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Abstract 

The mammalian utricle has shown limited capacity for spontaneous regeneration of hair 

cells within a damaged sensory epithelium. In vivo and in vitro exposure of the tissue to 

ototoxic aminoglycosides has been utilised to induce hair cell loss, in order to study 

these regenerative events. The mammalian utricle is believed to regenerate hair cells by 

the direct transdifferentiation of supporting cells without a mitotic event. The cellular 

and molecular mechanisms behind this regenerative capability continue to be the subject 

of inner ear research.   

The integrin family of cell surface receptors are known for their key role in cellular 

adhesion, both to the extracellular matrix and to neighbouring cells. Studies of integrins 

have shown that they are also involved in numerous cellular processes including 

proliferation, differentiation and migration. They are therefore a likely candidate for 

involvement in the cellular events which underlie the regenerative ability demonstrated 

by the mammalian utricle.  

This study has identified a subset of the mammalian integrin subunits as being present 

in the normal adult mouse utricle. The identification of these integrins was achieved by 

both degenerate PCR and qPCR screening of utricular cDNA. Through 

immunohistochemistry, β1 and α6 have been shown to localise at the basement 

membrane of normal utricular tissue. Integrins β3 and β5 appear to be expressed within 

vestibular hair cells. Integrins β1, αV, β5, β3 and α6 are also present within the 

mesenchyme.  

The utricular macula of adult mice was utilised as an in vitro model in order to induce 

hair cell loss by gentamicin treatment and investigate integrin expression in the utricle 

during this process and subsequent regeneration. Relative quantification of qPCR data 

has indicated that a number of integrins including β1, αV and β3 show an increase in 

expression level at 4 days post treatment. Immunohistochemistry shows some changes 

in integrin localisation between 4 and 21 days post-gentamicin.  
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1.1 Integrins 

Integrins are a family of cell-surface glycoproteins which are widely expressed in many 

different cell types. They are heterodimeric proteins, consisting of a non-covalently 

associated alpha subunit and beta subunit. The integrins and their homologs are well 

conserved across a broad range of organisms, both vertebrate and invertebrate; in 

Drosophila, homologs to the vertebrate integrins called position specific antigens exist 

as two ‘alpha’ subunits (PS1 and PS2) and just a single ‘beta’ subunit (PS3) which can 

associate with either of the alphas, resulting in two functional heterodimers 

(Marcantonio et al, 1988). In vertebrate species such as humans and mice, there are 

currently 18 known α subunits and 8 β subunits, however, not every α subunit possesses 

the ability to form a functional association with every β subunit (van der Flier et al, 

2001). At present, 24 different heterodimers are known to exist; some subunits, such as 

integrin αV (Itgav) and integrin β1 (Itgb1) are considered the most ‘prolific’ and are 

able to form numerous heterodimers, whereas most of the other known subunits are 

only present in one or two functional integrin proteins.  

This section of this chapter introduces the integrin family in terms of their structure and 

function. This thesis aims to investigate the presence of integrins in the murine 

vestibular system, a tissue known to be capable of a limited degree of spontaneous 

regeneration in response to damage induced by ototoxic aminoglycosides. The cellular 

mechanisms, signalling pathways and proteins which initiate and regulate this 

regenerative capacity, an ability which is lacking in the mammalian auditory epithelium, 

are the subject of ongoing research. As established from previous studies, the integrin 

family are known to be involved in numerous cellular processes including signalling, 

differentiation and cell adhesion, in addition to having been identified as playing a role 

in tissue repair and regeneration in other organ systems. The work carried out during 

this study is based upon the hypothesis that integrins could be considered, based upon 

this knowledge of their capabilities, as potentially being important molecules in the 

regeneration which occurs in the mouse utricular epithelium.  
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1.1.1 Integrin Structure and Ligand Binding 

Nomenclature 

The integrin family of cell adhesion molecules was so named due to their critical role in 

maintaining the ‘integrity’ of the adhesion  of cells to the extracellular matrix (ECM) 

and the interaction of this ECM with the intracellular cytoskeleton  (Hynes, 2004). 

Although linked by certain conserved DNA sequences in key functional areas, the 

integrins are a diverse protein family; many have previously been known by other 

names as they were first studied and categorised as separate groups of cell surface 

molecules by scientists working independently, before eventually being brought 

together under the integrin family.  

The names, including synonyms and previous names under alternative classification 

systems, of the currently known vertebrate integrin subunits are summarised in table 1-1 

and table 1-2. Many of the integrin subunits have also been named under the ‘cluster of 

differentiation/determinants’ or ‘CD’ classification system.  
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Protein Name Gene Name Synonyms 

 

Integrin α1 ITGA1 VLA1, CD49a 

   

Integrin α2 ITGA2 CD49b 

   

Integrin α2b ITGA2b CD41B, CD41 

   

Integrin α3 ITGA3 CD49c, VLA3a, VCA-2, GAP-B3 

   

Integrin α4 ITGA4 CD49d 

   

Integrin α5 ITGA5 CD49e 

   

Integrin α6 ITGA6 CD49f 

   

Integrin α7 ITGA7  

   

Integrin α8 ITGA8  

   

Integrin α9 ITGA9 RLC, ITGA4L, ALPHA-RLC 

   

Integrin α10 ITGA10  

   

Integrin α11 ITGA11 HsT18964 

   

Integrin αD ITGAD CD11d, αDβ2 

   

Integrin αE ITGAE CD103, HUMINAE 

   

Integrin αL ITGAL LFA-1 

   

Integrin αM ITGAM CD51 

   

Integrin αV ITGAV  

   

Integrin αX ITGAX CD11c 

 

Table 1-1 Nomenclature of Mammalian α Integrins 

This table summarises the 18 known mammalian integrin α subunits in terms of their protein 

name and abbreviated gene name. Many integrin subunits have been previously known by 

alternative names or synonyms, including different family classification systems. VLA = Very 

late activation antigen, CD = Cluster of differentiation/determinants antigen, VCA = Very 

common antigen, GAP = galactoprotein, RLC = regulatory light chain, LFA = lymphocyte 

function-associated antigen.     
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Protein Name Gene Name Synonyms 

 

Integrin β1 ITGB1 CD29, GPIIA 

   

Integrin β2 ITGB2 LFA-1, MAC-1 

   

Integrin β3 ITGB3 CD61, GPIIIa 

   

Integrin β4 ITGB4 CD104 

   

Integrin β5 ITGB5  

   

Integrin β6 ITGB6  

   

Integrin β7 ITGB7  

   

Integrin β8 ITGB8  

 

Table 1-2 Nomenclature of Mammalian Integrin β Subunits 

This table summarises the 8 known mammalian integrin β subunits in terms of their protein 

name and abbreviated gene name. GP = Glycoprotein, CD = Cluster of 

differentiation/determinants antigen, MAC = Macrophage antigen, LFA = lymphocyte function-

associated antigen.     
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Structure and Ligand Binding 

The 24 different combinations of α and β subunits (illustrated in figure 1-1) which 

produce a functional protein heterodimer confer ligand binding specificity to each 

individual integrin. Current work suggests that ligand specificity is highly dependent 

upon which α subunit is present (Mould et al., 2000), and that on this basis, the integrins 

can be divided into four main groups (as shown in figure 1-1), based upon their major 

ligand binding specificity and function; the laminin receptor integrins (those containing 

α3, α6 and α7), the collagen receptor integrins (those with an α1, α2, α10 or α11 

subunit) and the integrins which recognise a particular amino acid sequence known as 

RGD (Arg-Gly-Asp) found in ECM proteins such as fibronectin (Ruoslahti and 

Pierschbacher, 1987) i.e. those possessing an αIIb, α5, α8 or αV subunit. The remaining 

integrins (those which have an αL, αM, αX, αD, αE, α9 or α4 subunit) are those which 

are specifically expressed on cells of the haematopoietic system. Leucocyte-specific 

integrins are frequently involved in cell-cell adhesion, through molecules such as 

ICAMs and proteins found in blood plasma (van der Flier and Sonnenberg, 2001).  

The association of an α and β subunit creates an integrin heterodimer with a globular 

head domain; this is the region which binds ligands i.e. ECM components or cell 

surface molecules. The individual structural regions of a typical integrin heterodimer are 

shown in figure 1-2. Some of the integrin α subunits (α1, α2, α10, α11, αE, αD, αX, αM 

and αL) contain an additional insert within their extracellular head consisting of 200 

amino acids, which is not present in the other α integrins. This insert is known as the ‘I 

domain’(Colombatti et al., 1993), and it has been shown to contain a MIDAS motif 

(metal ion dependent adhesion site) which is able to bind Mg
2+

 ions (Lee et al., 1995). 

The I domain has been determined as having a key role in the ligand binding of those 

integrin heterodimers which include an I domain containing α subunit (Kanazashi et al., 

1997). All of the known mammalian integrin β subunits also contain a similar ‘I-like 

domain’ which features metal ion binding sites (Huang et al., 2000a) and is known to be 

an important part of the extracellular region of the heterodimer in terms of regulation of 

integrin activity (Takagi et al., 2002).  

The intracellular region of an integrin consists of a cytoplasmic tail. In most subunits, 

this region is relatively short (up to 50 AAs long), and it is through this that integrins 

are able to interact with the intracellular actin cytoskeleton via various β integrin 
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cytosplasmic-domain binding proteins (Liu et al., 2000) e.g. actin binding proteins such 

as talin or signalling molecules like FAK (focal adhesion kinase). The integrin β4 

subunit has a cytoplasmic tail which is considerably longer than that of other integrins, 

consisting of around 1000 AA (Tamura et al., 1990) . Integrin β4 is the only integrin 

subunit which interacts with intermediate filaments of the cytoskeleton, as opposed to 

actin filaments, and it is this longer tail region which allows this integrin subunit to 

interact with intermediate filaments at hemidesmosomes (Spinardi et al., 1993) as part 

of the α6β4 heterodimer.  

 

 

 

 

 

 

Figure 1-1 Mammalian Integrin Heterodimers and their Ligand Binding Properties  

Adapted from (Barczyk et al., 2010) The 24 known integrin heterodimers organised 

according to their ligand binding specificity. The integrin subunits which have previously 

been found in the mammalian inner ear are highlighted with references to these earlier 

studies. 

 



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 Integrin Structure  

Adapted from (Barczyk et al., 2010). Schematic diagram of an integrin heterodimer showing 

the different domains within each of the subunits. The alpha subunit has a β-propeller at the 

top of the ‘thigh’ and ‘calf’ domains – together with the β subunit  hybrid (H) domain, PSI 

domain and four EGF repeats, these features of integrin structure make up the extracellular 

head region which binds ligands. The αI domain present in some, but not all, alpha subunits, 

is inserted between two of the blades of the β-propeller. Both the α and β subunits also have 

a short cytoplasmic tail region which intracts with intracellular integrin-binding proteins. 
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1.1.2 Integrin Activation: ‘Inside-Out’ Signalling 

The ability of a given integrin heterodimer to bind with a known ligand is dependent on 

several factors, including whether the integrin is active and its current affinity state for 

that particular ligand. Integrins can be both activated and deactivated according to the 

adhesive requirements of a cell at a particular time. The most well-known example of 

integrin activation is of integrin αIIbβ3 on blood platelets (Kieffer and Phillips, 

1990).This integrin is critical for the process of forming blood clots following vascular 

injury; deficiency in either integrin αIIb or β3 in humans due to genetic mutation results 

in a bleeding disorder called Glanzmann thrombasthenia (Hodivala-Dilke et al., 1999) .  

Under normal conditions, αIIbβ3 is present at the cell surface in an inactivated form and 

it is therefore unable to bind its usual soluble ligands in this state. This inactive state 

prevents platelet aggregation and the potential for thrombosis which would occur if this 

integrin were to be constitutively active. Only when blood platelets are stimulated i.e. in 

response to wounding, is integrin αIIbβ3 activated and then able to bind ligands such as 

fibrinogen in order for platelets to aggregate and form a clot at the site of the injury 

(Phillips et al., 1991). Activation of integrins is believed to be achieved through a 

conformational change which takes place in the extracellular region of the protein. This 

shape change results in the exposition of integrin ligand binding sites (O'Toole et al., 

1994). This activation is triggered intracellularly (as shown in figure 1-3); a process 

widely described as ‘inside-out’ integrin signalling.  

The affinity of an integrin for its ligand binding partners also represents a key way in 

which integrin adhesion and signalling may be regulated. Signals via other cell surface 

receptors are able to alter the affinity state of integrins for their respective ligands 

through the induction of a conformational change in the extracellular domain of the 

heterodimer. This so called ‘inside-out signalling’ is the primary method via which 

integrins are activated. Inside-out signalling of integrins represents a vital method of 

regulating integrin activity, preventing pathologies which could arise from unwanted 

binding of integrins to their ligands.  

The extracellular shape change exhibited by integrins on activation, has been 

determined as being induced by an initial alteration in the intracellular region of the 

integrin heterodimer. In the integrin receptor low-affinity state, the cytoplasmic tails of 

the α and β subunits are ‘clasped’ together (Vinogradova et al., 2002). Disruption of this 
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association, leads to ‘unclasping’ of the cytoplasmic tails which then become embedded 

in the plasma membrane (Kim et al., 2003; Vinogradova et al., 2004), and it is this 

intracellular event which is believed to be the trigger for the change in conformation 

exhibited by the extracellular head region.  

The extracellular head of an integrin has been shown to exist in one of three possible 

conformational states (Takagi et al., 2002) which are shown in figure 1-3. The low-

affinity state for inactive integrins on the cell surface is a bent state, where the globular 

head is in close proximity to the cell membrane (Xiong et al., 2002), a position which is 

not conducive to ligand binding. Inside-out and outside-in integrin signalling pathways 

are able to trigger a conformational change, resulting in both the extension of the head-

piece and also an ‘opening’ of the globular head domain to reveal ligand binding and 

recognition sites (Takagi et al., 2002). This structural rearrangement from a low to a 

high-affinity state is referred to as the ‘switchblade model’ of integrin activation (Xiong 

et al., 2003). 

The key intracellular integrin-binding protein which is involved in triggering these 

conformational changes is talin. In its active form, talin is able to bind the cytoplasmic 

tail of β integrins through its F3 domain (as shown in figure 1-3), and acts as the final 

molecule of intracellular signalling cascades which are responsible for the activation of 

integrins (Wegener et al., 2007).  More recently, additional integrin binding proteins 

known as kindlins have also been shown to be able to interact with integrin cytoplasmic 

tails in a similar manner to talin (Ma et al., 2008). Kindlins promote the effects of talin 

binding in the integrin activation process; the presence of talin alone is not sufficient to 

alter the extracellular conformation to that of the high affinity state (Moser et al., 2008). 

The changes observed in integrin affinity-state have been shown to be reversible; 

conformational changes in the extracellular structure of integrins therefore represent a 

key method for the regulation of their activity and ligand binding properties.   
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1.1.3 Integrin Signalling: ‘Outside-In’ 

The integrin family of cell surface receptors are capable of bi-directional signalling, 

forming a link between the extracellular and intracellular environment of a cell. In 

addition to inside-out activation of integrins, these proteins are also involved in many 

intracellular signalling pathways which are stimulated through extracellular binding of 

integrin ligands; referred to as ‘outside-in’ signalling. 

 

 

 

 

Figure 1-3 Integrin Conformational States: Inside-Out Activation 

Adapted from (Al-Jamal and Harrison, 2008; Wang, 2012).  When an integrin heterodimer 

is in its ‘inactive’ state, the extracellular head region is in a closed, ‘bent’ conformation; the 

integrin in this state has a low affinity for its ligand binding partners (Xiong et al., 2002). 

On delivery of an intracellular activation signal, the protein talin is able to bind to the 

cytoplasmic tail region of the integrin β subunit (Wegener et al., 2007).  Talin binding 

causes the integrin α and β tails to move further apart at the membrane and results in a 

conformation change in the integrin extracellular head. Activation of an integrin results in a 

‘switchblade’ like extension of the head region which also opens and exposes ligand binding 

sites (Xiong et al., 2003). In this conformational state, the integrin is said to be ‘active’ and 

has a high affinity for its ligand binding partners. 
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Outside-in signalling, whereby integrin ligand binding brings about changes in the 

intracellular environment of a cell, is involved in the remodelling of the cytoskeleton 

and formation of intracellular protein complexes. Integrins play a role in numerous 

cellular processes through this method of signal transduction; they are able to influence 

the cell cycle, modify cell morphology and alter the location of a cell through migration. 

For the purpose of this thesis, the intracellular responses induced by ligand binding are 

described in terms of the formation of cellular adhesion structures and cell shape 

changes, since these are of particular interest with regards to the potential role of 

integrins in the vestibular epithelium.  

1.1.4 Integrins and Cell Adhesion 

The integrin family of proteins is best known as being a group of cell adhesion 

molecules. Spanning the plasma membrane, integrins constitute a direct linkage 

between the extracellular environment e.g. the ECM or adjacent cells within a tissue, 

and the intracellular cytoskeleton, in particular actin filaments. The binding of integrins 

to ligands which are ECM components, such as collagens and laminins, triggers the 

formation of specialised adhesive structures known as focal adhesions.  

Focal Adhesions 

Focal adhesions are complex structures which provide a linkage between the 

extracellular matrix and the intracellular actin cytoskeleton, mediated by members of 

the integrin receptor family. In addition to acting as anchoring junctions, adhering cells 

to the ECM, focal adhesions are also linked to integrin-mediated ‘outside-in’ signalling 

pathways. The assembly of focal adhesions is shown in figure 1-4. 

 

At focal adhesions, integrin heterodimers which are bound to ECM ligands cluster at the 

plasma membrane (Cluzel et al., 2005). As described in 1.2, the cytoplasmic tail regions 

of integrins are able to associate with numerous intracellular integrin binding proteins 

such as talin (which may act as an inside-out activator of integrins); particular integrin α 

subunit tail regions associate with another integrin-binding protein, paxillin (Liu et al., 

1999). The linkage of the actin cytoskeleton to integrins may be directly mediated by 

some integrin-binding proteins which are also able to associate with actin filaments e.g. 

tensin (Lo et al., 1994; Miyamoto et al., 1995a).  
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Focal adhesion kinase (FAK) is another key constituent of focal adhesions – it is a 

tyrosine kinase which is recruited to the focal adhesion by associating with talin, and is 

thought to be activated via integrins (Chen et al., 1995). Clustering and activation of  

FAK triggers the recruitment of other downstream signalling molecules (Hanks and 

Polte, 1997)such as Src (Fincham et al., 2000), vinculin and α-actinin. This 

phosphorylation cascade leads to the activation of multiple signalling pathways i.e. 

ERK and JNK (Miyamoto et al., 1995b), in addition to interaction with the actin 

cytoskeleton. It is this integrin-dependent signalling cascade (illustrated in figure 1-5) 

which results in cytoskeletal remodelling and translocation of signalling molecules to 

the nucleus to effect further downstream changes within a cell – focal adhesion are thus 

able to act as an anchorage junction between a cell and the extracellular matrix, but are 

also important for in integrin-mediated ‘outside-in’ signalling pathways. Focal 

adhesions are highly dynamic structures, with as many as 50 proteins known to 

associate with the intracellular protein complex; they undergo constant changes of the 

downstream protein constituents. The dynamic nature of these adhesions is particularly 

important for cell migration, where new adhesive contacts are formed at the leading 

edge of the migrating cell, whilst the old anchorages dissociate, in addition to re-

modelling of the actin cytoskeleton.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 Assembly of Focal Adhesions  

Adapted from (Mitra et al., 2005).  This figure summarises some of the key constituents of 

focal adhesion complexes. (A) Binding of integrins to extracellular matrix ligands leads to 

clustering of integrin heterodimers. (B) Integrin binding proteins such as paxillin and talin  

(Chen et al., 1995) are able to associate with integrin cytoplasmic tails; these proteins are 

able to recruit focal adhesion kinase (FAK) (Hildebrand et al., 1995) . (C) FAK is a tyrosine 

kinase and its recruitment to focal adhesions initiates a phosphorylation cascade which in 

turn recruits further downstream proteins such as Src, vinculin and α-actinin. (D) Proteins 

such as α-actinin are able to bind actin filaments, thus forming a linkage between the ECM 

and the intracellular cytoskeleton via integrin receptors.   
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Hemidesmosomes 

The α6β4 integrin heterodimer is unique amongst the integrin receptors, since it 

interacts with intermediate filaments, as opposed to the actin cytoskeleton. This integrin 

is a key component of hemidesmosomes, specialised adhesive complexes (shown in 

figure 1-5), which are found in epithelial tissues such as the skin epidermis (Stepp et al., 

1990). The integrin β4 subunit, which binds extracellularly to laminin-5, is crucial for 

the initiation of hemidesmosome formation (Schaapveld et al., 1998), with plectin, 

BP230 and BP180 accessory proteins forming the link between the integrin heterodimer 

and intermediate filaments (Koster et al., 2003); the structure of hemidesmosomes is 

illustrated in figure 1-5. The skin blistering disorder junctional epidermolysis bullosa, 

which causes separation of the dermal and epidermal layers of the skin, has been linked 

to mutation and deficiency in the integrin β4 (Jonkman et al., 2002; Niessen et al., 1996) 

and α6 (Pulkkinen et al., 1997) subunits in humans, emphasising the importance of 

integrin α6β4 in hemidesmosome structure and function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5 Structure of Hemidesmosomes in the Skin Epidermis 

From (Zahreddine et al., 2010). Hemidesmosomes are specialised adhesive complexes 

which are critical for maintaining the integrity of skin epidermis. Hemidesmosomes link 

laminin-5-containing extracellular matrix with intracellular intermediate filaments. Integrin 

α6β4 is the key transmembrane protein which binds laminin-5 extracellularly, and through 

recruitment of the accessory proteins plectin, BP180 and BP230, forms an intracellular 

linkage with the intermediate filaments of the cell cytoskeleton.  
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Integrin Adhesion: Proliferation and Cell Death 

Binding of the extracellular matrix by integrins has the ability to influence numerous 

cellular events by way of the downstream signalling pathways integrins are linked to i.e. 

proliferation, cell death, migration and phagocytosis. Proliferation of cells is a process 

which must be tightly regulated; many tumours result as a consequence of proliferation 

control defects. One way in which this event may be regulated is through cellular 

adhesion to the extracellular matrix. Ligand binding by numerous integrins has been 

described as activating a number of proliferative signalling pathways. They are known 

to act cooperatively with receptor tyrosine kinases (RTKs) to control signalling 

pathways that regulate G1 cell cycle phase cyclin-dependent kinases (CDKs) – loss of 

cell adhesion is known to halt the cell cycle at the G1 phase (Schwartz and Assoian, 

2001). Integrins are also believed to trigger activation of the PI-3K and MAPK cascades 

(Montcouquiol and Corwin, 2001). In addition to being involved in proliferation, 

integrins are also now thought to play a role in cell death, a process known as integrin-

mediated death (IMD). This process occurs as a result of un-ligated integrins being able 

to recruit and activate caspase-8 to induce apoptotic cell death (Stupack et al., 2001).   

