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A. MATHEMATICAL DERIVATIONS

We present a derivation of the equations modelling the life cycle outlined in the main text and shown
in Figure S1. We begin by deriving the equations for the simplest of our models, in which wild type
mitochondria are subject to deleterious mutation pressure. We define the two dimensional random
variable X' = (X! X}) to represent the mitochondrial state and nuclear genotype of the diploid
unicellular organisms (referred to from now on as ’cells’) in the population at generation ¢ where
X1 is the number of mutant mitochondria carried by a cell and X} is the mitochondrial inheritance
locus of that cell. Hence, X} takes values in {0,1,..., M} and X} takes values in {aa, Aa, AA}. Tt
follows that there are (M + 1) possible mitochondrial states. By definition their frequencies over

all mitochondrial inheritance genotypes sum up to one,

We derive the change in the relative frequency of each genotype following each step of the
life cycle (Fig. S1). We assume an infinite population and so ignore drift in the nuclear locus,
but include sampling (i.e. drift) of the mitochondrial population at reproduction (see below). If
P(X! = (i,7)) denotes the population distribution at the onset of the life cycle (generation t) then
P(X"*! = (4, 7)) denotes the probability distributions at the onset of the next life cycle (generation
t+1).

During each generation the population will have gone through five steps as described in the main
text (mutation, selection, meiotic step 1, meiotic step 2 and syngamy). So to go from generation
t to generation t + 1, the population undergoes five intermediate steps. We denote the probability
distribution after each step by P(X""™) where s takes values in {1,2,3,4,5} and P(X"™) is the

distribution at the onset of generation t. It also follows that P(X"™ = (i, §)) = P(XT1 = (4, §)).
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Fig. S1: Model life cycle. Big circles are cells while ovals represent mitochondria (black for wild-type
and red for mutant).

A1l. Relative frequency calculation
1. Following mutation

We let Z;. be the number of new mutants that a cell carrying k£ mutations may accumulate. Zj is

a random variable following a binomial distribution B(M — k, ) and we have,
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Hence, we obtain the cell’s distribution following mutation,

P(XUT = (i,5) = 32 P(XU™ = (k) P(Zy = i — k), ¥ j.

2. Following selection

We use a standard population genetic model of generational frequency change in a large population,

pxtn = (i, ) = DX = G5)wl)

A

where w = 3, . P(X5™ = (i,7))w(i) and w(i) is the fitness of a cell with ¢ mutant mitochondria

as defined by Equation (1) in the main text.



3. Following meiosis

Meiosis takes place in two stages and so this derivation is performed in two steps.

STEP 1: first meiotic subdivision

In the first step, the nuclear mitochondrial inheritance alleles and each mitochondrial gene are first
duplicated, and then two diploid daughter cells are formed by random segregation, each with M
mitochondria. The population is defined by X“™ at the onset of meiosis. We define the random
variable X", which takes values (4, j) where i € {0,1,..., M} and j € {aa, Aa, AA} as before, to
define the population following the first meiotic step.

We now define the random variable Y} to be the number of mutant mitochondria sampled from

a parent cell with £ mutant mitochondria. Sampling takes place without replacement at this stage
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Given that nuclear and mitochondrial genes are independently inherited following cell division we

and so we have,

obtain,
M 1 M
PX'™ = (ia0)) = 3 PV =i)PX" = (k,aa)) + 5 3 P(Yi = )P(X'™ = (k, Aa)),
k=i/2 k=i/2
o M
PX = (i, Aa)) = 3 37 P(Yi =i)P(X"™ = (k, Aa)),
k=i/2
M 1 M
P(Xt,7'3 — (I,AA)) — Z P(Yk = 'L')P(}(M—2 = (k‘,AA)) + 6 Z P(Yk = Z.)P(Xtﬂ? = (kaAa))
k=i/2 k=i/2

STEP 2: second meiotic subdivision

In this step, each diploid cell resulting from the first meiotic division randomly segregates to produce
two haploid gametes, each containing M /2 mitochondria. We define the random variable X»™ to
represent the population of gametes following this second division step. This can take values in
(p, q) where p is the number of mutant mitochondria and ¢ is the mitochondrial inheritance gene.

Then, p takes values in {0, 1, ..., M/2} and q takes values in {a, A} where we assume that M is an



even number. This is equivalent to P(X"™ = (i, 5)) =0 for i > M/2.
We also define the random variable Z; to be the number of mutant mitochondria sampled from
a parent cell with k& mutant mitochondria following the second meiotic step. As before, sampling

takes place without replacement and we have,
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Using the fact that nuclear and mitochondrial genes are independently inherited following cell

division we obtain the gamete distributions following meiosis,

M M
1
P(X"™ = (p,a)) = Y P(Z,=p)P(X"™ = (k,aa)) + 521) P(Xb™ = (k, Aa)),
k:p :p
M 1 M
t,Ta __ _ _ t,T3 __ t,73 __
P(X"™ = (p,4)) = kZP(Zk—p)P(X 5 = (k, AA)) +2kZP P(Xb™ = (k, Aa)).

