The Synthesis of Imidazo[1,2-\textit{a}]pyrazines as Inhibitors of the VirB11 ATPase and their Incorporation into Bivalent Compounds

James Richard Sayer

Department of Chemistry
University College London

Submitted to the Department of Chemistry for the Degree of Doctor of Philosophy
I, James Richard Sayer, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

James Sayer
In Loving Memory of Dad

Graham John Sayer

2nd February 1945 – 21st November 2012
I would like to take this opportunity to thank Prof Alethea Tabor and Prof Gabriel Waksman for the opportunity to work on this project and for their ongoing support and guidance throughout. I would also like to express my gratitude towards Dr Lisa Haigh for running countless mass spectrometry samples, Dr Abil Aliev for his assistance with NMR analysis, Jill Maxwell for elemental analysis and past and present members of the Tabor and Hailes research teams for their friendly help and advice.

My thanks also go to Prof David Selwood, Dr Karin Wallden, Dr Paul Gane, Dr Thomas Pesnot, Dr Fred Campbell and Hans Koss for their contribution to this work.

Last but not least, I would like to thank my wife Danielle for her support, patience and understanding throughout my PhD.
Abstract

Helicobacter pylori are gram negative bacteria that colonise in the human stomach causing illnesses such as peptide ulcers and various cancers. Through targeting a component of their secretion apparatus, it is envisaged that translocation of toxic molecules will be inhibited and therefore virulence would be reduced.

Virtual high throughput screening of the *Helicobacter pylori* VirB11 ATPase, HP0525, identified imidazo[1,2-\(a\)]pyrazine compounds as potential ATP mimics and ATPase inhibitors.

Synthesis of these target compounds was carried out, with two routes established to deliver 2- and 3- aryl regioisomers. *In vitro* screening identified compound 14 as the lead compound (IC\(_{50}\) = 7 \(\mu\)M) and studies have shown it to be a competitive inhibitor of ATP. Based upon *in silico* interactions of this compound within the ATP binding site, a second generation of compounds were then designed and synthesised.

Whilst these compounds showed no major improvements in potency, two further inhibitors were identified as potential leads. Trends in the structure-activity-relationship of these imidazo[1,2-\(a\)]pyrazine compounds have also been identified, paving the way for the design of further novel compounds.

In addition, the lead compound 14 was successfully incorporated into peptide-small molecule bivalent compounds. The objective of the peptide moiety was to disrupt hexamer formation of the VirB11 ATPase, whilst the small molecule targets the enzyme active site. Initial studies have shown this class of bivalent compound not to inhibit below 500 \(\mu\)M. Further investigation of these bivalent compounds will be required.

Presented in this thesis are details of the synthesis, biological testing and computational evaluation of imidazo[1,2-\(a\)]pyrazines and their incorporation into the synthesis of bivalent compounds.
Contents

Abstract ... v
Contents ... vi
List of Abbreviations ... xi
Chapter 1: Introduction ... 1

1.1 Biological Background ... 1

1.1.1 Helicobacter Pylori ... 1
1.1.2 Secretion Systems .. 3
1.1.3 Type IV Secretion Systems ... 3
1.1.4 VirB11 ATPase: HP0525 .. 8

1.1.4.1 HP0525 Monomer ... 8
1.1.4.2 HP0525 Hexamer ... 8
1.1.4.3 Nucleotide Binding Site .. 10
1.1.4.4 Subunit-Subunit Interface .. 11
1.1.4.5 HP0525 Mechanism of Action .. 12
1.1.4.6 HP1451: Regulatory Protein of HP0525 13
1.1.4.7 Current Inhibitors of HP0525 .. 14

1.2 Imidazo[1,2-a]pyrazines ... 15

1.2.1 Target Compounds .. 15
1.2.2 Synthesis, Reactivity and Therapeutic Applications of Imidazo[1,2-a]pyrazines .. 16

1.2.2.1 Synthesis of Imidazo[1,2-a]pyrazines 18

1.2.2.1.1 Imidazo[1,2-a]pyrazines from Pyrazine Rings 18
1.2.2.1.2 Imidazo[1,2-a]pyrazines from Imidazole Rings 26
1.2.2.1.3 Alternative Approaches to the Formation of Imidazole and Pyrazine Rings 28
1.2.2.1.4 Multicomponent Reactions .. 29

1.2.2.2 Reactivity of Imidazo[1,2-a]pyrazines 32

1.2.2.2.1 Electrophilic Addition ... 32
1.2.2.2.2 Nucleophilic substitution .. 35
1.2.2.2.3 Metalation of Imidazo[1,2-a]pyrazines 39
1.2.2.2.4 Reduction of Imidazo[1,2-a]pyrazines 39

1.2.2.3 Therapeutic Applications of Imidazo[1,2-a]pyrazines 40

1.2.2.3.1 Imidazo[1,2-a]pyrazines as Anticancer Agents 40
1.2.2.3.2 Additional Therapeutic Applications of Imidazo[1,2-a]pyrazines 45

1.3 Project Aims & Objectives ... 48
4.1 Introduction to Bivalent Inhibitors .. 117
 4.1.1 Peptide-Small Molecule Bivalent Inhibitors .. 118
 4.1.2 Conjugation Techniques and Protein Modification 124
4.2 Bivalent Inhibitor Reagents as Potential ATPase Inhibitors 128
4.3 Synthesis of PEGylated Imidazo[1,2-α]pyrazines 134
 4.3.1 Synthesis of the Carbamate Linker for PEG attachment to Imidazo[1,2-α]pyrazine Inhibitors .. 135
 4.3.2 Synthesis of PEGylated Free Hydroxyl Imidazo[1,2-α]pyrazines 139
 4.3.2.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-α]pyrazines 139
 4.3.2.2 Attempted Synthesis of PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-α]pyrazines .. 141
4.3.3 Synthesis of PEGylated Maleimide Linked Imidazo[1,2-α]pyrazines 142
 4.3.3.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-α]pyrazines 142
 4.3.3.2 Approaches to PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-α]pyrazines .. 146
 4.3.4 Synthesis of PEGylated Allyl and Alkyne Linked Imidazo[1,2-α]pyrazines ... 149
 4.3.4.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-α]pyrazines 149
 4.3.4.2 Approaches to PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-α]pyrazines .. 150
4.4 Peptide Synthesis ... 152
 4.4.1 Synthesis of N-Fmoc protected S-Allyl Cysteine 152
 4.4.2 Peptide Synthesis .. 155
4.5 Peptide-Imidazo[1,2-α]pyrazine Conjugation to give Bivalent Inhibitor Reagents .. 157
 4.5.1 Trial Reactions .. 158
 4.5.2 Solution Based Conjugation of Peptides and PEGylated Imidazo[1,2-α]pyrazines .. 159
 4.5.3 Resin-Bound Conjugation of Peptides and PEGylated Imidazo[1,2-α]pyrazines 160
4.6 Compound Evaluation .. 164
 4.6.1 PEGylated-Imidazo[1,2-α]pyrazines .. 164
 4.6.2 Wild-Type Peptides ... 167
 4.6.3 Bivalent Inhibitor Reagents ... 167
4.7 Concluding Remarks to Chapter ... 167
Chapter 5: Conclusions ... 169
 5.1 Future Directions ... 170
Chapter 6: Experimental ... 173
 6.1 Compound Synthesis .. 173
 6.1.1 General Considerations .. 173
 6.1.2 Synthesis of Target Compounds .. 175
6.1.2.1 Initial Synthetic Approach ... 175
6.1.2.2 Synthesis of 3-Aryl Imidazo[1,2-a]pyrazines .. 177
 6.1.2.2.1 Formation of Amino Alcohol Moiety via Epoxide 177
 6.1.2.2.2 Synthesis of α-bromo aryl ketones ... 178
 6.1.2.2.3 Synthesis of α-azido aryl ketone .. 181
 6.1.2.2.4 Synthesis of α-azido aryl alcohols ... 184
 6.1.2.2.5 Synthesis of α-amino aryl alcohols ... 189
 6.1.2.2.6 Synthesis of α-amino aryl ketones .. 193
 6.1.2.2.7 Synthesis of 2-[(3-chloropyrazin-2-yl)amino]-1-(2-aryl)ethanols 194
 6.1.2.2.8 Synthesis of 2-[(3-chloropyrazin-2-yl)amino]-1-(2-aryl)ethanones 199
 6.1.2.2.9 Synthesis of 3-aryl-8-chloro-imidazo[1,2-a]pyrazine 204
 6.1.2.2.10 Synthesis of 4-methyl- N-(3-Arylimidazo[1,2-a]pyrazin-8-yl)benzenesulfonamides ... 209
 6.1.2.2.11 Synthesis of 4-methyl-N-(4-(3-Aryl-imidazo[1,2-a]pyrazin-8-ylamino)phenyl)benzenesulfonamides .. 214
 6.1.2.2.12 Alternative Approach to 3-Aryl Imidazo[1,2-a]pyrazines 216
6.1.2.3 Synthesis of 2-Aryl Imidazo[1,2-a]pyrazines ... 218
 6.1.2.3.1 Synthesis of 2-aryl-8-chloro-imidazo[1,2-a]pyrazines 218
 6.1.2.3.2 Synthesis of 4-methyl-N-(2-Arylimidazo[1,2-a]pyrazin-8-yl)benzenesulfonamides ... 225
 6.1.2.3.3 Synthesis of 4-methyl-N-(4-(2-Aryl-imidazo[1,2-a]pyrazin-8-ylamino)phenyl)benzenesulfonamides .. 231
 6.1.2.3.4 Alternative Compounds used during Buchwald-Hartwig Optimisation .. 235
6.1.3 Synthesis of 2nd Generation Compounds .. 241
 6.1.3.1 Imidazo[1,2-a]pyrazine Compounds ... 241
 6.1.3.1.1 Variations in Position 8 ... 241
 6.1.3.1.2 Variations with aromatic Group in Position 2 255
 6.1.3.2 Maybridge Analogues ... 260
6.1.4 Synthesis PEGylated Imidazo[1,2-a]pyrazines .. 269
 6.1.4.1 Synthesis of the Carbamate Linker .. 269
 6.1.4.2 Synthesis of PEGylated Free Hydroxyl Imidazo[1,2-a]pyrazines 275
 6.1.4.2.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-a]pyrazines 275
 6.1.4.2.2 PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines ... 284
 6.1.4.3 Synthesis of PEGylated Maleimide Linked Imidazo[1,2-a]pyrazines 288
 6.1.4.3.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-a]pyrazines 288
 6.1.4.3.2 PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines ... 303
 6.1.4.4 Synthesis of PEGylated Allyl and Alkyne Linked Imidazo[1,2-a]pyrazines 307
 6.1.4.4.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-a]pyrazines 307
 6.1.4.4.2 PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines ... 313
 6.1.4.5 Alternative Synthesis of PEGylated Imidazo[1,2-a]pyrazines 316
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acm</td>
<td>Acetamidomethyl</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ADT</td>
<td>AutoDock Tools</td>
</tr>
<tr>
<td>AGT</td>
<td>O^6^-alkylguanine-DNA alkyltransferase</td>
</tr>
<tr>
<td>Aib</td>
<td>α^-aminoisobutyric acid</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>ARC</td>
<td>adenosine-arginine conjugates</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosine triphosphate hydrolase</td>
</tr>
<tr>
<td>AzLys</td>
<td>Azido lysine</td>
</tr>
<tr>
<td>BG</td>
<td>O^6^-benzylguanine</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-Butyloxycabonyl</td>
</tr>
<tr>
<td>Cag</td>
<td>Cytotoxin-associated genes</td>
</tr>
<tr>
<td>CagPAI</td>
<td>Cytotoxin-associated genes Pathogenicity island</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>C.D.</td>
<td>Circular dichroism</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionisation</td>
</tr>
<tr>
<td>CLP</td>
<td>O^4^-benzyl-2-chloro-6-aminopyridine</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation spectroscopy</td>
</tr>
<tr>
<td>CTD</td>
<td>Carbon terminal domain</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>DavePhos</td>
<td>2-Dicyclohexylphosphino-2'-(N,N-dimethylamino)-biphenyl</td>
</tr>
<tr>
<td>Dha</td>
<td>Dehydroalanine</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dppf</td>
<td>1,1'-Bis(diphenylphosphino)ferrocene</td>
</tr>
<tr>
<td>EDT</td>
<td>1,2-Ethanedithiol</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EI</td>
<td>Electron ionisation</td>
</tr>
<tr>
<td>ES</td>
<td>Electrospray</td>
</tr>
</tbody>
</table>
Eq - Equivalents
FBDD – Fragment-based drug discovery
Fmoc - 9-Fluorenylmethyl-oxycarbonyl
GABA – γ-Aminobutyric acid
Glu – Glutamic acid
Gln – Glutamine
Gly – Glycine
HBTU - O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate
His – Histidine
HIV - Human immunodeficiency virus
HMBC - Heteronuclear Multiple Bond Coherence
HSQC - Heteronuclear Single Quantum Coherence
HPLC – High Performance Liquid Chromatography
H. pylori – Helicobacter pylori
HRMS – High resolution mass spectrometry
HTS – High throughput screening
IC50 – Half maximal inhibitory concentration
IM – Inner membrane
IPA - Isopropanol
IR – Infra-Red
JNK - c-Jun N-terminal kinases
LCMS – Liquid Chromatography – Mass Spectrometry
Lle – Isoleucine
Leu – Leucine
LRMS - Low resolution mass spectrometry
Lys – Lysine
MALDI – Matrix-assisted laser desorption/ionisation
mCPBA – meta-Chloroperbenzoic acid
MCR – Multicomponent reaction
Met – Methionine
MIC – Minimum inhibitory constant
Mpt – Melting point
MSH - O-mesitylene-sulfonylhydroxylamine
NMP – N-methyl-2-pyrrolidone
NMT - N-myristoyl transferase
NOESY – Nuclear Overhauser effect spectroscopy
MS – Mass spectroscopy
NBS – N-Bromosuccinimide
NMR – Nuclear Magnetic Resonance
m/z – Mass-to-charge ratio
NMM – N-methylmorpholine
NTD – Nitrogen Terminal Domain
OM – Outer membrane
Su - Succinimide
<table>
<thead>
<tr>
<th>Chemical/Abbreviation</th>
<th>Name/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(dba)$_2$</td>
<td>bis(dibenzylideneacetone)-palladium(0)</td>
</tr>
<tr>
<td>Pd$_2$(dba)$_3$</td>
<td>Tris(dibenzylideneacetone)dipalladium (0)</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly(ethylene) glycol</td>
</tr>
<tr>
<td>Pet. ether</td>
<td>Petroleum ether</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein Kinase A</td>
</tr>
<tr>
<td>PKI</td>
<td>Protein Kinase Inhibitor</td>
</tr>
<tr>
<td>PP</td>
<td>polyproline</td>
</tr>
<tr>
<td>Pro</td>
<td>Proline</td>
</tr>
<tr>
<td>PTM</td>
<td>Posttranslational modification</td>
</tr>
<tr>
<td>R_f</td>
<td>Retardation Factor</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>Q-Phos</td>
<td>1,2,3,4,5-pentaphenyl-1′-(di-tert-butylphosphino)ferrocene</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SAC</td>
<td>S-allyl cysteine</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure activity relationship</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>SPP</td>
<td>Solid phase peptide synthesis</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetra-n-butyl ammonium fluoride</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyl dimethyl silyl</td>
</tr>
<tr>
<td>‘Bu-XPhos</td>
<td>2-Di-tert-butylphosphino-2′,4′,6′-triisopropylbiphenyl</td>
</tr>
<tr>
<td>TES</td>
<td>Triethylsilane</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>TIC</td>
<td>Total ion count</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropylsilane</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethyl silyl</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Trt</td>
<td>Trityl</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Val</td>
<td>Valine</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

1.1 Biological Background

1.1.1 Helicobacter Pylori

In 1983, Marshall and Warren described the successful isolation and culture of a spiral bacterial species,\(^1\) which later became known as *Helicobacter pylori* (*H. pylori*).\(^2\) It is the most common bacterial infection amongst humans and is present in approximately half the world’s population.\(^3\)

Infection is acquired in childhood, and once the stomach is colonized, the same organism can persist for decades, and sometimes a lifetime.\(^3\) In northern Europe and the United States of America, *H. pylori* is present in 30-50% of adults who acquired the infection at childhood, and it is almost universal amongst adults in developing countries.\(^3\) Males in many populations appear to have 20-30% higher rates of infection than females.\(^3\) The mode of transmission is unknown, but is believed to be through fecal-oral or gastric-oral spread or improperly cleaned endoscopic equipment.\(^3,5\)

An example of gram negative bacterial found in the human stomach, they cause illnesses such as gastric ulcers, gastritis and various cancers including mucosa-associated lymphoid tissue (MALT)-lymphoma and gastric adenocarcinoma.\(^4,5\) *H. pylori*-positive patients have a 10-20% lifetime risk of developing ulcer disease and a 1-2% risk of developing gastric cancer,\(^2\) and as such the bacteria have been classified as a category 1 carcinogen.\(^6\)

H. pylori possess 2 to 6 flagella to propel itself through the mucus lining. They adopt an S-shaped or curved rod, are 2.4-4.0 \(\mu\)m long and 0.5-1.0 \(\mu\)m wide and contain a urease enzyme in order to create an alkaline environment meaning they are able to survive in the acidic conditions of the stomach.\(^5\)

H. pylori can be grouped into two classes:\(^7,8\) the more virulent type I strains which contain the cytotoxin-associated genes pathogenicity island (*cagPAI*), and are referred to as CagA\(^+\) strains; and type II strains which lack this segment and are therefore less virulent.
The cagPAI consists of 31 genes, the majority of which code for the Type IV secretion system (T4SS),2,7 which is responsible for penetrating the gastric epithelial cells and facilitating the translocation of toxic bacterial factors into host cells:

- The highly immunogenic protein CagA which is encoded by the \textit{cag}A gene,7 present in approximately 50-70\% of \textit{H. pylori} strains;2
- Peptidoglycan, which is recognised by the intracellular receptor Nod1,9 which in turn promotes inflammation, possibly by induction of proinflammatory cytokines such as IL-8;10
- The vacuolating cytotoxin (VacA), encoded by the \textit{vac}A gene, and induces massive vacuolisation in epithelial cells \textit{in vitro}11 and plays an important role in the pathogenesis of peptide ulceration and gastric cancer.12,13

Attachment of \textit{H. pylori} induces cell spreading and elongation in the host (“Hummingbird Phenotype”),14 and is accompanied by cytoskeletal rearrangements as a result of CagA phosphorylation.7,15,16 CagA becomes tyrosine phosphorylated, at EPIYA motifs within the C-terminus, by multiple members of the Src family of tyrosine kinases.15 The resulting CagAP-Tyr inactivates c-Src. This is an example of a classical negative feedback loop and could explain how the level of accumulated CagAP-Tyr within the host is regulated.15

c-Src inactivity leads to the dephosphorylation of host proteins such as cortactin,15 which in turn enhances actin cross-linking and induces the characteristic rearrangement of the actin cytoskeleton. Another protein within the host that becomes dephosphorylated is ezrin, which could result in the development and metastasis of \textit{H. pylori} induced gastric cancer.7 CagAP-Tyr also specifically binds and activates SHP2, the first phosphatase found to act as a human oncogene.17 Deregulation of SHP2 by CagA is an important mechanism by which \textit{H. pylori} promotes gastric carcinogenesis.

The treatment of \textit{H. pylori} requires concurrent administration of two or more antimicrobial drugs.18 None of the drug treatments eradicate the infection in 100\% of patients and many have undesired side effects. “Triple therapy” has been considered the standard eradication method and consists of a proton pump inhibitor (PPI), notably Omeprazole, and a choice of two antibiotics, traditionally clarithromycin, tetracycline, amoxicillin or metronidazole.19,20 Bismuth compounds can also be used in “quadruple therapy”.18,19,20
1.1.2 Secretion Systems
Gram-negative bacteria possess seven secretion systems to mediate the transport of a variety of substrates across their cell membranes. They are classified as type I (T1SS) to type VI (T6SS) secretion systems and the chaperone-usher (CU) system. They utilize one of two secretion mechanisms:

- One-step, Sec-independent mechanism: T1SS, T3SS, T4SS, T6SS transport substrates directly from the bacterial cytoplasm to the extracellular medium or into the eukaryotic cell;
- Two-step, Sec-dependent mechanism: T2SS, T5SS and CU systems lack an inner membrane transporter and so substrates are first translocated across the inner membrane via the general secretory pathway (GSP) (Sec translocation) or the Tat pathway as used by some T2SS substrates. Once in the periplasm the substrates are targeted to one of the secretion systems that mediate transport across the outer membrane.

Table 1 illustrates different bacterial examples of each of the secretion systems together with a brief description of their structures.

1.1.3 Type IV Secretion Systems
As previously mentioned, *H. pylori* utilises the T4SS to translocate toxic molecules into host epithelial cells. These secretion machineries are also found in gram positive bacteria and can be broadly divided into 3 functional types (Figure 1):

- Conjugation systems: transfer of plasmid DNA from one cell to the other (cell-to-cell contact dependent), helping microorganisms to adapt. It is a major mechanism in the spread of antibiotic resistance;
- DNA uptake and release systems: translocation of DNA to or from the extracellular milieu;
- Effector translocation systems: play a major role in virulence in establishing pathogen-host interactions and/or transferring toxic effector proteins or protein complexes into eukaryotic target cells.
<table>
<thead>
<tr>
<th>Secretion System</th>
<th>Brief Description</th>
<th>Bacterial Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1SS(^{21,23})</td>
<td>Three components: an inner membrane ABC protein, an outer membrane protein and a membrane fusion protein</td>
<td>Escherichia coli
Erwinia chrysanthemi
Pasteurella haemolytica
Bordetella pertussis</td>
</tr>
<tr>
<td>T2SS(^{24})</td>
<td>Spans both membranes but requires the Sec or Tat pathways for transporting across the inner membrane</td>
<td>Escherichia coli
Vibrio cholera
Pseudomonas aeruginosa
Klebsiella oxytoca
Neisseria gonorrhoea</td>
</tr>
<tr>
<td>T3SS(^{25})</td>
<td>Large supramolecular structures spanning both membranes</td>
<td>Salmonella typhimurium
Shigella flexneri
Chlamydia psittaci
Yersina pestis</td>
</tr>
<tr>
<td>T4SS(^{26,27,28})</td>
<td>Consists of at least 12 proteins and are ubiquitous in bacterial pathogens</td>
<td>Helicobacter pylori
Legionella pneumophila
Bordetella pertussis
Agrobacterium tumefaciens</td>
</tr>
<tr>
<td>T5SS(^{29})</td>
<td>Auto-transporters assembled only in the outer membrane</td>
<td>Escherichia coli
Brucella abortus
Bartonella species
Pseudomonas species</td>
</tr>
<tr>
<td>T6SS(^{30})</td>
<td>Recently discovered and still largely uncharacterised</td>
<td>Rhizobium leguminosarum
Vibrio cholera
Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>CU system(^{31})</td>
<td>Simple system assembled in the outer membrane and is responsible for the assembly and secretion of virulence factors</td>
<td>Escherichia coli
Salmonella enteric
Yersinia species
Klebsiella pneumoniae
Pseudomonas aeruginosa</td>
</tr>
</tbody>
</table>

Table 1: Table giving brief descriptions and bacteria examples of each of the seven secretion systems
A single bacterial genome can code multiple T4SS, for example, in *H. pylori* the effector protein delivery system (encoded by *cag*PAI) coexists with a DNA release and uptake system (encoded by the *comb* gene cluster).

All bacterial T4SS are evolutionary related, and although variations exist, many are similar to the *Agrobacterium tumefaciens* (*A. tumefaciens*) VirB-VirD system. This system serves as a prototype of T4SS.

The VirB-VirD system comprises 12 proteins (Figure 2, a), VirB1-11 and VirD4. They can be grouped according to their function and/or cellular location:

- Cytoplasmic ATPases: VirB4, VirB11 and VirD4:
- Translocation pore complex proteins: VirB6-10:
- Pilus and other surface structure proteins: VirB2 and VirB5.
The three cytoplasm or inner-membrane (IM) associated ATPases exhibit the highest sequence conservation among VirB-VirD complexes. ATPases are enzymes which catalyse the desphosphorylation reaction of ATP to ADP and a free phosphate (P_i). The reaction releases energy which the enzyme can use to drive other chemical reactions.

In the T4SS, the VirB4 protein is the least characterised and to date there is no crystal structure. It is thought to be a homodimer protein which could represent a building block for a more likely hexameric structure.26,27,28 The VirB11 protein belongs to a family of “traffic ATPases” and is also found in T2SS, T3SS and T6SS.26,27,28 They are peripheral IM proteins, form hexameric ring structures and they are proposed to act as portals in the transfer of toxic molecules (see Section 1.1.4).26,27,28

The VirD4 protein forms a hexameric globular ring and is a substrate receptor, also known as a coupling protein in DNA transfer systems.26,27,28 They interact directly with T4SS substrates and mediate their transfer to the specific subunits of the secretion machinery.

The translocation pore complex (Figure 2, b) consists of 14 copies of the VirB7, VirB9 and VirB10 proteins, forming a cylindrical structure with a diameter and length of 185 Å. It
comprises two layers: I-layer and O-layer, which are double walled, ring-like structures with a hollow chamber.26,27,28,33

The I-layer consists of the NTDs of the VirB9 and VirB10 proteins, which are anchored into the IM, with a 55 Å diameter hole at the base. However, the VirB6 and VirB8 proteins are more likely to form this pore as they come into direct contact with the substrate during secretion.

The O-layer consists of a main body with 10 Å diameter cap on the outermost side of the complex, inserted into the outer-membrane (OM). It comprises the VirB7 protein and the CTDs of the VirB9 and VirB10 proteins.34

There is evidence suggesting that the VirB1 and VirB3 proteins are not part of the secretion apparatus, but contribute to the formation of the secretion machinery.27 The VirB1 is a periplasmic protein consisting of lytic transglycosylases which make holes in the peptidoglycan cell wall to allow assembly of surface structures. The VirB3 is a small protein, and although its location remains unclear, it has been shown to be stabilised by the VirB4 protein.27

The VirB2 and VirB5 proteins form pilus structures extending from the extracellular surface.27 The VirB2 protein forms the major component and is essential for substrate transfer, by stabilising the donor-host contact and forming a channel for passage of substrates. The VirB5 protein is the minor component and is thought to function as an adhesin and is therefore located at the tip of the pilus.

As an example the well characterised F-pilus (encoded by \textit{E. coli} F-plasmid),27 has been shown to contain DNA within the tip, and thus indicating its importance in secretion. It has an outer diameter of 8-10 nm, length of 2-20 \(\mu\)m and channel diameter of 2 nm. CagA has also been found in the tip of the T4SS pili of \textit{H. pylori}.27
1.1.4 VirB11 ATPase: HP0525

The VirB11 ATPase is a vital component of the T4SS and as such there has been much interest in the structure and function of the protein. There have been extensive studies into the crystal structures of the *H. pylori* VirB11 homolog HP0525 bound to both ADP\(^{35}\) and the non-hydrolysable ATP\(_\gamma\)S\(^{36}\) as well as the nucleotide-free, apo-form.\(^{36}\)

1.1.4.1 HP0525 Monomer\(^ {35}\)

The HP0525 monomer (Figure 3) consists of two domains: the nitrogen terminal domain (NTD) from residues 6 to 136, and the carbon terminal domain (CTD) from residues 137 to 328, linked via a short loop between residues 134 and 141. The NTD has six \(\beta\) strands, with the central sheet packed against two \(\alpha\)-helices on one side only, whereas the CTD has seven \(\beta\) strands, with the central \(\beta\) sheet flanked by three \(\alpha\)-helices on one side, and four on the other.

![Figure 3: Crystal structures of HP0525 monomer\(^ {36}\) indicating the two domains (a) and the various helices and strands (b). Reproduced with permission.](image)

1.1.4.2 HP0525 Hexamer\(^ {35}\)

HP0525 forms a hexameric ring (Figure 4) where each of the subunit monomers assemble in an intertwined propeller shape with residues in both domains of each subunit participating in subunit-subunit interactions. In fact, each of the NTDs and CTDs form two separate ring
structures with the CTD ring forming a 6-clawed grapple mounted on the hexameric ring formed by the NTD creating a cylindrical chamber, with a volume of approximately 60,000Å³.

Figure 4: Illustration of the hexameric structure of HP0525. Reproduced with permission.

A 9-mer of poly(ethylene)glycol (PEG) is found within the NTD indicating that this domain might be embedded into the IM. This hydrophobic nature continues when examining the outside surface of the remaining NTD and part of the CTD, but the tip of the CTD grapple shows strong negative electrostatic potential in the region facing the bacterial cell cytoplasm.

The structures of ADP- and ATPγS-HP0525 are virtually identical; however, apo-HP0525 exists as an asymmetric hexamer, very different to that of the nucleotide bound forms, where the NTDs exhibit rigid-body rotations (between 2° and 15°) about the linker region and away from the centre of the chamber. This indicates that nucleotide binding and not hydrolysis is responsible for ATP-induced conformational changes.

There are two different types of subunit (A and B) which alternate around the hexameric ring. This is evident from the observation of varying rotations of the NTD, as well as ATPγS being present in full occupancy in only one of the two molecules in the crystal structure dimer.
The nucleotide binding site of HP0525 is located between the NTD and CTD (Figure 3a) with residues from both domains contributing to the binding site. From the NTD, Thr46 and Asn61 make interactions with the ribose and Arg133 and Arg136 make interactions with the phosphates. In ATPγS-HP0525, the Arg113 undergoes a major conformational change to interact with the γ-phosphate (in ADP-HP0525 the residue is 7.5 Å away from the β-phosphate and therefore makes no interactions). Figure 5 illustrates some of the key interactions made between the ATPγS and the protein.

In the CTD, the major interactions with the phosphate are made by the “P-loop” which is located between the β7 strand and the αE helix. Tyr140, Phe145 and Lys320 also interact with the adenine. In addition, Glu209 makes strong hydrogen-bonding interactions to the H2O ligated to Mg2+ and is proposed to have a stabilising role, with Glu248 acting as a H2O activator.
1.1.4.4 Subunit-Subunit Interface

In order to form a hexameric structure, each subunit interacts with two flanking subunits giving rise to subunit-subunit interactions with the interface area totalling 2260 Å². There are three major contacts (Figure 6):35

1. NTD-NTD, with an area of 463 Å²;
2. NTD-CTD, with an area of 1372 Å²;
3. CTD-CTD, with an area of 425 Å².

![Image of subunit-subunit interface](image.jpg)

Figure 6: Illustration of the three major contacts in subunit-subunit interface. Blue: Subunit A (Dark blue = NTD, light blue = CTD), Green: Subunit B (Dark green = NTD, light green = CTD); 1: NTD-NTD interactions, 2: NTD-CTD interactions, 3: CTD-CTD interactions. Image generated using Chimera37

The NTD-NTD interface comprises interactions between residues of the αB helix of one subunit and residues of the β5-β6 loop. This includes two salt bridges between Arg18 with Asp125 and Glu126, and Glu9 with Lys74; as well as hydrophobic contacts of Phe13 and Leu14 with Leu78.35

NTD-CTD interactions make up the majority of subunit-subunit interfaces. Most of the solvent accessible surfaces of the β-sheet of the NTD makes contact with residues of the β9 sheet, αF helix, αF-β10 loop and αE-β8 loop of the CTD.35
There is also a cluster of acidic and basic residues within the NTD-CTD interface that plays a pivotal role in maintaining the hexameric structure of HP0525. Glu47 from the NTD makes ionic interactions with Arg238 from the adjacent αF-β10 loop in the CTD; however Arg113 and Arg133 from the NTD and Arg240 from the αF-β10 loop in the CTD would clash electrostatically if it were not for the presence of a nucleotide neutralising these like-charges. In the absence of nucleotide these clashes would have a destabilizing effect on the interface, causing the NTD to be released and swivel into an open conformation.35

In further studies, the different arginines in question were mutated to glutamic acid (Arg113Glu, Arg133Glu, Arg240Glu and Arg113Glu/Arg133Glu double mutant) in order to provide favourable interactions between glutamic acid and arginine. In doing so, this locks the hexamer into a closed conformation and as a result, a dramatic decrease in ATPase activity was observed. In addition the fact that the \textit{apo} form exhibits asymmetry and structural variability among the NTD, support the prediction that in the absence of nucleotide there is little to hold the NTD and CTD together.35

Interactions between the claws of the grapple make up the CTD-CTD interface, possibly helping to maintain the grapple in the close conformation.35

1.1.4.5 HP0525 Mechanism of Action

The various observations made from the different crystal structures of HP0525 prompted a mechanism for the mode of action of VirB11 ATPase to be proposed (Figure 7). This consists of the following steps:36

1. Asymmetric hexamer of the nucleotide-free form with the NTD (pale pink) exhibiting mobility and the CTD (pale blue) maintaining the pseudo-scaffold. This flexibility is likely to mean effective binding of target molecules;
2. Binding of three ATP molecules locks three of the subunits into a rigid conformation;
3. Hydrolysis of these three ATPs to ADP together with binding of a further three ATP molecules to the remaining subunits results in a perfectly hexameric rigid form;
4. The structure retains its symmetry and rigidity until all ATPs are hydrolysed, at which point HP0525 reverts to its nucleotide-free asymmetric form.
In light of the structural evidence and postulated mechanisms highlighted, VirB11 is viewed as a viable target in the search for antimicrobial agents.

1.1.4.6 HP1451: Regulatory Protein of HP0525

Studies have shown that HP0525 interacts with a protein known as HP1451, with the crystal structure suggesting it functions as a regulator of HP0525 activity. Two molecules of HP1451 are positioned opposite each other, interacting with the NTDs of two adjacent monomers of HP0525 and weakly with a third. There are two sites of interaction, which locks the HP0525 NTDs into a closed state. Testing the ATPase activity shows the hydrolysis drops to 30% of the native value indicating that four of the six subunits are being inhibited. It was postulated that HP1451 has the role of modulating HP0525 ATPase activity to regulate Cag-mediated secretion.
1.1.4.7 Current Inhibitors of HP0525

A previous group has carried out a high throughput screen (HTS) of a diverse chemical library, from Chiron Corporation, of 524,400 compounds to assess ATPase activity of Cagα, a VirB11 homologue of cag.39 Using BIOMOL green reagent and measuring absorbance at inhibitor concentrations of 1-5 µM, 675 compounds were shown to inhibit the enzyme activity by 50% or more. Further studies revealed three compounds with IC\textsubscript{50} values of less than 1 µM (Figure 8).

![Small molecule inhibitors](image)

Figure 8: Small molecule inhibitors of \textit{H. pylori} Cagα as determined by a HTS of 524,000 Chiron Corporation compounds.39

Chir-1, 1, the compound with the lowest IC\textsubscript{50} was then used in further testing to assess its inhibition properties and the following results were observed:39

- Chir-1 reduced the number of \textit{H. pylori} infected AGS cells showing hummingbird phenotype, with an MIC of 90 µM (hummingbird phenotype is an indicator of the \textit{H. pylori} T4SS functionality);
- Chir-1 inhibits the secretion of CagA into AGS cells, observed by a 3-4-fold decrease in fluorescence intensity of CagA in AGS cells, and 3-fold increase within the bacterial cell, compared to untreated controls;
- By investigating the amount of phosphorylated CagA (CagAP-Tyr) as a readout for CagA translocation, it was observed that 50 µM of Chir-1 is sufficient to inhibit translocation of CagA into AGS cells to limits of detection, with a period of pre-incubation (<3 min) required. Experiments with no pre-incubation of \textit{H. pylori} cells and inhibitor show that CagA reaches the AGS cells;
• The amount of IL-8 produced by AGS cells was inhibited in a concentration dependent manner: 50 µM Chir-1 resulted in a decrease of 19.8% which was further increased to 36.6% with a 15 min incubation period;
• Initial *in vivo* experiments showed that increasing concentrations of Chir-1 resulted in decreased colonisation of *H. pylori* in mice, with a concentration of 50 µM of Chir-1 reaching a significant level of reduction compared with the control group.

The results of the CagA^{P-Tyr} experiments indicate that Chir-1 interferes with the early steps of the T4SS mechanism, but not with the translocation step, and therefore the inhibitor is only effective for a short time period. The data also confirms HP0525 as a viable target for the inhibition of the *H. pylori* secretion system.

1.2 Imidazo[1,2-α]pyrazines

1.2.1 Target Compounds

Using AutoDock 4.0, previous work within the group screened, *in silico*, a drug-like fragment database from the ZINC collection⁴⁰ against the structure of ATPγS-HP0525 (1NLY – Chain A, ligand removed prior to docking).^a High binding affinity fragments were identified and were used to search full molecules from ZINC using substructure similarity. This created a smaller ligand database, which was then re-screened against 1NLY and a number of hit compounds were generated that were proposed to bind within the nucleotide binding site as putative ATP inhibitors. Within this selection were compounds with an identical heterocyclic core, and therefore these structures were suggested for synthesis (Figure 9).

^a Work Carried out by Dr F. Buelens & Dr T. Boyle – unpublished data, not shown
Each of the target compounds have an identical imidazo[1,2-\textit{a}]pyrazine core, with either a 4-toluenesulfonamide or \textit{N}(4-aminophenyl)-4-methylbenzenesulfonamide moiety in the 8-position and an aromatic group in either the 2- or 3-positions. Synthesis of these compounds (Chapter 2) would give a small library of potential ATPase inhibitors investigating two different regioisomers.

\textbf{1.2.2 Synthesis, Reactivity and Therapeutic Applications of Imidazo[1,2-\textit{a}]pyrazines}

Whilst imidazo[1,2-\textit{a}]pyrazines are a well known class of heteroaromatic compound, their use within the literature remains relatively sparse. To give an indication, running a search using SciFinder and removing duplicates and conference abstracts, 184 hits were returned, consisting 93 patents and 91 journals. Figure 10 shows a graphical representation, illustrating that interest in imidazo[1,2-\textit{a}]pyrazines has increased in recent years.
The naming and numbering of these bicyclic systems, as established by von Baeyer,42 is illustrated in Figure 11.43
The discovery of natural products containing the imidazo[1,2-\(a\)]pyrazine core, such as luciferins, has highlighted the potential therapeutic applications of this class of compound.44,45 The main motivation for the development of imidazo[1,2-\(a\)]pyrazines in recent years is that they are good ATP mimics and possess anti-cancer properties (see Section 1.2.2.3.1). This section explores the synthesis and reactivity of imidazo[1,2-\(a\)]pyrazines and their therapeutic applications.

1.2.2.1 Synthesis of Imidazo[1,2-\(a\)]pyrazines

The first instance of imidazo[1,2-\(a\)]pyrazine synthesis was reported in 1957.44,46 Since then, three different approaches to synthesising imidazo[1,2-\(a\)]pyrazines have been reported: starting from the pyrazine or imidazole ring; simultaneous formation of the two rings; and more recently, multicomponent reactions.

1.2.2.1.1 Imidazo[1,2-\(a\)]pyrazines from Pyrazine Rings

The traditional method of synthesising imidazo[1,2-\(a\)]pyrazines involves the condensation between aminopyrazines and \(\alpha\)-halocarbonyl compounds (Scheme 1).44,47,48 The reaction is initiated by the nucleophilic attack of the aminopyrazine endocyclic nitrogen on the alkyl-halo position, followed by cyclisation between the primary amine functionality and the carbonyl group.47 An E1CB mechanism completes the aromatisation (Scheme 2). Kaminski postulated that when unsymmetrical carbonyls are used, different isomers are possible depending on which nitrogen initiates the reaction (Scheme 1).48

![Scheme 1: Synthesis of imidazo[1,2-\(a\)]pyrazines via the condensation of aminopyrazines and \(\alpha\)-halocarbonyl compounds](image)
Spitzer et al.49 showed that in the absence of any other functionality in aminopyrazine, the endocyclic nitrogen not adjacent to the primary amine moiety was the most nucleophilic and that alkylation with α-bromoacetophenone did not result in the desired imidazo[1,2-α]pyrazine bicyclic system. By introducing a chlorine in the position adjacent to the primary amine moiety (2-amino-3-chloropyrazine, 20), the nucleophilicity of the N$_4$ endocyclic nitrogen is reduced, and so the reaction proceeds via the N$_1$ nitrogen, with removal of the chlorine by catalytic hydrogenation (Scheme 3).

Alternatively, the heterocycle can be accessed by using a carboxymethyl derivative in place of the chlorine (21), which can then be removed by ester hydrolysis and acid de-carboxylation (Scheme 3).49 The group then showed the importance of the nitrogen in position 7 in inotropic activity.49
Early studies carried out by Sablayrolles *et al*47 investigated the reaction between 2-aminopyrazine and ethyl 2-chloroacetoacetate and three competing reactions were observed (Scheme 4). Products 28 and 29 result from the initial standard nucleophilic reaction between the endocyclic nitrogen at the alkyl-chloro position, with product 28 forming via cyclisation between the primary amine and the ketone carbonyl. Product 29, however, forms from cyclisation between the primary amine and the ester carbonyl, followed by rearrangement of the resulting lactam-lactim. Product 30 forms when the primary amine initiates the nucleophilic attack with the cyclisation directed from the *ortho* position of the pyrazine ring.

![Scheme 4: Competitive reactions between aminopyrazine and ethyl 2-chloroacetoacetate as observed by Sablayrolles47](image)

Interestingly, Lumma *et al* reported halogen scrambling products as a result of the condensation between halo-aminopyrazines and halo-ketones as illustrated in Scheme 5.50 Many groups have also used 2-amino-3,5-dibromopyrazine (from reacting 2-aminopyrazine and NBS) in the condensation reaction in order to obtain 6,8-dibromoimidazo[1,2-\textit{a}]pyrazine, and thereby introducing functionalities into the ring, which can be further reacted (see Section 1.2.2.2).51,52
In the case of unstable aldehydes, the use of the corresponding acetals has also been reported, whereby acid hydrolysis (heating with HBr, 48% aq.) produces the α-halocarbonyl in situ. An early instance of this was carried out by Bonnet et al51 using 2-amino-5-bromo-8-(methylamino)pyrazine, 35, and two different acetals (Scheme 6). The second acetal used, and more specifically the ether functionality, has a different stability to acidic conditions compared to the first. This gives rise to two different aldehydes and therefore two different condensation products.
Kaminski carried out a condensation reaction between substituted aminopyrazine 39 and the appropriate aldehyde compounds in the presence of sodium bisulfite and sodium cyanide in order to give substituted 3-aminoimidazo[1,2-\(a\)]pyrazines, 41 (Scheme 7).48

\[
\begin{align*}
\text{Ph} & \quad \text{O} \quad \text{NH}_2 \\
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{39} &
\end{align*}
\]

\[
\begin{align*}
\text{R}^+ & \quad \text{O} \quad \text{H} \\
\text{NaHSO}_3 & \quad \text{NaCN} \\
20\% &
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{NH}_2 \\
\text{R} & \quad \text{41}
\end{align*}
\]

Scheme 7: Formation of 3-aminoimidazo[1,2-\(a\)]pyrazines as demonstrated by Kaminski48

Condensation of 2-aminopyrazine with phenyl glyoxal gives rise to four possible forms of imidazo[1,2-\(a\)]pyrazine (Scheme 8).53 The dipolar form, 46, is the most plausible structure owing to the quarternisation at N7 giving rise to an unusual coupling constant (\(J_{6,8} 0.5\) Hz) observed in the \(^1\)H NMR spectrum.

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{26} & \quad \text{O} \\
\text{2} & \quad \text{42} \\
\text{49\%} &
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{N} \\
\text{Ph} & \quad \text{43} \\
\text{44} &
\end{align*}
\]

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{45} & \quad \text{46} \\
\text{O} & \quad \text{O} \\
\text{Ph} & \quad \text{Ph}
\end{align*}
\]

Scheme 8: Reaction of 2-aminopyrazine and phenyl glyoxal53

Some alternative condensation reactions include the reaction of 2-aminopyrazine and 2,3-epoxybutanal in the presence of alumina to synthesise 3-(1-hydroxyethyl)imidazo[1,2-
Pyrazines (Scheme 9). In addition, 2-aminopyrazine can be reacted with \(\alpha\)-ketohydroximoyl chlorides to form 3-nitrosoimidazo[1,2-\(a\)pyrazines (Scheme 10).

Scheme 9: Synthesis of 3-(1-hydroxyethyl)imidazo[1,2-\(a\)]pyrazine using 2,3-epoxybutanal

Scheme 10: Use of \(\alpha\)-ketohydroximoyl chlorides to form 3-nitrosoimidazo[1,2-\(a\)]pyrazines

In addition to the traditional condensation reaction, Meurer et al. and Lumma et al. explored an alternative route to imidazo[1,2-\(a\)]pyrazines (Scheme 11). This involves the reaction of a vicinal amino alcohol (1-amino-2-propanol) and chloropyrazine followed by oxidation using trimethylamine-sulfur trioxide complex, and dehydration-cyclisation using trifluoroacetic acid and trifluoroacetic anhydride. Also explored was the formation of the di-hydro species via reaction of the intermediate amino alcohol with thionyl chloride.
Scheme 11: Regioselective synthesis of imidazo[1,2-\(a\)]pyrazines and dihydroimidazo[1,2-\(a\)]pyrazine using vicinal amino alcohols and chloropyrazines as described by Meurer\(^{56}\) and Lumma\(^{50}\).

MacCoss \textit{et al.} followed up this work by incorporating ribose moieties into the synthesis to create nucleosides containing 8-aminoimidazo[1,2-\(a\)]pyrazines (Scheme 12)\(^{57}\). Starting with the saccharidic \(\alpha\)-bromoester 56 (prepared from D-ribose in four steps), reduction with lithium borohydride was followed by formation of the epoxide. Ring opening of the epoxide afforded the key vicinal amino alcohol. Pyridine was used in the dehydration-cyclisation step due to the acid-labile protecting groups. It is worth noting that the group also attempted this synthesis by subjecting the \(\alpha\)-bromoaldehyde of the ribose moiety to condensation with 2-amino-3-chloropyrazine, but no reaction was observed owing to the instability of the aldehyde.

Slepukhin \textit{et al.} synthesized 3,8-disubstituted imidazo[1,2-\(a\)]pyrazines through the cyclisation of 2-allylamino-3-chloropyrazine, 66, by the action of iodine in diethyl ether (Scheme 13)\(^{58}\). The resulting dihydroimidazo[1,2-\(a\)]pyrazine, 67, reacts with piperidine, to give piperidine substitution at the 8-position and aromatisation.
Scheme 12: Synthesis of nucleosides containing 8-aminoimidazo[1,2-a]pyrazines.57 (a) LiBH₄, THF; (b) NaH, DMF; (c) NH₃, MeOH; (d) Et₃N, Dioxane, 2,3-dichloropyrazine; (e) pyridine/SO₃, DMSO or TFAA, Et₃N, DMSO; (f) TFA, TFAA, pyridine, PhMe; (g) NH₃, IPA; (h) 90% aq. TFA

Scheme 13: Synthesis of imidazo[1,2-a]pyrazines as outlined by Slepukhin et al.58
Diethyl aminomalonate (70) has been used as the starting material in the synthesis of 5-substituted imidazo[1,2-a]pyrazines (Scheme 14). Reaction with methanolic ammonia gives 2-amino-malonamide, which upon reaction with pyruvic aldehyde in the presence of sodium hydroxide affords the pyrazine-2-carboxaldehyde. Further reaction with potassium hydroxide and bromine, followed by condensation with bromoacetaldehyde diethyl acetal furnishes 5-methyl-imidazo[1,2-a]pyrazine-2-ol (74).

![Scheme 14: Synthesis of 5-methyl-imidazo[1,2-a]pyrazine-2-ol][59]

1.2.2.1.2 Imidazo[1,2-a]pyrazines from Imidazole Rings

A method by Contour-Galcéra et al described the reaction of an imidazole core with an α-bromoketone (Scheme 15). The imidazoles can be first made by alkylating N-protected amino acids with an α-bromoketone, followed by cyclisation of the resulting keto ester in ammonium acetate. N-alkylation of the imidazole ring, facilitated by polymer supported N-methyl morpholine, was followed by Boc-deprotection and spontaneous cyclisation to yield the dihydroimidazo[1,2-a]pyrazine. In all but one of the analogues, this species was unstable and so oxidation to the fully aromatised product was carried out.
A similar approach was adopted by Kayağil and Demirayak\(^6\) in their synthesis of 2,3,6,8-tetraaryl imidazo[1,2-\(a\)]pyrazines. Using classical reflux conditions or microwave irradiation they reacted substituted diketo imidazoles with ammonium acetate in AcOH to yield the functionalised imidazo[1,2-\(a\)]pyrazine core (Scheme 16).
In an alternative approach, the reaction of 1-methylimidazole with ethyl chloroformate, followed by either aqueous ammonia or ammonium hydroxide and ammonium chloride affords the imidazole-2-carboxamide 88 (Scheme 17).59,62 Continuing the reaction with an α-bromoketone forms the imidazo[1,2-α]pyrazine salt which upon heating with imidazole, forms the imidazo[1,2-α]pyrazin-8-one. Reacting with phosphorus oxychloride affords 8-chloroimidazo[1,2-α]pyrazine.59

\begin{center}
\begin{align*}
\text{Scheme 17: Synthesis of 6-methyl-8-chloroimidazo[1,2-α]pyrazine starting from imidazole}^{59,62}
\end{align*}
\end{center}

1.2.2.1.3 Alternative Approaches to the Formation of Imidazole and Pyrazine Rings

Treatment of 5-dialkylamino-1,1-dicyano-2-aza-1,3-dienes with α-amino esters gives substituted imidazo[1,2-α]pyrazines (Scheme 18).63 If ethylenediamine is used, the resulting heterocycle is the 2,3-dihydroimidazo[1,2-α]pyrazine.64
Scheme 18: Formation of imidazo[1,2-a]pyrazines through the reaction of 5-dialkylamino-1,1-dicyano-2-aza-1,3-dienes with α-aminoesters.\(^63\)

\[
\begin{align*}
\text{NC} & \quad \text{O} \\
\text{N} & \quad \text{C} \\
\text{R} & \quad \text{N} \\
\text{Ph} & \quad \text{O} \\
\end{align*}
\]

\(92\)

\[
\begin{align*}
\text{A:} & \quad \text{EtO} & \quad \text{NH}_2 \\
\text{B:} & \quad \text{NC} & \quad \text{NH}_2 \\
\text{HCl, Et}_3\text{N, EtOAc} & \\
\end{align*}
\]

\(93, \text{A:} \ R' = \text{OH} \quad 94, \text{B:} \ R' = \text{NH}_2\)

Tripeptides of the sequence Aib-Aib-Aib readily isomerise in ethyl acetate at RT to give monocyclic amidines, which in turn cyclises to form imidazo[1,2-a]pyrazine-3,6-diones (Scheme 19).\(^65\)

Scheme 19: Isomerisation of tripeptides to give monocyclic amidine, which cyclises to give imidazo[1,2-a]pyrazine derivatives.\(^65\)

\[
\begin{align*}
\text{HO} & \quad \text{NH} \\
\text{O} & \quad \text{N} \\
\text{C} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
\text{N} & \quad \text{H} \\
\text{C} & \quad \text{O} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

\(95\)

\[
\begin{align*}
\text{EtOAc} & \quad \text{RT} \\
\end{align*}
\]

\(96\)

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{C} & \quad \text{NH} \\
\text{N} & \quad \text{HN} \\
\text{N} & \quad \text{NH} \\
\text{O} & \quad \text{C} \\
\end{align*}
\]

\(97\)

1.2.2.1.4 Multicomponent Reactions

Different multicomponent reactions (MCR) have also been used to deliver various substituted imidazo[1,2-a]pyrazines. The first, reported in 1968 by Goto et al,\(^66\) combined 2-aminopyrazine, formaldehyde and sodium cyanide to produce 3-aminoimidazo[1,2-a]pyrazine. Using an isonitrile, aldehyde and aminopyrazine, the three independent groups of Blackburn,\(^67\) Bienaymé\(^68\) and Groebke\(^69\) utilised a Ugi-type MCR in order to synthesise a series of 2-substituted-3-aminoimidazo[1,2-a]pyrazines. This was then repeated more recently by Guasconi et al,\(^70\) with an additional nucleophilic aromatic substitution step, to synthesise 2-substituted-3,8-diaminoimidazo[1,2-a]pyrazines, as illustrated in Scheme 20.
TMSCN has been used as an isonitrite replacement in a MCR to synthesise 3-aminoimidazo[1,2-\(a\)]pyrazines.71 It was postulated that a cyanohydrin is formed by the reaction of an aldehyde and TMSCN, which is then followed by a Strecker reaction with 2-aminopyrazine to from an aminonitrile intermediate. Catalysed by silica-sulfuric acid, the intermediate undergoes cyclisation, followed by a [1,3] proton-shift to afford the desired bicycle (Scheme 21).

Glyoxylic acid, either in solution or immobilised on a macroporous polystyrene carbonate, has been used as a formaldehyde equivalent in the synthesis of 2-unsubstituted-3-aminoimidazo[1,2-\(a\)]pyrazines (Scheme 22).72
Adib et al73 have since suggested an alternative MCR by reacting 2-aminopyrazine, benzaldehyde derivatives and imidazoline-2,4,5-trione under solvent-free conditions to yield 3-amino-2-arylimidazo[1,2-\textit{a}]pyrazine imine derivatives in high yields.

Pastor et al has described the first direct synthesis of 3-\textit{N}-dialkylimidazo[1,2-\textit{a}]pyrazines74 via a one-pot cyclisation utilising 1,2-bis(benzotriazolyl)-1,2(dialkylamino)-ethanes (Scheme 24). It is an alternative synthesis to that proposed by Lyon \textit{et al},72 and it builds on the work carried out by Katritzky \textit{et al} in the synthesis of imidazopyridines and pyrimidines.75
1.2.2.2 Reactivity of Imidazo[1,2-a]pyrazines

Imidazo[1,2-a]pyrazines contain both \(\pi \)-excessive imidazole and \(\pi \)-deficient pyrazine rings and as such undergo reactions suited to both types of system. Numerous early studies showed these features, and these will now be discussed.

1.2.2.1 Electrophilic Addition

The electron density surface map of neutral imidazo[1,2-a]pyrazine (Figure 12 a),\(^{76}\) predicts the \(C_3 \) position to be the most electrophilic, and this is confirmed by bromination with NBS yielding the 3-bromo species exclusively.\(^{47,76}\) However, protonated or hydrogen bonded heterocycles can have vastly different charge distributions relative to their neutral counterparts and as such the electron density surface map of protonated imidazo[1,2-a]pyrazine (Figure 12 b) predicts the \(C_5 \) position to be the preferential site of electrophilic attack. Synthetic experiments with \(Br_2 \) in EtOH confirm this prediction, with the 5-bromo species resulting either through protonation of \(N_1 \) of imidazo[1,2-a]pyrazine by HBr generated, or by hydrogen bonding to EtOH.
Similar electron density experiments with 6-methylimidazo[1,2-\(\alpha\)]pyrazine also showed the C\(_3\) position as the preferential site of electrophilic addition (again confirmed by synthetic work with NBS) and the C\(_5\) position preferential for the protonated form. However, when 6-methylimidazo[1,2-\(\alpha\)]pyrazine was reacted with Br\(_2\) in EtOH, no mono-bromination at the C\(_3\) position was evident. Instead, various di-brominated species were observed: 3,5-dibromo, as well as bromination of the methyl group and either the 3- or 5- positions (Scheme 25). This indicates that steric effects outweigh the electronic effects in this system.\(^{76}\)

Scheme 25: Bromination of 6-methylimidazo[1,2-\(\alpha\)]pyrazine using either NBS or Br\(_2\)/EtOH
Other groups have also shown electrophilic halogenation using NBS or NCS to initially occur at the C₃ position.⁵² Electron withdrawing halogens in the 8-position facilitates this electrophilic reaction, whereas if electron donating groups are present at C₈, halogenation is now observed at the C₅ position owing to an increased electron density relative to C₃.⁵⁶

In an alternative to yield 3-aminoimidazo[1,2-α]pyrazines, Kaminski et al⁴⁸ showed that nitrosation of 2,8-disubstituted imidazo[1,2-α]pyrazines with sodium nitrite and AcOH occurs at the 3-position. Reduction with Zn/AcOH can then be used to afford the desired product (Scheme 26). However, in the absence of these two activating groups, the nitrosation reaction fails.⁵¹ The compound shown, SCH32651, has been shown to be a reversible potassium competitive acid blocker (P-CABs) in inhibiting the gastric H⁺/K⁺ ATPase.⁴⁸,⁷⁷,⁷⁸

![Scheme 26: Nitrosation of imidazo[1,2-α]pyrazine⁴⁸]

Vitse et al showed that nitration of various 6,8-disubstituted imidazo[1,2-α]pyrazines occurs regioselectively at C₃.⁷⁹ It is also possible to directly hydroxymethylate similar systems in the C₃ position using formaldehyde.⁵¹,⁸⁰

The same group then demonstrated Vilsmeir-Haack formylation of 6-bromo-8-(methylamino)imidazo[1,2-α]pyrazine using DMF and phosphorous oxybromide (Scheme 27).⁸¹ The use of the classical reagent phosphorous oxychloride was avoided due to the likely elimination/addition of the C₆ bromine.
Under neutral and acidic conditions, imidazo[1,2-a]pyrazines do not undergo hydrogen-deuterium exchange; however, in an alkaline solution (aq. NaOD in DMSO), exchange is observed with H3 and H5, further indicating the electrophilic nature of these positions.

Computational studies have shown that N7 is the nitrogen of greatest electron density, but the most stable protonated species results from N1 protonation, as illustrated by X-ray crystallography. The pKa value for the N1 protonated species of imidazo[1,2-a]pyrazine has been reported as 3.59 ± 0.02. In addition, by reacting imidazo[1,2-a]pyrazines with MeI at RT for 5 days, quaternisation of N1 and N7 is observed in a 1.6:1 ratio. NMR studies have been reported which determine the site of protonation and methylation in imidazo[1,2-a]pyrazines.

1.2.2.2.2 Nucleophilic substitution

Early studies showed that nucleophilic substitution only occurs at the C5 and C8 positions. Bradač et al showed mono-displacement of 6,8-dibromoimidazo[1,2-a]pyrazine by a methoxy moiety at the 8-position only. Similar observations were made by Bonnet et al by displacement with a variety of alcohols and amines and by Meurer et al by displacement with piperazine. The later also showed that with a piperazine in position 8, displacement of chlorine in positions 3 and 6 with piperazine does not occur, whilst displacement of bromine at C6 tentatively occurs with methylamine, with unsuccessful isolation of the reaction product. Unsuccessful methoxide displacement was also observed showing the resistance to nucleophilic substitution at C3, C5 and C6 in compounds bearing a piperazine moiety at C8.

Lumma et al showed that the chlorine in the 8-position in 6,8-dichloroimidazo[1,2-a]pyrazine can be exchanged for bromine using sodium bromide and HBr in butanone.
More recently, however, a variety of methods have been established to allow substitution at previously thought inaccessible positions. In order to achieve substitution of halogens in the 6-position, palladium coupling reactions have been used. Examples of these include work carried out by Mitchell et al in the synthesis of inhibitors of the receptor tyrosine kinase EphB4. Starting with 6,8-bromimidazo[1,2-a]pyrazine 122, amine displacement of the 8-bromo proceeds under thermal conditions, but displacement of the 6-bromo requires a Suzuki coupling reaction (Scheme 28).

![Scheme 28: Example of the use of Suzuki coupling to displace halogens in the 6-position of imidazo[1,2-a]pyrazine](image)

Matthews et al identified specific conditions that enabled selective Suzuki coupling in 3-chloro-6-bromimidazo[1,2-a]pyrazine: Using Pd(PPh3)4, Na2CO3, MeCN/H2O, 120°C, 60 min, microwave, the 6-bromo was selectively displaced; changing the solvent to DMF and heating at 150°C for 20 min under microwave enables the 3-position to now be displaced (Scheme 29).
More recently, activation of the 8-position for nucleophilic substitution of less reactive nucleophiles has been reported.86,87 Starting with 3-bromo-8-chloroimidazo[1,2-\(\alpha\)]pyrazine, selective substitution of the 8-chloro group is achieved with sodium thiomethoxide. This moiety can then be oxidised to the methyl sulfone using \textit{meta}-chlorobenzoic acid, which in turn has been shown to be displaced by a range of amine nucleophiles. The 3-position is then free to be functionalised \textit{via} Suzuki coupling chemistry.

The same group also demonstrated further selective functionalisation, as depicted in Scheme 30. By having three orthogonal leaving groups at the 3-, 6- and 8-positions, varying chemistries can be utilised to install three different moieties around the heterocyclic core.
It has also been shown that displacement of 3-bromoimidazo[1,2-a]pyrazines occurs by refluxing copper cyanide in DMF.80

Another interesting transformation is the telersubstitution reaction whereby the entering functionality adopts a position more than one atom away from the atom to which the leaving group was attached.88 Such reactions with imidazo[1,2-a]pyrazines have previously been reported with methoxy groups52,89 as well as amino and alkyl amino moieties (Scheme 31).51 The telersubstitution reaction competes with the addition-elimination reaction at position C5. It is postulated that the electron withdrawing nature of the nitrogen in position 7 activates C8 for nucleophilic attack.
To our knowledge there are no literature examples for the synthesis of imidazo[1,2-\(a\)]pyrazine with a sulfonamide attached directly to the core, such as the target compounds 4-11.

1.2.2.3 Metalation of Imidazo[1,2-\(a\)]pyrazines

Lithiation of position 8 in unsubstituted imidazo[1,2-\(a\)]pyrazine is observed with both MeLi\(^{90}\) and PhLi.\(^{91}\) In addition, lithiation of imidazo[1,2-\(a\)]pyrazine, followed by quenching with an electrophile occurs with both \(n\)-BuLi and the non-nucleophilic lithium tetramethylpiperidide (LTMP) to yield 3- and 5-substituted products.\(^{92}\)

Halogen-metal exchange of 3,6-dibromo imidazo[1,2-\(a\)]pyrazine derivatives occurs with \(n\)-BuLi at the 3-position with the 6-bromo exhibiting ortho-directing effects resulting in 3,5-disubstituted products.\(^{92}\) The regioselectivity of the halogen-metal exchange reaction of 3,6-dibromo-8-methoxyimidazo[1,2-\(a\)]pyrazine also depends on the nature of the quenching electrophile. Even though 3,5-dilithiated species are formed, the more sterically hindered the electrophile is, the more regioselective the reaction is towards C\(_3\).\(^{92}\)

1.2.2.4 Reduction of Imidazo[1,2-\(a\)]pyrazines

It has previously been shown that under hydrogen atmosphere with 7 mol\% PtO\(_2\) in EtOH, imidazo[1,2-\(a\)]pyrazine derivatives undergo partial reduction to form tetrahydroimidazo[1,2-\(a\)]pyrazines, as depicted in Scheme 32.\(^{93}\) An alternative method of achieving reduction involves the use of NaBH\(_3\)CN.\(^{94}\)
1.2.2.3 Therapeutic Applications of Imidazo[1,2-a]pyrazines

Imidazo[1,2-a]pyrazines have been reported with a variety of therapeutic uses. These will be discussed in this section, with the inclusion of a few case studies in relation to anticancer treatment.

1.2.2.3.1 Imidazo[1,2-a]pyrazines as Anticancer Agents

A series of papers published from the Merck Research Laboratories describe the synthesis of imidazo[1,2-a]pyrazines as potent Aurora kinase inhibitors.86,87,95,96,97,98 Aurora kinases A-C are cell cycle regulated serine/threonine kinases expressed only during mitosis, and are an important anti-cancer target.99 The objective of the group was to identify a potent and selective Aurora A or B inhibitor, showing mechanism-based cell activity (by inhibition of the phosphorylation of Histone H3 (HH3)), and with ideal pharmacokinetic profiles.

Through initial screening of an internal library, an imidazo[1,2-a]pyrazine scaffold with a pyrazole ring and isothiazole ring in the 3- and 8-positions respectively was identified with sub-micromolar IC\textsubscript{50} values (Figure 13 140).87 SAR studies showed that the addition of a small hydrophobic moiety (Me, SMe) in the 6-position improves cell penetration and that the removal of the pyrazole methyl improves potency by approximately 100 fold (Figure 13, 141/142).87 The improved potency can be attributed to an important hydrogen-bonding role of the pyrazole as illustrated by the X-ray crystal structure.
Further studies looked at improving cell potency, pharmacokinetics and aqueous solubility for intravenous formulation, focusing on the solvent accessible isothiazole methyl position. Installation of polar groups (Figure 13, 143) succeeding in improving potency and solubility. However it showed multi-kinase inhibition and poor bioavailability and as such compound 144 (Figure 13) was synthesised, showing anti-tumour activity, oral bioavailability and improved off-target kinase activity.

Further studies to improve oral bioavailability of 143 showed that the major site of metabolism occurs at the basic nitrogen, and therefore an approach was sought to block this metabolism and
improve absorption. This was achieved by the incorporation of fluorine and deuterium into the structure (145).97

Further studies included a bioisoteric approach by replacing the isothiazole with thiophene and thiazoles,98 as well as investigating alternative amide moieties on the pyrazole nitrogen.86 The synthesis of compounds 141-145 was achieved using the chemistry illustrated in Scheme 30.

Another group looked at imidazo[1,2-\(a\)]pyrazines as selective Aurora-A kinase inhibitors (Figure 14).100 HTS of an in-house library yielded two promising hits, one of which is compound 146. They then initiated a hit-to-lead programme, by identifying the inhibitory effects of C₃, C₆ and C₈ substituents, with the aim of establishing SAR trends. Compounds were synthesised in an analogous manner to those depicted in Scheme 28, with an additional chlorination step of the 6,8-dibromoimidazo[1,2-\(a\)]pyrazine.

Figure 14: Imidazo[1,2-\(a\)]pyrazines as selective Aurora-A kinase inhibitors. Initial values refer to inhibition of recombinant human Aurora-A and Aurora-C, and secondary values refer to cell-based \textit{in vitro} assays and are determined using Flashplate and Filterplate assays.100

Compound 147 proved to be an approximately 10-fold more potent inhibitor, and was found to have a 19-fold selectivity in inhibiting Aurora-A over Aurora-B. In addition, it displayed cellular potency when studying the inhibitory activity of two cancer cell lines. Through co-crystallisation of compound 147 with Aurora-A, the binding mode was elucidated, providing an insight into the interactions of imidazo[1,2-\(a\)]pyrazines with Aurora kinases. This led to the design of further
anallogues, with compound 148 showing improved potency and a 70-fold selectivity in inhibiting Aurora-A over Aurora-B in cell-based assays.100

The lipid phosphoinositide-3-kinase (PI3K) is a central component in the PI3K/AKT/mTOR signalling pathway, and is an important target for cancer therapeutics. González \textit{et al} have recently published work into the identification of novel PI3K inhibitors, based on the imidazo[1,2-\textit{a}]pyrazine core structure.101,102 Initially they adopted a ligand-based rational drug design approach, utilising key morpholinyl and 3-hydroxyphenyl fragments in the 8 and 6 positions respectively and investigating alternative groups in the 3-position (Figure 15).101

![Figure 15: Imidazo[1,2-\textit{a}]pyrazine based PI3K inhibitors. pAKT refers to phosphorylation of AKT.101,102](image_url)
Compound 149 has an IC$_{50}$ value of 37 nM; however, it has limited in vivo potential due to the metabolically unstable 3-hydroxyphenyl group. Through changing this group with the isosteric indazole, the resulting compound 150, although displaying a slightly higher IC$_{50}$ was thought of as a viable starting point for different functionalisation of the imidazo[1,2-a]pyrazine core. The synthesis of 149 and 150 was carried out by substituting a morpholine in the 3-positon of 2-amino-3,5-dibromopyrazine, condensation with dichloroacetone, and then nucleophilic displacement of the resulting alkyl chloride. A Suzuki reaction was used to install the R$_6$ moiety.

The group then prepared various secondary amide derivatives at C$_2$ with an improved potency of 35 nM observed with compound 151. In addition this compound displayed good selectivity verses mTOR kinases. Taking this hit forward, the indazole was replaced with a 2-aminopyrimidine moiety (152), greatly improving the potency to 0.6 nM for a biochemical assay, as well as improving the IC$_{50}$ in a cell-based assay of the inhibition of AKT phosphorylation from 429 nM to 8.7 nM. Synthesis was carried out by condensing the same morpholino-pyrazine with ethyl bromo pyruvate, Suzuki reaction and then amide bond formation.

Further investigations into positions 2-, 5- and 6- revealed the lead compound ETP-46992 (153), with a biochemical and cell-based IC$_{50}$ of 0.9 nM and 13 nM respectively. The compound shows good pharmacokinetic data, good selectivity, high permeability and targeted inhibition in vivo.

The same group from Merck Research Laboratories synthesised imidazo[1,2-a]pyrazines, in a similar fashion to before, as Brk/PTK6 inhibitors (Figure 15). Initial screening identified a compound with an IC$_{50}$ of 500 nM, with follow up screening identifying compound 154 with an enzymatic activity IC$_{50}$ of 7 nM, and p-SAM68 IC$_{50}$ of 156 nM (mechanism-based cellular activity measured by inhibition of phosphorylation of SAM68).
The group then looked at different substituents in each of the positions around the ring to improve potency and selectivity over Aurora-B kinase and Lck (an Src family kinase). Methylation of the pyrazole resulted in diminished activity, whilst substituting for the 3-thiophene group gave an IC₅₀ of 51 nM. Changing the methyl at C₆ for either an ethyl or cyclopropyl (155) resulted in maintained potency, but improved selectivity.

Extensive studies into the amide functionality in the C₈ position resulted in the top compound structurally very similar to the ones preceding it (156), with fluorine replacing the chlorine, and moving ortho to the amine. Activity is maintained once again, with selectivity improved to greater than 300-fold.

Alternative cancer therapeutic targets for imidazo[1,2-a]pyrazines include the serine/threonine kinases of checkpoint kinase 1 (CHK1), cyclin dependent kinase (CDK), c-Jun N-terminal kinases (JNK) and the receptor tyrosine kinase EphB4.

1.2.2.3.2 Additional Therapeutic Applications of Imidazo[1,2-a]pyrazines

As previously mentioned, SCH32651 (Scheme 26) has potential antiulcer properties, and based on this structure, Zimmermann et al. synthesized a series of potent reversible inhibitors of the gastric H⁺/K⁺ ATPase (Scheme 33). By carrying out an alkoxycarbonylation on the 6-
bromo species, a variety of amides could be accessed. Other derivatives as acid pump antagonists have also been reported.108

Scheme 33: Synthesis of 6-carboxamide-substituted imidazo[1,2-a]pyrazine synthesised by Zimmermann et al78

Anti-inflammatory properties of imidazo[1,2-a]pyrazines have been reported, with derivatives acting as CXCR3 antagonists.109 CXCR3 are chemokine receptors, responsible for trafficking T-cells to inflamed cells, and therefore antagonists can be used in various inflammatory diseases such as multiple sclerosis and rheumatoid arthritis.

Other targets for inflammatory diseases of imidazo[1,2-a]pyrazine inhibitors are: IκB kinase (IKK), where the inhibitors are reported to additionally prevent and treat immune-related diseases;110 p38 kinases;111 Mitogen-Activated Protein Kinase-Activated Protein Kinase 5 (MAPKAP5), also for the treatment of degenerative diseases;112 Monopolar Spindle 1 (Mps-1) kinase, also for the treatment of cancer, arthritis and other hyperproliferative disorders;113 the ligand-gated ion channel P2X7;114 and the non-receptor spleen tyrosine kinase (Syk), with additional cancer therapeutics.115
Bonnet et al synthesised a number of 8-alkoxy- and 8-(alkylamino)imidazo[1,2-a]pyrazines which demonstrated high antitubronchospastic activities in vitro and in vivo whilst not exhibiting adverse central nervous system (CNS) stimulant effects observed by Theophylline, an anti-asthma agent. The lead compound from this study, SCA40 (Figure 17) also displayed vasorelaxant properties as a phosphodiesterase III (PDE3) inhibitor and potassium channel opener. Derivates of SCA40 have also been shown to possess similar properties.

Figure 17: Imidazo[1,2-a]pyrazine, SCA40, described by Bonnet et al

In addition to the PDE3 inhibitor, imidazo[1,2-a]pyrazines have been reported as PDE10 inhibitors for the prevention or treatment of neurological, psychiatric and metabolic disorders and diseases. Similarly, derivatives have been reported as gamma secretase modulators (GSM), which have potential applications in treating Alzheimer’s disease.

Sablayrolles et al synthesised imidazo[1,2-a]pyrazine derivatives with uterine-relaxing, antitubronchospastic and cardiac-stimulating properties, whilst Zurbonsen et al displayed antiproliferative, differentiating and apoptotic effects of imidazo[1,2-a]pyrazine derivates. Imidazo[1,2-a]pyrazines have also been reported to display potent inotropic effects and to control allergic reactions.

Lumma et al showed imidazo[1,2-a]pyrazines to have selective affinity for α-adrenergic receptors, and therefore have potential as non-classical anti-depressants. Similarly, Meurer et al reported imidazo[1,2-a]pyrazine derivatives that act as high affinity α2-adrenergic antagonists and therefore display potent hypoglycemic activity. This potential for diabetic therapy was also reported for tetrahydroimidazo[1,2-a]pyrazines.
Strongly linked with diabetes is the issue of obesity, and it has been reported that imidazo[1,2-\(a\)]pyrazine derivatives modulate the activity of melanocortin-4 receptors, which have been implicated in the regulation of body weight.\(^{125}\)

Finally, the following applications have also been reported for imidazo[1,2-\(a\)]pyrazines: the prevention and treatment of viral infections, in particular the hepatitis C virus (HCV);\(^{59}\) corticotrophin-releasing factor (CRF) antagonists for the treatment of irritable bowel syndrome;\(^{126}\) orexin receptor antagonists for the treatment of sleep, mood and anxiety-related disorders;\(^{127}\) treatment of diseases related to bone loss, for example osteoporosis;\(^{128}\) and treatment and prevention of Duchenne muscular dystrophy.\(^{129}\)

To our knowledge, there are no applications of imidazo[1,2-\(a\)]pyrazines as antibacterial agents.

1.3 Project Aims & Objectives

Using the results of the virtual HTS, the initial aims of this project are to synthesise the target imidazo[1,2-\(a\)]pyrazines, test for inhibition with the VirB11 ATPase HP0525 and to use molecular modelling programs to evaluate potential interactions of these compounds within the enzyme active site.

The secondary objective is to incorporate these putative ATP inhibitors into the synthesis of bivalent inhibitor reagents whereby one half of the chimera targets the nucleotide binding site and the other targets the unstable nature of the subunit-subunit interface which is in close proximity to the nucleotide binding site.

By synthesising a peptide based on the \(\alpha\)F helix of HP0525 it is postulated that it could substitute the native \(\alpha\)F helix and disrupt the opening and closing mechanism of the hexameric portal. This synthetic peptide will form the basis of second part of the bivalent inhibitor.
Chapter 2: Results & Discussion: Target Compounds

2.1 Initial Synthetic Approach

The imidazo[1,2-\(a\)]pyrazine ring is present in each of the target compounds, therefore, the planned initial synthetic approach was to first synthesise this core heterocycle, followed by functionalisation of the ring (Scheme 34).

![Scheme 34: Planned initial synthetic route to access 3-aryl, 8-amino imidazo[1,2-\(a\)]pyrazines](image)

The classical synthetic route towards imidazo[1,2-\(a\)]pyrazines involves a condensation between 2-aminopyrazine and chloroacetaldehyde. Previously reported methods using DMF as solvent\(^{47}\) proved to be low yielding; however, the use of MeOH improved the yield to 98\% (Table 2).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>Reflux</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>MeOH</td>
<td>Reflux</td>
<td>24</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 2: Reaction conditions explored in the condensation reaction to form imidazo[1,2-\(a\)]pyrazine
Following formation of the core heterocycle 115, attempts to brominate using Br₂ in AcOH resulted in extremely messy reaction profiles, which proved to be difficult to purify, and therefore low yields were observed. Table 3, entry 7 shows the highest yield obtained was 17%; however, this consisted of two different dibrominated regioisomers (9:1 ratio), which were only separable by reverse phase flash chromatography. After purification on a sample of the mixture, it was difficult to tell by NMR which dibrominated species had formed. COSY showed no coupling between the 3 singlet signals and therefore bromination at the 8-position can be ruled out. As previously discussed (Section 1.2.2.2.1), bromination is likely to occur at the 3,5- positions, with 3-bromo forming primarily; therefore the likely species formed are 3,5-dibromo or 3,6-dibromoimidazo[1,2-a]pyrazines. Attempts to obtain a crystal structure, via crystallisation using a Craig Tube proved to be unsuccessful with needle like crystals of approximately 0.2 µm observed.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Temp: Br₂ Addition/°C</th>
<th>Reaction temp/°C</th>
<th>Time/min</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AcOH</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AcOH</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AcOH</td>
<td>RT</td>
<td>RT</td>
<td>60</td>
<td>Product could not be purified</td>
</tr>
<tr>
<td>4</td>
<td>AcOH</td>
<td>0</td>
<td>RT</td>
<td>90</td>
<td>Product could not be purified</td>
</tr>
<tr>
<td>5</td>
<td>AcOH</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>Product could not be purified</td>
</tr>
<tr>
<td>6</td>
<td>MeOH</td>
<td>0</td>
<td>RT</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>AcOH</td>
<td>RT</td>
<td>Reflux</td>
<td>60</td>
<td>17a</td>
</tr>
<tr>
<td>8</td>
<td>AcOH</td>
<td>0</td>
<td>RT</td>
<td>60</td>
<td>8b</td>
</tr>
</tbody>
</table>

Table 3: Reaction conditions used for the bromination of imidazo[1,2-a]pyrazine, 115. a Mixture of dibromo regioisomers; b Mixture of mono-, di, tri-bromo regioisomers.
The strategy to introduce the amine moiety in the 8-position involves a telesubstitution reaction. Unfortunately, no desired product was observed in the reactions attempted and therefore an alternative route was sought.

2.2 Synthesis of 3-Aryl Imidazo[1,2-a]pyrazines

2.2.1 Overview of the Synthesis

Through adapting the procedures of Meurer et al., Lumma et al. and MacCoss et al., and starting from the vicinal amino alcohol, the targeted 3-aryl substituted imidazo[1,2-a]pyrazines could be synthesised (Scheme 35). Coupling with 2,3-dichloropyrazine, would be followed by oxidation, dehydration-cyclisation and finally amine coupling. Two strategies were attempted to synthesise the key amino alcohol starting material: regioselective aminolysis of an epoxide; and via an azido ketone. These will be discussed in the following sections.

![Scheme 35: Overview of the synthetic route towards 3-aryl imidazo[1,2-a]pyrazines](image)

2.2.2 Formation of Amino Alcohol Moiety via Epoxide

The initial strategy to synthesise the key amino alcohol, was to form an epoxide followed by a regioselective ring opening using ammonia. The epoxide of naphthalene was successfully synthesised using two methods: either the Prilezhaev reaction of alkenes with meta-chloroperbenzoate (mCPBA); or the Corey-Chaykovsky reaction of a sulfur ylide with a carbonyl compound (Scheme 36).

![Scheme 36: Epoxide synthesis](image)
Looking at Table 4, it is evident that the formation of the epoxide is low yielding for both methods used. The Prilezhaev reaction goes to near 100% completion in each of the attempts, but after column chromatography, a maximum yield of 31% is isolated suggesting the epoxide formed is unstable on the silica column. The Corey-Chaykovsky epoxidation can be carried out using either trimethyloxosulfonium iodide or trimethylsulfonium iodide where the use of a strong base, such as NaH, produces the nucleophilic sulphur ylide \textit{in situ}. The former reagent was used in this case due to the relative stability of the later.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Solvent</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>CH$_2$Cl/NaHCO$_3$ (Sat.Aq)</td>
<td>10</td>
<td>92 Conversiona</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>CH$_2$Cl/NaHCO$_3$ (Sat.Aq)</td>
<td>10</td>
<td>90 Conversiona</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>CH$_2$Cl/NaHCO$_3$ (Sat.Aq)</td>
<td>10</td>
<td>92 Conversiona</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>THF</td>
<td>1.5</td>
<td>20b</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>THF/DMSO (1:1)</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>THF</td>
<td>2</td>
<td>0c</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>THF</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4: Variation in reaction conditions for the formation of 188. a Determined by 1H NMR; b 2:1 Mixture of SM:Product by 1H NMR; c Diol formation observed. Method A: mCPBA, CH$_2$Cl/NaHCO$_3$ (sat. aq.), RT; Method B: (CH$_3$)$_3$S+O $^-$, NaH, THF, Reflux.
It is very important that the solvent used is anhydrous, as any contamination can cause a reduction in the yield and no reaction at all (Entries 5, 6 & 7). The other issue is the difficult separation between the product and the starting aldehyde; numerous attempts to purify the product were necessary leading to degradation of the epoxide.

All subsequent attempts, exploring a number of amine nucleophiles, to ring open the epoxide, 188, failed. Firstly 2 M ammonical ethanol\(^\text{57}\) was used and after 2 h of heating at 100 °C in a sealed tube a green precipitate was isolated. The identity of this species is unknown, but it does not correspond to the desired amino alcohol from MS and NMR observations. There is a possibility that once a molecule of ammonia opens the epoxide, the resulting primary amine will be more nucleophilic. This will act as a competing nucleophile, leading to a complex reaction mixture.\(^\text{133}\) There is also the known problem\(^\text{133,134}\) that aminolysis of epoxides bonded to an aromatic moiety results in a terminal alcohol, where the initial nucleophilic attack is directed towards the more stable tertiary carbocation. Epoxides bonded to an aliphatic substituent tend to result in the terminal amine being observed.

In light of this, an alternative source of amine nucleophile was investigated. Using a modified Delépine reaction,\(^\text{135}\) reacting hexamethylenetetramine with epoxide 188 and cleaving the resulting tetramine salt with HCl should result in the terminal amine (Scheme 37). When refluxing in CHCl\(_3\) no reaction was observed; however, when switching to EtOH, no signs of epoxide were evident after 7 h, and LCMS showed a minor product mass peak. On working up the reaction it became clear by NMR and LCMS that no desired product was evident and therefore no further work was carried out.

![Scheme 37: Modified Delépine reaction between epoxide 188 and hexamethylenetetramine\(^\text{135}\)](image)

53
It has previously been shown that microwaves display regioselective properties in many reactions including the aminolysis of epoxides.136,137 Subjecting epoxide 188 and ammonium acetate to microwave irradiation resulted in trace quantities of desired product by NMR and LCMS and no further work was investigated.

Further nucleophiles were explored in the form of sodium azide138 and 4-methoxybenzylamine139 with the aim of reducing the resulting species to a primary amine using Pd/C and H\textsubscript{2}. No product was observed after either attempt. The use of 2-amino-3-chloropyrazine was also explored as a potential short-cut to access the pyrazinyl amino alcohol; however, no desired product was observed.

2.2.3 Formation of Amino Alcohol Moiety via Azido Ketone

Due to the lack to success with the epoxide aminolysis, an alternative approach was sought. Scheme 38 outlines the synthesis of the amino alcohol \textit{via} an azido ketone.

![Scheme 38: Reaction scheme for the synthesis of key amino alcohol via an azido ketone](image)

The first stage involves α-bromination of the aryl ketone using pyridinium tribromide.140 In the majority of the cases, a mixture of mono- and di-bromated species is formed, the separation of which is achievable \textit{via} flash chromatography. Following the reaction by TLC showed that the di-bromo species is formed immediately. Switching to Br\textsubscript{2} in AcOH,141 resulted in an extremely messy reaction profile, with no desired product observed by NMR.

The next three steps were carried out in near quantitative yields, without the use of any purification. Substitution of the α-bromine using sodium azide142 proceeded in 1-5 h providing at least 1.5-2 equivalents of sodium azide are used. In the cases where 1.2 eq were originally used,
when an extra portion of NaN₃ was added, an immediate change in the colour of the reaction and complete conversion to the desired azido ketone was observed.

Reduction of the ketone to give azido alcohols was successfully carried out using sodium borohydride in MeOH in just 1 h.¹⁴³ The use of sodium borohydride and activated alumina with Et₂O was originally explored,¹⁴⁴ with yields of 50% observed, and therefore these conditions were not employed. Hydrogenation at atmospheric pressure using 10% Pd/C¹⁴⁴ delivered the amino alcohols, with the exception of the thiophene analogue, which required 3 bar of H₂ to proceed. If purification was carried out at this stage, a loss of yield was observed and so it was decided to use the amino alcohols as crude for the next steps.

It was originally envisaged that reduction of the azido ketone to an amino ketone could be followed by coupling and cyclisation with 2,3-dichloropyrazine to form 8-chloro-3-arylimidazo[1,2-a]pyrazines (Scheme 39). 210 was successfully synthesised via hydrogenation of 200 (Method A),¹⁴² but the use of the Staudinger reduction (Method B)¹⁴⁵ proved to be unsuccessful. Stability tests of 210 showed that immediately after purification a single mass, corresponding to the desired product was observed by LCMS; however, after 3 days, a new peak corresponding to a mass of 349 was also apparent. It is not know what this mass relates to, but it is thought that the species could be polymerising. Attempts to react 210 with 2,3-dichloropyrazine to form 181 failed and so no further work was investigated with this approach.

Scheme 39: Potential synthetic route to access 8-chloro-3-(2-naphthyl)imidazo[1,2-a]pyrazine, 181.
Method A: H₂, HCl, 10% Pd/C, MeOH, RT, 48 h: 27%; Method B: PPh₃, THF, RT, 24 h: 0%
2.2.4 Synthesis of 3-Aryl Imidazo[1,2-a]pyrazine from Amino Alcohol

With the synthesis of the key amino alcohol complete, the remainder of the synthesis could be completed. Scheme 40 outlines the overall reaction scheme carried out, with corresponding compound numbers and yields for each step highlighted in Table 2.

Coupling of the amino alcohol with 2,3-dichloropyrazine,\(^{57}\) afforded the pyrazinyl-amino alcohols in good yields, which was then followed by a Swern oxidation\(^{146}\) to give the amino ketones, also in good yields. Initially trimethylamine sulphur trioxide complex was used for the oxidation in a variation of the Parikh-Doering oxidation.\(^{57}\) However lower yields were observed (25% for 176 cf. 57% for Swern conditions) and so these conditions were not used for the remaining analogues.