1.1.5 Integrins in Repair, Regeneration and Wound Healing 

Due to their involvement in numerous cellular events such as proliferation, migration 

and adhesion, integrins have been shown to be important in numerous organ systems for 

the repair and regeneration of damaged tissue.  

Wound healing of lesions in the skin has been shown to involve several different 

integrin heterodimers in the process of wound closure. After initial blood clot formation 

and deposition of a provisional matrix rich in the protein fibronectin within the wound 

site (Clark, 1990), skin lesions undergo reepithelialisation, whereby keratinocytes 

migrate into the wound space. In order achieve this, basal keratinocytes at the periphery 

of the wound must dissolve their linkages with the adhesive structures which anchor 

them to the basal lamina e.g. hemidesmosomes (Litjens et al., 2006; Mercurio et al., 

2001). The mechanisms involved in this disassembly are not fully understood, but are 

thought to involve phosphorylation of integrin β4, the integrin β subunit constituent of 

hemidesmosomes (Germain et al., 2009; Kashyap et al., 2011). Several integrins are 

known to be expressed in normal skin tissue by keratinocytes, including α2β1, α3β1 and 

αVβ5 (Marchisio et al., 1991; Peltonen et al., 1989), in addition to the hemidesmosomal 
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integrin α6β4 as described in 1.1.2. The cellular mechanisms which underlie the 

migration of cells in the wounded region are complex and not fully understood, 

however studies have shown that integrin β1 is particularly crucial for proper migration 

of both keratinocytes and fibroblasts (Grose et al., 2002; Liu et al., 2010). Fibroblast 

migration into the wound site is important for wound contractility, a process which 

brings the wound edges closer together, facilitating the reepithelialisation process 

(Grinnell, 1994). 

Previous studies have shown that keratinocytes which lack the integrin β1 subunit show 

reduced migratory capability, believed to be the result of their inability to bind dermal 

matrix ligands deposited in the wound site. The function of integrin β1 in this process is 

believed to be dependent upon the TGF-β signalling pathway; TGF-β1 has been shown 

to be involved in the regulation of the reepithelialisation stage of cutaneous wound 

healing (Singer and Clark, 1999).The phenotype of mice with a fibroblast-specific 

deletion of  integrin β1 – these mice showed delayed reepithelialisation of skin wounds, 

was found to be rescued by the addition of exogenous active TGFβ1 (Liu et al., 2010). 

Epithelial integrins of the skin have also been shown to alter their expression and 

localisation during cutaneous wound healing.  Integrins α2, α3, α6 and β1 are localised 

to the basal layer of the skin in normal tissue, however, following injury, these integrins 

become detectable in the suprabasal layers of the epidermis during wound healing 

(Cavani et al., 1993; Hertle et al., 1992). It is this alteration in both the type of integrins 

expressed on basal keratinocytes and of their cellular localisation, which allows these 

cells to become migratory and to utilise fibronectin within the temporarily deposited 

wound site matrix to ‘crawl’ and reepithelialise the lesion (Cavani et al., 1993; Martin, 

1997).  

The epithelia of the cornea express a similar cohort of integrins as shown by the 

epithelial layers of the skin (Stepp et al., 1993) i.e. α2, α3 and β1. Wounding of the 

corneal epithelium is repaired in a similar way to that observed in skin lesions, and 

integrins such as α5β1 (Murakami et al., 1992) and α9 (Stepp and Zhu, 1997) have been 

shown to have increased expression in migrating  corneal epithelial cells as they move 

into the lesion.  

These findings support the idea that members of the integrin family are involved in this 

type of tissue repair involving proliferation and migration of cells into a lesion in 
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several epithelial tissues. Based upon this knowledge of the behaviour and capabilities 

of integrins in the regeneration of other epithelia, the work carried out in this thesis set 

out to investigate the expression of members of the integrin family within the vestibular 

epithelium of the mouse inner ear. 

1.2 The Mammalian Inner Ear 

Responsible for the detection of sound and movement, the specialised auditory and 

vestibular systems within the mammalian ear are capable of transmitting the 

information received through sound and motion stimuli as electrical impulses to the 

centres of the brain dedicated to the processing of such signals. This chapter will 

introduce and summarise the structure and function of the mammalian organ of Corti – 

the auditory epithelium, and will subsequently focus upon the vestibular sensory 

epithelium, principally the mammalian utricle and its capacity for hair cell regeneration, 

as the model tissue studied throughout this project. 

Both the auditory and vestibular structures of the ear utilise mechanosensory hair cells 

within a specialised sensory epithelium. Hair cells are present within the organ of Corti, 

the utricle and saccule (the two otolith organs of the vestibular system) and the cristae 

ampullaris located with the semi-circular canals of the labyrinth. 

1.2.1 The Mammalian Auditory System 

The mammalian auditory system is divided into three distinct regions; the outer ear, 

middle ear and inner ear. The outer ear consists of the ear canal and the external pinna 

or auricle which directs sound stimuli into the ear canal. Many mammalian species are 

able to manipulate the position of their pinnae, moving them independently of one 

another e.g. horses, cats and mice among others, in order to locate the source of the 

auditory stimulus. On reaching the ear drum, also known as the tympanic membrane, 

sound waves enter the structures of the middle ear. Oscillation of the tympanic 

membrane triggered by sound waves is conducted through the three tiny ear bones, the 

malleus, incus and stapes, to the fluid which fills the cochlea via the oval window. The 

inner ear constitutes both the auditory and vestibular organs. The organ of Corti, the 

specialised auditory epithelium, is found within the cochlea, a coiled, fluid-filled bony 

tube, which is divided by membranes into three separate compartments. 
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The organ of Corti is supported by the basilar membrane which lies beneath it; the 

organ of Corti is located within the central compartment of the cochlear duct – the scala 

media, which is situated between the scala vestibuli and the scala tympani as shown in 

figure 1-6. There are two types of mechanosensory hair cells within the auditory 

epithelium, known as inner and outer hair cells. They exist in the organ of Corti as a 

single row of inner hair cells and three rows of outer hair cells (as illustrated in figure 1-

7), surrounded by several types of supporting cells; such as the inner and outer pillar 

cells and Deiters’ cells (Lim, 1986). It is these supporting cells which are in direct 

contact at their basal surface with the basilar membrane. Both inner and outer hair cells 

possess structures known as stereocilia on their apical surfaces. Stereocilia are 

constructed of parallel arrays of actin filaments (Flock and Cheung, 1977; Tilney et al., 

1980), which are cross-linked to provide structural integrity by actin-bundling proteins 

such as fimbrin (Tilney et al., 1989) and espin (Sekerkova et al., 2011). Stereocilia are 

anchored at the hair cell apical surface within an actin-dense region known as the 

cuticular plate. In the organ of Corti, stereocilia are arranged in ordered rows on the 

apices of hair cells, forming a staircase-like arrangement whereby the rows of 

stereocilia are of increasing height; adjacent rows are connected by structures known as 

tip-links (Pickles et al., 1984).  Outer hair cell stereocilia rows are highly organised into 

a ‘V’ or ‘W’ shape on the apical surface, whilst inner hair cell stereocilia form rows 

which are straighter and appear less organised, exhibiting a gently curved, open ‘V’ or 

‘W’-shaped arrangement. (Hackney and Furness, 1995). Detection of auditory stimuli is 

conducted by inner hair cells; the function of outer hair cells lies with sound 

amplification (Ashmore, 1987) . 

The tectorial membrane, a structure which is made up of several types of collagen and 

other extracellular matrix proteins (Richardson et al., 1987) lies above the auditory 

epithelium and this plays a crucial role in the mechanosensory function of the organ of 

Corti; the tallest stereocilia of outer hair cells are embedded in the tectorial membrane at 

their tips (Kimura, 1966; Lim, 1972). When acoustic stimulation occurs, the 

propagation of sound waves by fluid motion through to the inner ear, causes oscillation 

of the basilar membrane upon which the organ of Corti sits. This oscillatory movement 

at the basilar membrane results in a shearing motion of the apical hair bundles against 

the tectorial membrane, and causes deflection of the stereocilia towards the tallest row 

in the staircase. Deflection of hair bundles results in the opening of mechanosensitive 
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ion transduction channels, allowing an influx of cations – primarily K
+
 ions of the 

endolymphatic fluid which bathes the hair cell apices. This influx is driven by the 

endocochlear potential of the endolymph – which has a high positive charge of around -

80 to 100mV in comparison to the potential of the perilymph. The high concentration of  

K
+
 ions within the endolymphatic fluid is actively maintained by the stria vascularis 

(Tasaki and Spyropoulos, 1959) through the presence of tight junctions and the K+ ion 

channel Kir4.1 (Marcus et al., 2002; Takeuchi et al., 2000). The cation influx driven by 

this ion concentration gradient results in a depolarisation of the hair cell membrane, 

which in turn, triggers the opening of baso-lateral voltage dependent Ca
2+

 channels. The 

opening of these channels leads to an influx of calcium into the hair cell, and results 

ultimately in the release of glutamate, a neurotransmitter at the base of the hair cell 

which is in contact with afferent auditory neurons. Action potentials are relayed via 

these nerve fibres to the auditory cortex of the brain for processing of the stimulus. The 

mechanotransductive capabilities of auditory hair cells are reviewed in depth by 

(Hudspeth, 2001)  
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Figure 1-6 Location of the Organ of Corti within the Cochlea  

The mammalian auditory epithelium, the organ of Corti, is found within the coiled cochlea 

of the inner ear. The cochlear duct is divided by membranes into three compartments (bold 

typeface); the scala vestibuli, the scala media and the scala tympani. The organ of Corti is 

situated on top of the basilar membrane within the scala media.  
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Figure 1-7 Structure of the Organ of Corti  

The organ of Corti lies on top of the basilar membrane and consists of one row of inner hair cells and three rows of outer hair cells. Both types of hair cell, 

which have a mechanosensory function, have hair-like projections on their apical surface called stereocilia. Hair cells are surrounded by several different 

types of supporting cell e.g. Dieters’ cells, which provide structural support, as well as having a key homeostatic function to maintain the optimum 

physiological environment for hair cells. Overlying the auditory hair cells is the tectorial membrane which is involved in the creation of mechanical 

shearing and deflection of stereocilia. The coloured regions highlight areas of the auditory epithelium where integrin proteins might be expected to be 

present e.g. blood capillaries (red), the basement membrane of the basilar membrane (green) and the interface with the base of supporting cells (yellow). 

Integrin αV was localised to supporting cell regions in contact with the basement membrane of the basilar membrane in the chinchilla cochlea (Tsuprun 

and Santi, 1999). 
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The mechanosensory hair cells of the mammalian inner ear are susceptible to damage, 

which may be induced by numerous factors including ototoxic drugs i.e. 

aminoglycoside antibiotics, in addition to ageing and noise exposure, resulting in both 

hearing and balance impairments. There are also numerous genetic mutations of 

proteins which are critical for the development and function of the inner ear which are 

the cause of many congenital hearing disorders e.g. mutations of multiple genes 

including cadherin 23 (Bolz et al., 2001) and myosin Viia (Weil et al., 1995) are known 

to underlie the deaf-blind disorder known as Usher’s syndrome. Unlike the auditory 

systems of birds and amphibians, the mammalian auditory epithelium is unable to 

regenerate lost hair cells and therefore humans and other mammalian species, are 

subject to permanent hearing loss. The mammalian vestibular epithelium has been 

shown to be capable of a limited degree of spontaneous hair cell regeneration, raising 

the question of what are the differences between auditory and vestibular hair cells and 

the epithelia within which they exists which allows vestibular hair cells to regenerate 

where auditory hair cells cannot.  

1.2.2 The Mammalian Vestibular System 

The mammalian vestibular system (illustrated in figure 1-8) consists of two main 

anatomical features; a system of semi-circular canals and several otolith organs. There 

are three semi-circular canals, the anterior, posterior and horizontal canals, each filled 

with endolymphatic fluid – they are involved in the detection of rotational movement. 

Each canal has a crista ampullaris at its base; cristae are covered in sensory hair cells, 

over which lies a structure known as the cupula. Sensory function is achieved as the 

movement of endolymph fluid within the semi-circular canal pushes on the cupula, 

which acts in a similar manner to the tectorial membrane in the organ of Corti, 

generating a mechanical shearing motion which results in the deflection of hair bundles 

of the cristae (Dohlman, 1969; Dohlman, 1981; Takumida, 2001). 
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Figure 1-8 Anatomy of the Mammalian Vestibular System 

Adapted from (Retzius, 1887). The mammalian vestibular system consists of three semi-

circular canals, the region of the vestibular system which detects rotational movement. At 

the base of each canal is an ampulla, containing a hair cell covered crista. The otolith 

organs, the utricle and saccule, both feature a sensory epithelium made up of vestibular hair 

cells and supporting cells, with the utricle being the larger of the two organs. The utricular 

and saccular maculae are responsible for the detection of linear acceleration and head tilts.  
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Collectively known as the otolith organs, the utricle and saccule are fluid-filled sacs, 

each with a specialised sensory macula. Overlying the sensory epithelia of these balance 

organs is the otolithic membrane, on the surface of which sit the otoconia – calcium 

carbonate crystals (Kachar et al., 1990). The otolith organs are both involved in the 

detection of linear acceleration and head tilts; the weight of the otoconia means that 

their movement due to gravitational effects creates mechanical shearing between the 

otolithic membrane and the macula beneath, resulting in deflection of vestibular hair 

bundles.    

The model tissue for the work carried out in this thesis was the adult mouse utricular 

macula. The utricular sensory epithelium is made up of two types of vestibular hair cells 

known as type I and type II hair cells (shown in figure 1-9). Type I vestibular hair cells 

are ‘bottle-shaped,’ and their cell body is completely surrounded by an afferent cup-like 

neural calyx. Type II hair cells have a more typically epithelial columnar shape and are 

innervated by bouton synapses at the base of the cell (Wersall, 1956). Surrounding the 

vestibular hair cells within the sensory epithelium are supporting cells; these cells are in 

contact with the basement membrane at their base and extend all the way to the apex of 

the epithelium. The apical surfaces of supporting cells are covered in microvilli.  

Vestibular hair cell stereocilia are arranged on the apical surface in rows of ascending 

height as also seen in auditory hair cells, but they are not organised in a ‘W’ or ‘V’ 

shape, instead appearing as a bundle which covers much of the apical surface of the cell. 

Vestibular hair bundles also have a kinocilium adjacent to the tallest row of stereocilia. 

The kinocilium, a special type of primary cilium, exhibits a typical ‘9+2’ arrangement 

of microtubules within its cytoskeletal core (Erkman et al., 1996). Type I hair bundles 

are typically taller than their counterparts on type II hair cells; there is also variation 

between bundles arrangement -  there are two formations, one ‘tight,’ the other ‘loose’ 

(Bagger-Sjoback and Takumida, 1988; Lapeyre et al., 1992). The utricular epithelial 

surface features a crescent-shaped region known as the striola. The striola represents the 

polarity of the vestibular hair bundles; in the utricle, stereocilia are oriented by way of 

their kinocilia (Denman-Johnson and Forge, 1999) facing towards the striola (shown in 

figure 1-10). This means that there is a change in the polarity of utricular hair cells 

dependent upon their location with respect to the striola – this enables the utricle to 

detect linear accelerations in different directions since some hair cells will be 

depolarised and others hyperpolarised according to the type of movement experienced.  
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Figure 1-9 Two Types of Hair Cell within the Utricular Sensory Epithelium  

Adapted from (Beckingham et al., 2005). There are two distinct types of vestibular hair cells 

within the utricular sensory epithelium. Type I hair cells (labelled ‘I’) are ‘flask’ shaped; 

their cell body is completely surrounded by an afferent neural calyx. In contrast, type II hair 

cells (labelled ‘II’) are a more typical columnar shape. The afferent synapses for type II hair 

cells are bouton synapses at the base of the cell body (Wersall, 1956). This figure indicates 

regions of the vestibular hair cells where integrin α8 was detected (green) in the late 

embryonic/early postnatal mouse (Littlewood Evans and Muller, 2000). The regions in red 

highlight areas of the vestibular epithelium where integrins would be hypothesised to 

localise e.g. the interface between the supporting cells and the basement membrane, in 

addition to that between the basement membrane and the mesenchymal tissue beneath the 

epithelium. EFF = efferent neuron, AFF = Afferent neuron. 
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1.2.3 Integrins and the Inner Ear 

A search of previously published literature reveals that relatively little is known about 

integrin expression in the inner ear, particularly with regards to the vestibular sensory 

epithelium. Much of the work carried out on integrins within the inner ear is related to 

changes in expression during mouse inner ear development at embryonic and very early 

postnatal stages, and does not examine integrin expression in the mature adult tissue. 

Changes in integrin expression during development are thought to be mediated by 

changes in cell-cell and cell-ECM adhesions. Previous work has investigated the 

Figure 1-10 Hair Cell Polarity and the Striola of Vestibular Otolith Organs 

Adapted from (Fitzpatrick and Day, 2004). The striola of the utricle divides the macula into 

two regions of opposing hair bundle polarity. In the utricle, stereocilia are oriented with 

their kinocilia (adjacent to the tallest row of stereocilia) facing towards the striola (Denman-

Johnson and Forge, 1999). In the other otolith organ, the saccule, hair bundles are instead 

oriented so that their kinocilia face away from the striola. This figure also illustrates how 

accelerative motion in one direct results in the movement of the otoconia in the opposite 

direction, leading to the deflection of the stereocilia towards the kinocilium. 
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alteration in expression of several integrin subunits, namely α6, α3 and β4 (Davies and 

Holley, 2002). Both α3 and α6 are expressed in the epithelial layers of the developing 

otocysts in E10.5 mouse tissue. The expression of α6 was shown to be concentrated in 

an atrioventral region of this epithelial layer, in addition to being expressed in cells 

which go on to form the cochlear ganglion. By E12.5, the expression pattern of both of 

these α integrin subunits is altered, with α6 becoming more restricted in distribution to 

pro-sensory regions of the epithelia and neural processes originating from the cochlear-

vestibular ganglion. Integrin α3 is at this stage expressed in regions of the epithelium 

adjacent to those which are pro-sensory and expressing α6. This expression pattern is 

then maintained from this stage onwards until birth, whereupon a second spatio-

temporal alteration in integrin expression occurs. Between birth and P6, α3 expression 

is up-regulated, whilst α6 expression is down-regulated in both the auditory and 

vestibular sensory epithelia. Immunolocalisation of β4, which did not show the same 

expression pattern changes as α6, being expressed in epithelial-mesenchymal borders 

throughout murine development, determined that the integrin heterodimer present must 

be α6β1. In the utricle at P0, β4 was expressed in cells underneath the sensory 

epithelium at the basement membrane-epithelium border, whereas α6 was also present 

in the supporting and hair cell layer (Davies et al., 2007). Integrins αV and β1 have been 

detected in the chinchilla cochlea at regions of supporting cell contact with the 

basement membrane (Tsuprun and Santi, 1999).  

Four integrin subunits, α6, αV, β1 and β3, have been detected by a previous study in 

OC2 cells (Brunetta et al., 2012), a cell line derived from immortalised inner ear cells 

from the E13 mouse (Rivolta et al., 1998). In this study, integrin β3 was shown to 

increase in expression level after OC2 cells were induced to differentiate (when they 

begin to express several hair cell marker proteins) by increasing the incubation 

temperature at which they were maintained in vitro. Over-expression of integrin β3 in 

these OC2 cells in their undifferentiated state was able to induce expression of myosin 

Viia. This result suggests that integrin β3 was able to induce OC2 cells to differentiate 

and potentially implicates a role for integrins in the cellular cues which underlie the 

signals required to induce a hair cell progenitor to proceed along a differentiation 

pathway towards becoming a hair cell. This previous work therefore suggests that there 

may be several different integrins present in auditory hair cells, and that integrins might 

be involved in the differentiation of hair cells during development.  
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One particular integrin heterodimer, namely α8β1, has been implicated as the cause of 

balance defects in a knock-out mouse model (Littlewood Evans and Muller, 2000). 

Mice which lack integrin α8 usually die shortly after birth due to kidney defects (Muller 

et al., 1997), but of those which survive, balance defect phenotypes have been observed. 