4. Following syngamy

We now have X»™ be the gametes right before syngamy and we let X*™ be the new cells following
syngamy. When inheritance of mitochondria is biparental, the number of mutant mitochondria of
the new cell is given by the sum of the mutants that the two gametes carry. Using the assumption

that fusions between two A or two a gametes are biparental we get,

POXCT = (1,a0) = 3 POXT = () PXT = (i~ k,a)),
k=0

P(X'™ = (i, AA)) = ZP (XU = (k, A))P(XI = (i = K, A)).

When inheritance is uniparental, the mitochondria of the passive gamete (not passing on its
mitochondria) are discarded and we sample with replacement from the active gamete to obtain
M mitochondria for the new zygote (note, this is better than simply doubling the number of
mitochondria, otherwise we always have even numbers of mutant mitochondria in UPI zygotes).
We define the random variable Qi to be the number of mutant mitochondria sampled from a gamete

which carries £ mutants. This follows a Binomial distribution B(M, 2k/M) from which we have,



o= (1) (3 (52)"

Using the assumption that fusions between an a and an A gamete are uniparental we then obtain,

M2 M2
P(X'™ = (i,Aa)) = > P(X"™ =(l,a))> P(Qy=i)P(X"™ = (k, A)).
1=0 k=0

A2. Mating types

The derivations above are for the simplest model presented in the main text which only addresses
mitochondrial mutational pressure. Also, we only considered nuclear genes a and A. When mat-
ing types Ai,a1, Ao, as are implemented, the calculations are essentially the same but extended
to more than three genotypes appropriately. In addition, if there was recombination between the
two nuclear loci (inheritance of mitochondria and mating type), this was applied to generate the
resulting nuclear genotype frequencies. In the final step (syngamy) the same probabilistic rules are
followed and uniparental or biparental inheritance is assumed according to the gamete’s mitochon-

drial inheritance locus.

A3. Simulations

The biological complexity encompassed by this model prevents us from solving analytically for
the equilibrium states. So the asymptotic behavior and equilibria of the life cycle were explored
using numerical simulation. The simulations were coded in C and the code can be accessed at
https://github.com/UCL/SexesProceedings. We assumed that equilibrium had been reached when
the maximum changes in mitochondrial state frequency and nuclear gene frequency across a gen-
eration are smaller than an appropriately value €, taken to be 107°. Our results were qualitatively
robust to changes in the parameter values and an equilibrium point was reached within approxi-

mately 2000 generations in most simulations.



B. SUPPLEMENTARY TO MAIN TEXT

In this section we provide results that are supplementary to each of the four result subsections in

the main text.

B1. Mitochondrial mutation pressure
High M and u

In Section 3.1 in the main text we discuss the impact of M and p on the F; equilibrium value for
pa. As M and p increase so does p4 and eventually this pushes the first equilibrium F; to merge
with F5. The reason for this relates to the capacity of A cells to allow leakage of UPI benefits to
a cells.

When M and p are low, UPI is very effective at keeping a high proportion of cells in the fittest
states in the A population. A significant proportion of A cells have nearly perfect fitness (see
Fig.S2). This means that A x a fusions generate highly fit a gametes whose frequency may then
be amplified via selection to produce a highly fit population of aa zygotes. However, when M and
1 increase, the ability of UPI to maintain such a high proportion of the population at high fitness
is impaired (Fig.S2 second and third columns, for increased p and M respectively). This in turn
means that the leakage of fitness advantage from A to a cells is impaired. So p4 can increase further

before an equilibrium is reached (Fig.S2).
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Fig. S2: Fitness distributions for each genotype (aa:black; Aa:red; AA:blue) for different values of
M and p indicated at the top off each column. The population was held at a fixed value of py
(indicated at the beginning of each row) and the mitochondria were allowed to evolve. The figures
illustrate that depending on the values of M and p, different values of p4 affect the distribution of

Fitness (w)

mitochondrial fitness resulting from selection and ‘leakage’.
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Fig. S3: Mean fitness of a (wg, black line) and A (w4, red line) for fixed values of p4 using a
concave fitness function and assuming that A x A matings are uniparental. Parameter values:
M=50, u=0.01.