Acid-induced cyclisation\(^{57}\) furnished the core imidazo[1,2-a]pyrazine with the aromatic moiety in the 3-position. For all of the analogues, the reaction was carried out in toluene, but in the case of 183 (18%), the use of CH\(_2\)Cl\(_2\) (20%) and concentrated conditions (4%) were also explored, suggesting that CH\(_2\)Cl\(_2\) could be a viable alternative reaction solvent.
<table>
<thead>
<tr>
<th>Aromatic Moiety</th>
<th>Naphthalene</th>
<th>Phenoxyphenyl</th>
<th>Dimethoxy</th>
<th>Dimethyl</th>
<th>Thiophene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aryl Ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Bromo Aryl Ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
</tr>
<tr>
<td>α-Azido Aryl Ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 (100%)</td>
<td>201 (95%)</td>
<td>202 (98%)</td>
<td>203 (100%)</td>
<td>204 (99%)</td>
</tr>
<tr>
<td>α-Amino Aryl Ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>205 (100%)</td>
<td>206 (97%)</td>
<td>207 (88%)</td>
<td>208 (99%)</td>
<td>209 (91%)</td>
</tr>
<tr>
<td>α-Amino Aryl Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrazinyl Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>166 (99%)</td>
<td>167 (100%)</td>
<td>168 (100%)</td>
<td>169 (97%)</td>
<td>170 (100%)^a</td>
</tr>
<tr>
<td>Pyrazinyl Ketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>171 (63%)</td>
<td>172 (64%)</td>
<td>173 (58%)</td>
<td>174 (66%)</td>
<td>175 (46%)</td>
</tr>
<tr>
<td>8-Chloro Imidazo[1,2-a]pyrazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>181 (46%)</td>
<td>182 (100%)</td>
<td>183 (20%)</td>
<td>184 (25%)</td>
<td>185 (33%)</td>
</tr>
<tr>
<td>8-Sulfonamide Imidazo[1,2-a]pyrazine</td>
<td>4 (41%)</td>
<td>5 (26%)</td>
<td>6 (31%)</td>
<td>7 (67%)</td>
<td>-</td>
</tr>
<tr>
<td>8-Aniline Imidazo[1,2-a]pyrazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 (35%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13 (18%)</td>
</tr>
</tbody>
</table>

Table 5: Corresponding compound numbers and reaction yields for Scheme 40. ^a Requires 3 bar H_2 for 5 h

In order to install the sulfonamide or aniline-sulfonamide groups, a Buchwald-Hartwig coupling approach was used. 147,148 Pd(dba)_2 pre-catalyst and 2-Bu-XPhos ligand 149 produced the final compounds in low to good yields. Non-catalytic conditions were also briefly explored: Et_3N in DMF for 5 gave no desired product and K_2CO_3 in MeCN in a sealed tube gave 16% 7 (cf. 67% for palladium conditions). Further optimisation of this final coupling step for a model system is discussed in Section 2.4.1. All of the analogues synthesised were screened in a biochemical assay, described in Section 2.5.1.1.
2.2.5 Alternative Approach to 3-Aryl Imidazo[1,2-\(a\)]pyrazines

In light of the lengthy synthetic scheme required to synthesise the 3-aryl imidazo[1,2-\(a\)]pyrazines, an alternative approach utilising the aromatic aldehyde was briefly explored (Scheme 41). The thienyl analogue was first investigated due to initial problems with formation of the amino alcohol. Oxidation under Parikh-Doering conditions\(^{150}\) proved successful but purification proved to be extremely difficult with the highly sensitive and reactive aldehyde 212 and as such material could only be isolated with major impurities. Swern conditions\(^{146}\) showed no signs of the desired product, with possible polymerisation evident.

Unfortunately no further work was carried out trying to optimise the oxidation reaction; if successful, however, bromination followed by condensation is envisaged to produce 185.

2.3 Synthesis of 2-Aryl Imidazo[1,2-\(a\)]pyrazines

The targeted 2-aryl imidazo[1,2-\(a\)]pyrazines can be accessed via a shorter 2-/3-step synthesis (Scheme 42). Starting from the \(\alpha\)-bromoketones used in the synthesis of the 3-aryl isomers, condensation with 2-amino-3-chloropyrazine results in the core imidazo[1,2-\(a\)]pyrazine heterocycle with the aromatic moiety exclusively present in the desired 2-position. This is due to the more nucleophilic endocyclic nitrogen initiating the reaction by displacing the \(\alpha\)-bromine and thus setting up the correct regiochemistry.
The regiochemistry of the 2- and 3- substituted imidazo[1,2-a]pyrazines was confirmed by 2D NMR. In the case of the 2-substituted imidazo[1,2-a]pyrazines, NOE spectroscopy showed coupling through space between the protons in the 3- and 5- positions of the imidazo[1,2-a]pyrazine ring. HMBC (Figure 18) also showed correlation between the protons and carbons of these positions. Conversely, with the 3-substituted imidazo[1,2-a]pyrazines neither coupling nor correlation was observed between the protons in the corresponding 2- and 5- positions.
The final step involves the same Buchwald-Hartwig coupling conditions employed in the synthesis of the 3-aryl imidazo[1,2-a]pyrazines. In the case of 11, no desired product was isolated using Pd(dba)$_2$ and tBu-XPhos and so a different catalyst system: Pd(dppf)Cl$_2$ was used. All of the analogues synthesised were screened in a biochemical assay, as described in Section 2.5.1.1.

2.3.1 Optimisation of Condensation Reaction

Table 7 details the different reaction conditions used for the condensation between 2-(bromoacetyl)naphthalene, 195, and 2-amino-3-chloropyrazine to form 8-chloro-2-(2-naphthyl)imidazo[1,2-a]pyrazine, 214. Initially yields of approximately 20% were observed when using NaHCO$_3$ and EtOH solvent, which could be increased to 38% when switching to Et$_3$N and 1,4-dioxane; however, an extremely messy reaction profile followed by a difficult purification meant these conditions were undesirable. Keeping the NaHCO$_3$ base constant, a solvent screen was carried out, with the crude reaction mixture analysed by LCMS. A comparison of the yields by UV and ES+ TIC could then be made, and it can be seen that using tBuOH or IPA led to increased yields. Scaling of these conditions resulted in observed yields of 39% and 26% respectively (Entries 10 & 11).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Base/Acid</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>reflux</td>
<td>6</td>
<td>20²</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Et₃N</td>
<td>Dioxane</td>
<td>reflux</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>reflux</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>reflux</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>NaHCO₃</td>
<td>MeOH</td>
<td>reflux</td>
<td>20</td>
<td>2/0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>reflux</td>
<td>20</td>
<td>70/22ᵇ</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>NaHCO₃</td>
<td>IPA</td>
<td>reflux</td>
<td>20</td>
<td>100/45ᵇ</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>NaHCO₃</td>
<td>'BuOH</td>
<td>reflux</td>
<td>20</td>
<td>92/50ᵇ</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>NaHCO₃</td>
<td>DMF</td>
<td>reflux</td>
<td>20</td>
<td>37/36ᵇ</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>NaHCO₃</td>
<td>'BuOH</td>
<td>reflux</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>NaHCO₃</td>
<td>IPA</td>
<td>reflux</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>KO'Bu</td>
<td>DMF</td>
<td>70</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>KO'Bu</td>
<td>NMP</td>
<td>100</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>Cs₂CO₃</td>
<td>MeCN</td>
<td>70</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>HCl (cat.)</td>
<td>H₂O/THF</td>
<td>85</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>NaHCO₃</td>
<td>'BuOH</td>
<td>160</td>
<td>10 min</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>NaHCO₃</td>
<td>MeCN</td>
<td>160</td>
<td>10 min</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>NaHCO₃</td>
<td>DMF</td>
<td>160</td>
<td>10 min</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 7: Optimisation of the condensation reaction to form 214. a NaHCO₃ still present; b Not isolated yield; values are % peak area by ES+/UV respectively from LCMS; Methods A: Basic condensation reaction; Method B: Solvent screening and analysing crude mixtures by LCMS; Method C: Acidic condensation; Method D: Microwave irradiation (20 bar pressure limit)

Briefly exploring other solvent and base combinations, acid-catalysed condensation conditions and microwave irradiation had no beneficial effect on the reaction yields. With compound 214,
purification was difficult and the flash columns utilised are extremely time consuming due to the polar nature of the heterocycle. However, it should be noted that this compound is extremely insoluble and as such, isolation can be partially achieved by taking the crude mixture (after extraction), adding CH₂Cl₂ and MeOH (~1:1) and filtering off the remaining precipitate. The resulting solid was confirmed as the desired product with high purity, whereas the filtrate contains starting materials, side-products and a proportion of the product. Further purification of the filtrate by flash chromatography can then be used to isolate the remaining product.

2.3.2 Tautomerisation of Imidazo[1,2-α]pyrazines
In the ¹H-NMR spectra of the imidazo[1,2-α]pyrazine compounds the H₅ and H₆ protons are defined doublets (Figure 19) with a coupling constant value of approximately 4.5 Hz for the 8-chloro precursors, and 5.4 Hz for the 8-aniline final compounds. However, for compounds 4-11 where the sulfonamide is bound directly to the imidazo[1,2-α]pyrazine in the 8-position, tautomerisation is observed and as a result the doublets are less defined and become broad (Figure 20).

![Figure 19: ¹H NMR (600 MHz, (CD₃)₂SO) spectra of compound 214 showing sharp doublet signals for H₅ and H₆](image-url)
In some cases where the sulfonamide is bound directly to the pyrazine ring, H₆ is actually observed as a triplet (Figure 21), which couples to both H₅ and the broad doublet NH signal of H₇ (Figure 22 and Figure 23).
2.4 Buchwald-Hartwig Cross Coupling

Buchwald-Hartwig cross coupling is the palladium-catalysed reaction between aryl halides or pseudohalides and primary or secondary amines to form aryl amines. The generally accepted mechanism of this widely used transformation is given in Scheme 43. Oxidative addition of the aryl halide and palladium species is followed by binding of the amine species. Deprotonation then occurs, followed by reductive elimination to yield the reaction product; or by β-hydride elimination if a β-hydride is present in the amine.
Each of the different reaction components used are factors which determine the outcome of the reaction. The choice of aryl halide potentially influences the rate of the different catalytic steps and the electronic and steric properties of the amine influence its rate of binding, deprotonation and reductive elimination. The choice of strong and weak bases influences the rate, functional group tolerance and by-product formation; the palladium source will impact that formation of the active catalytic species; the solvent will determine substrate solubility; and temperature influences the rate of coupling and formation of by-products.

Prior to the development of the Buchwald-Hartwig cross coupling, formation of aryl amines through C-N bond forming reactions relied on high temperature Ullman-type copper mediated procedures, non-regiospecific aryne chemistry, or the highly reducing S_{RN1} reaction. The first instance of Pd-catalysed aryl amine formation involved coupling an aryl bromide with tin amides.

Hartwig was then able to suggest a catalytic cycle through isolating and obtaining crystal structures of Pd(0) complexes and intermediates, which was then altered with the discovery of
tin free aryl-amine couplings.155,156 Ligand development has led to a greater mechanistic understanding as well as milder conditions.

Much attention in past years has focused on optimising conditions for various substrates, with particular attention to ligand design. These include chelating diphenylphosphino ligands such as BINAP,157 dppt158 and Xantphos;159 electron rich chelating phosphines such as JosiPhos;160 \(N\)-heterocyclic carbenes;161 and tri-alkylphosphines.162 Dialkylbiaryl phosphines, as first introduced by Buchwald,163 compare favourably, with a versatile family of structurally related ligands now in place to complete the transformations with a variety of substrates.148

Optimal ligand and other reaction parameters can vary depending on substrate combinations and the following section will investigate the optimisation of the Buchwald-Hartwig cross coupling between the chloro-imidazo[1,2-a]pyrazines and 4-toluenesulphonamide and \(N\)-(4-aminophenyl)-4-methylbenzenesulphonamide.

2.4.1 Optimisation of Buchwald-Hartwig Cross Coupling Reaction of Imidazo[1,2-a]pyrazines

From looking at Scheme 40 and Scheme 42, it is evident that the final Buchwald-Hartwig coupling requires much optimisation. In light of data recorded from the biochemical assay (Section 2.5.1.1) and the relative cost of the lead compounds, it was decided to carry out all optimisation using the naphthalene-containing analogues.

The conditions used in the optimisation of 8 are detailed in Table 8. Initially the ferrocene derived ligand 1,2,3,4,5-pentaphenyl-1’-(di-tert-butylphosphino)ferrocene ‘Q-Phos’164 (Figure 24) was used with bis(dibenzylideneacetone)palladium(0), Pd(dba)\textsubscript{2} pre-catalyst, but in both toluene and THF, no product was observed. Switching the ligand to 2-di-tert-butylphosphino-2’,4’,6’-triisopropylbiphenyl ‘\textit{tert}-butyl XPhos’ (\textit{Bu}-XPhos)149 resulted in no product, but when changing from THF to \textit{BuOH} a yield of 38\% was observed.
Keeping the solvent and catalyst constant and switching the base to Cs$_2$CO$_3$ and the ligand to 2-dicyclohexylphosphinopheno-2'-(N,N-dimethylamino)biphenyl, ‘DavePhos’163 had no positive impact (Entry 6). However, when altering the solvent to dioxane165 a dramatic increase in yield to 66% was achieved (Entry 7). A similar yield was observed when changing again to NaO'Bu and Toluene (Entry 11), as was the case with Pd(OAc)$_2$ and NaO'Bu/Toluene (Entry 15); however, if Cs$_2$CO$_3$ is used, the yield observed is only 12% (Entry 10). This illustrates that certain combinations of solvents and bases are favoured over others.

With these two systems in mind, the pre-catalyst was switched to Pd$_2$(dba)$_3$ and the yields were further boosted to 81% and 93% for Cs$_2$CO$_3$/dioxane and NaO'Bu/toluene respectively (Entry 12 and 13). These results give two possible systems to be used depending on the solubility of the reacting species. The use of microwave irradiation was briefly investigated; however, no positive effect on the outcome of any of the systems used was observed, but a more vigorous screening process could improve the yields.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>Q-Phos (2 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.5 eq)</td>
<td>Toluene</td>
<td>80</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>Q-Phos (2 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.5 eq)</td>
<td>THF</td>
<td>50</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>'Bu-XPhos (5 mol%)</td>
<td>K$_2$CO$_3$ (1.2 eq)</td>
<td>THF</td>
<td>Reflux</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>'Bu-XPhos (5 mol%)</td>
<td>K$_2$CO$_3$ (1.2 eq)</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>'Bu-XPhos (5 mol%)</td>
<td>K$_2$CO$_3$ (1.2 eq)</td>
<td>'BuOH</td>
<td>120</td>
<td>30 min</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>Dioxane</td>
<td>Reflux</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>Dioxane</td>
<td>105a</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>Dioxane</td>
<td>130</td>
<td>30 min</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>Toluene</td>
<td>Reflux</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.4 eq)</td>
<td>Toluene</td>
<td>Reflux</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>Pd$_2$(dba)$_3$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>Dioxane</td>
<td>Reflux</td>
<td>24</td>
<td>81</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>Pd$_2$(dba)$_3$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.4 eq)</td>
<td>Toluene</td>
<td>Reflux</td>
<td>24</td>
<td>93</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>Pd$_2$(dba)$_3$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10 min</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>Pd(OAc)$_2$ (0.5 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.2 eq)</td>
<td>Toluene</td>
<td>Reflux</td>
<td>21</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>Pd(OAc)$_2$ (0.5 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.2 eq)</td>
<td>Toluene</td>
<td>120a</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>Pd(OAc)$_2$ (0.5 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO\textsubscript{t}Bu (1.2 eq)</td>
<td>Toluene</td>
<td>95</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Entry</td>
<td>Method</td>
<td>Catalyst</td>
<td>Ligand</td>
<td>Base</td>
<td>Solvent</td>
<td>Temp/°C</td>
<td>Time/h</td>
<td>Yield/%</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>Pd(PPh₃)₄ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10 min</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>Pd(dppf)Cl₂ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10 min</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>CuI (15 mol%)</td>
<td>Diamineᵇ (30 mol%)</td>
<td>K₂CO₃ (2 eq)</td>
<td>DMF</td>
<td>100</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (5 eq)</td>
<td>NMP</td>
<td>140</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (3.8 eq)</td>
<td>Dioxane</td>
<td>100</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>RT</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>100</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMF</td>
<td>100</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>26</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>DIPEA (1.5 eq)</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 8: Optimisation of the coupling reaction to form compound 8. ¹Reaction carried out in sealed tube; ᵇN,N'-dimethylcyclohexane-1,2-diamine; Method A: Buchwald-Hartwig conditions; Method B: Microwave (20 bar pressure limit) Buchwald-Hartwig conditions; Method C: Solvent/base conditions; Method D: Microwave (20 bar pressure limit) solvent/base conditions

The use of copper provides an alternative to palladium chemistry in the Buchwald-Hartwig coupling.¹⁶⁶,¹⁶⁷ The system of CuI and N,N'-dimethylcyclohexane-1,2-diamine¹⁶⁶ only afforded 3% product (Entry 20) and in light of the success with the palladium conditions, no further investigations were carried out.

Non-catalytic coupling conditions to 214 were also investigated (Entries 21-26). The use of DIPEA with NMP and dioxane¹⁰⁴ gave no product yield, and the use of a stronger base (NaH) with DMSO¹²⁹ only resulted in product when the reaction vessel was heated.

The optimised conditions of Pd₂(dba)₃, DavePhos, NaO'Bu and toluene was also applied to the repeated synthesis of 5 and 13 with yields of 14% and 31% observed respectively, compared to the original conditions of 26% and 18% respectively. Partially-optimised conditions (Pd(dba)₃, DavePhos, Cs₂CO₃ and dioxane) were also applied to 9 and 10 and yields of 14% (from 13%) and 24% (from 2%) were observed respectively.
The other amine that has been used in the 8-position is \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide and so some of the conditions used in the synthesis of 8 have been applied in the synthesis of 14 (Table 9).

Purification of 14 is extremely difficult, with co-elution with either of the starting materials often observed. This is possibly due to numerous \(\pi\)-stacking interactions, and separation was best achieved using toluene as eluent. This purification issue is a reason for the lower yields observed compared with 8. However a direct comparison should not be made as the chemistry of the sulfonamide differs from that of the aniline and therefore a more comprehensive screening of catalysts and ligands that specialise in aniline coupling reactions is recommended.

One of the optimum conditions for 8, \(Cs_2CO_3\) and dioxane, only gives small quantities of product 14 and this could be due to the relative solubilities of the amines used. The use of NaO\(t\)Bu and toluene does, however, give the desired product. Interestingly, the use of microwave irradiation does enhance the reaction yield from 22% to 47% and so further screening of conditions here is recommended.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Pd(dba)(_2) (1 mol%)</td>
<td>(t)Bu-XPhos (5 mol%)</td>
<td>(K_2CO_3) (1.2 eq)</td>
<td>(t)BuOH</td>
<td>Reflux</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Pd(dba)(_2) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>(Cs_2CO_3) (1.4)</td>
<td>Dioxane</td>
<td>Reflux</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>Pd(_2)(dba)(_3) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO(t)Bu (1.4 eq)</td>
<td>Toluene</td>
<td>Reflux</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Pd(_2)(dba)(_3) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO(t)Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10 min</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Pd(PPh(_3))(_4) (5 mol%)</td>
<td>-</td>
<td>NaO(t)Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10 min</td>
<td>23</td>
</tr>
</tbody>
</table>
Table 9: Optimisation of the coupling reaction to form compound 14. Method A: Buchwald-Hartwig conditions; Method B: Microwave (20 Bar pressure limit) Buchwald-Hartwig conditions; Method C: Solvent/base conditions; Method D: Microwave (20 bar pressure limit) solvent/base conditions

2.4.2 Displacement of Methyl Sulfone Moiety of Imidazo[1,2-a]pyrazines as an Alternative to Buchwald-Hartwig Cross Coupling Reaction

As discussed in Section 1.2.2.2.2 methyl sulfones have been used to attach a variety of nucleophiles onto imidazo[1,2-a]pyrazine rings. The methyl sulfone leaving group provides an alternative to the Buchwald-Hartwig coupling conditions and therefore provides an opportunity to introduce sulfonamides containing palladium sensitive moieties.

Scheme 44 outlines the synthesis of the heterocycle primed with the methyl sulfone. Nucleophilic displacement of the chloride is achieved in high yields using sodium thiomethoxide in DMSO. Oxidation to the sulfone is accomplished using mCPBA, although an excess is required to avoid partial oxidation to the sulfoxide (228).

Table 10 shows that displacement of 4-toluenesulfonamide occurs at RT, albeit in low yields. The use of NaH with either DMSO or DMF at 100 °C results in high yields of desired product (Entries 2 and 3), compared with the low yielding corresponding reaction with the chloro leaving group (Table 8, Entries 24 and 25). A very brief exploration in the use of microwave irradiation.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>B</td>
<td>Pd(dppf)Cl₂ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10 min</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>Et₃N (1.2 eq)</td>
<td>DMF</td>
<td>Reflux</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (3.8 eq)</td>
<td>Dioxane</td>
<td>100</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (5 eq)</td>
<td>NMP</td>
<td>140</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (2.5 eq)</td>
<td>n-BuOH</td>
<td>120</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>100</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMF</td>
<td>100</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>DIPEA (1.5 eq)</td>
<td>MeCN</td>
<td>160</td>
<td>10 min</td>
<td>0</td>
</tr>
</tbody>
</table>
to assist the nucleophilic displacement of the methyl sulfone showed no product observed (Entry 4). When switching the amine to \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide, no displacement was observed (Entries 5-7).

![Scheme 44: Synthesis of 227 and the ensuing methyl sulfone displacement reaction](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amine</th>
<th>Method</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-toluene sulfonamide</td>
<td>A</td>
<td>NaH</td>
<td>DMSO</td>
<td>RT</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>4-toluene sulfonamide</td>
<td>A</td>
<td>NaH</td>
<td>DMSO</td>
<td>100</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>4-toluene sulfonamide</td>
<td>A</td>
<td>NaH</td>
<td>DMF</td>
<td>100</td>
<td>20</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>4-toluene sulfonamide</td>
<td>B</td>
<td>DIPEA</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(N)-(4-aminophenyl)-4-methylbenzenesulfonamide</td>
<td>A</td>
<td>NaH</td>
<td>DMSO</td>
<td>RT</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(N)-(4-aminophenyl)-4-methylbenzenesulfonamide</td>
<td>A</td>
<td>NaH</td>
<td>DMSO</td>
<td>100</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>(N)-(4-aminophenyl)-4-methylbenzenesulfonamide</td>
<td>B</td>
<td>DIPEA</td>
<td>MeCN</td>
<td>160</td>
<td>10 min</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 10: Conditions used for methyl sulfone displacement of 227 using 4-toluene sulfonamide and \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide. Method A: Solvent/base; Method B: Microwave (20 bar pressure limit) solvent/base
A trimethylammonium leaving group was also explored as an alternative to the methyl sulfone,168 however, its synthesis proved to be difficult (Scheme 45). When DMF is used as a co-solvent and the reaction is carried out at RT the desired product is isolated in just 10% yield with dimethylamino (230) by-product forming as the major product.

\begin{center}
\begin{tikzpicture}
\node[draw,shape=rectangle] (A) at (0,0) {214};
\node[draw,shape=rectangle] (B) at (3,0) {229};
\node[draw,shape=rectangle] (C) at (6,0) {230};
\draw[->] (A) -- (B) node[midway,above] {4.2 N Me$_3$N MeOH Sealed Tube 16 h};
\end{tikzpicture}
\end{center}

Scheme 45: Synthesis of 229

\subsection*{2.4.3 Exploring the Synthesis of 2-Aryl Imidazo[1,2-\textit{a}]pyrazin-8-amine}

Substituting the chloro or methyl sulfone for an NH$_2$ group would provide the opportunity for the coupling reaction to be carried out with either the sulfonyl chloride or aryl chloride. Some initial studies were carried out to access 231 (Table 11), including the use of palladium catalyst with ligand (Entries 8 & 9),169 but low yields were obtained and work into the ensuing coupling step was not investigated due to time constraints.

It is evident that the desired product is easier to make when using 227 compared with 214. Heating in a sealed tube is required, and yields of 20 and 27% are observed (Entries 1-3). It should also be noted that the use of a non-nucleophilic solvent should be used, because when 7.0 M NH$_3$/MeOH was used, methoxide displacement occurred to give 232 as the major product (Figure 25).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 M NH₃/IPA</td>
<td>RT</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 M NH₃/IPA</td>
<td>100</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7 M NH₃/MeOH</td>
<td>80</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 M NH₃/EtOH</td>
<td>120</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>NH₄OH (Sat.Aq.)</td>
<td>90</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td></td>
<td></td>
<td>NH₃/IPA</td>
<td>90</td>
<td>16</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td></td>
<td></td>
<td>NH₄OAc</td>
<td>2 M NH₃/IPA</td>
<td>90</td>
<td>72</td>
<td>Trace</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Pd(dba)₂</td>
<td>DavePhos</td>
<td>LHMDS</td>
<td>Dioxane</td>
<td>100</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Pd(dba)₂</td>
<td>'Bu-XPhos</td>
<td>NHMDS</td>
<td>THF</td>
<td>65</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>LiNH₂</td>
<td>THF</td>
<td>Reflux</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 11: Variation in reaction conditions for formation of compound 231. Method A: Sealed tube with 227; Method B: Sealed tube with 214; Method C: Reflux with 214.

Figure 25: Major product isolated in the reaction between 227 and 7.0 M NH₃/MeOH
2.5 Evaluation of Target Compounds

2.5.1 Biochemical Assay

In order to determine whether a compound inhibits an enzyme, an assay is required to measure its activity. There are many different types of assays that can be used,170,171 including spectrophotometric, fluorometric, calorimetric and chemiluminescent. An ATPase assay kit from Innova Biosciences was used as a colorimetric (spectrophotometric) assay to determine the inhibition of the library of imidazo[1,2-\(a\)]pyrazines synthesised. A P\(_i\)ColorLockTM Gold reagent, developed for measuring activity of any P\(_i\)-generating enzymes in microplates, provides an alternative to more hazardous radioactive methods and other less sensitive colorimetric assays. It is an improved Malachite Green formulation that gives a stable end-point signal and is not prone to precipitation. By binding to free phosphate generated in the hydrolysis of ATP, a colour change from orange to green is observed (Figure 26).

Initially, ATP (125 µM), HP0525 (0.053 µM) and the potential inhibitors (500 µM) were incubated at 37°C in a 96-well plate. After 30 min, the reaction was quenched by the addition of the Gold Mix (P\(_i\)ColorLockTM Gold and Accelerator) followed by stabiliser after 2 min. After a further 30 min the plate was read at a wavelength of 620 nm and absorbance measured (the plate was read twice and an average recorded). By subtracting the absorbance of the negative control (protein added after the Gold Mix and so corrects for all free P\(_i\) not produced by enzyme during incubation), the percentage of absorbance relative to non-inhibited HP0525 (positive control) was calculated. Hits were then validated by repeating the procedure for inhibitor concentrations of 5, 50 and 500 µM, and selected compounds were assayed again at additional concentrations ranging between 0.5 and 200 µM to determine IC\(_{50}\) values.
IC$_{50}$ is used universally as an indication of how potent an inhibitor is and is defined as the concentration of a compound required to inhibit an enzyme by 50$\%$.170 By obtaining the IC$_{50}$ values for the imidazo[1,2-α]pyrazine compounds synthesised, comparisons can be made and conclusions can start to be drawn as to the structure activity relationship of the inhibitors.

To establish IC$_{50}$ values, the measuring points were optimized so that they cover the range to fit a sigmoidal dose response curve. Each compound was screened on 3 separate plates and a mean was calculated for each concentration. The data was normalised by subtracting the negative control (0$\%$ active) and relating it to the positive control (100$\%$ active). The software GraphPad Prism 5 was used to generate 2 dose-response curves and the IC$_{50}$ values were calculated from each.172

1. Log [inhibitor] vs. normalised response (Standard Slope)
2. Log [inhibitor] vs. normalised response (Variable Slope)

2.5.1.1 Biochemical Assay Data

The hit validation data and IC$_{50}$ valuesb for the imidazo[1,2-α]pyrazine compounds synthesised are illustrated in Table 12 and Table 13. Selected dose response curves are illustrated in Figure 71 (Appendix, Section 7.1).

Looking at the 500 μM column for the hit validation results, it is evident there are high values even though the compound clearly inhibits at a lower concentration. This is due to precipitation of the compound at the high concentration and as a result is adsorbing the visible light at 620 nm.

The data clearly shows that all of the imidazo[1,2-α]pyrazine compounds are inhibitors of HP0525, with some more potent than others. From looking at the IC$_{50}$, the most potent compound is 14 with an IC$_{50}$ of 7 μM (Table 13, Entry 1).

b IC$_{50}$ experiments carried out by Dr K. Wallden
<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>R2</th>
<th>R3</th>
<th>Hit Validation % Absorbance<sup>a</sup></th>
<th>IC<sub>50</sub> (µM)<sup>b</sup></th>
<th>cLogP<sup>c</sup></th>
<th>LogS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 µM</td>
<td>50 µM</td>
<td>5 µM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td>H</td>
<td>83 (8)</td>
<td>106 (7)</td>
<td>98 (8)</td>
<td>109 (88/131)</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td></td>
<td>H</td>
<td>36 (11)</td>
<td>22 (2)</td>
<td>94 (1)</td>
<td>82 (82/82)</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
<td>H</td>
<td>61 (35)</td>
<td>88 (1)</td>
<td>93 (2)</td>
<td>163 (167/158)</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td></td>
<td>H</td>
<td>78 (18)</td>
<td>95 (2)</td>
<td>98 (1)</td>
<td>134 (133/135)</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
<td>H</td>
<td>96 (5)</td>
<td>76 (2)</td>
<td>108 (4)</td>
<td>77 (77/77)</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
<td>H</td>
<td>69 (48)</td>
<td>95 (2)</td>
<td>113 (1)</td>
<td>97 (124/70)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td>H</td>
<td>37 (3)</td>
<td>102 (4)</td>
<td>112 (4)</td>
<td>135 (136/134)</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td></td>
<td>H</td>
<td>-4 (0)</td>
<td>76 (3)</td>
<td>100 (1)</td>
<td>146 (147/146)</td>
</tr>
</tbody>
</table>

Table 12: Hit validation screen and IC₅₀ values for 4-methyl-N-(aryl-imidazo[1,2-<i>a</i>]-pyrazin-8-yl)benzenesulfonamides. ^a Error values in brackets; ^b Value given is an average of two methods used. The individual values are given in brackets (standard slope first, variable slope second). Where a value is underlined, this is the preferred method as suggested by the program GraphPad Prism 5; ^ccLogP and LogS values determined using AlogP 2.1 from the virtual computational chemistry laboratory¹⁷².
Table 13: Hit validation screen and IC$_{50}$ values for 4-methyl-N-(4-(aryl-imidazo[1,2-\(a\)]pyrazin-8-ylamino)phenyl)benzenesulfonamides. a Error values in brackets; b Value given is an average of two methods used. The individual values are given in brackets (standard slope first, variable slope second). Where a value is underlined, this is the preferred method as suggested by the program GraphPad Prism 5; c cLog\(P\) and Log\(S\) values determined using AlogP 2.1 from the virtual computational chemistry laboratory172

From looking at the data, some concluding points can be made. There does not seem to be a preference for the position of the aromatic moiety, with both 2- and 3-regioisomers giving similar results. Compounds with a larger aromatic moiety seem to be more potent, as do the compounds with the aniline bound in the 8-position.
2.5.1.2 Compound 14 is a competitive inhibitor of ATP
c
The first observation from the dose-response curves generated (Figure 27) is that the compounds synthesised are HP0525 antagonists in that they stop the hydrolysis of ATP, inhibiting the signal produced by the HP0525-ATP coupling.

![Dose response curve for 14](image)

Figure 27: Dose response curve for 14

Inhibitors can either be reversible or irreversible and binding can either occur at the substrate active site (nucleotide binding site in this case) or at an allosteric site.170,171 Since there are no apparent allosteric sites, and no covalent bonds can form between the inhibitor and enzyme, the imidazo[1,2-\textit{a}]pyrazine series are reversible inhibitors.

Unfortunately all attempts to co-crystallise the lead compound 14 with HP0525 have proved unsuccessful. Therefore, in order to rely on computational docking to study interactions within the active site and for the project to proceed, it was important to ascertain whether or not the imidazo[1,2-\textit{a}]pyrazine compounds inhibit competitively, non-competitively or uncompetitively.

By using Michaelis-Menten kinetics,173 and measuring the reaction rate of ATP hydrolysis with respect to ATP concentration (0-500 µM) with and without (positive control) inhibitor 14 (10 µM), an indication of the type of inhibition can be derived (Figure 28).

The Michaelis Constant (\(K_m\)) indicates the substrate concentration at which the reaction rate is half its maximum value (\(\frac{1}{2}V_{\text{max}}\)). The maximal rate (\(V_{\text{max}}\)) represents the maximum rate achieved by the system at maximum (saturating) concentrations. The kinetic data of 14 is characteristic of competitive inhibitors whereby \(K_m\) is increased and \(V_{\text{max}}\) remains approximately the same.170,171

4 Experiments Carried out by Dr K. Wallden
With non-competitive inhibitors, K_m stays the same and V_{max} decreases; and for uncompetitive inhibitors both K_m and V_{max} decrease. Therefore 14 is a competitive inhibitor of ATP, and it has been assumed that the remaining imidazo[1,2-a]pyrazine compounds are also competitive inhibitors.

<table>
<thead>
<tr>
<th>V_{\text{max}} (pmole/s)</th>
<th>K_m (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Inhibitor</td>
<td>1.947</td>
</tr>
<tr>
<td>With 14</td>
<td>2.001</td>
</tr>
</tbody>
</table>

Figure 28: Michaelis-Menten plot for rate of ATP hydrolysis with and without 14, with relative V_{max} and K_m values

2.5.2 Molecular Modelling
An important tool in developing lead drug compounds is through studying their interactions with the target in question. One method of visualising the position of a molecule within an enzyme active site is through generating crystal structures of the protein soaked with the compound, and then using various modelling programs to view the data. In the absence of a co-crystallisation, but with the aid of the enzyme crystal structure, computational docking programs can be used as an alternative technique.

Docking is an automated computer algorithm that determines how a compound may bind in the active site of the protein. Through scanning the different conformations and orientations the algorithm finds the lowest-energy conformation and hence suggests the favourable location and orientation of the substrate in the active site.
It is the one of the most heavily used tool in computational drug design174 as it can offer a fast, accurate method for predicting whether a compound will be a good inhibitor of the protein in question. The protein studied in this work is the VirB11 ATPase HP0525 and currently there are five protein structures of HP0525 available from the Protein Data Bank:175

- 1NLZ – apo-HP0525 (hexamer, no substrate);
- 1NLY – ATPγS-HP0525 (dimer with non hydrolysable ATPγS);
- 1G6O – ADP-HP0525 (dimer with ADP);
- 1OPX – Sulfate-HP0525 (dimer with sulfate);
- 2PT7 – HP0525 with inhibitory regulator HP1451.

Structural studies showed the active site of ADP-HP0525 and ATPγS-HP0525 to be very similar,d whereas the conformation of the apo form is variable. Therefore, for docking purposes, any of the four chains (two from ADP-HP0525 and two from ATPγS-HP0525) could be used.

The protein file chosen to run the docking experiments was ADP-HP0525. All heteroatoms (molecules that are not part of the protein, such as PEG chains and H$_2$O molecules), and the crystal ADP were removed from the file prior to docking.

The docking program AutoDock was used to carry out the docking, and it is designed to predict how small molecules bind to a receptor of known 3D structure. There are currently 2 generations of software: AutoDock 4176 and AutoDock Vina.177 AutoDock 4 was initially used but it has its disadvantages: it takes a long time to set up the docking, the set-up used also requires LINUX to run the docking, and the actual docking was very time-consuming.

Therefore the use of AutoDock Vina was investigated. It achieves significant improvements in the average accuracy of the binding mode predictions and is also orders of magnitude faster than AutoDock 4 (8.41 min compared with 521.85 min per complex).177 Initial comparisons of the data of the imidazo[1,2-α]pyrazines with AutoDock 4 showed similar binding modes, and therefore all docking presented herein is generated from Vina.

d Experiments carried out by Dr Paul Gane; Data not shown.
In order to run Vina the following information is required:

- Target Protein – the pdb file needs to be converted from .pdb to .pdbqt (AutoDock Tools, ADT,176 used to perform this conversion);

- Ligand to be docked – the file needs to be in .pdbqt format (ADT used to perform this conversion);

- Docking File: this contains the protein and ligand files and search parameters, including the target grid for Docking. This is a grid box drawn around the nucleotide binding site which encompasses all residues involved in binding, and directs the docking of the ligands to this site. Coordinates used were the same as those used for AutoDock 4 (See Section 6.4 for details).

AutoDock Vina makes use of the windows command prompt (cmd) in order run, and will dock each ligand separately. Runs cannot be queued and, much like AutoDock 4, a separate docking file needs to be written for each ligand. It is sufficient to use if investigating a small number of ligands, but if screening of a library of ligands was desired, the process would be very time consuming. Therefore a program called PyRx178 that runs using Vina was investigated.

Using this program, you can input all the different ligand files (in .pdb or .mol2 format) and it will automatically convert them to .pdbqt format, and run the docking into the specified target protein. Results will then be outputted in an excel format as well as individual ligand .pdbqt formats for analysis. The only disadvantage of using PyRx is that, at the time of screening, you cannot input the coordinates for the grid box. Each time you run the program, you have to manually draw the box in the area you want docking to be directed which affects the reproducibility. In the majority of the cases studied, comparisons of the docking poses showed only small differences between the two methods.

Therefore, in the work carried out herein, all ligands were docked, as part of a library, using PyRx, and selected compounds were also screened using the cmd function. All images generated are the lowest energy conformation from cmd, unless stated otherwise and are visualised using PyMOL.179
2.5.2.1 Results of Molecular Modelling

Figure 29 shows the lead compound 14 in the active site of ATPγS-HP0525, illustrating its orientation with respect to the crystal ligand ATPγS. As can be seen, the naphthalene moiety would appear to occupy the purine region, the core imidazo[1,2-α]pyrazine, the ribose region and the aniline-sulfonamide moiety, the phosphate region.

![Image of 14 and ATPγS (Yellow) in the crystal structure of ATPγS-HP0525. PDB: 1NLY. Image generated using PyMOL](image)

From studying the orientation and the H-bonding interactions of 14 (Figure 30), it is possible to suggest alternative compounds to synthesise. The sulfone moiety interacts with Gly-181, Lys-184 and Thr-185, all of which are involved with the binding of the phosphates of in ADP and ATPγS. Therefore by introducing bioisosteres of phosphates in place of the sulfonamide moiety in position 8 enhanced activities could be achieved. In addition by introducing heteroatoms into the naphthalene ring of 14, and in doing so, increasing the similarity with purine, increased binding could be observed.

The purine in ADP and ATPγS interacts via π-stacking with Tyr-140 within the nucleotide binding site. It is also evident that in the purine pocket there are numerous other hydrophobic residues where the naphthalene moiety of 14 could also interact. Figure 31 illustrates that there is
further room within this pocket for the aromatic moiety to extend. Therefore, alternative compounds to synthesise could include bi-aryl or even tri-aryl moieties.

Figure 30: Image showing H-bonding interactions of 14 within the nucleotide binding site of ATP\(\gamma\)S-HP0525. PDB: 1NLY. Image generated using PyMOL.

Investigating the surface of the nucleotide binding site with the docked 14 (Figure 31) a potential area for extension of the imidazo[1,2-\(a\)]pyrazine core could be in either the 5- or 6- positions (‘R5/6 position’). Addition of a small moiety could improve binding and therefore potency of the inhibitor.

Figure 31: Images indicating the surface of the nucleotide binding site with 14 in the crystal structure of ATP\(\gamma\)S-HP0525. PDB: 1NLY. Images generated using PyMOL.
It is evident that there is not too much difference between the activities of the 2- and 3-aryl regioisomers. Comparing 14 and 12 (naphthalene regioisomers) very similar orientations within the nucleotide binding site are observed (Figure 32). The sulfonamide of 14 aligns with the β-phosphate of ATPγS and that of 12 aligns with the γ-phosphate and this strong binding would be responsible for the similar IC₅₀’s observed.

Figure 32: Overlay of 14 (Red) and 12 (Blue) with ATPγS (Yellow) in ATPγS-HP0525. PDB: 1NLY. Image generated using PyMOL.

It is also apparent that the larger N-(4-aminophenyl)-4-methylbenzenesulfonamide in the 8-position seems to be more potent than where the sulfonamide is directly bound to the heterocycle. Figure 33 and Figure 34 illustrate the difference in binding modes between 8 and 14; and 4 and 12 respectively. As can be seen, compounds where the sulfonamide is directly bound adopt a conformation where the sulfonamide points away from the phosphate region and out into the extra pocket in the ‘R5/6 position’ of 14. This would lead to a difference in binding affinity and therefore potency.

This orientation is also observed with other analogues where the sulfonamide is bound directly to the imidazo[1,2-α]pyrazine. There are poses generated, however, where the sulfonamide does point into the phosphate pocket. It would be necessary to synthesise longer-sulfonamide analogues of 9, 10, 11, 5, 6 and 7 to further enhance the above claim. Due to the relative activities of these compounds, it would be preferential to start with 9.
Figure 33: Overlay of 8 and 14 (Red) with ATPγS (Yellow) in ATPγS-HP0525. PDB: 1NLY. (a) Lowest energy pose of 8 from cmd (b) 5th lowest energy pose of 8 from cmd. Image generated using PyMOL.

Figure 34: Overlay of 4 and 12 (Blue) with ATPγS (Yellow) in ATPγS-HP0525. PDB: 1NLY. (a) Lowest energy pose of 4 from cmd (b) 2nd lowest energy pose of 4 from cmd. Image generated using PyMOL.
2.6 Concluding Remarks to Chapter

This chapter has illustrated the synthesis of the target imidazo[1,2-α]pyrazines, with two synthetic routes employed to access both 2- and 3-regioisomers. Optimisation of both the condensation reaction and the Buchwald-Hartwig coupling reaction were carried out and yields have been improved, especially for the coupling of 8-chloroimidazo[1,2-α]pyrazines and 4-toluene sulfonamide. Further investigations into the coupling with N-(4-aminophenyl)-4-methylbenzenesulfonamide would be required given that this amine behaves significantly different to the sulfonamide.

Biological evaluation of the compounds synthesised have shown IC₅₀’s to be in the region of 7-150 µM, and the lead compound, 14, has also been shown to be a competitive inhibitors of ATP. *In silico* studies have prompted the design of alternative structures with the aim of improving potency (Figure 35). Some of the suggestions will be further evaluated in Chapter 3.

Figure 35: Summary of SAR of target imidazo[1,2-α]pyrazines, and suggestions to improve potency.

Black indicates current observations, Red indicates suggestions made
There are, however, limitations of the imidazo[1,2-\(a\)]pyrazine compounds, most notably, their solubility. As a measure of solubility, Table 12 and Table 13 indicate the predicted cLog\(P\) values of the imidazo[1,2-\(a\)]pyrazines to be between 3.1 and 5.9 and the predicted Log\(S\) values between -5.4 and -7.6 indicating the hydrophobic nature and poor aqueous solubility of these compounds.

Therefore it is envisaged that improving the solubility of these compounds would not only enhance pharmacokinetic properties but also the likelihood of achieving co-crystallisation with the enzyme. In doing so, this would provide the binding mode of the inhibitors, and aid with drug design efforts.
Chapter 3: Results & Discussion: 2nd Generation Compounds

3.1 Imidazo[1,2-\textit{a}]pyrazine Analogues

From studying the \textit{in silico} interactions of the lead compound, 14 (Section 2.5.2.1) within the nucleotide binding site, a 2nd generation of compounds was designed. Two areas were investigated (Figure 36) with the aim of improving potency and solubility and also to developing an understanding of the SAR of the imidazo[1,2-\textit{a}]pyrazine inhibitors.

![Figure 36: Compound 14, highlighting the two areas that were investigated in order to improve potency and develop an understanding of the SAR of the imidazo[1,2-\textit{a}]pyrazine inhibitors](image)

Variations at position 8 investigated the importance of the sulfonamide and the presence of both aromatic rings. Removal of either of these rings would also potentially improve the solubility of the inhibitor. The amino linker was also investigated by changing to an ether, and in doing so, altering the 3D structure of the compound as well as its H-bonding/accepting nature.

Since the naphthalene moiety is predicted to occupy the purine region of the nucleotide binding site, it was envisaged that introducing heteroatoms could improve potency. In addition, the importance of having a group in this position, and ascertaining whether larger bi-aryl systems are desired was also investigated.
3.1.1 Variations at Position 8

With the sulfonamide occupying the phosphate binding region of the nucleotide binding site, it is also important to look at alternative moieties to this group in the 8-position. Firstly the synthesis of 233 will give an indication of the importance the sulfonamide plays in the inhibitor activity. As can be seen from Table 14, 233 can only be obtained, albeit in low yields, using palladium catalysed Buchwald-Hartwig conditions. A maximum yield of 27% is observed using the optimised conditions, which can be further increased to 32% under microwave irradiation.

![Chemical Structure](image)

Table 14: Reaction conditions used for the formation of 233. *1.4 eq diaminobenzene used; Method A: Buchwald-Hartwig conditions with 214; Method B: Microwave Buchwald-Hartwig conditions with 214; Method C: Microwave solvent and base only with 214; Method D: Microwave solvent and base only with 227

<table>
<thead>
<tr>
<th>Exp</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Pd(dba)$_2$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs$_2$CO$_3$ (1.4 eq)</td>
<td>Dioxane</td>
<td>Reflux</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Pd$_2$(dba)$_3$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>Reflux</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Pd$_2$(dba)$_3$ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Pd(PPh$_3$)$_4$ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Pd(dppf)Cl$_2$ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>Toluene</td>
<td>160</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (1.5 eq)</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>7a</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>DIPEA (2 eq)</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 14: Reaction conditions used for the formation of 233. *1.4 eq diaminobenzene used; Method A: Buchwald-Hartwig conditions with 214; Method B: Microwave Buchwald-Hartwig conditions with 214; Method C: Microwave solvent and base only with 214; Method D: Microwave solvent and base only with 227
Replacing the tosyl group with a mesyl group will inform us of the importance of the terminal toluoyl moiety. Starting with a 5-fold excess of 1,4-diaminobenzene, mono-mesylation using mesyl chloride is achieved in high yields (Scheme 46). Extraction with EtOAc is required due to compound solubility (a yield of 14% is observed when extracting with CH₂Cl₂). 237 can also be obtained via mono-Boc protection of the di-amine, protecting the remaining amine with mesyl chloride and deprotection of the Boc group under acidic conditions. However, this longer route is not necessary in the synthesis.

![Scheme 46: Synthesis of compound 23](image)

The next moiety to investigate is the amine that links the sulfonamide moiety to the imidazo[1,2-a]pyrazine. Scheme 47 and Scheme 48 highlight the synthesis of ether (241) and benzylamine (244) linked heterocycles. 241 can be accessed by tosylating 4-aminophenol in pyridine¹⁸⁰ and coupling to the core heterocycle using 227, all in good yields. Subjecting 4-(aminomethyl)aniline to the optimised Buchwald-Hartwig coupling conditions gives compound 243, the regioselectivity of which was confirmed by 2D-NMR (HMBC coupling between the benzyl CH₂ protons and the quaternary C₈ carbon). Tosylation in pyridine proceeded, albeit in lower yields to before.
It is also recommended to synthesise the thioether and methylene linked heterocycles to obtain a more complete picture of the SAR. The final area investigated is importance of the phenyl closest to the core heterocycle. By replacing this moiety with an alkyl chain, not only could the solubility of the inhibitor be enhanced, but it could be easier to access synthetically (Table 15).
Table 15: The synthesis of 247 and 248. Method A: 227, Amine (2 eq), DIPEA (2 eq), DMF, 100 °C, 16 h; Method B: 214, Amine (1.2 eq), Pd_{2}(dba)$_{3}$ (1 mol%), DavePhos (3 mol%), NaO'Bu (1.4 eq), PhMe, Reflux, 16 h; Method C: 214, Amine (1.5 eq), DIPEA (2.5 eq), nBuOH, 80 °C, 16 h

<table>
<thead>
<tr>
<th>Exp</th>
<th>Method</th>
<th>n</th>
<th>X</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>SO$_2$Me</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2</td>
<td>Cl</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2</td>
<td>Cl</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>3</td>
<td>SO$_2$Me</td>
<td>33</td>
</tr>
</tbody>
</table>

Compounds 247 and 248 can be synthesised using either Pd-catalysed Buchwald-Hartwig conditions (Method B) or solvent/base conditions with either 214 (Method C) or 227 (Method A). It is advised to use method B or C, even though lower yields are observed, as the reaction is easier to purify compared with Method A, where there is poor separation between the product and 227.

Entry 3 (Method C) indicates that the primary amine of 245 can displace the chloro in 214 using DIPEA as base, something that cannot be achieved when reacting a sulfonamide or aniline. It is therefore not surprising that the following reactivity is observed for the chloro-heterocycle:

Primary Amine > Sulfonamide > Aniline

Looking at Table 8 (Section 2.4.1), it can be seen that a strong base (NaH) is required for the reaction between 214 and a sulfonamide, and therefore increasing the strength of the DIPEA base here could improve the reaction yield. Applying NaH and DMF to entries 1 and 4, would provide the opportunity to study and compare the reactivity of the methyl sulphone imidazo[1,2-a]pyrazines.
In addition, it was also decided to synthesise the sulfonamide-free PEGylated imidazo[1,2-a]pyrazine 252 as illustrated in Scheme 49. Silyl protection of 2-(2-aminoethoxy)ethanol181 was achieved in high yield and the ensuing Buchwald-Hartwig coupling and silyl deprotection182 also proceeded in good yields.

![Scheme 49: Synthesis of PEGylated imidazo[1,2-a]pyrazine 252](image)

3.1.2 Variations with the Aromatic Group in Position 2

According to the \textit{in silico} data, the naphthalene moiety of 14 occupies the purine region of the nucleotide binding site. Therefore by introducing heteroatoms into the aromatic ring, it was envisaged that extra H-bonding interactions could enhance the activity. Scheme 50 outlines the synthesis of the quinoxaline derivative of 14 and relies on the same chemistry employed previously. The aryl ketone can be accessed \textit{via} homolytic acylation of quinoxaline with acyl radicals, which are produced from the silver catalysed decarboxylation of α-keto acids by persulfate.183 When the reaction was carried out over 2.5 h, the yield obtained is 43%; leaving for 16 h increases it to just 47%. Bromination and condensation proceeds in good yields, but the Buchwald-Hartwig coupling was low yielding. Applying the optimised conditions discussed in Section 2.4.1 should improve the yield.
The quinoline equivalent, 258 (Scheme 50), has also been synthesised within the group, using the same method described above. In order to establish an SAR of these inhibitors, it is also vital to establish the importance of the aromatic moiety in the 2- or 3- positions. Scheme 51 outlines the synthesis of 260, a derivative of compound 14 with no aromatic group present. Using the previously described optimised conditions, 260 can be obtained in good yields. The results of the \textit{in vitro} testing of these compounds are given in Section 3.3.1.

The intermediate 259 could also act as a starting material in an alternative synthesis of 3-aryl imidazo[1,2-\textit{a}]pyrazines. Bromination using NBS should afford the 3-bromo-8-chloro substituted heterocycle, providing the opportunity for carrying out a Suzuki coupling reaction at the 3-position.

e Synthesis carried out by H.Koss
3.2 Maybridge Analogues

In addition to the imidazo[1,2-α]pyrazines originally synthesised and tested (Chapter 2), 500 fragments from a Maybridge chemical library were screened utilising the same biochemical assay as discussed in section 2.5.1. As with the imidazo[1,2-α]pyrazine compounds initial screening at 500 µM was followed by hit validation at 5, 50 and 500 µM giving rise to 5 fragments which displayed activity at 50 µM, and are illustrated in Figure 37.

Establishing fragments that bind to a target is used in fragment-based drug discovery, FBDD.184 It is the process of identifying small molecules, which may only weakly bind to the biological
target, and growing them, or combining them, to create a larger compound with a higher binding affinity.

The process relies on obtaining an X-ray crystal structure of the fragment with the enzyme active site. Chemical intuition can then be used to grow a fragment in order to increase the number of key interactions, or to link fragments, that are found in different binding pockets, together. Unfortunately all attempts to co-crystallise the hit fragments with HP0525f were unsuccessful and so this approach could not be utilised.

An alternative is to use NMR spectroscopy and by observing shifts in any of the amide signals, the point of binding can be determined. This method, however, relies on solving the NMR structure of the enzyme, which to date has not been completed. Therefore an alternative method was used to try and improve the potency of these fragments.

3.2.1 Maybridge Fragment Substructure Search

Running a sub-structure search of the lead fragment \textbf{262} using the Reaxys online chemical search engine,185 resulted in a list of compounds containing the \textbf{262} moiety. These compounds, together with suggestions made,g were then docked using the docking program Fred.h Compounds that use \textbf{262} as a starting material were chosen for synthesis and these will now be discussed.

Owing to the commercial cost of \textbf{262}, it was decided to carry out its synthesis on a larger scale so that the further compounds could be synthesised. Scheme 52 shows the Suzuki coupling reaction between pyridine-3-ylboronic acid and 2-bromoaniline proceeds with moderate yields.186 However, when carrying out the reaction with 2-aminochloropyridines the yield was very low.
Scheme 52: Synthesis of 262 and 2 heteroaromatic derivatives

The synthesis for introducing a carbamate moiety into the fragment is illustrated in Scheme 53 and comprises reacting 262 with methyl chloroformate. The isolated yield quoted was low due to purification difficulties in separating the product from the starting material. Compound 271 can be synthesised by displacing the fluorine in 4-bromo-1-fluoro-2-nitrobenzene with 262, followed by reduction of the nitro group under standard hydrogenation conditions (Scheme 54). The reduction was low yielding owing to the formation of the de-brominated species as a side product.
Scheme 55 illustrates the synthesis of the fluorene compounds 274 and 277. Starting from either the 1- or 4-carboxylic acid (272 or 275), the acyl chloride was formed \textit{in situ} using thionyl chloride,189 which is then used, as crude, in the reaction with 262.190

![Scheme 55: Synthesis of fluorene compounds 274 and 277](image)

The final Maybridge compound synthesised was the mesylated version of 262 (Scheme 56). All attempts resulted in no formation of 278, but instead 82% conversion to the di-mesylated species 279. Monitoring the reaction by TLC showed that the undesired product was formed after just 5 minutes with no other signs of desired product.

![Scheme 56: Mesylation of 262](image)
It was also decided to incorporate two of the Maybridge fragments into the imidazo[1,2-\(a \)]pyrazine inhibitors. Scheme 57 and Scheme 58 show the synthesis of \(280 \) (using \(262 \)) and \(281 \) (using \(264 \)) respectively using previously optimised Buchwald-Hartwig conditions.

Scheme 57: Synthesis of 280

Scheme 58: Synthesis of 281
3.3 Compound Analysis

Each of the 2nd generation compounds synthesised were screened employing the same colorimetric assay as used in Section 2.5.1. Selected dose response curves are illustrated in Figure 71 (Appendix, Section 7.1).

3.3.1 Imidazo[1,2-a]pyrazines

Table 16 indicates the IC₅₀ values when varying the group in the 8-position of 14. Firstly it is evident that inhibition is diminished when removing either the 4-toluenesulfonamide or N-(4-aminophenyl)-4-methylbenzenesulfonamide groups, indicating their importance in the activity (Entries 2-5). Removing the aniline (8, Entry 7) results in a drop in inhibition indicating desired position of the sulfonamide moiety should be further away from the core heterocycle.

![Chemical structure of compound](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>R</th>
<th>IC₅₀ (µM)ᵃ</th>
<th>cLogPᵇ</th>
<th>LogS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14 (Lead)</td>
<td></td>
<td>7 (7/7)</td>
<td>5.9</td>
<td>-7.6</td>
</tr>
<tr>
<td>2</td>
<td>214</td>
<td>Cl</td>
<td>8974 (141/17807)</td>
<td>3.9</td>
<td>-5.5</td>
</tr>
<tr>
<td>3</td>
<td>231</td>
<td>NH₂</td>
<td>1703 (308/3098)</td>
<td>3.2</td>
<td>-5.2</td>
</tr>
<tr>
<td>4</td>
<td>227</td>
<td>S</td>
<td>315 (168/462)</td>
<td>2.7</td>
<td>-5.1</td>
</tr>
<tr>
<td>5</td>
<td>228</td>
<td>S</td>
<td>183 (213/153)</td>
<td>2.7</td>
<td>-4.1</td>
</tr>
<tr>
<td>6</td>
<td>252</td>
<td>HN</td>
<td>107 (85/130)</td>
<td>3.7</td>
<td>-5.2</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>S</td>
<td>109 (88/131)</td>
<td>4.5</td>
<td>-6.7</td>
</tr>
</tbody>
</table>
Interestingly, compound 252 (Entry 6) has a similar potency to 8, indicating that the benzene sulfonamide moiety is perhaps not required. In addition, compound 233 (Entry 8) displays good activity and when comparing to the lead compound 14, it suggests the sulfonamide moiety is not a vital component.

Replacing the tosyl with a mesyl reduced the inhibition (238, Entry 9), suggesting presence of the terminal toluoyl moiety is desired but not vital, whilst, solubility calculations suggest 238 to be more soluble. Changing the type of linker from amine to ether (241) results in a very similar activity, but inserting methylene (244) reduces it. Figure 38 shows the docking images of these three compounds, all following the same profile as 14, with the extended position of the
sulfonamide in 244 possibly accounting for the reduced activity. According to predictions, neither compounds show any improvement in solubility.

Interestingly, replacing the initial phenyl for an ethyl chain (247, Entry 12) maintains the potency of the inhibitor, showing that it is not a requirement and provides an alternative lead compound. However, when a propyl chain is used, the inhibition drops considerably. Figure 39 shows that 247 and 248 have identical conformations and both align with 14. The sulfonamide in 248 is further away however, which could result in lower binding and therefore lower potency. Further investigation into chain length would be required for future work. It would also be interesting to see whether potency is maintained with 247 if using a terminal mesyl as opposed to tosyl. In
addition, predicted solubility calculations suggest 247 has more favourable pharmacokinetics compared with 14.

Table 17 shows the IC$_{50}$ values for analogues of the lead compound 14 comparing substituents in the 2-position.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>R</th>
<th>IC$_{50}$ (µM)a</th>
<th>cLogPb</th>
<th>LogS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14 (Lead)</td>
<td></td>
<td>7 (7/7)</td>
<td>5.9</td>
<td>-7.6</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>108 (88/117)</td>
<td>4.6</td>
<td>-7.6</td>
</tr>
<tr>
<td>3</td>
<td>257</td>
<td></td>
<td>28 (29/28)</td>
<td>4.4</td>
<td>-6.2</td>
</tr>
<tr>
<td>4</td>
<td>258c</td>
<td></td>
<td>67 (65/69)</td>
<td>5.2</td>
<td>-6.9</td>
</tr>
<tr>
<td>5</td>
<td>282</td>
<td></td>
<td>19 (18/19)</td>
<td>6.3</td>
<td>-8.1</td>
</tr>
<tr>
<td>6</td>
<td>260</td>
<td></td>
<td>1389 (739/1941)</td>
<td>3.3</td>
<td>-5.3</td>
</tr>
</tbody>
</table>

Table 17: IC$_{50}$ Data comparing substituents in the 2-position of lead compound 14. a Value given is an average of two methods used. The individual values are given in brackets (standard slope first, variable slope second). Where a value is underlined, this is the method suggested by the program GraphPad Prism 5.b cLogP and LogS values determined using AlogP 2.1 from the virtual computational chemistry laboratory;c c Sample contains impurities
Firstly it is evident that a substituent needs to be present in this position, since when it is absent (260, Entry 6), there is little inhibition observed. Introducing nitrogen atoms into the naphthalene ring (quinoxaline 257 and quinoline 258), whilst improving the predicted solubility, does not improve the inhibition. Figure 40 shows that 257 and 258 align in very similar conformations, but slightly different to 14, meaning that the sulfonamide now lies close to the γ-phosphate of ATPγS, as with 12, perhaps leading to slightly lower activity.

Figure 40: *In silico* docking image of 257, 258, and 14 (Red) and ATPγS (Yellow) in ATPγS-HP0525. PDB: 1NLY. Image generated using PyMOL

1 Synthesised by H.Koss
As mentioned in Section 2.6, it is advised to synthesise further analogues, investigating bi-aryl systems in the 2-position, as these would possibly be able to further extend into and interact with the hydrophobic pocket containing possible pi-stacking interactions. Also, substituting for non-aromatic cyclic systems would clarify if an aromatic group is required in this position.

Compound 282\(^{1}\) (Entry 5) can be compared with 9 (Section 2.5.1.1, Table 12, Entry 2) as it contains the same phenoxy phenyl substituent in the 2-position (Figure 41). The lower IC\(_{50}\) value here further enhances the original claim that imidazo[1,2-\(a\)]pyrazines containing the longer \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide are more potent than those directly bound to the sulfonamide.

![Structures of compounds 9 and 282](image)

Figure 41: Structures of compounds 9 and 282

Figure 42 shows the different poses of 282 generated using both the cmd format and PyRx program of AutoDock Vina. As can be seen, the phenoxy phenyl moiety is located in the purine pocket and the sulfonamide points towards the phosphate. The lowest energy conformations of cmd and PyRx (shown in red and blue respectively) have similar conformations, but slightly different alignments, which is an example where there are discrepancies between the two formats. Poses coloured yellow and blue (2\(^{nd}\) lowest energy conformation from cmd and lowest energy from PyRx respectively) show a similar binding mode to that of 14.

\(^{1}\) Synthesised by H.Koss
As previously mentioned, compounds, such as 9, where the sulfonamide is bound directly to the imidazo[1,2-\(a\)]pyrazine, the orientation of the lowest binding mode is such that the sulfonamide moiety points away from the phosphate region, and into the ‘R5/6 position’ (Figure 43, (a)). There are binding modes where the components of the compound align with the nucleotide and 14 (Figure 43 (b)) and these differences could correspond with the differences in potencies observed.
3.3.2 Maybridge Compounds

Each of the Maybridge fragment analogues synthesised were initially screened at 250, 50 and 5
µM with IC₅₀ determined on the hits produced (Table 18).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Structure</th>
<th>% Absorbance</th>
<th>IC₅₀/µM<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>262</td>
<td></td>
<td>95 89 102</td>
<td>332 (503/161)</td>
</tr>
<tr>
<td>2</td>
<td>283</td>
<td></td>
<td>102 115 118</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>267</td>
<td></td>
<td>65 95 97</td>
<td>357 (283/431)</td>
</tr>
<tr>
<td>4</td>
<td>268</td>
<td></td>
<td>78 70 87</td>
<td>497 (330/665)</td>
</tr>
<tr>
<td>5</td>
<td>269</td>
<td></td>
<td>85 91 86</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>274</td>
<td></td>
<td>75 92 86</td>
<td>11 (11/11)</td>
</tr>
<tr>
<td>7</td>
<td>277</td>
<td></td>
<td>63 86 96</td>
<td>117 (77/156)</td>
</tr>
<tr>
<td>8</td>
<td>271</td>
<td></td>
<td>90 100 93</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 18: Initial screening and selected IC50 values of the Maybridge compounds synthesised. * Value given is an average of two methods used. The individual values are given in brackets (standard slope first, variable slope second). Where a value is underlined, this is the method suggested by the program GraphPad Prism 5

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Structure</th>
<th>% Absorbance 250 µM</th>
<th>% Absorbance 50 µM</th>
<th>% Absorbance 5 µM</th>
<th>IC50/µM*a</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>280</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 (4/3)</td>
</tr>
<tr>
<td>10</td>
<td>281</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>92 (66/118)</td>
</tr>
</tbody>
</table>

None of the ‘simple’ Maybridge fragment analogues showed any improved IC50 activities (Entries 2-5); however, when attaching a fluorene moiety, the inhibition dramatically improved (Entries 6 & 7). Interestingly, there is a difference in the activity when looking at the position of attachment of the fluorene. This can be attributed to the different lowest energy poses of 274 and 277 (Figure 44).

Entry 9 shows that when combining the 262 fragment with the imidazo[1,2-a]pyrazine core, the resulting compound displays a similar potency to the lead compound 14. The lowest energy in silico pose of 280 (Figure 45 a) is similar to that of the aniline substituted 233 (Figure 45 b) where the fragment or aniline is in the ‘R5/6’ position. This gives the possibility synthesising tri-substituted systems with groups at C5 or C6 extending into the phosphate region. Interestingly, there are no conformations that align with 14, but there are conformations where the aromatic substituents have switched and the naphthalene occupies the phosphate and 262 the purine. It should be noted, however, that 280 requires re-synthesis in order to validate the IC50 result.
3.3.3 BioFocus Compounds

To aid with the development of the imidazo[1,2-α]pyrazine inhibitors and Maybridge fragments, it was decided to purchase compounds from an external source, BioFocus. By searching through their online library for the imidazo[1,2-α]pyrazine core and each of the 5 Maybridge fragment hits, a number of compounds were returned. Each of these compounds was docked using PyRx, ranked according to their binding affinities and a selected number were purchased with the aim of covering as many different types of scaffolds as possible (Table 19). For example, the imidazo[1,2-α]pyrazine yielded scaffolds of 5-substitued, 3,8-disubstitued (x2), 6,8-disubstitued and 2,3,6-trisubstituted.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Compounds</th>
<th>Hits Returned</th>
<th>No. of Types of Scaffolds</th>
<th>No. of Compounds Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Imidazo[1,2-a]pyrazine</td>
<td>24</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>261</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>262</td>
<td>45</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>263</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>264</td>
<td>89</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>265</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 19: Results of BioFocus compound search indicating the number of hits returned and the number of compounds purchased

The same biochemical assay was then carried out on the BioFocus compounds purchased screening at concentrations of 250, 50 and 5 \(\mu\)M with IC\(_{50}\) values determined for selected compounds (Table 20). Studying the BioFocus compounds purchased, initially looking at those based on the imidazo[1,2-a]pyrazine core, there is no improvement on the activity of the lead compound 14, but introducing fluorine atoms into the compound (Entries 1 & 2) maintains activity when compared to some of the other lower scoring inhibitors in Section 2.5.1.1.

Fluorine is often used in medicinal chemistry as an isostere of hydrogen, since it is virtually the same size, but its increased electronegativity can be used to vary the electronic properties of a compound.\(^{170}\)

Compounds based on 262 also show inhibition albeit no improvement on 14. Alternative central cores are evident, providing an insight into potentially changing the imidazo[1,2-a]pyrazine core. Two of the compounds based on 264 do, however, show comparable levels of inhibition with 14 (Entries 7 & 8). They consist of a 5-azaindole (pyrrolo[3,2-c]pyridine) core, providing an alternative to the imidazo[1,2-a]pyrazine core. As can be seen from Figure 46 (a), when a similar ‘2 and 8- substituted’ system is docked (290), the orientation is similar to that of the imidazo[1,2-a]pyrazines, with the alternative core occupying the ribose region.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Structure</th>
<th>% Absorbance</th>
<th>IC50/µM*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>250 µM 50 µM 5 µM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>284</td>
<td></td>
<td>50 74 76</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>285</td>
<td></td>
<td>72 63 69</td>
<td>122 (102/142)</td>
</tr>
<tr>
<td>3</td>
<td>286</td>
<td></td>
<td>83 68 74</td>
<td>220 (235/205)</td>
</tr>
<tr>
<td>4</td>
<td>287</td>
<td></td>
<td>24 57 69</td>
<td>142 (160/124)</td>
</tr>
<tr>
<td>5</td>
<td>264</td>
<td></td>
<td>- - -</td>
<td>140</td>
</tr>
<tr>
<td>Entry</td>
<td>Compound</td>
<td>Structure</td>
<td>% Absorbance</td>
<td>IC50/µM*</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250 µM</td>
<td>50 µM</td>
</tr>
<tr>
<td>6</td>
<td>288</td>
<td></td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>289</td>
<td></td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>290</td>
<td></td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>291</td>
<td></td>
<td>73</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>292</td>
<td></td>
<td>82</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 20: Initial screening and IC50 values of selected BioFocus compounds purchased. Imidazo[1,2-a]pyrazine core, 262 and 264 fragment in **RED**; * Value given is an average of two methods used. The individual values are given in brackets (standard slope first, variable slope second). Where a value is underlined, this is the method suggested by the program GraphPad Prism 5
When a tri-substituted system (289) is docked, the entire orientation shifts so to occupy the extended hydrophobic pocket. Compound 290 also contains the 264 fragment in a position similar to the 8-position of imidazo[1,2-α]pyrazines, hence the reason for the synthesis of 281. It is suggested that a direct analogue of 290 be synthesised with the imidazo[1,2-α]pyrazine instead of pyrrolo[3,2-c]pyridine to see if the alternative core heterocycle affects potency.

3.4 Concluding Remarks to Chapter

Through investigations into both the 2- and 8-positions of the lead compound 14, SAR trends have started to be established (Figure 48).

It is evident that the IC₅₀ still needs improvement, but the use of the ethyl chain in 247 provides a viable alternative to 14. The inhibitory effect of 233 and 280 shows that the sulfonamide is not vital for the activity (although further validation of 280 is still required), and their orientations in the nucleotide binding site suggest incorporating further substituents in the C₅ and C₆ positions. Since 252 displays inhibition, one possibility could be to insert a flexible PEG chain into one of these positions to form tri-substituted imidazo[1,2-α]pyrazines.

Recent work within the laboratory has incorporated a bromine in position 6 of 14 (293, Figure 47), and this results in the activity being maintained, with an IC₅₀ of 6 µM observed. This

[Figure 46: Images of (a) 290 and (b) 289 with ATPγS (Yellow) in ATPγS-HP0525. PDB: 1NLY. Images generated using PyMOL]
synthetic handle would provide the opportunity to explore further functionalities in this position. Further work into bi-aryls in the 2-position is also currently being explored.

![Structure of compound 293, a variant of 14 with bromine in the 6-position](image)

Figure 47: Structure of compound 293, a variant of 14 with bromine in the 6-position

Initial studies into the use of fragments in drug design have also been explored. Since no crystal structure was available, a substructure search using an online search engine and the BioFocus database yielded a number of potential compounds that displayed inhibitory effects. Certain functionalities within these compounds can be incorporated into the synthesis of future imidazo[1,2-a]pyrazine compounds.
- Aromatic substituent important for activity
- No preference of 2- or 3- regioisomers
- Larger aromatics preferable (double ring structures better than single)
- Heteroatoms improve solubility but not potency
- Investigate other bi-aryl systems to further extent into hydrophobic pocket
- Further investigate heteroatoms in aromatic rings
- Incorporate fluorine atoms around the aromatic ring

- Need to investigate the optimum distance of the sulfonamide from the core heterocycle
- Study the relative position of the sulfonamide: -NHSO₂- or -SO₂NH-
- Investigate bioisosteres of phosphates and sulfonamides including acyl sulfonamides
- Investigate heteroaromatic rings in place of toluyl moiety
- Incorporate fluorine atoms

- Br in Position 6 does not alter the activity
- Investigate fluorine as opposed to bromine
- Investigate small substituents (Me, SMe, OMe) in R₅ and R₆ positions, as well as phosphate mimics

Figure 48: Summary of SAR of all imidazo[1,2-a]pyrazines synthesised, and suggestions to improve potency. Black indicates current observations, Red indicates suggestions made.
Chapter 4: Results & Discussion: Peptide-Small Molecule Bivalent Reagents

4.1 Introduction to Bivalent Inhibitors

Affinity and specificity of an inhibitor can be greatly enhanced by taking advantage of hydrophobic/hydrophilic features near the enzyme active site. By linking an active site binding compound to a moiety that interacts with these features on the enzyme surface, it is possible to differentiate among enzymes. The resulting compounds are known as bivalent inhibitors.

Closely related to bivalent inhibitors are bisubstrate inhibitors, the objective of which is to mimic two natural substrates/ligands and therefore bind simultaneously to two areas of a given target. The process can be thought of as applying the principles of fragment based drug discovery in that you are linking two ligands together. The first example of a bisubstrate inhibitor dates back to 1973, and was applied to the adenylate kinase. Since then many different approaches of using bisubstrates as protein kinase inhibitors have been reported.

Peptide-peptide interactions play crucial roles in a number of biological processes, therefore, as a result their disruption can lead to novel therapeutic agents. Many of the reported bivalent inhibitors will target these interactions as well as substrate binding sites.

Other than protein kinases, bivalent inhibitors have many other applications. These include the BiFunctional Fusion Inhibitor, CD4-BFFI, which consists of an anti CD4 monoclonal antibody with a fusion inhibitor and has applications as a HIV-1 entry inhibitor; and bifunctional chimeric proteins containing a type 1 ribosome-inactivating protein and a serine protease inhibitor have enhanced cytotoxic activity against SVT2 cells. There has also been a great deal of interest in conjugating peptides to PNAs (Peptide Nucleic Acids) in order to achieve enhanced properties of the RNA such as water solubility and cell membrane permeability.
4.1.1 Peptide-Small Molecule Bivalent Inhibitors

Bivalent molecules comprising a small molecule and a peptide have been extensively studied throughout the literature, the majority of which target protein kinases. These are enzymes that catalyse the phosphorylation of Tyr, Thr and Ser residues in many proteins by the transfer of the γ-phosphoryl group of ATP. Therefore many of these bivalent inhibitors target the ATP-binding site as well as the protein-protein interactions of a protein substrate binding site (bisubstrate inhibitors) as illustrated in Figure 49. A few examples of these will now be discussed.

Figure 49: Schematic representation of a bivalent inhibitor approach which targets both ATP- and protein-binding sites. Reproduced with permission.

Parang et al designed and synthesised a potent and selective bisubstrate inhibitor of the insulin receptor protein tyrosine kinase (IRK). The design was made based upon observations on the phosphoryl transfer mechanism of the dissociative transition state. It was predicted that the reaction coordination distance between the nucleophilic oxygen (of Ser/Thr/Tyr) and the attacked γ-phosphoryl group should be ≥ 4.9 Å. Therefore they linked the non-hydrolysable ATPγS to a peptide sequence, based upon the well characterised IRS727 peptide substrate, via a spacer that ensured the distance between the Tyr nucleophilic atom and γ-phosphate was 5 Å. During the native mechanism, the tyrosine hydroxyl serves as a hydrogen bond donor and therefore to conserve this interaction whilst being incorporated into the bisubstrate inhibitor, the Tyr oxygen was replaced with a nitrogen (Figure 50).
Analysis revealed that the bisubstrate was a competitive inhibitor versus both the nucleotide and peptide substrates. In addition, the group also obtained a crystal structure of the inhibitor bound to IRK in which the mechanism-based design was validated.

The same group applied a similar ATP-peptide bisubstrate for the inhibition of the serine/threonine kinase protein kinase A (PKA). The bisubstrate consisted of ATPγS linked, via an acetyl bridge, to aminoalanine (acting as the serine analogue) with Kemptide, a well defined substrate for protein kinase A, chosen as the substrate peptide. Results indicated that the inhibitor was competitive versus ATP, while non-competitive versus peptide substrate. In addition, a 20-fold selectivity versus protein kinase C and protein tyrosine kinase Csk was observed, highlighting the specificity of these bisubstrate compounds.

By merging bisubstrate analogue technology with the method of expressing protein ligation, it is possible to synthesis a protein-ATP conjugate. Shen et al targeted Csk, a protein tyrosine kinase responsible for site-specific tail phosphorylation of Src and Src family members. The group synthesised an ATP-conjugated peptide derived from the Src tail sequence, and fused this to the Src protein by expressed protein ligation to generate a semi-synthetic Src-ATP protein. This protein displayed high affinity and selectivity towards Csk.

Schneider et al covalently linked the high-affinity non selective kinase inhibitor K252a (a staurosporine-like natural product) to a miniature protein based on the protein kinase inhibitor protein (PKI). PKI selectively recognises PKA and inhibits its function, and from observation of the structure of the catalytic subunit in complex with the active portion of PKI, the miniature protein was designed. An octamethylene chain links this to K252a to generate the bivalent
conjugate (Figure 51), which was shown to be a highly potent (IC$_{50}$ of 3.65 nM) and selective inhibitor of PKA.

![Figure 51: Miniature protein-K252a conjugate for the selective inhibition of PKA. Reproduced with permission.](image)

Stebbins et al designed and synthesised a dual ATP- and substrate-competitive inhibitor of the serine/threonine protein kinase c-Jun-N-terminal kinase (JNK). JNKs bind substrates and scaffold proteins, such as JIP-1, and the binding pocket for such substrates is in close proximity to the ATP binding site. The peptide part of the inhibitor consisted of a seven amino acid sequence based upon a sequence of JIP-1, and the ATP mimetic was based upon a previously reported potent but non-selective JNK inhibitor SP600125. Results indicated inhibition of JNK with an IC$_{50}$ of 0.7 nM compared to 14 µM and >50 µM for the ATP mimic and unconjugated peptide respectively.

Other examples include adenosine-arginine conjugates (‘ARC’) linked via a 6-aminohexanoic acid linker chain. These have been reported as inhibitors of cAMP dependent protein kinases, with a crystal structure of an ARC inhibitor bound to PKA also reported. Studies in which the adenosine moiety has been replaced have also been investigated, including the 2-pyrimidyl-5-amidothiophene fragment, isoquinolinesulfonamide moiety, and the carbocyclic adenosine mimic. Thus far, the examples explored have been bisubstrate inhibitors which target both nucleotide and protein binding sites of kinases. Other bivalent inhibitors have been reported that target the nucleotide site and a secondary binding domain. Examples of this have been illustrated by Maly and co-workers, who have employed a chemical genetic method to synthesise protein-small molecule conjugate inhibitors.
Firstly, they investigated the two closely related non-receptor tyrosine kinases Src and Abl. Both contain the catalytic SH1 domain (containing the ATP and protein substrate binding sites) and the SH2 and SH3 domains which are responsible for the regulation, substrate selection and localisation of SH1. The synthesised bivalent inhibitor targets both the ATP binding site in the SH1 domain and a secondary binding domain in the SH3 domain (Figure 52).

![Figure 52: Representation of an AGT linked bivalent inhibitor of Src and Abl.](image)

The ATP inhibitor is a 4-anilinoquinazoline derivate which is then linked to O^6-benzylguanine (BG). This can selectively be transferred to the active site cysteine of O^6-alkylguanine-DNA alkyltransferase (AGT) which is primed with the SH3 domain ligand: short polyproline (PP) motifs. Src and Abl have distinct PP motif binding preferences in their SH3 domains and therefore selectivity between the two kinases can be achieved by using slightly different PP ligands.

A similar approach utilising an engineered form of AGT (SNAP-tag), was applied to a further three unrelated protein kinases: Pim1, p38α and EGFR. Each of the three kinases have different reported ATP-competitive inhibitors, which are linked to O^4-benzyl-2-chloro-6-aminopyridine (CLP). This is then able to chemoselectively label the active site of SNAP-tag,
which has been fused to a peptide ligand that binds to the signalling interaction site of the targeted kinase.

Similarly, dipeptide inhibitors of Src kinase have been reported, consisting of an SH2 domain recognition sequence bound via a flexible GABA-based tether to an active site directed inhibitory peptide.215

Whilst the aforementioned examples provide excellent potency and selectivity, a potential drawback is that they rely on structural information of the targeted kinase. A bivalent tethering approach adopted by Ghosh and co-workers,216 requires no prior knowledge of the structure of the kinase or the protein substrate (Figure 53). It combines small molecule targeting and biological selection, by utilising a phage display cyclic peptide library. Phage display involves producing libraries of peptides displayed on phage, these can contain 10^{10} different peptides.217

The active-site directed small molecule used was the inhibitor staurosporine, which is tethered to the ‘zipper’ domain of Jun. The cyclic peptide library is tethered to the zipper domain of Fos, which is able to form a coiled-coil heterodimer with Jun. When Fos and Jun come together the cyclic peptides are in close proximity to the small molecule. These conjugates (still bound to phage) have been screened against PKA216 and Aurora Kinase A.218

![Figure 53: Non-covalent tethering approach of small molecule with a phage-display peptide library through a coiled-coil heterodimer for targeting PKA. Selected peptide can then be conjugated to the small molecule to create a bivalent kinase inhibitor.216 Reproduced with permission.](image-url)
This small warhead-guided phage display selection would potentially afford cyclic peptide motifs with affinity for the kinase surface adjacent to the active site. The selected peptides can then be conjugated to the small molecule to create a bivalent kinase inhibitor, with affinities higher than that of the staurosporine small molecule.216,218

Work carried out in the laboratory of Ed Tate,219 has previously looked at novel peptide-based inhibitors with a small-molecule binding partner (or ‘Trojan horse’) that target the active site of NMT (N-myristoyl transferase) (Figure 54).

The ‘Trojan horse’ is attached to a randomised peptide sequence, generating a library of small-molecule/peptide chimeras. This one-bead one-peptide library was constructed using a split-and-mix protocol, producing an even distribution of 194 peptides. This protocol involves adding each amino acid onto a linker attached polystyrene/PEG copolymer resin in 19 pots; mixing the resin and splitting each pot into 19 portions and loading the next amino acid and then repeating this mix and split process. A terminal amino acid is added (1:1 aminooxy acetic acid and Glycine) allowing linkage to a myristoyl binding partner.

A high-throughput on-bead assay was then used to select peptides which enhance binding by making one or more contacts with nearby epitopes. This selection was based on staining the assayed library and resulted in 130 distinct compounds (0.1% hit rate). Five of the beads were then chosen and were Edman sequenced220 and re-synthesised for inhibition assays with the lowest IC\textsubscript{50} observed being 65 µM.

\textbf{Figure 54:} Schematic representation of the ‘Trojan horse’ approach for the generation of peptide aptamers targeted to a specific protein binding site. (a) Trojan horse is used to target a combinatorial peptide to the binding site of the protein; (b) High throughput on-bead assay selects for peptides which enhance binding.219 Reproduced with permission.
The research presented herein incorporates the bivalent inhibitor approach discussed above. The imidazo[1,2-\(a\)]pyrazine compounds previously synthesised target the ATP binding site of HP0525, whilst a peptide sequence has been rationally designed to disrupt the peptide-peptide interactions of the subunit-subunit interface, and in doing so, disrupting hexamer formation.

4.1.2 Conjugation Techniques and Protein Modification

Posttranslational modification (PTM) is the natural chemical modification of a protein after its translation.\(^2\)\(^2\)\(^1\) Folded proteins are subjected to specific enzyme-catalysed covalent modifications on their side chains (phosphorylation, acylation, alkylation, glycosylation and oxidation) or covalent cleavage of their backbone (by proteases or autocatalytic cleavage).\(^2\)\(^2\)\(^1\)

Chemical modification of proteins is a powerful tool for expanding a protein's functional capacity.\(^2\)\(^2\)\(^2\),\(^2\)\(^3\) Attachment of fluorescent/radioactive probes allows proteins to be tracked and imaged, in real time, \textit{in vitro} and \textit{in vivo}.\(^2\)\(^4\),\(^2\)\(^5\) Tethering of antigens to protein carriers has applications in synthetic vaccine candidates for HIV,\(^2\)\(^6\) cancer\(^2\)\(^7\) and malaria.\(^2\)\(^8\)

For a reaction to be considered for protein modification, it must be site selective, efficient under conditions compatible with proteins; i.e. in aqueous media, at low to ambient temperatures and at or near to neutral pH; and be able to tolerate salts and surfactants used to stabilise protein structures.\(^2\)\(^3\)

Most strategies rely on the nucleophilic side chains of residues of lysine, cysteine, aspartic acid and glutamic acid. However, there have been extensive studies into the use of transition-metal-catalysed reactions to carry out site-selective protein modifications using unnatural amino acids, especially with recent advances in transition metal-catalysed reactions that can be carried out in aqueous media.\(^2\)\(^2\)\(^9\),\(^2\)\(^3\)\(^0\)

Figure 55 gives examples of transition-metal-catalysed reactions used in protein modifications.\(^2\)\(^3\),\(^2\)\(^1\) These include tryptophan alkylation,\(^2\)\(^3\)\(^2\) alkylation of tyrosine,\(^2\)\(^3\)\(^3\) Heck and Sonogashira reactions of \(p\)-iodophenylalanine,\(^2\)\(^4\),\(^2\)\(^5\) Suzuki cross-coupling with \(p\)-boronophenylalanine,\(^2\)\(^6\) azide-alkyne [3+2] cycloaddition\(^2\)\(^7\),\(^2\)\(^3\),\(^2\)\(^8\),\(^2\)\(^9\),\(^2\)\(^4\)\(^0\) and olefin metathesis.\(^2\)\(^3\),\(^2\)\(^4\)\(^1\)
Figure 55: Examples of transition-metal-catalysed reactions used in protein modification223
Olefin metathesis has been used to introduce non-labile C-C bonds in order to:

- Stabilise peptide secondary structure, including cross-linking α-helices\(^{242}\) and substituting carbon equivalent of disulfides\(^{243,244}\) and thioether links;\(^{245}\)
- Introduce post-synthetic labelling with functional tags.\(^{182,223,241}\)

Allyl amines, ethers and sulfides have been examined in the cross metathesis with allyl alcohol, and allyl sulfides have been found to be the most reactive in aqueous media and therefore most compatible when considering modification of proteins.\(^ {182}\) The enhanced activity of allyl sulfides can be attributed to sulfur coordination to the ruthenium centre as shown in the suggested mechanism for sulfur-assisted cross metathesis (Scheme 59).\(^ {182,223}\)

![Scheme 59: Sulfur-assisted Cross Metathesis of allyl sulfide](image)

Different methods of incorporating allyl sulfides into proteins have been investigated\(^ {241}\) and these include conjugate addition of allyl thiol to dehydroalanine (Dha) (installed by the oxidative elimination of cysteine using \(O\)-mesitylenesulfonylhydroxylamine (MSH)); direct allylation of cysteine residues (achieved using both the amino acid and on the protein surface); and desulfurization of allyl disulfide. It has also been shown that S-allyl cysteine can be genetically incorporated into proteins as a methionine surrogate.\(^ {223}\)
MgCl$_2$ has also been used as a mild Lewis acid additive to prevent non-productive chelation of the metal centre to other side chain groups.182 Hoveyda-Grubbs second generation catalyst246 (Figure 56) has been selected as it is phosphine-free and therefore more likely to be compatible with protein disulfides than other catalysts.