Electron microscopy of tissue from α8 knock-out mice with balance problems showed 

evidence of vestibular hair cells with cytoplasmic herniations and stereocilia 

abnormalities. Some normal stereocilia were also present, but often the kinocillium was 

observed to be fused with the surrounding stereocilia. In this previous study α8β1, FAK 

(focal adhesion kinase) and fibronectin have been shown to co-localise at the apical 

surface of hair cells in the utricular sensory epithelium of normal mice. Since a lack of 

integrin α8 results in stereocilia defects, it has been suggested that α8β1 may be 

responsible for organisation of the actin cytoskeleton at the hair cell apical surface, in 

conjunction with ECM components, such as fibronectin, thereby playing a role in the 

initiation of hair bundle formation (Littlewood Evans and Muller, 2000). This previous 

work also used in situ hybridization to look at the localisation of integrin α8 mRNA and 

several other subunits within the mouse utricle. Integrin α8 mRNA was observed to be 

localised at the apical surface of hair cells (immunohistochemistry was used to localise 

integrin α8 protein and showed similar apical localisation); mRNA for αV, α2 and β1 

was distributed throughout the hair cell body.  Immunohistochemistry was not carried 

out in this previous work however, to determine whether the mRNA distribution 

observed correlates with a similar pattern of integrin protein expression. This thesis 

aims to investigate the expression of integrins, including those such as α8 which have 

been previously found in the mammalian utricle, in order to determine the full cohort of 

integrin subunits expressed in the mature murine vestibular epithelium. 

1.2.4 Regeneration & Repair in the Mammalian Utricle 

Non-mammalian vertebrate species, such as birds, amphibians, reptiles and fish are 

capable of fully regenerating sensory hair cells which have been lost due to noise 

damage or exposure to ototoxic drugs. The sensory epithelia of the inner ear and the 

lateral lines of fish (Corwin, 1981)and amphibians (Corwin, 1985) are continuously 

renewed throughout the lifetime of the organism. In avian species, the auditory 

epithelium, populated with two different types of hair cell surrounded by supporting 

cells, is known as the basilar papilla. The mature avian auditory epithelium is capable of 
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regenerating hair cells, but only as a response to hair cell loss induced by acoustic 

trauma or exposure to ototoxic agents (Corwin and Cotanche, 1988; Oesterle et al., 

1993; Ryals and Rubel, 1988). In the avian vestibular system, the utricular macula has 

been shown to be capable of continuous turnover of hair cells (Jorgensen and 

Mathiesen, 1988; Roberson et al., 1992), in addition to its ability to regenerate 

vestibular hair cells where hair cell loss has been induced by noise damage or 

aminoglycoside ototoxicity (Weisleder and Rubel, 1993). Regeneration in the avian 

inner ear has been demonstrated to occur in two different ways. New hair cells may be 

produced through proliferation and mitotic division of the supporting cells and the 

differentiation of their progeny into sensory hair cells (Stone and Rubel, 2000; Warchol 

and Corwin, 1996). Alternatively, hair cells may be replaced via a direct phenotypic 

conversion, known as transdifferentiation i.e. a supporting cell re-differentiates as a hair 

cell without undergoing cell division (Adler and Raphael, 1996; Roberson et al., 1996). 

In contrast to the regenerative abilities demonstrated by the sensory epithelia of other 

vertebrates, the mature organ of Corti is unable to repair or replace dead or damaged 

hair cells. Within the mammalian vestibular system, however, the adult utricle has 

demonstrated that it is capable of a limited degree of hair cell regeneration in response 

to damage induced by exposure to ototoxic drugs. Studies of the mammalian vestibular 

epithelium and its regenerative capacity have been carried out in several species 

including chinchilla (Lopez et al., 1997), guinea pig (Forge et al., 1993), mouse 

(Kawamoto et al., 2009) and humans (Warchol et al., 1993). In vivo  studies have shown 

that following gentamicin treatment, few hair cells remain in the mouse utricular 

epithelium by 7 days post drug exposure (Kawamoto et al., 2009). 

Following exposure to ototoxic aminoglycosides, the vestibular sensory epithelium 

exhibits a high degree of hair cell loss, with epithelia treated in vivo typically showing a 

more complete loss of hair cells than cultured utricular tissue. Hair cell death in utricles 

maintained in vitro and exposed to aminoglycosides is believed to occur predominantly 

through apoptosis (Cunningham et al., 2002; Forge and Li, 2000; Lang and Liu, 1997); 

utricular cultures treated with aminoglycosides in the presence of a caspase inhibitor 

(caspases are proteases involved in apoptotic cell death) was able to prevent hair cell 

death by apoptosis (Forge and Li, 2000; Matsui et al., 2002). Supporting cells of the 

vestibular epithelium have been observed to undergo considerable shape change in 

damaged tissue – at sites of hair cell loss, neighbouring supporting cells (as many as 5 
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supporting cells have been shown to participate) extend apical processes which fill the 

space in the epithelium created by the loss of a hair cell, forming a scar (Meiteles and 

Raphael, 1994). Fragments of dead hair cells remaining within the hair cell layer of the 

epithelium may also be ‘sealed over’ by the spreading behaviour of supporting cells. 

Hair cells which have been irreparably damaged may also be removed intact from the 

epithelium by extrusion at the apical surface  (Li et al., 1995); tight junctions between 

the hair cell and the surrounding supporting cells maintain the cell being extruded 

intact, whilst the neighbouring supporting cell apical extensions close off the space 

which had been occupied by the hair cell. An additional method of removing dying 

vestibular hair cells has been observed in the mammalian utricle: supporting cells have 

demonstrated an ability to act as non-professional phagocytes which engulf apoptotic 

hair cells (Li et al., 1995).  

Regeneration of mammalian utricular tissue is typically detected at around 3 to 4 weeks 

post-aminoglycoside treatment (Forge et al., 1993; Forge et al., 1998; Kawamoto et al., 

2009; Lin et al., 2011), through the appearance of hair bundles which are comparable in 

morphology to short immature stereocilia observed during development, in addition to 

detecting increased numbers of cells positive for hair cell markers i.e. myosin Viia.   

Although regeneration of sensory hair cells has been shown to occur via two different 

mechanisms in non-mammalian vertebrates such as birds, it is thought that mammalian 

utricular hair cells are only regenerated by direct transdifferentiation of supporting cells. 

Studies aimed at detecting proliferation of supporting cells by mitotic division, as had 

been observed in the avian inner ear e.g. the incubation of damaged utricular tissue with 

mitotic trackers such as 
3
H and BrdU detected only a few labelled nuclei within the 

supporting cell layer. These results did not explain the numbers of regenerated hair cells 

which had been observed (Rubel et al., 1995; Warchol et al., 1993).  

Transdifferentiation, also known as phenotypic conversion, has been described in the 

vestibular epithelia of numerous other species including the newt (Taylor and Forge, 

2005), bullfrog (Baird et al., 2000), mouse (Lin et al., 2011) and guinea pig (Li and 

Forge, 1997), indicating that this is an ability of supporting cells which is conserved 

across a wide variety of vertebrate species. Morphological evidence for supporting cell 

transdifferentiation was observed at 4 weeks post-aminoglycoside treatment in guinea 

pig utricular macula which received in vivo exposure to gentamicin(Li and Forge, 
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1997). This previous study observed cells in the sensory epithelium which showed 

evidence of a small, immature apical hair bundle, but which remained attached to the 

basement membrane in the manner of a supporting cell. Cells with longer hair bundles 

which more closely resembled stereocilia were also observed; the attachment of these 

cells to the basement membrane was via a narrow, ‘foot-like’ process. This study also 

detected evidence of cells with hair bundles where the basal process was no longer in 

contact with the basement membrane. 

During the process of converting from a supporting cell to a hair cell, in addition to the 

development of an apical hair bundle, an important step in this regenerative pathway is 

the detachment of the cell from the basement membrane. Based upon previous studies 

of the function of integrins, it would be anticipated that there are integrin heterodimers 

expressed at the region of cellular contact of the basal region of supporting cells and the 

basement membrane of the utricle, as illustrated in figure 1-11. During 

transdifferentiation, it would therefore be necessary for such integrin-mediated adhesive 

links to the basement membrane to be broken in order for the basal process of the 

converting cell to retract. This might potentially occur in a manner which is similar to 

that described in 1.3 by keratinocytes during cutaneous wound healing, where they must 

sever their adhesive anchorages to the basal lamina and alter the type and localisation of 

their integrin receptors in order to migrate into a wound site. This thesis aims to 

investigate the presence of integrins in the normal mature murine utricle, with the 

hypothesis that these proteins would be expressed in regions such as the interface 

between the supporting cells and the basement membrane. It would therefore be of 

interest to investigate the effect of aminoglycoside-induced hair cell loss on the 

expression and localisation of the integrins due to the likelihood of their involvement in 

the cellular events which occur during transdifferentiation of supporting cells, the 

predominant mechanism of hair cell regeneration in the mammalian vestibular 

epithelium. 
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Figure 1-11 A Hypothesis for Integrin Involvement in Hair Cell Regeneration of the 

Mammalian Vestibular Epithelium  

Adapted from (Groves, 2010) and (Li and Forge, 1997). Following aminoglycoside -induce 

d hair cell loss, the mammalian utricle is able to regenerate some vestibular hair cells by 

transdifferentiation; a supporting cell converts into a hair cell. This thesis aims to investigate 

the hypothesis that integrins are expressed in the utricle – they would be expected to be 

localised to supporting cell contacts with the basement membrane. The process of 

transdifferentiation has been shown to involve the detachment of the supporting cell from 

the basement membrane, as shown by TEM (see insets) in gentamicin-treated guinea pig 

utricles at 4 weeks post-treatment (Li and Forge, 1997). It would be anticipated that this 

detachment from the basement membrane would involve breakdown of integrin-mediated 

linkages between this membrane and converting supporting cells, potentially resulting in 

changes in integrin expression and localisation within the vestibular epithelium. 
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1.3 Scope of the Thesis 

The sensory epithelium of the mammalian utricle has been shown experimentally to 

possess a limited capacity for spontaneous regeneration of hair cells lost due to 

exposure to ototoxic aminoglycosides. Both in vivo and in vitro studies have observed 

the emergence of new vestibular hair cells at 3 to 4 weeks post drug treatment, including 

the appearance of short stereocilia which resemble the morphology of immature hair 

bundles seen during development of the vestibular epithelium. Since the mammalian 

auditory epithelium, the organ of Corti, does not possess this same ability to regenerate 

lost hair cells, investigation as to which proteins and signalling pathways contribute to 

the regenerative capabilities of the utricle is of great significance. A comprehensive 

understanding of the regenerative process in the vestibular epithelium would be 

beneficial in terms of treating vestibular disorders or dysfunction related to ageing – 

mammalian vestibular regeneration has been shown experimentally as being by no 

means completely able to replace hair cells to replicate the numbers present in normal 

adult tissue. It would also be of interest to establish whether auditory hair cell 

regeneration could be induced in the organ of Corti via the same mechanisms e.g. gene 

therapy could be utilised to induce expression of key proteins for regeneration which the 

auditory epithelium lacks.  

Integrins, as cell surface receptors, are involved in a wide range of cellular processes 

including proliferation, differentiation and migration, in addition to their key role in 

cellular adhesion to both the extracellular matrix and neighbouring cells. In other organ 

systems, several integrin heterodimers have been implicated as being critical for tissue 

repair e.g. in the skin during the re-epithelialisation stage of wound healing. During 

regeneration of vestibular hair cells, numerous cellular changes occur in which integrins 

could be expected to be involved, including cellular spreading of supporting cells to seal 

the epithelium, proliferation of supporting cells and detachment from the basement 

membrane of supporting cells undergoing phenotypic conversion to become hair cells. 

The work carried out in this study is therefore based upon the hypothesis that integrins 

would be expected to be expressed within the tissue of interest, in particular at the 

region of contact between the supporting cells and the basement membrane, and that the 

expression and localisation of integrins could be anticipated to alter in response to 

aminoglycoside-induced hair cell loss based upon knowledge of the cellular processes 
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of hair cell death and spontaneous regeneration which occur in the vestibular epithelium 

of mammals.  

Prior to this work, the presence of integrins and their distribution within the mammalian 

utricle was largely unknown. This thesis aims to investigate the presence of the integrin 

family within the adult mouse utricle, in terms of which of the 18 α and 8 β integrin 

subunits are present normally in this tissue and their distribution within both the sensory 

epithelium and the underlying connective tissue. The first results section of this thesis 

focuses on the use of degenerate PCR (polymerase chain reaction) in order to identify 

the integrins expressed in normal utricular cDNA. In order to study integrins in a 

regenerating vestibular epithelium, the next section of this thesis describes in vitro 

culture experiments using utricles dissected from adult mice, and the progression of hair 

cell loss and subsequent regeneration at several time points following aminoglycoside 

treatment, establishing a model tissue for the study of integrin expression. The final 

results sections of this thesis centre around experiments using the organotypic culture 

model of vestibular hair cell loss and regeneration for immunolabelling of integrin 

subunits in order to investigate any potential changes in their distribution, and for 

quantitative PCR analysis to investigate changes in expression level during hair cell 

death and subsequent regeneration. Short discussion sections are included where 

appropriate immediately following the relevant results; however, discussion of the 

majority of the results of this work is within a dedicated discussion section as the last 

chapter of this thesis.  
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Chapter 2: Materials and Methods 
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All experimental work presented in this thesis was carried out by N. Stanley unless 

otherwise specified in this chapter. 

2.1 Animals 

Utricular maculae were obtained from adult, at least P21 (postnatal day 21), CBA/Ca 

mice, purchased from Harlan. Animals were sacrificed by CO2 inhalation and 

subsequent cervical dislocation in accordance with Schedule 1 of the United Kingdom 

Animals (Scientific Procedures) Act of 1986. 

2.2 Cryosectioning  

2.2.1 Inner Ear Sectioning  

Following sacrifice of the animals, auditory bullae were dissected from surrounding 

tissue. Cochleae and vestibular endo-organs were removed in Hanks Buffered Salt 

Solution (HBSS), with 10mM Hepes solution added (Sigma). Several perforations were 

made in the bony areas of each bulla using forceps to allow the fixative to perfuse 

throughout the entire cochlea and ensure thorough fixation of the inner ear tissues. Inner 

ears were fixed in 4% paraformaldehyde (PFA) for 1.5 hours and then decalcified in 

4.13% ethylenediamine tetraacetic acid disodium (EDTA) in phosphate buffered 

solution (PBS) for 48 hours at 4
o
C to allow frozen sectioning through the bony 

structures of the inner ear. In preparation for cryosectioning, cochleae were incubated 

overnight in 30% sucrose in PBS, to prevent damage from ice crystal formation. A 1% 

low-gelling temperature agarose gel containing 18% sucrose in PBS was used to embed 

the tissue in 35mm petri dishes. These dishes were then sealed with Parafilm® to 

prevent the samples from drying out and stored at 4°C until required.  

For cryostat sectioning, a block of agarose containing a single cochlea was cut out from 

the petri dish and mounted on a chuck using Tissue-Tek® OCT compound (Sakura). 

Mounted blocks were rapidly frozen by submerging in liquid nitrogen and were then 

placed inside the cryostat chamber at -25°C to equilibrate before sectioning. Frozen 

sections of 14µm were sliced through the entire inner ear using a Leica CM1900 

cryostat at -25°C until the utricular maculae was reached, whereupon these cryosections 

were picked up on poly-L-lysine coated slides (VWR); the coating on these slides 

enhances cellular adhesion to the glass surface, preventing sectioned tissue from being 
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lost during solution changes. Slides were then incubated in a 37°C oven for 30 minutes 

to dry before being stored at -20°C until required for immunohistochemistry. 

2.2.2 Sectioning of Organotypic Cultures 

Utricles which had been maintained in culture were fixed for 1 hour in 4% PFA. Fixed 

utricles were then prepared for cryosectioning by overnight incubation in 30% sucrose. 

The tissue was not removed from the filter paper on which it had been grown in vitro; 

small squares, each containing one utricle, were cut from the filter paper and these were 

then embedded in agarose. This approach allowed the orientation of the tissue to be 

more easily determined to obtain the required sections. Blocks of agarose containing 

each utricle were mounted and sectioned in the same way as previously described in 

2.2.1 for whole inner ear cryosectioning.   

2.3 Immunohistochemistry 

2.3.1 General Immunohistochemistry 

All tissue (wholemount and cryostat sections) was fixed for 1hr in 4% PFA as described 

in 2.2.1 and 2.2.2. 

A 72-well plate was used for wholemount utricle immunohistochemistry, with the 

required solutions placed in separate wells – this allowed the utricles to be transferred 

from well to well, reducing the likelihood of any tissue being removed with discarded 

solution. For cryostat sections on glass slides, a ‘PAP’ pen (Sigma) was used to create a 

hydrophobic barrier around the sections to contain solutions applied during 

immunostaining.  

Cryostat sections and wholemount utricles were incubated with 0.5% Triton X-100 

(TX-100), a non-ionic surfactant detergent used to permeablise cell membranes to 

facilitate the penetration of antibodies into cell bodies during immunostaining, for 20 

minutes. Samples were subsequently blocked for 1 hour with ‘block’ (consisting of 10% 

horse serum [in order to reduce the incidence of non-specific primary antibody binding] 

and 0.1% Triton in PBS). The use of serum as a block for immunohistochemistry 

experiments is based upon the principle of incubating a sample with a solution which 

contains a high concentration of large proteins and antigens. These antigens will 

therefore ‘block’ the tissue, preventing the primary antibody from binding non-
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specifically to the sample being immunolabelled, thus reducing the background signal. 

Samples were subsequently incubated with primary antibody in Lysine-PBS block 

(0.182g L-lysine in 10ml PBS) overnight at 4°C, unless otherwise stated for a specific 

primary antibody. The use of lysine, an amino acid, provides an additional block of non-

specific binding sites which could potentially interact with the primary antibody during 

incubation. Table 2-1 lists all primary antibodies used in this project. Following the 

removal of the primary antibody solution, specimens were washed for 5 minutes in PBS 

solution; this washing was repeated 3 times in order to remove any remaining unbound 

primary antibody. Samples were then incubated with an appropriate fluorescently 

tagged secondary antibody and/or phalloidin in Lysine-PBS block solution for 2 hours 

at room temperature. Table 2-2 lists all secondary antibodies and conjugated 

fluorophores used in this project. The samples were protected from light at this point in 

order to prevent photobleaching of the immunofluorescence. At the end of this 

incubation period, the secondary antibody solution was removed and the specimens 

were washed 3 times (for a period of 5 minutes per wash) with PBS solution to remove 

any remaining unbound antibody/fluorophore. 

Immunolabelled cryostat sections were covered with glass coverslips, after the addition 

of Vectashield™ mount with 4,6-diamidino 2-phenylindole (DAPI). DAPI is able to 

bind to A-T rich regions of double stranded DNA and is also capable of penetrating 

intact cell membranes. These properties mean that DAPI is able to selectively label cell 

nuclei. Wholemount utricles were removed from the 72-well plate and mounted on 

slides containing individual wells (C A Hendley) using Vectashield™ with DAPI and a 

glass coverslip. Coverslips were sealed to slides with nail varnish to prevent drying out 

and stored at 4°C until required for imaging. 
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 Protein Type; Host 

Species 

Concentration Supplier 

Integrins     

     

 α6 Monoclonal; 

Rat 

1:200 Serotec 

 αV Monoclonal; 

Mouse 

1:200 (with 

TSA 

amplification 

kit) 

BD Biosciences 

 β1 Monoclonal; 

Rat 

1:1000 BD Biosciences 

 β3 Polyclonal; 

Rabbit 

1:200 Novus Biologicals 

 β5 Polyclonal; 

Rabbit 

1:100 Millipore 

     

Hair Cell 

Markers 

    

 Myosin 

Viia 

Monoclonal; 

Mouse 

1:250 National 

Hybridoma Bank 

 Calretinin Polyclonal; 

Rabbit 

1:100 Chemicon 

     

ECM 

Proteins 

    

 Collagen 

Type IV 

Polyclonal; 

Rabbit 

1:1000 Abcam 

 

Table 2-1 Primary antibodies used for immunohistochemistry 
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Secondary 

Antibody/Conjugated 

Fluorophore 

Host Concentration Supplier 

    

Anti-Rabbit IgG TRITC 

 

Pig 1:500 Dako 

Anti-Rabbit IgG FITC 

 

Pig 1:500 Dako 

Anti-Rat IgG FITC 

 

Goat 1:500 Sigma 

Anti-Mouse IgG TRITC 

 

Rabbit 1:500 Dako 

Anti-Mouse IgG FITC 

 

Rabbit 1:500 Dako 

Phalloidin-FITC 

 

N/A 1:1000  

 

 

Table 2-2 Secondary antibodies and other conjugated fluorophores used for 

immunohistochemistry 

 

 

2.3.2 Antibody Amplification using a Tyramide Signal Amplification Kit 

The integrin αV antibody, subsequent to testing at a series of dilutions of both the 

primary and secondary antibody, required the use of an amplification kit in order to 

visualise the antibody sufficiently in inner ear tissue. It is possible that there was 

insufficient integrin αV antigen present in the tissue of interest, resulting in poor 

detection of this integrin using a standard immunohistochemistry protocol. Integrin αV 

is the alpha subunit able to form the most functional integrin heterodimers, therefore its 

presence would be expected in the inner ear. The use of a TSA amplification system can 

improve sensitivity without increasing the level of background staining observed. In this 

instance, a TSA amplification kit (TSA kit #4 with HRP, goat anti-mouse Ig and Alexa 

Fluor® 568 tyramide; Invitrogen, Paisley) was selected, since the integrin αV primary 

antibody being used was a mouse monoclonal antibody. 