A x A Uniparental

We also considered the case where matings between two A cells are uniparental (like in (1)). In
this case there is no cost to w4 from increasing p4, as A x A matings are still uniparental, so the
average fitness of A is independent of p 4. However, w, increases in a frequency-dependent manner
with p4 due to increasing leakage from matings between a and A (Fig. S3). This still results in an
FE1 equilibrium when w, = wy4.

Values of p4 above Fj result in an increase in w,. This is because A uniparental matings generate
high variance at each generation with more lower fitness individuals. This short term disadvantage
is offset by the longer term cleansing of the mitochondrial mutation load, hence w4 > w, when p4
is infrequent and leakage is weak. But for higher values of pa, w, > w4 as a enjoys the benefits of
leakage while being able to avoid the disadvantage of short-term increased variation and more lower
fitness individuals. This explains why Fj3 is unstable. At py = 1, all matings are uniparental and
the mitochondrial mutation load is minimised. So the mitotypes of a mutants are equally cleared
of mitochondrial mutations. But the ¢ mutant has the additional advantage of a x a matings, that
are BPI and have lower variance. Even though these are initially rare, they have higher fitness on
average, so the ¢ mutant will invade a population fixed for A.

Note that a biological mechanism that allows A x A matings to have random uniparental
inheritance is unlikely to occur without any costs (2). Such costs will decrease the fitness of AA

zygotes and therefore the fitness of A cells as p4 increase. This would result in a frequency-
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Fig. S4: (A): Convex fitness curve (B): Mean fitness of a (w,, black line) and A (w4, red line) for
fixed values of p4 using a convex fitness function. Parameter values: M = 50, u = 0.01.

dependent decrease in the fitness of A, hindering its spread.

Convex Fitness Curve

We repeated our analysis with the assumption of a convex fitness curve given by,
w(i) =1-1/5

where M is the number of mitochondria in each cell and j is the number of mutants (Fig.S4A).
Here we assume that mitochondrial mutants cause a sharp and increasing fall in oxidative phos-
phorylation, and hence fitness. This assumption is difficult to justify biologically as it implies that
the steepness in fitness decline is higher with fewer mutants and becomes less steep as the number
of mutants increases. This is against both intuition and empirical evidence but is included here for
completeness (and perhaps there are situations where it might apply).

The assumption of a convex curve causes a much greater benefit when moving from BPI to UPI.
For example, the relative advantage at py = 0.1 (M = 50 and g = 0.01) with a convex curve is
~0.5, (Fig.S4B), compared to only ~0.15 with a concave curve (Fig.1¢). This is because there is a
short-term advantage to increased variance with a convex curve (Fig.S4A), and leakage is not fast
enough to bring w, = wy4 before the uniparental inheritance allele (A) suffers from a significant
decrease in fitness due to frequent biparental A x A matings. It follows that E; merges with Fo
even for lower values of M and u.

The third equilibrium E3 with p4 = 1 also exists but is unstable. When p4 = 1, all a matings

are uniparental, whereas almost no A matings are. So w, > w4 even though there is no cumulative
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Fig. S5: Probability of sampling a mutant (red) or wild-type (blue) mitochondrion under the
assumption of selfish conflict. Number of mitochondria M=50.The lines are for increasing values
of replicative advantage k in the direction of the arrows.

benefit in the a population, because a is associated with higher variance in mitotypes and this
confers a short-term fitness advantage. This makes E3 unstable and drives the population to p4 =
0.5. This is an important finding as it shows that even modifiers of the ”kill your own mitochondria”
type can spread under some circumstances. Note that leakage take places both with a convex fitness
curve as with a concave fitness curve. It results in an increase in w, as p4 increases, reducing the

relative fitness difference between UPI and BPI.

B2. Selfish mitochondrial mutants

For the selfish mutant case, we implement a step after mutation and before selection. At this
step mutant mitochondria are given an advantage. So if a cell carries I mutant mitochondria

the probability of sampling a mutant mitochondrion should be higher than ﬁ We defined this
(14 k)
M + 1k
appropriate function, as the overall advantage of mutant over wild-type mitochondria increases

probability to be where the parameter k& determines the mutant advantage. This is an
with the ratio of mutant mitochondria, due to the additive effect of the advantage of mutant
mitochondria. The sampling probabilities for different values of k can be seen on Fig.S5.

To derive the equations implementing this step in the life cycle we define Y, as the number of

r(1+k:)>

mutant mitochondria sampled from a cell carrying r mutants. Then, Y, follows B (M Mk
,

and we have,

10
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Fig. S6: Frequencies of A and A; at equilibrium for different values for the advantage of mutant
mitochondria k. Mutation rate u=0.01.

P, =1y = (MY (rOERY (R
U M +rk M +rk '
Letting X%™ and X%™+! define the population before and after this step takes place we obtain,

P(XI71 = (4, 5)) = Sr=gh P(XE™ = (r, ) P(Y, = 9).