![Figure 56: Structure of Hoveyda-Grubbs Second Generation Catalyst246](image)

Click chemistry describes chemistry that is used to generate substances quickly and reliably by joining small units together.247 A number of criteria must be met for a reaction to be deemed a ‘Click’ Reaction including being modular, wide in scope, high yielding, stereo-specific, simple reaction conditions, readily available starting materials and simple product isolation.247

Click reactions achieve their characteristics by having a high thermodynamic driving force and are therefore thought of as being “spring-loaded”.247 Carbon-heteroatom bond forming reactions are the most prevalent and include cycloadditions, nucleophilic substitutions, carbonyl chemistry and addition of C-C bonds.247

Azides are ideal bioorthogonal chemical tags as they are not found in biological systems and are inert to such conditions.248 They are easy to install, small and can react either as an electrophiles in the Staudinger Ligation,249,250 or as 1,3-dipoles in [3+2] cycloadditions.247,251 Copper catalysed Azide-Alkyne Huisgen [3+2] cycloadditions have numerous applications in bioconjugation chemistry,237,238,239,240 and there are also instances of Cu-free reactions using strained cyclooctyne probes.252,253,254

In addition, there are numerous methods of non-transition metal catalysed bioconjugations, especially when applied to PEG containing substrates.255,256 Typical reactive amino acids include
lysine, cysteine, histidine, arginine, aspartic acid, glutamic acid, serine, threonine, tyrosine, N-terminal amino group and the C-terminal carboxylic acid.

Various groups used for conjugation to amine residues255,256 include dichlorotriazine, tresylate, succinimidyl carbonate, benzotriazole carbonate, \textit{p}-nitrophenyl carbonate, carbonyl imidazole and succinimidyl succinate. Those used for cysteine conjugation255,256 include maleimide, bromomaleimide,257 vinyl sulfone, iodoacetamide and \textit{o}-pyridyl disulfide.

It is evident that there are many different approaches to achieving selective modification of proteins and peptide. This chapter investigates some of the different conjugation techniques discussed above and their application into the synthesis of bivalent inhibitor reagents.

4.2 Bivalent Inhibitor Reagents as Potential ATPase Inhibitors

As previously mentioned, one of the aims of this project are to synthesise bivalent inhibitor reagents. These consist of a small molecule inhibitor, based on imidazo[1,2-\textit{a}]pyrazine, that will bind to the nucleotide binding site, linked (\textit{via} a PEG chain) to a peptide, based on the \(\alpha\)F helix of HP0525, that will interact with the adjacent subunit (Figure 57).

![Figure 57: Generic representation of bivalent inhibitor reagents](image)

A number of factors need to be considered when designing the bivalent inhibitor reagents:

1. What is the nature of the small molecule?
2. How will the small molecule be connected to the PEG chain?
3. What will be the peptide sequence and length?
4. How will the PEG chain be connected to the peptide?

5. What will be the length of the PEG chain?

Firstly, the nature of the small molecule inhibitor needs to be decided as well as the location of the linker to the PEG chain. It should be noted that work commenced on this area prior to the synthesis of the 2nd generation compounds (Chapter 3) and therefore at the time of design, 14 was the lead compound. It requires a shorter synthesis compared to the 3-aryl isomer 12, and therefore was used as the small molecule part. Analogues of 8 were also used, since it possess the sulfonamide moiety bound directly to the 8-position and is therefore possibly easier to access synthetically.

In silico studies of the lead compound, 14, have suggested its favoured orientation within the enzyme active site: the naphthalene occupies the purine region towards the solvent side (outside) of the enzyme; and the sulfonamide moiety with the terminal toluoyl group, is in the phosphate region, pointing towards the adjacent subunit and the centre of the hexameric chamber. Therefore it was decided to connect the PEG based linker *via* the toluoyl moiety.

Secondly, it was decided to utilise a carbamate functionality to link the small molecule to the PEG chain. This is because it would be more stable than an ester bond *in vivo*, would provide extra hydrogen bonding possibilities compared with an amide bond and can be considered to be easier to access synthetically. Using the Curtius reaction, the carbamate can be formed through the reaction of an acyl azide and a PEG alcohol, which would be more accessible than the corresponding PEG amine required to form an amide bond.

It is important to establish the sequence and the length of the peptide to be synthesised. The strategy employed herein is to synthesise a peptide that resembles the native sequence of the region highlighted in Figure 58 (i.e. the αF helix and neighbouring residues). It is envisaged that by anchoring the small molecule in the nucleotide binding site, the peptide part of the chimera would interact with the subunit-subunit interface, possibly displacing the native segment and in the process disrupting hexamer formation.
The peptide sequence highlighted consists of the β9 sheet followed by a loop into the αF helix followed by a further loop into the β10 sheet and is further illustrated in Figure 59. It is unclear what length of peptide would be required to interact with the native peptide region and therefore a small number of peptides with varying lengths were chosen for synthesis:

Arginine in position 240 (R240) is in close proximity to the nucleotide binding site (Figure 58) and therefore its position is ideal for conjugation to the imidazo[1,2-\(a\)]pyrazine partner. By substituting this arginine for other amino acids capable of conjugating to other moieties, the bivalent inhibitor reagent could be synthesised. Three different approaches were initially investigated to connect the PEG chain to the peptide (Figure 60):

- Maleimide to conjugate to cysteine, “R240C”;
- Allyl to carry out cross metathesis with \(S\)-allyl cysteine, “R240SAC”;
- Alkyne to carry out click chemistry with azido lysine, “R240AzLys”;
The length of the PEG chain is also an important factor with the design of the bivalent inhibitor reagents. The PEG chain length should be of sufficient length to extend from the carbamate linked to the toluoyl moiety, to the peptide sequence that will make interactions with the adjacent subunit. In silico modelling studies, using the modelling programme MOE259 were carried out to determine the distance between the mutated residue in the peptide sequence and 14 (Table 21).

<table>
<thead>
<tr>
<th>Mutated Residue</th>
<th>Cysteine</th>
<th>S-Allyl Cysteine</th>
<th>Azido Lysine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (Å)</td>
<td>8.36</td>
<td>5.56</td>
<td>6.13</td>
</tr>
</tbody>
</table>

Table 21: Table indicating distances between the mutated residue and 14, as determined using MOE259

Using MOE259 by taking each of the mutated residues and extending them atom-by-atom until the chain reaches the nucleotide binding site, an indication of the required chain length can be determined. In all of the cases, in order to reach the phosphate region (i.e. where the PEG chain will be linked to the small molecule) and taking into account the size of the moiety to be conjugated (maleimide, vinyl sulfone, allyl and alkyne), one PEG unit is required. For example, even though the cysteine is further away from 14 compared with S-allyl cysteine, when the
maleimide conjugation is carried out the resulting species is similar in length to that after cross metathesis (Figure 60).

Figure 61 illustrates the end product from the step-by-step atom growth from a mutated cysteine, conjugating though a maleimide to a short PEG chain, which in turn is connected to 14 via a carbamate linker. If conjugation was required to a Maybridge fragment, a longer PEG linker would also be required comprising 5 PEG units. This would enable the chain to reach the purine region of the active site, a potential location for the fragments as seen from in silico studies.

There are a number of possible approaches to the synthesis of these bivalent inhibitor reagents. The strategy adopted herein is to synthesise the small molecule bound to the PEG chain primed with the conjugation moiety (‘PEGylated-imidazo[1,2-α]pyrazine’) followed by conjugating to a synthesised peptide. Other options could be to synthesise the peptide, conjugate to the PEG chain and then connect to the imidazo[1,2-α]pyrazine; or to synthesise the PEGylated-imidazo[1,2-α]pyrazine, conjugate to the relative amino acid and then incorporate into the peptide synthesis.
Figure 62 illustrates the target compounds primed with a conjugation moiety that could be conjugated to a synthetic peptide.

<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-NH-</td>
</tr>
<tr>
<td></td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>299</td>
</tr>
</tbody>
</table>

Figure 62: Target PEGylated-imidazo[1,2-a]pyrazine compounds primed various conjugation moieties

4.3 Synthesis of PEGylated Imidazo[1,2-a]pyrazines

The initial approach of forming the PEGylated-imidazo[1,2-a]pyrazines is outlined in Scheme 60. It comprises the synthesis of the PEG alcohol primed with the maleimide, allyl or alkyl moieties, followed by a Curtius reaction to link the sulfonamide moiety and the PEG chain. Finally coupling to the core heterocycle can be carried out using the methods previously described. It was envisaged that both the 4-toluenesulfonamide bonded directly to the imidazo[1,2-a]pyrazine and the N-(4-aminophenyl)-4-methylbenzenesulfonamide would be investigated and the conjugates could then be compared with 8 and 14 respectively.
4.3.1 Synthesis of the Carbamate Linker for PEG attachment to Imidazo[1,2-\(a\)]pyrazine Inhibitors

In order to attach the PEG chain to the imidazo[1,2-\(a\)], a carbamate linker would replace the methyl of the tosyl moiety of 8 and 14. One method for installing this functionality is to utilise the Curtius reaction which is the thermal decomposition of carboxylic azides to produce an isocyanate.\(^\text{258}\) These intermediates can then be isolated, or reacted with a variety of nucleophiles to form different functional moieties; for example alcohols and amines will form carbamates and ureas respectively (see Scheme 61). It is important to carry the reaction out under anhydrous conditions as water will react with the isocyanate to form the unstable carbamic acid which will undergo spontaneous decarboxylation to leave the primary amine.

Scheme 61: Generic mechanism for the Curtius reaction\(^\text{258}\)

Scheme 62 outlines the synthesis of the 4-(\(N\)-(4-aminophenyl)sulfamoyl)benzoic acids, which can then be transformed to the carboxylic azides for the Curtius reaction. 4-Sulfamoylbenzoic
acid is commercially available. 310 can be formed in high yields by reacting 4-(chlorosulfonyl)benzoic acid with a 5-fold excess of 1,4-diaminobenzene. The yield calculated is for the triethylamine salt; however, even though the ethyl peaks are present by NMR, the integration does not correspond to a 1:1 stoichiometry. Elemental analysis also does not match the composition of a triethylamine salt and therefore the compound was probably isolated as a partial triethylamine salt. When using 1,4-dioxane instead of CH₂Cl₂ no reaction was observed and if no Et₃N was used (CH₂Cl₂ only), the product was isolated in 59% yield.

Scheme 62: Synthesis of the carboxylic acids to be used in the Curtius reaction

Both Boc²⁶⁰ and Fmoc protection of 1,4-diaminobenzene were carried out with high yields. Coupling with the 4-(chlorosulfonyl)benzoic acid proved to be problematic and low yielding. When considering the Boc-protected reaction, a 4:1 stoichiometry of the amine to sulfonyl chloride was used and isolation was completed by washing with acid and then precipitating out the product with base.²⁶¹ When a 1:1 stoichiometry was used, purification via flash chromatography proved to be extremely difficult due to co-elution with the sulfonyl chloride and
multiple columns were required to isolate 312. TFA deprotection could afford 310, but this is unnecessary in light of the high yielding one-step approach.

Purification of 313 also proved to be difficult, with co-elution observed. For both Boc and Fmoc routes, using the same conditions as with the one-pot approach, i.e. 5-fold excess of the amine and Et₃N in CH₂Cl₂ followed by column chromatography, could lead to increased yields. However, care must be taken to avoid Fmoc deprotection under the basic conditions.

Two methods of forming the carbamate from the carboxylic acids synthesised were explored (Scheme 63): Method A involves the formation and isolation of the acyl azide from the corresponding carboxylic acid;²⁶² and method B is a one-pot method where the acyl azide is formed in situ.²⁶³ Different R₁ groups were investigated: these are H, for direct sulfonamide bonding to imidazo[1,2-α]pyrazines (analogues of 8); aniline and two protected forms of aniline (analogues of 14).

It can be seen that, with the exception of the unprotected aniline 316, each of the acyl azides can be isolated in good yields. It should, however, be noted that due to their instability at high
temperatures, no product mass was observed using a variety of ionising techniques and so NMR and IR were used for characterisation. Through heating these products with the PEG alcohols in toluene, the Curtius reaction can take place to form the desired products. Table 22 shows the different Curtius reactions carried out using both methods and their yields. It is evident that Method A is the more consistent route, with no reaction often observed when employing the one-pot method. However, the reactions that failed in these cases used the unprotected aniline, which as previously explained proved to problematic when forming and isolating its acyl azide using Method A. When the one-pot method did work, it gave the product in a lower yield than using the 2-step approach (Entries 1 and 2). Each of the individual reactions will be discussed in the following sections.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>Method</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>319</td>
<td>H</td>
<td>TBDMS</td>
<td>A</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>319</td>
<td>H</td>
<td>TBMDMS</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>320</td>
<td>H</td>
<td>CH<sub>2</sub>CH<sub>2</sub>TBDMS</td>
<td>A</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>321</td>
<td>H</td>
<td>(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>TBDMS</td>
<td>A</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>322</td>
<td>H</td>
<td>CH<sub>2</sub>CH<sub>3</sub>Mal</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>322</td>
<td>H</td>
<td>CH<sub>2</sub>CH<sub>3</sub>Mal</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>323</td>
<td>H</td>
<td>CH<sub>2</sub>CH<sub>2</sub>NHBoc</td>
<td>A</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>324</td>
<td>H</td>
<td>CH<sub>2</sub>CH=CH<sub>2</sub></td>
<td>B</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>325</td>
<td>H</td>
<td>CH<sub>2</sub>C=CH</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>326</td>
<td>p-C<sub>6</sub>H<sub>4</sub>-NH<sub>2</sub></td>
<td>TBDMS</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>327</td>
<td>p-C<sub>6</sub>H<sub>4</sub>-NH<sub>2</sub></td>
<td>CH<sub>2</sub>CH<sub>3</sub>Mal</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>328</td>
<td>p-C<sub>6</sub>H<sub>4</sub>-NH<sub>2</sub></td>
<td>CH<sub>2</sub>CH=CH<sub>2</sub></td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>329</td>
<td>p-C<sub>6</sub>H<sub>4</sub>-NHBoc</td>
<td>TBMDMS</td>
<td>A</td>
<td>87</td>
</tr>
</tbody>
</table>
Table 22

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>330</td>
</tr>
<tr>
<td>15</td>
<td>331</td>
</tr>
<tr>
<td>16</td>
<td>332</td>
</tr>
<tr>
<td>17</td>
<td>333</td>
</tr>
</tbody>
</table>

Table 22: Table displaying the yields for the different Curtius reactions carried out. ²Reaction time of 2 h. Method A: via isolation of acyl azide; Method B: one-pot reaction from carboxylic acid

4.3.2 Synthesis of PEGylated Free Hydroxyl Imidazo[1,2-a]pyrazines

4.3.2.1 PEGylated-Benzencesulfonamide-bound Imidazo[1,2-a]pyrazines

Considering the poor solubility of the imidazo[1,2-a]pyrazine inhibitors, it was decided to incorporate a PEG chain with a free terminal hydroxyl. Scheme 64 outlines the synthesis of these compounds based on the 8 inhibitor. Mono silyl ether protection of different length ethylene glycols was achieved in moderate yields using tert-butyldimethylsilyl chloride (TBDMS-Cl), Et₃N and DMAP additive.²⁶⁴ It should be noted that the relatively low yields here are due to a slight excess of the TBDMS-Cl used and therefore expected di-protection. Using an excess of the n-ethylene glycol should avoid this and boost the yield. The use of imidazole in place of the Et₃N and DMAP for 338 was also investigated,¹⁸² and resulted in a yield of 34%.
Scheme 64: Synthesis of PEGylated free hydroxyl benzenesulfonamide-bound imidazo[1,2-α]pyrazines

Curtius reaction using the acyl azide 315 proceeded in moderate yields to give the sulfonamides with carbamate linker. An uncharacterised side product, thought to be a methyl ester, did however form in the reactions involving 339 and 340, further indicating the instability of the acyl azide and the need for reagents to be pure and dry. The products were then coupled to the core heterocycle using the optimised Buchwald-Hartwig conditions with varying success. 319 coupled with 40% yield but the two longer PEG lengths, 320 and 321 only coupled with trace amounts of product visible. It is suggested that using the alternative Cs₂CO₃/dioxane conditions are attempted as there could be a problem with the solubility of the PEG compound. Deprotection of 342 was accomplished using standard TBAF conditions in THF with a yield of 31%.¹⁸¹ There were, however, problems with purification, and the final compound isolated was not completely pure.
4.3.3.2 Attempted Synthesis of PEGylated-\(N\)-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-\(a\)]pyrazines

The synthesis of the 14 analogue proved to be more problematic and in fact no desired product was able to be synthesised. Scheme 65 shows the attempted synthesis of the \(N\)-(4-aminophenyl)benzenesulfonamide containing the carbamate linker. Curtius reaction with the Boc-protected aniline acyl azide 317 proceeded in high yields; however, problems arose when attempting the selective deprotection of the Boc group over the TBDMS group.\(^{265}\) In the case attempted, the only product isolated was the doubly deprotected species 326. All subsequent attempts to re-protect the hydroxyl\(^{266}\) resulted in extremely low yields, even when using 4 equivalents of TBDMSCI and so no further work was carried out on this route. The next stage would have involved Buchwald-Hartwig cross coupling to 8-chloroimidazo[1,2-\(a\)]pyrazine.

\[
\begin{align*}
\text{HO} \quad \text{O} \quad \text{TBDMS} & \quad \text{Boc}^- \quad \text{N} \quad \text{H} \\
338, n = 1 & \quad 339, n = 2
\end{align*}
\]

\[
\begin{align*}
\text{317, PhMe} \quad \text{Reflux, 16 h} & \quad \text{Boc}^- \quad \text{N} \quad \text{H} \\
\text{329}, n = 1, 87\% & \quad \text{330}, n = 2, 65\%
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \quad \text{TBDMS} \\
\text{326}, n = 1, X = \text{H}, 65\% & \quad \text{TBDMS-Cl, Et}_3\text{N} \\
\text{346}, n = 1, X = \text{TBDMS}, 7\% & \quad \text{DMAP, CH}_2\text{Cl}_2 \\
\text{RT, 16 h}, 7\%
\end{align*}
\]

Scheme 65: Attempted synthesis of PEGylated free hydroxyl \(N\)-(4-aminophenyl)benzenesulfonamide-bound imidazo[1,2-\(a\)]pyrazines
4.3.3 Synthesis of PEGylated Maleimide Linked Imidazo[1,2-α]pyrazines

4.3.3.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-α]pyrazines

The initial approach to synthesising PEGylated-imidazo[1,2-α]pyrazines primed with a maleimide was to synthesise the PEG chain with maleimide and then carry out the Curtius reaction (as previously discussed in Scheme 60). Two methods to synthesise the PEGylated-maleimide were investigated; the first involved mono-bromination of diethylene glycol and hexaethylene glycol using thionyl bromide (Scheme 66). Both reactions were low yielding due to formation of the di-brominated species and difficulties with purification. Attempts to directly react \(\text{347} \) with maleimide using \(\text{K}_2\text{CO}_3 \) proved unsuccessful, as did the reaction with the protected hydroxyl \(\text{348} \) and the use of the stronger base NaH.

A possibility that was not explored is the use of the Mitsunobu reaction in forming \(\text{350} \). Mono-protection of diethylene glycol may be required, but it should be possible to react the PEG alcohol with maleimide using DEAD and \(\text{PPh}_3 \) in THF.

An alternative method involved the synthesis of the activated maleimide carbamate, \(\text{352} \), which is able to react with a PEG amine to form the desired PEGylated-maleimide under basic aqueous conditions (Scheme 67). The reaction between maleimide and methyl chloroformate proceeds in either EtOAc (23%) or THF (32%) but due to the instability of the product in solution and on silica, the isolated yield is very low. This also contributes to the moderate yields observed when
reacting with the PEG amines, and it is suggested that using an excess of the activated maleimide carbamate could enhance the yields. In fact a trial stability test was carried out by stirring 352 in the coupling media (sat. aq. NaHCO₃), and it was observed that after 30 minutes no material remained.

Out of the two reacting PEG amines, compound 353 is commercially available, but the longer hexaethylene amine, 354, required synthesis (Scheme 68). Brominating hexaethylene glycol, followed by substituting the bromo for an azide and then reducing to the amine using standard hydrogenation conditions, affords the desired product. The reason for the low yield in this final step is due to difficulties with removing the extremely polar product from the silica column.

Scheme 67: Synthesis of PEGylated-maleimide via reaction between amino-PEG compounds and activated PEG carbamate

Scheme 68: Synthesis of PEG amine 354
As can be seen from Table 22, no reaction was observed when 350 was subjected to the Curtius reaction with both 315 (Entries 5 and 6) and 271 (Entry 11), using both methods A and B. When reacting with 315 (Method A), the PEGylated maleimide would not dissolve, even under reflux conditions. It took on the appearance of an extremely viscous oil that was stuck to the reaction vessel. It was also observed that 350 took on this appearance after a period of time of drying, suggesting that the compound may have polymerised. Due to the non-reactivity of this route and potential stability problems of the intermediates and products, an alternative approach was devised.

Scheme 69 outlines the two alternative methods attempted for the synthesis of the PEGylated-maleimido-benzenesulfonamide-bound imidazo[1,2-a]pyrazines. Both involve successfully carrying out the Curtius reaction with 315 and the Boc-protected 2-(2-aminoethoxy)ethanol, 359,273 to give 323 in high yields. Boc-deprotection was then carried out, followed by successful coupling with the activated maleimide carbamate (using excess 352), but attempts to couple 322 to the core heterocycle failed. Both Buchwald-Hartwig coupling conditions to 214 and solvent/base conditions with 227 resulted in no signs of starting material left, but no desired product observed, suggesting that 322 and in particular the maleimide moiety is unstable to either Pd-catalysed conditions, strong bases or high temperatures.

Instead, coupling of 323 to the heterocycle was first carried out. Both sets of coupling conditions were attempted, and it was evident that using 227 with NaH and DMF was the preferred method, consistently giving yields of 52-57%. Boc deprotection proceeded in high yields; but 362 should be left as the TFA salt since decomposition was observed when attempting a basic work up. Elemental analysis also indicated 4 molecules of TFA present in the salt. Coupling with the activated maleimide carbamate 352 produced trace quantities of the desired product 297 using previously reported conditions. A possible explanation for this could be poor solubility of the reacting species, but when using Et₃N and DMF, the reaction profile by TLC was extremely messy and no product was observed by LCMS or NMR.

It was then decided to couple N-maleoyl-β-alanine using standard amide bond forming conditions. The low yield can be attributed to loss of material during reaction work up and also purification using column chromatography. Using excess amine (at least 1.5 eq) is advised due to potential separation issues with the acid. When using slight excess of the acid, reverse phase preparative HPLC was required to purify the product, resulting in a yield of 43%.
Scheme 69: Synthesis of the PEGylated-maleimido-benzenesulfonamide-bound imidazo[1,2-\(a\)]pyrazine, 363
4.3.3.2 Approaches to PEGylated-\textit{N}-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-\textit{a}]pyrazines

A similar approach was initially adopted when attempting to incorporate the maleimide moiety into the PEGylated-\textit{N}-(4-aminophenyl)benzenesulfonamide-bound imidazo[1,2-\textit{a}]pyrazines (Scheme 70). The Curtius reaction between 317 and 359 was achieved with a high yield, but double Boc deprotection was low yielding, owing to possible decomposition during reaction work up.

Reaction of 364 with the activated maleimide carbamate failed, which was surprising considering the high yield observed with the corresponding reaction of 360. An explanation for this failure could be solubility problems of the free amine compared to the TFA salt used with 360, and therefore, it is advised to isolate 364 as the TFA salt and continue the reaction.

Scheme 70: Attempted synthesis of the \textit{N}-(4-aminophenyl)benzenesulfonamide PEGylated-maleimidoimidazo[1,2-\textit{a}]pyrazine

The next step in the sequence (to form 300) would have involved a Buchwald-Hartwig coupling with 214. However, in light of the issues experienced in Section 4.3.3.1 with the stability of the maleimide moiety towards Pd-catalysed coupling conditions, even if 327 was successfully synthesised, problems with the final coupling are envisaged.
Therefore, the route would have to be altered whereby 364 is coupled to the heterocycle first followed by the conjugation of the maleimide. However, it is likely that chemoselectivity issues would arise with the coupling of 364 due to the more nucleophilic primary alkyl amine out-competing the aniline amine in the reaction.

Therefore, the use of Fmoc in place of the Boc protecting group has been trialled as illustrated in Scheme 71. Curtius reaction of the Fmoc protected aniline acyl azide 318 with 359 results in the orthogonally protected species 333. The low yield is due to the shorter reaction time of 2 h compared with 16 h for all other analogues and co-elution of the product with PEG alcohol (2:1 ratio by NMR). However, the reaction was continued, without further purification to see if this route proved to be more successful.

Selective Fmoc deprotection was achieved using 40% piperidine in CH₂Cl₂, but the product 365 was still contaminated with 359 (approximately 2:1 by NMR). Nonetheless, the mixture was subjected to the optimised Pd-catalysed coupling conditions on a small scale and by LCMS, the desired product mass was observed. Due to the small scale and contamination of sample, no further work was carried out, but these results suggest this as a viable approach for the synthesis of the N-(4-aminophenyl)benzenesulfonamide-bound imidazo[1,2-a]pyrazine primed with maleimide moiety. The next stage would involve Boc deprotection and subsequent coupling with the N-maleoyl-β-alanine using conditions previously stated.
This route could also be employed for the synthesis of the free hydroxyl PEGylated imidazo[1,2-a]pyrazines, whereby the different TBDMS protected PEG alcohols undergoes the Curtius reaction with 318, followed by subsequent Fmoc-deprotection, coupling and silyl-deprotection steps.

An alternative Fmoc route to access the maleimide containing compounds is outlined in Scheme 72, whereby the Fmoc and Boc protecting groups are switched. Fmoc protection of 2-(2-aminoethoxy)ethanol could be followed by the Curtius reaction with 317, which in turn would be subjected to Boc deprotection, coupling with the core heterocycle, Fmoc deprotection and maleimide addition. The potential issue here is the unknown efficiency of the Fmoc deprotection step and consequent amide bond formation.
4.3.4 Synthesis of PEGylated Allyl and Alkyne Linked Imidazo[1,2-a]pyrazines

4.3.4.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-a]pyrazines

The synthesis of the allyl and alkyne linked imidazo[1,2-a]pyrazines relies on similar synthetic methodology (Scheme 73). The allyl and propargyl PEG alcohols can be synthesised where necessary using the diol (in excess), NaH and allyl and propargyl bromide respectively.182,274 The low yield observed for 375 is due to difficulties in removing the product from the aqueous layer during work up (an acid wash should have been carried out here), and also formation of the di-alkyne species.

The shorter PEG chains (n=1), 373 and 375 were then subjected to the Curtius reaction using Method B and A respectively. Coupling of the resulting products using solvent/base conditions with 227 afforded the final products 298 and 299 ready for peptide conjugation. The Buchwald-
Hartwig conditions were not attempted in this case due to the possibility of competing Heck and Sonogashira coupling reactions with the allyl and alkyne moieties.

Scheme 73: Synthetic route to access the PEGylated allyl and alkynyl benzenesulfonamide-bound imidazo[1,2-a]pyrazine

4.3.4.2 Approaches to PEGylated-\(N\)-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines

Scheme 74 outlines the attempted synthesis for priming 14 with the allyl moiety. As with the other analogues, the Curtius reaction proceeds well with 317, but not with 310, and the Boc deprotection also works in high yields. Instead of leaving 328 as the TFA salt, a basic wash was carried out to isolate the free amine and unlike 362, the compound appears to be stable. Coupling with 227 under solvent/base conditions failed, which is not surprising considering the analogous reaction to make 14 also failed.
Since Buchwald Hartwig conditions cannot be employed when the allyl moiety is already in place and the solvent/base approach using 227 does not work, the allyl group would have to be added after the aniline is coupled to the core heterocycle. This would rule out using the Fmoc route (Scheme 71), and instead an alternative can be suggested (Scheme 75). Starting with 233, which to date can be formed with a maximum yield of 32% (Section 3.1.1), reaction with 4-(chlorosulfonyl)benzoic acid (1 equivalent) gives 376 in low yields. When attempting the coupling with 1:1 stoichiometry and Et$_3$N/CH$_2$Cl$_2$, the product could not be isolated due to co-elution with a variety of impurities. In order to increase the yield, it is suggested that an excess of the amine is used with Et$_3$N and CH$_2$Cl$_2$ (as with 310).

Attempts to form the acyl azide resulted in the isolation of only PPh$_3$=O with no signs of desired product. A repeat of these conditions would be required to see if 377 can be isolated, and if so it is thought that ensuing Curtius reaction should proceed without complications. Otherwise it might be necessary to attempt a one-pot Curtius reaction with the in situ formation of the acyl azide. The other PEG containing analogues could also be synthesised using this shortened method but it is important to optimise the steps leading to the formation of 377.

Scheme 74: Attempted synthesis of the PEGylated allyl-N-(4-aminophenyl)benzenesulfonamide-bound imidazo[1,2-a]pyrazines
4.4 Peptide Synthesis

4.4.1 Synthesis of N-Fmoc protected S-Allyl Cysteine

In order to conjugate the allyl containing imidazo[1,2-\(\alpha\)]pyrazine to a peptide, the unnatural amino acid, S-allyl cysteine (SAC) needs to be synthesised.\(^{182}\) Our laboratory utilises Fmoc solid phase peptide synthesis (SPPS) and therefore SAC was required with an Fmoc protected amine and a free acid, a cysteine derivative that to our knowledge, has not previously been synthesised. Scheme 76 outlines the different methods taken towards its synthesis.
Initially, tert-butyl protection of Fmoc-Cys(Trt)-OH was carried out using tert-butyl 2,2,2-trichloroacetimidate (TBTA)275 or SiCl\textsubscript{4}276 in yields of 20% and 2% respectively (Route A). The resulting compound 379 was then stirred in 10% TFA with 5% TES scavenger in order to selectively remove the trityl protecting group,277 which resulted in another poor yield of 33%. Care must be taken with removal of the reaction solvent because if the TFA becomes too concentrated, deprotection of the tert-butyl group is also observed.

Due to the low yielding steps an alternative route was sought with a view to making the procedure scalable. The tert-butyl protection of commercially available cystine to form 380,1 can be achieved using perchloric acid and tert-butyl acetate in high yields (90%).278 Both Boc and Fmoc protection routes (Routes B and C) were explored in parallel.

Fmoc protection was carried out using standard literature conditions with Fmoc-Cl.278 A low yield of 43% was observed (literature yield reported is 81%), which was due to contamination of the reagent. The use of a fresh batch, or the use of Fmoc-OSu, which has been previously used in this report, may give a higher yield here. Boc protection was carried out with a yield of 48%.

The next stage involved cleavage of the disulfide using PBu\textsubscript{3} for the Fmoc protected cystine278 and dithiothreitol (DTT, Clelands’ reagent) under basic conditions for the Boc protected version.279 Both proceed well in high yields.

Using excess allyl bromide, the free thiol in both the Boc and Fmoc protected cysteines can be allylated in high yields.182 It was initially thought that the use of base could lead to Fmoc deprotection but Table 21 shows that using 2.5 equivalents of K\textsubscript{2}CO\textsubscript{3} gives a high yield of 385.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Eq</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cs\textsubscript{2}CO\textsubscript{3}</td>
<td>0.5</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Cs\textsubscript{2}CO\textsubscript{3}</td>
<td>1.0</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>K\textsubscript{2}CO\textsubscript{3}</td>
<td>2.5</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 23: Comparison of bases and equivalents for the formation of 385

1Synthesis carried out by T.Tran
Scheme 76: Various synthetic routes used for the synthesis of S-allyl cysteine
The next step in the Fmoc route involves the deprotection of the tert-butyl group and this is achieved in high yields with TFA277 to give the final product Fmoc-Cys(SAC)-OH, \textbf{388}, ready for incorporation into SPPS. Route C involved universal deprotection of \textbf{386} followed by Fmoc protection of the resulting free amine,280 which proceeded in only moderate yields. When making a comparison of the two routes, Route B is the suggested procedure for the formation of Fmoc-Cys(SAC)-OH.

4.4.2 Peptide Synthesis

With the required amino acids in hand, we aimed to use Fmoc SPPS to make the peptide subunits incorporating either cysteine or S-allyl cysteine in the R240 position. In addition the peptides corresponding to the native sequence were also synthesised (i.e. R240 position unchanged), in order to establish any secondary structures. Table 24 indicates the amino acid sequences for each of the nine peptides synthesised.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>αF-loop</td>
<td>SAD\textcolor{red}{LK}S\textcolor{blue}{L}RMPD</td>
</tr>
<tr>
<td>αF-β10</td>
<td>SAD\textcolor{red}{LK}S\textcolor{blue}{L}RMPDR\textcolor{red}{I}I</td>
</tr>
<tr>
<td>β9-αF-β10</td>
<td>Y\textcolor{blue}{T}QL\textcolor{red}{F}FGGN\textcolor{blue}{I}TS\textcolor{red}{A}D\textcolor{blue}{L}K\textcolor{red}{S}\textcolor{blue}{L}RMPDR\textcolor{red}{I}I</td>
</tr>
</tbody>
</table>

Table 24: Table indicating the amino acid sequence for each of the peptides synthesised. Letters in \textcolor{red}{RED} indicate an α-helix; \textcolor{blue}{BLUE} indicates a β-sheet; \textcolor{black}{BLACK} indicates turns and loops; Highlighted R in \textcolor{yellow}{Yellow} indicates R240 in which cysteine or S-allyl cysteine are incorporated; C in \textcolor{green}{Green} are cysteine residues which need orthogonal protecting groups in the case of R240C.

The process of SPPS is illustrated in Figure 63. The C-terminus amino acid is pre-loaded on a solid supported resin, and for the peptides synthesised, Fmoc-Asp(OtBu)-NovaSyn®TGT and Fmoc-Leu-NovaSyn®TGT were used (Figure 64). The TGT resin is a composite of polyethylene glycol and a low-cross linked polystyrene gel-type resin. They are 90 µm beads and are derivatised with the extremely acid sensitive 4-carboxytrityl linker (0.5% TFA/CH\textsubscript{2}Cl\textsubscript{2} required for cleavage from the resin).
The peptide synthesizer cycles through processes of Fmoc deprotection (40% Piperidine/DMF) and amino acid coupling (HBTU, DIPEA, DMF) from the C-terminus to the N-terminus of the sequence. A cleavage cocktail (TFA/EDT/H₂O/TIPS; 88:5:5:2) was then used to cleave the peptide from the resin and also remove the acid-labile side chain protecting groups.
It is important to note in the case of R240C peptides that a non-acid labile protecting group was used on the other cysteine residues so that after deprotection and cleavage from the resin, the peptide produced has only one thiol free for maleimide conjugation. There are two potential alternatives to Fmoc-Cys(Trt)-OH: Fmoc-Cys(Acm)-OH and Fmoc-Cys(tBu)-OH. Both protecting groups are stable to the cleavage cocktail and can be removed using mercury (II) acetate or thallium (III) trifluoroacetate.281 Fmoc-Cys(Acm)-OH was used in the R240C peptide synthesised herein and Fmoc-Cys(Trt)-OH for the wild type and R240Sac peptides.

Reverse phase preparative HPLC was then employed to purify the peptides and characterisation was completed using reverse phase analytical HPLC and ES+ or MALDI mass spectrometry. Table 25 details the nine peptides synthesised, including the native wild type (WT) peptides.

<table>
<thead>
<tr>
<th>Variant</th>
<th>αF-loop</th>
<th>αF-β10</th>
<th>β9-αF-β10</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>389</td>
<td>392</td>
<td>395</td>
</tr>
<tr>
<td>R240C</td>
<td>390</td>
<td>393</td>
<td>396</td>
</tr>
<tr>
<td>R240Sac</td>
<td>391</td>
<td>394</td>
<td>397</td>
</tr>
</tbody>
</table>

Table 25: Table detailing the compound numbers for each of the peptides synthesised

4.5 Peptide-Imidazo[1,2-a]pyrazine Conjugation to give Bivalent Inhibitor

Reagents

To re-cap, three PEGylated-imidazo[1,2-a]pyrazines were successfully synthesised and ready to conjugate to a variety of peptides (Figure 65).

Before any conjugation was carried out, it was important to establish the methods necessary for successful reactions. Due to the limited quantities of peptide available, model systems were employed for the trial reactions.
4.5.1 Trial Reactions

Trityl deprotection of the commercially available Fmoc-Cys(Trt)-OH gave 398 in moderate yields, and reaction with 355 in DMF gave 81% of desired maleimido conjugated product (Scheme 77). The use of a 50 mM phosphate buffer (pH 6.5) was also investigated as there is literature precedent for slightly acidic conditions catalysing the reaction, but this gave the product in only 29% yield. If the conjugation was to be carried out with a large macromolecule protein, the use of buffer would be advisable, but since relatively small peptides are being used, it was decided to use DMF only for the conjugation.
The conditions for the cross metathesis182 were also briefly explored using the model system of S-allyl cysteine and 2-(allyloxy)ethanol (Scheme 78). Using Grubbs’ 2nd generation catalyst246 the reaction proceeded with 100\% conversion as indicated by LCMS. No purification was carried out at this stage, and the conditions used were deemed efficient for use with the peptide and \textbf{298}.

\begin{center}
\begin{tikzpicture}

\node at (0,0) \text{Fmoc} \node[above] at (0,0.2) \text{N} \node at (0,-0.5) \text{COOH} \node at (1,0) \node at (1,0) \text{S} \node at (1,-0.5) \text{COOH} \node at (2.5,0) \node at (2.5,0) \text{N} \node at (2.5,0.2) \text{H} \node at (2.5,-0.5) \text{COOH} \node at (0,0) \node at (1.3,0) \node at (1.3,0) \text{S} \node at (1.3,-0.5) \text{COOH} \node at (2,1) \node at (2,1) \text{OH} \node at (1.5,0.5) \node at (1.5,0.5) \text{2-(allyloxy)ethanol,} \node at (2,0.5) \node at (2,0.5) \text{Grubbs II,} \node at (2,0.5) \node at (2,0.5) \text{H}_2\text{O/}^t\text{BuOH} \node at (1,0.5) \node at (1,0.5) \text{32} \text{oC, 3 h} \node at (0,0.5) \node at (0,0.5) \text{100\% Conversion} \node at (2.5,0.2) \text{388} \node at (3,0) \node at (3,0) \text{39} \end{tikzpicture}
\end{center}

\textbf{Scheme 78: Trial cross metathesis between S-allyl cysteine and 2-(allyloxy)ethanol}

\subsection*{4.5.2 Solution Based Conjugation of Peptides and PEGylated Imidazo[1,2-\textit{a}]pyrazines}

Table 26 shows the results of the conjugation reactions with peptides in solution. Maleimide conjugation was carried out between \textbf{390}, \textbf{393} and \textbf{396} with \textbf{363}, by stirring in DMF at RT for 3 h. MALDI analysis on each of the crude samples showed that the desired product mass was present. Purification was carried out and the peptide-small molecule conjugates were isolated.

ES+ for \textbf{401} showed the desired product with 3\+ and 4\+ ions, including the [M+K+3H]3+ ion; \textbf{402} displayed the 3\+ and 4\+ ions, as well as signs of the non-conjugated \textbf{393}; \textbf{403} showed the 3\+, 4\+ and 5\+ ions as well as the [M+K+4H]5+ and [M+K+5H]6+ ions. The desired mass was present in the MALDI spectra of \textbf{401}, but not for \textbf{402} and \textbf{403}. In all cases un-reacted \textbf{363} was isolated.

With all three peptide conjugates in place, the Acm group on the remaining cysteine required removal. However, it was decided not to carry out any further work due to the minute quantity of material and harsh conditions required.
Cross metathesis between 391, 397 and 298 (10 eq) was carried out by stirring with Grubbs’ II catalyst (6 mol%) in ‘BuOH/H2O at 32 °C for 3 h. MALDI analysis of the crude samples showed possible signs of product in 404 but not in 405. Nonetheless, purification was carried out on both, but difficulties with poor solubility were encountered. Since 298 is used in excess it proved difficult to dissolve the crude material and a substantial quantity of DMF was required. After purification is was evident that no reaction product was present in any of the fractions collected. None of the un-conjugated peptides were evident, nor any products of self-metathesis.

In light of the failures and draw-backs with solution-phase conjugation encountered, it was decided to change the approach and carry out the conjugation whilst the peptide is still bound to the resin.

4.5.3 Resin-Bound Conjugation of Peptides and PEGylated Imidazo[1,2-a]pyrazines

To carry out peptide conjugation on resin there are three possible approaches:

1. Synthesise the entire sequence and then carry out the conjugation reaction (Figure 66);

2. Synthesise the peptide up to R240, carry out the conjugation reaction and then complete the peptide sequence;
3 Carry out conjugation of the amino acid with the PEGylated-imidazo[1,2-α]pyrazine coupling partner and then incorporate the resulting imidazo[1,2-α]pyrazinyl amino acid into the SPPS.

It was decided to carry out the order according to the first approach because it was unknown how the conjugated species would respond to repeated deprotection and coupling conditions; whilst avoiding any potential solubility issues of the imidazo[1,2-α]pyrazinyl amino acid.

![Diagram](image)

Figure 66: Generic representation for the sequence of events used in the conjugation of resin-bound peptides to PEGylated imidazo[1,2-α]pyrazine compounds

Peptides were synthesised with the terminal Fmoc protecting group left on and the amino acid residues Fmoc-Cys(βBu)-OH, Fmoc-Cys(allyl)-OH (388) or azido lysine282 (previously synthesised by the group)m were substituted in position R240 to give peptides R240C, R240SAC and R240AzLys respectively. All other remaining residues in the sequence consisted of amino acids with standard side chain protecting groups.

m The synthesis of azido lysine was completed by Dr F. Campbell
Once the peptides were synthesised, the three different conjugation chemistries could be carried out (Table 27), and after each conjugation reaction, the resins were washed, the terminal Fmoc group removed and the peptides cleaved from the resin. The crude peptides were then purified by reverse phase HPLC to give the peptide-imidazo[1,2-α]pyrazine conjugates.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>αF-loop</th>
<th>αF-β10</th>
<th>B9-αF-β10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 27: Table illustrating the different peptide conjugations carried out on resin

Prior to conjugation of R240C peptides to the maleimido-imidazo[1,2-α]pyrazine compound 363, selective deprotection of the tert-butylthio group on the R240 cysteine was required. This was achieved by agitating the resin-bound peptide with PBU3 in EtOH/CH2Cl2/H2O (4:6:1) for 3 h at RT.283 The trityl protecting groups on the other cysteine residues remain intact under these conditions. Conjugation of the free cysteine to 363 can then be carried out by agitating in DMF at RT for 16 h.

The cross metathesis conditions were slightly altered from those used in the solution-based conjugation in order to make them more compatible with the use of the resin. This was achieved

a Conditions determined by H.Koss
by the additional use of chloroform and DMF. The reaction between R240SAC and 298 (4 eq) with Grubbs’ 2nd generation catalyst (6 mol%) in CHCl₃/DMF/H₂O/tBuOH (8:2:1:1) was carried out by agitating the mixture at 37 °C for 16 h.

There is extensive literature precedent for the click reaction when applied to peptide synthesis, with selected examples using sodium ascorbate and a source of copper, either in the form of CuI, CuBr, CuSO₄ or Cu(OAc)₂. Reactions can be carried out in DMF or in H₂O with an alcohol (EtOH or tBuOH). It was decided to carry out the reaction between R240AzLys peptides and 299 by agitating with excess CuI (20 eq) and sodium ascorbate (40 eq) in DMF/H₂O/tBuOH (8:2:1) at RT for 16 h.

As can be seen from Table 27, for the shortest length peptide (αF-loop) both the maleimide conjugation (406) and click reaction (410) worked well; the 2+ and 3+ ions were visible with ES⁺ and the M⁺ ion present in MALDI analysis for both conjugates. However, the cross metathesis failed and so it was decided not to carry out the cross metathesis on the two longer peptide lengths. In order to optimise this reaction, it would be necessary to carry out more extensive trials using 298 instead of a model system. The use of MgCl₂ could aid the reaction by hindering chelation of the soft metal centre to the side chains.

Of the 4 remaining peptide conjugations, only the αF-β10 R240AzLys-Click (411) worked. It was possible 407 also worked, since product mass appeared to be present in the crude MALDI sample. However, problems with freeze drying the purified sample resulted in its appearance altering from a fluffy white solid to a hydroscopic green solid. No product mass was evident, indicating signs of possible decomposition.

A plausible explanation for the conjugation failing for the longer length peptides could be the accessibility of the relevant amino acid. As can be seen from the sequences in Table 24, the R240 amino acid is close to the C-terminus and therefore close to the resin. Therefore, the thiol, allyl or azide moieties might be considerably “buried” from their conjugation partner. In order to overcome this problem, it might be necessary to synthesis the peptide up to position R240, carry out the conjugation, and then continue the sequence.
4.6 Compound Evaluation

4.6.1 PEGylated-Imidazo[1,2-\textit{a}]pyrazines

Each of the PEGylated-imidazo[1,2-\textit{a}]pyrazines products were tested for inhibition of HP0525 using the same colorimetric assay as previously used. Table 28 shows the IC\textsubscript{50} data for a selection of the PEGylated-imidazo[1,2-\textit{a}]pyrazines synthesised. By comparing these values with the IC\textsubscript{50} for 8 (109 \textmu M), conclusions can be drawn as to the effectiveness of employing a PEG chain on the activity. Selected dose response curves are illustrated in Figure 71 (Appendix, Section 7.1).

![Chemical structure of PEGylated-imidazo[1,2-\textit{a}]pyrazines](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>PEG Chain (X)</th>
<th>IC\textsubscript{50} (\textmu M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>Carbamate replaced by CH\textsubscript{3}</td>
<td>109 (88/131)</td>
</tr>
<tr>
<td>2</td>
<td>343</td>
<td></td>
<td>192 (241/142)</td>
</tr>
<tr>
<td>3</td>
<td>362</td>
<td></td>
<td>137 (146/128)</td>
</tr>
<tr>
<td>4</td>
<td>363</td>
<td></td>
<td>18 (19/18)</td>
</tr>
<tr>
<td>5</td>
<td>298</td>
<td></td>
<td>46 (48/43)</td>
</tr>
<tr>
<td>6</td>
<td>299</td>
<td></td>
<td>61 (69/54)</td>
</tr>
</tbody>
</table>

Table 28: IC\textsubscript{50} data for the PEGylated imidazo[1,2-\textit{a}]pyrazines synthesised

The three PEGylated-imidazo[1,2-\textit{a}]pyrazines ready for conjugation, 363, 298 and 299, show improved inhibition of HP0525 than the parent compound 8. This is perhaps not surprising given the extra H-bonding possibilities provided by the carbamate moiety and in the case of 363, the
amide and maleimide. When studying their *in silico* lowest energy binding modes within the nucleotide binding site, they appear to adopt a conformation similar to that of 14 rather than 8. When looking at 363 (Figure 67), the molecule may shift so that the carbamate mimics the same sulfonamide interactions as in 14; the sulfonamide is now in the ribose region and the imidazo[1,2-a]pyrazine is located in the purine region. This means that the naphthalene moiety extends further into the enzyme active site, possibly picking up the further π-stacking interactions earlier discussed.

![Figure 67: *In silico* image of 363 with 14 (Red) and ATPγS (Yellow) in ATPγS-HP0525. PDB: 1NLY.](image)

Image generated using PyMOL

The free PEGylated version of 8 (343) does not seem to improve the activity, but as previously mentioned, the sample prepared was not very pure and so repetition with a purified sample would be advised. 298 and 299 have similar IC₅₀ values and this can be attributed to similar conformations observed within the nucleotide binding site (Figure 68 a and b). It is interesting that 362 does not reduce the enzyme activity because *in silico* studies indicate similar conformations as 298 and 299 (Figure 68 c) and therefore a similar activity might be expected.
In addition, intermediate compound \textbf{376} was tested against HP0525 and showed an IC\textsubscript{50} value of 52 µM. \textit{In silico} docking indicated an exact alignment with \textbf{14} (Figure 69).
4.6.2 Wild-Type Peptides

The stability of the peptide fold might be important for both activity and reactivity. *In silico* stability testing on the three WT peptides using Molecular Dynamics showed only the β9-αF-β10 peptide was stable to the simulations (data not shown); the αF peptide unfolded immediately and the αF-β10 unfolded, but at a slower rate. Circular dichroism (C.D.) spectroscopy, however, indicated that none of the WT peptides synthesised form α-helices (helical contents: αF: 6-7%, αF-β10: 9-10%, β9-αF-β10: 8-9%).

4.6.3 Bivalent Inhibitor Reagents

The three peptide-imidazo[1,2-a]pyrazine conjugates were tested at concentrations of 5, 50 and 500 µM and the % absorbance analysed to give an indication of their inhibitory effect Table 29. The results indicate that the peptide conjugates only inhibit weakly at a high concentration.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Peptide Conjugate</th>
<th>500 µM % Absorbance</th>
<th>50 µM % Absorbance</th>
<th>5 µM % Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>406</td>
<td>93</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>410</td>
<td>91</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>411</td>
<td>90</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 29: % Absorbance values for each of the peptide conjugates at 500, 50 and 5 µM

4.7 Concluding Remarks to Chapter

Chapter 4 has looked at using *in silico* modelling to design bivalent reagents. Successful synthesis of PEGylated-benzenesulfonamide-bound imidazo[1,2-a]pyrazines was carried out, although numerous synthetic hurdles were encountered, especially with the maleimide based compounds. Inhibition studies of these PEGylated-imidazo[1,2-a]pyrazines show that they are more potent than the parent compound 8.

* Experiments carried out by H.Koss
 * Experiments carried out by Dr K. Wallden
Unfortunately, the synthesis of the longer PEGylated-\(N\)-(4-aminophenyl)benzenesulfonamide-bound imidazo[1,2-\(a\)]pyrazines could not be completed, but important strides were taken to ensure the likelihood of their synthesis in future attempts.

The synthesis of the novel amino acid: Fmoc-protected \(S\)-allyl cysteine (Fmoc-Cys(allyl)-OH) has been carried out and its successful incorporation into a peptide has been reported. However, no cross metathesis to PEGylated allyl-imidazo[1,2-\(a\)]pyrazines were observed and further optimisation would be required.

The maleimido- and alkynyl-imidazo[1,2-\(a\)]pyrazines did undergo successful conjugation to peptides bearing cysteine and azido lysine coupling partners respectively. A small percentage of inhibition was observed with the resulting conjugates; however, this was at a high concentration (500 \(\mu\)M). Therefore the conjugates synthesised do not show any improvement on using the parent imidazo[1,2-\(a\)]pyrazine 8.

C.D. experiments show that the native peptides have no maintained helical structure, and this could be a possible explanation as to the lack of activity of the peptide-imidazo[1,2-\(a\)]pyrazine conjugates. Another potential explanation could be due to the steric bulk of these conjugates and possible lack of flexibility of the protein. Even though the small molecule would be able to access the ATP binding site, it remains to be seen whether the peptide would be able to then access the subunit-subunit interface. Therefore alternative designs of the peptide sequence and target are encouraged.
Chapter 5: Conclusions

This thesis has investigated the potential of imidazo[1,2-a]pyrazines as inhibitors of the *Helicobacter pylori* VirB11 ATPase. Structural elucidation of the crystal structure of HP0525, a VirB11 homologue, instigated a virtual high throughput screen, which identified the imidazo[1,2-a]pyrazine core as a potential inhibitor.

Chapter 2 looked at the synthesis of 2- and 3-aryl regioisomers of this heterocycle, including optimisation of various key transformations. The compounds were evaluated for their potential to inhibit HP0525 in an *in vitro* colorimetric biochemical assay.

14 was identified as the lead compound with an IC$_{50}$ of 7 µM and studies utilising Michaelis-Menten kinetics revealed the compound to be a competitive inhibitor of ATP. Considering the absence of a co-crystal structure, this information is vital as all proceeding work relied on *in silico* observations within the ATP binding site.

Initial trends in the structure-activity-relationship of imidazo[1,2-a]pyrazine were identified, and with the aid of computational docking, second generation compounds were designed.

Chapter 3 investigated the synthesis and evaluation of these compounds and identified 247, a closely related analogue of 14, as an alternative lead inhibitor, with potentially more favourable pharmacokinetics.

In addition, initial studies were undertaken looking at the use of fragments from a Maybridge library as inhibitors of HP0525. All attempts to obtain co-crystallisation of these compounds, and therefore continue with the process of fragment-based drug design, failed. However, alternative compounds were synthesised and interestingly, when a Maybridge fragment was attached to the imidazo[1,2-a]pyrazine core (compound 280), a comparable potency to 14 was observed. An alternative *in silico* docking conformation was evident, giving rise to the opportunity of tri-substituted systems.
The additional testing of imidazo[1,2-\(a\)]pyrazine- and Maybridge fragment-related compounds purchased from BioFocus has shown the potential of tri-substituted heterocycles, whilst also providing an insight into an alternative heterocyclic core.

With the lead compound, 14, showing competitive inhibition of ATP, attention was switched to the design of bivalent compounds. Using molecular modelling techniques, the different components of the peptide-small molecule conjugate were established. It was envisaged that by synthesising peptides of varying length, based upon the native sequence of the \(\alpha\)F helix, they would displace this native segment and disrupt the subunit-subunit interface and therefore hexamer formation.

A series of PEGylated benzenesulfonamide-bound imidazo[1,2-\(a\)]pyrazines, primed with a maleimide, alkene and alkyne, were then successfully synthesised. Comparing to their parent compound, 8, improved inhibition of these compounds was observed, indicating optional moieties that are tolerated by the active site.

After the limited success with solution based conjugation of these compounds to the various synthesised peptides, resin-based conjugation was achieved with both the maleimide and alkyne analogues. Even though cross metathesis to \(S\)-allyl cysteine failed, the preparation of this novel Fmoc-protected amino acid was successfully completed and reported in Chapter 4.

Initial evaluation of these bivalent compounds showed them to display limited inhibition at 500 \(\mu\)M, indicating that further work is required into their design.

\section*{5.1 Future Directions}

In order for the project to continue forward, it is imperative that co-crystallisation of HP0525 with an imidazo[1,2-\(a\)]pyrazine inhibitor or Maybridge fragment is achieved. This would provide actual data of the conformation within the active site, instead of relying heavily on computational predictions.

Other than this need, both sections of the bivalent compounds require attention. Firstly, improvements to the ATPase inhibitor are sought, not only for potency, but also pharmacokinetic properties. Already mentioned are the suggestion of tri-substituted imidazo[1,2-\(a\)]pyrazines. Work within the group has recently incorporated a bromine into position 6 of compound 14. The
IC$_{50}$ of compound 2934 has been calculated to be 6 µM, indicating that inserting a bromine does not affect the activity. This synthetic handle would provide the opportunity to explore further functionalities around the core heterocycle and prepare tri-substituted systems.

Keeping the ring substituents constant but using alternative core heterocycles should also be investigated to ascertain the importance of the imidazo[1,2-a]pyrazine. Pyrrolo[3,2-c]pyridine is a suggested alternative since it showed levels of inhibition with the BioFocus compounds.

Additionally, a modelling program called Brood288 can be used as an alternative method to generate new target compounds. The user splits the lead compound into different groups, and then the program takes each group in turn and inputs alternative fragments from an *in silico* library using shape, chemistry and electrostatic similarity, to generate alternative compounds.

Each of these compounds can then be re-docked into the enzyme active site and their binding energies ranked and compared with the parent compound. Any promising new compounds with docking scores above the parent compound can then be suggested for synthesis. This approach has been carried out with the imidazo[1,2-a]pyrazine compounds and the Maybridge fragments,r and the synthesis of potential compounds is currently under investigation within the laboratory.

There is also the possibility of incorporating ATP$_\gamma$S as the small molecule part of the bivalent compound and in doing so, ensuring an extremely potent active site binder.

In order to make improvement with the peptide section of the bivalent compound, there are different approaches that are suggested. Firstly, the lack of helical structure requires attention. This can be addressed by adopting a helix-stabilisation approach.289 such as incorporating staple amino acids into the peptide sequence, as described by Verdine *et al.*280,290,291,292 By inserting amino acids at the i and $(i+4)$ positions, intramolecular cross metathesis has been shown to induce helical folding (Figure 70).

4 Synthesised by Dr T. Pesnot

r Brood programming carried out by Dr Paul Gane
It may also be necessary to target a different area of the protein, for example, mimicking interactions of the inhibitory protein HP1541. The peptide sequence could be based upon the sequence of the native protein that is known to make contact with HP0525 through peptide-peptide interactions.

An alternative approach could be to adopt the work carried out by Ed Tate219 and synthesise a random combinatorial bivalent library looking for interactions at random epitopes on the protein surface. Similarly, the PEGylated small molecule inhibitor could be covalently bound to the active site, and a random combinatorial library of peptides added to the protein. \textit{In situ} conjugation could then be achieved and comparisons made to find a suitable bivalent inhibitor.

The suggestions made should provide enough optimism for the synthesis of a more potent small molecule ATPase inhibitor, whilst hopefully ensuring that inhibition is also evident with the design of new bivalent compounds.
Chapter 6: Experimental

6.1 Compound Synthesis

6.1.1 General Considerations
Melting points (Mpt) were recorded on a Gallenkamp Melting Point Apparatus and are uncorrected. Proton nuclear magnetic resonance (^1H NMR) were recorded using Bruker AV400 (400 MHz), AV500 (500 MHz) and AV600 (600 MHz) spectrometers as indicated. Carbon nuclear magnetic resonance (^13C NMR) were recorded using Bruker AV400 (100 MHz), AV500 (125 MHz) and AV600 (150 MHz) spectrometers as indicated. Spectra were obtained using CDCl3, CD2Cl2, CD3OD, CD3CN and (CD3)2SO as solvents and chemical shifts are quoted on the δ scale in units of ppm using TMS as an internal standard. Coupling constants (J) are reported in Hz with the following splitting abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), dd (doublet of doublets), bs (broad singlet), dt (doublet of triplets), td (triplet of doublets), tt (triplet of triplets) and ddd (doublet of doublets of doublets). Compounds were characterised with the aid of 2D spectra (COSY, HSQC, HMBC and NOESY).

Infra-Red (IR) spectroscopy was carried out using a PerkinElmer Spectrum 100 FT-IR Spectrometer using thin films. Absorption maxima (ν_max) are reported in wavenumbers (cm⁻¹).

High Performance Liquid Chromatography (HPLC) was performed using a Varian ProStar instrument; A Chiralpak AD column for normal phase analytical HPLC; DiscoveryBIO wide pore C18-10 (25 cm x 4.6 mm, 10 µm) for reverse phase analytical HPLC; and a DiscoveryBIO wide pore C18 (25 cm x 21.2 mm, 10 µm) column for reverse phase preparative HPLC. Each solvent used contained 0.1% TFA buffer.

Liquid Chromatography Mass Spectrometry (LCMS) was carried out using SQD-Waters Acquity UPLC/SQD with C18 (50 mm x 2.1 mm, 1.7 µm) column. A total run time of 5 minutes and flow rate of 0.6 mL/min was used with gradient elution: 95% H2O/ 5% MeCN (0 min), 5% H2O/ 95% MeCN (3 min), 95% H2O/ 5% MeCN (4.5 min). Each solvent contained 0.1% formic acid buffer. LRMS refers to low resolution mass spectrometry and HRMS refers to high resolution mass spectrometry. Electron Impact/ Chemical Ionisation (EI/CI) MS was carried out using
MAT900XP (Thermo Finnigan) instrument and electrospray ionization (ES) accurate mass was determined using Waters LCT Premier XE instrumentation.

αD was measured using PerkinElmer Model 343 Polorimeter. Three values were read at 589 nm and an average of these taken. Concentrations are given in units of g mol⁻¹ and αD in 10⁻¹ deg cm²g⁻¹.

Elemental analysis was obtained on a CE-440 CHN analyser, supplied by Exeter Analytical Instruments.

Microwave irradiation was carried out in either a CEM 150 W microwave reactor or a Biotage 120 W Initiator & Alsttra automated microwave peptide synthesiser.

Thin layer chromatography (TLC) was carried out using Fluka aluminium backed sheets coated with 60F₂₅₄ silica gel. Visualisation of the silica plates was achieved using a UV lamp (λmax = 245 nm) and/or potassium permanganate (KMnO₄ in 1M NaOH with 5% K₂CO₃). Flash chromatography was carried out using either Geduran (Merck) or ZEOprep (Apollo) Si60 40-63 μm silica gel.

Solvents and reagents were obtained from commercial sources and were used as received unless otherwise stated. Dry solvents were dried over anhydrous columns. Moisture levels were usually <15 ppm by Karl Fischer titration. Brine refers to a saturated solution of sodium chloride. Anhydrous magnesium sulfate (MgSO₄) or sodium sulfate (Na₂SO₄) were used as drying agents after reaction workup, as indicated. Pet. ether refers to the fraction of light petroleum ether boiling in the range 40-60 °C.
6.1.2 Synthesis of Target Compounds

6.1.2.1 Initial Synthetic Approach

Imidazo[1,2-a]pyrazine (115)

![Chemical Structure](image)

2-Aminopyrazine (4.00 g, 0.042 mol) and chloroacetaldehyde (aq. 50% wt/v; 7.04 mL, 0.055 mol) were stirred in MeOH (60 mL) under reflux for 24 h. The reaction was cooled on ice for 2 h to give a very dark red solution. Excess Et₂O was added, the resulting precipitate was filtered and the Et₂O was removed *in vacuo*. The resulting residue was re-dissolved in the minimum quantity of MeOH and excess Et₂O added once again. The precipitate was filtered, combined with that of the previous washes, dried, and purified by flash chromatography (applied in MeCN; eluted 5% MeOH/MeCN) to give the title compound as a deep yellow precipitate (4.89 g, 0.041 mmol, 98%) with the NMR consistent with literature values.⁴⁷ Mpt: Decomposed before melting; *R*⁰ = 0.21 (5% MeOH/MeCN); IR (ν_{max} cm⁻¹, thin film): 3319 (aromatic C-H stretch), 1486 (aromatic C=N and C=C stretches), 1328; ¹H NMR (500 MHz, CD₃OD): δ_H = 7.83 (s, 1H, 3-H), 7.88 (d, *J* = 4.7 Hz, 1H, 5-H), 8.06 (s, 1H, 2-H), 8.52 (dd, *J* = 4.7, 1.5 Hz, 1H, 6-H), 9.00 (s, 1H, 8-H); ¹³C NMR (125 MHz, CD₃OD): δ_C = 115.1 (C-2), 120.7 (C-6), 129.0 (C-5), 134.9 (C-3), 141.8 (C-9), 142.6 (C-8); LRMS m/z (El⁺): 119 [M⁺].

3,5-Dibromoimidazo[1,2-a]pyrazine (136)⁴⁷,⁵²

![Chemical Structure](image)

Br₂ (0.650 mL, 12.6 mmol) in AcOH (0.5 mL) was added dropwise to a solution of 115 (0.300 g, 2.52 mmol) dissolved in AcOH (3.5 mL), and the reaction was heated under reflux for 1 h. AcOH and residual Br₂ were removed *in vacuo* to leave an orange oil, which was taken up in NaHCO₃ (sat. aq. 75 mL) and extracted with CH₂Cl₂ (3 x 50 mL). The organic extracts were
combined, dried (Na₂SO₄), filtered and solvent removed in vacuo to give an orange solid. The regioisomers were purified by flash chromatography (applied in hexane; eluted 3:1 hexane/Et₂O) to give an off white solid (120 mg, 0.433 mmol, 17%). Normal phase chiral analytical HPLC (hexane/IPA 97:3) and reverse phase analytical HPLC indicated 2 regioisomers were present. Preparative reverse phase column (10% to 20% MeCN over 30 min) afforded the separated isomers. The solvent was removed and the samples were freeze dried. Recrystallisation from hot H₂O gave the title compound as needle like crystals, with the NMR consistent with literature values.⁴⁷,⁵² $R_f = 0.11$ (3:1 hexane/Et₂O); 1H NMR (500 MHz, CDCl₃): δ_H = 7.78 (s, 1H, 2-H), 7.98 (s, 1H, 6-H), 8.99 (s, 1H, 8-H); 13C NMR (125 MHz, CDCl₃): δ_C = 110.7 (C-3), 130.2 (C-5), 134.3 (C-6), 138.9 (C-2), 142.1 (C-9), 142.9 (C-8); LRMS m/z (EI): 279 [M(⁸¹Br₂)]⁺, 277 [M(⁷⁹⁸¹Br₂)]⁺, 275 [M(⁷⁹Br₂)]⁺, 198, 197, 196 [M-Br], 119 [M-Br₂].

Attempted formation of 8-amino-3-bromoimidazo[1,2-a]pyrazine (163)⁵¹,⁵²

![Diagram of 8-amino-3-bromoimidazo[1,2-a]pyrazine (163)]

Compound 136 (50.0 mg) was dissolved in 2.0 M NH₃/EtOH (2.5 mL) and the mixture was heated in a sealed tube at 120 °C for 5 h. After the reaction was cooled to RT, the mixture was transferred to a round bottom flask and the solvent removed in vacuo. The solid was recrystallised from hot ethanol. With the crude di-bromo species, a brown/black solid (45.9 mg) was obtained. When the pure di-bromo heterocycle was used, a pale brown fluffy and static solid (32.0 mg) resulted. In both cases, no product was evident by MS or NMR and so no further work was carried out.
6.1.2.2 Synthesis of 3-Aryl Imidazo[1,2-α]pyrazines

6.1.2.2.1 Formation of Amino Alcohol Moiety via Epoxide

2-(2-Naphthyl)oxirane (188)

![Image](image.png)

Method A:131

Purification of the 2-vinyl-naphthalene was carried out by flash chromatography (hexane; 60:1 hexane/EtOAc). To a stirred solution of 2-vinyl-naphthalene (1.54 g, 0.010 mol) in CH\textsubscript{2}Cl\textsubscript{2}/NaHCO\textsubscript{3} (sat. aq.) (1:1; 200 mL) at 0 °C, was added \textit{m}CPBA (1.73 g, 0.010 mol) in small portions over a period of 10 min. The mixture was then stirred at RT for 4 h, cooled to 0 °C, a further quantity of \textit{m}CPBA (1.73 g, 0.010 mol) added over a 10 min period and continued to stir at RT for a further 4 h. The organic layer was extracted, washed with Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (sat. aq. 4 x 25 mL) and dried (Na\textsubscript{2}SO\textsubscript{4}). The mixture was filtered and solvent removed \textit{in vacuo} to give a deep orange/red oil. The crude epoxide was purified by flash chromatography (applied in hexane; eluted 60:1 to 40:1 to 30:1 hexane/EtOAc) to give a white solid (0.524 g, 3.08 mmol, 31%) consistent with NMR literature values.294 \(R_f = 0.46 \) (6:1 hexane/EtOAc); \(\nu_{\text{max}}/\text{cm}^{-1} \) (thin film): 3060 (aromatic C-H stretch); \^H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta_H = 2.91 \text{ (dd, } J = 5.4, 2.6 \text{ Hz, 1H, 1-H)}, 3.23 \text{ (dd, } J = 5.4, 4.1 \text{ Hz, 1H, 1-H}), 4.03 \text{ (dd, } J = 4.1, 2.6 \text{ Hz, 1H, 2-H}), 7.32-7.34 \text{ (m, 1H, 4-H), 7.48-7.51 \text{ (m, 2H, 8,9-H), 7.80-7.84 \text{ (m, 4H, 5,7,10,12-H)}} \); \^C NMR (125 MHz, CDCl\textsubscript{3}): \(\delta_C = 51.4 \text{ (C-1)}, 52.7 \text{ (C-2), 122.7 (C-4), 126.2 (C-8), 126.4 (C-9), 125.2,127.8,128.5 \text{ (C-5,7,10,12)}, 133.3 \text{ (C-6), 133.4 (C-11), 135.1 (C-3); LRMS } m/z \) (EI): 170 [M]+, 154 [M-O]+, 141 [M-29]+, 115, 127.

Method B:

All glassware was flushed with Ar prior to use. The sulfur ylide was prepared \textit{in situ} by refluxing a mixture of NaH (0.123 g, 8.53 mmol) and trimethyl-oxosulfonium iodide (1.88 g, 8.53 mmol) in dry THF (10 mL) for 1.5 h in a 3-necked round bottom flask, under Ar. The resulting milky – white solution was cooled to 55 °C and a solution of 2-naphthaldehyde (1.00 g, 6.40 mmol) in dry THF (10 mL) added dropwise over a period of 30 min with stirring. The mixture
immediately turned yellow on addition of the 2-naphthaldehyde and then to orange. The mixture was stirred at 55 °C for 1 h and was then quenched with H₂O (15 mL) and extracted with Et₂O (3 x 20 mL). The combined extracts were dried (Na₂SO₄), filtered, and concentrated eluted to give a dark yellow oil. Initial purification by flash chromatography (CH₂Cl₂) afforded a light yellow oil (0.653 g, 3.84 mmol, 60%), which consisted of the starting aldehyde and product in 2:1 ratio.

6.1.2.2.2 Synthesis of α-bromo aryl ketones

2-Bromo-1-(2-phenoxyphenyl)ethanone (196)

1-(2-Phenoxyphenyl)ethanone (2.00 g, 9.42 mmol) was dissolved in CHCl₃/EtOH (1:1; 120 mL). Pyridinium tribromide (7.50 g, 23.6 mmol) was added and the reaction was stirred at 50 °C for 16 h. The reaction mixture was cooled to RT and the solvents removed in vacuo. The resulting orange slurry was suspended in H₂O (30 mL) and extracted with EtOAc (4 x 30 mL). The combined organic extracts were washed with H₂O (2 x 20 mL) and brine (1 x 20 mL), dried (Na₂SO₄), filtered and concentrated in vacuo to give a yellow oil. Flash chromatography was carried out (applied in pet. ether; eluted 0% to 10% to 33% CH₂Cl₂) to afford the title compound as a pale yellow oil (2.30 g, 7.90 mmol, 84%). Rf = 0.68 (CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 1677 (C=O stretch), 1598, 1475, 1446 (aromatic C=C stretches), 1223 (aromatic C-O stretch) ; ¹H NMR (500 MHz, CDCl₃): δH = 4.65 (s, 2H, 1-H), 6.86 (d, J = 8.4 Hz, 1H, 7-H), 7.09 (d, J = 7.7 Hz, 2H, 10-H), 7.17 (t, J = 7.6 Hz, 1H, 5-H), 7.22 (t, J = 7.3 Hz, 1H, 12-H), 7.40-7.47 (m, 3H, 6,11-H), 7.92 (dd, J = 7.6, 1.5 Hz, 1H, 4-H); ¹³C NMR (125 MHz, CDCl₃): δC = 36.8 (C-1), 117.6 (C-7), 119.5 (C-10), 123.0 (C-5), 124.4 (C-12), 126.2 (C-3), 129.9 (C-11), 131.3 (C-4), 134.2 (C-6), 155.0 (C-9), 156.5 (C-8), 191.6 (C-2); LRMS m/z (EI⁺): 292 [M (⁸¹Br)⁺], 290 [M (⁷⁹Br)⁺], 212 [M-Br]⁺, 197 [M-CH₂Br]⁺; HRMS m/z (EI⁺): Found 289.9940 [M(⁷⁹Br)⁺]; C₁₄H₁₁BrO₂ requires 289.9937.
2-Bromo-1-(3,4-dimethoxyphenyl)ethanone (197)

\[
\begin{align*}
\text{Method A:} \\
3,4\text{-Dimethoxyacetophenone (1.00 g, 5.55 mmol) was dissolved in CHCl}_3/\text{EtOH (1:1; 60 mL). Pyridinium tribromide (4.46 g, 13.9 mmol) was added and the mixture was stirred at 50 °C for 16 h. The reaction was cooled to RT and solvents removed \textit{in vacuo} to give a sticky orange solid, which was then dissolved in H}_2\text{O (30 mL), and organics extracted with EtOAc (3 x 20 mL) and washed with H}_2\text{O (2 x 20 mL) and brine (20 mL). The organics were dried (MgSO}_4\right), filtered and concentrated \textit{in vacuo} to give an orange oil containing a mixture of mono- and di-bromated species (approx 1.5:1). Flash chromatography (CH}_2\text{Cl}_2 \text{ isocratic) afforded the title compound as an off-white solid (752 mg, 2.90 mmol, 52%). Spectroscopic data was consistent with that previously reported.}^{140} \text{ Mpt: 62 °C [Lit.}^{140} \text{ 67-70 °C]; } R_f = 0.12 (\text{CH}_2\text{Cl}_2); \text{ IR (} \nu_{\text{max}} / \text{cm}^{-1}, \text{ thin film): 2940 (C-H stretch), 1679 (C=O stretch), 1585, 1512, 1465, 1418 (aromatic C=C stretches), 1241 (aromatic C-O stretch); } I^\text{H} \text{ NMR (500 MHz, CDCl}_3\right): \delta^H = 3.93 (s, 3H, 9-H), 3.95 (s, 3H, 10-H), 4.40 (s, 2H, 1-H), 6.90 (d, } J = 8.4 \text{ Hz, 1H, 5-H}), 7.53 (d, } J = 2.1 \text{ Hz, 1H, 8-H}), 7.60 (dd, } J = 8.4, 2.1 \text{ Hz, 1H, 4-H}); \text{ } I^{13}\text{C} \text{ NMR (125 MHz, CDCl}_3\right): \delta^C = 30.5 (C-1), 56.1 (C-9), 56.2 (C-10), 110.2 (C-5), 110.9 (C-8), 123.9 (C-4), 127.1 (C-3), 149.4 (C-7), 154.1 (C-6), 190.2 (C-2); \text{ LRMS m/z (EI)}^+: 260 [M}^{81}\text{Br}^+]^+, 258 [M}^{79}\text{Br}^+]^+, 165 [M-CH}_2\text{Br}^+]^+; \text{ HRMS m/z (EI)}^+: \text{ Found 257.9887 [M}^{79}\text{Br}^+]^+; \text{ C}_{10}\text{H}_{11}\text{BrO}_3 \text{ requires 257.9886.} \\
\text{Method B:} \\
3,4\text{-Dimethoxyacetophenone (1.00 g, 5.55 mmol) was dissolved in glacial acetic acid (1 mL) and the mixture was stirred on ice. Br}_2 \text{ (2.76 mL, 5.55 mmol), dissolved in AcOH (1 mL), was added to the reaction via a dropping funnel over a period of 45 min. The reaction mixture solidified on addition of the Br}_2 \text{ and so further AcOH (3 mL) was added. The reaction was stopped after 15 min, poured into crushed ice and extracted with EtOAc (3 x 20 mL). The organics were dried (Na}_2\text{SO}_4\right), filtered and solvent removed \textit{in vacuo} to give a red oil. NMR showed that no product was evident and so no further work was carried out.}
2-Bromo-1-(3,5-dimethylphenyl)ethanone (198)

3,5-Dimethyl acetophenone (1.00 g, 6.75 mmol) was dissolved in CHCl₃/EtOH (1:1; 80 mL). Pyridinium tribromide (6.47 g, 20.2 mmol) was added and the reaction was stirred at 50 °C for 17 h. The reaction mixture was cooled to RT and the solvents removed in vacuo. The resulting orange slurry was suspended in H₂O (30 mL) and extracted with EtOAc (4 x 30 mL). The combined organic extracts were washed with H₂O (2 x 20 mL) and brine (1 x 20 mL), dried (Na₂SO₄), filtered and concentrated in vacuo to give a yellow oil. Flash chromatography was carried out (applied in pet. ether; eluted pet. ether to 20:1 to 2:1 pet. ether/CH₂Cl₂) to afford the title compound as a pale yellow oil (760 g, 3.34 mmol 50%). Spectroscopic data was consistent with that previously reported. Rᵣ = 0.31 (1:1 pet. ether/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 2919 (C-H stretch), 1683 (C=O stretch); ¹H NMR (500 MHz, CDCl₃): δ_H = 2.38 (s, 6H, 7-H), 4.44 (s, 2H, 1-H), 7.24 (s, 1H, 6-H), 7.58 (s, 2H, 4-H); ¹³C NMR (125 MHz, CDCl₃): δ_C = 21.3 (C-7), 31.3 (C-1), 126.7 (C-4), 134.2 (C-3), 135.7 (C-6), 138.7 (C-5), 191.7 (C-2); LRMS m/z (EI⁺): 228[M⁺]⁺, 226 [M(79Br)⁺], 133 [M-CH₂Br⁺]; HRMS m/z (EI⁺) [M(79Br)⁺]: Found 225.9985; C₁₀H₁₁BrO requires 225.9988.

2-Bromo-1-(3-thienyl)-1-ethanone (199)

1-(3-Thienyl)ethanone (2.00 g, 15.9 mmol) was dissolved in CHCl₃/EtOH (1:1; 200 mL). Pyridinium tribromide (10.1 g, 31.7 mmol) was added and the reaction was stirred at 50 °C for 18 h. The reaction mixture was cooled to RT and the solvents removed in vacuo. The resulting orange slurry was suspended in H₂O (40 mL) and extracted with EtOAc (4 x 50 mL). The combined organic extracts were washed with H₂O (2 x 30 mL) and brine (1 x 30 mL), dried (MgSO₄), filtered and concentrated in vacuo to give an amber liquid. Flash chromatography was
carried out (pet. ether; 3:1 pet. ether/CH₂Cl₂) to afford the title compound as a white solid (1.61 g, 7.81 mmol, 49%). Spectroscopic data was consistent with that previously reported. Mpt: 59-60 °C [Lit. 60-65 °C]; Rf = 0.48 (1:1 pet. ether/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3095 (C-H stretch), 1689 (C=O stretch), 1508, 1415, 1400, 1393, 1380 (aromatic C=C stretches), 1181; ¹H NMR (600 MHz, CDCl₃): δH = 4.34 (s, 2H, 1-H), 7.36 (dd, J = 5.2, 2.9 Hz, 1H, 5-H), 7.58 (dd, J = 5.2, 1.3 Hz, 1H, 4-H), 8.17 (dd, J = 2.9, 1.3 Hz, 1H, 7-H); ¹³C NMR (150 MHz, CDCl₃): δC = 31.7 (C-1), 127.0 (C-5), 127.4 (C-4), 133.9 (C-7), 138.9 (C-3), 185.7 (C-2); LRMS m/z (CI⁺): 207 [M(81Br)]⁺, 205 [M(79Br)]⁺.

6.1.2.2.3 Synthesis of α-azido aryl ketone

2-Azido-1-(2-naphthyl)ethanone (200)

2-(Bromoacetyl)naphthalene (2.00 g, 8.03 mmol) was dissolved in DMSO (10 mL) and the mixture was cooled on ice such that the temperature was kept below 10 °C. NaN₃ (0.630 g, 9.64 mmol) was added in one portion and the reaction was stirred under Ar at RT for 90 min. The reaction was quenched with H₂O (20 mL), and extracted with EtOAc (3 x 30 mL). The organic layers were combined, washed with H₂O, dried (Na₂SO₄) and filtered. The solvent was removed in vacuo to give the title compound as a brown/orange oil (1.69 g, 8.01 mmol, 100%) with NMR consistent with literature values. Rf = 0.63 (5:1 pet. ether/ETOAc); IR (νmax/cm⁻¹, thin film): 2105 (-N=N+=N- stretch), 1690 (C=O stretch); ¹H NMR (600 MHz, CDCl₃): δH = 4.73 (s, 2H, 1-H), 7.59-7.62 (m, 1H, 7-H), 7.65-7.68 (m, 1H, 8-H), 7.91 (d, J = 8.1 Hz, 1H, 9-H), 7.95 (d, J = 8.6 Hz, 1H, 11-H), 7.98-8.01 (m, 2H, 6,12-H), 8.42 (s, 1H, 4-H); ¹³C NMR (150 MHz, CDCl₃): δC = 55.0 (C-1), 123.3 (C-12), 127.2 (C-7), 127.9 (C-9) 129.0 (C-11), 129.1 (C-8), 129.6 (C-6), 129.8 (C-4), 131.7 (C-5), 132.4 (C-10), 136.0 (C-3), 193.2 (C-2); LRMS m/z (EI⁺): 211 [M]⁺, 155 [M-CH₂N₃]⁺, 127 [Naphthalene]⁺.
2-Bromo-1-(2-phenoxyphenyl)ethanone (3.07 g, 10.5 mmol) was dissolved in DMSO (15 mL) and the mixture was cooled on ice. NaN₃ (824 mg, 12.7 mmol) was added in one portion and the reaction was stirred under Ar at RT for 5 h. An extra portion of NaN₃ (200 mg) was added and left to stir at RT. After 15 h, the reaction was quenched with H₂O (30 mL), and extracted with EtOAc (4 x 40 mL). The combined organic layers were washed with H₂O (5 x 20 mL), dried (Na₂SO₄) and filtered. The solvent was removed in vacuo to give the title compound as a brown oil (2.52 g, 9.96 mmol, 95%). Rᵥ = 0.4 (CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3071 (C-H stretch), 2100 (-N=N+=N- stretch), 1685 (C=O stretch), 1599, 1475, 1448 (aromatic C=C stretches), 1225 (aromatic C-O stretch); ¹H NMR (500 MHz, CDCl₃): δ_H = 4.60 (s, 2H, 1-H), 6.87 (dd, J = 8.3, 0.9 Hz, 1H, 7-H), 7.04-7.06 (m, 2H, 10,14-H), 7.18-7.23 (m 2H, 5,12-H), 7.40-7.43 (m, 2H, 11,13-H), 7.45-7.49 (m, 1H, 6-H), 7.92 (dd, J = 7.8, 1.5 Hz, 1H, 4-H); ¹³C NMR (125 MHz, CDCl₃): δ_C = 58.9 (C-1), 118.0 (C-7), 119.2 (C-10), 123.2 (C-5), 124.4 (C-12), 126.2 (C-3), 130.0 (C-11), 130.8 (C-4), 134.5 (C-6), 155.0 (C-9), 157.0 (C-8), 193.6 (C-2); LRMS m/z (Cl⁺): 198 [M-CH₂N₃]⁺, 85 [COCH₂N₃]⁺.

2-Azido-1-(3,4-dimethoxyphenyl)ethanone (202)

197 (2.33 g, 8.61 mmol) was dissolved in anhydrous DMSO (10 mL) and the mixture was cooled on ice. NaN₃ (671 mg, 10.3 mmol) was added in one portion (an immediate colour change of yellow to orange was observed) and the reaction was stirred under Ar at RT for 2 h. The reaction was then quenched with H₂O (30 mL) and extracted with EtOAc (4 x 40 mL). The combined
organic layers were washed with H$_2$O (5 x 20 mL) and brine (20 mL), dried (MgSO$_4$) and filtered. The solvent was removed \textit{in vacuo} to give the title compound as a sticky orange solid (1.87 g, 8.46 mmol, 98%) with NMR data comparable with literature values.298 $R_f = 0.22$ (CH$_2$Cl$_2$); IR (ν_{max}/cm$^{-1}$, thin film): 2106 (-N=N+=N- stretch), 1682 (C=O stretch), 1595, 1515 (aromatic C=C stretches), 1264 (aromatic C-O stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 3.94$ (s, 3H, 9-H), 3.96 (s, 3H, 10-H), 4.52 (s, 2H, 1-H), 6.90 (d, $J = 8.5$ Hz, 1H, 5-H), 7.47 (dd, $J = 8.5, 2.1$ Hz, 1H, 4-H), 7.52 (d, $J = 2.1$ Hz, 1H, 8-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 54.5$ (C-1), 56.1 (C-9), 56.2 (C-10), 110.0 (C-8), 110.1 (C-5), 122.5 (C-4), 127.5 (C-3), 149.4 (C-7), 154.1 (C-6), 191.8 (C-2); LRMS m/z (CI$^+$): 222 [M+H]$^+$, 165 [M-CH$_2$N$_3$]$^+$; HRMS m/z (CI$^+$): Found 222.0878 [M+H]$^+$; C$_{10}$H$_{12}$N$_3$O$_3$ requires 222.0879.

\textbf{2-Azido-1-(3,5-dimethylphenyl)ethanone (203)}

198 (3.44 g, 15.1 mmol) was dissolved in anhydrous DMSO (15 mL) and the mixture was cooled on ice. NaN$_3$ (1.18 g, 18.2 mmol) was added in one portion and the reaction was stirred under Ar at RT for 16 h. An extra portion of NaN$_3$ (200 mg) was added and the reaction was left to stir for a further 1 h. A colour change from yellow to deep orange was observed. The reaction was then quenched with H$_2$O (30 mL), and extracted with EtOAc (4 x 40 mL). The combined organic layers were washed with H$_2$O (5 x 20 mL) and brine (20 mL), dried (MgSO$_4$) and filtered. The solvent was removed \textit{in vacuo} to give the title compound as a sticky orange solid (2.85 g, 15.1 mmol, 100%). $R_f = 0.59$ (CH$_2$Cl$_2$); IR (ν_{max}/cm$^{-1}$, thin film): 2920 (C-H stretch), 2105 (-N=N+=N- stretch), 1692 (C=O stretch), 1604 (aromatic C=C stretch); 1H NMR (500 MHz, CDCl$_3$): $\delta_H = 2.35$ (s, 6H, 7-H), 4.52 (s, 2H, 1-H), 7.20 (s, 1H, 6-H), 7.40 (s, 2H, 4-H); 13C NMR (125 MHz, CDCl$_3$): $\delta_C = 21.3$ (C-7), 55.0 (C-1), 125.7 (C-4), 134.5 (C-3), 135.9 (C-6), 138.8 (C-5), 193.6 (C-2); LRMS m/z (CI$^+$): 132 [M-CH$_2$N$_3$]$^+$.

