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The Atlantic meridional overturning circulation (AMOC) transports warm salty 

surface waters to high latitudes, where they cool, sink, and return southwards at 

depth.  Through its attendant meridional heat transport, the AMOC helps maintain 

a warm NW European climate, and acts as a control on global climate.  Past climate 

fluctuations during the Holocene (0-11.7 ka) have been linked with changes in North 

Atlantic Ocean circulation1,2.  However, the behavior of the surface flowing salty 

water that helps drive overturning is not well-known during past climate change.  

Here we investigate the temperature and salinity changes of a major surface inflow 

to a region of deepwater formation throughout the Holocene.  The inflow has 

undergone millennial variations in temperature and salinity (~3.5 oC and ~1.5 psu) 

controlled by subpolar gyre dynamics.  These variations correlate with previously 

reported periods of rapid climate change3.  The inflow becomes more saline during 

enhanced freshwater flux to the subpolar North Atlantic.  Models predict a 

weakening of AMOC in response to enhanced Arctic freshwater fluxes4, although 

the inflow can compensate on decadal timescales by becoming more saline5.  We 

provide evidence for the operation of this negative feedback during past intervals of 

climate change.   

The AMOC is a critical component of the Earth’s climate system, redistributing 

heat and partitioning carbon between the surface and deep ocean reservoirs.  The surface 

limb of the AMOC consists of the warm, saline, surface North Atlantic Current (NAC) 

that flows north-eastwards across the North Atlantic into the Nordic Seas (hereafter 

referred to as the Inflow), passing between the subpolar and subtropical gyres, from 

which it draws water6 (Fig. 1).  Upon entering the Nordic Seas, cooling promotes the 

formation of deep water, which overflows the Greenland-Scotland Ridge and returns 

southwards as a major component of North Atlantic Deep Water6 – the deep water limb 

of the AMOC.  Here we investigate the hydrography of the Inflow throughout the 
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Holocene, a period which includes enhanced freshwater fluxes before 8 ka due to ice 

sheet disintegration.   

The Holocene has experienced considerable climatic variability on decadal6,7 to 

millennial1,2,8,9  timescales, notwithstanding the rather constant isotopic record in the 

Greenland ice cores10.  Instrumental, historical and proxy data have documented rapid 

and large changes in the position of the subpolar front (intra-annual fluctuations of up to 

300 km and millennial excursions of up to 500 km), bringing cold, fresh, ice-bearing 

waters to the coasts of Iceland6,7,9  These climatic fluctuations are linked with important 

cultural and socio-economic changes throughout NW Europe9 and via teleconnections, 

globally3.   

We reconstruct the temperature and salinity of the Inflow using paired Mg/Ca-δ18O 

measurements on two species of planktonic foraminifera, Globigerina bulloides and 

Globorotalia inflata, following the procedures of Barker et al.11.  The oxygen isotopic 

composition of planktonic foraminiferal calcite depends upon both calcification 

temperature and the ambient seawater δ18O (δ18Osw).  The Mg/Ca ratio of planktonic 

foraminiferal calcite is controlled primarily by calcification temperature12.  Combined 

Mg/Ca-δ18O measurements therefore allow the reconstruction of temperature and δ18Osw; 

paleo-salinity can then be estimated using modern δ18Osw–salinity relationships, although 

the δ18Osw–salinity relationship is uncertain through time (see Methods Summary for 

errors)13.  By examining species with different depth-habitats, reconstructions can sample 

both the surface and volumetrically significant waters below.  The stable isotope 

composition of both species reflect conditions during late Spring/early Summer14.  G. 

bulloides occupies the seasonal mixed layer, typically 0-50 m14.  G. inflata calcifies at the 

base of the seasonal thermocline,15 (~100-200 m),14 in waters cooled during winter 

convection.  Shallow temperature and salinity gradients below the thermocline may 

reduce the impact of habitat depth migration on G.inflata based reconstructions.    
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Records were made using sediment core RAPiD-12-1K (62o05.43’N, 17o49.18W; 

1938 m water depth) from the South Iceland Rise (Fig. 1).  Sedimentation rates average 

115 cm/ka from 12 to 8 ka and 23 cm/ka from 8 ka to the present (dated by 14C 

accelerator mass spectrometry (Supplementary Methods)).  The core lies under the path 

of the NAC where it bifurcates to form the Irminger and Faroe Currents16, although 

instrumental and historical records also document episodes of cold ice-bearing subpolar 

waters from the north reaching the site7,9.  Modern hydrographic measurements indicate a 

well mixed upper water column down to at least 600 m, with a nearly constant salinity of 

35.2 – 35.3 psu and temperature of ~ 8 oC, and seasonal warming of the upper 50-100 m 

to 11.5 oC17. 