The frequency of p4 at equilibrium increased when this step was implemented. This increase was
higher for larger values of k (Fig.S6A4).
B3. Mitonuclear coadaptation

Mitonuclear coadaptation is somewhat more complex as a nuclear gene interacting with the mito-
chondria has to be defined. The equations for this case are modified following their definition and
derivation in (7).

Fluctuating external factors

In addition, we considered a regularly changing environment. To model this we assumed that the

nuclear optimum fluctuates. We imposed a cost (q) at the selection step either on the 00 nuclear

11
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Fig. S7: Change in (A) genotype (Paa, PAa, PA4) and (B) gene (pq, pa) frequency across time
(generation), from introduction of the uniparental inheritance mutation A allele (initial frequency
1072 at generation 100) until stability is reached at equilibrium FEj. Here we assume fluctuating
environmental conditions force the dominant mitonuclear state to switch by imposing a cost g =
0.75 every p = 200 generation for a duration of d = 20 generations. Once the fluctuations are
removed the population returns to its initial equilibrium. Other parameters: (M, u, v)= (50, 0.01,
0.0001).

state (when at that optimum) or on the 11 nuclear state (when at that optimum). This was imposed
on the population periodically (every p generations) for a duration of d generations.

We found that if the cost was high enough (high ¢) and was imposed on the population for
long enough (high d), then the population switched states during the time the cost was imposed.
This caused an increase in the frequency of A in the population. During the switch mitochondria
inherited uniparentally are more efficient at adapting to a new nuclear background than those
inherited biparentally, explaining the increase in the degree of uniparental inheritance. Once the

fluctuations were removed however, the population returned to its initial equilibrium (Fig.S7).

B4. Mating types

In the main text we consider the effect of introducing mating types (A;) to a population where p, =
1. We saw that this resulted in the spread of A; to an equilibrium equivalent to F; (Fig.4a). Once
at F1, we then introduced a second mating type allele p,, into this polymorphic A;/a population.
However, the ag allele did not invade, but simply monotonically decreased in frequency (Fig.S8).
This is a general finding. Namely that once a polymorphic equilibrium is reached (with some
degree of uniparental inheritance), further alleles that potentially increase the degree of uniparental
inheritance are not favoured.

This was true even when ay was introduced at a higher frequency (Fig.S8C) and when as was

12
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Fig. S8: Change in genotype frequency (Paa, PA,as Paass PAjas ), from introduction of the uni-parental
inheritance allele A; at generation 100, and the allele as at generation 500 (initial frequency 10~2).
B: Zoomed-in to illustrate the monotonic decrease in p,,. C: Allele ay is introduced at a higher
frequency (0.2). D: Allele ay is introduced at a higher frequency (0.3) and is only allowed to fuse
with A; (and not with a). A,B:(M, ) = (50, 0.01) and C,D:(M, u) = (100, 0.01).

allowed to fuse only with A; (and so have strict UPI fitness) (Fig.S8 D) . This is because a benefits
from the presence of Ay in the population through leakage. When as was subsequently added there
was no significant additional fitness benefits from A; x a2 matings that could give wg,, >> w,. This
along with the slight disadvantage a9 suffers by not being able to fuse with self (very low when the
frequency of as is low) result in a monotonic decrease of the frequency of as.

Alternatively, we assumed that two mating types a; and as pre-exist and then introduced Aj.
This causes A; to displace a; up to a degree equivalent to . For higher M and u, A; displaced
a1 altogether, leading to an equilibrium at which there is complete uniparental inheritance of
mitochondria (Fig.S9).

When recombination was allowed (R = 0.5), the frequency of A reached similar levels to those
seen without recombination. Recombination allowed both A; and As alleles to spread, until both
reached Fj-like equilibria with complementary frequencies of the a; and as alleles. The frequency
of the uniparental inheritance alleles rises with higher values of M and p. However, in this case
complete UPI is not possible because each mating type is equally associated with uniparental (A)

and biparental (a) mitochondrial inheritance alleles, so at equilibrium p,, = pa, = pa, = pPa, =

13
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Fig. S9: Equilibrium frequency of A; when introduced into a population with p,, = ps, = 0.5 for

different M and p
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Fig. S10: Change in genotype frequency (Pajays PAjass Paydss PAA,), from introduction of the
uniparental inheritance mutation A allele (initial frequency 102 at generation 100) until stability
is reached. Full recombination between the mating type and mitochondrial inheritance loci is
assumed. Parameters used: (M, p) = (50, 0.01).

0.25 (Fig.S10). So when mating types pre-exist, strict UPI requires complete linkage between the

mating type and mitochondrial inheritance loci.
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