In accordance with the product protocol, samples (either wholemount utricles or utricle 

cryosections) were permeablised with 0.1% Triton X-100 for 10 minutes. After rinsing 
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with PBS, the samples were then incubated in 1% blocking reagent (as supplied in the 

kit) for 1 hour at room temperature, before a further 1 hour incubation period with the 

integrin αV antibody diluted 1:200 in 1% blocking reagent. Following three 5 minute 

washes with PBS to remove any unbound primary antibody, the samples were incubated 

with a horseradish peroxidase (HRP) conjugate solution for 30 minutes. The TSA 

amplification system utilises an enzyme (in this case HRP) which is conjugated to a 

secondary antibody – in this case an anti-mouse secondary antibody in order to detect 

the mouse monoclonal integrin αV primary antibody. The HRP conjugate solution was 

removed from the samples by a further 3 washes with PBS and these were then 

incubated with an Alexa Fluor® 568 tyramide working solution (covered to protect the 

fluorophore from photobleaching), with the tyramide dye diluted 1:100 in amplification 

buffer (containing H2O2) for 10 minutes. In the presence of H2O2, HRP activates the 

tyramide coupled dye, resulting in the production of highly reactive, short lived 

tyramide radicals. These molecules are deposited in regions in direct proximity to the 

original HRP secondary conjugate bound to the primary antibody; in this way the signal 

is amplified, but with minimal loss of resolution and minimal background signal 

production.  The samples were again washed 3 times with PBS to remove the excess 

tyramide solution. Any further immunohistochemistry required on these samples was 

then carried out as previously specified.  

2.3.3 EdU Labelling 

In order to investigate proliferation within utricular cultures, a Click-iT™ EdU Alexa 

Fluor® 488 imaging kit, supplied by Invitrogen was used. This imaging method uses 5-

ethynyl-2’-deoxyuridine (EdU), a nucleoside analog of thymidine, which may be 

incorporated into DNA during the S-phase of cellular proliferation. EdU was used as an 

alternative to 5-bromo-2'-deoxyuridine (BrdU), since it does not require denaturation of 

the DNA by treatment with HCl in order to be detected. The HCl treatment required for 

BrdU labelling is liable to disrupt the tissue of interest, with the potential for the 

damage and destruction of antigen sites which could adversely affect any further 

immunohistochemistry experiments required to be carried out on EdU labelled samples. 

The EdU detection system with which cell proliferation experiments were carried out 

utilises a ‘Click’ reaction, a copper catalysed covalent reaction between an azide (the 
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Alexa Fluor® 488 dye) and an alkyne (the EdU), in order to visualise EdU within cell 

nuclei, as opposed to BrdU, which requires the use of anti-BrdU antibodies. 

 In accordance with the protocol provided by the manufacturer, utricles were cultured in 

the presence of a 10µM concentration of EdU. This was achieved by the addition of 

10µl of 10mM EdU stock solution to 10ml of culture medium. EdU was not added to 

the culture medium until after the cultures had been treated with gentamicin in order to 

only detect proliferation which occurred subsequent to damage and hair cell loss 

induced by the ototoxic antibiotic.  

Following fixation and/or cryostat sectioning, cultures incubated with EdU were washed 

with 3% bovine serum albumin (BSA) prior to permeablisation with 0.5% Triton-X-100 

in PBS for 20 minutes at room temperature. Whole utricles/utricular sections were then 

washed twice with 3% BSA to remove the permeabilisation solution and the Click-iT™ 

reaction cocktail prepared from the reagents supplied by the manufacturer; 215µl 1x 

Click-iT™ reaction buffer, 10µl CuSO4, 0.6µl Alexa Fluor® 488 azide and 25µl 

reaction buffer additive. The tissue to be labelled was incubated with the Click-iT™ 

reaction cocktail for 30 minutes at room temperature, whilst covered to protect the 

Alexa fluorophore from photobleaching. 3% BSA was used to wash the CIick-iT™ 

reaction cocktail solution off of the samples; any further immunohistochemistry 

required was then carried out as previously described. 

2.3.4 Confocal Microscopy 

Imaging of immunofluorescently labelled samples was carried out using a Zeiss Meta 

laser scanning confocal microscope using the x20 (dry) and x63 (oil) objectives. Z-

series stack images were taken at optimised intervals; maximal pixel intensity 

projections were created from these series by the LSM Image Browser software. For 

comparative imaging of integrin antibodies in tissue at different time points post-

gentamicin treatment, the same confocal settings were used throughout the imaging 

process. 

2.3.5 Cell Counts 

Quantification analysis of hair cell numbers was carried out from x63 magnification z-

stack confocal images of cultured utricles immunolabelled for the hair cell marker 
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myosin Viia. For the purposes of this study, hair cells were defined as those cells which 

were positive for the marker myosin Viia within their cell body. Each utricle studied 

was sampled 2-3 times; each sample consisted of a x63 image, with an area of 146.2µm 

x 146.2µm. Samples were randomly selected within the intact region of each individual 

utricle. Intact, well preserved regions of the tissue were assessed through examination of 

the quality of the fluorescent labelling of cellular junctions produced by phalloidin 

staining. Cell counts were carried out using Image J software. Hair cell counts from the 

samples of each utricle were averaged; these average counts were then normalised – this 

data is expressed as the number of hair cells per 1000µm
2
. Since the data collected from 

hair cell counts was taken from more than two groups, an analysis of variance 

(ANOVA) test was selected for carrying out statistical analysis, as opposed to a T-test. 

The ANOVA statistical test allows the means of multiple groups (in the case of the 

experiments carried out in this project, this represents the means hair cell counts at 

multiple time points following gentamicin treatment and non-treated control groups) to 

be compared. The null hypothesis of the ANOVA test is that the means of each of the 

groups are equal, representing random samples of the same population and that the 

experimental conditions applied to each group have no significant effect on the variable 

being measured i.e. hair cell numbers. 

A one-way ANOVA statistical analysis was used, since there was data from a single 

independent variable (hair cell number) to be compared across the groups investigated; 

this statistical test was carried out using GraphPad software. Post-hoc analysis of the 

ANOVA was then carried out using Tukey’s Test. This statistical test was used in 

conjunction with one-way ANOVA, in order to compare all possible pairs of cell count 

mean values, in order to determine which experimental conditions showed hair cell 

counts which were significantly different from one another. 

Quantification analysis of EdU labelled cell numbers was carried out in the same 

manner as described for hair cell counts. Utricular cultures incubated with EdU were 

stained with DAPI in order to visualise all cell nuclei. A Click-iT™ EdU Alexa Fluor® 

488 imaging kit was used to visualise all cell nuclei which had incorporated EdU into 

their DNA. Total cell counts e.g. all cells with DAPI-positive nuclei, in addition to 

counts of all nuclei positive for EdU were carried out using Image J software. Cell 

counts were averaged from the samples of each individual utricle studied and the data 



59 

 

normalised in order to be expressed as the number of nuclei/EdU-positive nuclei per 

1000 µm
2
. 

2.4 Scanning Electron Microscopy 

Cultured utricles to be analysed by scanning electron microscopy were removed from 

culture medium but remained attached to the nitrocellulose filter paper culture surface. 

Tissue was fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer pH 7.3 with 

3mM CaCl2 for 1.5 hours and then post-fixed with 1% OsO4 in 0.1M cacodylate. Post-

fixed tissue was then processed for SEM by a repeated thiocarbohydrazide-osmium 

procedure prior to dehydration of the samples through an ethanol series to 100% dry 

ethanol. Specimens were subsequently critical point dried from liquid CO2 and mounted 

on stubs using silver paint (Ted Palla) before being sputter coated with gold. Prepared 

specimens were viewed and digitally imaged using a JEOL JSM 6700F cold field 

emission instrument, operating at 5Kv. All digital images were adjusted for optimal 

contrast and brightness using Photoshop CS4 software. Processing of SEM specimens 

was carried out by G. Nevill and Prof A. Forge. 

2.5 Transmission Electron Microscopy 

Cultured utricles to be analysed by transmission electron microscopy were removed 

from culture medium but remained attached to the nitrocellulose filter paper culture 

surface. Tissue was fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer pH 

7.3 with 3mM CaCl2 for 1.5 hours and then post-fixed with 1% OsO4 in 0.1M 

cacodylate. Post-fixed tissue was then processed for TEM by partial dehydration to 70% 

ethanol and then en bloc stained in saturated uranyl acetate in 70% ethanol overnight. 

Dehydration was subsequently completed to 100% ethanol (samples require dehydration 

due to being placed into a vacuum for imaging by electron microscopy – if the samples 

were to contain water, this would evaporate when the sample was subject to a vacuum, 

potentially resulting in damage to the structural integrity of the tissue of interest) and 

specimens embedded in plastic. Initial thick sections (~1µm) were cut and stained with 

toluidine blue for examination under light microscope. Thin sections (80nm) were then 

cut and stained with uranyl acetate and lead citrate before being examined by a JEOL 

1200EXII fitted with a Gatan digital camera; the microscope was operated at 80 Kv. 

Processing and imaging of utricle cultures by TEM was carried out by G. Nevill and 
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Prof. A. Forge. All digital images were adjusted for optimal contrast and brightness 

using Photoshop CS4 software. 

2.6 Culture of Adult Mouse Utricles 

Adult mice were killed in accordance with Schedule 1 of the Home Office Animals 

(Scientific Procedures) Act 1986. Bullae were dissected from the animals by removal of 

the lower jaw and bisection of the head. Subsequent removal of the brain tissue from the 

bisected heads allowed access to dissect the entire bullae from the animal; the bullae 

were then transferred to petri dishes containing a Hanks Balanced Salt Solution 

containing 1M Hepes (4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid) buffer 

solution, whereupon the utricular maculae were dissected out from the whole inner ear 

using heat sterilised forceps. The otolithic membrane which overlies the utricle and the 

otoconia on the surface of the sensory epithelium were each carefully removed with 

forceps. Dissected utricles were removed of any extraneous tissue i.e. from attachment 

to the cristae of the vestibular system; it is often the case that during dissection the 

utricle will be removed with several cristae attached to it. It was the aim of these 

dissection methods to ensure that only the utricular sensory epithelium and the 

mesenchymal tissue directly beneath it were placed into culture. All dissection for 

organotypic cultures was performed under sterile conditions.  

Culture medium was made up under sterile conditions and stored at -20°C until 

required. 1ml of 1M Hepes buffer solution was added to 100ml of Gibco® 

GlutaMAX™ minimum essential medium containing Earles Salts (Invitrogen). 10ml of 

this solution was removed and stored in a 15ml Falcon tube; this media was used to 

make up laminin solutions. To the remaining 90ml of media, 10ml of sterile horse 

serum was added and the media aliquoted out into 15ml Falcon tubes, each containing 

10ml of media – this media (MEM + GlutaMAX™ + 1% Hepes + 10% Horse Serum) 

was used to maintain organotypic cultures.  

Two different methods for maintaining utricles in culture long-term were investigated in 

this work; the development of the culture technique is described in detail in 4.1. 

Initially, MatTek™ dishes (MatTek Corp) were coated with laminin (diluted at 1:75 

concentration with serum-free culture medium) by placing 200µl of laminin solution 

onto the glass bottom of the dish and allowing at least one hour before removing the 
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surplus solution. Dissected utricles were then placed onto the coated region and 

sufficient culture medium added to completely cover the tissue.  

The culture technique was refined during the initial stages of this project and a different 

culture surface selected. Round 13mm diameter 0.45µm micropore nitrocellulose 

membrane filters (Millipore) were placed into the wells of a 24-well plate and dissected 

utricles placed onto the filter paper in each well, before being covered with 450µl of 

culture medium. It was observed that within 24-48hrs of incubation, the tissue had 

adhered to the nitrocellulose surface, facilitating the changing of culture media without 

disturbing the tissue. 

During the culture time period, the tissue was maintained at 37°C in an incubator; 

culture medium was changed every other day. Where cultures were treated with 

gentamicin to induce hair cell loss, a solution of 2mM gentamicin diluted in normal 

culture medium was used over a 48hr incubation period. Tissue was then rinsed with 

medium to remove residual gentamicin and placed in fresh culture medium for the rest 

of the incubation period. 

2.7 Real-Time PCR (Polymerase Chain Reaction) 

2.7.1 Tissue 

Normal uncultured utricles were dissected from the whole inner ear using forceps in 

HBSS + 1M Hepes, in the same way as utricular maculae were dissected for 

organotypic culture experiments. Utricles were placed immediately into labelled 

Eppendorf tubes containing RNA Later (Invitrogen) to prevent RNA degradation and 

stored at -80°C until required. These utricles were used to obtain a cDNA sample to be 

used as the control (calibrator) sample for relative quantification analysis. 

Where PCR (polymerase chain reaction) experiments required RNA to be extracted 

from cultured tissue, utricles were maintained in vitro as described in 2.6 for the culture 

of adult mouse vestibular epithelium. Once the required culture time point was reached, 

utricles were removed from the nitrocellulose filter paper upon which they had been 

maintained, placed immediately into RNA Later and stored at -80°C. 
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Positive control tissue was obtained from adult mice; this tissue was lung, spleen and 

kidney. Each tissue was placed in RNA Later directly after dissection from the animal 

and stored at -80°C. 

2.7.2 RNA Extraction 

RNA extraction was performed using an RNeasy Mini kit (Qiagen) as detailed in the 

product protocol handbook. Tissue which had been stored at -80°C in RNA Later was 

allowed to defrost to room temperature. Each positive control tissue was cut and 

weighed in order to only use 30mg of tissue as recommended, and placed into 600µl 

buffer RLT containing β-mercaptoethanol (10µl/ml) to be disrupted and homogenised 

using a rotor-stator homogeniser. The addition of β-mercaptoethanol (β-ME) to the 

buffer provides additional protection against RNA degradation; β-ME reduces 

disulphide bonds and is therefore able to irreversibly denature any RNAses which might 

be present in the sample. Utricular tissue, due to its small size, was disrupted in 600µl 

buffer RLT containing β-ME by passing the tissue through a 20G needle attached to a 

sterile syringe twenty times. Subsequently, the utricular lysate was placed into a 

Qiashredder (Qiagen) spin column with a 2ml collection tube and centrifuged for 2 

minutes at full speed (13,000rpm). 

Tissue lysate was centrifuged at full speed for 3 minutes; the supernatant was removed 

by pipette and transferred to a fresh Eppendorf tube, taking care not to disturb any pellet 

which had formed during centrifugation. Each sample was subsequently processed by 

successive centrifugation steps as described in the kit protocol handbook. 

To aid in the complete removal of ethanol from the extracted RNA, following the final 

wash centrifugation, the Qiaspin columns were placed in a heat block at 55°C for 1 

minute.For the final elution step, 30µl of RNAse free water was used. 

The concentration of RNA obtained from the extraction for each sample was measured 

using a Nanodrop 1000 spectrophotometer (Thermo Scientific). 

2.7.3 Reverse Transcription of cDNA 

Reverse transcription of extracted RNA to cDNA was performed using a Sensiscript™ 

Reverse Transcription Kit (Qiagen) as directed in the protocol supplied with this kit.  

Additional reagents required for the use of this kit were primers for the reaction, for 
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which Oligo dT primers (which bind to the poly A tail of mRNA) were used 

(Invitrogen) and a mouse RNAse inhibitor (NEB) which was diluted to the specified 

final concentration using a 1x solution of the 10x Buffer RT (diluted in RNAse-free 

water). The reaction cocktail also contained a dNTP mixture supplied in the 

Sensiscript™ kit consisting of a 5mM concentration of each dNTP. An appropriate 

volume of RNA was added to each reaction based on the sample concentration (larger 

tissues e.g. spleen produced higher concentrations of RNA during the extraction process 

than utricular tissue; the kit protocol recommends that no more than 50ng of RNA 

should be used per 20µl reaction volume). 

Reverse transcription reactions were carried out by placing Eppendorf tubes containing 

the reaction mix into a heat block at 37°C for 1 hour. At the end of the reverse 

transcription reaction, the cDNA concentration of each sample was measured using a 

Nanodrop 1000 Spectrophotometer. cDNA samples were stored at -20°C until required. 

2.7.4 Degenerate PCR Primers 

Initial RT-PCR experiments were carried out using several sets of degenerate primers, 

the design process of which is discussed fully in the relevant results chapter.  Design of 

degenerate primers was carried out in collaboration with Dr. S. Dawson. Degenerate 

primers (Eurofins MWG Operon) were supplied in a lysophilsed state. Each primer was 

re-suspended in freshly autoclaved double-distilled H2O, to produce a 100µM primer 

stock solution. A working solution of 10µM was diluted from this stock solution for use 

in PCR reactions.  

In order to optimise the reaction conditions for each primer pair, initial PCR 

experiments were carried out on a temperature gradient to determine the optimal 

annealing temperature i.e. the temperature at which the primers will bind to the template 

DNA strand. Further refinements were applied as necessary; several primer pairs 

required an alteration to the concentration of MgCl2 used. The optimised RT-PCR 

reaction conditions for each set of degenerate primers is summarised in table 2-3. The 

thermal cycling process for degenerate PCR experiments was carried out by an 

Eppendorf Mastercycler Gradient PCR machine, using a 3-step PCR reaction i.e. one 

with individual denaturation (of the double stranded cDNA), annealing and extension 

(where the DNA polymerase extends the primers and synthesises a new strand of DNA) 

temperatures.  
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2.7.5 Integrin Subunit Specific PCR Primers 

A small set of specific PCR primers were designed to amplify each of a group of 5 

integrin subunits which were believed likely to be expressed in the tissue of interest, but 

which had not been successfully detected by degenerate PCR; α6, β1, β3, αV and α8.  

The primer sequence for each of these integrin subunits are as follows:  

Integrin α6 (Forward: 5’-CCTAACAGAATTGACCTCCGCCAGAAG-3’;  

Reverse: 5’-ACTGAACTCTCGATGACAACCCTGA-3’),  

Integrin αV (Forward: 5’-GCCAGACCCGTTGTCACTGTAAATGC-3’;   

Reverse: 5’-CGTCGGATGGCTCCCTTCTGCTTGAG-3’), 

Integrin α8 (Forward: 5’-CCTTCAAGCAAGCGCCCTCCTCTTCC-3’;   

Reverse: 5’-GCTTGCTGTGTAAACCTCTTGGGG-3’),  

Integrin β1 (Forward:  5’-GGAAACTCTAGTAATGTGATCCAGC-3’;   

Reverse:  5’-CACTTGGGACTGGCTGGGATGCCATG-3’) and  

Integrin β3 (Forward: 5’-GGGCTGATGACTGAGAAACTATCCCAG-3’; 

Reverse: 5’-CACGTACTTCCAGCTCCACTTTAGA-3’).  

Specific primers of a length of 22-25bp were designed, spanning across an exon-exon 

junction in order to prevent the amplification of any contaminating genomic DNA 

during the PCR reaction, for the detection individually of each of the selected integrins. 

The Tm of each forward and reverse primer was assessed using the OligoCalc online 

tool to ensure that these temperatures were within the optimum range. This tool was 

also used to check for potential self-complementarity, which would affect the efficiency 

of the primers and their ability to bind to the template DNA.  The specificity of these 

primers was confirmed by BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Specific integrin subunit primers (Sigma) were re-hydrated with ddH2O to produce a 

stock 100µM solution of each primer. Optimisation of reaction conditions was carried 

out as previously described, by using a temperature gradient to determine the optimum 

annealing temperature for each primer pair and subsequently altering the concentration 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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of MgCl2 in the reaction master mix. The optimised PCR conditions for each integrin 

subunit are summarised in table 3-5. 
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Forward Primer Reverse Primer PCR Conditions 

Intaall1F IntaxmdeR 3-Step RT-PCR 

  Annealing Temp = 55°C 

  MgCl2 concentration = 2mM 

  cDNA = 1µg 

   

Inta2110bF Intaall1R 3-Step RT-PCR 

  Annealing Temp = 55°C 

  MgCl2 concentration = 5mM 

  cDNA = 2µg 

   

Inta82b5vF Inta75v82bR 3-Step RT-PCR 

  Annealing Temp = 55°C 

  MgCl2 concentration = 5mM 

  cDNA = 2µg 

   

Inta673F Inta8673R 3-Step RT-PCR 

  Annealing Temp = 55°C 

  MgCl2 concentration = 4mM 

  cDNA = 2µg 

   

Inta49Fb Inta49Rb 3-Step RT-PCR 

  Annealing Temp = 55°C 

  MgCl2 concentration = 2mM 

  cDNA = 1µg 

   

Intb28F Intb28R 3-Step PCR 

  Annealing temperature = 55°C 

  MgCl2 concentration = 2mM 

  cDNA = 1µg 

   

Intb147F Intb147R 3-Step PCR 

  Annealing temperature = 55°C 

  MgCl2 concentration = 2mM 

  cDNA = 1µg 

   

Intb356Fb Intb356R 3-Step PCR 

  Annealing temperature = 55°C 

  MgCl2 concentration = 2mM 

  cDNA = 1µg 

 

Table 2-3 Summary of Optimised Reaction Conditions for Degenerate PCR Primers 



67 

 

2.7.6 Agarose Gel Electrophoresis of RT-PCR Products 

All RT-PCR products (whether amplified using degenerate or specific primers) were 

run on an agarose gel to determine whether the PCR had been successful and if the 

DNA fragments produced were of the size expected based on the amplicon designed to 

be produced by each primer pair; the use of an agarose gel allows DNA fragments of 

different sizes to be separated and identified using a DNA ladder as a reference point. 

