO mice and their WT littermated should be repeated in

another model of IR injury.

5.1.2 Ishaemia-reperfusion injury increases the expression of BNIP3 in the myocytes. The short

duration of the experimental protocol in Langendorff mouse heart model may not have

allowed appropriate assessment of the imact of ischaemic preconditioning on the increase in

expression of BNIP3 or its elimination in response to IR injury as this typically takes several

hours75;84;96. A model with a longer IR protocol in cell lines or cardiac myocytes would be

ideal to observe changes in BNIP3 levels as several hours would be required for the changes

in expression/elimination of BNIP3 to become apparent75;84;96.

5.1.3 Western blot analyses for BNIP3 by other groups have typically shown two bands – one at 30

KDa, representing the monomeric form of BNIP3 and the other at 60 KDa, representing the

dimeric form of BNIP396. For total BNIP3, we identified only one band at 60kDa both in the

C57BL/6J mice as well as the ESMIRO mice and their wildtype littermates. Using the antibody

assessing the carboxy terminal end of BNIP3 we picked up two bands at 30 and 60 KDa

respectively. The 60 KDa band was the more prominent band of the two, though the

changes seen in the band intensities were identical in the 30 and 60 KDa bands. For

phosphorylated BNIP3, three bands were identified in the western blot analysis in the

ESMIRO mice and their wildtype littermates the slowest moving of which was 40 kDa in size.

This would correspond with the monomeric form of BNIP3. Thus in our analysis we did not

pick up bands for both the monomeric and dimeric forms of BNIP3 repectively in the case of

total BNIP3 and phosphorylated BNIP3. This is a limitation of these two antibodies used for

the western blot analyses. The interaction of the antibodies used for western blot analysis
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with their target protein is dependent on the epitope used for their generation and this

varies for each antibody. The results would suggest that in the case of these two antibodies

they were unable to bind with either the monomeric or the dimeric form of BNIP3

respectively indicating that perhaps the structural difference in these two forms prevented

the antibody from binding to its target region.

5.1.4 Apart from the difference in the number of bands identified with the western blots, the

western blot analsis for the antibody towards total BNIP3 and the antibody specific to the

carboxy terminal end of BNIP3 showed that while there was no change in total BNIP3, the

measured quanitity of the carboxyterminal end of BNIP3 was significantly increased in

response to IR compared to baseline and this increase was prevented by IPC. Essentialy, it

would be expected that the results for these two antibodies would be identical as they are

measuring the same protein since the carboxy terminal end of BNIP3 is an integral part of

the BNIP3 protein. The reason of choosing a different antibody that targets an isotope at the

carboxyterminal end of BNIP3 rather that an epitope in the BH3 region of the protein was to

identify any change in response to IR or IPC specific to the carboxyterminal end of BNIP3

which is the crucial effector of BNIP3 mediated cell death198. It is very likely that some such

modification underlies the contrasting results mentioned above with this antibody

compared with the results seen with the antibody for total BNIP3. As explained in the

previous chapter, the antibody for total BNIP3 is targeted for a sequence located at aa 1-100

of human NIP3 whereas the antibody for the carboxyterminal end of BNIP3 is specific for a

sequence located at aa 176-193 at the carboxy terminal end of BNIP3. Thus they bind to

different epitopes at different parts of the protein and hence the diference in results. The

use of the additional carboxy-terminal antibody that we used to quantify changes in BNIP3

proved advantageous as this was able to bind with both the monomeric and dimeric forms

of BNIP3 and allowed us to identify that there may be potential changes to this end of the

protein after IR that increase the binding of this antibody to the BNIP3 carboxyterminal end
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and that this is prevented by IPC. We could not explore the specific changes that were

induced at the BNIP3 carboxy-terminal end by IR that were prevented by IPC due to lack of

appropriate tools to investigate this.

These factors highlight some of the limitations of antibodies used for western blot analysis in

accurately studying post –translational changes in proteins as the results depend entirely on

the epitope used for generation of the antibody used and how well the antibody binds with

its target region. An additional method that could have been used to overcome these

antibody limitations, if it was available, is mass spectrometry which is an excellent tool for

studying post-translational changes in proteins that is not limited by the antibodies available

for a certain protein.