183
2-Azido-1-(3-thienyl)ethanone (204)

![Chemical Structure](image)

2-Bromo-1-(3-thienyl)-1-ethanone (573 mg, 2.80 mmol) was dissolved in DMSO (3 mL) and the mixture was cooled on ice. NaN₃ (218 mg, 3.35 mmol) was added in one portion and the reaction was stirred under Ar at RT for 5 h. The reaction was quenched with H₂O (20 mL), and extracted with EtOAc (3 x 30 mL). The organic layers were combined, washed with H₂O (5 x 20 mL) and brine (20 mL), dried (Na₂SO₄) and filtered. The solvent was removed in vacuo to give the title compound as a brown/orange oil (460 mg, 2.75 mmol, 98%).

Rf = 0.27 (CH₂Cl₂); IR (ν max/cm⁻¹, thin film): 3105 (C-H stretch), 2097 (-N=N+=N- stretch), 1679 (C=O stretch), 1508, 1409, 1231, 1177; ¹H NMR (500 MHz,CDCl₃): δH = 4.43 (s, 2H, 1-H), 7.38 (dd, J = 5.1, 2.9 Hz, 1H, 5-H), 7.55 (dd, J = 5.1, 1.3 Hz, 1H, 4-H), 8.10 (dd, J = 2.9, 1.3 Hz, 1H, 7-H); ¹³C NMR (125 MHz, CDCl₃): δC = 55.5 (C-1), 126.6 (C-5), 127.2 (C-4), 132.7 (C-7), 139.1 (C-3), 187.6 (C-2); LRMS m/z (ES⁺): 185 [M+18]⁺, 168 [M+H]⁺; HRMS m/z (ES⁺): Found 168.0235 [M+H]⁺; C₆H₆N₃OS requires 168.0232.

6.1.2.2.4 Synthesis of α-azido aryl alcohols

2-Azido-1-(2-naphthyl)ethanol (205)

Method A:

200 (2.11 g, 10.0 mmol) was dissolved in anhydrous MeOH (100 mL) and cooled on ice. NaBH₄ (568 mg, 15.0 mmol) was added portionwise and the mixture was stirred on ice under Ar for 1 h. The solvent was removed and the resulting residue was taken up in CH₂Cl₂ (100 mL) and carefully washed with H₂O (2 x 60 mL) followed by brine (60 mL). The organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuo to give the title compound as a brown oil (2.14...
g, 10.0 mmol, 100%). Spectroscopic data was consistent to that previously reported.299 $R_f = 0.65$ (3:1 pet. ether/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3398 (O-H stretch), 2100 (-N=N+=N- stretch); 1H NMR (500 MHz, CDCl$_3$): $\delta_H = 2.70$ (bs, 1H, 13-H), 3.46-3.58 (m, 2H, 1-H), 5.02 (dd, $J = 8.1$, 3.9 Hz, 1H, 2-H), 7.44 (dd $J = 8.4$, 1.6 Hz, 1H, 11-H), 7.49-7.52 (m, 2H, 7,8-H), 7.83-7.86 (m, 4H, 4,6,7,12-H); 13C NMR (125 MHz, CDCl$_3$): $\delta_C = 58.1$ (C-1), 73.6 (C-2), 123.7 (C-12), 125.1 (C-7), 126.4 (C-9), 126.5 (C-11), 127.8 (C-8), 128.1 (C-6), 128.6 (C-4), 133.3 (overlapping signals, C-5,10), 138.0 (C-3); LRMS m/z (EI$^+$): 221, 157 [M-CH$_2$N$_3$]+, 147, 129.

\textit{Method B:}

\textbf{200} (1.70 g, 8.06 mmol) was dissolved in anhydrous Et$_2$O (70 mL). Activated neutral alumina (7.00 g) and NaBH$_4$ (609 mg, 16.11 mmol) were added and the suspension was stirred at RT under Ar. After 15 h the reaction mixture was filtered and washed with Et$_2$O. The resulting filtrate was washed with H$_2$O (2 x 20 mL) and brine (2 x 20 mL). The combined organic extracts were dried (Na$_2$SO$_4$), filtered and concentrated \textit{in vacuo} to give the title compound as an orange/yellow oil (962 mg, 4.52 mmol, 56%).

\textit{Method C:}

Epoxide 188 (50.0 mg, 0.294 mmol) was taken up in anhydrous MeCN (2 mL), molecular sieves (4Å, 100 mg) were added and the vessel was evacuated and charged with Ar. NaN$_3$ (28.7 mg, 0.441 mmol) was added and the mixture was stirred under Ar for 24 h. No reaction was indicated by TLC and so no further work was carried out.

\textbf{2-Azido-1-(2-phenoxyphenyl)ethanol (206)}

\textit{Method A:}

\textbf{201} (2.52 g, 9.96 mmol) was dissolved in anhydrous MeOH (50 mL) and cooled on ice. NaBH$_4$ (565 mg, 14.9 mmol) was added portionwise and the mixture was stirred on ice under Ar for 1 h.
The solvent was removed and the resulting residue was taken up in CH$_2$Cl$_2$ (50 mL) and carefully washed with H$_2$O (2 x 40 mL). Re-extraction of the aqueous layers with CH$_2$Cl$_2$ (3 x 30 mL), followed by washing the combined organic extracts with brine, drying (Na$_2$SO$_4$), filtering and concentrating in vacuo gave the title compound as a brown oil (2.47 g, 9.69 mmol, 97%). R_f = 0.19 (CH$_2$Cl$_2$); IR (ν_{max}/cm^{-1}, thin film): 3413 (O-H stretch), 3039 (C-H stretch), 2102 (-N=N+=N- stretch), 1583, 1483, 1452 (aromatic C=C stretches), 1230 (aromatic C-O-C stretch); 1H NMR (500 MHz, CDCl$_3$): δH = 2.54 (bs, 1H, 15-H), 3.50 (dd, J = 12.5, 8.0 Hz, 1H, 1-H), 3.58 (dd, J = 12.5, 3.5 Hz, 1H, 1-H), 5.23 (dd, J = 8.0, 3.5 Hz, 1H, 2-H), 6.84 (dd, J = 8.2, 1.1 Hz, 1H, 7-H), 6.97-7.00 (m, 2H, 10-H), 7.13 (tt, J = 7.6, 1.1 Hz, 1H, 5-H), 7.17 (td, J = 7.5, 1.0 Hz, 1H, 12-H), 7.24-7.27 (m, 1H, 6-H), 7.34-7.37 (m, 2H, 11-H), 7.58 (dd, J = 7.6, 1.7 Hz, 1H, 4-H); 13C NMR (125 MHz, CDCl$_3$): δC = 56.5 (C-1), 68.7 (C-2), 118.0 (C-7), 118.3 (C-10), 123.4 (C-5), 123.5 (C-12), 127.1 (C-4), 129.6 (C-6), 129.6 (C-11), 130.8 (C-3), 153.5 (C-9), 156.3 (C-8); LRMS m/z (Cl$^+$): 200 [M-CH$_2$N$_3$]$^+$, 182 [M-OH,CH$_2$N$_3$]$^+$.

Method B:

201 (660 mg, 2.61 mmol) was dissolved in anhydrous Et$_2$O (30 mL). Activated neutral alumina (3.00 g) and NaBH$_4$ (197 mg, 5.21 mmol) were added and the suspension was stirred at RT under Ar. After 14 h the reaction mixture was filtered and washed with Et$_2$O. The resulting filtrate was washed with H$_2$O (2 x 20 mL), followed by brine (2 x 20 mL). The combined organic extracts were dried (Na$_2$SO$_4$), filtered and concentrated in vacuo to give the title compound as an orange oil (394 mg, 1.54 mmol, 59%).

2-Azido-1-(3,4-dimethoxyphenyl)ethanol (207)

202 (1.86 g, 8.40 mmol) was dissolved in anhydrous Et$_2$O (80 mL). Activated neutral alumina (8.00 g) and NaBH$_4$ (635 mg, 16.8 mmol) were added and the suspension was stirred at RT under Ar. After 16 h the reaction mixture was filtered and washed with Et$_2$O. The resulting filtrate was
washed with H₂O (2 x 30 mL), followed by brine (2 x 30 mL). The combined organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuo to give the title compound as a yellow oil (1.64 g, 7.37 mmol, 87%). \(R_f = 0.65\) (2:1 CH₂Cl₂/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3497 (O-H stretch), 2938, 2839 (C-H stretch), 2106 (-N≡N=N- stretch), 1516 (aromatic C=C stretch), 1263 (aromatic C-O-C stretch); \(^1\)H NMR (500 MHz, CDCl₃): \(\delta_H = 2.67\) (bs, 1H, 11-H), 3.36 (dd, \(J = 12.6, 3.8\) Hz, 1H, 1-H), 3.49 (dd, \(J = 12.6, 8.3\) Hz, 1H, 9-H), 3.84 (s, 3H, 10-H), 4.78 (dd, \(J = 8.3, 3.8\) Hz, 1H, 2-H), 6.82 (d, \(J = 8.2\) Hz, 1H, 5-H), 6.86 (dd, \(J = 8.2, 1.9\) Hz, 1H, 4-H), 6.89 (d, \(J = 1.9\) Hz, 1H, 8-H); \(^{13}\)C NMR (125 MHz, CDCl₃): \(\delta_C = 55.6\) (C-9,10), 57.7 (C-1), 72.9 (C-2), 108.6 (C-8), 110.8 (C-5), 117.9 (C-4), 132.0 (C-3), 148.6 (C-7), 148.8 (C-6); LRMS m/z (EI⁺): 223 [M]+, 167 [M-CH₂N₃]+, 139 [M-CH(OH)CH₂N₃]+.

2-Azido-1-(3,5-dimethylphenyl)ethanol (208)

\[
\begin{align*}
\text{Method A:} \\
203 \text{ (2.85 g, 15.1 mmol) was dissolved in anhydrous MeOH (60 mL) and cooled on ice. NaBH}_4 \text{ (855 mg, 22.6 mmol) was added portionwise and the mixture was stirred on ice under Ar for 1 h. The solvent was removed and the resulting orange oil was taken up in CH}_2\text{Cl}_2 \text{ (60 mL) and carefully washed with 2.0 M HCl (40 mL), H}_2\text{O (30 mL) and brine (30 mL). The combined organic extracts were dried (MgSO}_4\text{), filtered and concentrated in vacuo to give the title compound as an orange oil (2.85 g, 14.9 mmol, 99%). } \nonumber
\end{align*}
\]
\(R_f = 0.27\) (CH₂Cl₂); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3395 (O-H stretch), 2918 (C-H stretch), 2099 (-N≡N=N- stretch); \(^1\)H NMR (500 MHz, CDCl₃): \(\delta_H = 2.32\) (s, 6H, 7-H), 3.40 (dd, \(J = 12.6, 3.8\) Hz, 1H, 1-H), 3.47 (dd, \(J = 12.6, 8.4\) Hz, 1H, 1-H), 4.79 (dd, \(J = 8.4, 3.8\) Hz, 1H, 2-H), 6.96 (s, 1H, 6-H), 6.97 (s, 2H, 4-H); \(^{13}\)C NMR (125 MHz, CDCl₃): \(\delta_C = 21.2\) (C-7), 58.2 (C-1), 73.5 (C-2), 123.8 (C-4), 130.0 (C-6), 138.4 (C-5), 140.7 (C-3); LRMS m/z (Cl⁺): 192 [M+H]+, 132 [M-OH-N₃]+.
Method B:

203 (707 mg, 3.74 mmol) was dissolved in anhydrous Et₂O (30 mL). Activated neutral alumina (3.00 g) and NaBH₄ (283 mg, 7.48 mmol) were added and the suspension was stirred at RT under Ar. After 18 h the reaction mixture was filtered and washed with Et₂O. The resulting filtrate was washed with H₂O (2 x 30 mL), followed by brine (2 x 30 mL). The combined organic extracts were dried (Na₂SO₄), filtered and concentrated *in vacuo* to give the title compound as an orange oil (419 mg, 2.18 mmol, 58%).

2-Azido-1-(3-thienyl)ethanol (209)

Method A:

204 (278 mg, 1.67 mmol) was dissolved in anhydrous MeOH (10 mL) and cooled on ice. NaBH₄ (94.5 mg, 2.45 mmol) was added portionwise and the mixture was stirred on ice under Ar for 1 h. The solvent was removed and the resulting residue was taken up in CH₂Cl₂ (30 mL) and carefully washed with H₂O (2 x 20 mL) followed by brine (20 mL). The organic extracts were dried (Na₂SO₄), filtered and concentrated *in vacuo* to give the title compound as a yellow oil (257 mg, 1.52 mmol, 91%). Rₐ = 0.8 (1:1 pet. ether/EtOAc); IR (ν⁺/cm⁻¹, thin film): 3372 (O-H stretch), 3105 (C-H stretch), 2096 (-N=N+=N- stretch); ¹H NMR (500 MHz, CDCl₃): δ = 3.51-3.54 (m, 2H, 1-H), 4.98 (dd, J = 4.7, 1.9 Hz, 1H, 2-H), 7.08 (dd, J = 5.0, 1.3 Hz, 1H, 4-H), 7.29-7.30 (m, 1H, 7-H), 7.34 (dd, J = 5.0, 3.0 Hz, 1H, 5-H); ¹³C NMR (125 MHz, CDCl₃): δC = 57.5 (C-1), 69.9 (C-2) 122.0 (C-7), 125.4 (C-4), 126.7 (C-5), 142.0 (C-3); LRMS m/z (CI⁺): 152 [M-OH]⁺, 127 [M-N₃]⁺, 113 [M-CH₂N₃]⁺; HRMS m/z (Cl⁺): Found 152.0286 [M-OH]⁺; C₆H₆N₃S requires 152.0282.

Method B:

204 (500 mg, 2.99 mmol) was dissolved in anhydrous Et₂O (20 mL). Activated neutral alumina (2.00 g) and NaBH₄ (226 mg, 5.99 mmol) were added and the suspension was stirred at RT under
Ar. After 14 h the reaction mixture was filtered and washed with Et₂O. The resulting filtrate was washed with H₂O (2 x 20 mL), followed by brine (2 x 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuo to give the title compound as an orange oil (299 mg, 1.77 mmol, 59%).

6.1.2.2.5 Synthesis of α-amino aryl alcohols

2-Amino-1-(2-naphthyl)ethanol (166)

Method A:

205 (2.18 g, 10.2 mmol) was dissolved in anhydrous MeOH (50 mL) and 10% Pd/C (218 mg, 10% wt/wt) was added. The vessel was evacuated and purged with Ar (3x), and under static vacuum a balloon of H₂ was added. The reaction was stirred at RT under H₂ atmosphere until completion as determined by TLC and disappearance of N₃ peak by IR. After 3½ h, the H₂ was carefully released, the vessel evacuated and purged Ar (3x), and the reaction mixture was filtered through Celite (pre-washed with MeOH). Solvent removal in vacuo gave the title compound as a orange oil (1.91 mg, 10.2 mmol, 100%). Spectroscopic data was consistent with that previously reported.²⁹⁹ R_f = 0.06 (5:1 EtOAc/MeOH); IR (ν_max/cm⁻¹, thin film): 3290 (O-H stretch), 3054 (C-H stretch), 2916 (N-H stretch), 1599 (N-H bend); ¹H NMR (500 MHz, CDCl₃): δ_H = 2.82 (m, 2H, 1-H), 4.59-4.75 (m, 1H, 2-H), 7.36-7.40 (m, 3H, 7,8,9-H), 7.74-7.76 (m, 4H, 4,6,11,12-H); ¹³C NMR (125 MHz, CDCl₃): δ_C = 49.8 (C-1), 74.3 (C-2), 123.8 (C-12), 124.5 (C-7), 125.7 (C-9), 126.0 (C-11), 127.5 (C-8), 128.1 (C-4), 132.8 (C-5), 133.1 (C-10), 139.7 (C-3); LRMS m/z (ES⁺): 229.2 [M+MeCN]⁺, 211.2 [M+Na]⁺, 188.1 [M+H]⁺, 170 [M-OH]⁺.

Method B:

Compound 188 (250 mg, 1.41 mmol) was dissolved in EtOH (2 mL) and 2.0 M NH₃/EtOH (8 mL) was added and the mixture was heated in a sealed tube at 100 °C for 2 h. A green solid (by-product) was isolated by filtration (105 mg) and the filtrate was concentrated in vacuo to give a
yellow solid (91.6 mg). Reverse phase flash chromatography (40% MeCN/60%, 20% w/v NaHCO₃ solution) was carried out on the filtrate, but no product was observed.

Method C:

Compound **188** (50.0 mg, 0.294 mmol) was added to a solution of hexamethylenetetramine (20.6 mg, 0.147 mmol) in EtOH (1 mL). The mixture was stirred at reflux for 7 h, before it was allowed to cool gradually to RT. The solid was re-dissolved in EtOH (1 mL), treated with concentrated HCl (100 µL) and warmed to 50 °C for 10 min. After cooling to RT, the sample was dissolved in CH₂Cl₂ (10 mL), the pH was adjusted to ~ pH 8 *via* the addition of NaHCO₃ and was washed with brine (3 x 4 mL). The aqueous layers were washed with CH₂Cl₂ (10 mL), before the organic layers were combined and dried (Na₂SO₄), filtered and evaporated to give a light amber coloured oil (32.2 mg). No further work was carried out.

Method D:

Compound **188** (20.0 mg, 0.118 mmol) and ammonium acetate (13.6 mg, 0.177 mmol) were weighed into a microwave reaction tube. The mixture was heated to 100 °C at a power of 300 W, with a ramp time of 30 s and hold time of 20 s. NMR and TLC indicated majority starting material present, with MS showing trace quantities of product mass. No further work was carried out.

Method E (via 2-[(4-methoxyphenyl)amino]-1-(2-naphthyl)ethanol):

Compound **188** (50.0 mg, 0.294 mmol), 4-methoxybenzylamine (45.7 µL, 0.352 mmol) and H₂O (600 µL) were stirred vigorously at RT for 15 h. The organics were extracted using Et₂O (3 x 5 mL), combined, dried (Na₂SO₄), filtered and solvent removed to give a pale yellow solid. MS showed no desired product mass and so no further work was carried out.
2-Amino-1-(2-phenoxyphenyl)ethanol (167)

206 (2.46 g, 9.66 mmol) was dissolved in anhydrous MeOH (50 mL) and 10% Pd/C (246 mg, 10% wt/wt) was added. The vessel was evacuated and purged with Ar (3x), and under static vacuum a balloon of H₂ was added. The reaction was stirred at RT under H₂ atmosphere until completion as determined by TLC and disappearance of N₃ peak by IR. After 22 h, the H₂ was carefully released, the vessel evacuated and purged Ar (3x), and the reaction mixture was filtered through Celite (pre-washed with MeOH). Solvent removal in vacuo gave the title compound as a brown oil (2.21 g, 9.66 mmol, 100%). Rᵣ = 0.0 (CH₂Cl₂); IR (νₘ₉₅/cm⁻¹, thin film): 3413 (O-H stretch), 3055 (C-H stretch), 2983 (N-H stretch); ¹H NMR (600 MHz, CDCl₃): δ_H = 2.17 (bs, 3H, 15,16-H), 2.84 (dd, J = 13.2, 7.8 Hz, 1H, 1-H), 3.10 (dd, J = 13.2, 4.2 Hz, 1H, 1-H), 4.99 (dd, J = 7.8, 3.6 Hz, 1H, 2-H), 6.82 (dd, J = 8.4, 1.2 Hz, 1H, 7-H), 6.95 (d, J = 7.8 Hz, 2H, 10-H), 7.08-7.11 (m, 1H, 12-H), 7.13-7.15 (m, 1H, 5-H), 7.21 (td, J = 7.8, 1.8 Hz, 1H, 6-H), 7.30-7.33 (m, 2H, 11-H), 7.57 (dd, J = 7.8, 1.2 Hz, 1H, 4-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 47.7 (C-1), 69.4 (C-2), 118.2 (C-7), 118.5 (C-10), 123.4 (C-12), 123.9 (C-5), 127.5 (C-4), 128.6 (C-6), 130.0 (C-11), 133.3 (C-3), 153.8 (C-9), 157.2 (C-8); LRMS m/z (ES⁺): 230.1 [M+H]⁺ 212.1 [M-OH]⁺, 195.1 [M-OH, NH₂]⁺.

2-amino-1-(3,4-dimethoxyphenyl)ethanol (168)
207 (1.58 g, 7.09 mmol) was dissolved in anhydrous MeOH (30 mL) and 10% Pd/C (158 mg, 10% wt/wt) was added. The vessel was evacuated and purged with Ar (3x), and under static vacuum a balloon of H₂ was added. The reaction was stirred at RT under H₂ atmosphere until completion as determined by TLC and disappearance of N₃ peak by IR. After 2 h, the H₂ was carefully released, the vessel evacuated and purged Ar (3x) and the reaction mixture was filtered through Celite (pre-washed with MeOH). Solvent removal in vacuo gave the crude compound as an orange oil. Flash chromatography (100% EtOAc followed by 100% MeOH), followed by redissolving in CH₂Cl₂ and filtering to remove silica yielded the title compound as a white solid (880 mg, 4.47 mmol, 63%). On repeating the reaction, with no flash chromatography, the title compound was obtained in quantitative yield. Spectroscopic data was consistent that previously reported.\(^{300}\) \(R_f = 0.30\) (1:1 EtOAc/MeOH); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3362 (O-H stretch), 2938, 2838 (N-H stretch); \(^1\)H NMR (500 MHz, CDCl₃): \(\delta_H = 2.14\) (bs, 3H, \(11,12-H\)), 2.80 (dd, \(J = 12.7, 7.9\) Hz, 1H, \(1-H\)), 2.96 (dd, \(J = 12.6, 4.0\) Hz, 1H, \(1-H\)), 3.86 (s, 3H, \(9-H\)), 3.88 (s, 3H, \(10-H\)), 4.56 (dd, \(J = 7.9, 4.0\) Hz, 1H, \(2-H\)), 6.82 (d, \(J = 8.2\) Hz, 1H, \(5-H\)), 6.86 (dd, \(J = 8.5, 1.8\) Hz, 1H, \(4-H\)), 6.91 (d, \(J = 1.8\) Hz, 1H, \(8-H\)); \(^{13}\)C NMR (125 MHz, CDCl₃): \(\delta_C = 48.9\) (C-1), 55.5 (C-9), 55.6 (C-10) 73.8 (C-2), 108.7 (C-8), 110.7 (C-5), 117.8 (C-4), 134.8 (C-3), 148.1 (C-7), 148.7 (C-6); LRMS m/z (EI⁺): 197 [M⁺], 167 [M-CH₂NH₂]⁺; HRMS m/z (EI⁺): Found: 197.1049 [M⁺]; C₁₀H₁₅NO₃ requires 197.1046.

2-Amino-1-(3,5-dimethylphenyl)ethanol (169)

208 (2.85 g, 14.9 mmol) was dissolved in anhydrous MeOH (60 mL) and 10% Pd/C (285 mg, 10% wt/wt) was added. The vessel was evacuated and purged with Ar (3x), and under static vacuum a balloon of H₂ was added. The reaction was stirred at RT under H₂ atmosphere until completion as determined by TLC and disappearance of N₃ peak by IR. After 22 h, the H₂ was carefully released, the vessel evacuated and purged Ar (3x) and the reaction mixture was filtered through Celite (pre-washed with MeOH). Solvent removal in vacuo gave the title compound as a
sticky green/brown solid (2.37 g, 14.4 mmol, 97%). $R_f = 0.0$ (CH$_2$Cl$_2$); IR (ν_{max}/cm$^{-1}$, thin film): 3289 (O-H stretch), 3010 (C-H stretch), 2916, 2861 (N-H stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 2.31$ (s, 6H, 7-H), 2.81 (dd, $J = 12.6, 7.8$ Hz, 1H, 1-H), 2.96 (dd, $J = 13.2, 4.2$ Hz, 1H, 1-H), 4.57 (dd, $J = 7.8, 4.2$ Hz, 1H, 2-H), 6.91 (s, 1H, 6-H), 6.96 (s, 2H, 4-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 21.5$ (C-7), 49.3 (C-1), 74.5 (C-2), 123.8 (C-4), 130.6 (C-6), 138.1 (C-5), 142.5 (C-3); LRMS m/z (EI$^+$): 224, 135 [M-CH$_2$NH$_2$]$^+$, 117 [M-CH$_2$OHNH$_2$]$^+$.

2-Amino-1-(3-thienyl)ethanol (170)

209 (257 mg, 1.52 mmol) was dissolved in anhydrous MeOH (10 mL) and 10% Pd/C (25.7 mg, 10% w/w) was added. The vessel was evacuated and purged with Ar (3x), and under static vacuum the reaction vessel was subjected to 3 bar H$_2$ for 5 h. After this period the mixture was filtered through Celite and concentrated in vacuo to give a pale yellow solid (217 mg, 1.52 mmol, 100%). $R_f = 0.0$ (1:1 CH$_2$Cl$_2$/EtOAc); ν_{max}/cm$^{-1}$ (thin film): 3194 (O-H stretch), 3010 (N-H stretch), 2921 (C-H stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 1.91$ (bs, 3H, 8,9-H), 2.88 (dd, $J = 12.6, 7.8$ Hz, 1H, 1-H), 3.04 (d, $J = 10.2$ Hz, 1H, 1-H), 4.75 (dd, $J = 6.6, 3.6$ Hz, 1H, 2-H), 7.08 (d, $J = 5.4$ Hz, 1H, 4-H), 7.23 (d, $J = 2.4$ Hz, 1H, 7-H), 7.31 (dd, $J = 4.8, 3.0$ Hz, 1H, 5-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 48.4$ (C-1), 70.9 (C-2) 121.1 (C-7), 125.6 (C-4), 126.3 (C-5), 144.0 (C-3); LRMS m/z (CI$^+$): 177, 159, 127 [M-NH$_2$]$^+$; (EI$^+$): 131, 127 [M-NH$_2$]$^+$, 119, 114.

6.1.2.2.6 *Synthesis of α-amino aryl ketones*

2-Amino-1-(2-naphthyl)ethanone hydrochloride (210)
Method A. \(^{142}\)

2-Azido-1-(naphthalene-2-yl)ethanone (1.57 g, 7.44 mmol) was dissolved in MeOH (12 mL), and 10% Pd/C (15.7 mg, 1% wt/wt) was added. 2.0 M HCl/ Et₂O (7 mL) was added and the vessel was evacuated and purged with Ar (3x), and under static vacuum a balloon of H₂ was added. The reaction was stirred at RT under H₂ atmosphere. After 24 h a further 1 mol% 10% Pd/C was added and the reaction was topped up with H₂. After 24 h, the H₂ balloon was removed, the vessel evacuated and purged Ar (3x), the reaction mixture was filtered through Celite, washed with MeOH and concentrated \textit{in vacuo}. The residual was then stirred vigorously in EtOAc (25 mL) for 2 h at RT. Filtration of the suspension followed by washing with EtOAc afforded the crude material as a pale yellow solid. Flash chromatography was carried out (pet. ether; 10:1 to 5:1 to 1:1 pet. ether/EtOAc to 10% MeOH/EtOAc) to afford the title compound as a pink/red solid. Flash chromatography was carried out (pet. ether; 10:1 to 5:1 to 1:1 pet. ether/EtOAc to 10% MeOH/EtOAc) to afford the title compound as a pink/red solid (366 mg, 1.98 mmol, 27%). \(R_f = 0.25\) (MeOH); \(v_{\text{max}}/\text{cm}^{-1}\) (thin film): 2939 (C-H stretch), 2837, 2791 (N-H stretch), 1688 (C=O stretch); \(^1\)H NMR (500 MHz, CD₃OD): \(\delta_H = 4.74\) (s, 2H, 1-H), 7.63-7.69 (m, 2H, 7,8-H), 7.96-8.10 (m, 4H, 6,9,11,12-H), 8.66 (s, 1H, 4-H); \(^{13}\)C NMR (125 MHz, CD₃OD): \(\delta_C = 46.2\) (C-1), 124.0 (C-12), 128.4 (C-7), 129.0 (C-9), 130.0 (C-11), 130.5 (C-8), 130.9 (C-6), 131.8 (C-4), 132.3 (C-5), 133.9 (C-10), 137.7 (C-3), 193.2 (C-2); LRMS \(m/z (\text{CI}^+)\): 186 [M+H]⁺, 168 [M-17]⁺.

Method B:

2-Azido-1-(naphthalene-2-yl)ethanone (0.960 g, 4.53 mmol) was dissolved in anhydrous THF (10 mL), and PPh₃ (1.79 g, 6.82 mmol) was added and the reaction mixture was stirred at RT. After a period of 24 h no amine formation was observed and so the reaction was discarded.

6.1.2.2.7 Synthesis of 2-[(3-chloropyrazin-2-yl)amino]-1-(2-aryl)ethanols

2-[(3-Chloropyrazin-2-yl)amino]-1-(2-napthyl)ethanol (171)

![Chemical structure of 2-[(3-Chloropyrazin-2-yl)amino]-1-(2-napthyl)ethanol (171)]
Method A:

166 (289 mg, 1.55 mmol), 2,3-dichloropyrazine (177 µL, 1.70 mmol) and Et3N (301 µL, 2.16 mmol) were dissolved in 1,4-dioxane (3 mL) and the reaction was stirred under reflux, under Ar. After 19 h, the reaction was cooled to RT, and the solvent removed in vacuo. The residue was taken up in CH2Cl2 (60 mL) and washed with H2O (3 x 20 mL) and brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo to give the crude product as an amber oil. Purification was carried out via flash chromatography (applied in CH2Cl2; eluted 0% to 33% EtOAc) to afford the title compound as a yellow oil (295 mg, 0.983 mmol, 63%). Rf = 0.64 (2:1 CH2Cl2/EtOAc); IR (νmax/cm⁻¹, thin film): 3419 (O-H stretch), 3054 (C-H stretch), 2922 (N-H stretch), 1523 (N-H bending); ¹H NMR (500 MHz, CDCl3): δH = 3.65-3.70 (m, 1H, 1-H), 3.88 (bs, 1H, 13-H), 3.92-3.97 (m, 1H, 1-H), 5.12 (dd, J = 7.5, 2.8 Hz, 1H, 2-H), 5.67 (t, J = 5.3 Hz, 1H, 14-H), 7.47-7.50 (m, 3H, 7,8,12-H), 7.59 (d, J = 2.7 Hz, 1H, 18-H), 7.81-7.84 (m, 3H, 6,9,11-H), 7.86 (s, 1H, 4-H), 7.91 (d, J = 2.7 Hz, 1H, 17-H); ¹³C NMR (125 MHz, CDCl3): δC = 49.4 (C-1), 73.9 (C-2), 123.9 (C-12), 124.8 (C-7), 126.1 (C-9), 126.4 (C-11), 127.8 (C-8), 128.0 (C-6), 128.4 (C-4), 131.3 (C-18), 133.2 (C-5), 133.3 (C-10), 135.1 (C-20), 139.4 (C-3), 140.2, (C-17), 151.5 (C-15); LRMS m/z (ES⁺): 300.1 [M(35Cl)+H]⁺, 284.2 [M(37Cl)-OH]⁺, 282.2 [M(35Cl)-OH]⁺; HRMS m/z (ES⁻): Found 298.0731 [M(35Cl)-H]-; C16H13ClN3O requires 298.0747.

Method B (ring opening of epoxide):

Compound 188 (50.0 mg, 0.294 mmol), 2-amino-3-chloropyrazine (45.7 mg, 0.352 mmol) and H2O (600 µL) were stirred vigorously at RT for 15 h. The organics were extracted using Et2O (3 x 5 mL), combined, dried (Na2SO4), filtered and solvent removed in vacuo to give a pale yellow solid. MS indicated the correct product mass was present. Flash chromatography (applied in hexane; eluted 30:1 to 20:1 to 10:1 to 1:1 hexane/EtOAc) was carried out, but no product was isolated.

Method C (ring opening of epoxide):

Lithium amide (13.3 mg, 0.579 mmol) dissolved in anhydrous DMF (500 µL) was added to a solution of 2-amino-3-chloropyrazine (38.1 mg, 0.294 mmol) in anhydrous DMF (500 µL). The mixture was stirred at RT for 4 h, where the colour changed from milky white to light yellow. The mixture was heated to 80 °C in order to removed NH3 produced, and the yellow colour
intensified. Compound 188 (50.0 mg, 0.294 mmol) was added portionwise at 90 °C, held at this temperature for 20 min before heating at 110 °C for a total of 20 h. The reaction was cooled to RT and solvent removed in vacuo. H₂O (10 mL) was added and organics extracted with CHCl₃ (4 x 5 mL), combined, dried (Na₂SO₄), filtered and solvent removed to give light brown/amber oil. Flash chromatography was carried out (applied in hexane; eluted 30:1 to 20:1 to 10:1 to 1:1 hexane/EtOAc), but no product was isolated.

2-{(3-Chloropyrazin-2-yl)amino}-1-(2-phenoxyphenyl)ethanol (172)

167 (2.21 g, 9.66 mmol), 2,3-dichloropyrazine (1.11 mL, 10.6 mmol) and Et₃N (1.88 mL, 13.5 mmol) were dissolved in 1,4-dioxane (22 mL) and the reaction was stirred under reflux, under Ar. After 17 h, the reaction was cooled to RT, and the solvent removed in vacuo. The residue was taken up in CH₂Cl₂ (200 mL) and washed with H₂O (3 x 75 mL) and brine (75 mL). The organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuo to give the crude product as a brown oil. Purification was carried out via flash chromatography (applied in CH₂Cl₂; eluted 0% to 10% EtOAc) to afford the title compound as an orange oil (2.09 g, 6.15 mmol, 64%). Rᵢ = 0.42 (9:1 CH₂Cl₂/EtOAc); IR (νmax/cm⁻¹, thin film): 3423 (O-H stretch), 3060 (C-H stretch), 2924 (N-H stretch); ¹H NMR (400 MHz, CDCl₃): δH = 3.76-3.83 (m, 1H, 1-H), 3.92-3.98 (m, 1H, 1-H), 4.04 (bs, 1H, 15-H), 4.45 (dd, J = 8.1, 1.1 Hz, 1H, 7-H), 6.99-7.02 (m, 2H, 10-H), 7.10-7.18 (m, 2H, 5,12-H), 7.25 (dd, J = 8.1, 1.7 Hz, 1H, 6-H), 7.33-7.38 (m, 2H, 11-H), 7.61-7.63 (m, 2H, 4,20-H), 7.89 (d, J = 2.8 Hz, 1H, 19-H); ¹³C NMR (100 MHz, CDCl₃): δC = 47.9 (C-1), 69.3 (C-2), 118.2 (C-7,10), 123.2 (C-5), 123.5 (C-12), 127.2 (C-4), 128.6 (C-6), 129.6 (C-11), 130.8 (C-20), 132.2 (C-3), 134.8 (C-22), 139.2 (C-19), 151.0 (C-17), 153.4 (C-9), 156.6 (C-8); LRMS m/z (Cl⁺): 325 [M(³⁷Cl)-OH]⁺, 323 [M(³⁵Cl)-OH]⁺; HRMS m/z (ES⁺): Found 340.0867 [M(³⁵Cl)+H]⁺; C₁₈H₁₅ClN₃O₂ requires 340.0853.
2-[(3-Chloropyrazin-2-yl)amino]-1-(3,4-dimethoxyphenyl)ethanol (173)

168 (827 Mg, 4.20 mmol), 2,3-dichloropyrazine (481 µL, 4.62 mmol) and Et₃N (781 µL, 5.88 mmol) were dissolved in 1,4-dioxane (8 mL) and the reaction was stirred under reflux, under Ar. After 16 h, the reaction was cooled to RT, and the solvent was removed in vacuo. The residual brown oil was taken up in CH₂Cl₂ (60 mL) and washed with H₂O (3 x 30 mL) and brine (20 mL). The organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuo to give the crude product as a brown oil. Purification was carried out via flash chromatography (applied in CH₂Cl₂; eluted 0% to 10% to 20% EtOAc) to afford the title compound as a light orange oil (748 mg, 2.42 mmol, 58%). R_f = 0.27 (2:1 CH₂Cl₂/EtOAc); IR (ν_{max}/cm⁻¹, thin film): 3377 (O-H stretch), 2934 (N-H stretch); ¹H NMR (500 MHz, CDCl₃): δ_H = 3.60-3.66 (m, 1H, 1-H), 3.83-3.89 (m, 1H, 1-H), 3.88 (s, 3H, 9-H), 3.89 (s, 3H, 10-H), 4.93 (dd, <i>J</i> = 7.6, 3.7 Hz, 1H, 2-H), 5.61 (s, 1H, 12-H), 6.87 (d, <i>J</i> = 8.2 Hz, 1H, 5-H), 6.93 (d, <i>J</i> = 8.2 Hz, 1H, 4-H), 6.97 (s, 1H, 8-H), 7.62 (d, <i>J</i> = 1.0 Hz, 1H, 16-H), 7.93 (d, <i>J</i> = 1.0 Hz, 1H, 15-H); ¹³C NMR (125 MHz, CDCl₃): δ_C = 49.0 (C-1), 55.6 (C-9,10), 73.2 (C-2), 108.6 (C-8), 110.8 (C-5), 117.8 (C-4), 130.9 (C-16), 134.1 (C-3), 134.7 (C-18), 139.6 (C-15), 148.4 (C-7), 148.8 (C-6), 150.9 (C-13); LRMS m/z (Cl⁺): 312 [M³⁷Cl]+, 310 [M³⁵Cl]+, 294 [M³⁷Cl-OH]⁺, 292 [M³⁵Cl-OH]⁺; HRMS m/z (Cl⁺): Found 310.0956 [M³⁵Cl]+; C₁₄H₁₇ClN₃O₃ requires 310.0958

2-[(3-Chloropyrazin-2-yl)amino]-1-(3,5-dimethylphenyl)ethanol (174)
Method A:

\[169 \] (2.34 g, 14.2 mmol), 2,3-dichloropyrazine (1.62 mL, 15.6 mmol) and Et\(_3\)N (2.76 mL, 19.8 mmol) were dissolved in 1,4-dioxane (24 mL) and the reaction was stirred under reflux, under Ar. After 16 h, the reaction was cooled to RT, and the solvent removed in vacuo. The residue was taken up in CH\(_2\)Cl\(_2\) (80 mL) and washed with H\(_2\)O (3 x 30 mL) and brine (20 mL). The organic extracts were dried (MgSO\(_4\)), filtered and concentrated in vacuo to give the crude product as a brown oil. Purification was carried out via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted CH\(_2\)Cl\(_2\) to 30:1 to 10:1 CH\(_2\)Cl\(_2\)/EtOAc) to afford the title compound as a light orange oil (2.58 g, 9.37 mmol, 65%). \(R_f = 0.37 \) (9:1 CH\(_2\)Cl\(_2\)/EtOAc); IR (\(\nu_{\max}/\text{cm}^{-1} \), thin film): 3422 (O-H stretch), 2921 (C-H stretch); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 2.33 \) (s, 6H, 7-H), 3.27 (s, 1H, 8-H) 3.61 (ddd, \(J = 13.8, 7.9, 4.9 \) Hz, 1H, 1-H), 3.88 (ddd, \(J = 13.8, 4.9, 2.8 \) Hz, 1H, 1-H), 4.91 (ddd, \(J = 7.9, 2.8 \) Hz, 1H, 2-H), 5.62 (bt, \(J = 4.9 \) Hz, 1H, 9-H), 6.95 (s, 1H, 6-H), 7.02 (s, 2H, 4-H), 7.62 (d, \(J = 3.0 \) Hz. 1H, 13-H), 7.93 (d, \(J = 3.0 \) Hz 1H, 12-H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = 21.5 \) (C-7), 49.5 (C-1), 73.8 (C-2), 123.7 (C-4), 129.7 (C-6), 131.2 (C-13), 135.3 (C-15) 138.4 (C-5), 139.7 (C-12), 142.5 (C-3), 151.3 (C-10); LRMS m/z (Cl\(^+\)): 280 [M\(^{37}\)Cl]+, 278 [M\(^{35}\)Cl]+, 262 [M\(^{37}\)Cl-OH]+, 260 [M\(^{35}\)Cl-OH]+; HRMS m/z (Cl\(^+\)): Found 278.1059 [M\(^{35}\)Cl]+; C\(_{14}\)H\(_{17}\)ClN\(_3\)O requires 278.1060.

Method B:

\[169 \] (80.0 mg, 0.485 mmol), 2,3-dichloropyrazine (79.5 \(\mu \)L, 0.533 mmol) and NaHCO\(_3\) (57.0 mg, 0.679 mmol) were dissolved in \(^1\)BuOH (1 mL) and the reaction was stirred under reflux, under Ar. After 17 h, the reaction was cooled to RT, and the solvent removed in vacuo. The residue was taken up in CH\(_2\)Cl\(_2\) and washed with H\(_2\)O (3 x 30 mL) and brine (20 mL). The organic extracts were dried (MgSO\(_4\)), filtered and concentrated in vacuo to give the crude product as a yellow oil. Purification was carried out via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted CH\(_2\)Cl\(_2\) to 50:1 to 10:1 CH\(_2\)Cl\(_2\)/EtOAc) to afford the title compound as a yellow oil (26.2 mg, 0.094 mmol, 19%).
2-[(3-Chloropyrazin-2-yl)amino]-1-(3-thienyl)ethanol (175)

170 (232 mg, 1.63 mmol), 2,3-dichloropyrazine (183 µL, 1.79 mmol), Et3N (316 µL, 2.27 mmol) and 1,4-dioxane (2.5 mL) were stirred under reflux, under Ar for 18 h. The solvent was removed in vacuo and the residual was taken up in CH2Cl2 (30 mL), washed with H2O (5 x 10 mL) and brine (10 mL). The organics were dried (MgSO4), filtered and solvent removed in vacuo to give a brown oil. Flash chromatography (applied in CH2Cl2; eluted CH2Cl2 to 2:1 CH2Cl2/EtOAc) afforded the title compound as an orange oil (193 mg, 0.753 mmol, 46%). Rf = 0.46 (2:1 CH2Cl2/EtOAc); IR (νmax/cm⁻¹, thin film): 3420 (O-H stretch), 3091 (N-H stretch), 2920 (C-H stretch), 1583 (N-H bend), 1525; ¹H NMR (600 MHz,CDCl3): δH = 3.69-3.74 (m, 1H, 1-H), 3.96-4.00 (m, 1H, 2-H), 5.10 (dd, J = 7.2, 3.0 Hz, 1H, 9-H), 5.72 (bs, 1H, 5-H), 7.13 (dd, J = 5.1, 1.2 Hz, 1H, 1-H), 7.31-7.32 (m, 1H, 7-H), 7.35 (dd, J = 5.1, 3.0 Hz, 1H, 1-H), 7.52 (bs, 1H, 9-H), 7.73 (dd, J = 5.1, 3.0 Hz, 1H, 6-H), 7.93 (d, J = 2.7 Hz, 2-H); ¹³C NMR (150 MHz, CDCl3): δC = 49.0 (C-1), 70.4 (C-2), 121.5 (C-7), 125.5 (C-4), 126.7 (C-5), 131.3 (C-13), 135.6 (C-15), 138.8 (C-12), 143.1 (C-3), 150.8 (C-10); LRMS m/z (ES⁺): 240 [M(37Cl)-OH]⁺, 238 [M(35Cl)-OH]⁺; HRMS m/z (ES⁺): Found 254.0145 [M(35Cl)-H]⁻; C10H9ClN3OS requires 254.0155.

6.1.2.8 Synthesis of 2-[(3-chloropyrazin-2-yl)amino]-1-(2-aryl)ethanones

2-[(3-Chloropyrazin-2-yl)amino]-1-(2-napthyl)ethanone (176)

Method A:

DMSO (982 µL, 13.9 mmol) was dissolved in anhydrous CH2Cl2 (60 mL) and the reaction mixture was cooled to and maintained at -78 °C. Oxaly chloride (586 µL, 6.93 mmol) was
added dropwise and the mixture was stirred for 20 min. \textbf{171} (1.60 g, 5.33 mmol), dissolved in anhydrous CH$_2$Cl$_2$ (40 mL) was added dropwise, and stirred for 20 min. Et$_3$N (3.54 mL, 26.6 mmol) was added dropwise and the reaction mixture was allowed to warm to RT over a period of 2½ h. The reaction was then quenched with H$_2$O (50 mL) and organics extracted, which were then washed with 2.0 M HCl (2 x 40 mL), NaHCO$_3$ (sat. aq. 40 mL), H$_2$O (40 mL) and brine (40 mL). The organic were dried (MgSO$_4$), filtered and solvent removed \textit{in vacuo} to give a yellow/orange solid. Flash chromatography (applied in CH$_2$Cl$_2$; eluted 100:1 to 30:1 CH$_2$Cl$_2$/EtOAc) afforded the title compound as a yellow solid (903 mg, 3.03 mmol, 57%). Mpt: 160 °C; \(R_f = 0.30\) (30:1 CH$_2$Cl$_2$/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 1680 (C=O stretch); 1H NMR (500 MHz, CDCl$_3$): \(\delta_H = 5.10\) (d, \(J = 4.3\), 2H, 1-H), 6.54 (s, 1H, 13-H), 7.58-7.62 (m, 1H, 7-H), 7.64-7.67 (m, 1H, 8-H), 7.69 (d, \(J = 6.1\) Hz, 1H, 17-H), 7.91 (d, \(J = 8.0\) Hz, 1H, 9-H), 7.96 (d, \(J = 8.6\) Hz, 1H, 11-H), 8.00-8.02 (m, 2H, 6,16-H), 8.10 (dd, \(J = 8.6, 1.8\) Hz, 1H, 12-H), 8.62 (s, 1H, 4-H); 13C NMR (125 MHz, CDCl$_3$): \(\delta_C = 48.4\) (C-1), 123.4 (C-12), 127.3 (C-7), 128.0 (C-9), 129.0 (C-8), 129.2 (C-11), 129.8 (C-6), 130.1 (C-4), 131.3 (C-17), 131.8 (C-5), 132.6 (C-10), 136.2 (C-3), 139.7 (C-16), 193.8 (C-2); LRMS m/z (ES$^+$): 300[M37Cl]+, 298 [M35Cl]+, 282[M37Cl-OH]$^+$, 280[M35Cl-OH]$^+$; HRMS m/z (ES$^-$): Found 296.0591 [M35Cl]-H; C$_{16}$H$_{11}^{35}$ClN$_3$O requires 296.0591; Anal. Calcd. for C$_{16}$H$_{12}$ClN$_3$O: C, 64.54; H, 4.06; N, 14.11. Found C, 64.35; H, 3.94; N, 13.82%.

\textit{Method B:}

\textbf{171} (474 mg, 1.58 mmol) was dissolved in anhydrous DMSO (2.5 mL) and Et$_3$N (2.5 mL). Trimethylamine sulfur trioxide (661 mg, 4.75 mmol) was added and the reaction mixture was stirred under Ar at RT. After 16 h, the reaction was heated to 40 °C for 3 h, after which point the reaction was cooled, quenched with CHCl$_3$ (50 mL) and washed with H$_2$O (3 x 30 mL). The aqueous layers were washed with CHCl$_3$ (2 x 20 mL), and the organics were combined, dried (MgSO$_4$), filtered and concentrated \textit{in vacuo} to give a brown oil. Flash chromatography was carried out (applied in CH$_2$Cl$_2$; eluted CH$_2$Cl$_2$ to 50:1 to 30:1 CH$_2$Cl$_2$/EtOAc) to afford the title compound as a sticky yellow solid (118 mg, 25%).
DMSO (1.13 mL, 16.0 mmol) was dissolved in anhydrous CH₂Cl₂ (100 mL) and the mixture was cooled to and maintained at -78 °C. Oxalyl chloride (677 µL, 7.99 mmol) was added dropwise and the reaction was stirred for 20 min. 172 (2.10 g, 6.15 mmol), dissolved in CH₂Cl₂ (20 mL), was then added dropwise and after 20 min stirring, Et₃N (4.08 mL, 30.7 mmol) was added dropwise. The reaction was then allowed to slowly warm to RT over a period of 2½ h. The reaction was quenched with H₂O (50 mL) and organics extracted followed by washing with 2.0 M HCl (2 x 40 mL), NaHCO₃ (sat. aq. 40 mL), H₂O (40 mL) and brine (40 mL). Drying (MgSO₄), filtration and concentration in vacuo gave a brown/orange oil. Flash chromatography was carried out (applied in CH₂Cl₂; eluted 50:1 to 10:1 CH₂Cl₂/EtOAc) to afford the title compound as a yellow solid (1.33 g, 3.92 mmol, 64%). Mpt: 76-78 °C; R_f = 0.74 (9:1 CH₂Cl₂/EtOAc); IR (ν_max/cm⁻¹, thin film): 3423, 3060 (C-H stretch), 2924 (N-H stretch); ¹H NMR (500 MHz, CDCl₃): δ_H = 4.95 (d, J = 4.8 Hz, 1H, 1-H), 6.30 (1H, 15-H), 6.90 (dd, J = 8.4, 0.8 Hz, 1H, 7-H), 7.11-7.13 (m, 2H, 10-H), 7.18-7.23 (m, 2H, 5,12-H), 7.40-7.44 (m, 2H, 11-H), 7.46-7.49 (m, 1H, 6-H), 7.59 (d, J = 2.7 Hz, 1H, 19-H), 7.88 (d, J = 2.7 Hz, 1H, 18-H), 8.01 (dd, J = 7.9, 1.8 Hz, 1H, 4-H); ¹³C NMR (125 MHz, CDCl₃): δ_C = 52.0 (C-1), 118.1 (C-7) 119.4 (C-10), 123.0 (C-5), 124.3 (C-12), 126.5 (C-3), 129.9 (C-11), 130.7 (C-4), 130.8 (C-19), 134.3 (C-6), 134.8 (C-21), 140.0 (C-18), 150.2 (C-16), 155.2 (C-9), 157.2 (C-8), 194.8 (C-2); LRMS m/z (ES⁺): 342 [M(³⁷Cl)+H]⁺, 340 [M(³⁵Cl)+H]⁺, 322 [M(³⁵Cl)-OH]⁺; HRMS m/z (ES⁺): Found 340.0864 [M(³⁵Cl)+H]⁺; C₁₈H₁₅ClN₃O₂ requires 340.0853.

Method B:

172 (70.0 mg, 0.205 mmol), trimethylamine sulfur trioxide (85.6 mg, 0.615 mmol), DMSO (0.5 mL) and Et₃N (0.5 mL) were stirred under Ar at RT for 16 h, followed by heating at 40 °C for 4½ h. After this time period, no product mass was evident by LCMS and experiment was discarded.
DMSO (417 µL, 5.89 mmol) was dissolved in anhydrous CH₂Cl₂ (25 mL) and the mixture was cooled to and maintained at -78 °C. Oxalyl chloride (249 µL, 2.94 mmol) was added dropwise and the reaction was stirred for 15 min. 173 (700 mg, 2.26 mmol), dissolved in CH₂Cl₂ (20 mL), was then added dropwise and after 15 min stirring, Et₃N (1.5 mL, 11.3 mmol) was added dropwise. The reaction was then allowed to slowly warm to RT over a period of 2 h. The reaction was quenched with H₂O (20 mL) and organics extracted followed by washing with 2.0 M HCl (2 x 20 mL), NaHCO₃ (sat. aq. 20 mL), H₂O (20 mL) and brine (20 mL). Drying (MgSO₄), filtration and concentration in vacuo gave an off white solid. Flash chromatography (applied in CH₂Cl₂; eluted 50:1 to 5:1 CH₂Cl₂/EtOAc) gave the title compound as a white solid (543 mg, 1.76 mmol, 78%). Mpt: 128-130 °C; Rf = 0.31 (5:1 CH₂Cl₂/EtOAc); IR (ν/cm⁻¹, thin film): 3399 (C-H stretch), 2936 (N-H stretch), 1677 (C=O stretch); ¹H NMR (500 MHz, CDCl₃): δH = 3.96 (s, 3H, 9-H), 3.97 (s, 3H, 10-H), 4.88 (d, J = 4.2 Hz, 1H, 1-H), 6.43 (s, 1H, 12-H), 6.94 (d, J = 8.2 Hz, 1H, 5-H), 7.57 (d, J = 1.9 Hz, 1H, 8-H), 7.64 (d, J = 2.7 Hz, 1H, 16-H), 7.70 (dd, J = 8.2, 1.9 Hz, 1H, 4-H), 7.96 (d, J = 2.7 Hz, 1H, 15-H); ¹³C NMR (125 MHz, CDCl₃): δC = 47.3 (C-1), 55.8 (C-9), 55.9 (C-10), 109.7 (C-8), 110.0 (C-5), 122.3 (C-4), 127.3 (C-3), 130.8 (C-16), 135.1 (C-18), 139.8 (C-15) 149.0 (C-7), 150.1 (C-13), 153.9 (C-6), 192.1 (C-2); LRMS m/z (Cl⁺): 310 [M(³⁷Cl)+H]⁺, 308 [M(³⁵Cl)+H]⁺; HRMS m/z (Cl⁺): Found 308.0814 [M(³⁵Cl)+H]⁺; C₁₄H₁₂ClN₂O₃ requires 308.0811.

2-[(3-Chloropyrazin-2-yl)amino]-1-(3,4-dimethoxyphenyl)ethanone (178)

2-[(3-Chloropyrazin-2-yl)amino]-1-(3,5-dimethylphenyl)ethanone (179)
DMSO (1.71 mL, 24.2 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (170 mL) and the mixture was cooled to and maintained at -78 °C. Oxalyl chloride (1.02 mL, 12.1 mmol) was added dropwise and the reaction was stirred for 20 min. 174 (2.58 g, 9.30 mmol), dissolved in CH$_2$Cl$_2$ (30 mL), was then added dropwise and after 20 min stirring, Et$_3$N (6.18 mL, 46.6 mmol) was added dropwise. The reaction was then allowed to slowly warm to RT over a period of 2½ h. The reaction was quenched with H$_2$O (50 mL) and organics extracted followed by washing with 2.0 M HCl (2 x 40 mL), NaHCO$_3$ (sat. aq. 40 mL), H$_2$O (40 mL) and brine (40 mL). Drying (MgSO$_4$), filtration and concentration in vacuo gave a yellow solid (2.31 g, 8.37 mmol, 90%) which was deemed clean enough to continue without any further purification. Mpt: Decomposed before melting; $R_f = 0.76$ (9:1 CH$_2$Cl$_2$/EtOAc); IR (ν$_{max}$/cm$^{-1}$, thin film): 3405 (aromatic C-H stretch), 2916 (N-H stretch), 1681 (C=O stretch), 1578 (N-H bend), 1497 (aromatic C=C stretch); 1H NMR (500 MHz, CDCl$_3$): $\delta_H = 2.40$ (s, 6H, 7-H), 4.89 (d, $J = 4.0$ Hz, 1H, 1-H), 6.43 (s, 1H, 8-H), 7.27 (s, 1H, 6-H), 7.65 (d, $J = 3.0$ Hz, 1H, 12-H), 7.67 (s, 2H, 4-H), 7.97 (d, $J = 3.0$ Hz, 1H, 11-H); 13C NMR (125 MHz, CDCl$_3$): $\delta_C = 20.9$ (C-7), 47.8 (C-1), 125.4 (C-4), 130.9 (C-12), 134.2 (C-3), 135.1 (C-14), 135.5 (C-6), 138.4 (C-5), 139.8 (C-11), 150.0 (C-9), 193.6 (C-2); LRMS m/z (ES$^-$): 276 [M(37Cl)-H$^-$], 274 [M(35Cl)-H$^-$]; HRMS m/z (ES$^-$): Found 274.0762 [M(35Cl)-H$^-$]; C$_{14}$H$_{13}$ClN$_3$O requires 274.0747.

2-[(3-Chloropyrazin-2-yl)amino]-1-(3-thienyl)ethanone (180)

DMSO (128 µL, 1.81 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (9 mL) and the mixture was cooled to and maintained at -78 °C. Oxalyl chloride (77.0 µL, 0.906 mmol) was added dropwise and the reaction was stirred for 20 min. 175 (178 mg, 0.697 mmol), dissolved in CH$_2$Cl$_2$ (5 mL), was then added dropwise and after 20 min stirring, Et$_3$N (463 µL, 3.48 mmol) was added dropwise. The reaction was then allowed to slowly warm to RT over a period of 2½ h. The reaction was quenched with H$_2$O (20 mL) and organics extracted followed by washing with 2.0 M HCl (2 x 10 mL), NaHCO$_3$ (sat. aq. 10 mL), H$_2$O (10 mL) and brine (10 mL). Drying (MgSO$_4$), filtration and concentration in vacuo gave an orange sticky solid. Flash
chromatography (applied in CH₂Cl₂; eluted 50:1 to 20:1 CH₂Cl₂/EtOAc) gave the title compound as a yellow solid (135 mg, 0.531 mmol, 76%). Mpt: 130-134 °C; \(R_f = 0.85 \) (2:1 CH₂Cl₂/EtOAc); IR (ν_max/cm⁻¹, thin film): 3407 (aromatic C-H stretch), 3107 (C-H stretch), 2917 (N-H stretch), 1682 (C=O stretch), 1582 (N-H bend); \(^1\)H NMR (600 MHz, CDCl₃): \(δ_H = 4.84 \) (d, \(J = 4.4 \) Hz, 1H, 1-H), 6.33 (s, 1H, 9-H), 7.41 (dd, \(J = 5.0, 2.9 \) Hz, 1H, 5-H), 7.65 (dd, \(J = 5.0, 1.2 \) Hz, 1H, 4-H), 7.66 (d, \(J = 2.8 \) Hz, 1H, 13-H), 7.96 (d, \(J = 2.7 \) Hz, 12-H), 8.26 (dd, \(J = 1.2, 2.9 \) Hz, 1H, 7-H); \(^13\)C NMR (150 MHz, CDCl₃): \(δ_C = 49.0 \) (C-1), 70.4 (C-2), 121.6 (C-4), 125.5 (C-7), 126.7 (C-5), 131.3 (C-13), 135.6 (C-15), 138.8 (C-12), 143.1 (C-3), 150.8 (C-10); LRMS m/z (Cl⁺): 256 [M(\(^{37}\)Cl)+H]⁺, 254 [M(\(^{35}\)Cl)+H]⁺; HRMS m/z (Cl⁺): Found 254.0147 [M(\(^{35}\)Cl)+H]⁺; C₁₀H₉ClN₃O₅ requires 254.0155.

6.1.2.2.9 Synthesis of 3-aryl-8-chloro-imidazo[1,2-a]pyrazine

8-Chloro-3-(2-naphthyl)imidazo[1,2-a]pyrazine (181)

Method A:

176 (903 mg, 3.03 mmol) was dissolved in anhydrous toluene (40 mL) and the mixture was cooled on ice. TFA (1.64 mL, 21.2 mmol) was added and the reaction was allowed to stir on ice for 30 min, followed by the addition of trifluoroacetic anhydride (2.95 mL, 21.2 mmol). The reaction mixture was then stirred on ice for a further 30 minutes and then at RT for 65 h. The reaction was then diluted with toluene (20 mL) and washed with NaHCO₃ solution (10% w/v, 3 x 20 mL) and brine (20 mL). The organics were dried (MgSO₄), filtered and concentrated in vacuo to give crude amber oil. Purification was carried out via flash chromatography (applied in CH₂Cl₂; eluted 80:1 to 10:1 CH₂Cl₂/EtOAc) to afford the title compound as an off white solid.
(386 mg, 1.38 mmol, 45%). Mpt: 166 °C; \(R_f = 0.21 \) (10:1 CH\(_2\)Cl\(_2\)/EtOAc); IR (\(\text{\textnu}_{\max}/\text{cm}^{-1} \), thin film): 3102, 3052 (aromatic C-H stretches), 1333 (aromatic C=C stretch); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 7.58-7.62 \) (m, 2H, 15,16-H), 7.64 (dd, \(J = 8.6, 1.7 \text{ Hz} \), 1H, 11-H), 7.73 (d, \(J = 4.6 \text{ Hz} \), 1H, 6-H), 7.92-7.95 (m, 2H, 14,17-H), 8.02 (s, 1H, 2-H), 8.04-8.05 (m, 2H, 12,19-H), 8.30 (d, \(J = 4.6 \text{ Hz} \), 1H, 5-H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta_C = 116.4 \) (C-5), 124.7 (C-10), 125.2 (C-11), 127.3 (C-15), 127.4 (C-16), 127.6 (C-19), 128.0 (C-17), 128.2 (C-17), 128.6 (C-6), 129.4 (C-3), 129.7 (C-12), 133.4 (C-13), 133.5 (C-18), 134.8 (C-2), 138.4 (C-9), 144.5 (C-8); LRMS m/z (ES\(^{+}\)): 282 [M(\(^{37}\text{Cl})+\text{H})^{+}]\(^{\text{+}}\), 280 [M(\(^{35}\text{Cl})+\text{H})^{+}]\(^{\text{+}}\); HRMS m/z (ES\(^{+}\)): Found 280.0646 [M(\(^{35}\text{Cl})+\text{H})^{+}]\(^{\text{+}}\); \(\text{C}_{16}\text{H}_{11}\text{ClN}_{3} \) requires 280.0642.

Method A (Attempted formation from 210):

210 (50.2 mg, 0.227 mmol), 2,3-dichloropyrazine (32.7 mg, 0.227 mmol) and NaHCO\(_3\) (38.2 mg, 0.453 mmol) were suspended in \(^1\)BuOH (1 mL) and the reaction mixture was stirred under reflux for 20 h. After this period neither, starting material nor product mass was observed by LCMS and so reaction was discarded.

8-Chloro-3-(2-phenoxyphenyl)imidazo[1,2-a]pyrazine (182)

\(177 \) (1.33 g, 3.92 mmol) was dissolved in anhydrous toluene (50 mL) and the mixture was cooled on ice. TFA (2.11 mL, 24.7 mmol) was added and the reaction was allowed to stir on ice for 30 min, followed by the addition of trifluoroacetic anhydride (3.81 mL, 24.7 mmol). The reaction mixture was then stirred on ice for a further 30 min and then at RT for 68 h. The reaction was then diluted with toluene (50 mL) and washed with NaHCO\(_3\) solution (10% w/v, 3 x 30 mL) and brine (40 mL). The organics were dried (MgSO\(_4\)), filtered and concentrated in vacuo to give a crude brown oil. Purification was carried out via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 50:1 to 5:1 CH\(_2\)Cl\(_2\)/EtOAc) to afford the title compound as a sticky yellow solid (1.26 g,
3.92 mmol, 100%). \(R_f = 0.25 (9:1 \text{CH}_2\text{Cl}_2/\text{EtOAc}) \); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 1460 (aromatic C=C stretch), 1231 (aromatic C-O stretch); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 6.83–6.85 \) (m, 2H, 18-H), 7.05-7.10 (m, 2H, 14,20-H), 7.23-7.26 (m, 2H, 19-H), 7.29 (td, \(J = 7.5, 1.2 \) Hz, 1H, 12-H), 7.46-7.49 (m, 1H, 13-H), 7.53 (dd, \(J = 7.5, 1.2 \) Hz, 1H, 11-H), 7.70 (d, \(J = 4.2 \) Hz, 1H, 6-H), 7.86 (s, 1H, 2-H), 8.01 (d, \(J = 4.2 \) Hz, 1H, 5-H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = 118.3 \) (C-5), 118.5 (C-18), 118.8 (C-22), 124.2 (overlapping signals, C-10,12,20), 126.1 (C-3), 130.0 (C-19), 131.5 (C-13), 132.0 (C-11), 135.6 (C-2), 138.4 (C-9), 143.9 (C-8), 155.0 (C-15), 156.0 (C-17); LRMS m/z (El\(^+\)): 323 [M(\(^{37}\)Cl)]\(^+\), 321 [M(\(^{35}\)Cl)]\(^+\); HRMS m/z (El\(^+\)): Found: 321.0659 [M(\(^{35}\)Cl)]\(^+\); C\(_{18}\)H\(_{12}\)ClN\(_3\)O requires 321.0663.

8-Chloro-3-(3,4-dimethoxyphenyl)imidazo[1,2-a]pyrazine (183)

\[
\begin{array}{ccc}
9 & N & 2 \\
N & N & 15 \\
6 & 5 & 12 \\
11 & 16 & \\
\end{array}
\]

Method A:

178 (280 mg, 0.912 mmol) was dissolved in anhydrous toluene (20 mL) and the mixture was cooled on ice. TFA (490 \(\mu \)L, 6.39 mmol) was added and the reaction was allowed to stir on ice for 30 min, followed by the addition of trifluoroacetic anhydride (887 \(\mu \)L, 6.39 mmol). The reaction mixture was then stirred on ice for a further 30 min and then at RT for 68 h. The reaction was then diluted with toluene (50 mL) and washed with NaHCO\(_3\) solution (10% w/v, 3 x 30 mL) and brine (40 mL). The organics were dried (MgSO\(_4\)), filtered and concentrated in vacuo to give a crude yellow solid. Purification was carried out via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 9:1 to 2:1 CH\(_2\)Cl\(_2\)/EtOAc) to afford the title compound as a white solid (46.8 mg, 0.162 mmol, 18%). Mpt: > 200 °C; \(R_f = 0.32 \) (2:1 CH\(_2\)Cl\(_2\)/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 2960, 2924 (aromatic C-H stretch), 1732 (aromatic C-C stretch); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta_H = 3.93 \) (s, 3H, 16-H), 3.96 (s, 3H, 17-H), 6.99 (d, \(J = 2.0 \) Hz, 1H, 15-H), 7.03 (d, \(J = 8.3 \) Hz, 1H, 12-H), 7.10 (dd, \(J = 8.3, 2.0 \) Hz, 1H, 11-H), 7.67 (d, \(J = 4.6 \) Hz, 1H, 6-H), 7.84 (s, 1H, 2-H), 8.15 (d, \(J
= 4.6 Hz, 1H, 5-H); 13C NMR (100 MHz, CDCl$_3$): $\delta_C = 56.1$ (C-16), 56.2 (C-17), 111.4 (C-15), 111.8 (C-12), 116.3 (C-5), 119.8 (C-10), 121.0 (C-11), 128.2 (C-6), 129.2 (C-3), 134.2 (C-2), 138.0 (C-9), 144.3 (C-8), 149.8 (C-14), 150.1 (C-13); LRMS m/z(ES$^+$): 290 [M(35Cl)+H]$^+$, 292 [M(37Cl)+H]$^+$; HRMS m/z (ES$^+$): Found 290.0683 [M(35Cl)+H]$^+$; C$_{14}$H$_{13}$ClN$_3$O$_2$ requires 290.0696.

Method B:

178 (415 mg, 1.35 mmol) was dissolved in TFA (676 µL, 8.77 mmol) and the mixture was cooled on ice, under Ar. Trifluoroacetic anhydride (469 µL, 3.37 mmol) was added after 10 min and the reaction was stirred on ice for 15 min before stirring at RT for 21 h. The reaction was stopped, diluted with CH$_2$Cl$_2$ (50 mL) and washed with NaHCO$_3$ solution (10% w/v, 3 x 10 mL), H$_2$O (10 mL) and brine (10 mL). The organics were dried (MgSO$_4$), filtered and concentrated *in vacuo* to give a yellow solid. Purification was carried out *via* flash chromatography (applied in CH$_2$Cl$_2$; eluted 20:1 to 2:1 CH$_2$Cl$_2$/EtOAc) to afford the title compound as an off white solid (13.6 mg, 0.047 mmol, 3%).

Method C:

178 (542 mg, 1.76 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (20 mL) and the mixture was cooled on ice. TFA (950 µL, 12.3 mmol) was added and the reaction was allowed to stir on ice for 30 min, followed by the addition of trifluoroacetic anhydride (1.72 mL, 12.3 mmol). The reaction mixture was then stirred on ice for a further 30 min and then at RT for 68 h. The reaction was then diluted with CH$_2$Cl$_2$ (50 mL) and washed with NaHCO$_3$ solution (10% w/v, 3 x 10 mL) and brine (40 mL). The organics were dried (MgSO$_4$), filtered and concentrated *in vacuo* to give crude yellow solid. Purification was carried out *via* flash chromatography (applied in CH$_2$Cl$_2$; eluted 50:1 to 5:1 CH$_2$Cl$_2$/EtOAc) to afford the title compound as an off white solid (99.8 mg, 0.345 mmol, 20%).
8-Chloro-3-(3,5-dimethylphenyl)imidazo[1,2-a]pyrazine (184)

179 (2.29 g, 8.31 mmol) was dissolved in anhydrous toluene (90 mL) and the mixture was cooled on ice. TFA (4.48 mL, 58.1 mmol) was added and the reaction was allowed to stir on ice for 30 min, followed by the addition of trifluoroacetic anhydride (8.09 mL, 58.1 mmol). The reaction mixture was then stirred on ice for a further 30 min and then at RT for 68 h. The reaction was then diluted with toluene (50 mL) and washed with NaHCO₃ solution (10% w/v, 3 x 40 mL) and brine (1 x 40 mL). The organics were dried (MgSO₄), filtered and concentrated in vacuo to give crude orange sticky solid. Purification was carried out via flash chromatography (applied in CH₂Cl₂; eluted 40:1 CH₂Cl₂/EtOAc) to afford the title compound as a yellow solid (532 mg, 2.06 mmol, 25%). Mpt: 178-180 °C; Rᶠ = 0.32 (9:1 CH₂Cl₂/EtOAc); IR (vₘₐₓ/cm⁻¹, thin film): 2918 (C-H stretch), 1603, 1457 (aromatic C=C stretches), 1336; ¹H NMR (600 MHz, CDCl₃): δ_H = 2.41 (s, 6H, 14-H), 7.14 (s, 1H, 13-H), 7.16 (s, 2H, 11-H), 7.69 (d, J = 4.6 Hz, 1H, 6-H), 7.87 (s, 1H, 2-H), 8.21 (d, J = 4.6 Hz, 1H, 5-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 21.5 (C-14), 116.6 (C-5), 125.9 (C-11), 127.4 (C-10), 128.3 (C-6), 129.6 (C-3), 131.3 (C-13), 134.5 (C-2), 138.3 (C-9), 139.5 (C-12), 144.4 (C-8); LRMS m/z (EI⁺): 259 [M(³⁵Cl)]⁺, 257 [M(³⁷Cl)]⁺; HRMS m/z (CI⁺): Found: 257.0717 [M(³⁵Cl)]⁺; C₁₄H₁₂ClN₃ requires 257.0714.

8-Chloro-3-(3-thienyl)imidazo[1,2-a]pyrazine (185)

180 (345 mg, 1.36 mmol) was dissolved in anhydrous toluene (15 mL) and the mixture was cooled on ice. TFA (790 µL, 10.3 mmol) was added and the reaction was allowed to stir on ice
for 30 minutes, followed by the addition of trifluoroacetic anhydride (1.43 mL, 10.3 mmol). The reaction mixture was then stirred on ice for a further 30 minutes and then at RT for 68 h. The reaction was then diluted with toluene (20 mL) and washed with aq. NaHCO₃ (10% w/v, 3 x 10 mL) and brine (1 x 10 mL). The organics were dried (MgSO₄), filtered and concentrated in vacuo to give crude orange oil. Purification was carried out via flash chromatography (applied in CH₂Cl₂; eluted 20:1 to 5:1 CH₂Cl₂/EtOAc) to afford the title compound as an off white solid (105 mg, 0.447 mmol, 33%). Mpt: 178-180 °C; Rf = 0.34 (5:1 CH₂Cl₂/EtOAc); IR (ν_max/cm⁻¹, thin film): 3098 (aromatic C-H stretch), 1462 (thiophene stretch), 1341 (aromatic C=C stretches); ¹H NMR (600 MHz,CDCl₃): δ_H = 7.34–7.36 (m, 1H, 12-H), 7.58 (s, 1H, 14-H), 7.59 (d, J = 0.7 Hz, 1H, 11-H), 7.73 (d, J = 4.6 Hz, 1H, 6-H), 7.91 (s, 1H, 2-H), 8.19 (d, J = 4.6 Hz, 1H, 5-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 116.7 (C-5), 124.2 (C-14), 125.0 (C-10), 126.7 (C-12), 127.7 (C-3), 128.0 (C-11), 128.6 (C-6), 134.6 (C-2), 138.1 (C-9), 144.5 (C-8); LRMS m/z (Cl⁺): 238 [M(37Cl)+H]^+, 236 [M(35Cl)+H]^+; HRMS m/z (Cl⁺): Found 236.0057 [M(35Cl)+H]^+; C₁₀H₇ClN₃S requires 236.0049.

6.1.2.2.10 Synthesis of 4-methyl-N-(3-Arylimidazo[1,2-a]pyrazin-8-yl)benzenesulfonamides

4-Methyl-N-(3-(2-naphthyl)imidazo[1,2-a]pyrazine-8-yl)benzenesulfonamide (4)

All glassware was evacuated and flushed with Ar prior to use. 181 (12.3 mg, 0.044 mmol), 4-toluene sulfonamide (9.10 mg, 0.053 mmol), K₂CO₃ (7.30 mg, 0.053 mmol), Pd(dba)₂ (0.120 mg, 1 mol%) and ¹Bu-XPhos (0.600 mg, 5 mol%) were taken up in ¹BuOH (1 mL) and the reaction was stirred under reflux under Ar for 40 h. The reaction mixture was cooled to RT, diluted with MeOH and filtered through Celite (pre-washed with MeOH). Flash chromatography (applied in CH₂Cl₂; eluted 10:1 to 1:1 CH₂Cl₂/EtOAc) afforded the target compound as a white solid (7.50
mg, 0.018 mmol, 41%). Mpt: Decomposed before melting; $R_f = 0.62$ (1:1 CH$_2$Cl$_2$/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3258, 3112 (aromatic C-H stretches), 2923 (N-H stretch), 2854 (C-H stretch), 1579 (N-H bend), 1381 (S=O asymmetric stretch), 1130 (S=O symmetric stretch); H NMR (600 MHz, (CD$_3$)$_2$SO): $\delta_H = 2.36$ (s, 3H, 26-H), 7.16 (bs, 1H, 6-H), 7.39 (d, $J = 8.2$ Hz, 2H, 24-H), 7.60-7.62 (m, 2H, 15,16-H), 7.74 (d, $J = 8.6$ Hz, 1H, 11-H), 7.87 (bd, $J = 6.8$ Hz, 1H, 5,23-H) 7.91 (s, 1H, 2-H), 8.00-8.04 (m, 2H, 14,17-H), 8.11 (d, $J = 8.6$ H, 12-H), 8.21 (s, 1H, 19-H), 11.70 (bs, 1H, 7/20-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO): $\delta_C =$ 21.0 (C-26), 108.7 (C-5), 116.8 (C-6), 124.6 (C-10), 125.7 (C-11), 126.1 (C-23), 127.1 (overlapping signals, C-15,16), 127.4 (C-19), 128.1 (overlapping signals, C-14,17), 129.0 (C-12), 129.6 (C-24), 130.6 (C-3), 132.8 (overlapping signals, C-13,18), 133.3 (C-2), 135.6 (C-9), 140.1 (C-22), 142.6 (C-25), 144.5 (C-8); LRMS m/z (ES$^+$): 415 [M+H]$^+$, 260 [M-SO$_2$C$_6$H$_4$CH$_3$+H]$^+$; HRMS m/z (ES$^+$): Found 415.1230 [M+H]$^+$; C$_{23}$H$_{19}$N$_4$O$_2$S requires 415.1229.

4-Methyl-N-(3-(2-phenoxyphenyl)imidazo[1,2-a]pyrazine-8-yl)benzenesulfonamide (5)

\[
\begin{align*}
\text{Method A:} \\
\text{All glassware was evacuated and flushed with Ar prior to use. 182 (516 mg, 1.60 mmol), 4-} \\
\text{toluene sulfonamide (330 mg, 1.93 mmol), K$_2$CO$_3$ (266 mg, 1.93 mmol), Pd(dba)$_2$ (5.20 mg, 1} \\
\text{mol%) and 'Bu-XPhos (26.0 mg, 5 mol%) were taken up in 'BuOH (10 mL) and the reaction was} \\
\text{stirred under reflux under Ar for 40 h. The reaction mixture was cooled to RT, diluted with} \\
\text{MeOH and filtered through Celite (pre-washed with MeOH). Flash Chromatography was carried} \\
\text{out (applied in CH$_2$Cl$_2$; eluted 10:1 to 1:1 CH$_2$Cl$_2$/EtOAc followed by 10% MeOH/CH$_2$Cl$_2$) to} \\
\text{afford the title compound as yellow solid (188 mg, 0.412 mmol 26%). Mpt: > 200 °C; $R_f = 0.18$} \\
\text{(2:1 CH$_2$Cl$_2$/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3243 (N-H stretch), 2917 (CH-H stretch), 1588} \\
\text{(N-H bend), 1396 (S=O asymmetric stretch), 1233 (aromatic C-O stretch), 1139 (S=O symmetric}
\end{align*}
\]
stretch); 1H NMR (600 MHz, CDCl$_3$): δH = 2.37 (s, 3H, 27-H), 6.85 (d, $J = 7.8$ Hz, 2H, 18-H), 7.04 (d, $J = 8.4$ Hz, 2H, 6, 14-H), 7.07 (t, $J = 7.2$ Hz, 1H, 20H), 7.23-7.27 (m, 5H, 12,19,25-H), 7.43-7.46 (m, 3H, 5,11,13-H), 7.65 (s, 1H, 2-H), 7.94 (bs, 2H, 24-H), 11.45 (bs, 1H, 7/21-H); 13C NMR (150 MHz, CDCl$_3$): δC = 21.7 (C-27), 109.5 (C-5), 115.1 (C-6), 118.6 (C-10), 118.8 (C-18), 118.9 (C-14), 124.0 (C-12), 124.2 (C-20), 126.8 (C-24), 128.1 (C-3), 129.4 (C-25), 130.0 (C-19), 131.5 (C-13), 132.1 (C-11), 134.6 (C-2), 136.0 (C-9), 139.5 (C-23), 143.2 (C-26), 146.0 (C-8), 155.0 (C-15), 155.9 (C-17); LRMS m/z (ES$^+$): 457 [M+H]$^+$, 302 [M-C$_6$H$_5$SO$_2$]$^+$. HRMS m/z (ES$^-$): Found: 455.1183 [M-H]$^-$; C$_{25}$H$_{19}$N$_4$O$_3$S requires 455.1178.

Method B:

182 (756 mg, 2.35 mmol), 4-toluene sulfonamide (483 mg, 2.82 mmol) and Et$_3$N (654 µL, 4.70 mmol) were dissolved in anhydrous DMF (15 mL) and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT, quenched with H$_2$O (30 mL) and extracted with CH$_2$Cl$_2$ (3 x 40 mL). The combined organic extracts were washed with water (6 x 30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo to give a brown liquid. No product mass was found by LCMS and so no further work was carried out.

N-(3-(3,4-Dimethoxyphenyl)imidazo[1,2-α]pyrazine-8-yl)-4-methyl-benzenesulfonamide (6)

All glassware was evacuated and flushed with Ar prior to use. 183 (95.0 mg, 0.033 mmol), 4-toluene sulfonamide (67.5 mg, 0.039 mmol), K$_2$CO$_3$ (54.4 mg, 0.039 mmol), Pd(dba)$_2$ (0.950 mg, 1 mol%) and 'Bu-XPhos (4.75 mg, 5 mol%) were taken up in 'BuOH (2 mL) and the reaction was stirred under reflux under Ar for 40 h. The reaction mixture was cooled to RT, diluted with
MeOH and filtered through Celite (pre-washed with MeOH). Flash Chromatography was carried out (applied in CH₂Cl₂; eluted 50:1 to 20:1 to 5:1 to 2:1 to 1:1 CH₂Cl₂/EtOAc) to afford the title compound as a yellow solid (42.3 mg, 0.010 mmol 30%). Mpt: >200 °C; Rf = 0.08 (1:1 CH₂Cl₂/EtOAc); IR (νmax/cm⁻¹, thin film): 3244 (N-H stretch), 3129 (aromatic C-H stretch), 2838 (C-H stretch), 1582 (N-H bend), 1395 (S=O as symmetric stretch), 1254 (aromatic C-O stretch), 1134 (S=O symmetric stretch); ¹H NMR (600 MHz, CDCl₃): δH = 2.34 (s, 3H, 24-H), 3.89 (s, 3H, 16-H), 3.93 (s, 3H, 17-H), 6.93 (d, J = 1.8 Hz, 1H, 15-H), 6.98 (d, J = 8.3 Hz, 1H, 12-H), 7.02 (dd, J = 8.3, 1.8 Hz, 11-H), 7.13 (bs, 1H, 6-H), 7.21 (d, J = 8.1 Hz, 2H, 22-H), 7.41 (bs, 1H, 5-H), 7.64 (s, 1H, 2-H), 7.92 (d, J = 8.1 Hz, 2H, 21-H), 11.53 (s, 1H, 18-H); ¹³C NMR (150 MHz, CDCl₃): δC = 21.5 (C-24), 56.1 (C-16), 56.2 (C-17), 108.0 (C-5), 111.5 (C-15), 111.7 (C-12), 116.1 (C-6), 119.5 (C-10), 121.2 (C-11), 126.6 (C-21), 129.4 (C-22), 131.4 (C-3), 133.1 (C-2), 135.6 (C-9), 139.3 (C-20), 143.2 (C-23), 145.8 (C-8), 149.6 (C-14), 150.1 (C-13); LRMS m/z (ES⁺): 447 [M+Na]⁺, 425 [M+H]⁺; HRMS m/z (ES⁺): Found 423.0940 [M+H]⁺; C₂₁H₂₁N₄O₄S requires 423.0949.

N-(3-(3,5-Dimethylphenyl)imidazo[1,2-a]pyrazine-8-yl)-4-methyl-benzenesulfonamide (7)

Method A:

All glassware was evacuated and flushed with Ar prior to use. 184 (93.8 mg, 0.364 mmol), 4-toluene sulfonamide (74.8 mg, 0.437 mmol), K₂CO₃ (60.4 mg, 0.437 mmol), Pd(dba)₂ (2.10 mg, 1 mol%) and ‘Bu-XPhos (7.70 mg, 5 mol%) were taken up in ‘BuOH (2 mL) and the reaction was stirred under reflux under Ar for 40 h. The reaction mixture was cooled to RT, diluted with MeOH and filtered through Celite (pre-washed with MeOH). Flash Chromatography was carried out (applied in CH₂Cl₂; eluted 9:1 to 1:1 CH₂Cl₂/EtOAc followed by 5% MeOH/CH₂Cl₂) to afford the title compound as a pale yellow solid (96.2 mg, 0.245 mmol, 67%). Mpt: >200 °C; Rf =
0.5 (CH$_2$Cl$_2$/10% MeOH); IR (ν_{max}/cm$^{-1}$, thin film): 3253 (aromatic C-H stretch), 1591 (N-H bend), 1399 (S=O asymmetric stretch), 1141 (S=O symmetric stretch); 1H NMR (600 MHz, CD$_2$Cl$_2$): $\delta_1 = 2.38$ (s, 6H, 14-H), 2.39 (s, 3H, 21-H), 6.98 (bs, 1H, 6-H), 7.11 (s, 2H, 11-H), 7.13 (s, 1H, 13-H), 7.30 (d, $J = 8.0$ Hz, 2H, 19-H), 7.50 (bs, 1H, 5-H), 7.64 (s, 1H, 2-H), 7.90 (bd, $J = 6.1$ Hz, 2H, 18-H), 11.33 (bs, 1H, 7/15-H); 13C NMR (150 MHz, CD$_2$Cl$_2$): $\delta_C = 21.4$ (C-14), 21.7 (C-21), 108.9 (C-5), 115.8 (C-6), 125.9 (C-3), 126.4 (C-11), 126.8 (C-18), 129.8 (C-19), 131.4 (C-13), 132.2 (C-10), 133.6 (C-2), 136.1 (C-9), 139.4 (C-12), 139.7 (C-17), 143.9 (C-20), 146.2 (C-8); LRMS m/z (ES$^+$): 415 [M+Na]$^+$, 393 [M+H]$^+$; HRMS m/z (ES$^+$): Found: 393.1366 [M+H]$^+$; C$_{21}$H$_{21}$N$_4$O$_2$S requires 393.1385.