Agarose gels were produced by adding the appropriate weight of agarose to 100ml of 

1xTAE buffer (2.0 M Tris, 1 M Glacial acetic acid, 50 mM EDTA, pH 8.0) in a conical 

flask. This solution was heated until the agarose had completely melted before being 

allowed to cool. In order to visualise the DNA under ultraviolet light, 2µl ethidium 

bromide was added to the agarose solution prior to pouring into a gel mould; plastic 

combs were used to create the required number of wells in the gel and this was left to 

cool and set for 30 minutes. Several different agarose % gels were used to run PCR 

products on, depending on the size of the expected DNA fragments, and in the case of 

latter experiments, whether multiple DNA fragments of different sizes required 

separation by gel electrophoresis. An appropriate DNA ladder (100bp or 1kb; 

NEB/Invitrogen) was used in order to estimate the size of the DNA fragments run on 

the gel. 

Gel electrophoresis was run by placing the gel in the apparatus filled with 1x TAE 

buffer and applying an electrical field of approximately -70mv for 30 minutes. DNA run 

on agarose gels was visualised by the use of a GelDoc-It 3UVTM Transilluminator 

Imaging system (Jencons-PLS) using the UV-B setting (302nm) and still images of the 

illuminated gels captured using Labworks (UVP BioImaging Systems) software. 

2.7.7 Extraction of PCR Products from Agarose Gel 

Since identification of the DNA fragments amplified by degenerate primers required the 

utilisation of cloning, PCR products which had been detected by gel electrophoresis 

required extraction from the agarose gel through which they had been run. Gel 

extraction was carried out using a QIAquick gel extraction kit (Qiagen). 

Each DNA band was cut from the agarose gel using a scalpel blade whilst being 

visualised on a UV lightbox and placed into a 1.5ml Eppendorf tube. Each gel slice was 

weighed using a digital balance and 3 volumes of Buffer QG from the kit added for 
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every 1 volume of agarose gel. For the purposes of this protocol 100mg of gel was 

equivalent to 100µl of buffer solution.  

The gel extraction process was carried out by microcentrifugation as described in the 

protocol supplied for this kit. In order to facilitate the removal of residual ethanol prior 

to the elution of the DNA fragments, the spin columns were placed on a heat block at 

55°C for 1 minute.  

2.7.8 Purification of PCR Products 

PCR products which were required for use in ligation reactions were first purified, in 

order to remove leftover primers and any other impurities which might adversely affect 

subsequent experiments carried out using these DNA fragments, by the use of a 

QIAquick PCR purification kit (Qiagen).   

The purification process was carried out by microcentrifuge as described in the protocol 

supplied with this kit. In order to facilitate the removal of residual ethanol prior to the 

elution of the DNA fragments, the spin columns were placed on a heat block at 55°C for 

1 minute. The final elution step was carried out using 30µl of RNAse-free water. 

2.8 Cloning of PCR Products Using the pGEM®-T Easy Vector System 

2.8.1 Ligation Reactions 

In order to clone the PCR products obtained from degenerate RT-PCR experiments, the 

DNA fragments were ligated into the plasmid vector pGEM®-T Easy (Promega). The 

use of cloning via a plasmid vector allowed the production of a larger volume of the 

PCR products generated from the degenerate PCR reactions carried out. This facilitated 

the analysis of the PCR products in order to determine which integrin subunit amplicons 

were present in each reaction sample. 

The pGEM®-T Easy vector used contains an ampicillin resistance gene, allowing for 

selection of bacteria which have taken up the vector by growing transformed cells on 

agar plates containing ampicillin. This plasmid also contains the lac operon, a collection 

of genes, including the enzyme β-galactosidase, and associated regulatory sequences 

required by bacteria in order to metabolise lactose. The cloning region of the pGEM®-T 

Easy vector is located within the lac operon, thus if a plasmid has successfully 
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incorporated a DNA fragment during the ligation stage of the cloning procedure, the lac 

operon sequence will be disrupted and non-functional. Successfully cloned bacteria 

maybe therefore be identified by growing cultures on agar plates which have had X-gal 

and IPTG added. IPTG (isopropylthio-β-galactoside) acts as an inducer of the lac 

operon, whilst X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside) is an 

analog of lactose which can be metabolised by β-galactosidase. If no DNA fragment has 

been ligated into the plasmid, the lac operon will be fully functional, and the bacterial 

colony containing this vector will be able to produce β-galactosidase and metabolise X-

gal; this is detectable since unmetabolised X-gal is colourless, whilst the product of its 

cleavage by β-galactosidase are blue. Colonies which contain plasmids with a DNA 

fragment insert will therefore appear white, whilst those bacteria containing an 

unligated vector will appear blue, since they possess an uninterrupted lac operon.  

Each reaction was set up in a 0.5ml Eppendorf tube containing the following; 2.5µl 2x 

Rapid Ligation Buffer (Promega), 0.5µl pGEM®-T Easy vector, 0.5µl T4 DNA ligase 

(Promega) and 1.5µl of the purified PCR products. This gave a final reaction volume of 

5µl. The ligation reactions were carried out overnight at 4°C. 

2.8.2 Preparation of Agar Plates for Bacterial Culture 

LB-Agar was made up with 5 g tryptone,  2.5 g yeast extract,  5 g NaCl and  1.5% agar 

in 500ml distilled water and autoclaved for 45 minutes. LB-Agar was stored at room 

temperature until required; this medium was melted in a microwave and maintained in a 

water bath at 55°C prior to pouring. To this molten LB-agar 500µl Ampicillin, 500µl of 

X-gal and 500µl IPTG were added, swirling the bottle to mix before pouring into petri 

dishes and allowing to the plates to cool and set.  Plates were stored at 4°C until 

required. 

2.8.3 Cloning  

For the cloning of PCR products, XL10-Gold Ultracompetent cells (Stratagene) were 

used, which were stored at -80°C until required.  

14ml BD Falcon tubes were pre-chilled, one per ligation reaction, whilst the 

ultracompetent cells were thawed on ice. Each tube was aliquoted 50µl of cells, and 

then to each tube 2µl of β-mercaptoethanol (Stratagene) was added, swirling the tubes 
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gently to mix. The cells were kept on ice for 10 minutes, with swirling repeated every 2 

minutes. 1µl of ligation reaction was then added, swirling to mix and the tubes left to 

incubate on ice for 30 minutes. A 30 second heat-shock was given by placing the tubes 

into a water bath set at 42°C; following heat-shock the tubes were placed immediately 

back on ice for a further 2 minutes. To each tube 0.45ml of NZY+ broth which had been 

preheated to 42°C was added. NZY+ broth was made up as follows; 10g of NZ amine 

(casein hydrolysate), 5 g of yeast extract, 5g of NaCl and deionised water added up to 

1L.The pH was adjusted 7.5 using NaOH and the broth was then autoclaved. Filter-

sterilized supplements - 12.5 ml of 1 M MgCl2, 12.5 ml of 1 M MgSO4 and 20 ml of 

20% (w/v) glucose were added prior to use of the NZY+ broth. The cloning tubes were 

then placed in a shaker set at 250rpm/37°C for 1 hour.  

 

Following this incubation, each transformation reaction was plated onto an Amp/X-

gal/IPTG agar plate. Plates were incubated at 37°C overnight and then examined for 

colonies using blue-white screening (white colonies contain an insert into the pGEM®-

T easy vector, thus disrupting the Lac operon; blue colonies will not contain an insert). 

White colonies from each plate were ‘picked’ using a sterile pipette tip which was then 

dropped into a sterile bottle containing 5ml LB broth. LB broth was made up with 10g 

tryptone, 5g yeast extract and 10g NaCl. Distilled water was added to 1L, ensuring that 

the pH was around 7.0. The solids were dissolved in the water then the broth poured 

into bottles before autoclaving for 30-45 minutes. For each plate, in order to give a 

representative sample of the PCR product inserts which might have been cloned, 20 

colonies were ‘picked.’ The ‘picked’ colonies were grown overnight in a shaker at 

250rpm/37°C and the resultant bacterial culture stored at 4°C until required. 

In order to extract the plasmid DNA from the bacterial cells a QIAprep Miniprep kit 

(Qiagen) was used. A 1ml sample of the bacterial culture from each bottle was placed 

into individual 1.5ml Eppendorf tubes and these samples centrifuged at ≥8000rpm for 3 

minutes at room temperature. This produced a ‘pellet’ of bacterial cells from which the 

remaining medium (supernatant) could then be removed. The plasmid DNA extraction 

was carried out as specified by the microcentrifugation protocol described in the 

handbook for this kit. In order to facilitate the removal of residual ethanol prior to the 

elution of the plasmid DNA, the spin columns were placed on a heat block at 55°C for 1 

minute. 
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2.8.4 Restriction Digests of Plasmid DNA 

In order to establish which of the potential integrin subunits had been detected by each 

set of degenerate primers, restriction enzymes were selected for use based on restriction 

mapping, such that they would produce easily identifiable band patterns, when run on 

an agarose gel. For each of the expected amplicons for the α and β integrin subunits, a 

restriction map was produced using the Restriction Mapper online tool to identify all of 

the restriction sites present (http://www.restrictionmapper.org/). These restriction maps 

were then used to select appropriate restriction enzymes. The restriction digest strategies 

for identification of integrin subunits are provided in tables 2-5 and 2-6.  

Restriction digests were set up in 0.5ml Eppendorf tubes. The reaction mixture 

contained the following; 8µl autoclaved ddH2O, 2µl of the appropriate buffer for the 

enzyme, 2µl restriction enzyme and 8µl plasmid DNA, giving a total reaction volume of 

20µl. The reactions were incubated at a temperature appropriate for the enzyme being 

used for 1 hour. Table 2-4 summarises the restriction enzymes used and the conditions 

under which each reaction was performed. The products of the restriction digests were 

run on an agarose gel as previous described, on a gel weight appropriate for the 

expected fragment sizes required to be separated by electrophoresis. The resultant gels 

were viewed and imaged as described in 2.7.6. 
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Enzyme Buffer Reaction 

Temperature 

EcoRI Buffer 

H 

37°C 

RSAI Buffer 

C 

37°C 

HaeIII Buffer 

C 

37°C 

HaeII Buffer 

B 

37°C 

SalI Buffer 

D 

37°C 

HindIII Buffer 

E 

37°C 

BglI Buffer 

D 

37°C 

TaqI Buffer 

E 

65°C 

NcoI Buffer 

D 

37°C 

BamHI Buffer 

E 

37°C 

XhoI Buffer 

D 

37°C 

ApaI Buffer 

A 

37°C 

PstI Buffer 

H 

37°C 

SphI Buffer 

K 

37°C 

EcoRV Buffer 

D 

37°C 

 

Table 2-4 Summary of Restriction Enzymes and Digest Reaction Conditions 
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Forward 

Primer 

Reverse 

Primer 

Integrin 

Subunits 

Restriction Digest Strategy 

Intaall1F   IntaxmdeR αX,  αM, αD 

& αE 

BglI digest = 2 band patterns; αX/αD and αM/αE 

    
Inta2110bF   Intaall1R α1, α2, α10 

& α11  

BamHI digest = linearises if α1 amplicon, does not cut other amplicons or the plasmid vector                                                         

   XhoI = linearises if α2 amplicon, does not cut other amplicons or the plasmid vector 

   Rsa I digest = cuts all amplicons once except α10 

   SphI digest = linearises if α11 amplicon, does not cut other amplicons or the plasmid vector 

    

Inta82b5vF   

Inta75v82bR 

αV, αIIb, α5 

& α8 

Hae II digest = doesn't cut amplicon of αV or αIIb. Cuts α5/α8 amplicon once. Cuts vector 4 

times. 

   Apa I digest = linearises if αV, 2 cuts if αIIb  

   Pst I digest = linearises if α8, 2 cuts if α5 

    

Inta673F  Inta8673R α3, α6 & α7 EcoRV = linearises if α7, does not cut α3 or α6 

   Taq I digest = different banding patterns for α3 and α6. Taq I cuts vector 4 times.  

    
Inta49Fb   Inta49Rb α4 & α9 RSA I digest = 2 bands if α4 

   RSA I digest = 1 band if α9 

 

Table 2-5 Restriction Digest Strategies for Identifying α Integrins in Degenerate PCR Products 

Outline of the restriction digests to be used to identify different α integrin amplicons from degenerate PCR products based on restriction mapping.
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Table 2-6 Restriction Digest Strategies for Identifying β Integrins in Degenerate PCR Products  

Outline of the restriction digests to be used to identify different β integrin amplicons from degenerate PCR products based on restriction mapping.  

 

Forward 

Primer 

Reverse 

Primer 

Integrin 

Subunits 

Restriction Digest Strategy 

Intb28F   Intb28R β2 & β8 Stu I digest = linearised if β2 

   Nco I digest = 2 bands if β8 

    
Intb147F  Intb147R β1, β4 & 

β7 

RSA I digest = 2 bands if β1 

   Eco RI = 3 bands if β4 

   HindIII digest = linearised if β7 

    
Intb356Fb   ntb356R β3, β5 &β6 Kpn I digest = linearised if β3 

   Sal I digest = 2 bands if β5 
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2.8.5 DNA Sequencing 

As an additional confirmation of which integrin subunits had been detected by 

degenerate PCR, samples of the plasmid DNA created in the cloning experiments was 

sent for DNA sequencing (Source Bioscience); samples were sent for sequencing at a 

concentration of 100ng/µl. 

2.9 Quantitative PCR  

2.9.1 Utricular cDNA Samples for qPCR 

A sample of normal, uncultured adult mouse utricle cDNA was obtained in the same 

manner as that used for degenerate RT-PCR experiments. This sample consisted of the 

cDNA produced from a pool of 10 utricles dissected from 5 individual adult mice. The 

full process of RNA extraction from this tissue and reverse transcription to cDNA is 

described in 2.1.  

Three time points were selected for investigation of integrin expression levels using the 

utricular culture model developed in chapter 4; these were 4 days, 14 days and 21 days 

post-gentamicin. These time points were selected in order to represent the tissue at 

different stages in the process of hair cell death i.e. early on at 4 days where a large 

amount of hair cell death and then at 14 and 21 days, where there was believed to be a 

limited amount of regeneration occurring e.g. appearance of immature stereocilia 

bundles.  

Culture experiments were carried out as described in chapter 4, to produce a pooled 

sample of 8 – 10 individual utricles for each time point. At the end of the culture 

incubation period, the tissue was placed immediately into RNAlater. RNA extraction 

and reverse transcription to obtain cDNA was then carried out using the same methods 

as for normal utricular tissue samples.  

2.9.2 Integrin Screen with Custom TaqMan® Array 

Quantitative PCR was carried out using TaqMan® Custom 96 well plates (Applied 

Biosystems) containing TaqMan® assays for individual integrin subunits, in addition to 

two different endogenous controls and four hair cell markers; calretinin, myosinViia, 

Atoh1 and Pou4f3. Four replicates of each assay were present on each individual 96 
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well plate. A single 96-well plate was used per cDNA sample i.e. 4 separate array plates 

were run. The full plate layout is shown in figure 5-1. 

TaqMan® gene expression assay probes feature a reporter dye at their 5’ end, such as a 

FAM™ dye, and a non-fluorescent quencher at their 3’ end. In a qPCR reaction, the 

TaqMan® probe will bind specifically to a complimentary DNA sequence within the 

target gene for which the assay was designed. When intact, the fluorescence of the 

reporter dye is suppressed due to its proximity to the quencher dye, however, due to the 

activity of DNA polymerase during the extension phase of the PCR reaction, the 

reporter dye at the 5’ undergoes cleavage from the TaqMan® probe. The level of 

fluorescence within the assay is therefore increased as more reporter dye molecules are 

cleaved during each qPCR reaction cycle; thus detecting the amplification of the target 

gene within a given assay.  

All qPCR experiments were carried out on a SDS7500 real-time PCR System (Applied 

Biosystems) as described in the protocol provided for the customised 96-well plates. For 

each cDNA sample, a ‘cocktail’ containing 432µl of cDNA, 648µl of ddH20 and 1080µl 

of TaqMan® master mix (Applied Biosystems) was made up and mixed by pipetting. 

To each of the 96-wells of a single custom integrin gene expression plate, 20µl of this 

‘cocktail’ was added. Each plate was then sealed with MicroAmp® optical adhesive 

film (Applied Biosystems) and centrifuged to ensure the whole reaction volume had 

been brought to the bottom of the plate wells. 

Each plate was run using the following thermal cycling conditions summarised in the 

table 2-7.  

 

Hold Hold 

PCR (50 cycles) 

Melt Anneal/Extend 

50°C 95°C 95°C 60°C 

2:00 0:20 0:15 1:00 

 

Table 2-7 Thermal Cycling Conditions for qPCR Experiments 

 

 



77 

 

2.9.3 Relative Quantification of qPCR Experimental Data 

Relative quantification (RQ) analysis of the results of the qPCR experiments carried out 

during this project was performed using SDS1.2.1 software (Applied Biosystems). 

Relative quantification of this data used the comparative CT method to establish whether 

there was any change in the expression of the integrin genes screened for at several time 

points following gentamicin treatment.  

The comparative CT method of relative quantification calculates the amount of a given 

target gene e.g. itgb1, normalised to the expression of an endogenous control gene e.g. 

18S RNA, relative to a calibrator sample. In these experiments, the calibrator sample for 

each gene screened for was the expression level in utricular cDNA from tissue dissected 

from normal adult mice which had not been maintained in vitro. The RQ values 

obtained by using the comparative CT method are calculated using the formula RQ = 2
-

ΔΔC
T, where CT represents the fractional cycle number at which the amount of the target 

amplified during the PCR reaction reaches a set threshold level.  

Following initial analysis, the RQ studies carried out in this project were assessed in 

order to determine whether the baseline and threshold values generated by the SDS 

software were appropriate. Baseline values (the initial qPCR cycles where there is very 

little change in the detected fluorescence levels) for each detector were set such that the 

amplification curve began after the maximum baseline value. The threshold for each 

detector was set in the exponential phase of the amplification curve, since RQ analysis 

is only accurate within this phase.  

Gene expression plots were generated by the SDS software using the RQ values 

calculated, showing the fold-difference in expression of each target gene at a particular 

time point following gentamicin treatment, relative to the calibrator sample which had 

not been exposed to the ototoxic drug or maintained in vitro. Error bars for these graphs 

were calculated where there were two or more replicates with an RQ value for a given 

target; these error bars show the RQ maximum and RQ minimum levels. Confidence 

levels for the RQ maximum/minimum values for these gene expression plots were set at 

95%, therefore the error bars on all gene expression plots presented in this thesis show 

the upper and lower limits within which the true gene expression level of a given target 

is likely to occur, with 95% confidence. For a particular target gene, where the RQ 

values at two time points are different and the error bars indicating the RQ 
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maximum/minimum values do not overlap, the RQ values may be said to be 

significantly different from one another, with a significance level of 0.05. 

2.9.4 Optimisation of qPCR Reactions  

The protocol for the use of the customised integrin TaqMan® gene expression arrays 

recommends the use of 1-100ng of cDNA per 20µl reaction volume. In order to 

determine the optimal amount of cDNA required for these qPCR experiments with 

utricular cDNA, a series of control assays were carried out. Individual assays for 

myosin VI were initially carried out using 50ng cDNA per well. This qPCR run 

indicated that myosin VI began to be amplified in the cDNA samples from cultured 

utricles after between 33 and 39 cycles, as shown in figure 2-1 A.  

In order to allow amplification to begin at a lower cycle number, and therefore ensure 

more reliable results, a second control qCPR experiment was run using the cDNA at a 

higher concentration of 150ng/µl. Each well had 4µl of cDNA solution added – a total 

of 600ng of cDNA was therefore used per assay. Figure 2-1 B shows that under these 

conditions, myosin VI amplification began at around cycle 30 for cDNA from utricles 

maintained for 4 and 14 days post-gentamicin treatment. The cDNA sample from 

utricles maintained for 21 days post-gentamicin showed myosin VI amplification began 

at cycle 33. The use of 600ng of cDNA per assay was therefore selected for use on the 

customised integrin TaqMan® gene expression array plates.  
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Figure 2-1 Optimisation of the Amount of cDNA Required for qPCR Experiments 

(A) Myosin VI assays with each cDNA sample (4, 14 and 21 days post-gentamicin) 

using 50ng of cDNA per well. Amplification of myosin VI began between cycles 33 

and 39. (B) A larger amount of cDNA, 600ng per well, showed that amplification of 

myosin VI began earlier, at between cycles 30 and 33. Therefore, 600ng of cDNA 

per assay was selected as the amount to be used per reaction on the customised 

integrin TaqMan™ gene expression arrays.  
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2.9.4 Multiplexed Integrin Assays 

Individual integrin subunit multiplexed qPCR assays were carried out in 96-well plates 

(Applied Biosystems). 4μl of each cDNA sample (at a concentration of 150ng/μl) to be 

analysed was pipetted into individual wells. To each cDNA sample, 6μl of a reaction 

‘cocktail’ was added using a repeat pipettor (Eppendorf); the ‘cocktail’ consisted of 

0.5μl endogenous control (18S RNA) assay, 0.5μl target assay (e.g. an integrin subunit) 

and 5μl of TaqMan® master mix. All integrin assays and the 18S RNA assay were 

supplied by Applied Biosystems. The 96-well plates were sealed with MicroAmp® film 

and centrifuged to bring the reaction mixture to the bottom of each well.  

Individual multiplexed assays were run using the same thermal cycling conditions as for 

the custom gene expression assays as shown in table 2-7. Relative quantification 

analysis of the results of these qPCR experiments was performed using SDS1.2.1 

software as described in 2.9.3. 
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Chapter 3: Integrin Expression in the Normal Adult Mouse Utricle 
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3.1 Detection of Integrin Subunits Expressed in the Normal Adult Mouse Utricle 

by RT-PCR 

3.1.1 Objectives 

There have been few previous studies regarding the presence of members of the integrin 

family of proteins in the mammalian inner ear. Of these studies, most only describe the 

expression of a small number of integrin subunits within the embryonic or very early 

postnatal mouse (Davies, 2007; Davies and Holley, 2002; Littlewood Evans and Muller, 

2000) . The expression of integrins in the normal adult mouse utricle had not been 

investigated prior to the start of this project.  