5.2 Limitation related to studies related to cardiac conditioning in the ESMIRO mice and their

wildtype littermates are discussed below:

5.2.1 With regards to the studies investigation cardioprotection in the ESMIRO mice and their

wild-type littermates with IPC we used the same ischaemia-reperfusion and IPC protocol

that had shown protection in the C57BL/6J mice. As discussed in the earlier sections of the

thesis, there can be a significant variation in the cardiac protection seen with ischaemic

preconditioning with changes in the duration of IR injury191. Hence, an ideal approach would

have been to characterize the ischaemia-reperfusion and IPC protocols first with varying

durations of ischaemia and reperfusion for both IR and IPC cycles. An IR protocol that shows

atleast 40-60% myocardial infarction in the WT littermates should then be used as the

reference group to study cardiprotective interventions as this would better delineate any

different in the protection offered by preconditioning between the wildtype littermates and

the ESMIRO mice. The low infarct size in the IR group in the ESMIRO mice and the wild type

littermates in our study makes it difficult to derive meaningful conclusions regarding the

effects of the vascular insulin resistance and endothelial dysfunction on ischaemic
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preconditioning. This is possibly also one of the reasons that significant protection could not

be seen with IPC in either the ESMIRO mice or their wildtype littermates.

5.2.2 It was not possible to determine why there was a lack of significant protection in the wild

type littermates of the ESMIRO mice with insulin treatment despite the fact that the western

blots demonstrate that the cardioprotective RISK pathway was activated in these mice

through AKT phosphorylation with Insulin treatment at a concentration of 100 mU/mL. It is

important to note that the western blots only looked at AKT activation in response to insulin

treatment prior to IR. While it is reasonable to contemplate that this concentration of insulin

(which was given at reperfusion as well as prior to IR when its cardioprotective effect against

IR was studied) would also cause AKT phosphorylation at reperfusion, we have not directly

measured this. It would be important to also show that AKT is phosphorylated with the

insulin treatment at reperfusion in the first few minutes of reperfusion as these first few

minutes of reperfusion are critical in mediating the cell death caused by it. Hence if AKT is

not activated in these first few minutes , it would not be protective129;200. Since, the infarct

size was already significantly lower in the IR group in the ESMIRO mice IR group compared

with the WT littermates used for similar study of the cardioprotective effect of insulin at

100 mU/mL concentration, it was not possible to assess infarct reduction with Insulin in the

ESMIRO mice as they seem to be inherently protective. However, it can be said that this

inherent cardiprotection is not because of AKT activation at baseline in these mice as the

western blot analysis did not demonstrate AKT phosphorylation to a greater extent in the

control group (not subjected to any treatment) in the ESMIRO mice compared with WT

littermates.

5.2.3 Further, since we are unsure whether genetic manipulation in creation of these mice (both

the ESMIRO mice and their wildtypes) might have affected their response to IR and/or IPC, It

would have been useful, if permitted by time, to characterize the cardioprotection offered
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by insulin conditioning first in the C57BL/6J mice which is a standard mouse strain used

commonly as a reference in IR studies and then compare this with the transgenic ESMIRO

mice and their WT littermates. This is particularly important as we could not find any

published literature on infarct reduction in mouse hearts with insulin conditioning in the

Langendroff heart preparation model that could have been used for comparison.

Overall, despite some limitations mentioned above, our observations from these studies are

important as the effect of cardiac conditioning against IR injury on the post-translational

modification of BNIP3 as well as the impact of vascular insulin resistance and endothelial injury on

IPC, IR injury and insulin conditioning in the heart assessed in this thesis have not been evaluated

previously. If sufficient time was available, it would have been interesting to further investigate the

proposed hypotheses through the following experiments/studies:

1. Identification of specific sites of BNIP3 phosphorylated in response to IPC and IR, perhaps using

mass spectrometry.

2. Using cardiac myocytes or a cell line to examine the effect of IPC on the expression/elimination of

BNIP3 using a long ischaemia-reperfusion protocol, which was not possible in the Langendorff

isolated perfused heart model.

2. Further characterisation of IPC in the ESMIRO and WT mice using longer lethal ischemia duration,

increasing the duration of sublethal IR in IPC cycles and increasing the number of cycles of IPC.

3. Performing a dose response curve for AKT phosphorylation with insulin to identify the lowest

possible dose of insulin that can be used for cardiac conditioning in the mouse heart. This would

eliminate any detrimental effect that insulin itself may have on the heart. Insulin conditioning in the

Langendorff isolated perfused mouse heart model needs further evaluation.

4. Explore potential mechanisms underlying the ischemic resistance seen in the ESMIRO mice, which

may be secondary to endothelial dysfunction present in these mice. As explained in the thesis, ROS
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can play a dual role in IR injury depending of the site and level of production. Hence a likely

mechanism could be a difference in the reactive oxygen species generated in response to IR in the

ESMIRO endothelium compared with the wild type.
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