Method B:

184 (58.6 mg, 0.228 mmol), 4-toluene sulfonamide (46.7 mg, 0.273 mmol), K$_2$CO$_3$ (126 mg, 0.910 mmol) in MeCN (2 mL) were heated to 95 °C in a sealed tube. After 18 h, the vessel was allowed to slowly cool to RT followed by the careful release of the cap. The slurry was diluted with 0.1 M HCl (20 mL) and extracted with EtOAc (3 x 30 mL). The combined organics were washed with brine (20 mL), dried (MgSO$_4$), filtered and concentrated in vacuo to give crude white solid. Flash chromatography (applied in CH$_2$Cl$_2$; eluted 2:1 CH$_2$Cl$_2$/EtOAc followed by 5% MeOH/CH$_2$Cl$_2$) afforded the title compound as a pale yellow solid (14.4 mg, 0.037 mmol, 16%).
6.1.2.2.11 Synthesis of 4-methyl-N-(4-(3-Aryl-imidazo[1,2-a]pyrazin-8-ylamino)phenyl)benzene-sulfonamides

4-Methyl-N-(4-((3-(2-naphthyl)imidazo[1,2-a]pyrazine-8-)yl)amino)phenyl)benzene-sulfonamide (12)

All glassware was evacuated and flushed with Ar prior to use. 181 (283 mg, 1.01 mmol), N-(4-aminophenyl)-4-methylbenzenesulfonamide (318 mg, 1.21 mmol), K₂CO₃ (167 mg, 1.21 mmol), Pd(dba)₂ (5.80 mg, 1 mol%) and tBu-XPhos (21.5 mg, 5 mol%) were taken up in tBuOH (6 mL) was added and the reaction was stirred under reflux under Ar for 46 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography (applied in CH₂Cl₂; eluted 100:1 to 50:1 to 8:1 CH₂Cl₂/EtOAc) was carried out to give the title compound as a yellow solid (181 mg, 0.355 mmol, 35%). Mpt: >200 °C; R_f = 0.12 (10:1 CH₂Cl₂/EtOAc); IR (νmax/cm⁻¹, thin film): 3240 (N-H stretch), 3057 (aromatic C-H stretch), 1623 (aromatic C=C stretch), 1500 (N-H stretch), 1330 (S=O asymmetric stretch) 1154 (S=O symmetrical stretch); ¹H NMR (600 MHz, CDCl₃): δ_H = 2.37 (s, 3H, 31-H), 7.08-7.10 (m, 2H, 23-H), 7.17 (s, 1H, 25-H), 7.21 (d, J = 8.3 Hz, 2H, 29-H), 7.52 (d, J = 4.7 Hz, 1H, 6-H), 7.57-7.58 (m, 2H, 15,16-H), 7.64 (dd, J = 8.5, 1.6 Hz, 1H, 11-H), 7.65 (d, J = 8.3 Hz, 2H, 28-H), 7.73 (s, 1H, 2-H), 7.79-7.80 (m, 3H, 5,22-H), 7.91-7.92 (m, 2H, 14,17-H), 8.00 (d, J = 8.5 Hz, 1H, 12-H), 8.03 (s, 1H, 19-H), 8.39 (bs, 1H, 20-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 21.6 (C-31), 109.4 (C-5), 120.3 (C-22), 123.7 (C-23), 125.2 (C-10), 125.4 (C-11), 127.1 (overlapping signals, C-15,16), 127.3 (overlapping signals, C-19,28), 127.9 (C-14), 128.1 (C-17), 128.9 (C-3), 129.0 (C-6), 129.3 (C-12), 129.7 (C-29), 130.4 (C-2), 131.2 (C-24), 133.1 (overlapping signals, C-9,13), 133.4 (C-18), 136.1 (C-27), 137.2 (C-21), 143.7 (C-30), 146.2 (C-
4-Methyl-N-(4-((3-(3-thienyl)imidazo[1,2-a]pyrazine-8-yl)amino)phenyl)benzenesulfonamide (13)

Method A:

All glassware was evacuated and flushed with Ar prior to use. 185 (35.0 mg, 0.149 mmol), N-(4-aminophenyl)-4-methylbenzenesulfonamide (47.8 mg, 0.178 mmol), K$_2$CO$_3$ (24.6 mg, 0.178 mmol), Pd(dba)$_2$ (0.900 mg, 1 mol%) and t-Bu-XPhos (3.20 mg, 5 mol%) were taken up in t-BuOH (2 mL) was added and the reaction was stirred under reflux under Ar for 46 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography (applied in pet. ether; eluted 3:2 pet. ether/EtOAc) was carried out to give a mixture of the product and starting sulfonamide. Reverse phase preparative HPLC (40 to 70% MeCN/H$_2$O over 22 min) carried out to afford title compound as off white solid (12.4 mg, 0.027 mmol, 18%). Mpt: 108-110 °C; R_f = 0.62 (1:1 CH$_2$Cl$_2$/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3112 (aromatic C-H stretch), 1624 (aromatic C=C stretch), 1542, 1506 (N-H bends), 1334 (S=O asymmetric stretch), 1159 (S=O symmetrical stretch); 1H NMR (600 MHz, CD$_3$OD): δH = 2.38 (s, 3H, 26-H), 7.17 (d, J = 5.4 Hz, 1H, 6-H), 7.28 (d, J = 9.0 Hz, 2H, 17-H), 7.33 (d, J = 8.4 Hz, 2H, 24-H), 7.48 (d, J = 9.0 Hz, 2H, 18-H), 7.49, (dd, J = 5.4, 1.2 Hz, 1H, 11-H), 7.72-7.73 (m, 3H, 12-H, 23-H), 7.92 (dd, J = 2.4, 1.2 Hz, 1H, 14-H), 7.96 (bs, 1H, 2-H), 8.02 (d, J = 5.4 Hz, 1H, 5-H); 1H NMR (600 MHz, CDCl$_3$): δH = 2.38 (s, 3H, 26-H), 6.69 (s, 1H, 20-H), 7.07 (d, J = 8.8 Hz, 2H, 18-H), 7.22 (d, J = 8.2 Hz, 2H, 24-H), 7.34 (dd, J = 4.0, 2.0 Hz, 1H, 11-H), 7.52 (d, J = 4.7 Hz, 1H, 6-H), 7.54-7.56 (m, 2H, 12,14-H), 7.63 (d, J = 8.2 Hz, 2H, 23-H), 8.15; LRMS m/z (ES$^-$): 504 [M-H]$^-$; HRMS m/z (ES$^-$): Found 504.1503 [M-H]$^-$; C$_{29}$H$_{22}$N$_5$O$_2$S requires 504.1494.
7.64 (s, 1H, 2-H), 7.71 (d, J = 4.7 Hz, 1H, 5-H), 7.79 (d, J = 8.8 Hz, 2H, 17-H), 8.34 (bs, 1H, 15-H);
13C NMR (150 MHz, CD$_3$OD): δ_C = 21.4 (C-26), 112.2 (C-5), 119.8 (C-6), 122.7 (C-17),
126.1 (C-14), 126.6 (C-18), 128.0 (C-11), 128.3 (C-10), 128.3 (C-23), 128.9 (C-12), 129.1 (C-3),
130.7 (C-24), 132.1 (C-19), 133.0 (C-9), 134.2 (C-2), 138.2 (C-22), 138.8 (C-16), 145.3 (C-25),
146.2 (C-8); 13C NMR (150 MHz, CDCl$_3$): 21.7 (C-26), 109.7 (C-5), 120.3 (C-17), 123.6
(C-12), 123.9 (C-18), 124.5 (C-10), 126.9 (C-11), 127.4 (C-14), 127.5 (overlapping signals, C-2,
23), 128.1 (C-3), 129.1 (C-6), 129.8 (C-24), 131.2 (C-19), 132.9 (C-9), 136.2 (C-22), 137.4 (C-16),
143.9 (C-25), 146.1 (C-8); LRMS m/z (ES$^+$): 484 [M+Na]$^+$, 462 [M+H]$^+$; HRMS m/z (ES$^+$):
Found 462.1065 [M+H]$^+$; C$_{23}$H$_{20}$N$_5$S$_2$O$_2$ requires 462.1058.

Method B:

All glassware was evacuated and flushed with Ar prior to use. Pd$_2$(dba)$_3$ (3.7 mg, 1 mol%),
DavePhos (4.8 mg, 3 mol%) and NaOtBu (54.2 mg, 0.564 mmol) were dissolved in anhydrous
toluene (4 mL). 185 (94.9 mg, 0.403 mmol) and N-(4-aminophenyl)-4-
methylbenzenesulfonamide (127 mg, 0.484 mmol) were added and the reaction was stirred under
reflux, under Ar for 20 h. The reaction was cooled to RT and solvent removed, before the residue
was taken up in CH$_2$Cl$_2$ (50 mL) and washed with NaHCO$_3$ (sat. aq. 30 mL), H$_2$O (30 mL) and
brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (pet. ether,
2:1 to 1:1 pet. ether/EtOAc) followed by reverse phase preparative HPLC (35 to 55%
MeCN/H$_2$O over 10 min) afforded the title compound as a white solid (56.7 mg, 0.123 mmol,
30%).

6.1.2.2.12 Alternative Approach to 3-Aryl Imidazo[1,2-a]pyrazines

2-(3-Thienyl)acetaldehyde (212)
Method A:

2-(3-Thienyl)ethanol (0.450 g, 3.57 mmol) was dissolved in DMSO (4 mL). Et$_3$N (0.95 mL, 7.14 mmol) was added and the reaction mixture was stirred at RT for 5 min. Sulfur trioxide pyridine complex (1.14 g, 7.14 mmol) was dissolved in DMSO (4 mL) and was added dropwise the reaction mixture which was then stirred for 1 h. A colour change of colourless to yellow to orange was observed. The reaction was then cooled to 0 °C and quenched with H$_2$O (20 mL). The organics were extracted with CH$_2$Cl$_2$ (3 x 20 mL), which were then further washed with H$_2$O (5 x 20 mL), dried (Na$_2$SO$_4$), filtered and concentrated *in vacuo* to give an orange oil. Flash chromatography (applied in pet. ether; eluted 100% pet. ether to 50:1 to 10:1 to 5:1 to 2:1 to 1:1 pet. ether/CH$_2$Cl$_2$) afforded the title compound, with major impurities, as an orange oil. NMR was consistent with literature values.\(^{301}\) $R_f = 0.52$ (CH$_2$Cl$_2$); 1H NMR (500 MHz, CDCl$_3$): $\delta_H = 3.73$ (d, $J = 2.3$ Hz, 2H, 2-H), 6.98 (dd, $J = 5.0$, 1.3 Hz, 1H, 4-H), 7.14-7.15 (m, 1H, 7-H), 7.35 (dd, $J = 5.0$, 3.0 Hz, 1H, 5-H), 9.74 (t, $J = 2.3$ Hz, 1H, 1-H); 13C NMR (125 MHz, CDCl$_3$): $\delta_C = 44.6$ (C-2), 123.1 (C-7), 126.2 (C-5), 128.1 (C-4), 131.3 (C-3), 198.4 (C-1); m/z (Cl$^+$): 83 [M-CH$_2$CHO]$^+$.

Method B:

DMSO (1.65 mL, 23.2 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (150 mL) and the reaction mixture was cooled to -78 °C. Oxalyl chloride (985 µL, 11.6 mmol) was added dropwise and the mixture was allowed to stir for 15 min. 2-(3-thienyl)ethanol (1.14 g, 8.92 mmol), dissolved in CH$_2$Cl$_2$ (30 mL), was added dropwise to the mixture and stirred for a further 15 min. Et$_3$N (5.93 mL, 44.6 mmol) was then added dropwise (colour change of colourless to orange observed) and the mixture was then gently warmed to RT over a period of 2 h. The mixture was quenched with H$_2$O (80 mL) and the organic phase was extracted, followed by washing with 2.0 M HCl (2 x 80 mL), NaHCO$_3$ (sat. aq. 80 mL), H$_2$O (80 mL) and brine (80 mL). The organic extracts were dried (MgSO$_4$), filtered and solvent removed *in vacuo* to give a green oil (1.09 g). TLC and NMR revealed an extremely messy reaction mixture and so further work was abandoned.
6.1.2.3 Synthesis of 2-Aryl Imidazo[1,2-a]pyrazines

6.1.2.3.1 Synthesis of 2-aryl-8-chloro-imidazo[1,2-a]pyrazines

8-Chloro-2-(2-napthyl)imidazo[1,2-a]pyrazine (214)

Method A:

2-(Bromoacetyl)naphthalene (3.14 g, 12.6 mmol), 2-amino-3-chloropyrazine (1.63 g, 12.6 mmol), NaHCO₃ (1.32 g, 16.7 mmol) and tBuOH (60 mL) were stirred under reflux for 40 h. The reaction mixture was cooled to RT and solvent removed in vacuo. The resulting orange solid was taken up in H₂O (100 mL) and extracted with CH₂Cl₂ (3x 150 mL). The combined organics were washed with H₂O (75 mL) and brine (75 mL), dried (MgSO₄), filtered and concentrated in vacuo to give crude orange solid. On addition of CH₂Cl₂ and MeOH (~1:1), the resulting insoluble material was filtered off to give title compound as an off white fluffy solid (1.05 g). Purification of the remaining filtrate via flash chromatography (applied in pet. ether; eluted 10% to 20% to 33% EtOAc) afforded the title compound as a pale orange/brown solid (338 mg, Total: 1.38 g, 4.95 mmol, 39%). Mpt: Decomposed before melting; R₇ = 0.34 (1:1 pet. ether/ EtOAc); IR (νmax/cm⁻¹, thin film): 3026, 2921 (aromatic C-H stretch), 1495 (aromatic C=C stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 7.55-7.58 (m, 2H, 15,16-H), 7.76 (d, J = 4.4 Hz, 1H, 6-H), 7.95-7.97 (m, 1H, 11-H), 8.04 (d, J = 8.6, 1H, 12-H) 8.07-8.09 (m, 1H, 17-H), 8.16 (dd, J = 8.6, 1.7 Hz, 1H, 11-H), 8.64 (s, 1H, 19-H), 8.67 (d, J = 4.4 Hz, H, 5-H), 8.87 (s, 1H, 3-H); ¹³C NMR (150 MHz, CDCl₃): δC = 113.7 (C-3), 120.6 (C-5), 124.1 (C-11), 124.9 (C-19), 126.6 (C-15), 126.7 (C-16), 127.7 (overlapping signals, C-6,17), 128.4 (C-14), 128.6 (C-12), 129.9 (C-10), 133.1 (C-18), 133.2 (C-13), 137.5 (C-9), 141.2(C-8), 146.4 (C-2); LRMS m/z (ES⁺): 282 [M(³⁵Cl)+H]⁺, 280 [M(³⁷Cl)+H]⁺; HRMS m/z (EI⁺): Found 279.0557 [M(³⁵Cl)]⁺; C₁₆H₁₀N₃Cl requires 279.0559; Anal. Calcd for C₁₆H₁₀N₃Cl: C, 68.70; H, 3.60; N, 15.02. Found C, 68.48; H, 3.51; N, 14.75%.
Method B:

2-(Bromoacetyl)naphthalene (50.0 mg, 0.201 mmol), 2-amino-3-chloropyrazine (26.0 mg, 0.201 mmol), NaHCO₃ (21.1 mg, 0.251 mmol) and solvent (1 mL) were stirred under reflux for 20 h. After this time the reaction was cooled to RT and a sample submitted for LCMS. The percentage of product by the UV trace and by ES⁺ TIC trace was recorded.

Method C:

2-(Bromoacetyl)naphthalene (256 mg, 1.03 mmol), 2-amino-3-chloropyrazine (53.3 mg, 0.411 mmol), 1.0 M HCl (5 drops) and H₂O/THF (1:1 20 mL) were stirred at 80 °C for 40 h. The reaction mixture was then cooled to RT, diluted with H₂O (50 mL) and extracted CH₂Cl₂ (3 x 40 mL). The combined organic layers were washed with brine (40 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 10% to 20% to 33% EtOAc) afforded the title compound as an orange solid (19.2 mg, 0.069 mmol, 17%).

Method D (Microwave):

In a 5 mL microwave vial, 2-(bromoacetyl)naphthalene (50.0 mg, 0.201 mmol), 2-amino-3-chloropyrazine (26.0 mg, 0.201 mmol), NaHCO₃ (21.1 mg, 0.251 mmol) and solvent (2 mL) were stirred at 160 °C for 10 min, with a pressure limit of 20 bar. Removal of the reaction solvent in vacuo, followed by flash chromatography (applied in pet. ether; eluted 10% to 20% to 33% EtOAc) afforded the title compound as an orange solid.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Base/Acid</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>Reflux</td>
<td>6</td>
<td>20°</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Et₃N</td>
<td>Dioxane</td>
<td>Reflux</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>Reflux</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>Reflux</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>NaHCO₃</td>
<td>MeOH</td>
<td>Reflux</td>
<td>20</td>
<td>2/0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>NaHCO₃</td>
<td>EtOH</td>
<td>Reflux</td>
<td>20</td>
<td>70/22°b</td>
</tr>
<tr>
<td>Entry</td>
<td>Method</td>
<td>Base/Acid</td>
<td>Solvent</td>
<td>Temp/°C</td>
<td>Time/h</td>
<td>Yield/%</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>NaHCO₃</td>
<td>IPA</td>
<td>Reflux</td>
<td>20</td>
<td>100/45ᵇ</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>NaHCO₃</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>20</td>
<td>92/50ᵇ</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>NaHCO₃</td>
<td>DMF</td>
<td>Reflux</td>
<td>20</td>
<td>37/36ᵇ</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>NaHCO₃</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>NaHCO₃</td>
<td>IPA</td>
<td>Reflux</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>KO'Bu</td>
<td>DMF</td>
<td>70</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>KO'Bu</td>
<td>NMP</td>
<td>100</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>Cs₂CO₃</td>
<td>MeCN</td>
<td>70</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>HCl (cat.)</td>
<td>H₂O/THF</td>
<td>85</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>NaHCO₃</td>
<td>'BuOH</td>
<td>160</td>
<td>10 min</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>NaHCO₃</td>
<td>MeCN</td>
<td>160</td>
<td>10 min</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>NaHCO₃</td>
<td>DMF</td>
<td>160</td>
<td>10 min</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 30: Variation in reaction conditions used for cyclisation to form 8-chloro-2-(2-napthyl)imidazo[1,2-a]pyrazine, 214. ᵇ NaHCO₃ still present; ᵇ Not isolated yield: values are % peak area by ES⁺/UV from LCMS; Methods A: Basic condensation reaction; Method B: Solvent screening and analysing crude mixtures by LCMS; Method C: Acidic condensation; Method D: Microwave irradiation (20 bar pressure limit)

8-Chloro-2-(2-phenoxyphenyl)imidazo[1,2-a]pyrazine (215)

![Chemical Structure](image)
Method A:

2-Bromo-1-(2-phenoxyphenyl)ethanone (438 mg, 1.50 mmol), 2-amino-3-chloropyrazine (195 mg, 1.50 mmol), NaHCO₃ (158 mg, 1.88 mmol) and tBuOH (9 mL) were stirred under reflux for 48 h. The reaction was cooled to RT and solvent removed *in vacuo*. The sample was taken up in CH₂Cl₂ (75 mL) and washed with H₂O (3 x 50 mL). The combined aqueous extracts were further extracted with CH₂Cl₂ (4 x 50 mL), and the organic extracts were combined, washed brine (50 mL), dried (MgSO₄), filtered and solvent removed *in vacuo*. Flash chromatography (applied in pet. ether; eluted 25:1 to 10:1 to 5:1 to 3:1 pet. ether/EtOAc) afforded a pale yellow solid (156 mg, 0.485 mmol, 32%). Mpt: > 200 °C; Rf = 0.75 (1:1 pet. ether/ EtOAc); IR (νmax/cm⁻¹, thin film): 1071-1225 (aromatic C-O stretch); ¹H NMR (600 MHz, CDCl₃): δH = 6.97 (dd, J = 8.2, 1.5 Hz, 1H, 14-H), 7.07 (d, J = 7.6 Hz, 2H, 18-H), 7.16 (t, J = 7.4 Hz, 1H, 20-H), 7.29-7.34 (m, 2H, 12,13-H), 7.38 (dd, J = 8.6, 7.6 Hz, 2H, 19-H), 7.65 (d, J = 4.5 Hz, 1H, 6-H), 7.99 (d, J = 4.5 Hz, 1H, 5-H), 8.31 (s, 1H, 3-H), 8.59 (dd, J = 7.6, 1.9 Hz, 1H, 11-H); ¹³C NMR (150 MHz, CDCl₃): δC = 115.3 (C-3), 118.5 (C-5), 118.8 (C-18), 119.0 (C-14), 123.7 (C-20), 123.8 (C-10), 124.1 (C-12), 127.8 (C-6), 129.7 (C-13), 129.9 (C-19), 130.1 (C-11), 137.1 (C-9), 143.2 (C-2), 143.3 (C-8), 154.6 (C-15), 156.5 (C-17); LRMS m/z (ES⁺): 324 [M(37Cl)+H⁺], 322 [M(35Cl)+H⁺]; HRMS m/z (Cl⁺): Found 322.07554 [M(35Cl)+H⁺]; C₁₈H₁₃ClN₃O requires 322.0747.

Method B:

2-(Phenoxy)phenacyl bromide (52.0 mg, 0.179 mmol), 2-amino-3-chloropyrazine (27.8 mg, 0.214 mmol), NaHCO₃ (18.8 mg, 0.223 mmol) and MeOH (3 mL) were stirred under reflux for 24 h. The reaction was cooled to RT and solvent removed *in vacuo*. The sample was taken up in CH₂Cl₂ (50 mL) and washed with H₂O (3 x 10 mL). The combined aqueous extracts were further washed with CH₂Cl₂ (2 x 10 mL), and the organic extracts were combined, dried (MgSO₄), filtered and solvent removed *in vacuo* to give crude yellow solid (64.9 mg). No mass was present and so no further work was carried out.

Method C:

2-(Phenoxy)phenacyl bromide (70.0 mg, 0.241 mmol), 2-amino-3-chloropyrazine (31.2 mg, 0.241 mmol), NaHCO₃ (25.3 mg, 0.301 mmol) and EtOH (1 mL) were stirred under reflux for 20 h. The reaction was cooled to RT and solvent removed *in vacuo*. The sample was taken up in CH₂Cl₂ (25 mL) and washed with H₂O (3 x 10 mL). The combined aqueous extracts were further
washed with CH₂Cl₂ (4 x 10 mL), and the organic extracts were combined, dried (Na₂SO₄), filtered and solvent removed in vacuo to give a crude yellow/orange solid (74.4 mg). Flash Chromatography (applied in CH₂Cl₂; eluted 50:1 to 20:1 CH₂Cl₂/Et₂O) afforded title compound as pale yellow oil (6.5 mg, 0.020 mmol, 8%).

8-Chloro-2-(3,4-dimethoxyphenyl)imidazo[1,2-a]pyrazine (216)

A mixture of 197 (229 mg, 0.885 mmol), 2-amino-3-chloropyrazine (115 mg, 0.885 mmol) and NaHCO₃ (93.0 mg, 1.11 mmol) in tBuOH (5 mL) were stirred under Ar, under reflux for 40 h. After this point, the reaction mixture was cooled to RT and solvent removed in vacuo. The resulting orange solid was dissolved in CH₂Cl₂ (75 mL) and washed with H₂O (3 x 30 mL). The aqueous layers were extracted further with CH₂Cl₂ (2 x 40 mL) before the combined organics were washed with brine (50 mL), dried (MgSO₄), filtered and solvent removed in vacuo to give a light brown solid. Flash chromatography (applied in pet. ether; eluted 3:1 pet. ether/EtOAc) was carried out to afford the title compound as a pale yellow solid (155 mg, 0.536 mmol, 61%). Mpt: Decomposed before melting; Rₓ = 0.11 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3142, 2933 (aromatic C-H stretches), 2833 (C-H stretch), 1498 (aromatic C=C stretch); ¹H NMR (600 MHz, CDCl₃): δH = 3.93 (s, 3H, 16-H), 4.00 (s, 3H, 17-H), 6.93 (d, J = 8.3 Hz, 1H, 12-H), 7.48 (dd, J = 8.3, 2.1 Hz, 1H, 11-H), 7.59 (d, J = 2.1 Hz, 1H, 15-H), 7.65 (d, J = 4.5, 1H, 6-H), 7.96 (s, 1H, 3-H), 8.02 (d, J = 4.5 Hz, 1H, 5-H); ¹³C NMR (150 MHz, CDCl₃): δC = 56.0 (C-16), 56.1 (C-17), 109.6 (C-15), 110.6 (C-3), 111.2 (C-12), 118.3 (C-5), 119.3 (C-11), 125.2 (C-10), 128.0 (C-6), 138.0 (C-9), 143.1 (C-8), 148.3 (C-2), 149.3 (C-13), 149.9 (C-14); LRMS m/z (ES⁺): 292 [263⁺Cl+H]⁺, 290 [M(35Cl)+H]⁺; HRMS m/z (ES⁺): Found 290.0687 [M(35Cl)+H]⁺; C₁₄H₁₃ClN₃O₂ requires 290.0696.
8-Chloro-2-(3,5-dimethylphenyl)imidazo[1,2-a]pyrazine (217)

A mixture of 198 (530 mg, 2.33 mmol), 2-amino-3-chloropyrazine (302 mg, 2.33 mmol) and NaHCO₃ (245 mg, 2.92 mmol) in ³BuOH (11 mL) were stirred under Ar, under reflux for 40 h. After this point, the reaction mixture was cooled to RT and solvent removed in vacuo. The resulting orange solid was dissolved in CH₂Cl₂ (100 mL) and washed with H₂O (3 x 40 mL). The aqueous layers were extracted further with CH₂Cl₂ (2 x 50 mL) before the combined organics were washed with brine (75 mL), dried (MgSO₄), filtered and solvent removed in vacuo to give crude orange solid. Flash chromatography (¹ˢᵗ: applied in pet. ether; eluted 9:1 to 5:1 to 2:1 pet. ether/EtOAc; ²ⁿᵈ: applied in CH₂Cl₂; eluted 9:1 CH₂Cl₂/EtOAc) was carried out to afford the title compound as a pale yellow solid (245 mg, 0.951 mmol, 41%). Mpt: 158-162 °C; Rf = 0.68 (2:1 CH₂Cl₂/EtOAc); IR (νmax/cm⁻¹, thin film): 2920 (C-H stretch), 1365 (aromatic C=C stretch); ¹H NMR (500 MHz, CDCl₃): δH = 2.38 (s, 6H, 14-H), 7.05 (s, 1H, 13-H), 7.62 (s, 2H, 11-H), 7.66 (d, J = 4.5 Hz, 1H, 6-H), 7.99 (s, 1H, 3-H). 8.02 (d, J = 4.5 Hz, 1H, 5-H); ¹³C NMR (125 MHz, CDCl₃): δC = 21.3 (C-14), 111.3 (C-3), 118.4 (C-5), 124.5 (C-11), 128.0 (C-6), 131.1 (C-13), 132.1 (C-10), 138.2 (C-9), 138.6 (C-12), 143.4 (C-8). 148.6 (C-2); LRMS m/z (EI⁺): 257 [M(³⁵Cl)+], 259 [M(³⁷Cl)+]; HRMS m/z (EI⁺): Found 257.0718 [M(³⁵Cl)+]; C₁₄H₁₂ClN₃ requires 257.0714.

8-Chloro-2-(3-thienyl)imidazo[1,2-a]pyrazine (218)

Method A:

2-Bromo-1-(3-thienyl)-1-ethanone (293 mg, 1.43 mmol), 2-amino-3-chloropyrazine (185 mg, 1.43 mmol), NaHCO₃ (150 mg, 1.79 mmol) and ³BuOH (6 mL) were stirred under reflux for 41 h.
The reaction was cooled to RT and solvent removed in vacuo. The sample was taken up in H₂O (70 mL) and extracted with CH₂Cl₂ (2 x 50 mL). The combined organics were washed with H₂O (2 x 30 mL) and brine (30 mL) before they were dried (MgSO₄), filtered and concentrated in vacuo to give crude brown/orange solid. Flash chromatography (applied in pet. ether; eluted 2:1 pet. ether/EtOAc) afforded a pale yellow solid (109 mg, 0.464 mmol, 32%). Mpt: decomposed before melting; Rf = 0.33 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 1240-1480 (thiophene stretch); ¹H NMR (600 MHz, CDCl₃): δH = 7.44 (dd, J = 5.0, 3.0 Hz, 1H, 12-H), 7.58 (dd, J = 5.0, 1.3 Hz, 1H, 11-H), 7.69 (d, J = 4.4 Hz, 1H, 6-H), 7.93 (s, 1H, 3-H), 7.96 (dd, J = 3.0, 1.3 Hz, 1H, 14-H), 8.04 (d, J = 4.4 Hz, 1H, 5-H); ¹³C NMR (150 MHz, CDCl₃): δC = 111.1 (C-3), 118.4 (C-5), 123.6 (C-14), 126.0 (C-12), 126.6 (C-11), 128.1 (C-10), 134.1 (C-9), 143.3 (C-8), 144.3 (C-2); LRMS m/z (ES⁺): 238 [M(³⁷Cl)+H]⁺, 236 [M(³⁵Cl)+H]⁺; HRMS m/z (ES⁺): Found: 236.0056 [M(³⁵Cl)+H]⁺; C₁₀H₇ClN₃S requires 236.0049.

Method B:

2-Bromo-1-(3-thienyl)-1-ethanone (50.0 mg, 0.244 mmol), 2-amino-3-chloropyrazine (37.9 mg, 0.293 mmol), NaHCO₃ (25.6 mg, 0.305 mmol) and MeOH (3 mL) were stirred under reflux for 24 h. The reaction was cooled to RT and solvent removed in vacuo. The sample was taken up in CHCl₃ (50 mL) and washed with H₂O (3 x 10 mL). The combined aqueous extracts were further washed with CHCl₃ (2 x 10 mL), and the organic extracts were combined, dried (MgSO₄), filtered and solvent removed in vacuo to give crude yellow solid (80.8 mg). No desired product mass was observed by MS and so work abandoned.

Method C:

2-Bromo-1-(3-thienyl)-1-ethanone (50.0 mg, 0.244 mmol), 2-amino-3-chloropyrazine (31.6 mg, 0.244 mmol), NaHCO₃ (25.6 mg, 0.305 mmol) and EtOH (1 mL) were stirred under reflux for 20 h. The reaction was cooled to RT and solvent removed in vacuo. The sample was taken up in CH₂Cl₂ (25 mL) and washed with H₂O (3 x 10 mL). The combined aqueous extracts were further washed with CH₂Cl₂ (4 x 10 mL), and the organic extracts were combined, dried (MgSO₄), filtered and solvent removed in vacuo to give crude yellow/orange solid (61.7 mg). Flash chromatography (applied in pet. ether; eluted 10:1 to 5:1 to 2:1 pet. ether/EtOAc) afforded the title compound as a pale yellow solid. (7.7 mg, 0.033 mmol, 13%).
6.1.2.3.2 Synthesis of 4-methyl-N-(2-Arylimidazo[1,2-a]pyrazin-8-yl)benzenesulfonamides

4-Methyl-N-[2-(2-napthyl)imidazo[1,2-a]pyrazine-8-yl]benzenesulfonamide (8)

Method A:

All glassware was evacuated and flushed with Ar prior to use. 214 (50.0 mg, 0.178 mmol), 4-toluene sulfonamide (36.9 mg, 0.215 mmol), K$_2$CO$_3$ (29.7 mg, 0.215 mmol), Pd(dba)$_2$ (1.03 mg, 1 mol%) and tBu-XPhos (3.80 mg, 5 mol%) were taken up in tBuOH (3 mL) and the reaction was stirred under reflux for 24 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography (applied in CH$_2$Cl$_2$; eluted 5% to 10% to 20% EtOAc; or applied in pet. ether; eluted 20% to 33% to 50% to 66% EtOAc) afforded the target compound as a white solid (28.0 mg, 0.068 mmol, 38%). Mpt: >200 °C; $R_f = 0.32$ (1:1 CH$_2$Cl$_2$/ EtOAc); IR (ν$_{max}$/cm$^{-1}$, thin film): 3253 (N-H stretch), 1361 (S=O asymmetric stretch), 1135 (S=O symmetric stretch), 1116; 1H NMR (600 MHz, (CD$_3$)$_2$SO): δ$_H$ = 2.37 (s, 3H, 26-H), 7.16 (bd, $J = 5.2$ Hz, 1H, 6-H), 7.39 (d, $J = 8.1$Hz, 2H, 24-H), 7.51-7.54 (m, 2H, 15,16-H), 7.86 (bd, $J = 5.2$ Hz, 1H, 5-H), 7.89 (d, $J = 8.1$ Hz, 2H, 23-H), 7.92 (d, $J = 7.7$ Hz, 1H, 14-H), 7.98 (d, $J = 8.6$ Hz, 1H, 12-H), 8.01-8.05 (m, 2H, 11,17-H), 8.52 (s, 1H, 19-H), 8.59 (s, 1H, 3-H), 11.69 (s, 1H, 20-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO); δ$_C$ = 21.0 (C-26), 111.0 (C-5), 115.3 (C-3), 116.8 (C-6), 123.8 (C-11), 124.2 (C-19), 126.2 (C-23), 126.3 (C-15), 126.6 (C-16), 127.7 (C-14), 128.3 (C-17), 128.4 (C-12), 129.5 (C-24), 130.0 (C-10), 132.8 (C-13), 133.2 (C-18), 135.6 (C-9), 140.0 (C-22), 142.7 (C-25), 144.5 (C-8), 145.3 (C-2); LRMS m/z (ES$^+$): 415 [M+H]$^+$, (ES$^-$): 413 [M-H]$^-$, HRMS m/z (ES$^+$): Found 415.1219 [M+H]$^+$; C$_{23}$H$_{19}$N$_4$O$_2$S requires 415.1229.

Method B (Microwave):

In a 2 mL microwave vial, catalyst, ligand and base were dissolved in solvent. 214 and 4-toluene sulfonamide (1.2 eq) were added and the reaction mixture was stirred at the stated temperature and for the given time with a 20 bar pressure limit. The solvent was removed in vacuo and the
crude mixture was purified via flash chromatography (applied in CH₂Cl₂; eluted 5% to 10% to 20% EtOAc; or applied in pet. ether; eluted 20% to 33% to 50% to 66% EtOAc) afforded the title compound.

Method C:

214, 4-toluene sulfonamide (2 eq) and base (in the case of NaH, the base was pre-activated by stirring in anhydrous hexanes and drying) were dissolved in solvent and stirred at the stated temperature for the given time. The reaction was cooled to RT and quenched with brine (in the case of NaH: with NH₄Cl (Sat.Aq)) and extracted EtOAc (3x). The combined organic layers were washed with H₂O (5x) and brine, dried (MgSO₄), filtered and solvent removed. Flash chromatography (applied in CH₂Cl₂; eluted 5% to 10% to 20% EtOAc; or applied in pet. ether; eluted 20% to 33% to 50% to 66% EtOAc) afforded the title compound.

Method D (Microwave):

In a 2 mL microwave vial, 214, 4-toluene sulfonamide (1.2 eq) and base were added and the reaction mixture was stirred at the stated temperature and for the given time, with a 20 bar pressure limit. The solvent was removed in vacuo and the crude mixture was purified via flash chromatography (applied in CH₂Cl₂; eluted 5% to 10% to 20% EtOAc; or applied in pet. ether; eluted 20% to 33% to 50% to 66% EtOAc) afforded the title compound.

Method E:

NaH was washed by stirring in anhydrous hexanes, syringing out the solvent and drying. Under Ar, the reaction solvent was added to the flask, followed by 4-toluene sulfonamide (2 eq) in solvent. The contents were then stirred at RT for 20 min before 227 in solvent was added dropwise, and the reaction was stirred at the stated temperature for the given time. The reaction was cooled to RT and quenched with NH₄Cl (Sat.Aq) and extracted EtOAc (3x). The combined organic layers were washed with H₂O (5x) and brine, dried (MgSO₄), filtered and solvent removed. Flash chromatography (applied in pet. ether; eluted 20% to 33% to 50% to 66% EtOAc) afforded the title compound.

Method F (Microwave):

In a 2 mL microwave vial, 227, 4-toluene sulfonamide (2 eq) and base were added and the reaction mixture was stirred at the stated temperature and for the given time with a 20 bar
pressure limit. The solvent was removed in vacuo and the crude mixture was purified via flash chromatography (pet. ether; 20% to 33% to 50% to 66% EtOAc) to afford the title compound.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>Q-Phos (2 mol%)</td>
<td>NaO'Bu (1.5 eq)</td>
<td>toluene</td>
<td>80</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>Q-Phos (2 mol%)</td>
<td>NaO'Bu (1.5 eq)</td>
<td>THF</td>
<td>50</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>'Bu-XPhos (5 mol%)</td>
<td>K₂CO₃ (1.2 eq)</td>
<td>THF</td>
<td>Reflux</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>'Bu-XPhos (5 mol%)</td>
<td>K₂CO₃ (1.2 eq)</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>'Bu-XPhos (5 mol%)</td>
<td>K₂CO₃ (1.2 eq)</td>
<td>'BuOH</td>
<td>120</td>
<td>30 min</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs₂CO₃ (1.4 eq)</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs₂CO₃ (1.4 eq)</td>
<td>dioxane</td>
<td>Reflux</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs₂CO₃ (1.4 eq)</td>
<td>dioxane</td>
<td>105°a</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs₂CO₃ (1.4 eq)</td>
<td>dioxane</td>
<td>130</td>
<td>30 min</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs₂CO₃ (1.4 eq)</td>
<td>toluene</td>
<td>Reflux</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.4 eq)</td>
<td>toluene</td>
<td>Reflux</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>Pd₂(db₃a) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>Cs₂CO₃ (1.4 eq)</td>
<td>dioxane</td>
<td>Reflux</td>
<td>24</td>
<td>81</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>Pd₂(db₃a) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.4 eq)</td>
<td>toluene</td>
<td>Reflux</td>
<td>24</td>
<td>93</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>Pd₂(db₃a) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.4 eq)</td>
<td>toluene</td>
<td>160</td>
<td>10 min</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>Pd(OAc)₂ (0.5 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.2 eq)</td>
<td>toluene</td>
<td>Reflux</td>
<td>21</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>Pd(OAc)₂ (0.5 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.2 eq)</td>
<td>toluene</td>
<td>120°a</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>Pd(OAc)₂ (0.5 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>NaO'Bu (1.2 eq)</td>
<td>toluene</td>
<td>95</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>Pd(PPh₃)₄ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>toluene</td>
<td>160</td>
<td>10 min</td>
<td>8</td>
</tr>
<tr>
<td>Entry</td>
<td>Method</td>
<td>Catalyst</td>
<td>Ligand</td>
<td>Base</td>
<td>Solvent</td>
<td>Temp/°C</td>
<td>Time/h</td>
<td>Yield/%</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>Pd(dppf)Cl₂ (5 mol%)</td>
<td>-</td>
<td>NaO'Bu (1.4 eq)</td>
<td>toluene</td>
<td>160</td>
<td>10 min</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>Cul (15 mol%)</td>
<td>Diamineᵇ (30 mol%)</td>
<td>K₂CO₃ (2 eq)</td>
<td>DMF</td>
<td>100</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA (5 eq)</td>
<td>NMP</td>
<td>140</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Cᶜ</td>
<td>-</td>
<td>-</td>
<td>DIPEA (3.8 eq)</td>
<td>dioxane</td>
<td>100</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>RT</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>100</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMF</td>
<td>100</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>26</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>DIPEA (1.5 eq)</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>RT</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>28</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMSO</td>
<td>100</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>NaH (2 eq)</td>
<td>DMF</td>
<td>100</td>
<td>20</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>DIPEA (2 eq)</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 31: Reaction optimisation for the formation of 8. ᵃ Reaction carried out in sealed tube;ᵇ N,N'–dimethylcyclohexane-1,2-diamine; ᶜ 1.4 eq of 4-toluene sulfonamide used

4-Methyl-N-[2-(2-phenoxyphenyl)imidazo[1,2-a]pyrazine-8-yl]benzenesulfonamide (9)
All glassware was evacuated and flushed with Ar prior to use. **215** (130 mg, 0.405 mmol), 4-toluene sulfonamide (83.1 mg, 0.486 mmol), K₂CO₃ (67.1 mg, 0.127 mmol), Pd(dbach)₂ (1.30 mg, 1 mol%) and 'Bu-XPhos (6.50 mg, 5 mol%) were taken up in 'BuOH (3 mL) and the reaction was stirred under reflux for 48 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography was carried out (applied in CH₂Cl₂; eluted 100% CH₂Cl₂ to 40:1 to 30:1 to 10:1 to 1:1 CH₂Cl₂/EtOAc) to afford the title compound as a yellow solid (23.9 mg, 0.052 mmol 13%). Mpt: >200 °C; Rf = 0.18 (9:1 CH₂Cl₂/EtOAc); IR (νmax/cm⁻¹, thin film): 3245 (N-H stretch), 1586 (N-H bend), 1393 (S=O asymmetric stretch), 1227 (aromatic C-O stretch), 1115 (S=O symmetric stretch), 1227 (aromatic C-O stretch), 1115 (S=O symmetric stretch); ¹H NMR (600 MHz, CD₂Cl₂): δH = 2.43 (s, 3H, 27-H), 6.91 (bs, 1H, 6-H), 6.96 (d, J = 8.1 Hz, 1H, 12-H), 7.08 (dd, J = 8.8, 0.7 Hz, 2H, 18-H), 7.17 (t, J = 7.1 Hz, 1H, 20-H), 7.27 (t, J = 7.6 Hz, 1H, 14-H), 7.31-7.37 (m, 4H, 5,13,25-H), 7.38-7.41 (m, 2H, 19-H), 7.91 (bd, J = 5.7 Hz, 2H, 24-H), 8.12 (s, 1H, 3-H), 8.48 (dd, J = 7.6, 1.7 Hz 1H, 11-H), 11.41 (s, 1H, 21-H); ¹³C NMR (150 MHz, CD₂Cl₂): δC = 21.3 (C-27), 110.2 (C-5), 115.0 (C-6), 117.7 (C-3), 118.8 (C-18), 118.9 (C-14), 123.7 (C-20), 123.8 (C-10), 123.9 (C-12), 126.2 (C-24), 129.1 (C-11), 129.5 (C-15,25), 130.0 (C-19), 134.7 (C-9), 139.4 (C-23), 142.1 (C-2), 143.5 (C-26), 145.5 (C-8), 154.3 (C-15), 156.5 (C-17); LRMS m/z (ES⁺): 457 [M+H]⁺, HRMS m/z (ES⁺): Found 455.1167 [M-H]⁻; C₂₅H₂₃N₄O₃S requires 455.1178.

N-[2-(3,4-Dimethoxyphenyl)imidazo[1,2-a]pyrazine-8-yl]-4-methyl-benzenesulfonamide (10)

All glassware was evacuated and flushed with Ar prior to use. **216** (200 mg, 0.691 mmol), 4-toluene sulfonamide (142 mg, 0.829 mmol), K₂CO₃ (115 mg, 0.829 mmol), Pd(dbach)₂ (2.00 mg, 1 mol%) and 'Bu-XPhos (10.0 mg, 5 mol%) were taken up in 'BuOH (4 mL) and the reaction was stirred under reflux for 48 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography was carried out (applied in CH₂Cl₂; eluted 100% CH₂Cl₂ to 50:1 to 10:1 to 2:1 to 1:2 to 1:9 CH₂Cl₂/EtOAc...
followed by CH2Cl2/10% MeOH) gave the title compound as a yellow sticky solid (5.2 mg, 0.012 mmol, 2%). Mpt: >200 °C; Rf = 0.26 (1:1 CH2Cl2/EtOAc); IR (νmax/cm⁻¹, thin film): 3274, 3138 (aromatic C-H stretches), 1584 (N-H bend), 1389 (S=O asymmetric stretch), 1113 (S=O symmetric stretch); 1H NMR (600 MHz, (CD3)2SO): δH = 2.36 (s, 3H, 24-H), 3.78 (s, 3H, 16-H), 3.83 (s, 3H, 17-H), 7.02 (d, J = 8.2 Hz, 1H, 12-H), 7.13 (bd, J = 5.2 Hz, 1H, 6-H), 7.37 (d, J = 8.2 Hz, 1H, 22-H), 7.45 (bs, 1H, 11-H), 7.47 (bs, 1H, 15-H), 7.81 (d, J = 5.2 Hz, 1H, 5-H), 7.87 (d, J = 8.0 Hz, 2H, 21-H), 8.4 (s, 1H, 3-H), 11.63 (s, 1H, 18-H); 13C NMR (150 MHz, (CD3)2SO): δC = 21.0 (C-24), 55.5 (C-16), 55.6 (C-17), 108.9 (C-15), 111.0 (C-5), 111.9 (C-12), 114.3 (C-3), 116.6 (C-6) 118.2 (C-11), 125.3 (C-10), 126.1 (C-21), 129.5 (C-22), 135.0 (C-9), 139.8 (C-20), 142.7 (C-23), 144.4 (C-8), 145.6 (C-2), 149.0 (C-14), 149.1 (C-13); LRMS m/z (ES⁺): 423 [M+H]⁺; HRMS m/z (ES⁺): Found 423.1115 [M+H]⁺; C21H21N4O4S requires 423.1127.

N-[2-(3,5-Dimethylphenyl)imidazo[1,2-a]pyrazine-8-yl]-4-methyl benzenesulfonamide (11)

\[\text{Method A:} \]

A mixture of 217 (100 mg, 0.388 mmol), 4-toluene sulfonamide (79.8 mg, 0.466 mmol), Pd(dppf)Cl2 (6.30 mg, 2 mol%) and Cs2CO3 (152 mg, 0.466 mmol) in anhydrous toluene (3 mL) were stirred under reflux, under Ar. After 21 h, the reaction was cooled to RT, diluted with toluene (20 mL) and washed with H2O (10 mL) and brine (10 mL). Further extraction of the aqueous layers was carried out using CH2Cl2 (3 x 10 mL). The combined organics were dried (MgSO4), filtered and solvent removed in vacuo. Flash chromatography (applied in CH2Cl2; eluted 19:1 CH2Cl2/EtOAc) afforded the title compound as a yellow solid (43.4 mg, 0.111 mmol, 29%). Mpt: >200 °C; Rf = 0.37 (2:1 CH2Cl2/EtOAc); IR (νmax/cm⁻¹, thin film): 2928 (C-H stretch), 1595 (N-H bend), 1118 (S=O symmetric stretch); 1H NMR (600 MHz, (CD3)2SO): δH = 2.31 (s, 6H, 14-H), 2.36 (s, 3H, 21-H), 6.97 (s, 1H, 13-H), 7.13 (t, J = 5.4 Hz, 1H, 6-H), 7.38 (d, J = 8.1 Hz, 2H, 19-H), 7.54 (s, 2H, 11-H), 7.81 (d, J = 5.4 Hz, 1H, 5-H), 7.87 (d, J = 8.1 Hz, 2H,
18-H), 8.42 (s, 1H, 3-H), 11.63 (bd, J = 5.4 Hz, 1H, 7/15-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO): δC = 21.0 (overlapping signals, C-14, 21), 111.0 (C-5), 114.8 (C-3), 116.7 (C-6), 123.3 (C-11), 126.1 (C-18), 129.5 (C-19), 129.8 (C-13), 132.4 (C-10), 135.2 (C-9), 137.9 (C-12), 139.9 (C-17), 142.6 (C-20), 144.5 (C-8), 145.5 (C-2); LRMS m/z (ES$^+$): 393 [M+H]$^+$, HRMS m/z (ES$^-$): Found 391.1236 [M-H]$^-$; C$_{21}$H$_{19}$N$_4$O$_2$ requires 391.1229.

Method B:

All glassware was evacuated and flushed with Ar prior to use. 217 (21.5 mg, 0.0835 mmol), 4-toluene sulfonamide (17.2 mg, 0.100 mmol), K$_2$CO$_3$ (13.8 mg, 0.100 mmol), Pd(dba)$_2$ (0.20 mg, 1 mol%) and tBu-XPhos (1.10 mg, 5 mol%) were taken up in tBuOH (1 mL) and the reaction was stirred under reflux for 48 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography was carried out (applied in CH$_2$Cl$_2$; eluted 100% CH$_2$Cl$_2$ to 50:1 to 30:1 CH$_2$Cl$_2$/EtOAc), but contamination of the pure product was evident by NMR with not enough sample to re-purify.

6.1.2.3.3 Synthesis of 4-methyl-N-(4-(2-Aryl-imidazo[1,2-a]pyrazin-8-ylamino)-phenyl)benzenesulfonamides

4-Methyl-N-[4-[2-(2-naphthyl)imidazo[1,2-a]pyrazine-8-ylamino]phenyl]benzenesulfonamide (14)

Method A:

All glassware was evacuated and flushed with Ar prior to use. 214 (50.0 mg, 0.178 mmol), N-(4-aminophenyl)-4-methylbenzenesulfonamide (56.3 mg, 0.215 mmol), K$_2$CO$_3$ (29.7 mg, 0.215 mmol), Pd(dba)$_2$ (1.03 mg, 1 mol%) and tBu-XPhos (3.80 mg, 5 mol%) were taken up in tBuOH
(3 mL) and the reaction was stirred under reflux for 24 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography (applied in toluene; eluted 3:1 toluene/EtOAc) gave the title compound as a light brown solid (12.4 mg, 0.025 mmol, 14%). Mpt: decomposed before melting; $R_f = 0.50$ (1:1 pet. ether/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3126 (N-H stretch), 2923, 2853 (C-H stretches), 1507 (N-H bend), 1325 (S=O asymmetric stretch), 1143 (S=O symmetric stretch); 1H NMR (600 MHz, CD$_3$OD): δH = 2.42 (s, 3H, 31-H), 7.20 (d, $J = 5.2$ Hz, 1H, 6-H), 7.29 (d, $J = 8.9$ Hz, 2H, 22-H), 7.36 (d, $J = 8.2$ Hz, 2H, 29-H), 7.52-7.56 (m, 2H, 15,16-H), 7.58 (d, $J = 8.9$ Hz, 2H, 23-H), 7.75 (d, $J = 8.2$ Hz, 2H, 28-H), 7.92 (d, $J = 7.1$ Hz, 1H, 17-H), 7.96-7.99 (m, 3H, 5,12,14-H), 8.13 (dd, $J = 8.5$, 1.7 Hz, 1H, 11-H), 8.53 (s, 1H, 3-H), 8.56 (s, 1H, 19-H); 13C NMR (150 MHz, CD$_3$OD): δC = 21.4 (C-31), 113.9 (C-5), 115.9 (C-3), 115.9 (C-6), 122.9 (C-22), 124.9 (C-11), 125.8 (C-23), 126.1 (C-19), 127.6/127.7 (C-15,16), 128.4 (C-28), 128.9 (C-17), 129.3 (C-14), 129.7 (C-12), 130.7 (C-29), 131.0 (C-10), 133.5 (C-9, 24), 135.0 (C-13,18), 137.7 (C-21) 138.2 (C-27), 145.2 (C-30), 146.1 (C-8), 148.1 (C-2); LRMS m/z (ES+): 506 [M+H]$^+$, (ES$^-$): 504 [M-H]$^-$; HRMS m/z (ES$^+$): Found 506.1651 [M+H]$^+$; C$_{29}$H$_{24}$N$_5$O$_2$S requires 506.1651.

Method B (Microwave):

In a 2 mL microwave vial, catalyst, ligand and base were dissolved in solvent. 214 and N-(4-aminophenyl)-4-methylbenzenesulfonamide (1.2 eq) were added and the reaction mixture was stirred at the stated temperature and for the given time with a 20 bar pressure limit. The solvent was removed in vacuo and the crude mixture was purified via flash chromatography (applied in toluene; eluted 3:1 toluene/EtOAc) to afford the title compound.

Method C:

214, N-(4-aminophenyl)-4-methylbenzenesulfonamide (2 eq) and base (in the case of NaH, the base was pre-activated by stirring in anhydrous hexanes and drying) were dissolved in solvent and stirred at the stated temperature for the given time. The reaction was cooled to RT and quenched with brine (in the case of NaH: with NH$_4$Cl (Sat.Aq)) and extracted EtOAc (3x). The combined organic layers were washed with H$_2$O (5x) and brine, dried (MgSO$_4$), filtered and solvent removed in vacuo. No further work was carried out.
Method D (Microwave):

In a 2 mL microwave vial, 214, \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide (1.2 eq) and base were added and the reaction mixture was stirred at the stated temperature and for the given time with a 20 bar pressure limit. No further work was carried out.

Method E:

NaH was washed by stirring in anhydrous hexanes, syringing out the solvent and drying. Under Ar, the reaction solvent was added to the flask, followed by \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide (2 eq) in solvent. The contents were then stirred at RT for 20 min before 227 in solvent was added dropwise, and the reaction was stirred at the stated temperature for the given time. The reaction was cooled to RT and quenched with \(\text{NH}_4\text{Cl (Sat. Aq)}\) and extracted \(\text{EtOAc (3x)}\). The combined organic layers were washed with \(\text{H}_2\text{O (5x)}\) and brine, dried (\(\text{MgSO}_4\)), filtered and solvent removed \textit{in vacuo}. No further work was carried out.

Method F (Microwave):

In a 2 mL microwave vial, 227, \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide (2 eq) and base were added and the reaction mixture was stirred at the stated temperature and for the given time with a 20 bar pressure limit. No further work was carried out.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>(\text{Pd(dba)}_2) (1 mol%)</td>
<td>'Bu-\text{XPhos} (5 mol%)</td>
<td>(\text{K}_2\text{CO}_3) (1.2 eq)</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>(\text{Pd(dba)}_2) (1 mol%)</td>
<td>'Bu-\text{XPhos} (5 mol%)</td>
<td>(\text{K}_2\text{CO}_3) (1.4 eq)</td>
<td>'BuOH</td>
<td>Reflux</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>(\text{Pd(dba)}_2) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>(\text{Cs}_2\text{CO}_3) (1.4)</td>
<td>dioxane</td>
<td>Reflux</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>(\text{Pd}_2\text{(dba)}_3) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>(\text{Cs}_2\text{CO}_3) (1.4)</td>
<td>dioxane</td>
<td>Reflux</td>
<td>24</td>
<td>Trace</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>(\text{Pd}_2\text{(dba)}_3) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>(\text{NaO'Bu}) (1.4 eq)</td>
<td>toluene</td>
<td>Reflux</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>(\text{Pd}_2\text{(dba)}_3) (1 mol%)</td>
<td>DavePhos (3 mol%)</td>
<td>(\text{NaO'Bu}) (1.4 eq)</td>
<td>toluene</td>
<td>160</td>
<td>10 min</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>(\text{Pd(PPh}_3)_4) (5 mol%)</td>
<td>-</td>
<td>(\text{NaO'Bu}) (1.4 eq)</td>
<td>toluene</td>
<td>160</td>
<td>10 min</td>
<td>23</td>
</tr>
<tr>
<td>#</td>
<td>Reaction Conditions</td>
<td>Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B: Pd(dppf)Cl₂ (5 mol%) - NaO'Bu (1.4 eq) toluene 160 10 min 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C: - Et₃N (1.2 eq) DMF Reflux 40 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cₐ: - DIPEA (3.8 eq) dioxane 100 20 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C: - DIPEA (5 eq) NMP 140 20 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C: DIPEA (2.5 eq) aBuOH 120 16 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C: - NaH (2 eq) DMSO 100 24 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C: - NaH (2 eq) DMF 100 24 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>D: DIPEA (1.5 eq) MeCN 160 10 min 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>E: - NaH (2 eq) DMSO RT 18 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>E: - NaH (2 eq) DMSO 100 18 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>F: - DIPEA (2 eq) MeCN 160 10 min 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 32: Variation in reaction conditions for formation of 14. *1.4 eq of \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide used

4-Methyl-N-[4-[2-(3-thienyl)imidazo[1,2-a]pyrazine-8-yl]amino]phenyl]benzenesulfonamide (15)

![Diagram](image)

All glassware was evacuated and flushed with Ar prior to use. 218 (128 mg, 0.540 mmol), \(N\)-(4-aminophenyl)-4-methylbenzenesulfonamide (171 mg, 0.650 mmol), \(K₂CO₃\) (90.1 mg, 0.652 mmol), Pd(dba)₂ (3.12 mg, 1 mol%) and 1'Bu-XPhos (11.5 mg, 5 mol%) were taken up in 1'BuOH.
(5 mL) and the reaction was stirred under reflux for 40 h. The reaction mixture was cooled to RT, diluted with MeOH (100 mL) and filtered through Celite (pre-washed with MeOH). Flash chromatography (applied in pet. ether; eluted 1:1 pet. ether/EtOAc) was carried to give the title compound as a yellow solid (19.2 mg, 0.042 mmol, 8%). Mpt: 158-164 °C; Rf = 0.57 (1:1 CH2Cl2/Et2O); IR (νmax/cm⁻¹, thin film): 3116 (N-H and C-H stretches), 1671, 1508 (N-H bend), 1328 (S=O asymmetric stretch), 1140 (S=O symmetric stretch); 1H NMR (600 MHz, CD3OD): δH = 2.41 (s, 3H, 26-H), 7.17 (bd, J = 4.5 Hz, 1H, 6-H), 7.29 (d, J = 8.8 Hz, 2H, 17-H), 7.35 (d, J = 8.2 Hz, 2H, 24-H), 7.53 (d, J = 8.8, 2H, 18-H), 7.57 (dd, J = 4.9, 2.9 Hz, 1H, 12-H), 7.66 (dd, J = 4.9, 1.1 Hz, 1H, 11-H), 7.75 (d, J = 8.2, 2H, 23-H), 7.96 (d, J = 5.4 Hz, 1H, 5-H), 7.98 (dd, J = 2.9, 1.1 Hz, 1H, 14-H), 8.30 (s, 1H, 3-H); 13C NMR (150 MHz, CD3OD): δC = 20.0 (C-26), 112.6 (C-5), 114.3 (C-3), 118.8 (C-6), 121.4 (C-17), 122.3 (C-14), 124.8 (C-18), 125.5 (C-11), 126.5 (C-12), 127.0 (C-23), 129.3, (C-24), 131.4 (C-16), 134.0 (C-9,10), 136.8 (overlapping signals, C-19,22), 143.2 (C-2), 143.8 (C-25), 144.4 (C-8); LRMS m/z (ES⁺) 462 [M+H]⁺; HRMS m/z (ES⁺): Found 462.1047 [M+H]⁺; C23H20N52S2 requires 462.1058.

6.1.2.3.4 Alternative Compounds used during Buchwald-Hartwig Optimisation

8-(Methylthio)-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazine (226)

214 (1.12 g, 4.01 mmol) was dissolved in anhydrous DMSO (16 mL). NaSMe (337 mg, 4.81 mmol) was added portionwise and the reaction was stirred at 100 °C for 16 h. The mixture was then cooled to RT, diluted with brine (50 mL) and extracted with CH2Cl2 (100 mL). The organic layer was washed with H2O (5 x 30 mL) and brine (30 mL), dried (MgSO4), filtered and solvent removed in vacuo. Flash chromatography (applied in CH2Cl2; eluted 0% to 1% to 2% EtOAc) afforded the title compound as an off white/yellow solid (989 mg, 3.40 mmol, 85%). Mpt: 168 °C; Rf = 0.47 (5% EtOAc/CH2Cl2); IR (νmax/cm⁻¹, thin film): 3055 (aromatic C-H stretch), 1470, 1432 (aromatic C=C stretches), 1368 (aromatic C-S stretch); 1H NMR (600 MHz, CDCl3): δH = 2.71 (s, 3H, 21-H), 7.47-7.52 (m, 2H, 15,16-H), 7.72 (d, J = 4.5 Hz, 1H, 6-H), 7.82 (d, J = 4.5
Hz, 1H, 5-H), 7.85 (d, J = 7.4 Hz, 1H, 17-H), 7.90 (d, J = 8.5 Hz, 1H, 12-H), 7.94 (d, J = 7.4 Hz, 1H, 14-H), 7.98 (s, 1H, 3-H), 8.04 (dd, J = 8.5, 1.6 Hz, 1H, 11-H), 8.55 (s, 1H, 19-H); 13C NMR (150 MHz, CDCl$_3$): δ_C = 12.3 (C-21), 110.3 (C-3), 115.1 (C-5), 124.3 (C-11), 125.6 (C-19), 126.4 (C-15), 126.5 (C-16), 127.9 (C-17), 128.5 (C-12), 128.6 (C-14), 129.0 (C-6), 130.2 (C-10), 133.5 (overlapping signals, C-13,18), 138.9 (C-9), 146.4 (C-2), 154.4 (C-8); LRMS m/z (ES$^+$): 292 [M+H]$^+$; HRMS m/z (ES$^+$): Found 292.0909 [M+H]$^+$; C$_{17}$H$_{14}$N$_3$S requires 292.0908; Anal. Calcd. for C$_{17}$H$_{13}$N$_3$S: C, 70.08; H, 4.50; N, 14.42. Found C, 69.85; H, 4.28; N, 14.42%.

8-(Methylsulfonyl)-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazine (227)

226 (1.77 g, 6.07 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (50 mL) and the mixture was cooled on ice. mCPBA (5.23 g, 30.3 mmol) was added in one portion and the reaction continued to stir at RT for 5 h. The reaction was partitioned with NaHCO$_3$ (40 mL) and extracted with CH$_2$Cl$_2$ (3 x 30 mL); the combined organic extracts were then washed with brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in CH$_2$Cl$_2$; eluted 2% to 5% EtOAc) afforded the title compound as a yellow solid (1.10 g, 3.40 mmol, 56%). Mpt: >200 °C; R_f = 0.22 (10% EtOAc/CH$_2$Cl$_2$); IR (ν_{max}/cm$^{-1}$, thin film): 3121, 3010 (aromatic C-H stretch), 1312 (S=O asymmetric stretch), 1138 (S=O symmetric stretch); 1H NMR (600 MHz, CDCl$_3$): δ_H = 3.84 (s, 3H, 21-H), 7.51-7.54 (m, 2H, 15,16-H), 7.86-7.87 (m, 1H, 14-H), 7.92 (d, J = 8.5 Hz, 1H, 12-H), 7.95-7.96 (m, 1H, 17-H), 8.02 (d, J = 4.3 Hz, 1H, 11-H), 8.08 (dd, J = 8.5, 1.4 Hz, 1H, 11-H), 8.26 (s, 1H, 3-H), 8.32 (d, J = 4.3 Hz, 1H, 5-H), 8.59 (s, 1H, 19-H); 13C NMR (150 MHz, CDCl$_3$): δ_C = 41.7 (C-21), 110.9 (C-3), 122.1 (C-5), 124.3 (C-11), 126.7 (C-19), 126.8 (C-15), 127.0 (C-16), 127.9 (C-14), 128.1 (C-6), 128.7 (C-17), 128.8 (C-12), 129.1 (C-10), 133.5 (C-13), 134.0 (C-18), 136.3 (C-9), 148.6 (C-8), 149.8 (C-2); LRMS m/z (EI$^+$): 323 [M]$^+$; HRMS m/z (EI$^+$): Found 323.0727 [M]$^+$; C$_{17}$H$_{13}$N$_3$O$_2$S requires 323.0723.

236
8-(Methylsulfinyl)-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazine (228)

Mpt: Decomposed before melting; \(R_f = 0.05 \) (10% EtOAc/CH\(_2\)Cl\(_2\)); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3111 (aromatic C-H stretch), 1360 (aromatic C=C and C-N stretches), 1069 (S=O stretch); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 3.28 \) (s, 3H, 21-H), 7.52-7.55 (m, 2H, 15,16-H), 7.85-7.88 (m, 1H, 14-H), 7.93-7.95 (m, 2H, 12,17-H), 8.03 (dd, \(J = 8.5, 1.6 \) Hz, 1H, 11-H), 8.11 (d, \(J = 4.4 \) Hz, 1H, 6-H), 8.19 (bs, 1H, 5-H), 8.19 (bs, 1H, 3-H), 8.51 (s, 1H, 19-H); \(^13\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = 39.8 \) (C-21), 110.6 (C-5), 120.0 (C-3), 124.1 (C-11), 126.8 (C-15), 126.9 (C-16), 128.0 (C-14), 128.6 (C-17), 128.9 (C-12), 129.8 (C-6), 133.4 (C-13), 133.6 (C-18), 148.5 (C-2), 155.8 (C-8); LRMS m/z (EI\(^+\)): 307 [M\(^+\)], 291 [M-O\(^+\)], 245 [M-S(O)Me\(^+\)].

N,N-Dimethyl-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-amine (230)

214 (50 mg, 0.179 mmol) was dissolved in anhydrous DMSO (3 mL) in a sealed tube. 4.2 N Me\(_3\)N/EtOH (100 µL, 0.358 mmol) was added and the mixture was stirred at 60 °C for 16 h. The solvent was removed and purification via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 24:1 CH\(_2\)Cl\(_2\)/EtOAc) afforded the title compound as an off white solid (38.0 mg, 0.132 mmol, 73%). \(R_f = 0.31 \) (5:1 CH\(_2\)Cl\(_2\)/EtOAc); \(^1\)H NMR (600 MHz, (CD\(_3\))\(_2\)SO): \(\delta_H = 3.56 \) (s, 6H, 21-H), 7.33 (d, \(J = 4.4 \) Hz, 1H, 6-H), 7.49-7.55 (m, 2H, 15,16-H), 7.84 (d, \(J = 4.4 \) Hz, 1H, 5-H), 7.92 (d, \(J = 7.9 \) Hz, 1H, 14-H), 7.99 (d, \(J = 8.3 \) Hz, 2H, 12,17-H), 8.10 (dd, \(J = 8.5, 1.6 \) Hz, 1H, 11-H), 8.49 (bs, 2H, 3,19-H); \(^13\)C NMR (150 MHz, (CD\(_3\))\(_2\)SO): \(\delta_C = 39.3 \) (C-21), 110.6 (C-5), 111.5 (C-3), 123.7 (C-19), 124.0 (C-11), 126.0 (C-15), 126.5 (C-16), 127.7 (C-14), 128.0 (C-6), 128.1 (C-12),
128.3 (C-17), 130.9 (C-10), 132.7 (C-13), 133.2 (C-18), 133.7 (C-9), 142.2 (C-2), 149.4 (C-8); LRMS m/z (ES⁺): 289 [M+H]⁺; HRMS m/z (ES⁺): Found 289.1446 [M+H]⁺; C₁₈H₁₇N₄ requires 289.1453.

N,N,N-Trimethyl-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-aminium (229)

214 (50 mg, 0.179 mmol) was dissolved in anhydrous DMF (3 mL) in a sealed tube. 4.2 N Me₃N/EtOH (100 µL, 0.358 mmol) was added and the mixture was stirred at RT for 16 h. The solvent was removed and purification via flash chromatography (applied in CH₂Cl₂; eluted 1:1 CH₂Cl₂/EtOAc to 100% MeOH) afforded the title compounds as a sticky pale brown solid (5.20 mg, 0.017 mmol, 10%). Rf = 0.25 (1:1 CH₂Cl₂/MeOH); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 3.94 (s, 6H, 21-H), 7.58-7.60 (m, 2H, 15,16-H), 7.98-8.00 (m, 2H, 6,17-H), 8.07-8.10 (m, 2H, 12,14-H), 8.25 (dd, J = 8.5, 1.6 Hz, 1H, 11-H), 8.72 (s, 1H, 19-H), 9.00 (d, J = 4.3 Hz, 1H, 5-H), 9.06 (s, 1H, 3-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δC = 53.8 (C-21), 113.5 (C-3), 123.9 (C-5) 124.2 (C-11), 125.5 (overlapping signals, C-6,19), 126.9 (overlapping signals, C-15,16), 127.9 (C-17), 128.4 (C-14), 128.8 (C-12), 129.4 (C-10), 132.4 (C-9), 133.1 (C-13), 133.3 (C-18), 144.7 (C-8), 146.5 (C-2); LRMS m/z (ES⁺): 303 [M⁺]; HRMS m/z (ES⁺): Found 303.1603 [M⁺]; C₁₉H₁₉N₄ requires 303.1610.

2-(Naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-amine (231)

238
Method A:

In a sealed tube, **227** (21.0 mg, 0.065 mmol) was dissolved in 2.0 M NH₃/IPA (2 mL), and the mixture was heated at 100 °C for 16 h. Removal of solvent *in vacuo* followed by flash chromatography (applied in CH₂Cl₂; eluted 1% to 10% MeOH) afforded the title compound as a sticky yellow solid (3.40 mg, 0.013 mmol, 20%). Mpt: >200 °C; Rf = 0.49 (20:1 CH₂Cl₂/MeOH); IR (ν max/cm⁻¹, thin film): 3314, 2956-3055 (N-H and aromatic C-H stretches), 1620 (aromatic C=C stretch); ¹H NMR (600 MHz, CDCl₃): δH = 6.10 (bs, 2H, 20-H), 7.29 (d, J = 4.7 Hz, 1H, 6-H), 7.47-7.52 (m, 2H, 15,16-H), 7.54 (d, J = 4.7 Hz, 1H, 5-H), 7.85 (d, J = 8.4 Hz, 1H, 17-H), 7.90 (d, J = 1.0 Hz, 2H, 12,14-H), 7.92 (s, 1H, 3-H), 8.00 (d, J = 8.5 Hz, 1H, 11-H), 8.44 (s, 1H, 19-H); ¹³C NMR (150 MHz, CDCl₃): δC = 111.4 (C-3), 112.8 (C-5) 123.8 (C-11), 125.2 (C-19), 126.6 (C-15), 126.7 (C-16), 127.8 (signals overlapping, C-6,17), 128.4 (C-12), 128.8 (C-14), 129.4 (C-10), 133.5 (signals overlapping, C-9,13,18), 146.1(C-8), 148.4 (C-2); LRMS m/z (EI⁺): 260 [M]⁺; HRMS m/z (Cl⁺): Found 261.1141 [M+H]⁺; C₁₆H₁₃N₄ requires 261.1140.

Method B:

In a sealed tube **214**, and any further reagents were taken up in solvent and the reaction was heated at the stated temperature for the given time. The reaction mixture was allowed to cool to RT and the top was carefully unscrewed to relieve the pressure. The contents were transferred to a round bottom flask and the solvent removed *in vacuo*. The compound was purified using flash chromatography (applied in CH₂Cl₂; eluted 1:1 CH₂Cl₂, followed by MeOH flush).

Method C:

All glassware was flushed with Ar prior to use. **214** (100 mg, 0.358 mmol) was dissolved in dry THF (5 mL). Lithium amide (8.21 mg, 0.358 mmol) was added and the reaction was stirred under reflux for 22 h. The mixture was left to cool to RT and solvent was removed *in vacuo*. Brine (20 mL) was added, and was extracted with CHCl₃ (3 x 30 mL), combined, dried (MgSO₄) and solvent removed. NMR indicated that no reaction had occurred and so no further work was carried out.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 M NH₃/IPA</td>
<td>RT</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7 M NH₃/MeOH</td>
<td>100</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 M NH₃/IPA</td>
<td>80</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 M NH₃/EtOH</td>
<td>120</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>NH₃OH (sat. aq.)</td>
<td>IPA</td>
<td>90</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>-</td>
<td>NH₃OH (sat. aq.)</td>
<td>IPA</td>
<td>90</td>
<td>16</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>-</td>
<td>NH₃OAc</td>
<td>-</td>
<td>2 M NH₃/IPA</td>
<td>90</td>
<td>72</td>
<td>Trace</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Pd(dba)₂ (1 mol%)</td>
<td>DavePhos (1.2 mol%)</td>
<td>LHMDS (3 eq)</td>
<td>dioxane</td>
<td>100</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Pd(dba)₂ (0.5 mol%)</td>
<td>'Bu-XPhos (1.2 mol%)</td>
<td>NHMDS (1.2 eq)</td>
<td>THF</td>
<td>65</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>-</td>
<td>LiNH₂ (1 eq)</td>
<td>THF</td>
<td>Reflux</td>
<td>16</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 33: Variation in reaction conditions for formation of 231

8-Methoxy-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazine (232)

227 (19.8 mg, 0.061 mmol) and 7.0 M NH₃/MeOH (2 mL) were stirred in a sealed tube at 80 °C for 16 h. Removal of the solvent in vacuo followed by flash chromatography (applied in CH₂Cl₂; eluted 0.5% MeOH) afforded the title compound as a white solid (16.5 mg, 0.06 mmol, 98%). Mpt: 184 °C; Rₚ = 0.76 (5% MeOH/CH₂Cl₂); IR (v/cm⁻¹, thin film): 3138, 3054 (aromatic C-H stretches), 2949 (C-H stretch), 1525, 1504 (aromatic C=C and C=N stretches), 1325 (aromatic C-O stretch), 1130 (C-O stretch); ¹H NMR (600 MHz, CDCl₃): δ_H = 4.21 (s, 3H, 21-H), 7.40 (d, J = 4.6 Hz, 1H, 6-H), 7.47-7.51 (m, 2H, 15,16-H), 7.74 (d, J = 4.6 Hz, 1H, 5-H), 7.84-7.85 (m, 1H,
17-H), 7.89-7.90 (m, 1H, 12-H), 7.92-7.93 (m, 1H, 14-H), 8.00 (s, 1H, 3-H), 8.03 (dd, \(J = 8.5, 1.5\) Hz, 1H, 11-H), 8.60 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = 54.4\) (C-21), 111.0 (C-3), 114.4 (C-5), 124.2 (C-11), 125.2 (C-19), 126.4 (C-15), 126.5 (C-16), 126.7 (C-6), 127.8 (C-17), 128.5 (C-12), 128.5 (C-14), 130.1 (C-10), 133.5 (C-13), 133.7 (C-18), 133.9 (C-9), 149.0 (C-2), 154.8 (C-8); LRMS m/z (ES\(^+\)): 276 [M+H]\(^+\); HRMS m/z (ES\(^+\)): Found 276.1144 [M+H]\(^+\); \(C_{17}H_{14}N_3O\) requires 276.1137.

6.1.3 Synthesis of 2nd Generation Compounds

6.1.3.1 Imidazo[1,2-\(a\)]pyrazine Compounds

6.1.3.1.1 Variations in Position 8

\(N^1\)-(2-(Naphthalen-2-yl)imidazo[1,2-\(a\)]pyrazin-8-yl)benzene-1,4-diamine (233)

\[
\text{Method A:}
\]

All glassware was dried and purged with Ar prior to use. \(\text{Pd}_2(\text{dba})_3\) (9.17 mg, 1 mol%), DavePhos (11.8 mg, 3 mol%) and \(\text{NaO}^\prime\text{Bu}\) (135 mg, 1.402 mmol) were dissolved in anhydrous toluene (10 mL). 214 (280 mg, 1.00 mmol) and 1,4-diaminobenzene (130 mg, 1.20 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed \textit{in vacuo}, before the residue was taken up in \(\text{CH}_2\text{Cl}_2\) (100 mL) and washed with \(\text{H}_2\text{O}\) (3 x 50 mL) and brine (30 mL), dried (\(\text{MgSO}_4\)), filtered and concentrated \textit{in vacuo}. Flash Chromatography (applied in \(\text{CH}_2\text{Cl}_2\); eluted 15:1 to 5:1 to 1:1) afforded the title compound as a sticky brown solid (95.0 mg, 0.271 mmol, 27%). \(R_f = 0.22\) (1:1 \(\text{CH}_2\text{Cl}_2/\text{EtOAc}\)); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3335, 3051 (C-H and N-H stretches), 1622, 1541, 1507 (aromatic C=C and C=N stretches); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 3.71\) (bs, 2H, 25-H), 6.76 (ap.d, \(J = 8.7\) Hz, 2H, 23-H), 7.42 (d, \(J = 4.6\) Hz, 1H, 6-H), 7.48-7.53 (m, 3H, 5,15,16-H), 7.61 (d, \(J = 9.5\) Hz,
2H, 22-H), 7.86 (d, J = 7.5 Hz, 1H, 14-H), 7.90 (s, 1H, 3-H), 7.92-7.94 (m, 3H, 12,17,20-H), 8.02 (dd, J = 8.5, 1.7 Hz, 1H, 11-H), 8.48 (s, 1H, 19-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C =$ 110.8 (C-5), 111.0 (C-3), 115.8 (C-23), 122.4 (C-22), 124.1 (C-11), 124.9 (C-19), 126.3 (C-15,16), 127.9 (C-14), 128.4 (overlapping signals, C-12,17), 128.7 (C-6), 130.6 (overlapping signals, C-10,21), 133.4 (C-13), 133.7 (C-9), 133.8 (C-18), 142.7 (C-24), 144.7 (C-2), 146.8 (C-8); LRMS m/z (ES$^+$): 352 [M+H]$^+$, 338, 181; HRMS m/z (ES$^+$): Found 352.1563 [M+H]$^+$; C$_{22}$H$_{18}$N$_5$ requires 352.1562.

Method B (Microwave):

In a 2 mL microwave vial, catalyst (1 mol%), ligand (3 mol%) and base (1.4 eq) were dissolved in anhydrous solvent. 214 and 1,4-diaminobenzene (1.2 eq) were added and the reaction mixture was stirred at 160 °C for 10 min with a 20 bar pressure limit. The solvent was removed in vacuo and the crude mixture was purified via flash chromatography (applied in CH$_2$Cl$_2$; eluted 10% to 20% to 50% EtOAc) to afford the title compound.

Method C (Microwave):

In a 2 mL microwave vial, 214, 1,4-diaminobenzene (1.2 eq) and base (1.5 eq) were dissolved in stated solvent and the reaction mixture was stirred at 160 °C for 10 min with a 20 bar pressure limit. The solvent was removed in vacuo and the crude mixture was purified via flash chromatography (applied in CH$_2$Cl$_2$; eluted 10% to 20% to 50% EtOAc) to afford the title compound.

Method D (Microwave):

In a 2 mL microwave vial, 227, 1,4-diaminobenzene (2.0 eq) and base (2.0 eq) were dissolved in stated solvent and the reaction mixture was stirred at 160 °C for 10 min with a 20 bar pressure limit. The solvent was removed in vacuo and the crude mixture was purified via flash chromatography (applied in CH$_2$Cl$_2$; eluted 10% to 20% to 50% EtOAc) to afford the title compound.
Table 34: Different reaction conditions used for the formation of 233/212. a 5 mol% used

<table>
<thead>
<tr>
<th>Exp</th>
<th>Method</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Temp/°C</th>
<th>Time/h</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Pd(dba)₂</td>
<td>DavePhos</td>
<td>Cs₂CO₃</td>
<td>dioxane</td>
<td>reflux</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Pd₂(db₃)₃</td>
<td>DavePhos</td>
<td>NaO’Bu</td>
<td>toluene</td>
<td>reflux</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Pd₂(db₃)₃</td>
<td>DavePhos</td>
<td>NaO’Bu</td>
<td>toluene</td>
<td>160</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Pd(PPh₃)₆</td>
<td>-</td>
<td>NaO’Bu</td>
<td>toluene</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Pd(dppf)Cl₂</td>
<td>-</td>
<td>DIPEA</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>DIPEA</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>DIPEA</td>
<td>MeCN</td>
<td>160</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Benzene-1,4-diamine (6.49 g, 60 mmol) was dissolved in THF/DMF (3:1, 80 mL). K₂CO₃ (3.04 g, 22.0 mmol) in H₂O (10 mL) was added followed by Boc₂O (4.37 g, 20.0 mmol) portionwise. The reaction was stirred at RT for 5 h before pouring into cold H₂O (100 mL) and extracting with CHCl₃ (4 x 70 mL). The combined organic extracts were washed with Brine (70 mL), dried (MgSO₄), filtered and solvent removed to give crude brown/red oil. Flash chromatography (applied in CH₂Cl₂; eluted 1% to 2% to 5% acetone) afforded the title compound as a yellow solid (3.91 g, 18.8 mmol, 94%) with the NMR consistent with literature values.³⁰² Mpt: 94-96°C [Lit.³⁰³ 114-116°C]; Rₜ = 0.6 (20% acetone/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3365 (N-H stretch), 1738 (C=O stretch), 1693 (N-H bend), 1513, 1233; ¹H NMR (600 MHz, CDCl₃): δH = 1.49 (s, 9H, 1-H), 3.52 (bs, 2H, 10-H), 6.35 (bs, 1H, 5-H), 6.60-6.63 (m, 2H, 8-H), 7.12 (bs, 2H, 7-H); ¹³C NMR (150 MHz, CDCl₃): δC = 28.5 (C-1), 80.1 (C-2), 115.7 (C-8), 121.0 (C-7), 129.8 (C-6), 142.5 (C-9), 153.4 (C-4); LRMS m/z (El⁺): 208 [M]⁺, 152 [M-²Bu]⁺,
108 [M-Boc]+; HRMS m/z (EI⁺): Found 208.1210 [M]+; C₁₁H₁₆N₂O₂ requires 208.1206; Anal. Caled. for C₁₁H₁₆N₂O₂: C, 63.44; H, 7.74; N, 13.45. Found C, 63.13; H, 7.81; N, 13.29%.

'Butyl 4-(methylsulfonamido)phenylcarbamate (236)

235 (500 mg, 2.40 mmol) was dissolved in anhydrous CH₂Cl₂ (20 mL), Et₃N (186 µL, 2.40 mmol) added and the yellow solution was cooled on ice. MeSO₂Cl (670 µL, 4.80 mmol) was added dropwise and the reaction was left to stir at RT for 16 h (a precipitate formed after 30 min of stirring). The mixture was diluted with H₂O (20 mL) and organics extracted (3 x 30 mL). The combined extracts were washed with H₂O (20 mL) and brine (20 mL), dried (MgSO₄), filtered and solvent removed in vacuo. Flash chromatography (applied in CH₂Cl₂; eluted 0% to 1% to 2% to 5% acetone) afforded the title compound as an off white solid (173 mg, 0.604 mmol, 25%), with NMR consistent with literature values.³⁰⁴ Mpt: 190 °C [Lit.³⁰⁴ 194-196 °C]; Rf = 0.39 (10% acetone/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3338 (N-H stretch), 3178 (aromatic C-H stretch), 2978 (C-H stretch), 1698 (C=O stretch), 1527 (N-H bend), 1321 (S=O asymmetric stretch), 1147 (S=O symmetric stretch); ¹H NMR (600 MHz, CD₃OD): δ_H = 1.51 (s, 9H, 1-H), 2.90 (s, 3H, 12-H), 7.15-7.18 (m, 2H, 8-H), 7.37 (d, J = 8.5 Hz, 2H, 7-H); ¹³C NMR (150 MHz, CD₃OD): δ_C = 28.7 (C-1), 38.8 (C-12), 80.9 (C-2), 120.6 (C-7), 123.5 (C-8), 133.9 (C-9), 138.0 (C-6), 155.3 (C-4); LRMS m/z (ES⁻): 285 [M-H]⁻, 255, 148; HRMS m/z (ES⁻): Found 285.0900 [M-H]⁻; C₁₂H₁₇N₂O₄S requires 285.0909; Anal. Caled. for C₁₂H₁₈N₂O₄S: C, 50.33; H, 6.34; N, 9.78. Found C, 50.17; H, 6.30; N, 9.50%.

N-(4-Aminophenyl)methanesulfonamide 237

"N-(4-Aminophenyl)methanesulfonamide 237"
Method A:

Benzene-1,4-diamine (3.14 g, 29.0 mmol), was dissolved in anhydrous CH$_2$Cl$_2$ (100 mL), Et$_3$N (1.62 mL, 11.61 mmol) added and the mixtures cooled on ice. MeSO$_2$Cl (0.449 mL, 5.81 mmol) was added dropwise and the reaction was stirred at RT for 16 h. The mixture was then diluted with CH$_2$Cl$_2$ (50 mL) and washed NaHCO$_3$ (sat. aq. 50 mL). The aqueous layer was then extracted with CH$_2$Cl$_2$ (4 x 50 mL) as well as EtOAc (4 x 50 mL). Each of the organic extracts were washed with brine (50 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in CH$_2$Cl$_2$; eluted 1% to 2% to 5% MeOH) afforded the title compound as a white solid (844 mg, 4.54 mmol, 78%) with NMR consistent with literature values.305 Mpt: 89 °C [Lit.305 116-117 °C]; R_f = 0.53 (10% MeOH/CH$_2$Cl$_2$); IR (ν_{\max}/cm$^{-1}$, thin film): 3459, 3375, 3330 (C-H and N-H stretches), 1625, 1518 (N-H bend), 1309 (S=O asymmetric stretch), 1152 (S=O symmetric stretch); 1H NMR (600 MHz, CD$_3$OD): $\delta$$_H$ = 2.87 (s, 3H, 8-H), 6.71-6.73 (m, 2H, 3-H), 7.02-7.05 (m, 2H, 4-H); 13C NMR (150 MHz, CD$_3$OD): $\delta$$_C$ = 36.8 (C-8), 115.4 (C-3), 124.4 (C-4), 127.5 (C-5), 145.8 (C-2); LRMS m/z (CI+): 187 [M+H]$^+$, 107; HRMS m/z (CI'): Found 187.0539 [M+H]$^+$; C$_7$H$_{11}$N$_2$O$_2$S requires 187.0541.

Method B:

236 (164 mg, 0.582 mmol) was dissolved in CH$_2$Cl$_2$/TFA (1:1, 10 mL) and stirred at RT for 16 h. Removal of the solvent in vacuo, via trituration with MeOH, gave the crude product which upon purification by flash chromatography (applied in CH$_2$Cl$_2$; eluted 0% to 20% acetone) afforded the title compound as a brown oil/solid (123 mg, 0.409 mmol, 70%).

\[N-(4-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)phenyl)methanesulfonamid (238)\]
All glassware was dried and purged with Ar prior to use. Pd$_2$(dba)$_3$ (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaOtBu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene. 214 (50.0 mg, 0.179 mmol) and 237 (39.9 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 20 h. The reaction was cooled to RT and solvent removed in vacuo, before the residue was taken up in CH$_2$Cl$_2$ (50 mL) and washed with NaHCO$_3$ (30 mL), H$_2$O (30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in toluene; eluted 2:1 toluene/EtOAc) afforded the title compound as an off white solid (5.2 mg, 0.012 mmol, 7%). Mpt: Decomposed before melting; R_f = 0.32 (1:1 toluene/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3248, 3056, 2926, 2854 (aromatic C-H and N-H stretch), 1624 (N-H bend), 1543 (aromatic C=C symmetric and C=N stretches), 1508 (aromatic C=C asymmetric stretch), 1326 (S=O asymmetric stretch), 1152 (S=O symmetric stretch); 1H NMR (600 MHz, CDCl$_3$): δ_{H} = 3.01 (s, 3H, 27-H), 6.39 (s, 1H, 25-H), 7.27-7.29 (m, 2H, 23-H), 7.47 (d, $J = 4.6$ Hz, 1H, 6-H), 7.49-7.54 (m, 2H, 15,16-H), 7.60 (d, $J = 4.6$ Hz, 1H, 5-H), 7.87 (d $J = 7.8$ Hz, 1H, 14-H), 7.92-7.95 (m, 5H, 3,12,17,22-H), 8.02 (dd, $J = 8.5$, 1.6 Hz, 1H, 11-H), 8.18 (s, 1H, 20-H), 8.48 (s, 1H, 19-H); 13C NMR (150 MHz, CDCl$_3$): δ_{C} = 39.3 (C-27), 111.2 (C-3), 111.9 (C-5), 128.2 (C-6), 120.8 (C-22), 123.3 (C-23), 124.1 (C-11), 125.0 (C-19), 126.4 (C-15), 126.6 (C-16), 127.9 (C-14), 128.2 (C-17), 128.8 (C-12), 130.4 (C-10), 131.1 (C-24), 133.4 (C-13), 133.7 (overlapping signals, C-9,18), 137.7 (C-21), 145.1 (C-2), 146.1 (C-8); LRMS m/z (ES$^+$): 430 [M+H]$^+$; HRMS m/z (ES$^+$): Found 430.1324 [M+H]$^+$; C$_{23}$H$_{30}$N$_5$O$_2$S requires 430.1338.