In order to examine whether there are changes in the expression level or expression 

pattern of integrins in response to gentamicin-induced hair cell loss and any subsequent 

regeneration, it was first required to establish which of the 18 α and 8 β integrin 

subunits are present in the utricle in its normal, undamaged state.  

Due to the large number of integrin subunits which exist in mammals, it was determined 

that the design of degenerate RT-PCR primers would be the most appropriate method 

for conducting a ‘screen’ of the normal adult mouse utricle for all of the known murine 

integrins. Degenerate PCR was intended to be used as a primary screen of the tissue of 

interest. Using the information gathered by degenerate PCR, further experiments e.g. 

immunohistochemistry, could then be focused on exploring the expression pattern of 

those integrins found to be present in the utricle. The use of degenerate primers would 

be preferable to conducting individual RT-PCR experiments for each of the integrin 

subunits, since the latter would be more costly, in addition to being more time 

consuming. The integrin protein family is a large one; consisting of 26 α and β subunits 

in total. The use of degenerate primers, with the ability to detect multiple integrins 

within one PCR experiment would therefore be greatly beneficial. The initial aims of 

this section of the project were to design a set of functional degenerate PCR primers 

which would detect all of the known murine integrin subunits; one set of primers to 

detect the α subunits and a second set to screen for the β subunits.  
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3.1.2 Design of Degenerate Primers  

Previous work on the development and use of degenerate primers for detecting the 

integrins by PCR had been conducted (Pytela et al., 1994) predominantly using the 

human version of each of the subunits which had been identified at that time. The 

sequencing of the human genome had not yet been completed when this previous work 

was undertaken, thus it utilised the amino acid sequences of the known vertebrate 

integrins, rather than DNA sequences. Since this earlier study took place, a further four 

integrin subunits have been identified; α10, α11, αE and αD.  

The initial method  applied to the design of degenerate integrin primers was to use the 

Clustal W2 program (http://www.ebi.ac.uk/Tools/msa/clustalw2/) to perform sequence 

alignments of the murine DNA sequences of all 26 known integrin subunits when 

divided into two groups: the α subunits and the β subunits.  The results of this alignment 

analysis, however, proved to be unsuitable for the production of degenerate PCR 

primers. There was not a high enough degree of homology between all of the α subunits 

when aligned as a group, nor between all of the β integrins subunits. Producing 

degenerate primers from these sequence alignments would have required the 

incorporation of a large amount of ‘wobble,’ which would have compromised the ability 

of the primers to specifically amplify members of the integrin protein family.  

3.1.2.1 Division of the Integrins into Subgroups Based on DNA Sequence 

Homology 

Although often described as a “family,” the integrins may be further divided into 

subgroups based on several factors, including the ECM ligands to which they bind 

(Johnson et al., 2009).The α subunits may be divided into four subgroups as follows; the 

laminin binding subunits (α3, α7 and α6), the RGD sequence binding subunits (αIIb, 

αV, α5 and α8), and a small group consisting of α4 and α9. All of the remaining α 

subunits possess a domain known as the αI domain and thus form a large subgroup, 

which can be further divided into α subunits which are able to bind collagen (α1, α2, 

α10 and α11) and those which are expressed in leukocytes (αE, αM, αD, αX, αL).  

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 3-1 A Degenerate PCR-based Approach for Identifying Integrin Subunits Expressed in Normal Adult Mouse Utricular Tissue 

This flow chart summarises the strategy used in this project in order to determine which integrin subunits are expressed in the normal adult mouse 

utricle.  Full details of the methods used in these experiments are provided in 2.7.  
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In order to design degenerate PCR primers, the α and β integrins required division into 

further subgroups depending on their degree of homology to one another. The 

ClustalW2 program was used to generate dendrograms in order to illustrate the 

relationships between the murine α and β subunits in terms of their DNA sequence. 

These resulting integrin ‘family trees’ are shown in figure 3-2.  

The α subunits (Figure 3-2 A) are divided into five main subgroups based on DNA 

sequence homology. These groups are similar to those described in terms of the 

evolution of the integrin family (Johnson et al., 2009). These groups also correspond to 

the ligand binding properties of the α integrins as described earlier in this chapter. It was 

possible to align the sequences of the α integrins within each group and obtain a high 

enough degree of homology in certain regions to be able to design degenerate primers. 

These regions (shown in figure 3-3) were similar to those consensus regions identified 

in previous work using the amino acid sequences of vertebrate integrin subunits (Pytela 

et al., 1994). The β integrin groups identified by the dendrogram produced based upon 

DNA sequence homology proved more difficult to use to design degenerate primers. 

The β integrins, although fewer in number, are considered to be more variable in terms 

of their DNA sequence e.g. integrin β4 has a cytoplasmic tail region which is far longer 

than any of the other β integrin subunits (Ewan et al., 2005). Further refinement of the β 

integrin groups was determined by running test alignments of variant combinations; this 

process resulted in 3 groups of integrin β subunits.  

The final groups to be used for degenerate primer design are shown in table 3-1. 

Integrin αL is not included in these groups; this subunit is shown in the dendrogram in 

figure 3-2 to be on a branch of its own in terms of DNA sequence homology. Since αL 

is a highly leucocyte-specific integrin (Berlin et al., 1995), and thus perceived as highly 

unlikely to be found in the tissue of interest, it was decided to omit this α subunit from 

the design of integrin degenerate PCR primers. 
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Figure 3-2 Homology of the Murine Integrin Subunit DNA Sequences 

Dendrograms produced using the ClustalW2 program based on the murine DNA sequences for all the known (A) α and (B) β integrin subunits. The α 

integrins are divided into five main groups based on their homology, whilst the β integrins are divided into 3 groups. This data was used to determine 

how many sets of degenerate primer pairs were required in order to screen normal utricular tissue for all of the known murine integrins. 
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Figure 3-3 Consensus Regions of the α and β Integrin Subunits 

(A) DNA sequence of an α integrin, i.e. α1, showing the location of 5 consensus regions (A1 – A5) used to design sets of degenerate PCR primers. The 

regions represented by grey boxes indicate regions where (Pytela et al., 1994)successfully designed degenerate primers based upon integrin amino acid 

sequences (direction of the arrows differentiates between forward and reverse primers). I domain = an integrin domain only found in some α integrin 

subunits. (B) DNA sequence of a β integrin, i.e. β1, indicating the conserved putative ligand-binding domain (blue box). Degenerate primers designed 

were located within this region (B1 indicates forward primers, B2 reverse primers). Previous work had also used two further regions (B3 & B4) for 

degenerate primer design. TM = transmembrane domain.  
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 Group Integrins  

Integrin α Subunits   

 Alpha A α1, α2, α10, α11 

   

 Alpha B αX, αE, αM, αD 

   

 Alpha C α3, α6, α7 

   

 Alpha D α5, α8, αV, αIIb 

   

 Alpha E α4, α9 

   

   

Integrin β Subunits   

 Beta 1 β1, β4, β7 

   

 Beta 2 β2, β8 

   

 Beta 3 β3, β5, β6 

 

 

 

 

  

 

 

 

 

Table 3-1 – Integrin α and β Sub-Groups for the Design of Degenerate PCR 

Primers 

This table shows the division of the integrin α and β subunits into groups; 5 for the αs and 3 

for the βs. These sub-groups were determined by using the dendrograms shown in figure 3-

2 based on DNA sequence homology.  
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3.1.2.2 Criteria for the Design of Degenerate Primers 

For each α and β sub-group, DNA sequence alignments were run using the Clustal W2 

program and consensus regions identified. The previous work of  (Pytela et al., 1994), 

demonstrated similar consensus regions to those identified by these alignments. Figure 

3-3 highlights the regions of the DNA sequence where degenerate primers designed for 

this project are located, in relation to those of this previous study. These consensus 

regions were then used to design a set of degenerate primers, based on a number of 

criteria. Each forward and reverse primer was required to be at least 23 base pairs (bp) 

in length. Additionally, an amplicon size of around 200bp was deemed optimal in order 

to allow for subsequent analysis of the PCR products by restriction digest; smaller 

amplicons would be more likely to produce small, difficult to detect fragments in such 

experiments.  

Degeneracy scoring was applied in order to select the best possible primers. This 

allowed the potential number of different primer sequences which could be produced 

based on the sequence alignments of the integrin subunits of a given group. For 

example, the INTAallF primer sequence of GGGCCAGATNGGVTCHTAYTTTGG, 

contains 4 sites at which degeneracy is required. N, Y & H represent sites at which there 

is 2-fold degeneracy and V a site at which there is 4-fold degeneracy. The degeneracy 

score for this primer is therefore calculated as 2 x 4 x 2 x 2 = 32. Degeneracy scores 

were required to be as low as possible, in order to maintain specificity to the integrin 

family of proteins. During the design process, the Oligo Calc online tool 

(http://www.basic.northwestern.edu/biotools/OligoCalc.html) was used to analyse 

potential primer sequences in order to assess their GC content, melting temperature (Tm) 

and to check for self complimentarity which might affect the efficacy of the primer. 

Where the Tm of a primer sequence was deemed to be lower than was preferable (which 

occurred in shorter primer sequences), GGC repeats were added to the 5’ end in order to 

raise the Tm. Figure 3-4 shows a summary of the degenerate primer pairs designed, 

including the sequences for both forward and reverse primers, the integrin subunits 

which each pair was designed to detect, the expected amplicon size and the positive 

control tissue used to test the efficacy of the primers. Each primer pair was also given 

an abbreviated name e.g. A1, for ease of reference in latter results of PCR experiments. 

http://www.basic.northwestern.edu/biotools/OligoCalc.html


90 

 

3.1.3 Testing of Degenerate Primers Using Positive Control Tissue 

Degenerate primer efficacy was verified by running PCR experiments using positive 

control tissue cDNA. Of the 12 degenerate primer pairs designed, 8 pairs produced PCR 

products of the expected amplicon size when run on an agarose gel. Figures 3-5 and 3-6 

show gel images of all successful RT-PCR reactions for the α (Figure 3-5) and β (Figure 

3-6) degenerate primers. 

Positive control tissue testing i.e. tissue known to express a given integrin subunit, was 

used to confirm whether each primer pair had the ability to detect each integrin subunit 

it was designed to, should that subunit be present in a given cDNA sample. Without this 

confirmation, it would be more difficult to establish in utricular cDNA whether a 

particular subunit was not present at all, or if it was in fact expressed, but not able to be 

detected effectively by the degenerate primers.   

Appropriate positive control tissues were selected using the NCBI Unigene 

(http://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Mm.263396) 

database to view the EST profile of gene expression within a range of tissues for each of 

the integrin subunits being detected.  The control tissue used for each primer pair was 

selected on the basis that it demonstrated a significant level of expression of each of the 

integrin subunits which the primer pair was designed to detect. The control tissues used 

for each set of primers are shown in figure 3-4.  

Some primers required optimisation of the PCR reaction conditions in order to function 

effectively e.g. alteration of the cDNA concentration, annealing temperature or MgCl2 

concentration. The optimal RT-PCR reaction conditions for each set of primer pairs are 

summarised in table 3-2. All of the PCR products from successful degenerate RT-PCR 

experiments shown in figures 3-5 and 3-6 were cut out of the agarose gel, to be used in 

cloning experiments to identify which integrin subunits were successfully amplified by 

each primer pair.  

 

 

 

http://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Mm.263396


91 

 

Primer Pair 

(Oligo Names) 

Abbreviated 

Primer Pair 

Name 

Forward Primer Reverse Primer Integrins 

to be 

Detected 

Control 

Tissue 

Amplicon 

Size (bp) 

       
INTAall1F + INTAxmdeR A1 ggcCAGATNGGVTCHTAYT

TTGG 

GGKGCMCCAATRGCCACATCY

G 

αX, αM, 

αD & αE 

Spleen 275 

INTAxmdeF + INTAxmdeR A2 ggcCAGATBGGSTCYTAYT

TTGGSKC 

GGKGCMCCAATRGCCACATCY

G 

αX, αM, 

αD & αE 

Spleen 275 

INTA2110bF + INTA2110R A3 ggcGTKGGRGCYTWTGACT

GGRRBGG 

ggcCCAAARTAKGAKCCDATCT

GVTC 

α1, α2, α10 

& α11 

Spleen 281 - 290 

INTA2110bF + INTAall1R A4 ggcGTKGGRGCYTWTGACT

GGRRBGG 

ggcCCAAARTADGABCCNATCTG α1, α2, α10 

& α11 

Spleen 281 - 290 

INTA673F + INTA8673R A5 GCHGTBTAYGTSTWCATK

AACCAG  

AKCCATCYTGGTTVAKRTCMCC α3, α6 & 

α7 

Spleen 

& lung 

127 - 130 

INTA82b5VF + INTA75V82bR A6 GGWGARCAGATGGCHKC

NTAYTT 

AKCCRTCYYGGTYSAGGTCHCC

CA 

α5, α8, αV 

& αIIb 

Spleen 

& lung 

259 - 268 

INTA82b5VF + INTA8673R A7 GGWGARCAGATGGCHKC

NTAYTT 

AKCCATCYTGGTTVAKRTCMCC α8 Spleen 

& lung 

262 

INTA49Fb + INTA49Rb A8 CTKGGCGACATTGAYRAT

GACGG 

CCTGAKATRGAYTGYCCAAAC

ATCC 

α4 & α9 Spleen 185 

       
INTB28F + INTB28R B1 ATACCCCRTKGATCTKTA

YTAYCT 

ATGGCATCMARMCCWCCYTCA

GG 

β2 & β8 Lung 348 

INTB356aF + INTB356R B2 GAYMTSTAYTACYTSATG

GACCTSTC 

GYAGCCTGSAKGAYBGCRTCAA

A 

β3, β5 & 

β6 

Kidney 

& 

spleen 

350 - 356 

INTB356bF + INTB356R B3 TSTAYTACYTSATGGACCT

STC 

GYAGCCTGSAKGAYBGCRTCAA

A 

β3, β5 & 

β6 

Kidney 

& 

spleen 

346 - 352 

INTB147F + INTB147R B4 ATACCCCRTKGATCTKTA

YTAYCT 

CTGCADRATKGCATCAAAGCCV

CCTTC 

β1, β4 & 

β7 

Lung 333 - 345 

 

 

Figure 3-4. Degenerate PCR Primers for the Detection of the Integrin α and β Subunits in the Normal Adult Mouse Utricle 

Summary table of the degenerate primers pairs used to detect integrins. Wobble was incorporated into the primer sequences as appropriate; Y = C or T, 

V = A or G or C, M = A or C, R = A or G, H = A or C or T, K = G or T and B = G or C or T. Lower case indicates where GGC repeats were added.  
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 Primer Pair Band Detected 

by RT-PCR 

(Positive 

Control) 

Integrin Subunits 

Successfully Amplified 

(Positive Control) 

Band Detected by RT-

PCR (Normal Utricle) 

Integrin Subunits 

Successfully 

Amplified (Normal 

Utricle) 

α Integrins      

 A1 Yes * αM &/or αE, *αX &/or 

αD 

No None 

 A2 No    

 A3 Yes α1 & α10 Not used Not used 

 A4 No    

 A5 Yes α7 Not used  Not used 

 A6 Yes **α8 and/or α5, αIIb 

and/or αV 

Not used Not used 

 A7 No    

 A8 Yes α4 & α9 Yes α4 & α9 

      

β Integrins      

 B1 Yes β2 & β8 Yes β8 

 B2 Yes β5 & β6 Yes β5 & β1 

 B4 Yes β7 & β1 Yes None 

Table 3-2 Summary of Integrin Subunits Detected by Degenerate Primers in Positive Control and Normal Utricle cDNA  

The results of the RT-PCR experiments using the integrin degenerate primer pairs are summarised to show which primers worked successfully (i.e. a 

band of the expected amplicon size was detected) and which subunits were identified through restriction digest/DNA sequencing as being present in these 

PCR products. */** indicates subunits with very similar restriction maps which prevented them from being distinguished from one another. Primers 

which did not show sufficient capabilities to detect their cohort of subunits are indicated as ‘not used’; these primers were not tested with utricular cDNA. 
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Figure 3-5 Integrin α Subunit Degenerate RT-PCR using Positive Control cDNA 

RT-PCR products run on an agarose gel stained with ethidium bromide. Bands consistent with the expected amplicon size were detected for the 

following primer pairs. (A) Primer pairs A1 (lane 1, 281-290bp), A2 (lane 3, 275bp), A7 (lane 10, 262bp) and A8 (lane 12, 185bp). (B) Primer pair A6 

(lane 7, 259-268bp). (C) Primer pair A4 (lane 4, 281-290bp). (D) Primer pair A5, using both spleen (lanes 1 & 3, 127-130bp) and lung (lanes 2 & 4, 

127-130bp) control cDNA.  La = 100bp DNA ladder (Promega).  
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Figure 3-6 Integrin β Subunit Degenerate RT-PCR using Positive Control Tissue 

cDNA 

RT-PCR products run on an agarose gel. Bands consistent with the expected amplicon 

size were detected with the following primer pairs. (A) Primer pair B1 (lane 1, 348bp), B2 

(lane 3, 350-356bp), B3 (lane 5, 346-352bp, with kidney cDNA) and B4 (lane 6, 333-

345bp). (B) Primer pair B3 (lane 2, 346-352bp) using spleen control cDNA.  La = 100bp 

DNA ladder (Promega). 
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3.1.4 Identification of Individual Integrin Subunits Detected in Control Tissue 

Individual integrin subunits successfully detected by each primer pair were identified by 

the cloning of RT-PCR products and restriction digest; full details of this process is 

given in 2.8. DNA sequencing was also used to confirm the identity of the detected 

integrins.  

A total of at least 15 integrin subunit genes were confirmed as having been detected by 

degenerate PCR; these were (as shown in table 3-2) Itga1, Itga4, Itga7, Itga9, Itga10, 

Itga8 and/or Itga5, Itga2b and/or Itgav, Itgam and/or Itgae, Itgax and/or Itgad, Itgb1, 

Itgb2, Itgb5, Itgb6, Itgb7 and Itgb8. 

Figure 3-7 shows an example of a restriction digest which successfully distinguished 

between two potential integrin gene amplicons within PCR products obtained using the 

A8 primer pair. An RsaI digest produced different DNA banding patterns depending 

upon whether the amplicon incorporated into cloned plasmid DNA was from Itga4 or 

Itga9 i.e. Itga9 would produce two DNA bands of 1898 and 1304 base pairs (bp) in 

length, whereas incorporation of Itga4 would result in a single cut of the DNA, 

linearising the plasmid and visible as a single DNA band when run on an agarose gel. 

Figure 3-7 shows 5 samples with a single DNA band of 3.1kb, indicating the presence 

of Itga4; the remaining 14 samples produced two DNA bands, thus were determined to 

contain the Itga9 amplicon. Restriction digests were utilised in this manner for all 

degenerate PCR products to identify individual integrins. The restriction digest 

strategies used are summarised in tables 2-5 and 2-6. Gel photos of these digests are 

provided in the appendix.  

Representative samples believed to have been identified as a given subunit, as well as 

samples which restriction digest had failed to conclusively identify, were sent for DNA 

sequencing (Source Bioscience). The DNA sequence data received was run as a BLAST 

alignment in order to confirm the identity of the integrin subunit detected.  

The process of attempting to determine which integrin subunits the degenerate primers 

designed were successfully able to detect was time consuming, due to the nature of the 

cloning experiments being carried out to generate sufficient DNA for restriction digest 

analysis. Colony numbers following transformation of competent cells with plasmids 

containing PCR product inserts were often very low, which made it difficult to obtain 
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enough samples so as to have a chance of finding a colony which had taken up each of 

the different possible amplicons each degenerate primer pair was designed to amplify.  

Additionally, some of the integrin amplicons displayed such a high homology to one 

another that their restriction maps were virtually identical, making it impossible to 

differentiate between some amplicons by restriction digest i.e. the Itgam and Itgae 

amplicons. The decision was therefore made to progress on to using the degenerate 

primers on normal adult utricular tissue despite not having the ability to detect all 26 

known murine integrins. 

3.2 Degenerate RT-PCR using Normal Adult Mouse Utricular cDNA 

Degenerate RT-PCR experiments using cDNA obtained from a sample of normal adult 

mouse utricles detected the presence of the following integrin genes; Itga4, Itga9, Itgb1, 

Itgb5 and Itgb8.  

The degenerate RT-PCR experiments using utricular cDNA with the following primer 

pairs, produced bands of the expected amplicon size when PCR products were run on an 

agarose gel; A8, B1, B3 and B4 (gel images shown in figure 3-8). Positive control 

reactions were run alongside those using utricular cDNA in order to show that the 

primers were functioning correctly under the reaction conditions. Primer pair A1 did not 

produce a DNA band with utricular cDNA; since the positive control reaction did detect 

PCR products, it was concluded that the utricular cDNA sample did not contain any of 

the integrins detected by the A1 primers.  

PCR products from these experiments were cloned and the resultant plasmid DNA 

subjected to restriction digest in order to identify individual integrins. Plasmid DNA 

transformed with PCR products produced using the A8 primer pair were digested with 

RsaI. This digest, when run on an agarose gel (Figure 3-9) produced one DNA band if 

the Itga4 amplicon had been ligated into the vector and two bands if Itga9. The results 

of this digest show that both Itga9 and Itga4 were detected in normal utricular cDNA. 