The Mg/Ca and δ18O data for G. bulloides reveal millennial salinity variations of 

~0.5 psu superimposed upon a trend of increasing near-surface water salinity from ~9 ka 

to the present (Fig. 2).  Temperatures remain nearly constant at 10-11 oC reflecting a 

similar seasonal warming of near-surface waters.  The early Holocene between 11 ka and 

8 ka is characterized by low salinities, fluctuating around ~34 psu.  The longer timescale 

trends in near surface salinity are consistent with nearby Mg/Ca based near-surface 

salinity reconstructions8, which may be caused by some or all of:  net Atlantic Ocean 

salinity changes related to the gradual migration of the Inter Tropical Convergence 

Zone18; early Holocene input of light δ18Osw deglacial meltwater to the North Atlantic8; 

changes in freshwater export from the Arctic Ocean.  Centennial to millennial freshening 

of the near-surface water most likely reflects the southward advance of the subpolar front, 

as in the 1960s when atmospheric changes (North Atlantic Oscillation minimum 

conditions) resulted in more northerly winds exporting sea-ice southwards from the 

Nordic Seas7.  In response to surface freshening, it is possible that G. bulloides migrated 

to a deeper, more saline, environment and the freshening is underestimated.   

During the early Holocene the sub-thermocline (G. inflata) data show that 

temperatures were similar to the fresh near-surface layer but salinity was greater.  
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Between 9 ka and 8 ka, strong sub-thermocline cooling and freshening occurred so that 

between 8 ka and 7 ka the upper water column structure was similar, but fresher, 

compared to the modern.  During this transition, the 8.2 ka glacial freshwater discharge 

event can be recognized as a 0.5 psu sub-thermocline freshening, similar in amplitude to 

previous studies8.  Sub-thermocline temperature and salinity oscillate throughout the 

remainder of the Holocene.  Warm saline sub-thermocline conditions are centered at 0.3, 

1.0, 2.7 and 5.0 ka, coinciding with known climatic perturbations in the North Atlantic 

region e.g., the Little Ice Age and the 2.7 ka cold event (Fig. 2). 

Modern controls on regional salinity identified by Hátún et al.5 include: (i) local air-

sea fluxes of freshwater; (ii) variations in salinity of the subpolar gyre (SPG); or (iii) the 

subtropical gyre (STG); and (iv) dynamic changes in the relative contributions from the 

two gyres.  Mechanism (i) does not explain the sub-thermocline changes because air-sea 

fluxes typical for this region6 would cause a much steeper temperature-salinity gradient 

than measured (Supplementary Discussion).  Furthermore, since the upper water column 

properties are set at source and during advection across the North Atlantic basin, the 

magnitude of the salinity variations observed would require extreme changes in air-sea 

fluxes in the Caribbean and over the entire northern North Atlantic.  Mechanism (ii) is 

not responsible because salinity estimates from the Labrador Sea19, located within the 

SPG show fresh conditions in contrast to the saline conditions south of Iceland.  

Mechanism (iii) is of potential importance considering the amplitude of subsurface STG 

salinity variability over the last 110 years20.   However, there is no significant correlation 

between our south Iceland record and STG salinity records; namely (a) late Holocene 

Florida Current surface salinity records21, and (b) Holocene Mg/Ca-δ18O based salinity 

estimates for STG Mode waters, derived from the deep dwelling foraminifer, G. 

truncatulinoides22.  Further confirmation that mechanism (iii) is not a significant factor 

will require additional subsurface STG salinity records to be produced.   
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Consistent with modern mechanisms5, we conclude that throughout the Holocene, 

the salinity of water below the near-surface layer south of Iceland is primarily controlled 

by the proportion of water being drawn from either the cold fresh subpolar or warm saline 

subtropical gyre which has been shown to depend strongly on the dynamics of the SPG4.  