N-(4-Hydroxyphenyl)-4-methylbenzenesulfonamide (240)

A solution of 4-aminophenol (500 mg, 4.58 mmol) in anhydrous pyridine (9 mL) was cooled on ice and 4-methylbenzene-1-sulfonyl chloride (1.05 g, 5.50 mmol) was added portionwise. The resulting red solution was stirred under Ar at RT for 18 h, before diluting with Et$_2$O (100 mL) and washing with H$_2$O (50 mL), 5% HCl (50 mL), H$_2$O (50 mL) and brine (30 mL); drying
(MgSO₄) filtering and concentrating in vacuo. Flash chromatography (applied in toluene; eluted 5:1 to 4:1 toluene/Et₂O) afforded the title compound as a pale yellow solid (934 mg, 3.55 mmol, 78%) with the NMR consistent with literature values.¹⁸⁰ Mpt: 134-136 °C [Lit.¹⁸⁰ 144-146 °C]; Rᵣ = 0.33 (2:1 toluene/Et₂O); IR (vₛ макс/cm⁻¹, thin film): 3445 (O-H stretch), 3234 (aromatic C-H stretch), 1509 (N-H bend), 1263 (S=O asymmetric stretch), 1153 (S=O symmetric stretch), 1090 (C-OH stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δ Hans = 2.38 (s, 3H, 12-H), 6.57-6.60 (m, 2H, 3-H), 6.81-6.83 (m, 2H, 4-H), 7.31 (d, J = 8.1 Hz, 2H, 10-H), 7.53 (d, J = 8.1 Hz, 2H, 9-H), 9.29 (s, 1H, 1-H), 9.66 (bs, 1H, 6-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δ C = 21.0 (C-12), 115.5 (C-3), 123.9 (C-4), 126.8 (C-9), 129.5 (C-10), 136.7 (C-8), 142.8 (C-11), 154.8 (C-2) 128.6 (C-5); LRMS m/z (ES⁻): 262 [M-H]⁻, 308 [M+Formic Acid]⁺; HRMS m/z (ES⁻): Found 262.0545 [M-H]⁻; C₁₃H₁₂NO₃S requires 262.0538; Anal. Calcd. for C₁₃H₁₃NO₃S: C, 59.30; H, 4.98; N, 5.32. Found C, 59.01; H, 4.73; N, 5.26%.

4-Methyl-N-(4-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yloxy)phenyl)benzenesulfonamide (241)

NaH was washed by stirring NaH (60% in mineral oil; 12.4 mg, 0.310 mmol) in anhydrous hexanes (3 mL) for 20 min, removing the solvent using a syringe and drying the contents under high vacuum. DMF (0.5 mL) was added followed by 240 (81.4 mg, 0.310 mmol) in DMF (1 mL) and the mixture was stirred at RT for 20 min. 227 (50.0 mg, 0.155 mmol) in DMF (1.5 mL) was added and the resulting deep red solution was heated at 100 °C under Ar for 16 h. The mixture was then diluted with EtOAc (50 mL) and washed with NH₄Cl (sat. aq. 20 mL) and H₂O (5 x 20 mL). The combined aqueous layers were then re-extracted with EtOAc (2 x 30 mL), followed by washing the combined organics with brine (30 mL), drying (MgSO₄), filtering and concentrating in vacuo. The crude material was purified via flash chromatography (applied in
toluene; eluted 25% EtOAc/toluene) to give the title compound as an off white-pink solid (36.4 mg, 0.072 mmol, 47%). Mpt: 128 °C; \(R_f = 0.21 \) (2:1 toluene/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3568, 3049 (aromatic C-H stretch), 1488 (N-H bend), 1330 (S=O asymmetric stretch), 1153 (S=O symmetric stretch and aromatic C-O stretch); \(^1\)H NMR (600 MHz, \((\text{CD}_3)\text{SO})\): \(\delta_H = 2.39 \) (s, 3H, 31-H), 7.15-7.17 (m, 2H, 23-H), 7.21-7.13 (m, 2H, 22-H), 7.33 (d, \(J = 4.6 \) Hz, 1H, 6-H), 7.39 (d, \(J = 8.2 \) Hz, 2H, 29-H), 7.52-7.56 (m, 2H, 15,16-H), 7.70 (d, \(J = 8.2 \) Hz, 2H, 28-H), 7.94 (d, \(J = 7.6 \) Hz, 1H, 17-H), 8.01-8.04 (m, 2H, 12,14-H), 8.15 (dd, \(J = 8.5, 1.6 \) Hz, 1H, 11-H), 8.32 (d, \(J = 4.6 \) Hz, 1H, 5-H), 8.61 (s, 1H, 19-H), 8.74 (s, 1H, 3-H), 10.34 (s, 1H, 25-H); \(^{13}\)C NMR (150 MHz, \((\text{CD}_3)\text{SO})\): \(\delta_C = 21.0 \) (C-31), 112.9 (C-3), 116.9 (C-5), 121.3 (C-23), 122.7 (C-22), 124.0 (C-11), 124.5 (C-19), 125.5 (C-6), 126.4 (C-15), 126.6 (C-16), 126.8 (C-28), 127.7 (C-17), 128.3 (C-14), 128.5 (C-12), 129.9 (C-29), 130.4 (C-10), 132.8 (C-9), 132.9 (C-13), 133.2 (C-18), 135.0 (C-24), 136.7 (C-27), 143.4 (C-30), 145.1 (C-2), 148.7 (C-21), 153.1 (C-8); LRMS m/z (ES\(^{-}\)): 505 [M-H]; HRMS m/z (ES\(^{-}\)): Found 505.1323 [M+H]\(^+\); \(C_{29}H_{23}N_4O_3S \) requires 505.1334.

\textbf{N-(4-Aminobenzyl)-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-amine (243)}

\[
\begin{align*}
\text{NH}_2 & \\
\text{N} & \\
\end{align*}
\]

All glassware was dried and purged with Ar prior to use. \(\text{Pd}_2(\text{dba})_3 \) (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and \(\text{NaO}^+\text{Bu} \) (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). \(\text{214} \) (50.0 mg, 0.179 mmol) and 4-(aminomethyl)aniline (24.3 \(\mu \)L, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 20 h. The reaction was cooled to RT and solvent removed \text{in vacuo}, before the residue was taken up in \(\text{CH}_2\text{Cl}_2 \) (50 mL) and washed with \(\text{NaHCO}_3 \) (sat. aq. 30 mL), \(\text{H}_2\text{O} \) (30 mL) and brine (30 mL), dried (\(\text{MgSO}_4 \)), filtered and concentrated \text{in vacuo}. Flash chromatography (applied in pet. ether; eluted 4:1 to 3:1 to 2:1 to 1:1 to 1:3 pet. ether/EtOAc) afforded the title compound as a light yellow oil (20.1 mg, 0.055
mmol, 31%). $R_f = 0.52$ (3:1 EtOAc/pet. ether); IR (ν_{max}/cm$^{-1}$, thin film): 3326 (aromatic C-H stretch), 1619 (N-H bend), 1544, 1519 (aromatic C=C and C=N stretches); 1H NMR (600 MHz, CD$_3$OD): $\delta_H =$ 4.58 (s, 2H, 21-H), 6.71-6.74 (m, 2H, 24-H), 7.19 (d, $J = 8.4$ Hz, 2H, 23-H), 7.25 (d, $J = 4.7$ Hz, 1H, 6-H), 7.44-7.49 (m, 2H, 15,16-H), 7.65 (d, $J = 4.7$ Hz, 1H, 5-H), 7.82-7.84 (m, 1H, 14-H), 7.85-7.88 (m, 2H, 12,17-H), 7.94 (dd, $J = 8.5$, 1.6 Hz, 1H, 11-H), 8.16 (s, 1H, 3-H), 8.34 (s, 1H, 19-H); 13C NMR (150 MHz, CD$_3$OD): $\delta_C =$ 45.5 (C-21), 111.5 (C-5), 113.1 (C-3), 116.7 (C-24), 124.9 (C-11), 125.5 (C-19), 127.2 (C-15), 127.5 (C-16), 128.7 (C-14), 129.1 (C-6), 129.2 (C-17), 129.2 (C-22), 129.5 (C-12), 129.9 (C-23), 131.7 (C-10), 134.6 (overlapping signals, C-9,13), 135.0 (C-18), 145.4 (C-2), 148.1 (C-25), 149.8 (C-8); LRMS m/z (ES$^+$): 366 [M+H]$^+$, 273 [M-aniline]$^+$, 261 [M-CH$_2$-aniline]$^+$; HRMS m/z (ES$^+$): Found 366.1716 [M+H]$^+$; C$_{23}$H$_{20}$N$_5$ requires 366.1719.

4-Methyl-N-(4-((2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)methyl)phenyl)benzene-sulfonamide (244)

243 (18.0 mg, 0.049 mmol) was dissolved in anhydrous pyridine (1 mL) and the mixture was cooled on ice. 4-Methylbenzene-1-sulfonyl chloride (11.3 mg, 0.059 mmol) was added and the deep yellow/orange solution was stirred under Ar at RT for 16 h. The solvent was then removed $\textit{in vacuo}$ and the crude material was purified via flash chromatography (applied in CH$_2$Cl$_2$; eluted 10% to 20% EtOAc) to afford the title compound as pale green sticky solid (8.20 mg, 0.016 mmol, 32%). $R_f = 0.44$ (20% EtOAc/CH$_2$Cl$_2$); IR (ν_{max}/cm$^{-1}$, thin film): 3240, 3050 (aromatic C-
H stretches), 2923, 2823 (C-H and N-H stretches), 1544 (N-H bend), 1509 (aromatic C=C and C=N stretches), 1332 (S=O asymmetric stretch), 1136 (S=O symmetric stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 2.47$ (s, 3H, 32-H), 4.76 (bs, 2H, 21-H), 6.49 (bs, 1H, 20-H), 6.73 (bs, 1H, 26-H), 7.03 (d, $J = 8.5$ Hz, 2H, 24-H), 7.22 (d, $J = 8.2$ Hz, 2H, 30-H), 7.29 (d, $J = 8.5$ Hz, 2H, 23-H), 7.35 (d, $J = 4.5$ Hz, 1H, 6-H), 7.46-7.51 (m, 3H, 5,15,16-H), 7.64 (d, $J = 8.2$ Hz, 2H, 29-H), 7.83-7.85 (m, 1H, 14-H), 7.87-7.90 (m, 3H, 3,12,17-H), 7.95 (dd, $J = 8.6$, 1.2 Hz, 1H, 11-H), 8.40 (s, 1H, 19-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 21.7$ (C-32), 44.2 (C-21), 110.3 (C-5), 111.0 (C-3), 122.0 (C-24), 124.0 (C-11), 124.8 (C-19), 126.3 (C-15), 126.6 (C-16), 127.4 (C-29), 127.9 (Overlapping signals, C-12,17), 128.7 (C-6), 129.0 (C-23), 129.8 (C-30), 130.5 (C-10), 133.3 (C-13), 133.6 (C-9), 133.7 (C-18), 135.6 (C-22), 135.8 (C-25), 136.2 (C-28), 144.0 (C-31), 144.6 (C-2), 148.8 (C-8); LRMS m/z (ES$^-$): 518 [M-H$^-$]; HRMS m/z (ES$^-$): Found 518.1658 [M-H$^-$]; C$_{30}$H$_{24}$N$_5$O$_2$S requires 518.1651.

4-Methyl-N-(2-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)ethyl)benzene-sulfonamide (247)

Method A:

To a solution of 245 (65.9 mg, 0.310 mmol) in anhydrous DMF (2 mL) was added DIPEA (53.9 µL, 0.310 mmol) followed by 227 (50.0 mg, 0.155 mmol) and the reaction mixture was stirred at 100 °C for 16 h. Cooling to RT and removal of the solvent was followed by flash chromatography (applied in toluene; eluted 2:1 toluene/EtOAc), which yielded the title compound as a white solid (15 mg, 0.033 mmol, 21%). Mpt: 158-160 °C; $R_f = 0.26$ (3:1 EtOAc/pet. ether); IR (ν$_{max}$/cm$^{-1}$, thin film): 3412 (N-H stretch), 3029, 2924 (aromatic C-H stretches).
stretches), 2853 (C-H stretch), 1621, 1538 (N-H bends), 1327 (S=O asymmetric stretch), 1158 (S=O symmetric stretch); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 2.24\) (s, 3H, 29-H), 3.32 (bs, 1H, 20-H), 6.32 (bs, 1H, 21-H), 6.55 (bs, 1H, 23-H), 7.10 (d, \(J = 8.1\) Hz, 2H, 27-H), 7.29 (d, \(J = 4.6\) Hz, 1H, 6-H), 7.45 (d, \(J = 4.6\) Hz, 1H, 5-H), 7.48-7.52 (m, 2H, 15,16-H), 7.63 (d, \(J = 8.1\) Hz, 2H, 26-H), 7.85-7.86 (m, 2H, 3,14-H), 7.88-7.91 (m, 2H, 12,17-H); \(^1\)H NMR (600 MHz, (CD\(_3\))\(_2\)SO): \(\delta_H = 2.30\) (s, 3H, 29-H), 3.03 (q, \(J = 6.3\) Hz, 2H, 22-H), 3.53 (q, \(J = 6.3\) Hz, 2H, 21-H), 7.23-7.24 (m, 3H, 6,27-H), 7.45 (t, \(J = 5.9\) Hz, 1H, 20-H), 7.50-7.56 (m, 2H, 15,16-H), 7.63 (d, \(J = 8.2\) Hz, 2H, 26-H), 7.67 (t, \(J = 5.5\) Hz, 1H, 23-H), 7.77 (d, \(J = 4.6\) Hz, 1H, 5-H), 7.94 (d, \(J = 7.9\) Hz, 1H, 14-H), 7.96 (d, \(J = 7.9\) Hz, 1H, 17-H), 8.00 (d, \(J = 8.6\) Hz, 1H, 12-H), 8.11 (dd, \(J = 8.6, 1.6\) Hz, 1H, 11-H), 8.46 (s, 1H, 3-H), 8.52 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = 21.6\) (C-29), 40.7 (C-21), 45.0 (C-22), 110.6 (C-5), 111.0 (C-3), 124.0 (C-11), 124.8 (C-19), 126.4 (C-15), 126.6 (C-16), 127.0 (C-26), 127.9 (C-6,14), 128.4 (C-17), 128.7 (C-12), 129.5 (C-27), 130.4 (C-10), 133.2 (C-9), 133.4 (C-13), 133.7 (C-18), 137.0 (C-25), 143.3 (C-28), 144.9 (C-2), 149.5 (C-8); \(^{13}\)C NMR (150 MHz, (CD\(_3\))\(_2\)SO): \(\delta_C = 21.0\) (C-29), 40.1 (C-21), 41.6 (C-22), 110.3 (C-5), 112.0 (C-3), 123.8 (C-19), 124.1 (C-11), 126.1 (C-15), 126.6 (C-26), 127.7 (C-14), 128.0 (C-17), 128.1 (C-6), 128.3 (C-12), 129.4 (C-27), 131.0 (C-10), 132.6 (C-13), 132.9 (C-9), 133.2 (C-18), 137.3 (C-25), 142.4 (C-28), 143.0 (C-2), 148.4 (C-8); LRMS m/z (ES\(^+\)): 458 [M+H\(^+\)]; HRMS m/z (EI\(^+\)): Found 458.1656 [M+H\(^+\)]; \text{C}_{25}\text{H}_{24}\text{N}_5\text{O}_2\text{S} \text{requires} 458.1651.

Method B:

All glassware was dried and purged with Ar prior to use. Pd\(_2\)(dba\(_3\)) (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaO\(_{t}\)Bu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). 214 (50.0 mg, 0.179 mmol) and 245 (45.7 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and purification by flash chromatography (toluene; 10% to 20% to 50% EtOAc) afforded the title compound as an off-white solid (6.20 mg, 0.014 mmol, 8%).

Method C:

214 (50.0 mg, 0.179 mmol), 245 (57.2 mg, 0.268 mmol) and DIPEA (78.1 µL, 0.447 mmol) were stirred in \({}^8\)BuOH at 80 °C for 16 h. The reaction was cooled to RT and purification by flash chromatography (toluene; 10% to 20% to 50% EtOAc) afforded the title compound as an off-white solid (4.90 mg, 0.011 mmol, 6%).
4-Methyl-N-(3-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)propyl)benzene-
sulfonamide (248)

To a solution of 247 (73.1 mg, 0.322 mmol) in anhydrous DMF (2 mL) was added DIPEA (56.1 µL, 0.322 mmol) followed by 227 (52.0 mg, 0.161 mmol) and the reaction mixture was stirred at 100 °C for 16 h. Cooling to RT and removal of the solvent was followed by flash chromatography (applied in toluene; eluted 2:1 toluene/EtOAc), which yielded the title compound as a white solid (24.9 mg, 0.053 mmol, 33%). Mpt: Decomposed before melting; \(R_f = 0.26 \) (3:1 EtOAc/pet. ether); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3023, 2971 (aromatic C-H and N-H stretches), 1740, 1548 (N-H bends), 1370 (S=O asymmetric stretch), 1217 (S=O symmetric stretch); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 1.79-1.81 \) (m, 2H, 22-H), 2.35 (s, 3H, 30-H), 3.00 (bd, \(J = 5.4 \) Hz, 2H, 23-H), 3.68 (q, \(J = 5.8 \) Hz, 2H, 21-H), 6.27 (bs, 1H, 20-H), 7.02 (bs, 1H, 24-H), 7.21 (d, \(J = 8.2 \) Hz, 2H, 28-H), 7.33 (d, \(J = 4.7 \) Hz, 1H, 6-H), 7.43 (d, \(J = 4.6 \) Hz, 1H, 5-H), 7.46-7.51 (m, 2H, 15,16-H), 7.72 (d, \(J = 8.2 \) Hz, 2H, 27-H), 7.84-7.85 (m, 1H, 14-H), 7.86 (s, 1H, 3-H), 7.88-7.90 (m, 2H, 12,17-H), 7.95 (dd, \(J = 8.5, 1.6 \) Hz, 1H, 11-H), 8.38 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = 21.6 \) (C-30), 30.3 (C-22), 38.3 (C-21), 39.7 (C-23), 110.2 (C-5), 111.1 (C-3), 124.0 (C-11), 124.7 (C-19), 126.3 (C-15), 126.6 (C-16), 127.1 (C-27), 127.9 (C-14), 128.1 (C-6), 128.4 (C-17), 128.7 (C-12), 129.7 (C-28), 130.5 (C-10), 133.3 (C-9,13), 133.7 (C-18), 137.6 (C-26), 143.1 (C-29), 144.8 (C-2), 149.7 (C-8); LRMS m/z (ES\(^+\)): 472 [M+H]\(^+\); HRMS m/z (EI\(^+\)): Found 471.1726 [M]\(^+\); C\(_{26}\)H\(_{25}\)N\(_5\)O\(_2\)S requires 471.1724.
2-(2-((tert-Butyldimethylsilyloxy)ethoxy)ethanamine (250)

To 2-(2-aminoethoxy)ethanol (0.500 mL, 5.02 mmol) dissolved in anhydrous pyridine (5 mL) was added imidazole (527 mg, 7.75 mmol) and tert-butylchlorodimethylsilane (756 mg, 5.02 mmol) and the reaction was stirred at RT under Ar for 16 h. The solvent was removed in vacuo and the residue was taken up in CH2Cl2 (70 mL) and washed NaHCO3 (sat. aq. 2 x 40 mL), H2O (40 mL) and brine (40 mL), dried (MgSO4), filtered and concentrated in vacuo. Flash chromatography (applied in CH2Cl2; eluted 1% to 2% to 5% MeOH) afforded the title compound as a colourless oil (830 mg, 3.79 mmol, 76%) with the NMR consistent with literature values.181

IR (νmax/cm-1, thin film): 3367, 2929, 2856 (N-H and C-H stretches), 1253 (Si-C stretch), 1100 (Si-O and C-O stretches); 1H NMR (600 MHz, CDCl3): δH = 0.06 (s, 6H, 9-H), 0.89 (s, 9H, 11-H), 1.79 (s, 2H, 1-H), 2.86 (t, J = 5.3 Hz, 2H, 2-H), 3.51 (t, J = 5.3 Hz, 3-H), 3.53 (t, J = 5.3 Hz, 2H, 5-H), 3.56 (t, J = 5.3 Hz, 2H, 6-H); 13C NMR (150 MHz, CDCl3): δC = -5.1 (C-9), 18.6 (C-10), 26.0 (C-11), 41.9 (C-2), 62.8 (C-6), 72.5 (C-5), 73.3 (C-3); LRMS m/z (ES): 242 [M+Na]+, 220 [M+H]+; HRMS m/z (ES+): Found 220.1737 [M+H]+; C10H26NO2Si requires 220.1733.

N-((2-(2-(tert-Butyldimethylsilyloxy)ethoxy)ethyl)-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-amine (251)

All glassware was dried and purged with Ar prior to use. Pd2(dba)3 (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and Cs2CO3 (81.6 mg, 0.250 mmol) were dissolved in anhydrous dioxane (2 mL). 214 (50.0 mg, 0.179 mmol) and 250 (47.0 mg, 0.215 mmol) were added and the
reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed, before the residue was taken up in CH₂Cl₂ (50 mL) and washed with H₂O (3 x 30 mL) and brine (30 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in toluene; eluted 10% EtOAc) afforded the title compound as a yellow oil (26.3 mg, 0.057 mmol, 31%). \(R_f = 0.17 \) (20% EtOAc/toluene); IR (ν_{max}/cm⁻¹, thin film): 3062 (N-H and aromatic C-H stretches), 2953, 2927, 2856 (C-H stretches), 1631, 1461 (aromatic C=C and C=N stretches), 1254 (Si-C stretch), 1104 (Si-O and C-O stretches); \(^1\)H NMR (600 MHz, CDCl₃): δ_H = 0.10 (s, 6H, 28-H), 1.91 (s, 9H, 30-H), 3.62 (t, \(J = 5.3 \) Hz, 2H, 22-H), 3.79-3.80 (m, 2H, 21-H), 3.82-3.84 (m, 4H, 21,25-H), 6.49 (bs, 1H, 21-H), 7.21 (d, \(J = 4.7 \) Hz, 1H, 6-H), 7.40 (d, \(J = 4.7 \) Hz, 1H, 5-H), 7.46-7.51 (m, 2H, 15,16-H), 7.82 (s, 1H, 3-H), 7.84 (bd, \(J = 7.9 \) Hz, 1H, 14-H), 7.88-7.92 (m, 2H, 12,17-H), 7.99 (dd, \(J = 8.5 \), 1.7 Hz, 1H, 11-H), 8.43 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, CDCl₃): δ_C = -5.1 (C-28), 18.4 (C-29), 26.1 (C-30), 40.7 (C-25), 62.7 (C-21), 69.9 (C-24), 72.7 (C-22), 109.9 (C-5), 110.8 (C-3), 124.2 (C-11), 124.7 (C-19), 126.1 (C-15), 126.5 (C-16), 127.9 (C-14), 128.4 (C-17), 128.5 (C-6), 128.6 (C-12), 130.9 (C-10), 133.3 (C-13), 133.7 (C-9), 133.8 (C-18), 144.5 (C-2), 149.2 (C-8); LRMS m/z (ES⁺): 439 (Not correct mass).

2-(2-(2-(Naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)ethoxy)ethanol (252)

251 (26.0 mg, 0.056 mmol) was taken up in THF (2 mL) and the mixture was cooled on ice. TBAF (1.0 M solution in THF, containing 5 wt% H₂O; 112 µL, 0.112 mmol) was added and the reaction was stirred at RT for 22 h. Quenching with H₂O (10 mL) and extracting with EtOAc (3 x 20 mL) was followed by washing the combined organics with brine (20 mL), drying (MgSO₄), filtering and concentrating in vacuo. Flash chromatography (1st; applied in pet. ether; eluted 50% to 90% to 95% EtOAc; 2nd; applied in CH₂Cl₂; eluted 1% to 2% MeOH) afforded the title compound as a colourless oil (10.1 mg, 0.029 mmol, 52%). \(R_f = 0.08 \) (9:1 EtOAc/pet. ether) or 0.76 (10% MeOH/CH₂Cl₂); IR (ν_{max}/cm⁻¹, thin film): 3347 (O-H stretch), 3134, 3055 (N-H and aromatic C-H stretches), 2925, 2869 (C-H stretches), 1620, 1548 (aromatic C=C and C=N stretches), 1254 (Si-C stretch), 1104 (Si-O and C-O stretches); \(^1\)H NMR (600 MHz, CDCl₃): δ_H = 0.10 (s, 6H, 28-H), 1.91 (s, 9H, 30-H), 3.62 (t, \(J = 5.3 \) Hz, 2H, 22-H), 3.79-3.80 (m, 2H, 21-H), 6.49 (bs, 1H, 21-H), 7.21 (d, \(J = 4.7 \) Hz, 1H, 6-H), 7.40 (d, \(J = 4.7 \) Hz, 1H, 5-H), 7.46-7.51 (m, 2H, 15,16-H), 7.82 (s, 1H, 3-H), 7.84 (bd, \(J = 7.9 \) Hz, 1H, 14-H), 7.88-7.92 (m, 2H, 12,17-H), 7.99 (dd, \(J = 8.5 \), 1.7 Hz, 1H, 11-H), 8.43 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, CDCl₃): δ_C = -5.1 (C-28), 18.4 (C-29), 26.1 (C-30), 40.7 (C-25), 62.7 (C-21), 69.9 (C-24), 72.7 (C-22), 109.9 (C-5), 110.8 (C-3), 124.2 (C-11), 124.7 (C-19), 126.1 (C-15), 126.5 (C-16), 127.9 (C-14), 128.4 (C-17), 128.5 (C-6), 128.6 (C-12), 130.9 (C-10), 133.3 (C-13), 133.7 (C-9), 133.8 (C-18), 144.5 (C-2), 149.2 (C-8); LRMS m/z (ES⁺): 439 (Not correct mass).
stretches), 1125 (C-O stretch); 1H NMR (600 MHz, CDCl$_3$): δH = 3.50 (bs, 1H, 26-H), 3.68 (t, J = 4.4 Hz, 2H, 24-H), 3.80-3.81 (m, 4H, 22,25-H), 3.84-3.86 (m, 2H, 21-H), 6.70 (bs, 1H, 20-H), 7.31 (d, J = 4.7 Hz, 1H, 6-H), 7.40 (d, J = 4.7 Hz, 1H, 5-H), 7.46-7.51 (m, 2H, 15,16-H), 7.81 (s, 1H, 3-H), 7.84 (d, J = 7.6 Hz, 14-H), 7.88-7.90 (m, 2H, 12,17-H), 7.95 (dd, J = 8.5, 1.5 Hz, 1H, 11-H), 8.38 (s, 1H, 19-H); 13C NMR (150 MHz, CDCl$_3$): δC = 40.9 (C-21), 61.8 (C-25), 70.0 (C-22), 72.8 (C-24), 110.0 (C-5), 110.9 (C-3), 124.1 (C-11), 124.8 (C-19), 126.2 (C-15), 126.5 (C-16), 127.9 (C-14), 128.4 (C-17), 128.6 (overlapping signals, C-6,12), 130.5 (C-10), 133.3 (C-13), 133.6 (C-9), 133.7 (C-18), 144.5 (C-2), 149.1 (C-8); LRMS m/z (ES$^+$): 371 [M+Na$^+$], 349 [M+H$^+$], 287 [M-(OCH$_2$CH$_2$OH)]$^+$; HRMS m/z (ES$^+$): Found 349.1653 [M+H$^+$]; C$_{20}$H$_{21}$N$_4$O$_2$ requires 349.2665.

6.1.3.1.2 Variations with aromatic Group in Position 2

1-(Quinoxalin-2-yl)ethanone (254)183

![Quinoxalin-2-yl]ethanone (254)

Quinoxaline (1.19 g, 9.11 mmol), pyruvic acid (1.90 mL, 27.3 mmol), AgNO$_3$ (0.124 g, 0.729 mmol), N$_2$H$_8$S$_2$O$_8$ (3.12 g, 13.7 mmol) and H$_2$SO$_4$ (0.490 mL, 9.11 mmol) were stirred in CH$_2$Cl$_2$/H$_2$O (1:1, 150 mL) at 40 °C for 2½ h. The solution was then basified via the addition of NaOH and the organics extracted (3 x 75 mL) and washed brine (50 mL), dried (MgSO$_4$), filtered and solvent removed. Flash chromatography (applied in pet. ether; eluted 3:1 pet. ether/EtOAc) afforded the title compound as a yellow solid (618 mg, 3.91 mmol, 43%) with the NMR consistent with literature values.306 Mpt: 70-74 °C [Lit.306 76.5-77.5 °C]; R_f = 0.24 (3:1 pet. ether/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 1689 (C=O stretch), 1357 (aromatic C=C and C-N stretches); 1H NMR (500 MHz, CDCl$_3$): δH = 2.84 (s, 3H, 12-H), 7.82-7.90 (m, 2H, 7,8-H), 8.14-8.21 (m, 2H, 6,9-H), 9.47 (s, 1H, 3-H); 13C NMR (125 MHz, CDCl$_3$): δC = 25.6 (C-12), 129.5 (C-6), 130.5 (C-8), 130.8 (C-9), 132.3 (C-7), 141.1 (C-10), 143.1 (C-3), 143.9 (C-5), 146.6 (C-2), 199.8 (C-11); LRMS m/z (EI$^+$): 172 [M$^+$], 130 [M-Ac$^+$], 86; HRMS m/z (EI$^+$): Found 172.0637 [M$^+$]; C$_{10}$H$_8$N$_2$O requires 172.0631.
2-Bromo-1-(quinoxalin-2-yl)ethanone (255)

Pyridinium tribromide (2.94 g, 9.18 mmol) was added to a stirred solution of 254 (580 mg, 3.67 mmol) in CHCl₃/EtOH (1:1, 60 mL) and the mixture was heated at 50 °C for 16 h. Removal of the solvent in vacuo was followed by addition of H₂O (100 mL) and extraction with EtOAc (3 x 60 mL). The combined organic extracts were further washed with H₂O (50 mL) and brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (CH₂Cl₂) afforded the title compound as a brown solid (656 mg, 2.61 mmol, 71%) with the NMR consistent with literature values.³⁰⁷ Mpt: Decomposed before melting [Lit.³⁰⁷ 113-117 °C]; Rₐ = 0.26 (CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 1708 (C=O stretch), 1392 (aromatic C=C and C-N stretches), 762 (C-Br stretch); ¹H NMR (600 MHz, CDCl₃): δH = 4.96 (s, 2H, 12-H), 7.88-7.90 (m, 1H, 8-H), 7.93-7.96 (m, 1H, 7-H), 8.20-8.21 (m, 2H, 6,9-H), 9.53 (s, 1H, 3-H); ¹³C NMR (150 MHz, CDCl₃): δC = 31.3 (C-12), 129.7 (C-6), 130.6 (C-9), 131.3 (C-8), 133.0 (C-7), 141.0 (C-10), 143.4 (C-3), 144.3 (C-5), 144.7 (C-2), 192.4 (C-11); LRMS m/z (EI⁺): 252 [M⁺₁Br]⁺, 250 [M⁺₂Br]⁺, 142, 115, 113; HRMS m/z (EI⁺): Found 249.9740 [M⁺₂Br]⁺; C₁₀H₇BrN₂O requires 249.9736; Anal. Calcd. for C₁₀H₇BrN₂O: C, 47.84; H, 2.81; N, 11.16. Found C, 47.70; H, 2.68; N, 10.86%.

2-(8-Chloroimidazo[1,2-a]pyrazin-2-yl)quinoxaline (256)

255 (648 mg, 2.58 mmol), 2-amino-3-chloropyrazine (334 mg, 2.58 mmol) and NaHCO₃ (271 mg, 3.23 mmol) in t-BuOH (15 mL) were stirred under reflux for 40 h. The solvent was removed in vacuo and the resulting residual was taken up in CH₂Cl₂ (100 mL) and washed H₂O (2 x 40 mL) and brine (40 mL), dried (MgSO₄), filtered and solvent removed in vacuo. Flash chromatography (applied in pet. ether; eluted 3:1 to 1:1 to 1:3 pet. ether/EtOAc) afforded the title
compound as an orange solid (342 mg, 1.21 mmol, 47%). Mpt: >200 °C; \(R_f = 0.11 \) (1:1 pet. ether/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 2924 (aromatic C-H stretch), 1675, 1495, 1354 (aromatic C=C and C-N stretches), 1200; \(^1\)H NMR (600 MHz, (CD3)2SO): \(\delta_H = 7.84 \) (d, \(J = 4.5 \text{ Hz, } 1H, \text{ 6-H} \)), 7.89-7.95 (m, 2H, 14,15-H), 8.15-8.17 (m, 2H, 13,16-H), 8.73 (d, \(J = 4.5 \text{ Hz, } 1H, \text{ 5-H} \)), 9.08 (s, 1H, 3-H), 9.71 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, (CD3)2SO): \(\delta_C = 116.9 \) (C-3), 121.0 (C-5), 128.3 (C-6), 129.0 (C-13), 129.1 (C-16), 130.5 (C-15), 131.1 (C-14), 137.7 (C-9), 141.4 (C-12), 141.8 (C-17), 142.2 (C-8), 143.4 (C-19), 143.9 (C-10), 146.4 (C-2); LRMS m/z (CI): 282 [M(35Cl)+H]+, 284 [M(37Cl)+H]⁺; HRMS m/z (CI): Found 282.0552 [M(35Cl)+H]+; \(\text{C}_{14}\text{H}_9\text{ClN}_5 \) requires 282.0547.

4-Methyl-N-(4-(2-(quinoxalin-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)phenyl)benzenesulfonamide (257)

All glassware was dried and purged with Ar prior to use. Pd(db)\(_2\) (2.04 mg, 1 mol%), DavePhos (4.19 mg, 3 mol%) and Cs\(_2\)CO\(_3\) (162 mg, 0.497 mmol) were stirred in dissolved in 1,4-dioxane (5 mL). 256 (100 mg, 0.355 mmol) and \(\text{N-} \) (4-aminophenyl)-4-methylbenzenesulfonamide (112 mg, 0.426 mmol) were added and the reaction was stirred under reflux for 40 h. The reaction was cooled to RT and solvent removed in vacuo. The resulting residue was taken up in CH\(_2\)Cl\(_2\) (60 mL) and washed with NaHCO\(_3\) (sat. aq. 40 mL), H\(_2\)O (30 mL) and brine (30 mL), dried (MgSO\(_4\)), filtered and solvent removed in vacuo. Flash chromatography (applied in toluene; eluted 0% to 50% EtOAc) afforded the title compound as a light yellow solid (12.3 mg, 0.024 mmol, 7%). Mpt: Decomposed before melting; \(R_f = 0.49 \) (1:1 CH\(_2\)Cl\(_2\)/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3135 (aromatic C-H stretch), 3061 (C-H stretch), 1495 (N-H bend), 1291 (S=O asymmetric stretch), 1201 (S=O symmetric stretch); \(^1\)H NMR (600 MHz, (CD3)2SO): \(\delta_H = 2.34 \) (s, 3H, 31-H), 7.05 (d, \(J = 8.9 \text{ Hz, } 2H, \text{ 23-H} \)), 7.35 (d, \(J = 8.3 \text{ Hz, } 2H, \text{ 29-H} \)), 7.44 (d, \(J = 4.6 \text{ Hz}, \)
1H, 6-H), 7.64 (d, J = 8.3 Hz, 2H, 28-H), 7.84-7.86 (m, 1H, 15-H), 7.88-7.90 (m, 3H, 14,22-H), 8.03 (d, J = 4.6 Hz, 1H, 5-H), 8.10-8.14 (m, 2H, 13,16-H), 8.80 (s, 1H, 3-H), 9.61 (s, 1H, 20-H), 9.78 (s, 1H, 19-H), 10.06 (bs, 1H, 25-H); 13C NMR (150 MHz, (CD3)2SO): δC = 21.0 (C-31), 112.5 (C-5), 115.9 (C-3), 121.1 (C-23), 121.2 (C-22), 126.8 (C-28), 128.2 (C-6), 128.8 (C-13), 129.1 (C-16), 129.7 (C-29), 129.9 (C-15), 130.9 (C-14), 132.1 (C-24), 133.4 (C-9), 136.6 (C-21), 136.7 (C-27), 141.2 (C-10), 141.4 (C-17), 141.5 (C-12), 143.1 (C-30), 143.7 (C-19), 146.1 (C-8), 147.0 (C-2) ; LRMS m/z (ES+): 530 [M+Na]+, 508 [M+H]+; HRMS m/z (ES+): Found 508.1565 [M+H]+; C27H22N7O2S requires 508.1556.

8-Chloroimidazo[1,2-a]pyrazine (259)

2-Amino-3-chloropyrazine (200 mg, 1.54 mmol) and NaHCO3 (162 mg, 1.93 mmol) were suspended in 1BuOH. Chloroacetaldehyde (50% w/v in H2O; 200 µL, 1.54 mmol) was added and the reaction mixture was stirred under reflux for 40 h. The reaction was then cooled to RT and solvent removed in vacuo. The residual material was taken up in CH2Cl2 (100 mL) washed H2O (40 mL) and brine (40 mL), dried (MgSO4), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 3:1 to 2:1 to 1:3 pet. ether/EtOAc) afforded the title compound as an off white solid (118 mg, 0.773 mmol, 50%). Mpt: Decomposed before melting; Rf = 0.17 (2:1 EtOAc/pet. ether); IR (νmax/cm⁻¹, thin film): 3144, 3105 (aromatic C-H stretches), 1432, 1330 (aromatic C=C and C=N stretches), 905, 800, 738 (aromatic C-Cl stretch); 1H NMR (600 MHz, (CD3)2SO): δH = 7.73 (d, J = 4.5 Hz, 1H, 6-H), 7.87 (d, J = 0.9 Hz, 1H, 2-H), 8.28 (d, J = 0.9 Hz, 1H, 3-H), 8.66 (d, J = 4.5 Hz, 1H, 5-H); 13C NMR (150 MHz, (CD3)2SO): δC = 117.3 (C-3), 120.8 (C-5), 127.3 (C-6), 135.5 (C-2), 137.1 (C-9), 141.7 (C-8); LRMS m/z (CI+): 154 [M(35Cl)+H]+, 156 [M(37Cl)+H]+; HRMS m/z (CI+): Found 154.0166 [M(35Cl)+H]+; C8H7ClN3 requires 154.0172.
N-(4-(1H-imidazo[1,2-a]pyrazin-8-ylamino)phenyl)-4-methylbenzenesulfonamide (260)

All glassware was dried and purged with Ar prior to use. Pd$_2$(dba)$_3$ (2.97 mg, 1 mol%), DavePhos (3.83 mg, 3 mol%) and NaO$^-$Bu (43.8 mg, 0.456 mmol) were dissolved in anhydrous toluene (3 mL). 259 (49.8 mg, 0.324 mmol) and N-(4-aminophenyl)-4-methylbenzenesulfonamide (106 mg, 0.389 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed in vacuo, before the residue was taken up in CH$_2$Cl$_2$ (50 mL) and washed with H$_2$O (3 x 30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 2:1 pet. ether/EtOAc) afforded the title compound as a brown solid (69.7 mg, 0.184 mmol, 56%). Mpt: Decomposed before melting; R_f = 0.30 (3:1 EtOAc/pet. ether); IR (ν_{max}/cm$^{-1}$, thin film): 3338, 3045 (aromatic C-H stretches), 1537 (N-H bend), 1505 (aromatic C=C and C=N stretches), (1326) S=O asymmetric stretch, 1152 (S=O symmetric stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 2.37$ (s, 3H, 21-H), 6.88 (s, 1H, 15-H), 7.06 (d, $J = 8.8$ Hz, 2H, 13-H), 7.21 (d, $J = 8.3$ Hz, 2H, 19-H), 7.45 (d, $J = 4.6$ Hz, 1H, 6-H), 7.56-7.57 (m, 3H, 2,3,5-H), 7.63 (d, $J = 8.3$ Hz, 2H, 18-H), 7.76 (d, $J = 8.8$ Hz, 2H, 12-H), 8.19 (s, 1H, 10-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 21.7$ (C-21), 111.9 (C-5), 115.2 (C-3), 120.3 (C-12), 123.9 (C-13), 127.4 (C-18), 128.4 (C-6), 129.7 (C-19), 131.1 (C-14), 131.9 (C-2), 133.2 (C-9), 136.2 (C-17), 137.4 (C-11), 143.9 (C-20), 146.0 (C-8); LRMS m/z (ES$^+$): 380 [M+H]$^+$, 402 [M+Na]$^+$; HRMS m/z (ES$^+$): Found 380.1168 [M+H]$^+$; C$_{19}$H$_{18}$N$_5$O$_2$S requires 380.1181.
6.1.3.2 Maybridge Analogues

3-(Pyridin-3-yl)aniline (262)

Pyridin-3-ylboronic acid (621 mg, 5.05 mmol) and 2-bromoaniline (500 µL, 4.59 mmol) were dissolved in toluene/EtOH (1:1; 30 mL). Na₂CO₃ (25 mL, aq. 10% w/v) was added, the vessel was purged with Ar, Pd(PPh₃)₄ (292 mg, 5 mol%) was added and the mixture was stirred at 80 °C for 16 h. The reaction was then cooled to RT, diluted with H₂O (50 mL) and extracted with EtOAc (3 x 75 mL). The combined organics were then washed with H₂O (50 mL) and brine (2 x 30 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification via flash chromatography (applied in CH₂Cl₂; eluted 5% to 10% to 20% to 40% to 50% EtOAc) afforded the title compound as a yellow/brown solid (470 mg, 2.76 mmol, 60%), with NMR values consistent with literature.³⁰⁸ Mpt: 54 °C [Lit.³⁰⁸ 74.4-75.8 °C]; R₉ = 0.17 (1:1 CH₂Cl₂/EtOAc); IR (νₓₓ/ cm⁻¹, thin film): 3440, 3296 (aromatic C-H stretches), 3184, 3055 (N-H stretches), 1602, 1476, 1408 (aromatic C=C stretches); ¹H NMR (600 MHz, CDCl₃): δ_H = 3.63 (bs, 2H, 13-H), 6.72 (ddd, J = 7.9, 2.2, 0.5 Hz, 1H, 10-H), 6.87 (t, J = 2.0 Hz, 1H, 8-H), 6.95-6.96 (m, 1H, 12-H), 7.25 (t, J = 7.9 Hz, 1H, 11-H), 7.22 (dd, J = 7.9, 4.9 Hz, 1H, 5-H), 7.83 (dt, J = 7.9, 1.9 Hz, 1H, 4-H), 8.57, (bd, J = 4.1 Hz, 1H, 6-H), 8.81 (bs, 1H, 2-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 113.7 (C-8), 114.9 (C-10), 117.8 (C-12), 123.6 (C-5), 130.2 (C-11), 134.5 (C-4), 137.0 (C-3), 139.1 (C-7), 147.2 (C-9), 148.3 (C-2), 148.6 (C-6); LRMS m/z (EI⁺): 170 [M⁺]; HRMS m/z (EI⁺): Found 170.0841 [M⁺]; C₁₁H₁₀N₂ requires 170.0839.

2,3'-Bipyridin-6-amine (267)
Pyridin-3-ylboronic acid (52.3 mg, 0.428 mmol) and 2-amino-6-chloropyridine (50.0 mg, 0.389 mmol) were dissolved in toluene/EtOH (1:1; 3 mL). Na2CO3 (2.5 mL, aq. 10% w/v) was added, the vessel was purged with Ar, Pd(PPh3)4 (22.5 mg, 5 mol%) was added and the mixture was stirred at 80 °C for 16 h. The reaction was then cooled to RT, diluted with H2O (30 mL) and extracted with EtOAc (3 x 20 mL). The combined organics were then washed with H2O (20 mL) and brine (2 x 20 mL), dried (MgSO4), filtered and concentrated in vacuo. Purification via flash chromatography (applied in toluene; eluted 1:1 to 1:2 to 1:5 to 1:9 toluene/EtOAc) afforded the title compound as an off white solid (7.20 mg, 0.042 mmol, 11%) with the NMR consistent with literature values.309 Mpt: 92-94 °C [Lit.310 108 °C]; Rf = 0.19 (9:1 EtOAc/toluene); IR (ν_max/cm⁻¹, thin film): 3310 (aromatic C-H stretch), 3165 (N-H stretch), 1636, 1567 (aromatic C=C stretches), 1467, 1434; 1H NMR (600 MHz, CDCl3): δ_H = 4.56 (bs, 2H, 13-H), 6.52 (d, J = 8.2 Hz, 1H, 10-H), 7.11 (d, J = 7.4 Hz, 1H, 12-H), 7.37 (dd, J = 7.9, 4.8 Hz, 1H, 5-H), 7.54 (t, J = 7.8 Hz, 1H, 11-H), 8.26 (dt, J = 7.9, 1.8 Hz, 1H, 4-H), 8.61, (bd, J = 3.2 Hz, 1H, 6-H), 9.13 (s, 1H, 2-H); 13C NMR (150 MHz, CDCl3): δ_C = 108.0 (C-10), 111.1 (C-12), 123.5 (C-5), 134.3 (C-4), 135.2 (C-3), 138.7 (C-11), 148.4 (C-9), 149.7 (C-6), 153.4 (C-7), 158.6 (C-7); LRMS m/z (EI⁺): 171 [M⁺]; HRMS m/z (EI⁺): Found 171.0784 [M⁺]; C10H9N3 requires 171.0791.

3,4′-Bipyridin-2′-amine (268)

Pyridin-3-ylboronic acid (52.3 mg, 0.428 mmol) and 2-amino-4-chloropyridine (50.0 mg, 0.389 mmol) were dissolved in toluene/EtOH (1:1; 3 mL). Na2CO3 (2.5 mL, aq. 10% w/v) was added, the vessel was purged with Ar, Pd(PPh3)4 (22.5 mg, 5 mol%) was added and the mixture was stirred at 80 °C for 16 h. The reaction was then cooled to RT, diluted with H2O (30 mL) and extracted with EtOAc (3 x 20 mL). The combined organics were then washed with H2O (20 mL) and brine (2 x 20 mL), dried (MgSO4), filtered and concentrated in vacuo. Purification via flash chromatography (applied in toluene; eluted 1:1 to 1:2 to 1:5 to 1:9 toluene/EtOAc followed by CH2Cl2; 2% to 5% MeOH) afforded the title compound as an off white solid (9.70 mg, 0.057 mmol, 15%) with the NMR consistent with literature values.311 Mpt: 102-106 °C; Rf = 0.38 (10%
MeOH/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3431, 3293 (aromatic C-H stretches), 3171 (N-H stretch), 1628, 1537, 1408 (aromatic C=C and C=N stretches); ¹H NMR (600 MHz, CDCl₃): δH = 4.84 (bs, 2H, 13-H), 6.73 (s, 1H, 8-H), 6.88 (dd, J = 5.5, 1.5 Hz, 1H, 12-H), 7.39-7.42 (m, 1H, 5-H), 7.88 (dt, J = 7.9, 2.0 Hz, 1H, 4-H), 8.14 (d, J = 5.5 Hz, 1H, 11-H), 8.67, (dd, J = 4.8, 1.5 Hz, 1H, 6-H), 8.84 (d, J = 2.0 Hz, 1H, 2-H); ¹³C NMR (150 MHz, CDCl₃): δC = 106.7 (C-8), 112.5 (C-12), 123.8 (C-5), 134.3 (C-3), 134.4 (C-4), 147.8 (C-7), 147.9 (C-11), 148.2 (C-2), 150.2 (C-6), 158.7 (C-9); LRMS m/z (EI⁺): 171 [M⁺]; HRMS m/z (EI⁺): Found 171.0797 [M⁺]; C₁₀H₉N₃ requires 171.0791.

Methyl 3-(pyridin-3-yl)phenylcarbamate (269)

\[\text{MeO} \]

To a solution of 262 (27.0 mg, 0.159 mmol) dissolved in anhydrous CH₂Cl₂ (6 mL) was added Et₃N (35.4 µL, 0.254 mmol). The mixture was purged, methyl chloroformate (18.4 µL, 0.238 mmol) was added dropwise and the reaction was stirred at RT under Ar for 16 h. The mixture was diluted with CH₂Cl₂ (30 mL) and washed with H₂O (2 x 20 mL) and brine (20 mL), dried (MgSO₄), filtered and solvent removed in vacuo. Purification via flash chromatography (applied in pet. ether; eluted 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (13.2 mg, 0.058 mmol, 37%). Mpt: 155 °C; Rf = 0.27 (2:1 EtOAc/pet. ether); IR (νmax/cm⁻¹, thin film): 2951 (N-H stretch), 1736 (C=O stretch); ¹H NMR (600 MHz, CDCl₃): δH = 3.80 (s, 3H, 16-H), 7.22 (bs, 1H, 13-H), 7.28 (dd, J = 8.6, 1.4 Hz, 1H, 12-H), 7.38 (dd, J = 7.9, 4.8 Hz, 1H, 5-H), 7.40-7.45 (m, 2H, 10,11-H), 7.68 (bs, 1H, 8-H), 7.90 (dt, J = 7.9, 1.9 Hz, 1H, 4-H), 8.61 (bd, J = 3.9 Hz, 1H, 6-H), 8.86 (bs, 1H, 2-H); ¹³C NMR (150 MHz, CDCl₃): δC = 52.6 (C-16), 117.3 (C-8), 118.4 (C-10), 122.2 (C-12), 123.8 (C-5), 130.0 (C-11), 134.9 (C-4), 136.6 (C-3), 138.7 (C-7), 139.0 (C-9), 148.1 (C-2), 148.5 (C-6), 154.2 (C-14); LRMS m/z (Cl⁺): 229 [M+H⁺]; HRMS m/z (Cl⁺): Found 229.0971 [M+H⁺]; C₁₃H₁₃N₂O₂ requires 229.0977.
4-Bromo-2-nitro-N-(3-(pyridin-3-yl)phenyl)aniline (270)

To a solution of 262 (114 mg, 0.671 mmol) in anhydrous NMP (1 mL), was added anhydrous Et3N (93.5 µL, 0.671 mmol) and 4-bromo-1-fluoro-2-nitrobenzene (82.7 µL, 0.671 mmol) and the mixture was stirred at 120 °C for 20 h. After this time, the reaction was cooled to RT, poured into cold H2O (50 mL) and extracted EtOAc (3 x 30 mL). TLC of the aqueous layer showed signs of product and so the pH was adjusted via the addition of NaHCO3 followed by extraction with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO4), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 10% to 20% to 33% EtOAc) afforded the title compound as a deep orange oil (87.3 mg, 0.236 mmol, 35%). Rf = 0.29 (1:1 pet. ether/EtOAc); 1H NMR (600 MHz, CDCl3): δH = 7.19 (d, J = 9.2 Hz, 1H, 19-H), 7.30-7.32 (m, 1H, 10-H), 7.39 (dd, J = 7.7, 4.7 Hz, 1H, 5-H), 7.45-7.48 (m, 3H, 8,12,18-H), 7.54 (t, J = 8.3 Hz, 1H, 11-H), 7.87 (dt, J = 7.7, 2.0 Hz, 1H, 4-H), 8.37 (d, J = 2.3 Hz, 1H, 16-H), 8.63 (dd, J = 4.7, 1.5 Hz, 1H, 6-H), 8.84 (d, J = 2.0 Hz, 1H, 2-H), 9.52 (s, 1H, 13-H); 13C NMR (150 MHz, CDCl3): δC = 109.1 (C-17), 117.9 (C-19), 123.1 (C-8), 123.8 (C-5), 124.0 (C-10), 124.9 (C-12), 129.0 (C-16), 130.8 (C-11), 133.8 (C-15), 134.5 (C-4), 135.7 (C-3), 138.7 (C-18), 139.2 (C-9), 140.0 (C-7), 141.9 (C-14), 148.3 (C-2), 149.2 (C-6); LRMS m/z (ES+): 370 [M(79Br)+H]+, 372 [M(81Br)+H]+; HRMS m/z (ES+): Found 370.0191 [M(79Br)+H]+; C17H13BrN3O2 requires 370.0191.

4-Bromo-N1-(3-(pyridin-3-yl)phenyl)benzene-1,2-diamine (271)

To a solution of 270 (85.0 mg, 0.230 mmol) in anhydrous MeOH (2 mL) was added 10% Pd/C (8.5 mg, 10% wt/wt). The vessel was evacuated and purged with Ar (3x), and under static
vacuum a balloon of H2 was added. The reaction was stirred at RT under H2 atmosphere for 18 h, after which time the balloon was removed and the vessel evacuated and purged Ar (3x). The contents were filtered through Celite (pre-washed with MeOH), the filtrate concentrated in vacuo and flash chromatography (applied in toluene; eluted 1:1 toluene/EtOAc) afforded the title compound as brown oil (21.8 mg, 0.064 mmol, 28%). $R_f = 0.27$ (1:1 toluene/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3358 (aromatic C-H stretches), 3034 (N-H stretch), 1603, 1587, 1494 (aromatic C=C and C-N stretches); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 3.63$ (bs, 2H, 20-H), 5.28 (bs, 1H, 13-H), 6.76 (dd, $J = 7.9$, 1.9 Hz, 1H, 10-H), 6.85-6.88 (m, 2H, 8,18-H), 6.96 (d, $J = 2.2$ Hz, 1H, 16-H), 7.01 (d, $J = 8.3$ Hz, 1H, 19-H), 7.03 (d, $J = 7.9$ Hz, 1H, 12-H), 7.31 (t, $J = 7.9$ Hz, 1H, 11-H), 7.37 (dd, $J = 7.9$, 4.9 Hz, 1H, 5-H), 7.86 (dt, $J = 7.9$, 1.9 Hz, 1H, 4-H), 8.57 (dd, $J = 4.9$, 1.3 Hz, 1H, 6-H), 8.80 (d, $J = 1.9$ Hz, 1H, 2-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 113.6$ (C-8), 115.1 (C-10), 118.5 (C-12), 118.8 (C-16), 119.2 (C-17), 121.9 (C-18), 123.8 (C-5), 126.8 (C-14), 126.9 (C-19), 130.3 (C-11), 135.1 (C-3), 135.1 (C-7), 143.8 (C-15), 145.8 (C-9), 147.8 (C-2), 148.0 (C-6); LRMS m/z (ES$^+$): 340 [M(79Br)+H]$^+$, 342 [M(81Br)]$^+$; HRMS m/z (ES$^+$): Found 340.0449 [M(79Br)+H]$^+$; C$_{17}$H$_{15}$BrN$_3$ requires 340.0449.

N-(3-(Pyridin-3-yl)phenyl)-9H-fluorene-1-carboxamide (274)

Formation of the Acid Chloride (273) in situ: 9H-fluorene-1-carboxylic acid (75.0 mg, 0.357 mmol) and thionyl chloride (500 µL) were stirred under reflux for 16 h. The reaction was concentrated in vacuo and used as crude for next step.

To a solution of 262 (60.7 mg, 0.357 mmol) in anhydrous CH$_2$Cl$_2$ (1 mL) was added pyridine (86.3 µL, 1.07 mmol) followed by the dropwise addition of 273 (81.6 mg, 0.357 mmol) in anhydrous CH$_2$Cl$_2$ (1.5 mL). The reaction mixture was stirred at RT for 5 h, followed by diluting with CH$_2$Cl$_2$ (50 mL) and washing with NaHCO$_3$ (sat. aq. 2 x 30 mL) and brine (30 mL), drying (MgSO$_4$), filtering and concentrating in vacuo. Flash chromatography (applied in pet. ether; eluted 1:1 pet. ether/EtOAc) afforded the title compound as a yellow solid (80.3 mg, 0.222 mmol,
62%) with the NMR values similar to those previously reported.190 Mpt: 185-186 °C; $R_f = 0.23$
(1:2 pet. ether/EtOAc); IR (ν_{max}/cm-1, thin film): 3237 (N-H stretch), 3037 (aromatic C-H stretch), 1648 (C=O stretch), 1589 (N-H bend), 1540, 1395 (aromatic C=C and C=N stretches); 1H NMR (600 MHz, (CD\textsubscript{3})\textsubscript{2}SO): δH = 4.22 (s, 2H, 26-H), 7.36 (t, $J = 7.4$ Hz, 1H, 23-H), 7.42 (t, $J = 7.4$ Hz, 1H, 22-H), 7.48 (d, $J = 7.8$ Hz, 1H, 12-H), 7.51-7.54 (m, 2H, 5,11-H), 7.59 (t, $J = 7.6$ Hz, 1H, 17-H), 7.64 (d, $J = 7.4$ Hz, 1H, 24-H), 7.78 (d, $J = 7.6$ Hz, 1H, 16-H), 7.88 (d, $J = 7.9$ Hz, 1H, 10-H), 7.98 (d, $J = 7.4$ Hz, 1H, 21-H), 8.06 (dt, $J = 7.9$, 1.9 Hz, 1H, 4-H), 8.13 (d, $J = 7.6$ Hz, 1H, 18-H), 8.19 (s, 1H, 8-H), 8.60 (dd, $J = 4.7$, 1.4 Hz, 1H, 6-H), 8.89 (d, $J = 1.9$ Hz, 1H, 2-H), 10.50 (s, 1H, 13-H); 13C NMR (150 MHz, (CD\textsubscript{3})\textsubscript{2}SO): δC = 36.9 (C-26), 118.4 (C-8), 119.7 (C-10), 120.3 (C-21), 122.2 (C-12), 122.6 (C-18), 124.0 (C-5), 125.2 (C-24), 125.9 (C-16), 126.8 (C-22), 127.2 (C-17), 127.4 (C-23), 129.6 (C-11), 132.7 (C-15), 134.2 (C-4), 135.6 (C-3), 137.6 (C-7), 140.0 (C-9), 140.1 (C-20), 142.2 (C-19), 142.3 (C-27), 143.3 (C-25), 147.6 (C-2), 148.7 (C-6), 166.6 (C-14); LRMS m/z (ES+): 363 [M+H]+; HRMS m/z (ES+): Found 363.1498 [M+H]+; C\textsubscript{25}H\textsubscript{19}N\textsubscript{2}O requires 363.1497.

\textit{N-(3-(Pyridin-3-yl)phenyl)-9H-fluorene-4-carboxamide (277)}

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

Formation of the Acid Chloride (276) \textit{in situ}: 9H-fluorene-4-carboxylic acid (75.0 mg, 0.357 mmol) and thionyl chloride (500 µL) were stirred under reflux for 16 h. The reaction was concentrated \textit{in vacuo} and used as crude for next step.

To a solution of 262 (60.7 mg, 0.357 mmol) in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (1 mL) was added pyridine (86.3 µL, 1.071 mmol) followed by the dropwise addition of 273 (81.6 mg, 0.357 mmol) in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (1.5 mL). The reaction mixture was stirred at RT for 5 h, followed by diluting with CH\textsubscript{2}Cl\textsubscript{2} (50 mL) and washing with NaHCO\textsubscript{3} (sat. aq. 2 x 30 mL) and brine, drying (MgSO\textsubscript{4}), filtering and concentrating \textit{in vacuo}. Flash chromatography (applied in toluene; eluted 2:1 toluene/EtOAc) afforded the title compound as a yellow solid (81.6 mg, 0.225 mmol, 63%). Mpt:
98-100 °C; $R_f = 0.32$ (1:1 toluene/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3035 (aromatic C-H and N-H stretches), 1654 (C=O stretch), 1591 (N-H bend), 1539, 1397 (aromatic C=C and C=N stretches); 1H NMR (600 MHz, CD$_3$OD): $\delta_H = 3.98$ (s, 2H, 20-H), 7.28 (t, $J = 7.3$ Hz, 1H, 24-H), 7.31 (td, $J = 7.3$, 1.0 Hz, 1H, 23-H), 7.42 (t, $J = 7.5$ Hz, 1H, 17-H), 7.50-7.57 (m, 4H, 5,10,11,16-H), 7.60 (d, $J = 7.3$ Hz, 1H, 22-H), 7.72 (d, $J = 7.5$ Hz, 1H, 18-H), 7.85-7.87 (m, 2H, 12,25-H), 8.10 (t, $J = 1.8$ Hz, 1H, 8-H), 8.15 (dt, $J = 8.0$, 2.0 Hz, 1H, 4-H), 8.54 (dd, $J = 4.9$, 1.4 Hz, 1H, 6-H), 8.85 (d, $J = 2.0$ Hz, 1H, 2-H); 13C NMR (150 MHz, CD$_3$OD): $\delta_C = 36.1$ (C-20), 118.3 (C-8), 119.7 (C-12), 122.1 (C-25), 122.7 (C-10), 124.0 (C-5), 124.6 (C-22), 125.2 (C-16), 126.0 (C-17), 126.2 (C-18), 126.3 (C-24), 126.8 (C-23), 129.5 (C-11), 131.3 (C-15), 135.1 (C-4), 136.8 (C-3), 137.7 (C-27), 137.9 (C-7), 139.4 (C-9), 139.5 (C-26), 143.6 (C-21), 144.3 (C-19), 146.8 (C-2), 147.4 (C-6), 169.7 (C-14); LRMS m/z (ES$^+$): 363 [M+H]$^+$, 404 [M+MeCN]$^+$; HRMS m/z (ES$^+$): Found 363.1483 [M+H]$^+$; C$_{25}$H$_{19}$N$_2$O requires 363.1497.

N-(Methylsulfonyl)-N-(3-(pyridin-3-yl)phenyl)methanesulfonamide (279)

![Structural formula of compound 279]

To a solution of 262 (50.7 mg, 0.298 mmol) in anhydrous CH$_2$Cl$_2$ (3 mL) was added Et$_3$N (83.1 µL, 0.596 mmol) and the mixture was cooled on ice. Methanesulfonyl chloride (27.7 µL, 0.358 mmol) was added and the reaction was stirred at RT for 16 h. The solidified reaction was diluted with CH$_2$Cl$_2$ (50 mL) and washed with NaHCO$_3$ (sat. aq. 30 mL), H$_2$O (30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in toluene; eluted 1:1 toluene/EtOAc) afforded the title compound as a white solid (80.1 mg, 0.246 mmol, 82%). Mpt: 174-175 °C; $R_f = 0.33$ (2:1 EtOAc/toluene); IR (ν_{max}/cm$^{-1}$, thin film): 2996, 2918 (C-H stretch), 1334 (S=O asymmetrical stretch), 1153 (S=O symmetrical stretch); 1H NMR (600 MHz, (CD$_3$)$_2$SO): $\delta_H = 3.59$ (s, 6H, 15-H), 7.52-7.54 (m, 1H, 5-H), 7.57-7.59 (m, 1H, 10-H), 7.63 (t, $J = 7.8$ Hz, 1H, 11-H), 7.88-7.91 (m, 2H, 8,12-H), 8.17 (dt, $J = 7.9$, 2.1 Hz, 1H, 4-H), 8.62 (dd, $J = 4.8$, 1.5 Hz, 1H, 6-H), 8.98 (d, $J = 2.1$ Hz, 1H, 2-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO): $\delta_C = 43.2$ (C-15), 123.9 (C-5), 128.6 (C-12), 129.3 (C-8), 130.3 (C-11), 130.6 (C-10), 134.1 (C-3), 134.5 (C-4), 134.8 (C-9), 138.6 (C-7), 147.9 (C-2), 149.1 (C-6); LRMS m/z
(EI⁺): 326 [M⁺], 248 [M-(SO₂Me)]⁺; HRMS m/z (EI⁺): Found 326.0395 [M⁺]; C₁₃H₁₄N₂O₄S₂ requires 326.0390; Anal. Calcd. for C₁₃H₁₄N₂O₄S₂: C, 47.84; H, 4.32; N, 8.58. Found: C, 47.77; H, 4.31; N, 8.44%.

2-(Naphthalen-2-yl)-N-(3-(pyridin-3-yl)phenyl)imidazo[1,2-a]pyrazin-8-amine (280)

All glassware was dried and purged with Ar prior to use. Pd₂(dba)₃ (1.28 mg, 1 mol%), DavePhos (1.65 mg, 3 mol%) and NaO'Bu (18.8 mg, 0.195 mmol) were dissolved in anhydrous toluene (2 mL). 214 (39.0 mg, 0.140 mmol) and 262 (28.5 mg, 0.168 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT, and solvent removed in vacuo. The crude material was taken up in CH₂Cl₂ (50 mL) and washed H₂O (30 mL) and NaHCO₃ (sat. aq. 30 mL). The combined aqueous layers were then re-extracted with CH₂Cl₂ (2 x 30 mL) followed by washing the combined organics with brine (30 mL), drying (MgSO₄), filtering and concentrating in vacuo. Purification by flash chromatography (applied in toluene; eluted 20% to 33% EtOAc) afforded the title compound as a sticky brown solid (18.9 mg, 0.046 mmol, 33%).

Rᵣ = 0.26 (1:1 toluene/EtOAc); IR (νmax/cm⁻¹, thin film): 2922 (N-H and aromatic C-H stretches), 1514 (aromatic C=C stretch); ¹H NMR (600 MHz, CDCl₃): δH = 7.32 (d, J = 7.8 Hz, 1H, 24-H), 7.42 (dd, J = 7.8, 4.8 Hz, 1H, 31-H), 7.49-7.53 (m, 4H, 6,15,16,25-H), 7.61 (d, J = 4.6 Hz, 1H, 5-H), 7.87 (d, J = 7.8 Hz, 1H, 14-H), 7.92 (dd, J = 8.2, 1.6 Hz, 1H, 26-H), 7.93-7.95 (m, 3H, 3,12,17-H), 7.98 (dt, J = 7.8, 1.9 Hz, 1H, 32-H), 8.03 (dd, J = 8.5, 1.6 Hz, 1H, 11-H), 8.28 (bt, J = 1.6 Hz, 1H, 22-H), 8.32 (bs, 1H, 20-H), 8.49 (s, 1H, 19-H), 8.62 (dd, J = 4.8, 1.4 Hz, 1H, 30-H), 8.94 (d, J = 1.9 Hz, 1H, 28-H); ¹³C NMR (150 MHz, CDCl₃): δC =111.2 (C-3), 111.8 (C-5), 118.3 (C-22), 119.3 (C-26), 121.8 (C-24), 123.8 (C-31), 124.1 (C-11), 125.0 (C-19), 126.4 (C-15), 126.6 (C-16), 127.9 (C-14), 128.4 (C-17), 128.5 (C-6), 128.7 (C-12), 267
129.9 (C-25), 130.4 (C-10), 133.4 (C-13), 133.7 (C-18), 133.8 (C-9), 134.9 (C-32), 136.8 (C-27), 138.7 (C-23), 140.2 (C-21), 145.0 (C-2), 146.2 (C-8), 148.4 (C-28), 148.4 (C-30); LRMS m/z (ES\(^{+}\)): 414 [M+H]\(^{+}\); HRMS m/z (ES\(^{+}\)): Found 414.1706 [M+H]\(^{+}\); C\(_{27}H_{20}N_{5}\) requires 414.1719.

N-(Benzo[d][1,3]dioxol-5-yl)-2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-amine (281)

All glassware was dried and purged with Ar prior to use. Pd\(_{2}\)(dba\(_{3}\)) (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaO\(_{t}\)Bu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). 214 (50.0 mg, 0.179 mmol) and benzo[d][1,3]dioxol-5-amine, 264 (29.4 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed in vacuo, before the residue was taken up in CH\(_{2}\)Cl\(_{2}\) (50 mL) and washed with H\(_{2}\)O (3 x 30 mL) and brine (30 mL), dried (MgSO\(_{4}\)), filtered and concentrated in vacuo. Flash chromatography (1\(^{st}\): applied in pet. ether; eluted 3:1 to 1:1 to 1:3 pet. ether/EtOAc; 2\(^{nd}\): applied in toluene; eluted 15:1 toluene/EtOAc) afforded the title compound as a brown solid (11.7 mg, 0.031 mmol, 17%). Mpt: Decomposed before melting; \(R_{f} = 0.38\) (10% EtOAc/pet. ether); IR (\(v_{\text{max}}/\text{cm}^{-1}\), thin film): 3392 (aromatic C-H stretch), 1889, 1625, 1551, 1496, 1484 (aromatic C=C and C=N stretches); \(^{1}\)H NMR (600 MHz, CDCl\(_{3}\)): \(\delta_{H} = 5.99\) (s, 2H, 26-H), 6.84 (d, \(J = 8.3\) Hz, 1H, 23-H), 7.16 (bd, \(J = 7.5\) Hz, 1H, 22-H), 7.44 (bd, \(J = 4.4\) Hz, 1H, 6-H), 7.48-7.53 (m, 2H, 15,16-H), 7.55 (d, \(J = 4.4\) Hz, 1H, 5-H), 7.63 (d, \(J = 1.7\) Hz, 1H, 29-H), 7.86 (d, \(J = 7.9\) Hz, 1H, 14-H), 7.92-7.95 (m, 3H, 3,12,17-H), 8.02 (dd, \(J = 8.5, 1.6\) Hz, 2H, 11,20-H), 8.48 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, CDCl\(_{3}\)): \(\delta_{C} = 101.3\) (C-26), 103.0 (C-29), 108.4 (C-23), 111.1 (C-3), 113.3 (C-5), 124.1 (C-11), 124.9 (C-19), 126.3 (C-15), 126.6 (C-16), 127.9 (C-14), 128.5 (overlapping signals, C-6,17), 128.7 (C-12), 130.4 (C-10), 133.4 (overlapping signals, C-9,13), 133.5 (C-21), 133.8 (C-18), 143.7 (C-24), 144.0 (C-2), 146.3 (C-
6.1.4 Synthesis PEGylated Imidazo[1,2-\(a\)]pyrazines

6.1.4.1 Synthesis of the Carbamate Linker

4-(N-(4-aminophenyl)sulfamoyl)benzoate (310)

Method A:

Benzene-1,4-diamine (4.11 g, 38.0 mmol) was taken up in anhydrous CH\(_2\)Cl\(_2\) (150 mL), Et\(_3\)N (5.30 mL, 38.0 mmol) was added and the mixture was cooled to 0 °C. 4-(Chlorosulfonyl)benzoic acid (1.68 g, 7.60 mmol) was added and the reaction was stirred at RT for 16 h. Removal of the reaction solvent in vacuo, followed by purification via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 1% to 2% to 5% to 10% to 20% MeOH) afforded the title compound as a partial triethylamine salt, as dark brown/black solid (2.74 g, 6.79 mmol, 92%). Mpt: >200°C; \(R_f = 0.20\) (10% MeOH/CH\(_2\)Cl\(_2\)); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3329, 3256 (N-H and O-H stretches), 2979 (C-H stretch), 1603 (C=O stretch), 1409 (N-H bend), 1400, 1331 (S=O asymmetric stretch), 1164 (S=O symmetric stretch); \(^1\text{H NMR}\) (600 MHz, (CD\(_3\))\(_2\)SO): \(\delta_H = 1.14\) (t, \(J = 7.2\) Hz, 3H, Et\(_3\)N: CH\(_3\)), 2.94-2.96 (m, 2H, Et\(_3\)N: CH\(_2\)), 3.39 (bs, 3H, 1,13-H), 6.35-6.38 (m, 2H, 3-H), 6.64-6.66 (m, 2H, 4-H), 7.65 (d, \(J = 8.2\)Hz, 2H, 9-H), 8.01 (d, \(J = 8.2\) Hz, 2H, 10-H), 9.55 (bs, 1H, 6-H); \(^{13}\text{C NMR}\) (150 MHz, (CD\(_3\))\(_2\)SO): \(\delta_C = 9.01\) (C-14), 45.3 (C-15), 114.0 (C-3), 124.9 (C-4), 125.0 (C-5), 126.6 (C-9), 129.6 (C-10), 139.0 (C-11), 141.7 (C-8), 146.7 (C-2), 168.2 (C-12); LRMS m/z (ES\(^{+}\)): 342 [M+K]\(^{+}\), 316 [M+Na]\(^{+}\), 195 [M-Benzolic Acid + Na]\(^{+}\), 161 [M-131]\(^{+}\); (ES\(^{-}\)): 337 [M+Formic Acid\(^{-}\)], 291 [M-H]; HRMS m/z (ES\(^{+}\)): Found 291.0426 [M-H]; C\(_{13}\)H\(_{11}\)N\(_2\)O\(_4\)S requires 291.0440; Anal. Caled. For C\(_{19}\)H\(_{27}\)N\(_3\)O\(_4\)S: C, 57.99; H, 6.92; N, 10.68. Found C, 48.90; H, 5.08; N, 8.86%.
Method B:

312 (41.4 mg, 0.106 mmol) was taken up in anhydrous CH₂Cl₂ (5 mL) and TFA (5 mL) was added to the mixture which was then stirred at RT for 5 h. Removal of solvent *in vacuo* followed by flash chromatography (applied in CH₂Cl₂; eluted 10% to 20% MeOH) afforded the title compound as a colourless oil (11.2 mg, 0.038 mmol, 36%).

(9H-Fluoren-9-yl)methyl 4-aminophenylcarbamate (311)

Benzene-1,4-diamine (4.00 g, 37.0 mmol) was taken up in anhydrous CH₂Cl₂ (200 mL) and the vessel was purged with Ar. Et₃N (1.72 mL, 12.3 mmol) was added followed by Fmoc-OSu (4.16 g, 12.3 mmol) and the reaction was stirred under Ar for 16 h. The resulting pink suspension was diluted with CH₂Cl₂ (100 mL) and washed with H₂O (100 mL). Extraction with CH₂Cl₂ (3 x 75 mL) was followed by combining the organic layers and washing with brine (75 mL), drying (MgSO₄), filtering and concentrating *in vacuo*. Flash chromatography (applied in pet. ether; eluted 5:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a yellow solid (3.23 g, 9.77 mmol, 79%) with NMR values similar to those reported for the HCl salt.³¹² Mpt: 178-180 °C; Rᶠ = 0.33 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3306 (aromatic C-H stretch), 1682 (C=O stretch), 1528 (N-H bend), 1231 (O=C=O stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 4.27 (t, J = 6.7 Hz, 1H, 1-H), 4.39 (bd, J = 6.0 Hz, 2H, 9-H), 4.80 (s, 2H, 1-H), 6.48 (bd, J = 6.7 Hz, 2H, 3-H), 7.08 (bd, J = 6.7 Hz, 2H, 4-H), 7.35 (ap.t, J = 7.5 Hz, 2H, 13-H), 7.42 (ap.t, J = 7.5 Hz, 2H, 14-H), 7.74 (bd, J = 5.6 Hz, 2H, 12-H), 7.91 (d, J = 7.5 Hz, 2H, 15-H), 9.22 (bs, 1H, 6-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δC = 46.7 (C-10), 6zs5.3 (C-9), 114.0 (C-3), 120.2 (C-15), 120.4 (C-4), 125.2 (C-12), 127.1 (C-13), 127.3 (C-5), 127.7 (C-14), 129.0 (C-2), 140.8 (C-16), 143.9 (C-11) 153.4 (C-7); LRMS m/z (El⁺): 330 [M⁺]; HRMS m/z (El⁺): Found 330.1356 [M⁺]; C₂₁H₁₈N₂O₂ requires 330.1363; Anal. Calcd. for C₂₁H₁₈N₂O₂: C, 76.34; H, 5.49; N, 8.48. Found C, 76.27; H, 5.53; N, 8.47%.

270
4-(N-(4-(tert-Butoxycarbonylamino)phenyl)sulfamoyl)benzoic acid (312)

![Structure](image)

Method A:

235 (1.74 g, 8.38 mmol) was taken up in acetone, 4-(chlorosulfonyl)benzoic acid (616 mg, 2.79 mmol) was added and the mixture was stirred at RT for 16 h. The solvent was then removed *in vacuo*, the crude material was treated with NaHCO$_3$ (sat. aq. 100 mL), and the resulting precipitate was filtered. 2 M HCl (75 mL) was slowly added to the filtrate and the resulting material was filtered and dried to give a white solid (230 mg, 0.786 mmol, 28%).

Method B:

235 (2.68 g, 12.9 mmol) was taken up in acetone, 4-(chlorosulfonyl)benzoic acid (2.84 g, 12.9 mmol) was added and the mixture was stirred at RT for 16 h. The solvent was removed and the crude material was purified *via* flash chromatography (applied in toluene; eluted 10% to 20% to 30% to 40% to 50% to 80% to 100% EtOAc then 5% MeOH/EtOAc) to give the title compound as a light brown solid (1.72 g, 4.40 mmol, 34%). Mpt: >200°C; $R_f = 0.28$ (9:1 Et$_2$O/toluene); IR (ν_{max}/cm$^{-1}$, thin film): 3367 (N-H stretch), 3271 (O -H stretch), 2844 (C-H stretch), 1670, 1679 (C=O stretches), 1530 (N-H bend), 1338 (S=O asymmetric stretch), 1290 (COOR stretch), 1157 (S=O symmetric stretch); 1H NMR (600 MHz, (CD$_3$)$_2$SO): $\delta_H = 1.43$ (s, 9H, 1-H), 6.92 (d, $J = 8.8$ Hz, 2H, 8-H), 7.28 (d, $J = 8.8$ Hz, 2H, 7-H), 7.78 (d, $J = 8.5$ Hz, 2H, 13-H), 8.04 (d, $J = 8.5$ Hz, 2H, 14-H), 9.29 (bs, 1H, 9-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO): $\delta_C = 28.1$ (C-1), 79.1 (C-2), 118.7 (C-7), 122.4 (C-8), 127.1 (C-13), 130.1 (C-14), 131.0 (C-6), 134.4 (C-9), 136.7 (C-15), 143.0 (C-12), 152.7 (C-4), 166.2 (C-16); LRMS m/z (ES$^-$): 391 [M-H]$^-$; HRMS m/z (ES$^-$): Found 391.0979 [M-H]$^-$; C$_{18}$H$_{19}$N$_2$O$_6$S requires 391.0964.
311 (3.23 g, 9.77 mmol) was taken up in acetone (100 mL). 4-(Chlorosulfonyl)benzoic acid (2.16 g, 9.77 mmol) was added and the mixture was stirred at RT for 16 h. The solvent was removed in vacuo and the crude material was purified via flash chromatography (applied in CH₂Cl₂; eluted 0.5% to 1% to 5% to 10% to 20% MeOH) afforded the title compound as a pale brown solid (936 mg, 1.82 mmol, 19%). Mpt: >200 °C; $R_f = 0.22$ (10% MeOH/CH₂Cl₂); IR (ν_{max}/cm⁻¹, thin film): 3351 (N-H stretch), 3274 (aromatic C-H stretch), 1705, 1683 (C=O stretches), 1521 (N-H bend), 1333 (S=O asymmetric stretch), 1220 (COOR stretch), 1161 (S=O symmetric stretch); ¹H NMR (600 MHz, (CD₃)₂SO): $\delta_H = 4.28$ (t, $J = 6.5$ Hz, 1H, 17-H), 4.44 (bs, 2H, 16-H), 6.95 (bs, 2H, 10-H), 7.33 (t, $J = 7.5$ Hz, 4H, 11,20-H), 7.41 (t, $J = 7.5$ Hz, 21-H), 7.72 (bd, $J = 7.1$ Hz, 2H, 19-H), 7.79 (d, $J = 8.5$ Hz, 2H, 5-H), 7.89 (d, $J = 7.5$ Hz, 2H, 22-H), 8.06 (d, $J = 8.5$ Hz, 2H, 4-H), 9.67 (bs, 1H, 13-H), 10.19 (bs, 1H, 8-H), 13.46 (bs, 1H, 1-H); ¹³C NMR (150 MHz, (CD₃)₂SO): $\delta_C = 46.6$ (C-17), 65.6 (C-16), 119.0 (C-11), 120.2 (C-22), 122.3 (C-10), 125.1 (C-19), 127.0 (C-5), 127.2 (C-20), 127.7 (C-21), 130.1 (C-4), 131.5 (C-9,12), 134.4 (C-3), 140.8 (C-23), 143.1 (C-6), 143.8 (C-18), 153.4 (C-14), 166.2 (C-2); LRMS m/z (ES⁻): 513 [M-H]⁻; HRMS m/z (ES⁻): Found 513.1142 [M+H]⁺; C₂₈H₂₁N₂O₆S requires 513.1120; Anal. Caled. for C₂₈H₂₂N₂O₆S: C, 65.36; H, 4.31; N, 5.44. Found C, 65.17; H, 4.33; N, 5.35%.

4-Sulfamoylbenzoyl azide (315)

$\begin{array}{c}
\text{H}_2\text{N} \\
\text{SO}_3 \\
\text{H} \\
\text{O} \\
\text{N}_3
\end{array}$
4-Sulfamoylbenzoic acid (1.00 g, 4.97 mmol), PPh₃ (2.61 g, 9.94 mmol) and NaN₃ (0.388 g, 5.96 mmol) were suspended in anhydrous acetone (10 mL). To this milky white suspension was added trichloroacetonitrile (0.997 mL, 9.94 mmol) dropwise and the reaction was left to stir at RT for 18 h. The solvent was removed in vacuo (no heat) and the resulting dark yellow slurry was diluted with CH₂Cl₂ (100 mL) and washed with H₂O (60 mL) and brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 3:1 to 2:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (907 mg, 4.01 mmol, 81%). Mpt: 118 °C; Rᶠ = 0.23 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3362 (N-H stretch), 3258 (aromatic C-H stretch), 2137 (N=N=N stretch), 1687 (C=O stretch), 1339 (S=O asymmetric stretch), 1238, 1155 (S=O symmetrical stretch); ¹H NMR (600 MHz, CD₃OD): δH = 8.01-8.02 (m, 2H, 4-H), 8.17-8.18 (m, 2H, 3-H); ¹³C NMR (150 MHz, CD₃OD): δC = 127.6 (C-4), 131.0 (C-3), 134.9 (C-2), 150.2 (C-5), 172.8 (C-1); LRMS/HRMS m/z (ES⁺): no product mass present; Anal. Calcd. for C₁₅H₁₂N₄O₅S: C, 37.17; H, 2.67; N, 24.77. Found C, 37.27; H, 2.49; N, 24.40%.

4-(N-(4-Aminophenyl)sulfamoyl)benzoyl azide (316)

![4-(N-(4-Aminophenyl)sulfamoyl)benzoyl azide (316)](image)

310 (640 mg, 2.19 mmol), PPh₃ (1.15 g, 4.38 mmol) and NaN₃ (171 mg, 2.63 mmol) were suspended in anhydrous acetone (5 mL). Trichloroacetonitrile (440 µL, 4.38 mmol) was added dropwise and the reaction was left to stir at RT for 18 h. The solvent was removed in vacuo (no heat) and the resulting dark brown slurry was diluted with CH₂Cl₂ (75 mL) and washed with H₂O (50 mL) and brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The reaction profile by TLC was deemed too messy to continue and so no further work was carried out.
tert-Butyl 4-(4-(azidocarbonyl)phenylsulfonamido)phenylcarbamate (317)

312 (1.66 g, 4.22 mmol), PPh₃ (2.22 g, 8.44 mmol) and NaN₃ (329 mg, 5.07 mmol), were suspended in anhydrous acetone (15 mL). Trichloroacetonitrile (847 µL, 8.44 mmol) was added dropwise and the clear brown/green solution was stirred at RT (after a few minutes a white precipitate was evident). After stirring for 16 h the reaction was concentrated in vacuo (no heat), diluted with CH₂Cl₂ (100 mL) and washed with H₂O (60 mL) and brine (60 mL), dried (MgSO₄), filtered and solvent removed. Flash chromatography (applied in pet. ether; eluted 5:1 to 4:1 to 3:1 to 2:1) afforded the title compound as an off white solid (835 mg, 2.00 mmol, 48%). Mpt: 165 °C; Rf = 0.6 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3349, 3267 (aromatic C-H and N-H stretches), 2141 (-N=N+=N- stretch), 1699, 1686 (C=O stretches), 1519 (N-H bend), 1301 (S=O asymmetric stretch), 1245 (COOR stretch), 1158 (S=O stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 1.43 (s, 9H, 1-H), 6.92 (ap.d, J = 8.9 Hz, 2H, 8-H), 7.29 (bd, J = 8.5 Hz, 2H, 7-H), 7.83 (d, J = 6.9 Hz, 2H, 13-H), 8.08 (d, J = 6.7 Hz, 2H, 14-H), 9.31 (bs, 1H, 5-H), 10.20 (s, 1H, 10-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δC = 28.1 (C-1), 79.1 (C-2), 118.7 (C-7), 122.6 (C-8), 127.5 (C-13), 129.9 (C-14), 130.8 (C-6), 133.5 (C-15), 136.9 (C-9), 144.4 (C-12), 152.7 (C-4), 171.0 (C-16); LRMS and HRMS m/z (EI⁺): no product mass.

(9H-Fluoren-9-yl)methyl 4-(4-(azidocarbonyl)phenylsulfonamido)phenylcarbamate (318)
313 (200 mg, 0.389 mmol), PPh₃ (204 mg, 0.778 mmol) and NaN₃ (30.4 mg, 0.467 mmol) were suspended in anhydrous acetone (1 mL). Trichloroacetoniitrile (78.0 µL, 0.788 mmol) was added dropwise and the reaction was left to stir at RT for 18 h. The solvent was removed in vacuo and the resulting dark yellow slurry was diluted with CH₂Cl₂ (50 mL) and washed with H₂O (40 mL) and brine (40 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 3:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (164 mg, 0.305 mmol, 78%). Mpt: 150-152 °C; Rf = 0.61 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3265 (aromatic C-H stretch), 2189 (-N=N+=N- stretch), 1707, 1686 (C=O stretches), 1529 (N-H bend), 1256 (S=O asymmetric stretch), 1220 (C-O stretch), 1160 (S=O symmetric stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 4.28 (t, J = 6.5 Hz, 1H, 17-H) 4.44 (bs, 2H, 16-H), 6.94 (bd, J = 6.4 Hz, 2H, 10-H), 7.33 (t, J = 7.3 Hz, 4H, 11,21-H), 7.42 (t, J = 7.3 Hz, 2H, 20-H), 7.72 (d, J = 7.3 Hz, 2H, 22-H), 7.83-7.85 (m , 2H, 5-H), 7.90 (d, J = 7.3 Hz, 2H, 19-H), 8.09 (d, J = 8.5 Hz, 2H, 4-H), 9.68 (bs, 1H, 13-H), 10.25 (s, 1H, 8-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δC = 46.6 (C-17), 65.6 (C-16), 120.2 (C-19), 122.4 (C-10), 125.1 (C-22), 127.2 (overlapping signals, C-11,21), 127.4 (C-5), 127.7 (C-20), 129.9 (C-4), 131.5 (overlapping signals, C-9,12), 133.6 (C-3), 140.8 (C-18), 143.8 (C-23), 144.4 (C-6), 153.4 (C-14), 171.0 (C-2); LRMS m/z (ES⁺): 534, 443.