This result was confirmed by BLAST alignments run using DNA sequence data from 

samples believed to be Itga4 (3-10 A) and Itga9 (3-10 B). The sample identified as 

containing the Itga4 amplicon was found to have a homology of 96.79% with the Itga4 

DNA sequence across a length of 156bp (the expected Itga4 amplicon size was 185bp). 

The sample identified as containing the Itga9 amplicon was found to have a homology 
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of 98.38% with the Itga9 DNA sequence across the entire length of the amplicon 

(185bp). 

Plasmid DNA samples obtained through cloning of the PCR products produced by the 

B3 primer pair were digested with EcoRI (Figure 3-8 B) in order to identify which 

samples contained an amplicon within the vector. There is an EcoRI restriction site on 

either side of the region where amplicons are ligated into the P-GEM®T Easy vector. 

Colony numbers in these cloning experiments were low, thus all 8 plasmid DNA 

samples which proved to have an amplicon insert were sent for DNA sequencing. Using 

BLAST alignments of the DNA sequencing data, 4 of these samples were identified as 

Itgb5, with a homology of between 94.97 and 98.58% to the Itgb5 DNA sequence. A 

further 2 samples were identified as integrin Itgb1 with a homology of 92.67%. The B3 

primer pair was not originally designed to amplify the Itgb1 gene. The remaining 2 

samples did not correspond to any of the known murine integrin genes.  
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Figure 3-7 Restriction Digest of Cloned PCR Products from RT-PCR with the A8 

Degenerate Primer Pair 

RsaI digest of A8 cloned PCR products of reactions run using utricular cDNA. Lanes 5, 14, 

15, 16 and 18 show clones which contain the Itga4 amplicon (RsaI linearises the plasmid 

DNA producing a single 3.1kb band). The remaining lanes show clones which contain the 

Itga9 amplicon (RsaI cuts plasmids with this amplicon twice to produce two bands of 1898 

and 1304 bp). La = 1kb DNA ladder (Promega) 
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Figure 3-8 Integrin Degenerate RT-PCR using Normal Adult Mouse Utricular cDNA 

Gel photos of degenerate PCR reactions using utricular cDNA. Bands of the expected amplicon size were detected using the following primer pairs. 

(A) The A8 primer pair (185bp) with positive control (lane 1, spleen) and utricular (lane 2) cDNA. (B) The B4 primer pair (~340bp) for both positive 

control (lane 1, lung) and utricular (lane 2) cDNA, and the B1 primer pair (348bp) with both positive control (lane 4, lung) and utricular (lane 5) cDNA. 

(C) The B3 primer pair (~350bp) for both positive control (lane 1, spleen) and utricular (lane 3) cDNA. Cristae cDNA also produced a band with the B3 

primers (lane 2). La = 100bp DNA ladder (Promega). S = spleen, U = utricle, C = cristae & N = negative control (no cDNA). 
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Figure 3-9 Cloned Degenerate PCR Products from Utricular cDNA Analysed by 

Restriction Digest 

(A) Plasmid DNA produced using PCR products of the A8 primers digested with RsaI. 

Lanes 1 – 4 & 9 – 12 = Itga9 (two DNA bands of 1898 & 1304 bp). Lanes 5 – 8 = Itga4 

(single 3.1kb DNA band).  (B) EcoRI digest of plasmid DNA produced using PCR 

products of the B3 primers, lanes 2, 3, 5, 6 and 9 show those which have successfully up-

taken a plasmid with an amplicon insert; EcoRI ‘cuts out’ the amplicon from the vector = 

plasmid DNA band + B3 amplicon (~350bp).   (C) TaqI digest of plasmid DNA produced 

using PCR products of the B3 primers. This digest produced several different banding 

patterns when run on a gel; lanes 1, 2, 4, 7, 8 & 10 appear similar (P1), as do lanes 3, 6 & 9 

(P2). A third banding pattern (P3) was observed in lane 5. Representative samples of each 

banding pattern were sent for DNA sequencing to conclusively identify individual 

integrins. La = 1kb DNA ladder and 100bp DNA ladder (Promega). 
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Figure 3-10 DNA Sequencing and BLAST Analysis to Confirm Identification of Subunits Successfully Amplified by Degenerate RT-PCR 

Samples from cloning experiments which had undergone restriction digest were sent for DNA sequencing to confirm the identity of the integrin 

amplicons. Samples believed to be Itga4 and Itga9 were sequenced and this data used to perform a Blast alignment. (A) Sample identified as having 

96.79% homology with Itga4 over a length of 156bp. (B) Sample  identified as having 98.38% homology with Itga9 over a length of 185bp. 

Alignment length and percentage identity are highlighted with bold text. Chromosome diagrams indicate the location of the Itga9 and Itga4 genes and 

the sequence homology found by BLAST (red bar). 
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Cloning experiments with PCR products of the B4 primer pair produced very few 

colonies despite repeating the experiment (both the ligation stage and the transformation 

of competent cells). The only plasmid DNA sample obtained for this primer pair was 

found not to contain an integrin subunit amplicon when DNA sequence data was 

subjected to BLAST alignment. B1 primer pair PCR product transformations also 

demonstrated low colony numbers. Four plasmid DNA samples were obtained for this 

primer pair; these were all identified as Itgb8 by BLAST alignment of the DNA 

sequence. A homology of between 95.11 and 99.71% was recorded for these samples.  

3.3 RT-PCR with Specific Integrin Primers 

3.3.1 Positive Control cDNA 

Integrin subunits which had not been detected by degenerate PCR primers in control 

tissue were evaluated as indicated in figure 3-1. Through consultation of published 

literature, a group of 5 integrin subunits which were believed likely to be expressed in 

utricular cDNA was identified. This group was comprised of several highly abundant 

subunits, as well as integrins which had been detected in inner ear tissue in previous 

studies; αV, α8, β1, β3 and α6. Individual specific PCR primers were therefore designed 

to detect each of these integrins; this design process is described in 2.7.5. Primer 

sequence data for these specific integrin subunit RT-PCR primers is provided in table 3-

3.  

As with the degenerate primers, specific integrin subunit primers were tested for 

efficacy using cDNA from an appropriate positive control tissue; spleen for integrins 

αV, α8 and β3, and lung for α6 and β1. Bands of the expected size were detected using 

control tissue with the primers for integrin α6, β1, β3 and αV. The results of these RT-

PCR experiments are shown in figure 3-11 where PCR products were run on an agarose 

gel. The integrin α8 primer pair was not observed to produce any PCR products, despite 

several different reaction conditions being tested.  Table 3-4 summarises the optimised 

reaction conditions at which each of the specific primer pairs functioned most 

effectively. 
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Integrin 

Subunit 

Forward Primer Tm (Salt 

adjusted) 

Reverse Primer Tm (Salt 

adjusted) 

 

Amplicon 

Size 

 

α6 

 

ATCACAGTGACTCCTAACAGAATTG 

 

63°C 

 

ACTGAACTCTCGATGACAACCCTGA 

 

66°C 

 

143bp 

      

β1 CTCTCTTTCTTCAGAAGTCATT 56°C ATTTATTAGCAGTTATGCTAATTTC 56°C 134bp 

      

β3  TGCAGTGACTGAAAATGTCGTCAGC 66°C CACGTACTTCCAGCTCCACTTTAGA 66°C 108bp 

      

α8 GGACAGGTCTACTTGTACCTTCAAG 66°C CATTGTAAATGAGGACTTTACCTCG 63°C 149bp 

      

αV CTGGCCTTGAAGTGTACCCTAGCAT 67°C TGCTTGAGTTTATCCAGTAGAAGCT 63°C 128bp 

 

 

 

 

 

 

Table 3-3 Integrin Subunit Specific RT-PCR Primers 

A summary of the 5 integrin subunits selected for the design of specific RT-PCR primers. The forward and reverse primer sequences are provided, as 

well as their Tm, as determined by the OligoCalc online tool. These integrin subunits were selected based upon their abundance in functional 

heterodimers (integrin αV and β1 are the two most ‘promiscuous’ integrin subunits) and have been previously identified in inner ear tissue in previous 

work. 
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3.3.2 Utricular cDNA 

All four integrin genes for which the specific integrin primer pairs were functional 

(Itga6, Itgav, Itgb1 and Itgb3) detected a band of the expected size when used in RT-

PCR reactions with utricular cDNA. Itga6 and Itgb3 were also detected in cDNA from a 

sample of cristae. The results of these RT-PCR experiments are shown in figure 3-12 

where PCR products were run on an agarose gel. 

The same RT-PCR reaction conditions determined by using positive control tissue were 

applied to experiments using utricular cDNA. Some primer pairs required further 

optimisation by alteration of the MgCl2 concentration to detect integrins in utricular 

cDNA effectively. Table 3-4 summarises the reaction conditions required for RT-PCR 

using utricular cDNA in comparison to those required for positive controls.  
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Figure 3-11 Testing of Specific Integrin Subunit RT-PCR Primers using Positive Control cDNA 

PCR products from specific integrin subunit primers and positive control tissue run on an agarose gel. (A) 2mM MgCl2 and an annealing temperature 

of 55°C produced bands of the expected size for Itga6 (lane 1 = lung cDNA) and Itgb3 (lane 9 = spleen cDNA). (B) 2mM MgCl2 and an annealing 

temperature of 60°C produced a band of the expected size with the Itgav primer pair (lane 3 = spleen cDNA). (C) 3mM MgCl2 and an annealing 

temperature of 62°C produced a band of the expected size with the Itgb1 primer pair (lane 3 = lung cDNA). The Itga8 primer pair did not function 

successfully under these conditions (lane 2). La = 100bp DNA ladder (Promega). L = lung, S = spleen & N = negative control (no cDNA). 
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Figure 3-12 Specific Integrin RT-PCR using cDNA from Normal Adult Mouse Utricles 

Specific RT-PCR primers detected Itga6 (A - lane 3), Itgb3 (A – lane 7), Itgav (B – lane 3) and Itgb1 (C – lanes 3 & 4) in utricular cDNA. Itga6 (A – 

lane 2) and Itgb3 (A – lane 6) were also detected in a cristae cDNA sample. Itgav (B – lane 2) and Itgb1 (C – lane 2) were not detected in cristae 

cDNA. Positive controls (using cDNA from an appropriate tissue) and negative controls (no cDNA) were run alongside inner ear cDNA RT-PCR 

reactions for each set of primers. S = spleen, L = lung, U = utricle, C = cristae & N = negative control. La = 100 bp DNA ladder (Promega). 
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Specific RT-PCR Primers PCR Reaction Conditions (Positive Control cDNA) PCR Reaction Conditions (Utricular cDNA) 

α6 Lung cDNA = 2µg Utricle cDNA = 2µg 

 Annealing temperature = 55°C Annealing temperature = 55°C 

 MgCl2 concentration = 2mM MgCl2 concentration = 2mM 

   

αV Spleen cDNA = 2µG Utricle cDNA = 2µg 

 Annealing temperature = 60°C Annealing temperature = 60°C 

 MgCl2 Concentration = 2mM MgCl2 concentration = 1mM 

   

α8 Not successful N/A 

   

β1 Lung cDNA = 2µg Utricle cDNA = 2µg 

 Annealing temperature = 65°C Annealing temperature = 65°C 

 MgCl2 concentration = 4mM MgCl2 concentration = 4mM 

   

β3 Spleen cDNA = 2µg Utricle cDNA = 2µg 

 Annealing temperature = 55°C Annealing temperature = 55°C 

 MgCl2 concentration = 2mM MgCl2 concentration = 1mM 

   

 

 

 

Table 3-4 Summary of Optimised Reaction Conditions for RT-PCR Experiments with Specific Integrin Subunit Primers 

Optimised RT-PCR reaction conditions for the specific integrin subunit primer pairs are shown for both positive control tissue and utricular cDNA. In 

some instances, conditions which worked for positive control cDNA did not function as efficiently with utricle cDNA. The α8 primer pair was tested 

with multiple reaction conditions using control cDNA (up to 5mM MgCl2 & an annealing temperature of 68°C) but no PCR products were detected. 

These primers were therefore not used with utricular cDNA. 
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3.4 Discussion 

3.4.1 The Homology of the Integrin Family of Proteins and Its Implications for 

Degenerate PCR 

In order to design a set of degenerate PCR primers which would be able to detect all of 

the known murine integrin subunits, an approach based on the homology of DNA 

sequences for these proteins was adopted. An initial attempt to design two sets of 

degenerate primers (one for detection of the α integrins and one for the βs) proved 

unsuccessful due to the lack of homology within these groups. Consensus regions 

sufficient for the design of an effective set of degenerate primers were not present 

amongst the α or the β integrin subunits.  

The dendrograms shown in figure 3-2, created using the murine DNA sequence 

information for the integrin subunits, represent the relationships between the α and β 

integrins in terms of their DNA sequence homology. The α subunits are divided into 5 

groups, which may be compared to previous studies on the evolution of the integrin 

subunits. Phylogenetic studies involving the comparison of integrin α subunits from 

numerous species including humans, mice and invertebrates such as Drosophila 

melanogaster, place these subunits into groups which correspond to those shown in 

figure 3-2 A (Hughes, 2001; Huhtala et al., 2005; Johnson et al., 2009). Each of these 

studies indicates that those α integrins which possess an I-domain form two separate 

groups; the collagen receptor integrins (α1, α2, α10 and α11), and the leucocyte 

integrins (αL, αM, αD, αE and αX). These previous studies describe a further two 

groups, known as the PSI and PSII integrin ‘families’ which feature Drosophila 

homologues. The PSI α integrins are α3, α6 and α7, as well as the Drosophila αPSI. 

These integrins (including the invertebrate homolog) are known laminin receptors 

(Belkin and Stepp, 2000). The PSII α integrins are α5, αV, αIIb and α8, plus αPSII from 

Drosophila. This group once again is linked by their ligand binding attributes; PSII α 

integrins are those capable of recognising and binding a particular RGD amino acid 

sequence in the ligands with which they interact. The mammalian integrins α4 and α9 

form the final α subgroup. Previous studies, however, also described an additional group 

– the PSIII integrins, of which there are no mammalian members, only invertebrate 

proteins (Johnson et al., 2009). It has been suggested that at some point in their 

evolutionary history, vertebrates lost this family of α integrins, whilst diversification 



 

 

109 

 

occurred within the other families in order to produce the numerous α subunits known 

today (Hughes, 2001). The α integrin groups defined in this work for the purpose of 

creating degenerate PCR primers are therefore supported by previous studies and 

investigation of the evolutionary origins of the integrins.  

During this project, the β integrins were divided into three groups based on a 

dendrogram of their DNA sequence homology (figure 3-2 B) which was refined by 

running test alignments and investigating these for appropriate consensus regions. 

Previous work (Hughes, 2001; Huhtala et al., 2005) divides the β integrins into two 

main subgroups; the β1 group – containing β1, β2  and β7 and the β3 group – containing 

β3, β5 and β6. The two remaining β integrins (β4 and β8) are described as each being a 

‘group’ of their own (Holmes and Rout, 2011), although integrin β8 is also described as 

being more closely related to the β3 group integrins (Hughes, 2001). Integrin β4, a 

considerably larger protein than the other β subunits, has been recently postulated as 

being the original ‘primordial’ β integrin (Holmes and Rout, 2011). Studies involving 

the integrins of organisms such as the invertebrate Ciona intestinalis, have shown that 

this proteostome possesses an integrin which is an orthologue of vertebrate β4 (Ewan et 

al., 2005), supporting the theory that the β4 integrin subunit had evolved prior to the 

divergence of vertebrate and ascidian species such as C. intestinalis.  

The dendrogram produced in this work using the mouse DNA sequences of the 8 

mammalian β integrins, differs somewhat from previous studies. Although figure 3-2 B, 

groups the ‘β3’ integrins together as in previous work, it places β1 and β8 together as a 

group, with the remaining subunits (β2, β4 and β7) forming a third group; this third 

group is most similar to the previously described ‘β1’ group, with β1 having been 

replaced by β4. Following initial examination by DNA sequence alignment, these 

groups were revised and whilst the ‘β3’ group remained unchanged, the two other 

groups were altered so that one consisted of β2 and β8, the other β1, β4 and β7.  

That the grouping of β integrin subunits does not completely agree with previous 

phylogenetic studies may be attributed to their high level of divergence in terms of 

DNA sequence which has been previously described. It has been observed that there is a 

far greater degree of homology between the sequences of one β subunit when compared 

across its homologs in other species, than there is amongst all of the β integrins from a 

single species (Pytela et al., 1994). The result observed in this project for the β integrins 
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is therefore likely to represent the way in which the DNA sequences of the 8 β subunits 

diverge which is specific to the mouse version of each gene.  

3.4.2 Integrin Subunits Detected in the Normal Adult Mouse Utricle by RT-PCR 

The results of the degenerate RT-PCR experiments on utricular cDNA carried out in 

this project indicate the presence of five integrin genes; Itga4, Itga9, Itgb1, Itgb5 and 

Itgb8. The use of specific integrin PCR primers on the same cDNA sample detected the 

presence of a further three subunits, namely Itga6, Itgav and Itgb3, and supported the 

finding that Itgb1 had been detected in the tissue of interest by the degenerate PCR 

primers.  Of these eight integrin subunits detected in the normal mouse utricle using this 

type of PCR, there are several potential heterodimers. All four of the α subunits detected 

can form a heterodimer with integrin β1, the most ‘promiscuous’ of the β subunits (it is 

present in a total of 12 known mammalian integrin heterodimers). Integrins α4 and α6 

can also associate with β7 and β4 respectively, although these integrins were not 

detected in the cDNA sample by RT-PCR. Integrin αV, the most ‘promiscuous’ α 

integrin, could also potentially associate with the β3, β5 and β8 subunits which were 

positively identified in these experiments.  

The degenerate PCR primers designed during this project were not proven to be able to 

detect all of the integrin subunits for which each primer pair was intended. This may 

potentially be attributed to certain integrin subunits not being expressed at a high 

enough level in the control tissue they were tested on. Where a primer pair was 

potentially able to detect any of four different subunits, it may have been possible that 

the control tissue selected contained some subunits at a higher expression level than 

others, making their detection more likely than those expressed in much lower 

quantities. Cloning experiments used to identify which subunits were present in the RT-

PCR product samples often produced low bacterial colony yields. Therefore, even if as 

many as 20 clones were examined, if a given subunit had been present in the cDNA at 

higher levels than others, this subunit would be more likely to be present in the cloned 

plasmid DNA. Based upon the results obtained during this project, degenerate PCR 

would not be considered the most effective method for conducting a screen of utricular 

cDNA for a protein family as diverse as the integrins. Had the full extent of the lack of 

homology amongst the α and β subunits been known, an alternative experimental 

approach for integrin screening would have been selected e.g. the use of a DNA 
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microarray, which could have been utilised to provide information on expression levels 

of integrins, in addition to their presence or absence from the murine utricle. It would 

also have been possible to begin this study with a selected cohort of integrin subunits 

most likely to be expressed in the tissue of interest based upon a search of the literature, 

as was carried out after the capabilities of the degenerate PCR primers had been 

exhausted.  

The integrins represent a group of proteins which are described as a ‘family,’ but which 

lack the degree of DNA sequence homology which might be expected of such a family 

of molecules. In the current era of genomics, with entire genomes for an ever-growing 

number of organisms being sequenced, it would seem unlikely, based upon the findings 

of this project, that by analysis of DNA sequence data alone, the 26 integrin subunits 

described in mammals would be considered homologous enough to warrant the term 

‘family.’ It might be conceivable that some of the integrin subgroups identified in this 

thesis show the degree of homology that might now be expected of a protein family i.e. 

those α integrins which possess an I domain. Whilst they do not exhibit such largely 

conserved DNA sequences as shown by other protein families, the integrins do share a 

great deal in terms of their protein structure and cellular functions. All integrins are 

comprised of an α and β subunit to form a heterodimer, creating an adhesion molecule 

which provides a link between the surroundings of a cell (be it the extracellular matrix 

or the surface of a neighbouring cell) and its intracellular environment. The integrin cell 

surface receptors, which might be considered unlikely to be identified as a protein 

family were their individual members discovered today with the weight of genomic data 

available, remain linked as a highly divergent family group through their shared 

functional role as adhesion molecules.  

In order to provide a more conclusive ‘screen’ of the normal adult mouse utricle and 

further establish which of the integrin α and β subunits are expressed in this tissue, a 

quantitative PCR based approach was deemed most appropriate. Using specific gene 

expression assays for each integrin subunit would remove the potential bias shown by 

the degenerate RT- PCR and cloning based strategies towards subunits expressed at a 

higher level in a given cDNA sample. Further discussion of the individual integrins 

detected in utricular cDNA in these degenerate and specific primer RT-PCR 

experiments is given in chapter 7, in order to provide a comparison with the results of 

subsequent qPCR analysis.   
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Chapter 4:  Organotypic Culture of Mouse Utricles 
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4.1 Development of Organotypic Adult Mouse Utricle Culture Techniques  

4.1.1 Objectives 

The adult mouse utricle was selected as the tissue culture model for the work to be 

undertaken during this project. There have been numerous studies carried out using 

mature mammalian vestibular sensory epithelium, maintaining this inner ear tissue in 

vitro for considerable time periods. Previous work has shown how mammalian utricular 

tissue maintained in culture can be damaged and hair cell loss induced by treatment with 

aminoglycoside antibiotics (Warchol et al., 1993). This tissue, both in vivo and in vitro, 

has also been shown to partially recover, with the observation of immature stereocilia 

bundles appearing on the apical surface which gradually develop a more mature 

morphology(Bermingham et al., 1999; Forge et al., 1993; Lin et al., 2011).  

Through the use of an in vitro culture system, it would be possible to alter the culture 

conditions of the tissue in order to successfully induce hair cell loss. The addition of an 

ototoxic drug i.e. gentamicin, to the culture medium would provide an easy method of 

manipulating the tissue as opposed to the systemic administration of antibiotic required 

for an in vivo approach. 