Strong (weak) SPG circulation strength results in a more East-West (North-South) shaped 

SPG which therefore contributes more (less) water to the Atlantic Inflow, making it 

fresher (saltier).  The strength of the SPG circulation can depend upon both the local 

wind stress and/or the baroclinic circulation driven by buoyancy forcing (associated with 

deep convection)23.  Freshwater input to the Labrador Sea prevents deep convection24, 

thereby reducing SPG circulation and the SPG influence south of Iceland.   

Figure 3 illustrates that existing records are consistent with the SPG strength 

mechanism: fresh surface conditions in the Labrador Sea19 coincide with a reduced 

influence of the SPG in the eastern subtropical North Atlantic25, and more saline 

conditions south of Iceland.  These changes occur during recognized periods of global 

rapid climate change, involving ocean and atmosphere reorganizations3.  Early Holocene 

freshening of the Labrador Sea was likely driven by deglacial meltwater input, and/or 

enhanced freshwater flux, via the East Greenland Current, during more meridional 

atmospheric circulation26.  Late Holocene saline intervals south of Iceland, which indicate 

weak SPG circulation, are not accompanied by changes in Labrador Sea salinity.  This 

suggests weakened SPG circulation may have been caused by decreased wind stress, 

rather than enhanced freshwater flux.  Late Holocene freshening in the Labrador Sea was 

possibly also less pervasive and of shorter duration, and thus not recorded by dinocyst 

assemblages19.   

Critically, all periods of enhanced surface freshening in the Labrador Sea are 

accompanied by more saline conditions south of Iceland.  SPG dynamics can therefore 

act as a negative feedback, stabilizing the AMOC to freshwater input.  The potential 

importance of SPG dynamics on the AMOC can be illustrated by examining a recent 
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modeling study of Holocene AMOC variability27.   In this study, millennial oscillations of 

the AMOC are caused by convective shutdown in the Labrador Sea, and its upstream 

surface water linkage to the Nordic Seas27.  Paleoceanographic reconstructions show that 

convective shutdown has occurred on several occasions throughout the Holocene24.  This 

will have reduced SPG circulation strength, producing a more saline Atlantic Inflow to 

the Nordic Seas, which eventually feeds through to the Labrador Sea (via the East 

Greenland Current) and restarts convection.  Schulz et al.27 have proposed that these 

oscillations may have been controlled by a weak external driver such as solar variability.  

Weakening of the AMOC has been suggested at 6-5 ka and 2.8 ka, during southward 

advance of sea-ice and a change in atmospheric circulation28.  The increased salinity of 

the Inflow observed during these periods may have limited the reduction, or helped 

restart stronger AMOC.  

Holocene variability in Inflow properties, and the southward migration of the 

subpolar front, cause fluctuating upper water column density stratification south of 

Iceland (Fig. 2).  The records show a stratified upper ocean during the early Holocene 

with an abrupt switch to well mixed waters at ~8.4 ka, followed by quasi-periodic 

stratification events every ~1500 years.  This suggests that surface circulation was fixed 

in one mode of operation prior to ~8.4 ka, perhaps due to the deglacial input of meltwater 

to the SPG.  Later, with reduced freshwater input, the system oscillated between two 

modes of operation, involving strong and weak SPG circulation.  This threshold behavior 

is similar to that displayed by the model of Schulz et al.27.  Spectral analysis of the 

density stratification record from 8.4 ka to present, using confidence limits of 90 %, 

shows one broad peak centered at 1500 years (Supplementary Notes), consistent with 

other North Atlantic studies1,2.  This cyclicity has been attributed to ocean dynamics29 

and the data here confirm that oceanic factors underlie the oscillations.  