6.1.4.2 Synthesis of PEGylated Free Hydroxyl Imidazo[1,2-a]pyrazines

6.1.4.2.1 PEGylated-Benzenesulfonylamide-bound Imidazo[1,2-a]pyrazines

2-(tert-Butyl(dimethyl)silyloxyethanol (338)

Method A:

Anhydrous CH₂Cl₂ (100 mL) was added to a dry round bottom flask which was then evacuated and back-flushed with Ar. Ethylene glycol (2.00 mL, 35.9 mmol) and imidazole (7.32 g, 108 mmol) were added and the mixture was cooled to 0 °C whilst stirring. tert-Butyl(dimethyl)silyl chloride (6.49 g, 43.0 mmol) was added and the reaction was then stirred at 0 °C for 40 min.
After this time, the reaction was quenched by the addition of H₂O (250 mL) and the organic layer separated. The remaining aqueous layer was then further extracted with CH₂Cl₂ (2 x 100 mL) before the combined organics were washed with brine (200 mL) and dried (MgSO₄). Concentrating in vacuo gave a crude oil which was purified via flash chromatography (applied in Pet ether; in vacuo 30:1 to 19:1 to 5:1 pet. ether/EtOAc) to give the title compound as a colourless oil (2.16 g, 12.3 mmol, 34%) with the NMR consistent with literature values.¹³³ Rf = 0.60 (5:1 pet. ether/EtOAc); νmax/cm⁻¹ (thin film): 3370 (O-H stretch), 2955, 2858 (C-H stretches); ¹H NMR (500 MHz, CDCl₃): δH = 0.08 (s, 6H, 7-H), 0.91 (s, 9H, 8-H), 1.98 (bs, 1H, 1-H), 3.63-3.65 (m, 2H, 2-H), 3.70-3.72 (m, 2H, 3-H), ¹³C NMR (125 MHz, CDCl₃): δC = -5.3 (C-7), 18.4 (C-6), 26.0 (C-8), 63.8 (C-2), 64.1 (C-3); LRMS m/z (Cl⁺): 177 [M+H]⁺; HRMS (Cl⁺): Found 177.1303 [M+H]⁺; C₈H₂₁O₂Si requires 177.1311.

Method B.²⁶⁴

Ethylene glycol (3.00 mL, 53.8 mmol), Et₃N (11.2 mL, 80.7 mmol) and DMAP (65.7 mg, 1 mol%) were dissolved in anhydrous CH₂Cl₂ (300 mL) and cooled to 0 °C. tert-Butyl(dimethyl)silyl chloride (9.74 g, 64.6 mmol) was added to the reaction mixture in 1 mL portions over a period of 1 h. The reaction was then allowed to stir at RT for 16 h before diluting with H₂O (150 mL) and extracting the organic phase. This was then further washed with NaHCO₃ (sat. aq. 75 mL), NH₄Cl (sat. aq. 75 mL), H₂O (75 mL) and brine (75 mL), before drying (MgSO₄). The solvent was removed in vacuo to give crude pale yellow oil, which upon purification using flash chromatography (applied in CH₂Cl₂: eluted 30:1 to 5:1 CH₂Cl₂/EtOAc) afforded the title compound as a colourless oil (5.74 g, 32.6 mmol, 61%).

2-(2-(tert-Butyldimethylsilyloxy)ethoxy)ethanol (339)

Diethylene glycol (1.31 mL, 13.8 mmol), Et₃N (2.88 mL, 20.7 mmol) and DMAP (16.8 mg, 1 mol%) was dissolved in anhydrous CH₂Cl₂ (100 mL) and cooled on ice. tert-Butyl(dimethyl)silyl chloride (2.50 g, 16.5 mmol) was added portionwise and the reaction was stirred at RT for 16 h. The reaction was then washed with H₂O (60 mL), NaHCO₃ (sat. aq. 60
mL), H2O (60 mL) and brine (60 mL), dried (MgSO4), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 25:1 to 19:1 to 5:1 to 2:1 pet. ether/EtOAc) afforded the title compound as a colourless oil (1.49 g, 6.75 mmol, 50%) with the NMR consistent with literature values.314 $R_f = 0.13$ (5:1 pet. ether/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3343 (O-H stretch), 2954, 2929, 2885, 2858 (C-H stretch), 1253 (Si-C stretch), 1058 (C-O and Si-O stretches), 832 (Si-C stretch); 1H NMR (600 MHz, CDCl3): $\delta_{\text{H}} = 0.80$ (s, 6H, 10-H), 0.90 (s, 9H, 11-H), 2.12 (bs, 1H, 1-H), 3.59-3.53 (m, 4H, 3, 5-H), 3.71-3.73 (m, 2H, 2-H), 3.78 (t, $J = 4.9$ Hz, 2H, 6-H); 13C NMR (150 MHz, CDCl3): $\delta_{\text{C}} = -5.4$ (C-10), 18.5 (C-9), 26.0 (C-11), 62.0 (C-2), 63.0 (C-6), 72.5 (C-3), 72.7 (C-5); LRMS m/z (CI$^+$): 220 [M$^+$], 107 [M- Si(CH$_3$)$_2$(CH$_3$)$_3$]$^+$; HRMS m/z (CI$^+$): Found 220.1502 [M$^+$]; C$_{10}$H$_{24}$O$_3$Si requires 220.1495.

2,2,3,3-Tetramethyl-4,7,10-trioxa-3-siladodecan-12-ol (340)

Triethylene glycol (1.89 mL, 13.9 mmol), Et$_3$N (2.90 mL, 20.8 mmol) and DMAP (16.9 mg, 1 mol%) was dissolved in anhydrous CH$_2$Cl$_2$ (100 mL) and cooled on ice. tert-Butyl(dimethyl)silyl chloride (2.51 g, 16.6 mmol) was added portionwise and the reaction was stirred at RT for 16 h. The reaction was then washed with H$_2$O (60 mL), NaHCO$_3$ (sat. aq. 60 mL), H$_2$O (60 mL) and brine (60 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 19:1 to 9:1 to 4:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a colourless oil (1.70 g, 6.46 mmol, 47%) with NMR consistent with literature values.315 $R_f = 0.12$ (2:1 pet. ether/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3455 (O-H stretch), 2952, 2929, 2858 (C-H stretch), 1252 (Si-C stretch), 1100 (C-O and Si-O stretches), 832 (Si-C stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_{\text{H}} = 0.07$ (s, 6H, 13-H), 0.89 (s, 9H, 14-H), 2.43 (bs, 1H, 1-H), 3.57 (t, $J = 5.3$ Hz, 2H, 8-H), 3.61-3.62 (m, 2H, 3-H), 3.67 (s, 4H, 5, 6-H), 3.73 (bs, 2H, 2-H), 3.77 (t, $J = 5.3$ Hz, 2H, 9-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_{\text{C}} = -5.2$ (C-13), 18.5 (C-12), 26.0 (C-14), 61.9 (C-2), 62.8 (C-9), 70.6 (C-5), 70.9 (C-6), 72.6 (C-3), 72.8 (C-8); LRMS m/z (CI$^+$): 265 [M+H]$^+$, 207 [M-`Bu]$^+$; HRMS m/z (CI$^+$): Found 265.1841 [M+H]$^+$; C$_{12}$H$_{29}$O$_4$Si requires 265.1835.
2,2,3,3-Tetramethyl-4,7,10,13,16-pentaoxa-3-silaoctadecan-18-ol (341)

Penta(ethylene) glycol (1.78 mL, 8.39 mmol), Et₃N (1.75 mL, 12.6 mmol) and DMAP (10.3 mg, 0.084 mmol) were dissolved in anhydrous CH₂Cl₂ (90 mL) and cooled to 0 °C. tert-Butyl(dimethyl)silyl chloride (1.52 g, 10.07 mmol), dissolved in anhydrous CH₂Cl₂ (10 mL) was added dropwise and the reaction was stirred at RT for 16 h. The mixture was diluted with H₂O (60 mL) and the organic phase was extracted followed by washing with saturated NaHCO₃ (sat. aq. 60 mL), NH₄Cl (sat. aq. 60 mL), H₂O (60 mL) and brine (60 mL), before drying (MgSO₄). The solvent was removed in vacuo to give crude colourless oil, which upon purification using flash chromatography (1ˢᵗ: applied in pet. ether; eluted 19:1 to 10:1 to 5:1 pet. ether/EtOAc; 2ⁿᵈ: applied in CH₂Cl₂; eluted 1:1 CH₂Cl₂/EtOAc) afforded the title compound as a colourless oil (567 mg, 1.61 mmol, 19%) with the NMR consistent with literature values.³¹⁶ Rᶠ = 0.19 (5:1 EtOAc/pet. ether); IR (νₘₐₓ/cm⁻¹, thin film): 3444 (O-H stretch), 2927, 2857 (C-H stretch), 1251 (Si-C stretch), 1098 (C-O and Si-O stretches);¹H NMR (500 MHz, CDCl₃): δ_H = 0.06 (s, 6H, 19-H), 0.89 (s, 9H, 20-H), 2.18 (bs, 1-H, 1-H), 3.55 (t, J = 5.5 Hz, 2H, 14-H), 3.60-3.61 (m, 2H, 2-H), 3.62-3.68 (m, 12H, 5,6,8,9,11,12-H), 3.71-3.72 (m, 2H, 3-H), 3.76 (t, J = 5.5 Hz, 2H, 15-H) ;¹³C NMR (125 MHz, CDCl₃): δ_C = -5.2 (C-19), 18.4 (C-18), 26.0 (C-20), 61.8 (C-3), 62.8 (C-15), 70.4-70.8 (C-5,6,8,9,11,12), 72.3 (C-2), 72.7 (C-14) ; LRMS m/z (ES⁺): 375 [M+Na⁺]; HRMS m/z (ES⁺): Found 375.2170 [M+Na⁺]; C₁₆H₃₆O₆NaSi requires 375.2179.

2-(tert-Butyldimethylsilyloxy)ethyl 4-sulfamoylphenylcarbamate (319)

Method A:

To a suspension of 4-sulfamoylbenzoic acid (2.00 g, 9.94 mmol) in anhydrous toluene (20 mL) was added Et₃N (1.62 mL, 11.6 mmol). Diphenyphosphoryl azide (2.50 mL, 11.6 mmol) in
anhydrous toluene (5 mL) was added dropwise to the reaction mixture and stirred at RT for 30 min followed by heating at 90 °C for 30 min. **338** (2.10 g, 11.9 mmol) in anhydrous DMF (5 mL) was then added and the reaction was stirred at 100 °C for 4 h. The reaction was cooled to RT and solvent removed *in vacuo*. The crude material was taken up in EtOAc (100 mL) and washed with NaHCO₃ (sat. aq. 50 mL), H₂O (4 x 40 mL) and brine (40 mL); dried (MgSO₄), filtered and concentrated *in vacuo* to give an orange/brown sticky solid. Flash chromatography (applied in pet. ether; eluted 5:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a pale yellow solid (394 mg, 1.05 mmol, 11%).

Method B:

338 (114 mg, 0.646 mmol) was dissolved in anhydrous toluene (20 mL) and **315** (175 mg, 0.775 mmol) was added and the reaction was stirred under reflux for 16 h. The solvent was removed *in vacuo* and purification *via* flash chromatography (applied in toluene; eluted 5:1 to 3:1 to 2:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (121 mg, 0.323 mmol, 50%). Mpt: 136-140 °C; £\(R_f\) = 0.49 (2:1 EtOAc/pet. ether); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3325, 3236 (C-H stretch), 2950, 2928, 2857 (C-H and N-H stretch), 1719 (C=O stretch), 1598, 1540 (N-H bends), 1334 (S=O asymmetric stretch), 1242 (Si-C stretch), 1156 (S=O symmetric stretch), 1063 (Si-O stretch); £\(^1\)H NMR (600 MHz, CD₃OD): \(\delta_H = 0.10\) (s, 6H, **15-H**), 0.90 (s, 9H, **16-H**), 3.87-3.89 (m, 2H, **11-H**), 4.23-4.24 (m, 2H, **10-H**), 7.61 (d, \(J = 8.8\) Hz, 2H, **5-H**), 7.79-7.81 (m, 2H, **4-H**); £\(^13\)C NMR (150 MHz, CD₃OD): \(\delta_C = -5.3\) (C-15), 19.1 (C-14), 26.3 (C-16), 62.7 (C-11), 67.4 (C-10), 119.0 (C-5), 128.2 (C-4), 138.5 (C-3), 144.1 (C-6), 155.5 (C-8); LRMS m/z (ES\(^-\)): 373 [M-H]; HRMS m/z (ES\(^-\)) Found 373.1253 [M-H]; C₁₅H₂₅N₂O₅SSi requires 373.1274; Anal. Calcd. for C₁₅H₂₆N₂O₅SSi: C, 48.10; H, 7.00; N, 7.48. Found C, 48.36; H, 7.03; N, 7.40%.

2-(2-(tert-Butyldimethylsilyloxy)ethoxy)ethyl 4-sulfamoylphenylcarbamate (320)

![Chemical Structure](image-url)
339 (129 mg, 0.588 mmol) was dissolved in anhydrous toluene (15 mL) and 315 (160 mg, 0.706 mmol) was added and the reaction was stirred under reflux for 16 h. The solvent was removed in vacuo and purification via flash chromatography (applied in pet. ether; eluted 5:1 to 3:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (92.0 mg, 0.220 mmol, 37%). Mpt: 75 °C; Rf = 0.11 (2:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3336, 3282 (N-H and aromatic C-H stretches), 2929, 2856 (C-H stretch), 1729 (C=O stretch), 1597, 1540 (N-H bends), 1341 (S=O asymmetric stretch), 1235 (Si-C stretch), 1158 (S=O symmetric stretch), 1065 (C-O and Si-O stretches); ¹H NMR (600 MHz, CD3OD): δH = 0.07 (s, 6H, 17-H), 0.89 (s, 9H, 19-H), 3.58 (t, J = 5.0 Hz, 2H, 14-H), 3.76 (t, J = 4.7 Hz, 2H, 11-H), 3.78 (t, J = 5.7 Hz, 2H, 13-H), 4.30 (t, J = 4.7 Hz, 10-H), 7.61 (d, J = 8.8 Hz, 2H, 5-H), 7.80 (d, J = 8.8 Hz, 2H, 4-H); ¹³C NMR (150 MHz, CD3OD): δC = -5.2 (C-17), 19.2 (C-18), 26.4 (C-19), 64.0 (C-14), 65.4 (C-10), 70.5 (C-11), 73.7 (C-13), 118.9 (C-5), 128.2 (C-4), 138.5 (C-3), 144.1 (C-6), 155.4 (C-8); LRMS m/z (ES⁺): 441 [M+Na]⁺; HRMS m/z (ES⁺): Found 441.1484 [M+Na]⁺; C17H30N2O6NaSSi requires 441.1492; Anal. Calcd. for C17H30N2O6SSi: C, 48.78; H, 7.22; N, 6.69. Found C, 48.68; H, 7.01; N, 6.40%.

2,2,3,3-Tetramethyl-4,7,10-trioxa-3-siladodecan-12-yl-4-sulfamoylphenylcarbamate (321)

340 (148 mg, 0.560 mmol) was dissolved in anhydrous toluene (14 mL) and 315 (152 mg, 0.672 mmol) was added and the reaction was stirred under reflux for 16 h. The solvent was removed in vacuo and purification via flash chromatography (applied in CH2Cl2; eluted 2% MeOH) afforded the title compound as a white solid (119 mg, 0.256 mmol, 46%). Mpt: 76 °C; Rf = 0.53 (10% MeOH/CH2Cl2); IR (νmax/cm⁻¹, thin film): 3303 (N-H and aromatic C-H stretch), 2951, 2927, 2901, 2855 (C-H stretches), 1718 (C=O stretch), 1596, 1543 (N-H bends), 1332 (S=O asymmetric stretch), 1241 (Si-C stretch), 1155 (S=O symmetric stretch), 1100 (C-O and Si-O stretches); ¹H NMR (600 MHz, CD3OD): δH = 0.07 (s, 6H, 20-H), 0.90 (s, 9H, 22-H), 3.54-3.56 (m, 2H, 16-H), 3.65-3.68 (m, 4H, 13,14-H), 3.75-3.77 (m, 4H, 11,17-H), 4.29-4.30 (m, 2H, 10-H), 7.61 (d, J = 8.9 Hz, 2H, 5-H), 7.79-7.81 (m, 2H, 4-H); ¹³C NMR (150 MHz, CD3OD): δC =-
5.2 (C-20), 19.2 (C-21), 26.4 (C-22), 63.9 (C-17), 65.4 (C-10), 70.4 (C-11), 71.6 (C-13), 71.7 (C-14), 73.8 (C-16), 118.9 (C-5), 128.3 (C-4), 138.5 (C-3), 144.1 (C-6), 155.4 (C-8); LRMS m/z (ES⁺): 485 [M+Na]⁺, 463 [M+H]⁺; HRMS m/z (ES⁺): Found 485.1746 [M+Na]⁺; C₁₉H₃₄N₂O₇NaSSi requires 485.1754; Anal. Calcd. for C₁₉H₃₄N₂O₇SSi: C, 49.33; H, 7.41; N, 6.06. Found C, 49.53; H, 7.50; N, 5.82%.

2-(tert-Butyldimethylsilyloxy)ethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)-sulfamoyl)phenylcarbamate (342)

All glassware was dried and purged with Ar prior to use. Pd₂(dba)₃ (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaO'Bu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). 214 (50.0 mg, 0.179 mmol) and 319 (80.3 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed in vacuo, before the residue was taken up in CH₂Cl₂ (50 mL) and washed with H₂O (3 x 30 mL) and brine (30 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 2:1 to 1:1 to 1:2 pet. ether/EtOAc) afforded the title compound as a pale yellow solid (44.5 mg, 0.072 mmol, 40%). Mpt: >200 °C; Rf = 0.43 (1:3 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3275 (aromatic C-H stretch), 2952, 2927, 2880, 2854 (C-H and N-H stretches), 1736 (C=O stretch), 1595, 1535 (N-H bends), 1395 (S=O asymmetric stretch), 1219 (Si-C stretch), 1134 (S=O symmetric stretch), 1065 (C-O and Si-O stretches); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 0.04 (s, 6H, 33-H), 0.83 (s, 9H, 35-H), 3.81 (t, J = 4.7 Hz, 2H,
30-H), 4.16 (t, J = 4.7 Hz, 2H, 29-H), 7.16 (t, J = 5.5 Hz, 1H, 6-H), 7.50-7.55 (m, 2H, 15,16-H), 7.65 (d, J = 8.8 Hz, 2H, 24-H), 7.86 (d, J = 5.5 Hz, 1H, 5-H), 7.92 (d, J = 8.8 Hz, 3H, 14,23-H), 7.98 (d, J = 8.6 Hz, 1H, 12-H), 8.02-8.05 (m, 2H, 11,17-H), 8.52 (s, 1H, 19-H), 8.59 (s, 1H, 3-H), 10.13 (s, 1H, 26-H), 11.63 (bd, J = 3.3 Hz, 1H, 7/20-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO): δC = -5.3 (C-33), 18.0 (C-34), 25.8 (C-35), 61.2 (C-30), 66.0 (C-29), 110.9 (C-5), 115.1, (C-3), 116.6 (C-6) 117.7 (C-24), 123.8 (C-11), 124.2 (C-19), 126.3 (C-15), 126.6 (C-16), 127.4 (C-23), 127.8 (C-14), 128.3 (C-12), 128.4 (C-17), 130.0 (C-10), 132.8 (C-13), 133.2 (C-18), 135.6 (C-9), 135.9 (C-22), 142.9 (C-25), 145.2 (C-2), 145.5 (C-8), 153.2 (C-27); LRMS m/z (ES$^+$): 618 [M+H]$^+$, 438 [M-(CO$_2$CH$_2$CH$_2$OTBDMS)+Na]$^+$; HRMS m/z (ES$^+$): Found 618.2219 [M+H]$^+$; C$_{31}$H$_{36}$N$_5$O$_5$SSi requires 618.2206; Anal. Calcd. for C$_{31}$H$_{35}$N$_5$O$_5$SSi: C, 60.27; H, 5.71; N, 11.34. Found C, 60.08; H, 5.50; N, 11.19%.

2-Hydroxyethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)sulfamoyl)phenylcarbamate (343)

342 (39.6 mg, 0.064 mmol) was taken up in THF (2 mL) and the mixture was cooled on ice. TBAF (1.0 M solution in THF, containing 5 wt% H$_2$O; 128 µL, 0.128 mmol) was added and the reaction was stirred at RT for 6 h. Quenching with H$_2$O (20 mL) and extracting with EtOAc (3 x 20 mL) was followed by washing the combined organics with brine (20 mL), drying (MgSO$_4$), filtering and concentrating in vacuo. Flash chromatography (applied in CH$_2$Cl$_2$; eluted 2% MeOH) afforded the title compound as an off white (9.90 mg, 0.020 mmol, 31%). Mpt: Decomposed before melting; R_f = 0.36 (10% MeOH/CH$_2$Cl$_2$); IR (ν_{max}/cm$^{-1}$, thin film): 3252 (O-
H and aromatic C-H stretch), 2921 (N-H and C-H stretches), 1592 (C=O stretch), 1123 (S=O symmetric stretch), 1114 (C-O stretch); 1H NMR (600 MHz, (CD₃)₂SO): δH = 3.62 (q, J = 5.1 Hz, 2H, 30-H), 4.11 (t, J = 5.1 Hz, 2H, 29-H), 4.84 (t, J = 5.1 Hz, 1H, 31-H), 7.14 (bs, 1H, 6-H), 7.50-7.55 (m, 2H, 15,16-H), 7.63 (bs, 2H, 24-H), 7.84 (bs, 1H, 5-H), 7.91-7.93 (m, 3H, 14,23-H), 7.98 (d, J = 8.6 Hz, 1H, 12-H), 8.02-8.05 (m, 2H, 11,17-H), 8.52 (s, 1H, 19-H), 8.57 (bs, 1H, 3-H), 10.15 (bs, 1H, 26-H), 11.63 (bs, 1H, 7/20-H); 13C NMR (150 MHz, (CD₃)₂SO): δC = 59.2 (C-30), 66.4 (C-29), 110.9 (C-5), 115.1 (C-3), 116.6 (C-6), 117.5 (C-24), 123.8 (C-11), 124.1 (C-19), 126.6 (overlapping signals, C-15,16), 127.4 (C-14), 127.7 (C-23), 128.2 (C-12), 128.4 (C-17), 130.8 (C-10), 132.8 (C-13), 133.2 (C-18), 135.6 (C-9), 135.9 (C-22), 142.9 (C-25), 145.2 (C-2), 145.5 (C-8), 153.5 (C-27); LRMS m/z (ES⁺): 504 [M+H]+, 382; HRMS m/z (ES⁺): Found 504.1345 [M+H]+; C₂₂H₂₊N₅O₅S requires 504.1342.

2-(2-(tert-Butyldimethylsilyloxy)ethoxy)ethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)sulfamoyl)phenylcarbamate (344)

All glassware was dried and purged with Ar prior to use. Pd_2(dba)_3 (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaO'Bu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). 214 (50.0 mg, 0.179 mmol) and 320 (89.7 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed, before the residue was taken up in CH₂Cl₂ (50 mL) and washed with H₂O (3 x 30 mL) and brine (30 mL), dried (MgSO₄), filtered and concentrated in vacuo. LCMS showed trace signs of product. No further work was carried out at this stage.
All glassware was dried and purged with Ar prior to use. Pd$_2$(dba)$_3$ (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaO'Bu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). 214 (50.0 mg, 0.179 mmol) and 321 (99.2 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed, before the residue was taken up in CH$_2$Cl$_2$ (50 mL) and washed with H$_2$O (3 × 30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. LCMS showed trace signs of product. No further work was carried out at this stage.

6.1.4.2.2 PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines

2-(tert-Butyldimethylsilyloxy)ethyl-4-(N-(tert-butyl-4-aminophenylcarbamate)sulfamoyl)phenylcarbamate (329)

338 (83.1 mg, 0.472 mmol) was dissolved in anhydrous toluene (12 mL) and 317 (236 mg, 0.567 mmol) was added and the reaction was stirred under reflux for 16 h. The solvent was removed in vacuo and purification via flash chromatography (applied in toluene; eluted 20% Et$_2$O) afforded the title compound as an off white solid (233 mg, 0.412 mmol, 87%). Mpt: 164 °C; R_f = 0.49 (1:1
toluene/Et$_2$O); IR (ν_{max}/cm$^{-1}$, thin film): 3321, 3221 (N-H and aromatic C-H stretches), 2955, 2930 (C-H stretch), 1714, 1683 (C=O stretches), 1532 (N-H bend), 1241 (COOR and Si-C stretches), 1338 (S=O asymmetric stretch), 1160 (S=O symmetric stretch), 1058 (C-O and Si-O stretches); 1H NMR (600 MHz, CD$_3$OD): δH = 0.09 (s, 6H, 23-H), 0.89 (s, 9H, 25-H), 1.49 (s, 9H, 1-H), 3.86 (t, $J = 4.8$ Hz, 2H, 20-H), 4.22 (t, $J = 4.8$ Hz, 2H, 19-H), 6.94-6.96 (m, 2H, 8-H), 7.24 (d, $J = 8.5$ Hz, 2H, 7-H), 7.54 (d, $J = 8.9$ Hz, 2H, 14-H), 7.57-7.59 (m, 2H, 13-H); 13C NMR (150 MHz, CD$_3$OD): δC = -5.3 (C-23), 19.1 (C-24), 16.3 (C-25), 18.7 (C-1), 62.7 (C-20), 67.5 (C-19), 80.8 (C-2), 118.9 (C-14), 120.3 (C-7), 124.2 (C-8), 129.9 (C-13), 133.4 (C-9), 134.1 (C-12), 138.0 (C-6), 144.7 (C-15), 155.3 (C-17), 155.5 (C-4); LRMS m/z (ES$^+$): 588 [M+Na]$^+$, 510 [M-Boc$^+$ Formic Acid]$^+$; HRMS m/z (ES$^+$): Found 588.2164 [M+Na]$^+$; C$_{26}$H$_{39}$N$_3$O$_7$NaSSi requires 588.2176; Anal. Caled. for C$_{26}$H$_{39}$N$_3$O$_7$SSi: C, 55.20; H, 6.95; N, 7.43. Found C, 54.94; H, 6.77; N, 7.22%.

2-(tert-Butyldimethylsilyloxy)ethoxy)ethyl-4-(N-(tert-butyl-4-aminophenylcarbamate)-sulfamoyl)phenylcarbamate (330)

339 (116 mg, 0.526 mmol) was dissolved in anhydrous toluene (13 mL) and 317 (263 mg, 0.630 mmol) was added and the reaction was stirred under reflux for 16 h. The solvent was removed in vacuo and purification via flash chromatography (applied in toluene; eluted 9% EtOAc/1% Et$_3$N to 50% EtOAc) afforded the title compound as an off white solid (208 mg, 0.341 mmol, 65%). R_f = 0.65 (1:1 toluene/EtOAc); IR (ν_{max}/cm$^{-1}$, thin film): 3277, 2931 (C-H and N-H stretches), 1697 (C=O stretch), 1596, 1523 (N-H bends), 1328 (S=O asymmetric stretch), 1218 (Si-C stretch), 1155 (S=O symmetric stretch), 1093, 1059 (C-O and Si-O stretches); 1H NMR (600 MHz, CD$_3$OD): δH = 0.05 (s, 6H, 26-H), 0.88 (s, 9H, 28-H), 1.49 (s, 9H, 1-H), 3.57 (t, $J = 5.0$ Hz, 2H, 22-H), 3.74 (dt, $J = 4.7$, 3.3 Hz, 2H, 20-H), 3.76 (t, $J = 5.0$ Hz, 2H, 23-H), 4.28 (t, $J = 4.7$ Hz, 2H, 19-H), 6.94-6.97 (m, 2H, 8-H), 7.24 (d, $J = 8.7$ Hz, 2H, 7-H), 7.52 (d, $J = 8.9$ Hz, 2H, 14-H), 7.58-7.60 (m, 2H, 13-H); 13C NMR (150 MHz, CD$_3$OD): δC = -5.2 (C-26), 19.2 (C-27), 26.4 (C-
28), 28.7 (C-1), 64.0 (C-23), 65.4 (C-23), 70.5 (C-20), 73.7 (C-22), 80.9 (C-2), 118.8 (C-14), 120.3 (C-7), 124.2 (C-8), 129.4 (C-13), 133.4 (C-9), 134.1 (C-12), 138.0 (C-6), 144.7 (C-15), 155.2 (C-4), 155.3 (C-17); LRMS m/z (ES?): 632 [M+H]^+, 554 [M^−Bu]^+; HRMS m/z (ES?): Found 632.2422 [M+H]^+; C_{28}H_{43}N_{3}O_{8}NaSSi requires 632.2438.

2-Hydroxyethyl-4-(N-(4-aminophenyl)sulfamoyl)phenylcarbamate (326)

![Structural diagram]

329 (240 mg, 0.425 mmol) was dissolved in 7.5 N HCl/EtOAc (20 mL) and the reaction was stirred at RT for 30 min. The organic layer was extracted after diluting with H_{2}O (30 mL). The aqueous layer was then neutralised via the addition of NaOH and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO_{4}), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 1:1 to 1:4 to 1:9 pet. ether/EtOAc) afforded the title compound as a pale brown solid (96.4 mg, 0.275 mmol, 65%). Mpt: Decomposed before melting; R_{f} = 0.15 (1:9 pet. ether/EtOAc); IR (ν_{max}/cm⁻¹, thin film): 3233 (O-H, aromatic C-H stretches), 1717 (C=O stretch), 1593, 1535, 1510 (N-H bends), 1312 (S=O asymmetric stretch), 1220 (COOR stretch), 1150 (S=O symmetric stretch), 1050 (C-O stretch); ¹H NMR (600 MHz, CD_{3}OD): δ_H = 3.77 (t, J = 4.8 Hz, 2H, 16-H), 4.21 (t, J = 4.8 Hz, 2H, 15-H), 6.55-6.57 (m, 2H, 3-H), 6.75-6.77 (m, 2H, 4-H), 7.50-7.54 (m, 4H, 9,10-H); ¹³C NMR (150 MHz, CD_{3}OD): δ_C = 61.3 (C-16), 67.6 (C-15), 116.7 (C-3), 118.7 (C-10), 126.5 (C-4), 128.8 (C-5), 129.5 (C-9), 134.2 (C-8), 144.5 (C-11), 147.0 (C-2), 155.4 (C-13); LRMS m/z (ES?): 374 [M+Na]^+, 352 [M+H]^+, 331 [M-(CH_{2}CH_{2}OH)+Na]^+, 302 [M-(O_{2}CH_{2}CH_{2}OH)+Na]^+; HRMS m/z (ES?): Found 374.0772 [M+Na]^+; C_{15}H_{17}N_{3}O_{5}NaS requires 374.0787.
2-(tert-Butyldimethylsilyloxy)ethyl-4-(N-(4-aminophenyl)sulfamoyl)phenylcarbamate (346)

Method A:

326 (88.5 mg, 0.252 mmol), Et₃N (52.7 µL, 0.378 mmol) and DMAP (0.283 mg, 1 mol%) were dissolved in anhydrous CH₂Cl₂ (10 mL). tert-Butylchlorodimethylsilane (45.6 mg, 0.302 mmol) was added portionwise and the reaction was stirred at RT for 18 h. The mixture was diluted with CH₂Cl₂ (50 mL) and washed with H₂O (30 mL), NaHCO₃ (sat. aq. 30 mL), NH₄Cl (sat. aq. 30 mL) and brine (30 mL), dried (MgSO₄), filtered and solvent removed *in vacuo*. Flash chromatography (applied in pet. ether; eluted 1:1 to 1:9 pet. ether/EtOAc) afforded the title compound as an off white sticky solid (6.30 mg, 0.018 mmol, 7%). Rₐ = 0.69 (9:1 EtOAc/pet. ether); IR (νₘₐₓ/cm⁻¹, thin film): 3287 (N-H and aromatic C-H stretches), 2954, 2929, 2857 (C-H stretches), 1715 (C=O stretch), 1595, 1532, 1512 (N -H bends), 1314 (S=O asymmetric stretch), 1222 (COOR and Si-C stretches), 1156 (S=O symmetric stretch), 1096, 1065 (C-O and Si-O stretches); ¹H NMR (600 MHz, CD₃OD): δH = 0.08 (s, 6H, 19-H), 0.89 (s, 9H, 21-H), 2.13 (bs, ~2H, 1-H), 3.85 (bt, J = 4.8 Hz, 2H, 16-H), 4.25 (bt, J = 4.8 Hz, 2H, 15-H), 6.18 (bs, 1H, 6-H), 6.55 (bs, 2H, 3-H), 8.81 (bd, J = 7.7 Hz, 2H, 4-H), 6.90 (bs, 1H, 12-H), 7.43 (d, J = 8.4 Hz, 2H, 10-H), 7.60 (d, J = 8.3 Hz, 2H, 9-H); ¹³C NMR (150 MHz, CD₃OD): δC = -5.2 (C-19), 18.5 (C-20), 26.0 (C-21), 61.5 (C-16), 67.1 (C-15), 115.7 (C-3), 117.9 (C-10), 126.4 (C-4), 128.9 (C-9), 132.6 (C-5), 133.2 (C-8), 142.1 (C-11), 145.4 (C-2), 153.2 (C-13); LRMS m/z (EI⁺): 465 [M⁺]; HRMS m/z (EI⁺): Found 465.1752 [M⁺]. C₂₁H₃₁N₃O₅SSi requires 465.1748.

Method B:

326 (76.6 mg, 0.218 mmol) was dissolved in anhydrous DMF (1.5 mL), imidazole (29.7 mg, 0.436 mmol) was added and the mixture was stirred at RT for 15 min. tert-Butylchlorodimethylsilane (49.3 mg, 0.327 mmol) in DMF (0.5 mL) was added and the reaction was stirred at RT for 16 h. Removal of the solvent *in vacuo* followed by flash chromatography
(applied in pet. ether; eluted 1:1 to 1:9 pet. ether/EtOAc) afforded a trace quantity of the title compound as an off-white sticky solid.

Method C:

To a suspension of 310 (690 mg, 2.36 mmol) in anhydrous toluene (3.15 mL) was added Et₃N (385 µL, 2.76 mmol). Diphenyolphosphoryl azide (596 µL, 2.76 mmol) in anhydrous toluene (2.76 mL) was added dropwise to the reaction mixture and stirred at RT for 2 h followed by heating at 90 °C for 90 min. 338 (499 mg, 2.84 mmol) in anhydrous DMF (1.4 mL) was then added and the reaction was stirred at 90 °C for 16 h, before the reaction was cooled to RT and solvent removed in vacuo. The crude material was taken up in EtOAc (75 mL) and washed with NaHCO₃ (sat. aq. 50 mL), H₂O (3 x 50 mL) and brine (50 mL); dried (MgSO₄), filtered and concentrated in vacuo. LCMS and NMR showed no product mass and so no further work carried out.

6.1.4.3 Synthesis of PEGylated Maleimide Linked Imidazo[1,2-a]pyrazines

6.1.4.3.1 PEGylated-Benzenesulfonamide-bound Imidazo[1,2-a]pyrazines

2-(2-Bromoethoxy)ethanol (347)

Diethylene glycol (2.00 mL, 0.021 mol) was dissolved in anhydrous CH₂Cl₂ (75 mL) and the mixture was cooled on ice. Thiophenyl bromide (0.816 mL, 0.010 mol) was then added dropwise and stirred at 0 °C for 30 min. The reaction was then stirred at RT under Ar for 16 h before quenching with H₂O (150 mL) and NaHCO₃ (sat. aq. 75 mL). The organic layer was extracted, washed with H₂O (3 x 100 mL) and brine (1 x 75 mL), dried (MgSO₄) and concentrated in vacuo to give a light yellow oil. Flash chromatography (applied in pet. ether; eluted 1:1 pet. ether/EtOAc) afforded the title compound as colourless oil (787 mg, 5.15 mmol, 24%) with NMR consistent with literature values.²⁶⁷ R_f = 0.33 (1:1 pet. ether/EtOAc); IR (v_max/cm⁻¹, thin film): 3397 (O-H stretch), 2871 (C-H stretch), 1117, 1059 (C-O stretches); ¹H NMR (600 MHz, CDCl₃): δ_H = 1.93 (bs, 1H, 1-H), 3.49 (t, J = 6.0 Hz, 2H, 6-H), 3.62-3.63 (m, 2H, 3-H), 3.75-3.76 (m, 2H, 2-H), 3.82 (t, J = 6.0 Hz, 2H, 5-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 30.7 (C-6), 61.8
(C-2), 71.0 (C-5), 72.3 (C-3); LRMS m/z (CI): 169 [M(\(^{79}\)Br)]\(^+\), 171 [M(\(^{81}\)Br)]\(^+\), 151 [M(\(^{79}\)Br)-OH]\(^+\), 153 [M(\(^{81}\)Br)-OH]\(^+\), 107 [M(\(^{79}\)Br)-OCH\(_2\)CH\(_2\)OH]\(^+\), 109 [M(\(^{81}\)Br)-OCH\(_2\)CH\(_2\)OH]\(^+\); HRMS m/z (CI): Found 168.9869 [M(\(^{79}\)Br)]\(^+\); \(\text{C}_4\text{H}_{10}\text{O}_2\text{Br}\) requires 168.9864.

(2-(2-Bromoethoxy)ethoxy)(tert-butyl)dimethylsilane (348)\(^{269}\)

347 (351 mg, 2.30 mmol) was dissolved in anhydrous DMF (3 mL). Tert-butyldimethylsilyl chloride (381 mg, 3.52 mmol) was added in one portion followed by DIPEA (1.00 mL, 5.74 mmol) and the reaction mixture was allowed to stir at RT for 1 h. After diluting with EtOAc (50 mL), the reaction was washed with \(\text{H}_2\text{O}\) (20 mL), \(\text{NH}_4\text{Cl}\) (sat. aq. 20 mL) and brine (15 mL), followed by drying (\(\text{MgSO}_4\)) and concentrating \textit{in vacuo} to give a red/orange oil. Flash chromatography (applied in pet. ether; eluted 9:1 pet. ether/EtOAc) gave the title compound as a colourless oil (473 mg, 1.67 mmol, 73%) with NMR consistent with literature values.\(^{269}\) \(R_f = 0.55\) (9:1 pet. ether/EtOAc); IR (\(\nu\) max/cm\(^{-1}\), thin film): 2929, 2857 (C-H stretch), 1255 (Si-C stretch), 1105 (C-O and Si-O stretches), 834, 778 (Si-C stretches); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_H = 0.07\) (s, 6H, 10-H), 0.89 (s, 9H, 11-H), 3.46 (t, \(J = 6.4\) Hz, 2H, 2-H), 3.59 (t, \(J = 5.2\) Hz, 2H, 5-H), 3.77 (t, \(J = 5.2\) Hz, 2H, 6-H), 3.82 (t, \(J = 6.4\) Hz, 2H, 3-H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta_C = -5.2\) (C-10), 18.5 (C-9), 26.0 (C-11), 30.6 (C-2), 62.9 (C-6), 71.4 (C-3), 72.7 (C-5); LRMS m/z (ES\(^+\)): 306 [M(\(^{79}\)Br)+Na]\(^+\), 308 [M(\(^{81}\)Br)+Na]\(^+\), 283 [M(\(^{79}\)Br)+H]\(^+\), 285 [M(\(^{81}\)Br)+H]\(^+\), 242 [M-Br+K]\(^+\); HRMS m/z (ES\(^-\)): Found 283.0782 [M(\(^{79}\)Br)-H]\(^-\); \(\text{C}_{10}\text{H}_{22}\text{O}_2\text{SiBr}\) requires 283.0729.

Attempted formation of 1-(2-(2-(tert-butyldimethylsilyloxy)ethoxy)ethyl)-1H-pyrrole-2,5-dione (349)
NaH (60% dispersion in mineral oil; 60.5 mg, 1.51 mmol) was stirred in anhydrous hexanes (10 mL) for 20 min. Removal of the hexanes via syringe and drying under vacuum gave the activated base. Anhydrous THF (2 mL) was added and cooled on ice. Maleimide (147 mg, 1.51 mmol) in dry THF (2 mL) was added dropwise and the resulting off white milky solution was stirred for 10 min. 348 (473 mg, 1.51 mmol) in dry THF (3 mL) was added dropwise and the solution was stirred at RT for 5 h. TLC indicated no reaction and so it was heated to 50 °C for 16 h. No reaction was observed and so the reaction was abandoned.

Methyl maleimido-1-carboxylate (352)

Method A:

To a cooled (0 °C) solution of maleimide (2.00 g, 20.6 mmol) in EtOAc (80 mL) was added a solution of N-methyl morpholine (2.50 mL, 22.7 mmol) in EtOAc (10 mL) over a period of 10 min. Methyl chloroformate (1.60 mL, 20.6 mmol) in EtOAc (5 mL) was then added dropwise and the solution turned cloudy with visible precipitate. The reaction mixture was stirred at RT for 1 h before diluting with EtOAc (100 mL) and washing with NaHCO₃ (sat. aq. 50 mL), H₂O (50 mL) and brine (50 mL). Drying (MgSO₄), filtering and removal of solvent in vacuo gave the crude material which upon purification via flash chromatography (applied in pet. ether; eluted 25% to 50% EtOAc) afforded the title compound as a white solid (742 mg, 4.79 mmol, 23%), with NMR consistent with literature values.²⁷¹ Mpt: 48-50 °C [Lit.²⁷¹ 60-61 °C]; RF = 0.48 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3102 (C-H stretch), 1795, 1754, 1712 (C=O and C=C stretches), 1441 (C-H Scissor), 1333, 1263; ¹H NMR (600 MHz, CDCl₃): δH = 3.97 (s, 3H, 1-H), 6.84 (s, 2H, 6-H); ¹³C NMR (150 MHz, CDCl₃): δC = 54.5 (C-1), 135.4 (C-6), 148.2 (C-3), 165.8 (C-5); LRMS m/z (EI⁺): 155 [M⁺]; HRMS m/z (EI⁺): Found 155.0208 [M⁺]; C₆H₅O₄N requires 155.0213; Anal. Calcd. for C₆H₅O₄N: C, 46.46; H, 3.25; N, 9.03. Found C, 46.22; H, 3.26; N, 8.84%.
Method B:

To a stirred solution of maleimide (3.00 g, 30.9 mmol) in anhydrous THF (250 mL) was added methyl chloroformate (2.39 mL, 30.9 mmol) followed by N-methyl morpholine (3.40 mL, 30.9 mmol). The resulting cloudy pink solution was stirred at RT for 72 h, after which the reaction mixture was diluted with CH₂Cl₂ (300 mL) and washed H₂O (3 x 100 mL) and brine (100 mL). Drying (MgSO₄), filtering and concentrating in vacuo gave a crude brown sticky solid. Flash chromatography (applied in pet. ether; eluted 2:1 to 3:2 to 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (1.53 g, 9.84 mmol, 32%).

2-(2-Maleimidoethoxy)ethanol (350)

Method A:

347 (311 mg, 2.03 mmol) and maleimide (197 mg, 2.03 mmol) were dissolved in anhydrous DMF (5 mL). K₂CO₃ (140 mg, 1.01 mmol) was added and the colourless reaction mixture was stirred at 50 °C under Ar. After 3½ h, the resulting red solution was cooled to RT, and LCMS indicated no product was present, even though no maleimide was present. The reaction was abandoned at this stage.

Method B.²⁷¹

2-(2-Aminoethoxy)ethanol (463 µL, 4.64 mmol) was dissolved in NaHCO₃ (sat. aq. 20 mL) and stirred at 0 °C for 10 min. 352 (720 mg, 4.64 mmol) was added in one portion and the reaction was allowed to warm slowly to RT and stir for a further 30 min. The reaction was then extracted with CHCl₃ (3 x 40 mL), the combined organics washed with brine (20 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 2:1 to 1:5 pet. ether/EtOAc) afforded the title compound as a colourless gum (464 mg, 2.51 mmol, 54%) with NMR consistent with literature values.²⁷¹ Rf = 0.31 (5:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3456 (O-H stretch), 2874 (C-H stretch), 1686 (C=O stretch), 1404, 1118 (C-O
1H NMR (600 MHz, CDCl3): δH = 2.01 (bs, 1H, 1-H), 3.56 (t, J = 4.5 Hz, 2H, 3-H), 3.64 (t, J = 5.5 Hz, 2H, 5-H), 3.68 (t, J = 4.5 Hz, 2H, 2-H), 3.74 (t, J = 5.5 Hz, 2H, 6-H), 6.72 (s, 2H, 9-H); 13C NMR (150 MHz, CDCl3): δC = 37.5 (C-6), 61.9 (C-2), 68.4 (C-5), 72.2 (C-3), 134.3 (C-9), 171.0 (C-8); LRMS m/z (CI+): 186 [M+H]+, 168 [M-OH]+; HRMS m/z (CI+): Found 186.0761 [M-OH]+; C8H12O4N requires 186.0766.

Method C:

352 (1.53 g, 9.84 mmol) was dissolved in anhydrous CH2Cl2 (100 mL). 2-(2-Aminoethoxy)ethanol (0.981 mL, 9.84 mmol) was added and the reaction stirred at RT for 30 min. The resulting cloudy white solution was diluted with CH2Cl2 (100 mL) and washed with NaHCO3 (sat. aq. 3 x 75 mL) and brine (75 mL); dried (MgSO4), filtered and concentrated in vacuo. Flash chromatography (pet. ether; 1:1 to 1:3 to 1:5 pet. ether/EtOAc) afforded the title compound as a colourless oil (395 mg, 2.14 mmol, 22%).

1-(17-Hydroxy-3,6,9,12,15-pentaoxaheptadecyl)-maleimide (355)

354 (545 mg, 1.94 mmol) was dissolved in NaHCO3 (sat. aq. 10 mL) and the mixture was cooled on ice and stirred for 10 min. 352 (260 mg, 1.67 mmol) was added in one portion and the reaction was stirred on ice for 30 min. After this time, the reaction was extracted with CHCl3 (3 x 30 mL) and the combined organics washed with brine (30 mL), dried (MgSO4), filtered and solvent removed in vacuo. Flash chromatography (applied in CH2Cl2; eluted 5% MeOH) afforded the title compound as a pale yellow oil (391 mg, 1.08 mmol, 65%). Rf = 0.29 (5% MeOH/CH2Cl2); IR (νmax/cm−1, thin film): 3460 (O-H stretch), 2868 (C-H stretch), 1703 (C=O stretch), 1097 (C-O stretch); 1H NMR (600 MHz, CDCl3): δH = 3.58-3.68 (m, 20H, 3,5,6,8,9,11,12,14,15,17-H), 3.71-3.73 (m, 4H, 2,18-H), 6.70 (s, 2H, 21-H); 13C NMR (150 MHz, CDCl3): δC = 37.2 (C-18), 61.8 (C-2), 67.6 (C-3), 70.1-70.7 (C-5,6,8,9,11,12,14,15), 72.7 (C-17), 134.3 (C-21), 170.8 (C-20); LRMS m/z (CI+): 362 [M+H]+, 318 [M-CH2CH2OH]+, 115; HRMS m/z (CI+): Found 362.1823 [M+H]+; C16H28NO8 requires 362.1815.
17-Bromo-3,6,9,12,15-pentaoxaheptadecan-1-ol (357)

Hexaethylene glycol (1.80 mL, 7.08 mmol) was dissolved in anhydrous CH₂Cl₂ (25 mL) and the mixture was cooled on ice. Thiethyl bromide (0.274 mL, 3.5 mmol) was then added dropwise and stirred at 0 °C for 30 min. The reaction was then stirred at RT under Ar for 16 h before quenching with H₂O (50 mL) and NaHCO₃ (sat. aq. 25 mL). The organic layer was extracted, washed with H₂O (3 x 20 mL) and brine (20 mL), dried (MgSO₄) and concentrated in vacuo to give a light yellow oil. Flash chromatography (applied in CH₂Cl₂; eluted 5% MeOH/CH₂Cl₂) afforded the title compound as colourless oil (510 mg, 51.5 mmol, 20%) with NMR consistent with literature values.³¹⁷ Rᵢ = 0.38 (5% MeOH/CH₂Cl₂); IR (νₘₐₓ/cm⁻¹, thin film): 3469 (O-H stretch), 2869 (C-H stretch), 1102 (C-O stretch); ¹H NMR (600 MHz, CDCl₃): δH = 1.98 (bs, 1H, 1-H), 3.48 (t, J = 6.3 Hz, 2H, 18-H), 3.61 (t, J = 4.5 Hz, 2H, 3-H), 3.66 (bs, 16H, 5,6,8,9,11,12,14,15-H), 3.72 (t, J = 4.5 Hz, 2H, 2-H), 3.81 (t, J = 6.3 Hz, 2H, 17-H); ¹³C NMR (150 MHz, CDCl₃): δC = 30.5 (C-18), 61.8 (C-2), 70.3 (C-15), 70.6-70.7 (C-5, 6,8,9,11,12), 71.3 (C-17), 72.8 (C-3); LRMS m/z (ES+): 345 [M(⁷⁹Br)+H]+, 347 [M(⁸¹Br)+H]+.

17-Azido-3,6,9,12,15-pentaoxaheptadecan-1-ol (358)

357 (1.80 g, 5.20 mmol) was dissolved in anhydrous DMF (22 mL). NaN₃ (0.675 g, 10.4 mmol) was added and the reaction was stirred at 70 °C for 3½ h. After this time, the mixture was cooled to RT and the solvent removed. Diluting with CH₂Cl₂ (100 mL), washing with brine (50 mL), drying (MgSO₄), filtering and concentrating in vacuo gave the title compound as pale yellow oil (1.47 g, 4.79 mmol, 92%) with NMR consistent with literature values.³¹⁸ Rᵢ = 0.38 (5% MeOH/CH₂Cl₂); IR (νₘₐₓ/cm⁻¹, thin film): 3472 (O-H stretch), 2869 (C-H stretch), 2098 (-N=N⁻=N stretch), 1096 (C-O stretch); ¹H NMR (600 MHz, CDCl₃): δH = 2.00 (s, 1H, 1-H), 3.39 (t, J = 5.0 Hz, 2H, 18-H), 3.60-3.62 (m, 2H, 3-H), 3.65-3.68 (m, 18H, 5,6,8,9,11,12,14,15,16,17-H), 3.72 (bd, J = 3.3 Hz, 2H, 2-H); ¹³C NMR (150 MHz, CDCl₃): δC = 50.8 (C-18), 61.8 (C-2),
70.2-70.8 (C-5,6,8,9,11,12,14,15,16,17), 72.7 (C-3); LRMS m/z (ES⁺): 330 [M+H]⁺, 302 [M-N₂+Na]⁺; HRMS m/z (ES⁺): Found 330.1641 [M+H]⁺; C₁₂H₂₅N₃O₆Na requires 330.1641.

17-Amino-3,6,9,12,15-pentaoxaheptadecan-1-ol (354)

358 (1.47 g, 4.49 mmol) was dissolved in anhydrous MeOH (25 mL). 10% Pd/C (150 mg, 10% w/w) was added, the vessel was evacuated and purged with Ar (3x), and under static vacuum a balloon of H₂ was added. The reaction was stirred at RT for 5 h, after which time the balloon was removed and the vessel evacuated and purged with Ar (3x). The contents were filtered through Celite (pre-washed with MeOH) and the filtrate concentrated in vacuo. Flash chromatography (applied in CH₂Cl₂; eluted 5% to 20% MeOH to 2% Et₃N/20% MeOH) afforded the title compound as a yellow oil (545 mg, 1.93 mmol, 43%) with NMR consistent with literature values.³¹⁸ Rₓ = 0.10 (20% MeOH/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3376 (O-H stretch), 2868 (C-H and N-H stretches), 1099 (C-O stretch); ¹H NMR (600 MHz, CDCl₃): δH = 2.01 (bs, 3H, 1,19-H), 2.87-2.89 (m, 2H, 18-H), 3.52-3.56 (m, 2H, 17-H), 3.58-3.60 (m, 2H, 3-H), 3.64-3.68 (m, 16H, 5,6,8,9,11,12,14,15-H), 3.71-3.72 (m, 2H, 2-H); ¹³C NMR (150 MHz, CDCl₃): δC = 41.6 (C-18), 61.5 (C-2), 70.1-70.7 (C-5,6,8,9,11,12,14,15), 72.9-73.2 (C-3,17); LRMS m/z (Cl⁺): 282 [M+H]⁺, 167; HRMS m/z (El⁺): Found 282.1923 [M+H]⁺; C₁₂H₂₈N₃O₆Na requires 282.1917.

tert-Butyl 2-(2-hydroxyethoxy)ethylcarbamate (359)

To a solution of 2-(2-aminoethoxy)ethanol (2.00 mL, 19.9 mmol) in CHCl₃ (20 mL) cooled on ice, was added (Boc)₂O (4.35 g, 19.9 mmol) in CHCl₃ (20 mL). The reaction was stirred at RT for 90 min, followed by diluting with H₂O (50 mL) and then extracting with CHCl₃ (3 x 60 mL).
The combined organics were dried (MgSO₄), filtered, concentrated *in vacuo*, and then purified *via* flash chromatography (applied in CH₂Cl₂; eluted 2% to 5% to 10% MeOH) to afford the title compound as a colourless oil (3.93 g, 19.2 mmol, 96%) with NMR consistent with literature values.²⁷³ *R*_f = 0.83 (10% MeOH/CH₂Cl₂); IR (ν_{max}/cm⁻¹, thin film): 3353 (O-H stretch), 2976, 2931, 2871 (C-H and N-H stretches), 1687 (C=O stretch), 1520 (N-H bend), 1366 (C-H bend), 1169, 1123 (C-O stretches); ¹H NMR (500 MHz, CDCl₃): δ_H = 1.43 (s, 9H, 11-H), 2.16 (bs, 1H, 1-H), 3.32 (t, *J* = 5.1 Hz, 2H, 6-H), 3.53-3.57 (m, 4H, 3,5-H), 3.72-3.74 (m, 2H, 2-H), 4.98 (bs, 1H, 7-H); ¹³C NMR (125 MHz, CDCl₃): δ_C = 28.5 (C-11), 40.5 (C-6), 61.8 (C-2), 70.4 (C-5), 72.3 (C-3), 79.5 (C-10), 156.2 (C-8); LRMS m/z (Cl⁺): 206 [M+H]⁺, 150 [M-ⁱBu]⁺; HRMS m/z (Cl⁺): Found 206.1398 [M+H]⁺; C₉H₂₀NO₄ requires 206.1392.

2-(2-(tert-butyl carbamate)ethoxy)ethyl 4-sulfamoylphenylcarbamate (323)

359 (993 mg, 4.39 mmol) was dissolved in anhydrous toluene (92 mL). 315 (751 mg, 3.66 mmol) was added and the reaction was stirred under reflux for 16 h. The reaction was cooled to RT, solvent removed and purification *via* flash chromatography (pet. ether; 2:1 to 1:1 to 1:2 pet. ether/EtOAc) afforded the title compound as a white solid (1.13 g, 2.81 mmol, 77%). Mpt: 94-95 °C; *R*_f = 0.35 (1:3 pet. ether/EtOAc); IR (ν_{max}/cm⁻¹, thin film): 3368, 3332 (aromatic C-H stretches), 3201, 3101, 2976, 2919 (C-H, N-H stretches), 1703, 1676 (C=O stretches), 1522 (N-H bend), 1333 (S=O asymmetric stretch), 1243 (COOR stretch), 1156 (S=O symmetric stretch), 1073 (C-O stretch); ¹H NMR (600 MHz, CD₃OD): δ_H = 1.41 (s, 9H, 19-H), 3.22 (t, *J* = 5.7 Hz, 2H, 14-H), 3.53 (t, *J* = 5.7 Hz, 2H, 13-H), 3.71 (t, *J* = 4.7 Hz, 2H, 11-H), 4.29 (t, *J* = 4.7 Hz, 2H, 10-H), 7.60 (d, *J* = 8.8 Hz, 2H, 5-H), 7.81 (ap.d, *J* = 8.8 Hz, 2H, 4-H); ¹³C NMR (150 MHz, CD₃OD): δ_C = 28.8 (C-19), 41.3 (C-14), 65.4 (C-10), 70.2 (C-11), 71.0 (C-13), 80.2 (C-18), 119.0 (C-5), 128.3 (C-4), 138.7 (C-3), 144.1 (C-6), 155.4 (C-8), 158.2 (C-16); LRMS m/z (ES⁺): 426 [M+Na]⁺, 370 [M-ⁱBu+Na]⁺; HRMS m/z (ES⁺): Found 426.1306 [M+Na]⁺; C₁₆H₂₅N₃O₇NaS requires 426.1311; Anal. Calcd. for C₁₆H₂₅N₃O₇S: C, 47.63; H, 6.25; N, 10.42. Found C, 47.78; H, 6.46; N, 10.20%.
2-(2-Aminoethoxy)ethyl 4-sulfamoylphenylcarbamate (360)

![Chemical Structure](image)

323 (507 mg, 1.26 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (20 mL), TFA (20 mL) added and the reaction was stirred at RT for 18 h. The solvent was removed via co-evaporation with toluene and the crude material was purified by flash chromatography (applied in CH$_2$Cl$_2$; eluted 2% to 5% to 10% to 20% MeOH) to afford the title compound as a white solid (531 mg, 1.00 mmol, 79%). Mpt: 138-142 °C; R_f = 0.29 (20% MeOH/CH$_2$Cl$_2$); IR (v$_{max}$/cm$^{-1}$, thin film): 3311 (C-H stretch), 3194, 3083 (C-H and N-H stretches), 1678 (C=O stretch), 1542 (N-H bend), 1339 (S=O asymmetric stretch), 1160 (S=O symmetric stretch), 1123, 1060 (C-O stretch); 1H NMR (600 MHz, CD$_3$OD): δ_H = 2.95 (t, J = 5.2 Hz, 2H, 14-H), 3.54 (t, J = 5.2 Hz, 2H, 13-H), 3.75 (t, J = 4.6 Hz, 2H, 11-H), 4.33 (t, J = 4.6 Hz, 2H, 10-H), 7.61 (d, J = 8.8 Hz, 2H, 5-H), 7.78-7.82 (m, 2H, 4-H); 13C NMR (150 MHz, CD$_3$OD): δ_C = 41.4 (C-14), 65.3 (C-10), 70.4 (C-11), 70.8 (C-13), 115.3 (TFA), 117.2 (TFA), 119.0 (C-5), 119.2 (TFA), 121.1 (TFA), 128.3 (C-4), 138.5 (C-3), 144.1 (C-6), 155.5 (C-8), 163.1 (TFA); LRMS m/z (ES$^+$): 304 [M+H]$^+$; HRMS m/z (ES$^+$): Found 304.0953 [M+H]$^+$; C$_{11}$H$_{18}$N$_3$O$_5$S requires 304.0967.

2-(2-(Maleimido)ethoxy)ethyl-4-sulfamoylphenylcarbamate (322)

![Chemical Structure](image)

Method A:

To a suspension of 4-sulfamoylbenzoic acid (93.7 mg, 0.466 mmol) in anhydrous toluene (0.655 mL) was added Et$_3$N (76.0 µL, 0.545 mmol). Diphenyphosphoryl azide (117 µL, 0.545 mmol) in anhydrous toluene (0.545 mL) was added dropwise to the reaction mixture and stirred at RT for 2 h followed by heating at 90 °C for 90 min. **350** (103 mg, 0.559 mmol) in anhydrous DMF (280
µL) was then added and the reaction was stirred at 90 °C for 16 h. The mixture was cooled to RT and solvent removed in vacuo. The crude material was taken up in EtOAc (50 mL) and washed with NaHCO₃ (sat. aq. 30 mL), H₂O (3 x 30 mL) and brine (30 mL); dried (MgSO₄), filtered and concentrated in vacuo. LCMS showed no product mass and so no further work carried out.

Method B:

350 (105 mg, 0.568 mmol) was taken up in anhydrous toluene (15 mL), 315 (154 mg, 0.782 mmol) was added and the reaction was stirred under reflux for 20 h. Removal of the solvent in vacuo and subsequent TLC and NMR analysis revealed no product formation. No further work was carried out.

Method C:

360 (415 mg, 0.664 mmol) was dissolved in NaHCO₃ (sat. aq. 40 mL) and 352 (206 mg, 1.33 mmol) was added in one portion. The reaction was stirred at RT for 30 min followed by diluting with EtOAc (75 mL), neutralising via addition of HCl (1.0 M) and extracting the organics (3 x 50 mL). The combined organics were washed with brine (60 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (applied in CH₂Cl₂; eluted 2% to 5% MeOH/CH₂Cl₂) afforded the title compound as a white solid (244 mg, 0.637 mmol, 96%). Mpt: 118 °C; Rf = 0.31 (5% MeOH/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3348 (N-H stretch), 3233 (aromatic C-H stretches), 2958, 2871 (C-H stretches), 1706 (C=O stretch), 1596, 1538 (N-H bends), 1336 (S=O asymmetric stretch), 1157 (S-O symmetric stretch), 1072 (C-O stretch); ¹H NMR (600 MHz, CD₃OD): δH = 3.64-3.66 (m, 2H, 13-H), 3.68-3.71 (m, 4H, 11,14-H), 4.23-4.25 (m, 2H, 10-H), 6.75 (s, 2H, 17-H), 7.29 (d, J = 8.8 Hz, 2H, 5-H), 7.80-7.82 (m, 2H, 4-H); ¹³C NMR (150 MHz, CD₃OD): δC = 38.1 (C-14), 65.2 (C-10), 68.8 (C-13), 69.9 (C-11), 119.0 (C-5), 128.3 (C-4), 135.4 (C-17), 138.5 (C-3), 144.1 (C-6), 155.3 (C-8), 172.4 (C-16); LRMS m/z (ES⁻): 428 [M+Formic Acid]⁻, 382 [M-H]⁻; HRMS m/z (ES⁻): Found 382.0711 [M-H]⁻; C₁₅H₁₈N₃O₇S requires 382.0709.
2-(tert-butylcarbamate-ethoxy)ethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)-sulfamoyl)phenylcarbamate (361)

Method A:

All glassware was dried and purged with Ar prior to use. Pd$_2$(dba)$_3$ (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and NaO'Bu (24.1 mg, 0.250 mmol) were dissolved in anhydrous toluene (2 mL). 214 (50.0 mg, 0.179 mmol) and 323 (86.5 mg, 0.215 mmol) were added and the reaction was stirred under reflux, under Ar for 20 h. The reaction was cooled to RT and solvent removed, before the residue was taken up in CH$_2$Cl$_2$ (50 mL) and washed with H$_2$O (3 x 30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 3:1 to 2:1 to 1:1 to 1:3 to 1:5 pet. ether/EtOAc) afforded the title compound as a pale yellow solid (8.50 mg, 0.013 mmol, 7%).

Method B:

NaH was washed by stirring NaH (60% in Mineral Oil; 71.0 mg, 1.77 mmol) in anhydrous hexanes (25 mL) for 20 min, removing the solvent using a syringe and drying the contents under high vacuum. DMF (5 mL) was added followed by 323 (715 mg, 1.77 mmol) in DMF (8 mL) and the mixture was stirred at RT for 20 min. 227 (287 mg, 0.887 mmol) in DMF (17 mL) was added and the resulting dark brown solution was heated at 100 °C under Ar for 16 h. The solvent was then removed and the residue was diluted with EtOAc (100 mL) and washed with NH$_4$Cl (aq. Sat 50 mL) and H$_2$O (3 x 40 mL). The combined aqueous layers were then re-extracted with EtOAc (2x), followed by washing the combined organics with brine, drying (MgSO$_4$), filtering and concentrating in vacuo. Flash chromatography (applied in pet. ether; eluted 1:1 to 1:2 to 1:3
to 1:4 to 1:5 pet. ether/EtOAc) afforded the title compound as a light yellow solid (328 mg, 0.507 mmol, 57%). Mpt: >200 °C; \(R_f = 0.21 \) (9:1 EtOAc/pet. ether); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3230 (C-H stretch), 2972 (N-H stretch), 1697 (C=O stretch), 1584, 1530 (N-H bend), 1393 (S=O asymmetric stretch), 1221, 1114 (S=O symmetric stretch). 1064 (C-O stretch); \(^1\)H NMR (600 MHz, (CD\(_3\))\(_2\)SO): \(\delta_H = 1.34 \) (s, 9H, 38-H), 3.06 (q, \(J = 5.5 \) Hz, 2H, 33-H), 3.47 (t, \(J = 5.5 \) Hz, 2H, 32-H), 3.62 (t, \(J = 4.3 \) Hz, 2H, 30-H), 4.20 (t, \(J = 4.3 \) Hz, 2H, 29-H), 6.80 (t, \(J = 5.5 \) Hz, 1H, 34-H), 7.16 (bs, 1H, 6-H), 7.50-7.55 (m, 2H, 15,16-H), 7.65 (d, \(J = 8.8 \) Hz, 2H, 24-H), 7.86 (bd, \(J = 4.6 \) Hz, 1H, 5-H), 7.92 (d, \(J = 7.4 \) Hz, 3H, 14,23-H), 7.98 (d, \(J = 8.6 \) Hz, 1H, 12-H), 8.02-8.05 (m, 2H, 11,17-H), 8.52 (s, 1H, 19-H), 8.59 (s, 1H, 3-H), 10.22 (s, 1H, 26-H), 11.63 (bs, 1H, 7/20-H); \(^1\)C NMR (150 MHz, (CD\(_3\))\(_2\)SO): \(\delta_C = 28.3 \) (C-38), 40.0 (C-33), 63.9 (C-29), 68.2 (C-30), 69.1 (C-32), 77.7 (C-37), 110.9 (C-5), 115.3 (C-3), 116.8 (C-6), 117.6 (C-24), 123.8 (C-11), 124.2 (C-19), 126.3 (C-15), 126.6 (C-16), 127.4 (C-23), 127.7 (C-14), 128.3 (C-12), 128.4 (C-17), 130.0 (C-10), 132.8 (C-13), 133.2 (C-18), 135.6 (C-9), 135.8 (C-22), 142.9 (C-25), 145.2 (C-2), 153.3 (C-27), 155.6 (C-35) 145.5 (C-8); LRMS m/z (EI\(^+\)): 647 [M+H]\(^+\), 591 [M-^t^Bu\(^+\)]; (ES\(^-\)): 691 [M+Formic Acid]\(^+\), 645 [M-H\(^-\)]; HRMS m/z (ES\(^-\)): Found 645.2140 [M-H\(^-\)]; C\(_{32}\)H\(_{33}\)N\(_6\)O\(_7\)S requires 645.2131.

2-(2-Aminoethoxy)ethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)sulfamoyl)phenylcarbamate (362)

361 (318 mg, 0.492 mmol) was dissolved in anhydrous CH\(_2\)Cl\(_2\) (15 mL) and cooled on ice. TFA (15 mL) was added and the reaction was stirred at RT for 3 h. Removal of the solvent, via trituration with toluene, followed by flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 5% to 10%
to 20% MeOH/CH₂Cl₂ afforded the title compound as an off white solid (390 mg, 0.389 mmol, 79%). Mpt: >200 °C; Rᵣ = 0.26 (20% MeOH/CH₂Cl₂); IR (ν_max/cm⁻¹, thin film): 1726 (C=O stretch), 1675 (N-H bend), 1351 (S=O asymmetric stretch), 1200, 1120 (S=O symmetric stretch), 1071 (C-O stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δ_H = 2.99 (t, J = 5.3 Hz, 2H, 33-H), 3.62 (t, J = 5.3 Hz, 2H, 32-H), 3.69 (t, J = 4.5 Hz, 2H, 30-H), 4.24 (t, J = 4.5 Hz, 2H, 29-H), 7.14 (d, J = 5.0 Hz, 1H, 6-H), 7.49-7.54 (m, 2H, 15,16-H), 7.58 (d, J = 8.5 Hz, 2H, 24-H), 7.80 (d, J = 5.0 Hz, 1H, 5-H), 7.89-7.92 (m, 3H, 14,23-H), 7.97 (d, J = 8.6 Hz, 1H, 12-H), 8.01 (d, J = 7.9 Hz, 1H, 17-H), 8.05 (dd, J = 8.6, 1.4 Hz, 1H, 11-H), 8.49 (s, 1H, 3-H), 8.52 (s, 1H, 19-H), 10.09 (bs, 1H, 20-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δ_C = 38.6 (C-33), 63.6 (C-29), 66.7 (C-32), 68.5 (C-30), 110.7 (C-5) 116.3 (C-3), 117.4 (C-24), 118.3 (C-6), 123.9 (C-11), 124.0 (C-19) 126.1 (C-15), 126.5 (C-16) 127.7 (overlapping signals, C-14,23), 128.2 (C-17), 128.3 (C-12), 130.6 (C-10), 132.7 (C-13), 133.6 (C-18), 136.2 (C-9), 137.4 (C-22), 142.0 (C-25), 144.2 (C-2), 149.7 (C-8), 153.5 (C-27); LRMS m/z (ES⁺): 547 [M+H]⁺; HRMS m/z (ES⁺): Found 547.1757 [M+H]⁺; C₂₇H₂₇N₆O₅S requires 547.1764.

Attempted formation of 2-((maleimido)ethoxy)ethyl 4-((N-(2-(naphthalen-2-yl)imidazo-[1,2-a]pyrazin-8-yl)sulfamoyl)phenylcarbamate (297)

![Chemical Structure](image-url)

Method A:

All glassware was dried and purged with Ar prior to use. Pd₂(dba)₃ (1.64 mg, 1 mol%), DavePhos (2.11 mg, 3 mol%) and Cs₂CO₃ (81.6 mg, 0.250 mmol) were dissolved in anhydrous dioxane (2 mL). 214 (50.0 mg, 0.179 mmol) and 322 (82.3 mg, 0.215 mmol) were added and the
reaction was stirred under reflux, under Ar for 16 h. The reaction was cooled to RT and solvent removed. LCMS showed no product mass and so no further work was carried out.

Method B:

NaH was washed by stirring NaH (60% in Mineral Oil; 5.20 mg, 0.130 mmol) in anhydrous hexanes (5 mL) for 20 min, removing the solvent using a syringe and drying the contents under high vacuum. DMF (0.5 mL) was added followed by 322 (50.0 mg, 0.065 mmol) in DMF (0.5 mL) and the mixture was stirred at RT for 20 min. 227 (21.1 mg, 0.130 mmol) in DMF (1 mL) was added and the resulting solution was stirred at 100 °C under Ar for 16 h. The solvent was then removed and the residue was diluted with EtOAc (50 mL) and washed with NH₄Cl (sat. aq. 30 mL) and H₂O (3 x 30 mL). The combined aqueous layers were then re-extracted with EtOAc (2 x 50 mL), followed by washing the combined organics with brine (40 mL), drying (MgSO₄), filtering and concentrating in vacuo. LCMS showed no product mass and so no further work was carried out.

Method C:

362 (6.50 mg, 0.010 mmol) was dissolved in NaHCO₃ (sat. aq.; 1 mL) and 352 (3.10 mg, 0.020 mmol) was added in one portion. The reaction was stirred at RT for 2 h followed by diluting with H₂O (10 mL) and extracting with EtOAc(3 x 10 mL). The combined organics were washed with brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. LCMS showed signs of product, but the TLC reaction profile was extremely messy and so no further work was carried out. Crude LRMS m/z (ES⁺): 627 [M+H]⁺; Crude HRMS m/z (ES⁺): Found 627.1671; C₃₁H₂₇N₆O₇S requires 627.1662.

Method D:

362 (9.20 mg, 0.014 mmol) was dissolved in DMF (2 mL), Et₃N (3.88 µL, 0.028 mmol) and 352 (4.30 mg, 0.028 mmol) were added and the reaction was stirred at RT for 16 h. Removal of the solvent followed by LCMS indicated no reaction product evident and so no further work was carried out.
3-Maleimidopropionic acid (62.7 mg, 0.371 mmol) and HBTU (211 mg, 0.556 mmol) were dissolved in anhydrous DMF (15 mL) and the mixture was purged with Ar. DIPEA (197 µL, 1.11 mmol) was added and a colourless to orange colour change was observed after stirring at RT for 20 min. 362 (367 mg, 0.556 mmol) in anhydrous DMF (5 mL) was then added and the reaction was stirred at RT for 16 h. Removal of the solvent in vacuo was followed by diluting with EtOAc (50 mL) and washing with H₂O (4 x 30 mL) and brine (30 mL), drying (MgSO₄), filtering and concentrating in vacuo. Flash chromatography (applied in CH₂Cl₂; eluted 2% to 3% to 4% MeOH/CH₂Cl₂) afforded the title compound as an off white solid (146 mg, 0.210 mmol, 57%). Mpt: >200 °C; Rf = 0.43 (10% MeOH/CH₂Cl₂); IR (νmax/cm⁻¹, thin film): 3254 (aromatic C-H stretch), 2925 (C-H and N-H stretches), 1706 (C=O stretch), 1589, 1527 (N-H bends), 1405 (S=O asymmetric stretch), 1224, 1140 (C-O and S=O symmetric stretch); ¹H NMR (600 MHz, CD₃CN): δ = 2.38 (t, J = 7.1 Hz, 2H, 36-H), 3.27 (q, J = 5.6 Hz, 2H, 33-H), 3.48 (t, J = 5.6 Hz, 2H, 32-H), 3.64-3.67 (m, 4H, 20,37-H), 4.24-4.26 (m, 2H, 29-H), 6.58 (bs, 1H, 34-H), 6.72 (s, 2H, 40-H), 7.06 (bd, J = 5.4 Hz, 1H, 6-H), 7.51-7.56 (m, 2H, 15,16-H), 7.62-7.65 (m, 3H, 5,24-H), 7.91-7.93 (m, 3H, 14,23-H), 7.95-7.98 (m, 2H, 12,17-H), 8.03 (dd, J = 8.5, 1.6 Hz, 1H, 11-H), 8.20 (s, 1H, 3-H), 8.31 (bs, 1H, 20-H), 8.49 (s, 1H, 19-H); ¹³C NMR (150 MHz, CD₃CN): δ = 33.8 (C-37), 33.9 (C-36), 38.4 (C-33), 64.0 (C-29), 68.3 (C-30), 68.9 (C-32), 110.3 (C-5) 114.5 (C-3), 115.8 (C-6) 117.6 (C-24), 123.4 (C-11), 124.2 (C-19), 126.1 (C-15), 126.2 (C-16), 127.1 (C-23), 127.3 (C-14), 127.9 (C-17), 128.2 (C-12), 129.4 (C-10) 132.9 (C-13), 133.2 (C-18), 133.9 (C-40), 135.4 (C-9), 135.8 (C-22), 145.2 (C-2), 142.5 (C-25), 144.7 (C-8) 153.1 (C-
27), 169.8 (C-35), 170.5 (C-39); LRMS m/z (ES\(^+\)): 698 [M+H]\(^+\); Found 698.2010 [M+H]\(^+\); C\(_{34}\)H\(_{32}\)N\(_7\)O\(_8\)S requires 698.2033.

6.1.4.3.2 PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines

2-(2-Boc-aminoethoxy)ethyl-4-(N-(4-Boc-aminophenyl)sulfamoyl)phenylcarbamate (331)

359 (76.9 mg, 0.375 mmol) was dissolved in anhydrous toluene (10 mL) and 317 (156 mg, 0.375 mmol) was added and the reaction was stirred under reflux for 16 h. The solvent was removed in vacuo and purification via flash chromatography (applied in pet. ether; eluted 25% to 50% EtOAc) afforded the title compound as pale yellow solid (165 mg, 0.278 mmol, 74%). Mpt: Decomposed at 88 °C before melting; \(R_f\) = 0.50 (1:3 pet. ether/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3352 (N-H and aromatic C-H stretches), 2976 (C -H stretch), 1684 (C=O stretch), 1524 (N-H bend), 1392 (S=O asymmetric stretch), 1247 (C OOR stretch), 1154 (S=O symmetric stretch), 1069 (C-O stretch); \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta_H = 1.39\) (s, 9H, 28-H), 1.49 (s, 9H, 1-H), 3.21 (t, \(J = 5.6\) Hz, 2H, 23-H), 3.52 (t, \(J = 5.6\) Hz, 2H, 22-H), 3.70 (t, \(J = 4.7\) Hz, 2H, 20-H), 4.27 (t, \(J = 4.7\) Hz, 2H, 19-H), 6.94-6.97 (m, 2H, 8-H), 7.24 (d, \(J = 8.7\) Hz, 2H, 7-H), 7.53 (d, \(J = 8.8\) Hz, 2H, 14-H), 7.58-7.60 (m, 2H, 13-H); \(^{13}\)C NMR (150 MHz, CD\(_3\)OD): \(\delta_C = 28.7\) (C-28), 28.7 (C-1), 41.2 (C-23), 65.4 (C-19), 70.1 (C-20), 71.0 (C-21), 80.1 (C-27), 80.3 (C-2), 118.8 (C-14), 120.3 (C-7), 124.1 (C-8), 129.4 (C-13), 133.4 (C-9), 134.1 (C-12), 137.9 (C-6), 144.6 (C-15), 155.3 (C-4), 155.3 (C-17), 158.4 (C-25); LRMS m/z (ES\(^+\)): 617 [M+Na]\(^+\), 439 [M-(2xBoc)+Formic Acid]\(^+\); HRMS m/z (ES\(^+\)): Found 617.2267 [M+Na]\(^+\); C\(_{27}\)H\(_{38}\)N\(_4\)O\(_9\)NaS requires 617.2257.
2-(2-Aminoethoxy)ethyl-4-(N-(4-aminophenyl)sulfamoyl)phenylcarbamate (364)

331 (160 mg, 0.269 mmol) was dissolved in CH₂Cl₂ (10 mL), TFA (10 mL) was added and the reaction was stirred at RT for 18 h. The solvent was removed via trituration with toluene, and the residual was diluted with H₂O (50 mL) and extracted EtOAc (3 x 50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in CH₂Cl₂; eluted 5% to 10% to 20% MeOH) afforded the title compound as a sticky red solid (45.1 mg, 0.115 mmol, 43%). \(R_f = 0.06 \) (10% MeOH/CH₂Cl₂); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3249, 3104, 2924 (N-H and C-H stretches), 1704 (C=O stretch), 1594, 1512 (N-H bend), 1316 (S=O asymmetrical stretch), 1220 (COOR stretch), 1154 (S=O symmetrical stretch), 1069 (C-O stretch); \(^1\)H NMR (600 MHz, CD₃OD): \(\delta_H = 3.06 \) (t, \(J = 5.1 \) Hz, 2H, 19-H), 3.70 (t, \(J = 5.1 \) Hz, 2H, 18-H), 3.77 (t, \(J = 4.7 \) Hz, 2H, 16-H), 4.34 (t, \(J = 4.7 \) Hz, 2H, 15-H), 6.55-6.57 (m, 2H, 3-H), 6.75-6.78 (m, 2H, 4-H), 7.50-7.56 (m, 4H, 9,10-H); \(^13\)C NMR (150 MHz, CD₃OD): \(\delta_C = 40.9 \) (C-19), 65.0 (C-15), 68.7 (C-18), 70.5 (C-16), 116.7 (C-3), 118.7 (C-10), 126.4 (C-4), 128.8 (C-5), 129.5 (C-9), 134.4 (C-8), 144.4 (C-11), 147.0 (C-2); LRMS m/z (ES\(^{-}\)): no product mass present.

Attempted formation of 2-(2-(maleimido)ethyl-4-(N-(4-aminophenyl)sulfamoyl)phenylcarbamate (327)

Method A:

To a suspension of 310 (136 mg, 0.466 mmol) in anhydrous toluene (0.655 mL) was added Et₃N (76 µL, 0.545 mmol). Diphenyolphosphoryl azide (117 µL, 0.545 mmol) in anhydrous toluene
(0.545 mL) was added dropwise to the reaction mixture and stirred at RT for 2 h followed by heating at 90 °C for 90 min. 350 (103 mg, 0.559 mmol) in anhydrous DMF (280 µL) was then added and the reaction temperature was stirred at 90 °C for 16 h. The reaction was cooled to RT and solvent removed in vacuo. The crude material was taken up in EtOAc (75 mL) and washed with NaHCO3 (sat. aq. 50 mL), H2O (3 x 50 mL) and brine (50 mL); dried (MgSO4), filtered and concentrated in vacuo. LCMS showed no product mass and so no further work carried out.

Method B:

364 (32.0 mg, 0.081 mmol) was dissolved in NaHCO3 (sat. aq. 3 mL) and 352 (25.0 mg, 0.162 mmol) was added in one portion. The reaction was stirred at RT for 1 h, with TLC indicating no 352 remaining. LCMS showed no signs of product and so no further work was carried out.

2-(2-Boc-aminoethoxy)ethyl-4-(N-(4-Fmoc-aminophenyl)sulfamoyl)phenylcarbamate (333)

359 (44.4 mg, 0.216 mmol) was dissolved in anhydrous toluene (10 mL) and 318 (140 mg, 0.260 mmol) was added and the reaction was stirred under reflux for 2 h. The solvent was removed in vacuo and purification via flash chromatography (applied in pet. ether; eluted 2:1 to 1:1 to 1:2 pet. ether/EtOAc) afforded the title compound as a white solid (30.9 mg, 0.043 mmol, 20%). Mpt: 162-164 °C; Rf = 0.11 (1:1 pet. ether/EtOAc); IR (νmax/cm⁻¹, thin film): 3322 (N-H stretch), 3239 (aromatic C-H stretch), 2973 (C-H stretch), 1700 (C=O stretch), 1522 (N-H bend), 1240 (S=O asymmetric stretch), 1154 (S=O symmetric stretch), 1067, 1054 (C-O stretches); 1H NMR (600 MHz, (CD3)2SO): δH = 1.34 (s, 9H, 1-H), 3.06 (q, J = 5.9 Hz, 2H, 6-H), 3.38-3.40 (m, 2H, 7-H), 3.61 (t, J = 4.3 Hz, 2H, 9-H), 4.19 (t, J = 4.3 Hz, 2H, 10-H), 4.27 (t, J = 6.5 Hz, 1H, 28-H), 4.43 (bs, 2H, 27-H), 6.80 (t, J = 5.6 Hz, 1H, 5-H), 6.94 (bs, 2H, 21-H), 7.32-7.34 (m, 4H, 22,32-H), 7.41 (t, J = 7.5 Hz, 2H, 31-H), 7.56 (d, J = 8.9 Hz, 2H, 15-H), 7.60 (d, J = 8.9 Hz, 2H, 16-H),
7.72 (bd, J = 6.7 Hz, 2H, 33-H), 7.89 (d, J = 7.5 Hz, 2H, 30-H), 9.64 (bs, 1H, 24-H), 9.90 (s, 1H, 13-H), 10.20 (s, 1H, 19-H); \(^{13}\)C NMR (150 MHz, (CD\(_3\))\(_2\)SO): \(\delta_{C} = 28.2\) (C-1), 39.1 (C-6), 46.6 (C-28), 63.9 (C-10), 65.5 (C-27), 68.2 (C-9), 69.2 (C-7), 77.7 (C-2), 117.7 (C-15), 120.2 (C-30), 121.7 (C-21), 125.1 (C-33), 127.2 (C-22,32), 127.7 (C-31), 128.0 (C-16), 131.5 (overlapping signals, C-20,23), 132.8 (C-17), 140.8 (C-29), 142.2 (C-14), 143.8 (C-34), 153.3 (C-12), 153.4 (C-25), 155.6 (C-4); LRMS m/z (ES\(^{+}\)): 739 [M+Na]\(^{+}\), 180 [aromatic Fmoc Fragment]\(^{+}\); HRMS m/z (ES\(^{+}\)): Found 739.2414 [M+Na]\(^{+}\); \(C_{37}H_{40}N_{4}O_{9}NaS\) requires 739.2402.

2-(2-Boc-aminoethoxy)ethyl-4-(N-(4-aminophenyl)sulfamoyl)phenylcarbamate (365)

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{N} \\
\end{array}
\]

333 (30.9 mg, 0.043 mmol) was dissolved in piperidine/CH\(_2\)Cl\(_2\) (40% v/v; 10 mL) and the reaction was stirred at RT for 30 min. The solvent was removed and flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 3:1 CH\(_2\)Cl\(_2\)/EtOAc) afforded the title compound as a yellow oil (6.70 mg, 0.014 mmol, 33%). \(R_f = 0.09\) (3:1 EtOAc/pet. ether); IR (\(\nu_{\max }/\text{cm}^{-1}\), thin film): 3363 (N-H and aromatic C-H stretches), 2976 (C-H stretch), 1689 (C=O stretch), 1513 (N-H bend), 1314 (S=O asymmetric stretch), 1224 (COOR stretch), 1157 (S=O symmetric stretch), 1067 (C-O stretch); \(^1\)H NMR (600 MHz, CD\(_3\)OD): \(\delta_{H} = 1.41\) (s, 9H, 1-H), 3.21-3.23 (m, 2H, 6-H), 3.52 (t, \(J = 5.5\) Hz, 2H, 7-H), 3.70 (t, \(J = 4.6\) Hz, 2H, 9-H), 4.28 (t, \(J = 4.6\) Hz, 2H, 10-H), 6.55-6.57 (m, 2H, 22-H), 6.75-6.77 (m, 2H, 21-H), 7.50-7.55 (m, 4H, 15,16-H); \(^{13}\)C NMR (150 MHz, CD\(_3\)OD): \(\delta_{C} = 28.7\) (C-1), 41.2 (C-6), 62.2 (C-10), 65.4 (C-9), 70.1 (C-7), 80.1 (C-2), 116.7 (C-22), 118.7 (C-15), 126.4 (C-21), 128.8 (C-20), 129.5 (C-16), 134.2 (C-17), 144.5 (C-14), 147.0 (C-23), 155.3 (C-12), 158.5 (C-4); LRMS m/z (ES\(^{+}\)): 493 [M-H]\(^{-}\), 288 [M-(OCH\(_2\)CH\(_2\)OCH\(_2\)CH\(_2\)NHBoc)]\(^{-}\); HRMS m/z (ES\(^{+}\)): Found 493.1766 [M+H]\(^{+}\); \(C_{22}H_{29}N_{4}O_{7}S\) requires 493.1757;
2-(2-Boc-aminoethoxy)ethyl-4-(N-(4-aminophenyl(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl))sulfamoyl)phenylcarbamate (366)

All glassware was dried and purged with Ar prior to use. Pd$_2$(dba)$_3$ (0.105 mg, 1 mol%), DavePhos (0.135 mg, 3 mol%) and NaO$^+$Bu (1.54 mg, 0.016 mmol) were dissolved in anhydrous toluene (2 mL). 214 (3.20 mg, 0.011 mmol) and 365 (6.76 mg, 0.014 mmol) were added and the reaction was stirred under reflux, under Ar for 16 h. LCMS showed desired product, but no further work was carried out at this stage. Crude LRMS m/z (ES$^+$): 738 [M+H]$^+$, 682 [M$^-$Bu]$^+$, 638 [M-Boc]$^+$.