The importance of the salinity balance in the North Atlantic is well established, with 

the transfer of subtropical salinity to high latitudes invoked to precondition and help 
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restart deep overturning during rapid climate fluctuations30.  The Atlantic Inflow is of 

paramount importance in the transport of salt from low to high latitudes.  We have shown 

that this transport has undergone large amplitude millennial variability modulated by SPG 

dynamics.  Although further confirmation of this mechanism will require additional 

subsurface North Atlantic salinity  records, this critical process should be included when 

examining the dynamics of the AMOC and its involvement in climate changes.   

  
Methods Summary 

~20-30 tests of G. bulloides and G. inflata (300-355 µm fraction) were analysed for δ18O 

and Mg/Ca ratios following published methods11, screening for contaminating ferro-

manganese overgrowths, clay minerals and silicate particles.  Analytical precision of 

Mg/Ca ratios based on replicates of foraminiferal standards is 3 %.  Shell weights show 

Mg/Ca ratios are not affected by dissolution. 

Oxygen isotope ratios were determined via gas source mass spectrometry relative 

to the Vienna Peedee belemnite (VPDB) standard.  Analytical precision based on long-

term replicates is better than 0.08 ‰.   

An exponent of A = 0.10 was used12 in the equation:  Mg/Ca = B exp (A x T). 

Core-top Mg/Ca values were calibrated to modern hydrographic data yielding values for 

B of 0.794 and 0.675 for G. bulloides and G. inflata respectively.   

Estimated errors in absolute T, δ18Osw and salinity (S) are 1 σ ≈ 1.3 oC, 0.32 ‰, and 

0.8 psu respectively13.  Estimated errors in relative T, δ18Osw and S are 1 σ ≈ 1.0 oC, 0.26 

‰ and 0.46 psu respectively.  These estimates include measurement errors, sample 

heterogeneity, carbonate ion effects and ice-volume effect uncertainty but ignore 

calibration errors which should be more constant downcore and changes in the S-δ18Osw 
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relationship, which on a regional and larger scale, should affect both species similarly.  

The introduction of glacial meltwater will result in light δ18Osw values and anomalously 

low salinities may be reconstructed. The import and subsequent melting of sea-ice south 

of Iceland will freshen the water column with only a minor change in δ18Osw; δ18Osw 

reconstructions may therefore underestimate the surface freshening.  Comparison 

between the G. bulloides and G. inflata data help constrain the relative changes through 

time. 
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Fig. 1. Map of study area with a schematic of the main features of the surface circulation 

in the northeast North Atlantic16.  Location of core RAPiD-12-1K (62o05.43’N, 

17o49.18W; 1938 m water depth) marked with a black circle.  Continuous arrows show 

the main branches of the North Atlantic Current: IC, Irminger Current, 1 Sv; FC, Faroe 

Current, 3.3 Sv; SC, Shetland Current, 3.7 Sv6 which draw water from the subpolar gyre 

(SPG) and subtropical gyre (STG).  Dashed lines show the East Greenland Current (EGC, 

at least 1.3 Sv across the ridge6) and the East Icelandic Current. 
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Fig. 2. Proxy records for RAPiD-12-1K.  Three-point running means shown in bold. (a) 

Mg/Ca-based temperatures and (b) Salinity estimates derived from paired Mg/Ca-δ18O, 

for near-surface (G. bulloides, red) and sub-thermocline (G. inflata, blue) waters. Also 

shown is a scale bar for δ18Osw values, corrected for whole ocean ice volume changes. (c, 

d) Proxies for upper water column stratification (stratification increases upwards) based 

on: (c) the δ18O difference between G. bulloides and G. inflata; (d) the inferred water 

density difference between G. bulloides and G. inflata, calculated using derived 

temperatures and salinities. 
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Fig. 3. Records of changing gyre properties. (a) Linear detrended temperature anomalies 

from the west coast of Africa (green line and circles)25.  Warmer temperatures are caused 

by either decreased upwelling or decreased advection of subpolar waters into the eastern 

Atlantic during weak subpolar gyre circulation. (b) Salinity estimates from G. inflata for 

RAPiD-12-1K (blue line and circles); and dinocyst assemblage salinity estimates from 

the central Labrador Sea (subpolar gyre)19 on a reversed axis (red squares; red triangles 

are outliers not included in the three point mean - red line).  Grey shaded regions are 

periods of global rapid climate change3. 

 