6.1.4.4 Synthesis of PEGylated Allyl and Alkyne Linked Imidazo[1,2-a]pyrazines

6.1.4.4.1 PEGylated-Benzesulfonamide-bound Imidazo[1,2-a]pyrazines

3,6,9,12,15-Pentaoxaoctadec-17-en-1-ol (374)

NaH (56.7 mg, (94.5 mg of 60% dispersion in mineral oil), 2.36 mmol) was washed by stirring in dry hexanes (10 mL) for 20 min. The hexanes were removed via syringe and the flask was dried under vacuum. After 15 min, anhydrous THF (2 mL) was added and the mixture was cooled to 0 °C. Penta(ethylene) glycol (1 mL, 4.73 mmol), dissolved in anhydrous THF (3 mL) was added dropwise to the solution, which was then allowed to stir for 15 min before allyl bromide (136 µL, 1.58 mmol) was added dropwise. The resulting solution was stirred at 0 °C for 90 min, before removal of the solvent in vacuo. Addition of CH$_2$Cl$_2$ (100 mL) was followed by washing with H$_2$O (50 mL) and brine (50 mL), drying (MgSO$_4$) and concentrating in vacuo to give a colourless
oil. Flash chromatography (applied in CH₂Cl₂; eluted 1:1 CH₂Cl₂/EtOAc to 45:50:5 CH₂Cl₂/EtOAc/MeOH) afforded the title compound as a light yellow oil (420 mg, 1.51 mmol, 96%) with NMR consistent with literature values.\(^{319}\) \(R_f = 0.12\) (1:5 CH₂Cl₂/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3448 (O-H stretch), 2868 (C-H stretch), 1094 (C-O stretch); \(^1\)H NMR (600 MHz, CDCl₃): \(\delta_H = 2.45\) (bs, 1H, 1-H), 3.59-3.61 (m, 4H, 2,15-H), 3.65-3.68 (m, 14H, 5,6,8,9,11,12,14-H), 3.71-3.73 (m, 2H, 3-H), 4.02 (d, \(J = 5.7\) Hz, 2H, 17-H), 5.17 (dd, \(J = 10.5, 1.3\) Hz, 1H, 19-H\(_b\)), 5.27 (dd, \(J = 17.2, 1.3\) Hz, 1H, 19-H\(_a\)), 5.88-5.93 (m, 1H, 18-H); \(^{13}\)C NMR (150 MHz, CDCl₃): \(\delta_C = 61.8\) (C-3), 69.5 (C-15), 70.4 (C-14), 70.4-70.7 (C-5-12), 72.4 (C-17), 72.7 (C-2), 117.3 (C-19), 134.8 (C-18); LRMS m/z (ES\(^+\)): 302.

2-(Prop-2-ynyloxy)ethanol (375)\(^{274}\)

Ethylene glycol (5.00 mL, 0.089 mol) was cooled on ice and NaH (60% in mineral oil; 0.894 g, 0.022 mol) was added slowly to form a viscous white paste. Propargyl bromide (80% solution in toluene; 2.49 mL, 0.022 mol) was added dropwise and the reaction mixture was stirred at 45 °C for 3h. The reaction was carefully quenched with H₂O (100 mL) and extracted with CHCl₃ (3 x 50 mL) and CH₂Cl₂ (5 x 50 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 10% to 50% EtOAc/pet. ether) afforded the title compound as a light yellow oil (1.03 g, 0.013 mmol, 47%) with NMR consistent with literature values.\(^{274}\) \(R_f = 0.39\) (1:1 pet. ether/EtOAc); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3390 (O-H stretch), 3286 (≡C-H stretch), 2936 (C-H stretch), 2116 (C≡C stretch), 1354, 1105, 1065, 1027 (C-O stretches); \(^1\)H NMR (600 MHz, CDCl₃): \(\delta_H = 2.06\) (bs, 1H, 1-H), 2.46 (\(J = 2.4\) Hz, 1H, 7-H), 2.65 (t, \(J = 4.5\) Hz, 2H, 3-H), 3.77 (t, \(J = 4.5\) Hz, 2H, 2-H), 4.20 (d, \(J = 2.3\) Hz, 2H, 5-H); \(^{13}\)C NMR (150 MHz, CDCl₃): \(\delta_C = 58.5\) (C-5), 61.8 (C-2), 71.3 (C-3), 74.9 (C-7), 79.6 (C-6); LRMS m/z (Cl\(^+\)): 101 [M+H]\(^+\); HRMS m/z (Cl\(^+\)): Found 101.0609 [M-H]; C₅H₉O₂ requires 101.0603.
2-(Allyloxy)ethyl 4-sulfamoylphenylcarbamate (324)

To a suspension of 4-sulfamoylbenzoic acid (2.01 g, 10.0 mmol) in anhydrous toluene (15 mL) was added Et₃N (1.63 mL, 11.7 mmol). Diphenylphosphoryl azide (2.52 mL, 11.7 mmol) in anhydrous toluene (10 mL) was added dropwise to the reaction mixture and stirred at RT for 30 min followed by heating at 90 °C for 30 min. 2-(allyloxy)ethanol (1.28 mL, 12.0 mmol) in anhydrous DMF (6 mL) was then added and the reaction was stirred at 90 °C for 16 h. The reaction was cooled to RT and solvent removed in vacuo. The crude material was taken up in EtOAc (100 mL) and washed with NaHCO₃ (sat. aq. 50 mL), H₂O (3 x 40 mL) and brine (40 mL); dried (MgSO₄), filtered and concentrated in vacuo to give an orange/brown sticky solid. Flash chromatography (applied in pet. ether; eluted 2:1 to 1:1 pet. ether/EtOAc) afforded the title compound as a white solid (689 mg, 2.30 mmol, 23%). Mpt: 128 °C; R₇ = 0.41 (2:1 EtOAc/pet. ether); IR (ν_max/cm⁻¹, thin film): 3356, 3298, 3193, 3110, 2908 (C-H and N-H stretches), 1734 (C=O stretch), 1596 (C=C stretch), 1529 (N-H bend), 1336 (S=O asymmetric stretch), 1314, 1216, 1151 (S=O symmetric stretch), 1099, 1055 (C-O stretches); ¹H NMR (600 MHz, (CD₃)₂SO): δ_H = 3.63-3.64 (m, 2H, 5-H), 3.99 (dt, J = 5.3, 1.6 Hz, 2H, 3-H), 4.24-4.25 (m, 2H, 6-H), 5.16 (dd, J = 10.4, 1.6 Hz, 1H, 1-Hₐ), 5.27 (dd, J = 17.3, 1.6 Hz, 1H, 1-Hₐ), 5.85-5.91 (m, 1H, 2-H), 7.23 (s, 2H, 15-H), 7.62 (d, J = 8.8 Hz, 2H, 11-H), 7.72-7.72 (m, 2H, 12-H), 10.17 (s, 1H, 9-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δ_C = 63.9 (C-6), 67.7 (C-5), 71.0 (C-3), 116.7 (C-1), 117.7 (C-11), 126.8 (C-12), 135.0 (C-2), 137.6 (C-13), 142.3 (C-10), 153.4 (C-8); LRMS m/z (EI⁺): 300 [M⁺], 243 [M-OCH₂CH=CH₂]; HRMS m/z (EI⁺): Found 300.0781 [M⁺]; C₁₂H₁₆N₂O₅S requires 300.0774; Anal. Calcd. for C₁₂H₁₆N₂O₅S: C, 47.99; H, 5.37; N, 9.33. Found C, 48.24; H, 5.27; N, 9.57%.
2-(Prop-2-ynyloxy)ethyl 4-sulfamoylphenylcarbamate (325)

375 (557 mg, 5.57 mmol) was dissolved in anhydrous toluene (140 mL). 315 (1.51 g, 6.68 mmol) and molecular sieves (4Å, 10 sieves) were added and the reaction was stirred under reflux for 16 h. The solvent was removed and the reaction purified via flash chromatography (applied in toluene; eluted 2:1 toluene/EtOAc) to afford the title compound as a white solid (663 mg, 2.22 mmol, 40%). Mpt: 100-102 °C; Rf = 0.17 (2:1 toluene/EtOAc); IR (νmax/cm⁻¹, thin film): 3350 (=C-H stretch), 3273 (aromatic C-H stretch), 2116 (C≡C stretch), 1704 (C=O stretch), 1595, 1533 (N-H bends), 1314 (S=O asymmetric stretch), 1234 (COOR stretch), 1152 (S=O symmetric stretch), 1067 (C-O stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δ_H = 3.48 (t, J = 2.3 Hz, 1H, 15-H), 3.69-3.70 (m, 2H, 11-H), 4.20 (d, J = 2.3 Hz, 2H, 13-H), 4.24-4.26 (m, 2H, 10-H), 7.23 (s, 2H, 1-H), 7.61 (d, J = 8.8 Hz, 2H, 5-H), 7.71-7.73 (m, 2H, 4-H), 10.18 (s, 1H, 7-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δ_C = 57.5 (C-13), 63.6 (C-10), 67.3 (C-11), 77.5 (C-15), 80.1 (C-14), 117.6 (C-5), 126.8 (C-4), 137.6 (C-3), 142.2 (C-6), 153.3 (C-8); LRMS m/z (EI⁺): 298 [M⁺], 243 [M-OCH₂C≡CH]⁺, 216 [M-CH₂CH₂OCH₂C≡CH]⁺, 183 [M-C(O)OCH₂CH₂OCH₂C≡CH]⁺; HRMS m/z (EI⁺): Found 298.0625 [M⁺]; C₁₂H₁₄N₂O₅S requires 298.0618; Anal. Calcd. for C₁₂H₁₄N₂O₅S: C, 48.31; H, 4.73; N, 9.39. Found C, 48.60; H, 4.66; N, 9.12%.

2-(Allyloxy)ethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)sulfamoyl)phenylcarbamate (298)
NaH was washed by stirring NaH (60% in Mineral Oil; 70.6 mg, 1.77 mmol) in anhydrous hexanes (50 mL) for 20 min, removing the solvent using a syringe and drying the contents under high vacuum. DMF (5 mL) was added followed by 324 (529 mg, 1.77 mmol) in DMF (7 mL) and the mixture was stirred at RT for 20 min. 227 (285 mg, 0.882 mmol) in DMF (13 mL) was added and the resulting dark brown solution was heated at 100 °C under Ar for 16 h. The mixture was then diluted with EtOAc (100 mL) and washed with NH₄Cl (sat. aq. 50 mL) and H₂O (5 x 40 mL). The combined aqueous layers were then re-extracted with EtOAc (2 x 40 mL), followed by washing the combined organics with brine (40 mL) drying (MgSO₄), filtering and concentrating in vacuo. Flash chromatography (applied in CH₂Cl₂; eluted 10% to 20% to 33% EtOAc/CH₂Cl₂) afforded the title compound as a light yellow solid (214 mg, 0.395 mmol, 45%). Mpt: >200 °C; Rf = 0.25 (1:1 CH₂Cl₂/EtOAc); IR (νmax/cm⁻¹, thin film): 3223 (aromatic C-H stretch), 1720 (C=O stretch), 1583 (N-H bend and C=C stretch), 1392 (S=O asymmetric stretch), 1112 (S=O symmetric stretch), 1065 (C-O stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 3.62 (dt, J = 4.6, 3.1 Hz, 2H, 30-H), 3.97 (d, J = 6.7 Hz, 2H, 32-H), 4.23 (ap.t, J = 4.4 Hz, 2H, 29-H), 5.14 (dd, J = 10.5, 1.6 Hz, 1H, 34-Hₐ), 5.25 (dd, J = 17.3, 1.6 Hz, 1H, 34-Hₖ), 5.84-5.91 (m, 1H, 33-H), 7.16 (d, J = 5.2 Hz, 1H, 6-H), 7.50-7.55 (m, 2H, 15,16-H), 7.65 (d, J = 8.7 Hz, 2H, 24-H), 7.86 (d, J = 5.2 Hz, 1H, 5-H), 7.92 (d, J = 8.5 Hz, 3H, 14,23-H), 7.98 (d, J = 8.5 Hz, 1H, 12-H), 8.03 (t, J = 8.9 Hz, 2H, 11,17-H), 8.52 (s, 1H, 19-H), 8.59 (s, 1H, 3-H), 10.21 (s, 1H, 26-H), 11.63 (bs, 1H, 7/20-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δC = 63.9 (C-29), 67.7 (C-30), 71.0 (C-32), 110.9 (C-5), 115.3 (C-3), 116.7 (C-34), 116.8 (C-6), 117.6 (C-24), 123.8 (C-11), 124.2 (C-19), 126.3 (C-15), 126.6 (C-16), 127.4 (C-23), 127.7 (C-14), 128.3 (C-17), 128.4 (C-12), 130.0 (C-10), 132.8 (C-13), 133.2 (C-18), 135.0 (C-33), 135.6 (C-9) 135.9 (C-22), 142.9 (C-25), 144.4 (C-8), 145.2 (C-2), 153.3 (C-27); LRMS m/z (ES⁺): 544 [M+H]⁺; HRMS m/z (ES⁺): Found 544.1631 [M+H]⁺; C₂₈H₃₆N₅O₅S requires 544.1655; Anal. Caled. for C₂₈H₂₅N₅O₅S: C, 61.87; H, 4.64; N, 12.88. Found C, 61.61; H, 4.32; N, 12.85%.
2-(Prop-2-ynyloxy)ethyl-4-(N-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-yl)sulfamoyl)phenylcarbamate (299)

NaH was washed by stirring NaH (60% in Mineral Oil; 88.7 mg, 2.22 mmol) in anhydrous hexanes (25 mL) for 20 min, removing the solvent using a syringe and drying the contents under high vacuum. DMF (6 mL) was added followed by 325 (660 mg, 2.22 mmol) in DMF (8 mL) and the mixture was stirred at RT for 20 min. 227 (358 mg, 1.11 mmol) in DMF (20 mL) was added and the resulting dark brown solution was heated at 100 °C under Ar for 18 h. The solvent was removed and the resulting residue was then taken up in EtOAc (100 mL) and washed with NH₄Cl (sat. aq. 50 mL) and H₂O (5 x 40 mL). The combined aqueous layers were then re-extracted with EtOAc (2 x 40 mL), followed by washing the combined organics with brine (40 mL), drying (MgSO₄), filtering and concentrating in vacuo. Flash chromatography (applied in pet. ether; eluted 1:1 to 1:2 to 1:4 to 1:9 pet. ether/EtOAc) afforded the title compound as a yellow/orange solid (380 mg, 0.703 mmol, 64%). Mpt: 184-186 °C; Rₓ = 0.32 (9:1 EtOAc/pet. ether); IR (νmax/cm⁻¹, thin film): 3227 (aromatic C-H and ≡C-H stretch), 2112 (C≡C stretch), 1719 (C=O stretch), 1582, 1532 (N-H bends), 1391 (S=O asymmetric stretch), 1222 (COOR stretch), 1141 (S=O symmetric stretch), 1112 (C-O stretch); ¹H NMR (600 MHz, (CD₃)₂SO): δH = 3.46 (t, J = 2.4 Hz, 1H, 34-H), 3.67-3.69 (m, 2H, 30-H), 4.18 (d, J = 2.4 Hz, 2H, 32-H), 4.23-4.25 (m, 2H, 29-H), 7.16 (t, J = 5.5 Hz, 1H, 6-H), 7.51-7.54 (m, 2H, 15,16-H), 7.65 (d, J = 8.9 Hz, 2H, 24-H), 7.86 (d, J = 5.6 Hz, 1H, 5-H), 7.92-7.93 (m, 3H, 14,23-H), 7.98 (d, J = 8.6 Hz, 1H, 12-H), 8.02-8.05 (m, 2H, 11,17-H), 8.52 (s, 1H, 19-H), 8.59 (s, 1H, 3-H), 10.22 (s, 1H, 26-H), 11.63 (bd, J = 4.7 Hz, 7/20-H); ¹³C NMR (150 MHz, (CD₃)₂SO): δC = 57.5 (C-32), 63.7 (C-29), 67.3 (C-30), 77.5 (C-34), 80.1 (C-33), 110.9 (C-5), 115.3 (C-3), 116.8 (C-6), 117.7 (C-24), 123.8 (C-11), 124.2 (C-19), 126.3 (C-15), 126.6 (C-16), 127.4 (C-23), 127.7 (C-14), 128.3 (C-17), 128.4 (C-12), 130.0 (C-10), 132.8 (C-13), 133.2 (C-18), 135.6 (C-9), 136.9 (C-22), 142.9
6.1.4.4.2 PEGylated-N-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-a]pyrazines

2-(Allyloxy)ethyl -4-(N-(4-Boc-aminophenyl)sulfamoyl)phenylcarbamate (332)

317 (66.5 mg, 0.159 mmol) was taken up in anhydrous toluene (5 mL) and 2-(allyloxy)ethanol (14.2 µL, 0.133 mmol) was added and the reaction was stirred under reflux for 16 h. The reaction was then cooled to RT and purified via flash chromatography (applied in pet. ether; eluted 2:1 to 1:1 pet. ether/EtOAc) to afford the title compound as an off white solid (40.0 mg, 0.080 mmol, 61%). Mpt: 139-141 °C; Rf = 0.37 (1:1 pet. ether; EtOAc); IR (νmax/cm⁻¹, thin film): 3325 (N-H and C-H stretches), 1704 (C=O stretch), 1595, 1537 (N-H bends and C=C stretch), 1315 (S=O asymmetric stretch), 1155 (S=O symmetric stretch), 1061 (C-O stretch); 1H NMR (600 MHz, CD3OD): δH = 1.48 (s, 9H, 1-H), 3.68 (dd, J = 4.7, 3.2 Hz, 2H, 20-H), 4.02 (dt, J = 5.5, 1.5 Hz, 2H, 22-H), 4.28 (dd, J = 5.9, 4.7 Hz, 2H, 19-H), 5.16 (dd, J = 10.4, 1.5 Hz, 1H, 24-Hb), 5.28 (dq, J = 17.3, 1.5 Hz, 1H, 24-Ha), 5.87-5.93 (m, 1H, 23-H), 6.95-6.97 (m, 2H, 8-H), 7.24 (d, J = 8.5 Hz, 2H, 7-H), 7.52 (d, J = 8.9 Hz, 2H, 14-H), 7.59 (d, J = 7.1 Hz, 2H, 13-H); 13C NMR (150 MHz, CD3OD): δC = 28.8 (C-1), 65.4 (C-19), 69.3 (C-20), 73.0 (C-22), 80.9 (C-2), 117.4 (C-24), 118.8 (C-14), 120.3 (C-7), 124.2 (C-8), 129.4 (C-13), 133.4 (C-9), 134.1 (C-12), 135.8 (C-23), 138.0 (C-6), 144.7 (C-15), 155.3 (overlapping signals, C-4,17); LRMS m/z (ES⁺): 530 [M+K]⁺, 514 [M+Na]⁺, 458 [M-Bu⁺Na]⁺; HRMS m/z (ES⁺): Found 514.1610 [M+Na]⁺; C23H29N3O7NaS requires 514.1624.
2-(Allyloxy)ethyl 4-(N-(4-aminophenyl)sulfamoyl)phenylcarbamate (328)

Method A:

To a suspension of **310** (1.18 g, 0.466 mmol) in anhydrous toluene (5.35 mL) was added Et\(_3\)N (661 µL, 4.75 mmol). Diphenyphosphoryl azide (1.03 mL, 0.545 mmol) in anhydrous toluene (4.75 mL) was added dropwise to the reaction mixture and stirred at RT for 2 h followed by heating at 90 °C for 90 min. 2-(allyloxy)ethanol (520 µL, 4.87 mmol) in anhydrous DMF (2 mL) was then added and the reaction temperature was stirred at 90 °C for 16 h. The reaction was cooled to RT and solvent removed *in vacuo*. The crude material was taken up in EtOAc (75 mL) and washed with NaHCO\(_3\) (sat. aq. 40 mL), H\(_2\)O (3 x 40 mL) and brine (40 mL); dried (MgSO\(_4\)), filtered and concentrated *in vacuo*. LCMS showed no product mass and so no further work carried out.

Method B:

332 (40.0 mg, 0.081 mmol) was dissolved in CH\(_2\)Cl\(_2\) (3 mL), TFA (3 mL) was added and the reaction was stirred at RT for 1 h. The mixture was diluted with CH\(_2\)Cl\(_2\) (20 mL) and was carefully washed with NaHCO\(_3\) (sat. aq. 2 x 15 mL) and brine (15 mL), dried (MgSO\(_4\)), filtered and concentrated *in vacuo*. The resulting crude material was purified via flash chromatography (applied in CH\(_2\)Cl\(_2\); eluted 1% to 2% MeOH) to afford the title compound as a white solid (28.0 mg, 0.072 mmol, 89%). Mpt: 195 °C; \(R_f = 0.64\) (0.29 for TFA Salt) (10% MeOH/CH\(_2\)Cl\(_2\)); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3401, 3334 (N-H stretches), 3200 (aromatic C-H stretch), 2849, 2791 (C-H stretches), 1704 (C=O stretch), 1595, 1509 (N-H bends), 1316 (S=O asymmetric stretch), 1249 (COOR stretch), 1160 (S=O symmetric stretch), 1059 (C-O stretch); \(^1\text{H NMR} (600 MHz, (CD\(_3\))\text{SO}): \delta = 3.61-3.63 \text{ (m, 2H, 16-H)}, 3.98 \text{ (dt, } J = 5.3, 1.4 \text{ Hz, 2H, 18-H)}, 4.23 \text{ (t, } J = 4.5 \text{ Hz, 2H, 15-H)}, 4.95 \text{ (s, 2H, 1-H)}, 5.15 \text{ (dd, } J = 10.4, 1.8 \text{ Hz, 1H, 20-H\text{b}}), 5.27 \text{ (dq, } J = 17.3, 1.8 \text{ Hz, 1H, 20-H\text{a}}), 5.85-5.91 \text{ (m 1H, 19-H)}, 6.36-6.38 \text{ (m, 2H, 3-H)}, 6.64 \text{ (d, } J = 8.6 \text{ Hz, 2H, 4-H)}, 7.51-7.55 \text{ (m, 4H, 9,10-H)}, 9.32 \text{ (s, 1H, 6-H)}, 10.17 \text{ (s, 1H, 12-H)}; \(^{13}\text{C NMR} (150 MHz,
(CD$_3$)$_2$SO): $\delta_C = 63.9$ (C-15), 67.7 (C-16), 71.0 (C-18), 114.0 (C-3), 116.7 (C-20), 117.4 (C-10), 124.7 (C-4), 128.0 (C-9), 125.5 (C-5), 132.8 (C-8), 135.0 (C-19), 142.8 (C-11), 146.5 (C-2), 153.3 (C-13); LRMS m/z (ES$^+$): 414 [M+Na]$^+$; HRMS m/z (ES$^+$): Found 414.1082 [M+Na]$^+$; C$_{18}$H$_{21}$N$_3$O$_5$NaS requires 414.1100; Anal. Calcd. for C$_{18}$H$_{21}$N$_3$O$_5$S: C, 55.23; H, 5.41; N, 10.73. Found C, 54.92; H, 5.28; N, 10.50%.

Attempted formation of 2-(allyloxy)ethyl 4-((N-(4-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)phenyl)sulfamoyl)phenyl)carbamate (303)

![Chemical Structure](image)

328 (25.0 mg, 0.064 mmol) and NaH (5.10 mg, 0.128 mmol) were dissolved in anhydrous DMF (1.5 mL). This yellow solution was stirred at RT for 20 min before 227 (10.3 mg, 0.032 mmol) in DMF (0.5 mL) was added. The resulting red solution was stirred at 100 °C for 16 h. After cooling to RT, the mixture was diluted with EtOAc (40 mL) and washed with NH$_4$Cl (sat. aq. 20 mL), H$_2$O (5 x 20 mL) and brine (20 mL), dried (MgSO$_4$), filtered and concentrated *in vacuo*. LCMS on the crude material revealed no product mass and so no further work was carried out.
6.1.4.5 Alternative Synthesis of PEGylated Imidazo[1,2-\(a\)]pyrazines

6.1.4.5.1 PEGylated-\(N\)-(4-aminophenyl)benzenesulfonamide-bound Imidazo[1,2-\(a\)]pyrazines

4-(\(N\)-(4-(2-(Naphthalen-2-yl)imidazo[1,2-\(a\)]pyrazin-8-ylamino)phenyl)sulfamoyl)benzoic acid (376)

233 (95.0 mg, 0.271 mmol) was taken up in acetone (10 mL) and 4-(chlorosulfonyl)benzoic acid (59.7 mg, 0.271 mmol) was added and the mixture was stirred at RT for 16 h. The solvent was removed and the crude material was purified via flash chromatography (applied in toluene; eluted 2:1 to 1:1 to 1:4 to 1:9 toluene/EtOAc to 1:1:8 toluene/MeOH/EtOAc) to afford the title compound as a green solid (38.9 mg, 0.073 mmol, 27%). Mpt: Decomposed before melting; \(R_f = 0.46\) (20% MeOH/CH\(_2\)Cl\(_2\)); IR (\(\nu_{\text{max}}/\text{cm}^{-1}\), thin film): 3363 (O-H and aromatic C-H stretches), 1537 (C=O stretch and N-H bend), 1508 (COO\(^-\) stretch), 1470, 1340 (S=O asymmetric stretch), 1161 (S=O symmetric stretch); \(^1\)H NMR (600 MHz, (CD\(_3\))\(_2\)SO): \(\delta_H = 7.04\) (d, \(J = 8.9\) Hz, 2H, 23-H), 7.40 (d, \(J = 4.6\) Hz, 1H, 6-H), 7.51-7.57 (m, 2H, 15,16-H), 7.85 (d, \(J = 8.5\) Hz, 2H, 28-H), 7.93-7.95 (m, 2H, 14,22-H), 7.97 (d, \(J = 8.0\) Hz, 1H, 17-H), 8.00 (d, \(J = 4.6\) Hz, 1H, 5-H), 8.02 (d, \(J = 8.5\) Hz, 1H, 12-H), 8.08 (d, \(J = 8.5\) Hz, 2H, 29-H), 8.17 (dd, \(J = 8.5, 1.6\) Hz, 1H, 11-H), 8.57 (s, 1H, 3-H), 8.60 (s, 1H, 19-H), 9.45 (s, 1H, 20-H), 10.23 (s, 1H, 25-H), 13.51 (bs, 1H, 32-H); \(^1^3\)C NMR (150 MHz, (CD\(_3\))\(_2\)SO): \(\delta_C = 112.5\) (C-3,5), 120.8 (C-22), 122.0 (C-23), 124.2 (C-19), 124.2 (C-11), 126.2 (C-15), 126.7 (C-16), 127.0 (C-28), 127.4 (C-6), 127.8 (C-14), 128.0 (C-17), 128.3 (C-12), 130.1 (C-29), 130.8 (C-10), 131.1 (C-24), 132.7 (C-13), 133.0 (C-9), 133.2 (C-18), 134.5 (C-30), 137.3 (C-21) 143.2 (C-27), 143.5 (C-2), 145.7 (C-8), 166.2 (C-31); LRMS m/z (ES\(^+\)): 536 [M+H]\(^+\); HRMS m/z (ES\(^+\)): Found 536.1373 [M+H]\(^+\); C\(_{29}\)H\(_{22}\)N\(_5\)O\(_4\)S requires 536.1393
Attempted formation of 4-(N-(4-(2-(naphthalen-2-yl)imidazo[1,2-a]pyrazin-8-ylamino)-phenyl)sulfamoyl)benzoyl azide (377)

376 (35.0 mg, 0.065 mmol), PPh₃ (34.3 mg, 0.131 mmol) and NaN₃ (5.10 mg, 0.078 mmol) were suspended in anhydrous acetone (2 mL). Trichloroacetonitrile (13.1 µL, 0.131 mmol) was added dropwise and the reaction was stirred at RT for 18 h. Removal of the reaction solvent in vacuo was followed by taking up the residual in CH₂Cl₂ (40 mL) and washing with H₂O (30 mL) and brine (30 mL), drying (MgSO₄), filtering and concentrating. Flash chromatography (applied in CH₂Cl₂; eluted 20% to 50% EtOAc) gave no desired product and so no further work was carried out.

6.1.5 Synthesis of S-Allyl Cysteine

Fmoc-Cys(Trt)-O'Bu (379)

Method A.²⁷⁵

Fmoc-Cys(Trt)-OH (2.00 g, 3.41 mmol) was suspended in anhydrous CH₂Cl₂ (4 mL). Tert-Butyl-2,2,2-trichloro acetimidate (TBTA) (1.36 mL, 6.83 mmol), dissolved in anhydrous cyclohexane (8 mL) was added. BF₃.Et₂O (80 µL) was added and the reaction was stirred at RT, under Ar for 4 hours. The resulting yellow solution was neutralised via the addition of Et₃N, upon which the appearance changed to milky white. Concentration in vacuo was followed
directly by flash chromatography (pet. ether; 0% to 10% EtOAc) which afforded the title compound as a sticky colourless solid (428 mg, 0.667 mmol, 20%) with NMR consistent with literature values.275 \(R_f = 0.76 \) (2:1 pet. ether/EtOAc); [\(\alpha \)]\textsubscript{D}20 +15.7 (c 0.10, MeOH); IR (\(\nu_{\text{max}}/\text{cm}^{-1} \), thin film): 3332 (N-H stretch), 3062, 2978 (C-H stretches), 1711 (C=O stretch), 1493 (N-H bend), 1447; \(^1\)H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta_H = 1.44 \) (s, 9H, \textit{1-H}), 2.53-2.64 (m, 2H, \textit{6-H}), 4.22-4.26 (m, 1H, \textit{11-H}), 4.27-4.30 (m, 1H, \textit{5-H}), 4.35 (d, \(J = 7.4 \) Hz, 2H, \textit{10-H}), 5.33 (d, \(J = 8.3 \) Hz, 1H, \textit{7-H}), 7.20-7.30 (m, 11H, \textit{Trt-H/Fmoc Ar-H}), 7.40-7.42 (m, 8H, \textit{Trt-H/Fmoc Ar-H}), 7.61 (d, \(J = 7.5 \) Hz, 2H, \textit{13-H}), 7.76 (d, \(J = 7.5 \) Hz, 2H, \textit{14-H}); \(^{13}\)C NMR (125 MHz, CDCl\textsubscript{3}): \(\delta_C = 28.0 \) (C-1), 47.2, 120.0, 125.3, 126.9, 127.2, 127.4, 127.8, 128.0, 128.1, 129.6, 141.4, 143.9, 144.4; HRMS m/z (ES+): Found 664.2469 [M+Na]+; C\textsubscript{41}H\textsubscript{39}NO\textsubscript{4}NaS requires 664.2498;

\textbf{Method B:}

Fmoc-Cys(Trt)-OH (2.00 g, 3.41 mmol) was dissolved in 1BuOH (40 mL). SiCl\textsubscript{4} (344 µL, 3.00 mmol) was added and the reaction was stirred under reflux for 48 h. Concentration in \textit{vacuo} was followed directly by flash chromatography (applied in pet. ether; eluted 0% to 5% to 10% to 20% EtOAc) which afforded the title compound as a sticky colourless solid (49.6 mg, 0.077 mmol, 2%).

\textbf{(Fmoc-Cys-O'Bu)\textsubscript{2} (381)}278

![Diagram](image)

\textit{Tert}-butyl 3,3'-disulfanediylbis(2-aminopropanoate) (2.99 g, 8.49 mmol) and Fmoc-Cl (4.39 g, 17.0 mmol) were dissolved in anhydrous THF (100 mL) and the mixture was cooled on ice. \textit{N}-methylmorpholine (1.87 mL, 17.0 mmol) was then added dropwise and the reaction was stirred
on ice for 3 h. The mixture was then diluted with EtOAc (100 mL), washed with KHSO₄ (5% aq w/v, 4 x 50 mL), H₂O (50 mL) and brine (50 mL); dried (MgSO₄), filtered and concentrated in vacuo. Flash chromatography (applied in hexane; eluted 30:1 to 15:1 to 2:1 to 1:1 hexane/Et₂O) afforded the title compound as a white solid (2.95 g, 3.70 mmol, 44%) with NMR consistent with literature values.²⁷⁸ Mpt: 150-155 °C [Lit.²⁷⁸ 146-148 °C]; Rᵣ = 0.24 (5:1 pet. ether/EtOAc); [α]ᵣ²⁰ -34.0 (c 0.10, MeOH); IR (νₘₐₓ/cm⁻¹, thin film): 3327 (N-H stretch), 2977 (C-H stretch), 1709 (C=O stretch), 1149 (COOR stretch); ¹H NMR (600 MHz, CDCl₃): δ_H = 1.48 (s, 18H, 1-H), 3.16-3.26 (m, 4H, 6-H), 4.06-4.23 (m, 2H, 11-H), 4.33-4.37 (m, 4H, 10-H), 4.56-4.59 (m, 2H, 5-H), 5.74-5.76 (m, 2H, 7-H), 7.27-7.34 (m, 4H, 12-H), 7.36-42 (m, 4H, 15-H), 7.57-7.63 (m, 4H, 13-H), 7.73-7.79 (m, 4H, 16-H); ¹³C NMR (150 MHz, CDCl₃): δ_C = 28.1 (C-1), 42.0 (C-6), 47.2 (C-11), 54.2 (C-5), 67.3 (C-10), 83.3 (C-2), 120.1 (C-16), 125.3 (C-13), 127.2 (C-14), 127.8 (C-15), 141.4 (C-17), 143.9 (C-12), 155.8 (C-8), 169.4 (C-4); LRMS m/z (ES⁺): 819 [M+Na]⁺; HRMS m/z (ES⁺): Found 819.2730 [M+Na]⁺; C₄₄H₄₈N₂O₈NaS₂ requires 819.2750.

(Boc-Cys-O’Bu)₂ (382)

Tert-butyl 3,3’-disulfanediylbis(2-aminopropanoate) (2.30 g, 7.66 mmol) was dissolved in anhydrous CH₂Cl₂ (100 mL) and stirred under Ar. Et₃N (2.46 mL, 17.6 mmol) was added and mixture was stirred for 10 min before the portionwise addition of Boc₂O (3.68 g, 16.9 mmol). The reaction was stirred at RT for 30 h before washing with NaHCO₃ (sat. aq. 3 x 60 mL) and brine (60 mL), drying (MgSO₄), filtering and removal of solvent in vacuo. Flash chromatography (applied in pet. ether; eluted 30:1 to 20:1 to 9:1 pet. ether/EtOAc) afforded the title compound as a pale yellow oil (2.03 g, 3.68 mmol, 48%) with NMR consistent with literature values.²⁷⁹ Rᵣ = 0.36 (9:1 pet. ether/EtOAc); [α]ᵣ²⁰ -40.0 (c 0.07, MeOH); IR (νₘₐₓ/cm⁻¹, thin film): 3362 (N-H stretch), 2978, 2933 (C-H stretches), 1709 (C=O stretch), 1366, 1148 (COOR stretch); ¹H NMR (600 MHz, CDCl₃): δ_H = 1.44 (s, 18-H, 1-H), 1.47 (s, 18-H, 11-H), 3.11-3.41 (m, 4H, 7-H), 4.44-
4.52 (m, 2H, 6-H), 5.35 (bd, J = 6.2 Hz, 2H, 5-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_{C} = 28.1$ (C-11), 28.4 (C-1), 42.2 (C-6), 53.8 (C-5), 80.1 (C-2), 82.8 (C-10), 155.2 (C-4), 169.8 (C-8); LRMS m/z (ES$^+$): 575 [M+Na]$^+$; HRMS m/z (ES$^+$): Found 575.2420 [M+Na]$^+$; C$_{24}$H$_{44}$N$_2$O$_8$NaS$_2$ requires 575.2437.

Fmoc-(Cys)-O'Bu (383)

Method A.277

379 (312 mg, 0.486 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (2 mL). TFA (0.2 mL) added and a colour change was observed: colourless to yellow to orange to brown. TES (0.1 mL) was added and the colour change was from brown to yellow to colourless. The mixture was stirred at RT for 30 min, before evaporation (using MeOH to azeotrope TFA, care must be taken to keep dilute to avoid deprotection of tert-butyl protecting group). Flash chromatography (applied in pet. ether; eluted 5% to 10% to 20% EtOAc) afforded the title compound as a colourless oil (63.7 mg, 0.159 mmol, 33%).

Method B.278

381 (2.80 g, 3.51 mmol), was dissolved in anhydrous THF (20 mL). Tributylphosphine (0.876 mL, 3.51 mmol) was added followed by H$_2$O (0.320 mL) after 2 min. The reaction was stirred at RT for 24 h before the solvent was removed in vacuo, taken up in EtOAc (200 mL) and washed with citric acid (5% aq w/v, 150 mL) and brine (100 mL). Drying (MgSO$_4$), filtering and removal of solvent gave crude light yellow oil. Flash chromatography (applied in pet. ether; eluted 20:1 to 9:1 to 5:1 pet. ether/EtOAc) afforded the title compound as a viscous colourless oil (2.33 g, 5.83 mmol, 83%) with NMR values consistent with literature.278 $R_f = 0.52$ (5:1 pet.
ether/EtOAc); $[\alpha]_D^{20}$ -19.9 (c 0.06, MeOH); IR (ν_{max}/cm$^{-1}$, thin film): 3326 (N-H stretch), 2978 (C-H stretch), 2575 (S-H stretch), 1717 (C=O stretch), 1510 (N-H bend), 1152 (COOR stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 1.34$ (t, $J = 8.9$ Hz, 1H, 7-H), 1.50 (s, 9H, 1-H), 2.97-3.02 (m, 2H, 6-H), 4.23 (t $J = 7.0$ Hz, 1H, 12-H), 4.38-4.44 (m, 2H, 11-H), 4.53-4.56 (m, 1H, 5-H), 5.69 (d, $J = 7.1$ Hz, 1H, 8-H), 7.32-7.34 (m, 2H, 15-H), 7.41 (t, $J = 7.5$ Hz, 2H, 16-H), 7.61 (d, $J = 7.5$ Hz, 2H, 14-H), 7.77 (d, $J = 7.5$ Hz, 2H, 17-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 27.5$ (C-6), 28.1 (C-1), 47.3 (C-12), 55.5 (C-5), 67.2 (C-11), 83.2 (C-2), 120.1 (C-17), 125.2 (C-14), 127.2 (C-15), 127.9 (C-16), 141.4 (C-13), 143.8 (C-18), 155.7 (C-9), 169.1 (C-4); LRMS m/z (ES$^+$): 422 [M+Na]$^+$, 366 [M-SH]$^+$, 292 [M-SH-O$^+$Bu]$^+$; HRMS m/z (ES$^+$): Found 422.1392 [M+Na]$^+$; C$_{22}$H$_{25}$NO$_4$NaS requires 422.1402.

Boc-Cys-O$^+$Bu (384)

382 (2.03 g, 3.70 mmol) was dissolved in EtOH (100 mL). The pH of the solution was adjusted to 8 via the addition of NH$_4$OH and was saturated with Ar. Dithiothreitol, DTT (1.19 mL, 7.73 mmol) was added and the mixture was stirred at RT for 4 h. The pH of the resulting yellow solution was adjusted to 1 via the addition of conc. HCl and the solvent was removed in vacuo. The white solid was taken up in Et$_2$O (200 mL) and washed with 0.25 M HCl (2 x 75 mL) and brine (75 mL); dried (MgSO$_4$), filtered and concentrated in vacuo. Flash chromatography (applied in pet. ether; eluted 5:1 pet. ether/EtOAc) afforded the title compound as colourless oil (1.68 g, 6.05 mmol, 82%) with NMR consistent with literature values.279 $R_f = 0.57$ (5:1 pet. ether/EtOAc); $[\alpha]_D^{20}$ +15.7 (c 0.08, MeOH); IR (ν_{max}/cm$^{-1}$, thin film): 3355 (N-H stretch), 2978, 2933 (C-H stretches), 2571 (S-H stretch), 1711 (C=O stretch), 1495 (N-H bend), 1366. 1148 (COOR stretch); 1H NMR (600 MHz, CDCl$_3$): $\delta_H = 1.36$ (t, $J = 8.8$ Hz, 1H, 7-H), 1.45 (s, 9H, 12-H), 1.48 (s, 9H, 1-H), 2.95 (dd, $J = 8.8$, 3.8 Hz, 2H, 6-H), 4.47 (t, $J = 3.8$ Hz, 1H, 5-H), 5.40 (bd, $J = 6.4$ Hz, 1H, 8-H); 13C NMR (150 MHz, CDCl$_3$): $\delta_C = 27.7$ (C-6), 28.1 (C-1), 28.4 (C-12), 55.1 (C-5), 80.1 (C-11), 82.9 (C-2), 155.3 (C-9), 169.4 (C-4); LRMS m/z (ES$^+$): 276 [M-H], 255; HRMS m/z (ES$^+$): Found 276.1256 [M-H]; C$_{12}$H$_{22}$NO$_4$NaS requires 276.1270.
Fmoc-Cys(allyl)-O'Bu (385)

383 (1.80 g, 4.51 mmol) dissolved in anhydrous DMF (10 mL). K₂CO₃ (1.56 g, 11.3 mmol) added and the mixture was cooled on ice. Allyl bromide (1.95 mL, 22.6 mmol) was added and the reaction was stirred at RT for 16 h. The solvent was removed in vacuo, the resulting oil taken up in Et₂O (100 ml) and washed H₂O (3 x 60 mL) and brine (60 mL). The organic layer was then dried (MgSO₄) filtered and concentrated to give a crude yellow oil. Flash chromatography (applied in pet. ether; eluted 0% to 10 % to 25 % EtOAc) afforded the title compound as a pale yellow oil (1.63 g, 3.70 mmol, 82%). Rf = 0.45 (2:1 pet. ether/EtOAc); [α]D¹⁰ +5.3 (c 0.08, MeOH); IR (νmax/cm⁻¹, thin film): 3332, 3066, 2977 (C-H and N-H stretches), 1721 (C=O stretch), 1506 (N-H bend and C=C stretch), 1153 (COOR stretch); ¹H NMR (600 MHz, CDCl₃): δ = 1.49 (s, 9H, 1-H), 2.86 (dd, J = 13.9, 5.6 Hz, 1H, 6-H), 2.96 (dd, J = 13.9, 4.6 Hz, 1H, 6-H), 3.15 (d, J = 7.0, 2H, 8-H), 4.24 (t, J = 7.1 Hz, 1H, 15-H), 4.39 (d, J = 7.2 Hz, 2H, 14-H), 4.47-4.49 (m, 1H, 5-H), 5.09-5.12 (m, 2H, 10-H), 5.58 (d, J = 7.7 Hz, 1H, 11-H), 5.72-5.76 (m, 1H, 9-H), 7.32 (t, J = 7.4 Hz, 2H, 18-H), 7.40 (t, J = 7.4 Hz, 2H, 19-H), 7.61 (dd, J = 7.4, 3.1 Hz, 2H, 17-H), 7.77 (d, J = 7.4 Hz, 2H, 20-H); ¹³C NMR (150 MHz, CDCl₃): δC = 28.1 (C-1), 33.3 (C-6), 35.5 (C-8), 47.2 (C-15), 54.2 (C-5), 67.2 (C-14), 82.9 (C-2), 117.9 (C-10), 120.1 (C-20), 125.3 (C-17), 127.2 (C-18), 127.8 (C-19), 133.9 (C-9), 141.4 (C-21), 143.9 (C-16), 155.8 (C-12), 169.9 (C-4); LRMS m/z (ES⁺): 462 [M+H]⁺, 478 [M+K]⁺; HRMS m/z (ES⁺): Found 462.1698 [M+Na]⁺; C₂₅H₂₉NO₄NaS requires 462.1715.
Boc-Cys-(allyl)-O'Bu (386)

![Chemical Structure](image)

384 (1.67 g, 6.03 mmol) was dissolved in anhydrous DMF (10 mL). K₂CO₃ (2.08 g, 15.1 mmol) was added to the solution and cooled on ice. Allyl bromide (3.20 mL, 30.1 mmol) was added and the reaction was stirred at RT for 16 h. Diluting with Et₂O (100 mL) was followed by washing with H₂O (4 x 60 mL) and brine (60 mL). Drying (MgSO₄), filtering and concentrating *in vacuo* afforded the title compound as a light yellow oil (1.817 g, 5.73 mmol, 95%). No further purification was required. *Rf* = 0.66 (2:1 pet. ether/EtOAc); [α]D²⁰ -18.4 (c 0.13, MeOH); IR (νmax/cm⁻¹, thin film): 3367 (C-H stretch), 2978, 2932 (N-H stretch), 1711 (C=O stretch), 1496 (C=C stretch), 1366, 1149; ¹H NMR (600 MHz, CDCl₃): δH = 1.45 (s, 9H, 15-H), 1.47 (s, 9H, 1-H), 2.81 (dd, J = 13.8, 5.5 Hz, 1H, 6-H), 2.91 (dd, J = 13.8, 4.6 Hz, 1H, 6-H), 3.13-3.17 (m, 2H, 8-H), 4.38-4.41 (m, 1H, 5-H), 5.11-5.14 (m, 2H, 10-H), 5.29 (bd, J = 7.5 Hz, 1H, 11-H), 6.73-5.78 (m, 1H, 9-H); ¹³C NMR (150 MHz, CDCl₃): δC = 28.1 (C-1), 28.4 (C-15), 33.2 (C-6), 35.4 (C-8), 53.9 (C-5), 80.0 (C-14), 82.6 (C-2), 117.9 (C-10), 133.9 (C-9), 155.3 (C-12), 170.2 (C-4); LRMS m/z (ES⁺): 340 [M+Na]⁺, 326, 269, 242; HRMS m/z (ES⁺): Found 340.1557 [M+Na]⁺; C₁₅H₂₇NO₄NaS requires 340.1559.

H-Cys(allyl)-OH.TFA (387)

![Chemical Structure](image)

386 (1.50 g, 4.76 mmol) was dissolved in CH₂Cl₂ (25 mL) and TFA (25 mL) was added. The reaction mixture was stirred at RT for 18 h. The solvent was removed *in vacuo* via trituration with toluene (the use of MeOH for trituration must be avoided or otherwise the methyl ester is formed) to afford a yellow solid (1.25 g, 4.56 mmol, 96%) with NMR consistent with literature values.³²⁰ Mpt: 150 °C; *Rf* = Baseline (2:1 pet. ether/EtOAc); [α]D²⁰ -5.4 (c 0.11, MeOH); IR (νmax/cm⁻¹, thin film): 2914 (O-H stretch), 1741 (C=O stretch), 1656 (N-H bend), 1193; ¹H NMR
(600 MHz, CD3OD): \(\delta_H = 2.92 \) (dd, \(J = 14.9, 8.2 \) Hz, 1H, 4-H), 3.12 (dd, \(J = 14.9, 4.1 \) Hz, 1H, 4-H), 3.24 (d, \(J = 7.2 \) Hz, 2H, 6-H), 4.12 (dd, \(J = 8.2, 4.1 \) Hz, 1H, 3-H), 5.17-5.23 (m, 2H, 8-H), 5.78-5.85 (m, 1H, 7-H); \(^{13}\)C NMR (160 MHz, CD3OD): \(\delta_C = 31.5 \) (C-4), 35.3 (C-6), 53.5 (C-3), 118.7 (C-8), 134.7 (C-7), 170.7 (C-2); LRMS m/z (Cl\(^+\)): 162 [M+H]\(^+\), 145 [M-OH]\(^+\); HRMS m/z (Cl\(^+\)): Found 162.0592 [M+H]\(^+\); \(C_6H_{12}NO_2S \) requires 162.0589; Anal. Calcd. for \(C_6H_{12}F_3NO_4S \): C, 34.91; H, 4.39; N, 5.09. Found C, 34.70; H, 4.26; N, 4.86%.

Fmoc-Cys(allyl)-OH (388)

![Structure](image)

Method A:

385 (1.63 g, 3.70 mmol) was dissolved in CH₂Cl₂ (25 mL) and followed by the addition of TFA (25 mL). The reaction mixture was stirred at RT for 16 h, followed by the removal of solvent in vacuo via trituration with toluene (the use of MeOH for trituration must be avoided or otherwise the methyl ester is formed). Flash chromatography (applied in CH₂Cl₂; eluted 0% to 5% MeOH) afforded the title compound as an off white solid (1.34 g, 3.53 mmol, 95%). Mpt: 131-133 °C; \(R_f = 0.63 \) (CH₂Cl₂/5% MeOH); \([\alpha]_D^{20} = -15.2 \) (c 0.40, MeOH); IR (\(\nu_{\max} / \text{cm}^{-1} \), thin film): 3067 (O-H stretch), 2950 (N-H stretch), 1709 (C=O stretch), 1520, 1450 (N-H bend and C=C stretch), 1228; \(^1\)H NMR (600 MHz, CDCl₃): \(\delta_H = 2.93 \) (dd, \(J = 14.1, 5.5 \) Hz, 1H, 4-H), 2.99 (dd, \(J = 14.1, 4.3 \) Hz, 1H, 4-H), 3.13 (d, \(J = 6.9 \) Hz, 2H, 6-H), 4.23 (t, \(J = 6.9 \) Hz, 1H, 13-H), 4.41 (d, \(J = 6.9 \) Hz, 2H, 12-H), 4.61 (bs, 1H, 3-H), 5.09-5.12 (m, 2H, 8-H), 5.65 (bs, 1H, 9-H), 5.70-5.77 (m, 1H, 7-H), 7.31 (t, \(J = 7.3 \) Hz, 2H, 16-H), 7.39 (t, \(J = 7.3 \) Hz, 2H, 17-H), 7.53-7.61 (m, 2H, 15-H), 7.76 (t, \(J = 7.3 \) Hz, 2H, 18-H); \(^{13}\)C NMR (150 MHz, CDCl₃): \(\delta_C = 32.6 \) (C-4), 35.4 (C-6), 47.2 (C-13), 53.5 (C-3), 67.5 (C-12), 118.3 (C-8), 120.1 (C-18), 125.2 (C-15), 127.2 (C-16), 127.9 (C-17), 133.6 (C-7), 141.4 (C-19), 143.7 (C-14), 156.1 (C-10), 175.7 (C-2); LRMS m/z (ES\(^+\)): 406

Method B:

(1.25 g, 4.53 mmol), was dissolved in acetone/H_2O (1:1, 150 mL). NaHCO_3 (0.760 g, 9.05 mmol) was added followed by Fmoc-OSu (1.60 g, 4.75 mmol). The reaction was stirred at RT for 18 h. The reaction was acidified to pH 3 via the addition of HCl and extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with brine (100 mL), dried (MgSO_4), filtered and concentrated in vacuo. Flash chromatography (applied in CH_2Cl_2; eluted 2% to 5% to 10% MeOH) afforded the title compound as a sticky colourless oil (680 mg, 1.77 mmol, 39%).

6.1.6 Trial Peptide-Small Molecule Conjugation

Fmoc-Cys-OH (398)

Fmoc-Cys(Trt)-OH (1.00 g, 1.70 mmol) was suspended in CH_2Cl_2 (20 mL) and TFA (2.5 mL) and TIPS (1 mL) were added. The reaction was stirred at RT for 16 h before the solvent was removed in vacuo via trituration with toluene (the use of MeOH for trituration must be avoided or otherwise the methyl ester is formed). Flash chromatography (applied in CH_2Cl_2; eluted 1% to 2% to 5% MeOH) afforded the title compound as an off white solid (371 mg, 1.08 mmol, 64%) with NMR consistent with literature values. Mpt: 79-81 °C [Lit. 96-98 °C]; R_f = 0.4 (10% MeOH/CH_2Cl_2); [α]_D^{20} -20.9 (c 0.11, MeOH); IR (ν/cm⁻¹, thin film): 3310 (C-H and O-H stretches), 1686 (C=O stretch), 1528 (N-H bend), 1256 (COOR stretch), 1045; ^1H NMR (600 MHz, CD_3OD): δ_H = 2.87 (dd, J = 13.9, 7.2 Hz, 1H, 4-H), 2.96 (dd, J = 13.9, 4.1 Hz, 1H, 4-H), 4.25 (t, J = 6.9 Hz, 1H, 10-H), 4.35-4.38 (m, 3H, 3,9-H), 7.31 (t, J = 7.4 Hz, 2H, 13-H), 7.39 (t, J = 7.4 Hz, 2H, 14-H), 7.62-7.70 (m, 2H, 12-H), 7.80 (d, J = 7.4 Hz, 2H, 15-H); ^13C NMR (150 MHz, CD_3OD): δ_C = 27.0 (C-4), 48.4 (C-10), 57.8 (C-3), 68.0 (C-9), 120.9 (C-15), 126.3 (C-12), 128.2 (C-13), 128.8 (C-14), 142.6 (C-16), 145.2 (C-11), 158.5 (C-7), 173.6 (C-2); LRMS m/z

2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-(1-(17-hydroxy-3,6,9,12,15-pentaoxaheptadecyl)-2,5-dioxopyrrolidin-3-ylthio)propanoic acid (399)

Method A:

398 (73.9 mg, 0.215 mmol) was suspended in phosphate buffer (0.5 mL, pH 6.5, 50 mM), 355 (39 mg, 0.108 mmol) in DMF (0.5 mL) was added and the reaction was stirred at RT for 2½ h. After this time, the solvent was removed and purification via flash chromatography (applied in CH₂Cl₂; eluted 1% to 2% to 5% to 10% to 20% MeOH) afforded the title compound as a colourless oil (21.9 mg, 0.031 mmol, 29%).

Method B:

398 (76.0 mg, 0.222 mmol) was dissolved in DMF (0.5 mL), 355 (40.1 mg, 0.111 mmol) in DMF (0.5 mL) was added the mixture was stirred at RT for 2½ h. Removal of the solvent, followed by purification via flash chromatography (applied in CH₂Cl₂; eluted 0.5% to 1% to 2% to 5% to 10% to 20% MeOH) afforded the title compound as a colourless oil (62.9 mg, 0.089 mmol, 81%). [α]D²⁰ -0.9 (c 0.11, MeOH); IR (νmax/cm⁻¹, thin film): 3391 (O-H and N-H stretches), 2876 (C-H stretch), 1701 (C=O stretch), 1598 (N-H bend), 1399, 1104 (C-O stretch); ¹H NMR (600 MHz,
(CD$_3$)$_2$SO): $\delta_H = 3.05-3.14$ (m, 2H, 4-H), 3.16 (d, $J = 3.5$ Hz, 2H, 38-H), 3.40 (t, $J = 5.6$ Hz, 2H, 23-H), 3.46-3.49 (m, 18H, 25,26,28,29,31,32,34,35,17-H), 3.53 (t, $J = 5.6$ Hz, 2H, 22-H), 3.86 (bd, $J = 11.0$ Hz, 2H, 18-H), 3.94-3.99 (m, 1H, 17-H), 4.13 (bd, $J = 4.7$ Hz, 1H, 39-H), 4.20-4.24 (m, 1H, 9-H), 4.27-4.31 (m, 3H, 3,8-H), 4.67 (bs, 1H, 1-H), 6.80 (bs, 1H, 5-H), 7.31-7.34 (m, 2H, 12-H), 7.39-7.42 (m, 2H, 13-H), 7.66-7.71 (m, 2H, 11-H), 7.89 (d, $J = 7.6$ Hz, 14-H); 13C NMR (150 MHz, (CD$_3$)$_2$SO): $\delta_C = 33.8$ (C-4), 37.8 (C-22), 40.1 (C-17), 46.7 (C-9), 48.6 (C-38), 55.1 (C-18), 60.2 (C-35), 65.4 (C-3), 65.5 (C-8), 66.2 (C-37), 69.4-69.8 (C-25,26,28,29,31,32,34), 72.4 (C-23), 120.2 (C-14), 125.3 (C-11), 127.1 (C-12), 127.6 (C-13), 140.7 (C-15), 143.9 (C-10), 155.5 (C-6), 175.1 (C-2), 175.2 (C-19), 176.8 (C-20); LRMS m/z (ES$^+$): 727 [M]$^+$, 683; HRMS m/z (ES$^+$): Found 727.2514; C$_{34}$H$_{44}$N$_2$O$_{12}$S requires 727.2513

\[
\text{(E)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-(4-(2-hydroxyethoxy)but-2-enylthio)-propanoic acid (400)}
\]

To 388 (20.0 mg, 0.052 mmol) and 2-(allyloxy)ethanol (27.9 µL, 0.261 mmol) was added tBuOH/H$_2$O (1:2; 1.5 mL), followed by a solution of Grubbs’ 2nd generation catalyst (1.33 mg, 3 mol%) in tBuOH (500 µL) and the reaction was stirred at 32 °C for 1 h. Further quantities of Grubbs’ 2nd generation catalyst (1.33 mg, 3 mol%) in tBuOH (500 µL), 388 (20 mg, 0.052 mmol), 2-(allyloxy)ethanol (27.9 µL, 0.261 mmol) and H$_2$O (500 µL) were added and the reaction was stirred at 32 °C for a further 2 h. LCMS showed 100% conversion to the desired product. No further purification was carried out.
6.2 Peptide Synthesis and PEGylated Imidazo[1,2-α]pyrazine Conjugation

Analytical HPLC traces and mass spectrometry spectra (LCMS and/or MALDI) for synthesised peptides and peptide conjugates are given in Appendix (Section 7.2)

6.2.1 General Methods

Amino acids and resins for peptide synthesis were purchased from Novobiochem, UK. HPLC grade solvents for peptide synthesis and HPLC purification were purchased from Sigma, UK and VWR.

All peptides were synthesized on a MultiSynTech Syro I automated system. Either pre-loaded Fmoc-Asp(OtBu)-NovaSyn® TGT resin (0.200 mmol/g, 100 mg, 20.0 μmol) or pre-loaded Fmoc-Leu-NovaSyn® TGT resin (0.210 mmol/g, 100 mg, 21.0 μmol) were used in all cases. All resins were pre-swelled in DMF for at least 30 min prior to synthesis start.

Standard Fmoc solid phase peptide synthesis (SPPS) was employed. The total volume of all reagents in each step was 1.5 mL. All reagents were dissolved in HPLC grade DMF.

Fmoc Deprotection: To the reaction syringe containing N-terminal Fmoc-protected peptide was added piperidine in DMF (40% v/v, 1.5mL). The mixture was agitated for 20 s every min for a total of 3 min. The reagents were removed by filtration under vacuum and the resin washed with DMF (4 x 1.5 mL). Piperidine in DMF solution (40% v/v, 0.75 mL) was added to the reaction syringe followed by DMF (0.75 mL) to make an overall 20% v/v solution of piperidine in DMF. This mixture was agitated for 20 s every min for a total of 10 min. The reagents were removed by filtration under vacuum and the resin washed with DMF (6 x 1.5 mL).

Amino Acid Coupling: To the reaction syringe was added Fmoc-protected amino acid (0.600 mL, 0.140 M, 4 eq.), HBTU (0.600 mL, 0.140 M, 4 eq.) and DIPEA (0.300 mL, 0.560 M, 8 eq.). The mixture was agitated for 20 s every 3 min for a total of 40 min. The reagents were removed by filtration under vacuum and the resin washed with DMF (4 x 1.5 mL).

Peptide Cleavage and Side Chain Deprotection: The resin was washed with CH₂Cl₂ (3 x 3 mL), MeOH (3 x 3 mL) and Et₂O (3 x 3 mL) and dried (desiccator) followed by adding TFA/EDT/H₂O/TIPS (88:5:4:2; 3 mL) to the reaction syringe. The syringe was then agitated for 3 h at RT. The cleavage cocktail was drained from the vessel under vacuum and Et₂O (~10-15 mL)
added to the filtrate. The resultant precipitate in solution was stored at -20 °C for 30 min prior to being spun at 4000 rpm for 10 min at 4 °C to produce a crude peptide pellet. The supernatant Et₂O was decanted off and the peptide washed a further three times with Et₂O. The crude peptide pellet was then re-dissolved in minimum water and freeze-dried for storage prior to purification.

Cysteine-Maleimide Conjugation (Solution): The purified peptide was taken up in DMF (approximately 2 mg/mL). An aliquot of a stock solution of 363 in DMF (2.87 mM) was added such that the volume added corresponded to 3 eq, and the reaction mixture stirred at RT for 3 h. The solvent was removed in vacuo and the crude material purified via reverse phase preparative HPLC.

Cross Metathesis (Solution): The purified peptide and 298 (5 eq) were taken up in H₂O/tBuOH (2:1; 0.600 mL). An aliquot of a stock solution of Grubbs’ 2nd generation catalyst in tBuOH (2.36 mM, 3 mol%) was added and the reaction mixture was stirred at 32 °C for 1 h. A further quantity of 298 (5 eq) and Grubb’s II (3 mol%) were added and the reaction stirred for a further 2 h at 32 °C. The solvent was removed in vacuo and the crude material purified via reverse phase preparative HPLC.

Cysteine-Maleimide Conjugation (on Resin): The peptides were synthesised according to standard SPPS, with all side chain and the terminal Fmoc protecting groups left on. The peptide was also left bound to the resin and all subsequent reactions were carried out in the syringe. The S’tBu protecting group on R240C was selectively deprotected by: washing the resin-bound peptide with CH₂Cl₂ (3 x 3 mL); soaking in EtOH/CH₂Cl₂/H₂O (4:6:1; 3 mL); purging with Ar; adding nBu₃P (50.0 µL, 0.200 mmol, 10 eq); and agitating for 3 h at RT. The syringe was evacuated and washed with CH₂Cl₂ (2 x 3 mL), MeOH (2 x 3 mL), CH₂Cl₂ (2 x 3 mL) and DMF (2 x 3 mL). Maleimide conjugation to the free thiol in R240C was carried out by adding 363 (42.0 mg, 0.060 mmol, 3 eq) in DMF (3 mL) and agitating at RT for 16 h. The syringe was evacuated and washed with DMF (3 x 3 mL). The terminal Fmoc was deprotected, followed by cleavage of the peptide from the resin and deprotection of the side-chain protecting groups using conditions stated above.

Cross Metathesis (on Resin): The peptides were synthesised according to standard SPPS, with all side chain and the terminal Fmoc protecting groups left on. The peptide was also left bound to the resin and all subsequent reactions were carried out in the syringe. CHCl₃/H₂O (8:1; 540 µL) was added to the syringe, followed by 298 (21.7 mg, 0.040 mmol, 2 eq) in DMF (120 µL). An aliquot of a stock solution of Grubbs’ 2nd generation catalyst in tBuOH (1 mM, 60.0 µL, 3 mol%)
was added giving CHCl₃/DMF/H₂O/BuOH (8:2:1:1; 720 µL). The mixture was agitated at 37 °C for 2 h. Further quantities of 298 (21.7 mg, 0.040 mmol, 2 eq) and Grubbs’ 2nd generation catalyst (60.0 µL, 3 mol%) were added followed by maintaining solvent concentration by addition of CHCl₃/H₂O (8:1; 540 µL). The mixture was agitated at 37 °C for 16 h, followed by evacuating solvent from the syringe and washing DMF (3 x 3mL). The terminal Fmoc was deprotected, followed by cleavage of the peptide from the resin and deprotection of the side-chain protecting groups using conditions stated above.

“Click” Chemistry (on Resin): The peptides were synthesised according to standard SPPS, with all side chain and the terminal Fmoc protecting groups left on. The peptide was also left bound to the resin and all subsequent reactions were carried out in the syringe. 299 (43.3 mg, 0.080 mmol, 4 eq) in DMF (2 mL) was added to the reaction syringe followed by the addition of a suspension of CuI (76.0 mg, 20 eq) and sodium ascorbate (158 mg, 40 eq) in H₂O/BuOH (2:1; 750 µL) to give a total solvent composition of DMF/H₂O/BuOH (8:2:1). The mixture was agitated at RT for 16 h, followed by evacuating the solvent and washing with DMF (3 x 3 mL), MeOH (2 x 3 mL), CH₂Cl₂ (3 mL) and DMF (2 x 3 mL). The terminal Fmoc was deprotected, followed by cleavage of the peptide from the resin and deprotection of the side-chain protecting groups using conditions stated above.

General peptide purification: The peptides were analyzed and purified via reverse phase HPLC using a Varian ProStar system with a Model 210 solvent delivery module and a Model 320 UV detector. The preparative purification was performed using either a Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 µm beads, flow rate of 10 mL/min), Discovery®BIO Wide Pore C18 (Varian; 25 cm x 21.2 mm, 10 µm beads, flow rate of 8 mL/min) or an Onyx Monolithic Semi-Prep C18 (Phenomenex®; 100 x 10 mm, 2µm macropore size, 13 nm mesopore size, flow rate 10 mL/min), loaded with 200-400 µL aliquots of a 10-20 mg/mL solution of peptide dissolved in 0.1% TFA containing H₂O. The mobile phase was a decreasing gradient of H₂O/0.1% TFA (A) in MeCN/0.1% TFA (B). Precise gradients are reported for each peptide.

The fractions containing the correct peak were pooled, the solvent removed under reduced pressure to approximately 2 mL and the solution freeze-dried.

The purified peptide was analyzed by analytical HPLC using an Discovery®BIO Wide Pore C18 (Varian; 25 cm x 4.6 mm, 10 µm beads, flow rate of 1 mL/min) or Onyx monolithic C18 column.
(Phenomenex®; 100 x 3.0 mm, 2 μm macropore size, 13 nm mesopore size, flow rate 1.0 mL/min). Precise gradients reported for each peptide. The analysis of the chromatograms was conducted using Star Chromatography Workstation software Version 1.9.3.2.

ES-MS analysis was performed on a Waters Acquity Ultra Performance LC/MS machine. MALDI analysis was carried out using a Waters MALDI MICRO MX, Micromass Technologies.

6.2.1.1 HPLC Methods

6.2.1.1.1 Preparative HPLC

Method A: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 2-98% B over 18 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method B: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 20-30% B over 8 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method C: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 20-98% B over 14 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method D: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 25-35% B over 8 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method E: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 25-40% B over 8 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method F: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 25-45% B over 10 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).
Method G: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Isocratic: 30% B over 20 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method H: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 30-40% B over 8 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method I: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 32-37% B over 8 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method J: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 33-38% B over 15 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method K: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Isocratic: 35% B over 25 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method L: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 35-45% B over 8 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method M: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 40-50% B over 15 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method N: Discovery®BIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μm beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 38-42% B over 10 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).

Method O: Discovery®BIO Wide Pore C18 (Varian; 25 cm x 21.2 mm, 10 μm beads) flow rate of 8 mL/min, and UV detection at 215 and 254 nm. Isocratic: 20% B over 15 min (A = H₂O/0.1% TFA, B = MeCN/0.1% TFA).
Method P: Onyx Monolithic Semi-Prep C18 (Phenomenex®; 100 x 10 mm, 2μm macropore size, 13nm mesopore size) flow rate 10 mL/min; UV detection at 215 and 254 nm. Linear gradient: 25-50% B over 10 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA).

Method Q: Onyx Monolithic Semi-Prep C18 (Phenomenex®; 100 x 10 mm, 2μm macropore size, 13nm mesopore size) flow rate 10 mL/min; UV detection at 215 and 254 nm. Linear gradient: 30-35% B over 10 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA).

Method R: Onyx Monolithic Semi-Prep C18 (Phenomenex®; 100 x 10 mm, 2μm macropore size, 13nm mesopore size) flow rate 10 mL/min; UV detection at 215 and 254 nm. Linear gradient: 35-45% B over 10 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA).

6.2.1.2 Analytical HPLC

Method S: Discovery®BIO Wide Pore C18 (Varian; 25 cm x 4.6 mm, 10 μm beads), flow rate 1.0 mL/min, UV detection at 214 nm. Linear gradient: 5-95% B over 20 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA).

Method T: Discovery®BIO Wide Pore C18 (Varian; 25 cm x 4.6 mm, 10 μm beads), flow rate 1.0 mL/min, UV detection at 214 nm. Linear gradient: 5-95% B over 30 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA).

Method U: Onyx monolithic C18 column (Phenomenex®; 100 x 3.0 mm, 2μm macropore size, 13nm mesopore size), flow rate 1.0 mL/min, UV detection at 214 nm. Linear gradient: 5-95% B over 20 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA).

Method V: Discovery®BIO Wide Pore C18 (Varian; 25 cm x 4.6 mm, 10 μm beads), flow rate 1.0 mL/min, UV detection at 214 nm. Linear gradient: 5-95% B over 20 min (A = H2O/0.1% TFA, B = MeCN/0.1% TFA). Preparative HPLC machine used with 2 ml injection loop.
6.2.2 Synthesis of Non-conjugated Peptides

αF-loop WT (389)

Standard side-chain protecting groups were used. *Purification:* Method E; *Analysis:* Method S, $R_T = 4.81$ min; m/z (ES$^+$): 798.20 [M+2H]$^{2+}$, 532.14 [M+3H]$^{3+}$, 399.46 [M+4H]$^{4+}$; MALDI TOF$^+$: 1595 (M$^+$).

αF-loop R240C (390)

Standard side-chain protecting groups were used with the exception of Fmoc-Cys(Acm)-OH for residues C232 and C236. *Purification:* Method B; *Analysis:* Method S, $R_T = 8.41$ min; m/z (ES$^+$): 842.30 [M+2H]$^{2+}$, 561.84 [M+3H]$^{3+}$; MALDI TOF$^+$: 1684 (M$^+$).

αF-loop R240SAC (391)

Standard side-chain protecting groups were used. S-Allyl Cysteine used as synthesised (388). *Purification:* Method D; *Analysis:* Method S, $R_T = 9.39$ min; m/z (ES$^+$): 791.13 [M+2H]$^{2+}$, 527.85 [M+3H]$^{3+}$; MALDI TOF$^+$: 1582 (M$^+$).

αF-β10 WT (392)

334
Standard side-chain protecting groups were used. **Purification**: Method G; **Analysis**: Method T, $R_T = 17.52$ min; m/z (ES$^+$): 697.57 [M+3H]$^{3+}$; MALDI TOF$^+$: 2091 (M$^+$).

αF-β10 R240C (393)

![Structure](image)

Standard side-chain protecting groups were used with the exception of Fmoc-Cys(Acm)-OH for residues C232 and C236. **Purification**: Method D; **Analysis**: Method S, $R_T = 9.60$ min; m/z (ES$^+$): 727.10 [M+3H]$^{3+}$, 545.65 [M+4H]$^{4+}$; MALDI TOF$^+$: 2180 (M$^+$).

αF-β10 R240SAC (394)

![Structure](image)

Standard side-chain protecting groups were used. S-Allyl Cysteine used as synthesised (388). **Purification**: Method K; **Analysis**: Method T, $R_T = 18.47$ min; m/z (ES$^+$): 693 [M+3H]$^{3+}$.

Β9-αF-β10 WT (395)

![Structure](image)

Standard side-chain protecting groups were used. **Purification**: Method I; **Analysis**: Method S, $R_T = 10.25$ min; m/z (ES$^+$): 1111.75 [M+3H]$^{3+}$, 833.93 [M+4H]$^{4+}$, 667.34 [M+5H]$^{5+}$; MALDI TOF$^+$: 3332 (M$^+$).
B9-αF-β10 R240C (396)

\[
\text{Standard side-chain protecting groups were used with the exception of Fmoc-Cys(Acm)-OH for residues C232 and C236. Purification: Method J; Analysis: Method U, } \quad R_T = 6.80 \text{ min; } m/z (ES^+) : 1141.25 \ [M+3H]^3+, \ 856.13 \ [M+4H]^4+ ; \text{ MALDI TOF}^+ : 3421 (M^+).
\]

B9-αF-β10 R240SAC (397)

\[
\text{Standard side-chain protecting groups were used. S-Allyl Cysteine used as synthesised (388). Purification: Method N; Analysis: Method S, } \quad R_T = 11.02 \text{ min; } m/z (ES^+) : 1107.40 \ [M+3H]^3+, \ 830.52 \ [M+4H]^4+ ; \text{ MALDI TOF}^+ : 3319 (M^+).
\]

6.2.3 Solution-Based Conjugation

6.2.3.1 Solution-Based R240C-Maleimide Conjugation

αF-loop (401)
Conjugation between 390 and 363 was carried out in solution as previously described. *Purification*: Method A; *Analysis*: Method S, $R_T = 10.82$ min; m/z (ES+): 1192.18 [M+2H]$^{2+}$, 794.35 [M+3H]$^{3+}$, 605.63 [M+K+3H]$^{4+}$; MALDI TOF$: 2382$ (M+).

αF-β10 (402)

Conjugation between 393 and 363 was carried out in solution as previously described. *Purification*: Method A; *Analysis*: Method S, $R_T = 11.28$ min; m/z (ES+): 959.86 [M+3H]$^{3+}$, 720.13 [M+4H]$^{4+}$.

B9-αF-β10 (403)
Conjugation between 396 and 363 was carried out in solution as previously described. *Purification*: Method A; *Analysis*: Method V, $R_T = 5.03$ min; m/z (ES$^+$): 1374 [M+3H]$^{3+}$, 1031.07 [M+4H]$^{4+}$, 832.29 [M+K+4H]$^{5+}$, 824.35 [M+5H]$^{5+}$, 694.03 [M+K+5H]$^{6+}$.

6.2.3.2 Solution-Based R240SAC-Allyl Cross Metathesis

Attempted cross metathesis with αF-loop (404)

![Diagram of αF-loop](image)

Attempted solution phase cross metathesis between 391 and 298 was carried out as previously described. *Purification*: Method A.

Attempted cross metathesis with B9-αF-β10 (405)

![Diagram of B9-αF-β10](image)
Attempted solution phase cross metathesis between 391 and 298 was carried out as previously described. *Purification*: Method A.

6.2.4 Resin-Bound Conjugation

6.2.4.1 Resin-Based R240C-Maleimide Conjugation

\(\alpha F\)-loop (406)

Standard side-chain protecting groups were used with the exception of Fmoc-Cys(S'Bu)-OH for residue C240. Conjugation on resin was carried out as described previously. *Purification*: Method H; *Analysis*: Method S, \(R_T = 10.94\) min; \(m/z\) (ES+): 1120.62 [M+2H]\(^2+\), 747.24 [M+3H]\(^3+\); MALDI TOF\(^\gamma\): 2240 (M+).
Attempted conjugation with αF-β10 (407)

![Chemical Structure](image)

Standard side-chain protecting groups were used with the exception of Fmoc-Cys(S'Bu)-OH for residue C240. Attempted conjugation on resin was carried out as described previously.
Purification: Method D.

Attempted conjugation with B9-αF-β10 (408)

![Chemical Structure](image)

Standard side-chain protecting groups were used with the exception of Fmoc-Cys(S'Bu)-OH for residue C240. Attempted conjugation on resin was carried out as described previously.
Purification: Method P.
6.2.4.2 Resin-Based R240SAC-Allyl Cross Metathesis

Attempted cross metathesis with αF-loop (409)

Standard side-chain protecting groups were used. S-Allyl Cysteine used as synthesised (388). Attempted cross metathesis on resin was carried out as described previously. **Purification:** Method G.

6.2.4.3 Resin-Based R240AzLys-Alkyne Click

αF-loop (410)

Standard side-chain protecting groups were used. Azidolysine was used from available sources within the laboratory. Click Chemistry on resin carried out as previously described. **Purification:** Method M followed by Method P; **Analysis:** Method S, \(R_t = 10.72 \) min; \(m/z \) (ES+): 1067 [M+2H]^{2+}, 711.49 [M+3H]^{3+}; MALDI TOF+: 2132 (M+).
αF-β10 (411)

![Chemical structure](image)

Standard side-chain protecting groups were used. Azidolysine was used from available sources within the laboratory. Click Chemistry on resin carried out as previously described. **Purification:** Method N followed by Method Q; **Analysis:** Method S, \(R_T = 11.44\) min; \(m/z\) (ES+): 877.36 \([M+3H]^{3+}\), 847.90 \([M-(Ser)+3H]^{3+}\), 658.27 \([M+4H]^{4+}\); 636.17 \([M-(Ser)+4H]^{4+}\).

Attempted Click with B9-αF-β10 (412)

![Chemical structure](image)

Standard side-chain protecting groups were used. Azidolysine was used from available sources within the laboratory. Click Chemistry on resin carried out as previously described. **Purification:** Method N.

6.3 Biochemical Assay

The HP0525 protein was produced\(^1\) in the *E. coli* strain BL21 Star(DE3) (Invitrogen) as described previously.\(^{38}\) The protein concentration was estimated spectroscopically using a NanoDrop (Thermo Scientific) and a calculated extinction coefficient at 280 nm, based on the amino acid

\(^1\) HP0525 produced and characterised by Dr K. Wallden
composition. The ATPase activity of HP0525 was measured, with and without a specific amount of compound present, using an in vitro ATPase colorimetric assay kit (Innova Biosciences). The assay was performed in 96-well ELISA microplates (Greiner Bio-One), using a multipipett/robot.

A volume of 49 µL of a substrate/buffer solution (200 mM tris(hydroxymethyl)aminomethane (TRIS), pH 7.5; 5 mM MgCl₂; 250 µM ATP; and 10% DMSO) was added to each assigned well, followed by the addition of 1 µL of compound (at 0.5; 5 or 50 mM to achieve the final concentrations of 5; 50 and 500 µM in the reaction, respectively) in DMSO (or 1 µL DMSO to controls). The solutions were mixed carefully by pipetting. The reaction was started by the addition of 50 µL of 0.106 µM HP0525 to each well (except the negative control, see text below), and the reaction plate was directly transferred to 37 °C for 30 min of incubation. The reaction was stopped by the addition of the Gold mix according to the standard protocol of the kit. The absorbance at 620 nm was measured after 30 min at RT. For each compound, the percentage of absorbance relative non-inhibited HP0525 was calculated, after subtracting the absorbance value of the negative control. In the negative control, the protein was added after the Gold mix, as described in the standard protocol of the kit, which when used as a blank corrects for all free P_i not produced by the enzyme during the 30 min incubation at 37 °C. A known inhibitor of HP0525 (CHIR02)³⁹ was used as a control inhibitor. All measurements were made in duplicate.

A selection of the compounds was assayed as above at additional concentrations ranging between 5 and 200 µM (the measuring points were optimized so that they cover the range to fit a sigmoidal dose response curve) from which IC₅₀ values were calculated. Each compound was screened on 3 separate plates and each plate was read twice and a mean was calculated for each concentration. The data was normalised by subtracting the negative control (0% active) and relating it to the positive control (100% active). The software GraphPad Prism 5 was used to generate 2 dose-response curves (Log [inhibitor] vs. normalised response (Standard and Variable Slope)) and the IC₅₀ values were calculated from each.

The same assay format was used for the enzyme kinetics experiments, where the activity of HP0525 was tested at various concentrations of ATP (0-500 µM). The data was plotted and fitted to the Michaelis-Menten equation to obtain V_max, from which K_m can be calculated.
6.4 Molecular Modelling

AutoDock 4.0 and Vina were used for the *in silico* docking of the compounds into PDB File: 1G6O (ADP-HP0525). All heteroatoms (H2O, PEG and ADP molecules) were removed from the .pdb file, which was converted into .pdbqt format using AutoDock Tools (ADT), with the addition of polar hydrogen’s and Kollman charges.

AutoDock 4.0 requires the following files: *enzyme*.pdbqt, *ligand*.pdbqt, *GridFile*.gpf and *DockingFile*.dpf. AutoDock Vina requires the *enzyme*.pdbqt, *ligand*.pdbqt and *configuration*.txt files. ADT was used to generate the ligand .pdbqt file from a .pdb or .mol2 input which was subjected to no initial energy minimisations. When using PyRx, the program automatically converts .pdb or .mol2 files to .pdbqt files.

Table 35 shows the coordinates of the Grid Box used for the docking into sites A and B. The size of the grid box used is as follows: x (14 Å), y (16 Å), z (24 Å). In the case of AutoDock 4.0, the grid file and docking file was generated using ADT. In the case of AutoDock Vina, the coordinates were used in the configuration text file and a value of 8 was used for the exhaustiveness.

<table>
<thead>
<tr>
<th></th>
<th>Site A</th>
<th>Site B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre x</td>
<td>-40.36</td>
<td>-12.034</td>
</tr>
<tr>
<td>Centre y</td>
<td>53.652</td>
<td>24.627</td>
</tr>
<tr>
<td>Centre z</td>
<td>22.3</td>
<td>22.363</td>
</tr>
</tbody>
</table>

Table 35: Coordinate of Grid Boxes used for docking into Sites A and B of 1G6O

Linux was used to run the AutoDock 4.0 program and either cmd or PyRx was used to run AutoDock Vina. The output file from 4.0 is in .dlg format which can be converted to .pdbqt using ADT which can be viewed in PyMOL. In order to visualise the docking file using Chimera, the file needs to be converted further to the .pdb, using PyMOL. Vina exports the docking files as .pdbqt.

MOE 2009 was used for evaluation of the bifunctional reagents. The R240 residue was mutated to the relevant residue and the molecule was built using the ‘Build Molecule’ function. For example: select residue, add H, convert to C, add H, convert to C, add H etc.
References

Voss, M. E.; Rainka, M. P.; Fleming, M.; Peterson, L. H.; Belanger, D. B.; Siddiqui, M. A.; Hruza, A.; Voigt, J.; Gray, K. and Basso, A. D., Synthesis and SAR studies of imidazo-[1,2-a]-pyrazine Aurora

136 Sabitha, G., Microwave promoted synthesis of β-aminoalcohols in dry media, Green Chemistry (RSC), 1999, 251-252.

The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.

Tate, E. W.; Bowyer, P. W.; Brown, K. A.; Smith, D. F.; Holder, A. A. and Leatherbarrow, R. J., Peptide-based inhibitors of N-myristoyl transferase generated from a lipid/combinatorial peptide chimera library, Signal Transduction, 2006, 6, 160-166.

259 Molecular Operating Environment (MOE), 2011.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2011.

262 Kim, J. G. and Jang, D. O., Direct Synthesis of Acyl Azides from Carboxylic Acids by the Combination of Trichloroacetonitrile, Triphenylphosphine and Sodium Azide, *Synlett*, 2008, 13, 2072-2074.

Brood, Version, 2.0, 2010; OpenEye Scientific Software, Santa Fe, New Mexico.

Chapter 7: Appendix

7.1 Dose Response Curves

Figure 7.1 shows selected dose response curves of compounds synthesised and tested for inhibition against HP0525.
Figure 71: Selected dose response curves for compounds synthesised in Chapters 2-4. % Activity = % ATP hydrolysis compared to positive and negative controls. [Inhibitor] (µM)
7.2 Characterisation of Peptides and Peptide Conjugates

Figures X-X illustrates the characterisation of peptides and peptide conjugated synthesised in Chapter 4 (Sections 4.4 and 4.5)

\(\alpha F \)-loop WT (389)

Figure 72: 389: (a) Analytical HPLC trace; (b) ES+; (c) MALDI
αF-loop R240C (390)

Figure 73: 390: (a) Analytical HPLC trace; (b) ES+; (c) MALDI
αF-loop R240SAC (391)

Figure 74: 391: (a) Analytical HPLC trace; (b) ES+; (c) MALDI
\(\alpha F-\beta 10 \text{ WT (392)}\)

\[
\begin{array}{ccccccccccccccc}
S & A & D & \text{C L K S C L R M R P D R I I L}
\end{array}
\]

\[\text{Figure 75: 392: (a) Analytical HPLC trace; (b) ES+; (c) MALDI}\]
αF-β10 R240C (393)

Figure 76: 393: (a) Analytical HPLC trace; (b) ES⁺; (c) MALDI
aF-β10 R240SAC (394)

Figure 77: 394: (a) Analytical HPLC trace; (b) ES+
B9-αF-β10 WT (395)

YIQLFEGGNTSADCLKSLRPRDRILL

Figure 78: 395: (a) Analytical HPLC trace; (b) ES+; (c) MALDI
B9-αF-β10 R240C (396)

Figure 79: 396: (a) Analytical HPLC trace; (b) ES⁺; (c) MALDI
B9-αF-β10 R240SAC (397)

![B9-αF-β10 R240SAC Structure]

Figure 80: 397: (a) Analytical HPLC trace; (b) ES+; (c) MALDI
\(\alpha F\text{-loop (401)} \)

Figure 81: 401: (a) Analytical HPLC trace; (b) ES\(^+\); (c) MALDI
αF-β10 (402)

Figure 82: 402: (a) Analytical HPLC trace; (b) ES+
B9-αF-β10 (403)

Figure 83; 403: (a) Analytical HPLC trace; (b) ES+
\(\alpha F \)-loop (406)

\[
\begin{align*}
\text{S} & \quad \text{A} & \quad \text{D} & \quad \text{C} & \quad \text{L} & \quad \text{K} & \quad \text{S} & \quad \text{C} & \quad \text{L} & \quad \text{R} & \quad \text{M} & \quad \text{C} & \quad \text{P} & \quad \text{D}
\end{align*}
\]

Figure 84: 406: (a) Analytical HPLC trace; (b) ES\(^+\); (c) MALDI
αF-loop (410)

![Chemical structure of αF-loop](image)

Figure 85: 410: (a) Analytical HPLC trace; (b) ES+; (c) MALDI
$\alpha F-\beta 10$ (411)

Figure 86: 411: (a) Analytical HPLC trace; (b) ES+