In order to establish a sustainable model, experiments were initially carried out using 

methods previously practised by the research group for the culture of mammalian 

vestibular tissue (Forge and Li, 2000; Li et al., 1995). With these techniques as a 

starting point, experiments were carried out to investigate how adult mouse utricular 

tissue responded when cultured in this way, leading to the refinement and adaption of 

the methods and culture conditions as was required to produce a degree of hair cell loss 

sufficient for use in later experiments and to maintain the tissue for a substantial length 

of time whilst retaining manipulative capacity. 

4.1.2 Use of MatTek™ Dishes Coated With Laminin 

Initially, organotypic cultures were grown on MatTek™ dishes. These dishes have a 

glass bottom surface, allowing high resolution images to be taken directly. To this glass, 

a coating of the extracellular matrix protein laminin (Sigma) was added. A laminin 

solution at concentration of 1µg/75µl in serum-free culture medium and a thin layer of 

this solution was spread over the glass. The solution was air dried for one hour and the 
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remaining excess liquid removed by pipetting to leave a thin coating of laminin on the 

bottom of the dish.  

Following dissection of the utricular tissue from the animal, a small volume of culture 

medium was added to the glass well of the MatTek™ dish on top of the laminin coating, 

and the tissue introduced with forceps, gently manipulating it in such a way that the 

utricles laid flat on the glass bottom, with the sensory epithelium uppermost. Culture 

medium was changed every other day, by removing and replacing half the total volume 

(200µl) of medium in order not to remove any essential secreted growth factors or other 

molecules. 

When attempting to maintain organotypic cultures in this manner for longer time 

periods, the tissue became noticeably thinner and flatter, with cells ‘growing out’ from 

the utricle. On reaching 21 days in culture and beyond, the tissue had become extremely 

thin. This change in morphology made subsequent manipulation of the cultured tissue 

i.e. immunohistochemistry of wholemounts, difficult and it would have proved to be an 

even greater challenge to use these utricles for cryosectioning.  

Initial experiments involved treatment of cultures with 2mM gentamicin for 24 hours 

only. This treatment failed to induce a significant degree of hair cell loss, when the 

tissue was labelled with hair cell markers (data not shown) to check for the presence of 

hair cells. Subsequently, all cultures were treated with 2mM gentamicin for a period of 

48 hours. This aminoglycoside treatment was administered 24 hours after the initial 

tissue dissection and the start of the culture time period in order to allow the dissected 

tissue time to stabilise in the in vitro environment. 

Although this approach successfully induced a sufficient degree of hair cell loss to be 

considered suitable for the study of the potential effects of hair cell loss on the integrin 

family, culturing on glass coated with laminin was not believed to be the optimal 

method of growing these cultures. The level of outgrowth seen and the difficultly this 

introduced into the use of the cultured tissue in subsequent experiments meant that an 

alternative surface on which to maintain the utricles was required. Laminin is an 

extracellular matrix protein and is therefore a potential ligand with which some integrin 

subunits are able to bind and interact; there were therefore concerns that using a laminin 

substrate could in itself have an effect on the expression and distribution of integrins 

during the culture process. 
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4.1.3 Use of Nitrocellulose Filter Papers 

As an alternative surface on which to maintain organotypic utricle cultures, the use of 

13mm diameter 0.45µm micropore nitrocellulose membrane filters (Millipore) was 

investigated. A single filter was added per individual well within a sterile 24-well plate 

(BD Falcon). Dissected utricles were carefully transferred onto the surface of these 

membrane filters with the sensory epithelium uppermost and covered with culture 

medium (400µl). Allowing a 24 hour period after dissection for the cultures to ‘settle’ 

prior to any gentamicin treatment, it was observed that the tissue appeared to settle 

quicker upon this surface and was therefore less inclined to be dislodged during 

subsequent changes of media.  

In comparison to observations of utricles grown on laminin-coated glass, utricles 

maintained on nitrocellulose filters exhibited less outgrowth and did not become as thin 

and flattened when kept for longer time periods as had previously occurred. This 

allowed easier removal of the utricles from the membrane filter surface for use in 

subsequent immunohistochemistry experiments than had previously been possible. 

Additionally, the membrane filters were used to an advantage when cultures required 

cryosectioning. By keeping the tissue in situ on the membrane filter and cutting out a 

small square of the filter around each utricle, the filter could be used as a guide when 

embedding the tissue in agarose to achieve the required orientation for sectioning and to 

ensure that the tissue remained flat. Since the filter paper could clearly be seen within 

the agarose block when mounted on a cryostat chuck, and also within cut sections, the 

filter paper could be used to accurately judge when sectioning the tissue that the 

required point in the agarose block had been reached. This enabled the maximum 

amount of cryosections from each utricle to be acquired. If culture explants grown on 

laminin had been used for this purpose, they would have been extremely difficult to 

visualise and there would have been a far greater risk of missing the tissue entirely 

whilst using the cryostat.  
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4.2 Gentamicin Treatment Induces Hair Cell Loss In Adult Mouse Utricular 

Cultures 

4.2.1 Organotypic Utricle Culture Morphology Under Transmission Electron 

Microscope 

To examine the ultrastructure of utricular culture tissue, control tissue which had been 

maintained in vitro for a total of 7 days and had not undergone gentamicin treatment 

was fixed and prepared as described in 2.5 for viewing by transmission electron 

microscopy.  

TEM sections of control utricles at this time point exhibit similar morphology to that 

expected within normal vestibular tissue. The sensory epithelium was well populated 

with hair cells which appeared to be viable, surrounded by supporting cells. The 

cytoplasm of hair cells has a lower electron density than that of supporting cells 

allowing these two cell types to be easily distinguished. Bundles of stereocilia are 

present on the apical surface of hair cells (Figure 4-1) whilst supporting cells have 

numerous microvilli apparent at their apices (Figure 4-2). A clearly defined basement 

membrane can be seen, dividing the distinct and separate regions of the organotypic 

culture tissue; the sensory epithelium (containing vestibular hair cells and supporting 

cells) and the underlying mesenchymal tissue (Figure 4-2). 

Many of the vestibular hair cells in these TEM sections appear in good condition; 

several different types of organelle can be discerned at high magnification within the 

hair cell bodies. Mitochondria of a healthy size and shape (shown in Figure 4-1) are one 

indicator which supports the data obtained from the immunohistochemistry experiments 

carried out in this project; a large number of vestibular hair cells continue to populate 

the sensory epithelium of the utricle when cultured for 7 days without the addition of 

gentamicin. Additional features of sensory hair cells visible in higher magnification 

images of these cell bodies include the golgi apparatus or golgi body (Figure 4-3) and a 

lamellar body towards the base of the cell. Lamellar bodies consist of sheets of lamellae 

which resemble rough endoplasmic reticulum in appearance - their presence has been 

previously documented in sensory hair cells (Saito, 1983) . 

In supporting cells, the cell cytoplasm is richly populated by vesicles (Figure 4-3) that 

appear to be full of an electron dense material, suggesting that they may be transport 
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vesicles in the process of conveying synthesised protein to the cell surface. This 

observation is supported by the results of subsequent imaging of utricular cultures under 

the scanning electron microscope (data presented in 4.2.4). It is possible that the 

vesicles observed by TEM could contain material synthesised within the supporting cell 

and that they are in the process of transporting this material to the apex of the cell to be 

secreted. This would also be an indicator of the health and survival of utricular tissue in 

culture using the techniques developed during this work. 

Although the vestibular sensory epithelium appears generally healthy, there is some 

evidence of a limited amount of hair cell death occurring in tissue which has not been 

exposed to the ototoxic antibiotic. Cellular debris (figure 4-2) is visible outside of the 

epithelium above the apical surface of the cells. From the observed size and shape of 

this debris, it would appear to have originated from a hair cell which has undergone cell 

death and been extruded from the epithelium. It would be expected that despite the best 

efforts during dissection and the culture period, some cell death might be inevitable due 

to the removal of the tissue from its natural environment. The immunohistochemistry 

studies carried out earlier in this project, however, would support the belief that hair 

cells survive well using the culture techniques developed and that the majority of the 

hair cell damage and loss observed in gentamicin treated utricles is as a direct result of 

the ototoxic drug and not a product of the culture process itself. 
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Figure 4-1 TEM of the Utricular Macula at 7 Days In Vitro  

TEM section of a control utricle maintained for 7 days in culture without gentamicin 

treatment. ‘Hc’ indicates a vestibular hair cell, whilst ‘sc’ denotes the surrounding 

supporting cells, which have cell bodies that are considerably more electron dense than 

those of hair cells. Mitochondria (mt) and an apical stereocilia bundle (st) are also shown in 

this section of the epithelial layer of the tissue. Bar = 2µm. 
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Figure 4-2 TEM of Utricular Sensory Epithelium and Underlying Mesenchyme at 7 

Days in vitro 

Utricular culture tissue maintained in vitro for 7 days without treatment with gentamicin 

viewed under TEM. The two main layers of the utricle; the sensory epithelium populated 

with hair cells ‘hc’ and supporting cells ‘sc’ and the underlying mesenchyme (‘me’) are 

separated by the clear border of the basement membrane ‘bm.’ Supporting cells have 

numerous microvilli (mv) projecting from their apical surface. Cellular debris (‘d’) is also 

visible outside of the epithelium in this section of tissue. Bar = 5µm. 
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Figure 4-3 TEM of Hair Cells and Supporting Cells in Utricular Tissue at 7 Days in 

vitro 

Utricular tissue cultured for 7 days in normal medium viewed by TEM. Supporting cell (sc) 

bodies are filled with vesicles (v) which appear to be filled with an electron dense material. 

An electron dense region at the apex of this supporting cell indicates an area of actin 

filaments (ac). Within the hair cell (hc) body, the golgi body (gb) and a lamellar body (lb) 

are both apparent within the cytoplasm. Bar = 1µm. 
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4.2.2 Immunohistochemistry of Adult Utricles Treated With Gentamicin  

Utricular Cultures at 4 Days Post-Gentamicin Treatment 

Organotypic utricle cultures which had been subjected to 48 hours incubation with 

2mM gentamicin and had been fixed as described in 2.2.2, were labelled with 

fluorophore tagged phalloidin, in this case FITC-tagged (Fluorescein isothiocyanate). 

Phalloidin binds to f-actin and is used to visualise the actin cytoskeleton. In this tissue, 

Phalloidin-FITC labelled stereocilia bundles on the apices of vestibular hair cells and 

cell junctions. Utricles were also labelled with a hair cell marker; antibodies against 

either myosin Viia (which specifically labels the cytoplasm and hair bundles of sensory 

hair cells (Hasson et al., 1995)) or calretinin (a calcium binding protein which has also 

previously been used to label post-mitotic hair cells  (Erkman et al., 1996)) were used to 

visualise vestibular hair cells. Calretinin is known to label only type I vestibular hair 

cells which are innervated by afferents which form calyces (Holmes and Rout, 2011). 

Utricular tissue maintained in culture for a total of 5 days, incubated in culture medium 

only, showed extensive coverage of the sensory epithelium with vestibular hair cells 

labelled with an antibody for myosin Viia (Figure 4-4 A). Hair cells also showed 

evidence of stereocilia still present on their apical surface following a 5 day period in 

culture, when labelled for actin filaments with a phalloidin-FITC fluorophore (Figure 4-

4 Aii) 

In comparison, utricles which had undergone 48 hours exposure to gentamicin show a 

considerable decrease in the number of cells positively labelled for the hair cell marker 

antibody to myosin Viia (Figure 4-4 Bi & Ci). Hair cell counts of gentamicin treated 

utricles at 2 days post-gentamicin showed a 42% decrease in hair cell numbers in 

comparison to control counterparts maintained in vitro for the same length of time 

(Figure 4-8), indicating that the decrease in hair cell numbers is attributable to 

aminoglycoside exposure and not purely a side-effect of the culture conditions. One-

way ANOVA analysis of hair cell count data calculated a P value of 0.0012, indicating 

that the variation of the mean hair cell counts of the groups (in this case the groups 

consisted of 2, 14 and 28 days post-gentamicin utricles, with control counterpart groups 

at 2 and 28 days), is significantly higher than would be expected to occur by chance 

through random sampling. However, the use of the post-hoc Tukey’s test (shown in 

table 4-1) to compare the mean hair cell numbers at 2 days post-gentamicin and in 
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control counterparts cultured for the same time period calculated a P value > 0.05, and 

therefore could not be considered statistically significant. Myosin Viia positive hair 

cells in such cultures were also seen to lack stereocilia (Figure 4-4 Dii), whilst their 

control counterparts cultured for the same length of time overall maintained their apical 

bundles, suggesting that this observed difference was also a result of the gentamicin 

treatment. Gentamicin treated utricles at 4 days post-gentamicin also showed evidence 

of cellular debris within the sensory epithelium; (Figure 4-4 Di, arrows) irregular 

plaques of myosin Viia positive labelling can be seen at the same level as vestibular hair 

cells which have survived the drug exposure. There is also evidence of scar formation, 

where supporting cells have spread in order to close the breach in the epithelium caused 

by loss of hair cells, indicated by the labelling of cell junctions by Phalloidin-FITC 

(Figure 4-4 Dii, arrow).  
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Figure 4-4 Utricular Cultures at 4 Days Post Gentamicin Treatment 

Wholemount utricular cultures labelled with phalloidin-FITC (green) and antibody to 

myosin Viia as a marker for hair cells (red). (A) Control tissue cultured for 5 days without 

gentamicin treatment. (B & C) Utricles after 4 days recovery following gentamicin 

treatment. (D) Utricle from (B) imaged at x63. (Di) Arrows = myosin Viia positive plaques 

within the epithelium. (Dii) Arrow = scar formation. 
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Utricular Cultures at 10 and 14 Days Post-Gentamicin Treatment 

Control utricles maintained in vitro for 13 days (in parallel with gentamicin treated 

tissue which was fixed and labelled 10 days after the cessation of gentamicin 

incubation) continued to survive after this length of time in culture. Hair cells positive 

for myosin Viia were abundant (Figure 4-5 Ai) across the sensory epithelium. These 

hair cells also continued to maintain an apical bundle of stereocilia as shown by 

labelling with phalloidin-FITC (Figure 4-5 Aii). 

Gentamicin treated utricles cultured for the same time period, showed markedly fewer 

hair cells positive for myosin Viia (Figure 4-5 Bi). It is also possible to observe atypical 

irregular plaques of myosin Viia positive immunolabelling which appear to be the 

‘debris’ from hair cells which have been disrupted by the aminoglycoside treatment, as 

was observed at 4 days post-gentamicin. This debris is visible within the sensory 

epithelium itself. Of those hair cells which have survived, Phalloidin-FITC indicates 

that the majority do not have intact stereocilia at their apices (Figure 4-5 Bii).  

Immunofluorescent labelling of control cultures grown for 17 days, in parallel with 

utricles which were gentamicin treated and maintained for a further 14 days afterwards, 

demonstrates the ability of adult utricular tissue to survive well using the culture 

technique which has been developed during this work. Control tissue at this time point 

is highly populated with vestibular hair cells with a large number of cells labelled 

positively for the hair cell marker calretinin (red) (Figure 4-3 Ai). Hair cell counts 

(sampled from utricles labelled with myosin Viia as the hair cell marker) reveal that 

there is a further 65% decrease in hair cell numbers between utricles cultured for 2 days 

post-gentamicin in comparison to those maintained for 14 days post treatment (Figure 

4-8).  Comparison of the mean hair cell counts at 2 and 14 days post-gentamicin using 

Tukey’s test did not calculate the difference in hair cell numbers between these 

experimental conditions as being statistically significant (P > 0.05).  

Gentamicin treated utricles at 14 days post drug exposure, appear very similar to those 

fixed at 10 days post-gentamicin treatment. The sensory epithelium shows a distinct 

reduction in hair cells positively labelled with myosin Viia (Figure 4-6 Bi); hair cell 

counts show an 80% decrease in hair cells which are myosin Viia positive (Figure 4-8) 

compared to hair cell numbers in control utricles cultured for 5 days. When the mean 

hair cell count at 14 days post-gentamicin was compared to that of the 2 day-post 
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gentamicin control counterpart group, Tukey’s test calculated a P value of <.0.01; the 

difference in the mean hair cell numbers of these two groups can therefore be 

considered statistically significant.  Phalloidin labelling also shows the presence of scars 

formed on the epithelial surface (Figure 4-6 Bii, arrow).  
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Figure 4-5 Utricular Cultures at 10 Days Post Gentamicin Treatment  

Wholemount organotypic utricular cultures labelled with phalloidin-FITC (green) and for 

the hair cell marker myosin Viia (red). (A) A control utricle maintained for a total of 13 

days in vitro without being subject to gentamicin treatment. The outlined region is believed 

to be an area in which the epithelial surface of the tissue was damaged during the dissection 

process. (B) Gentamicin treated utricular tissue fixed following a 10 day recovery period. 

‘D’ indicates irregular plaques of myosin Viia positive labelling believed to be cellular 

debris.  

cellular debris. Bar = 50µm. 
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Figure 4-6 Utricular Cultures at 14 Days Post Gentamicin Treatment  

Wholemount organotypic utricular cultures labelled with phalloidin-FITC (green) and for 

the hair cell marker myosin Viia (red). (A) Control tissue cultured for a total of 17 days 

labelled with the hair cell marker calretinin (red). DAPI (blue) labels cell nuclei. (B) 

Gentamicin treated utricular tissue fixed after a 14 day recovery period labelled with the 

hair cell marker myosin Viia (red). Arrowheads indicate scarring on the epithelial surface 

where Phalloidin-FITC labelled actin filaments are present at cellular junctions.  
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Utricular Cultures at 28 Days Post-Gentamicin Treatment 

The longest time period for which adult mouse utricles were maintained in vitro during 

these studies was 31 days. Control tissue cultured for this time period continued to 

survive well under these experimental conditions; the sensory epithelium of these 

utricles exhibits dense population with myosin Viia positive vestibular hair cells (Figure 

4-7 Ai). Bundles of stereocilia, visualised by Phalloidin-FITC staining, are both 

apparent and abundant (Figure 4-7 Aii), although not present on every myosin Viia 

positive hair cell.  

Gentamicin treated utricles which were maintained for the same total length of time i.e. 

grown for 28 days post-gentamicin treatment, show a marked reduction in hair cell 

numbers when immunofluorescently labelled with a hair cell marker (Figure 4-7 Bi) 

When compared to gentamicin treated utricles fixed at 14 days post antibiotic exposure, 

there is not a large visible difference in the degree of hair cell loss. Hair cell counts 

show an 82% decrease in hair cell number in utricular tissue at 28 days post-gentamicin 

when compared to hair cell numbers in control counterparts maintained in vitro for the 

same time period (Figure 4-8). Tukey’s test calculated a P value of < 0.01 when 

comparing the mean hair cells counts of these two groups, therefore the difference 

observed between control and gentamicin-treated utricles at this time point can be 

considered statistically significant. This data also demonstrates that control utricles 

cultured for a total of 31 days show an 18% decrease in hair cell numbers in comparison 

to control utricles cultured for 5 days. However, Tukey’s test calculated a P value > 

0.05 when comparing the mean hair cell numbers of control utricles maintained in vitro 

for 5 and 31 days, showing that the difference between these two groups is not 

statistically significant. This finding supports the observations of immunolabelling on 

long term control cultured utricular tissue, that vestibular hair cells survive well under 

these experimental conditions, and that the observed hair cell loss in gentamicin treated 

tissue is not purely a side effect of the culture technique used.  

When viewed at higher magnification (x63 objective) what appear to be small immature 

hair bundles (Figure 4-7 Cii & Dii, insets indicated with arrows) can be seen in these 

utricular cultures, which are positively labelled with Phalloidin-FITC. As previously 

described in birds during regeneration (Cotanche, 1987) and mammals – e.g. in 

regenerating guinea pig utricles (Forge et al., 1998) and in mouse utricles during 
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development (Denman-Johnson and Forge, 1999), cells bearing these short hair bundles 

also appear to have a smaller surface area than would be expected of a mature hair cell, 

suggesting that they may potentially be regenerated cells. A sampling of 4 utricles 

calculated these immature bundles to be present at an average of 0.42 bundles/1000μm
2
 

(to 2 d.p.). This suggests there is some limited degree of regeneration occurring within 

the vestibular sensory epithelium after 4weeks in vitro following gentamicin-induced 

hair cell loss. 
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Figure 4-7 Utricular Cultures at 28 Days Post Gentamicin Treatment 

Wholemount organotypic utricular cultures labelled with phalloidin-FITC (green) and for 

the hair cell marker myosin Viia (red). (A) Control tissue maintained for a total of 31 days 

in vitro without receiving gentamicin treatment. (B) Gentamicin treated cultured utricular 

tissue fixed after a 28 day recovery period. (C & D) Gentamicin treated utricles viewed with 

the x63 objective. (Cii & Dii insets) Arrows indicate the presence of small immature 

stereocilia bundles on the apical surface of some cells. 
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HC/1000μm
2
 

(to 2 d.p.) 

N (No of 

utricles) 

SD  

(to 2 d.p.) 

SEM  

(to 2 d.p.) 

Control (2 DPG) 5.99 2 0.66 0.46 

2 DPG 3.46 4 1.19 0.59 

14 DPG 1.23 4 0.47 0.24 

Control (28 

DPG) 

4.91 3 2.58 1.49 

28 DPG 0.87 4 0.55 0.28 
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Figure 4-8 Hair Cell Loss in Gentamicin Treated Cultured Utricles 

Hair cell counts (i.e. cells positive for myosin Viia) from utricles cultured for several 

incubation periods following gentamicin treatment (and untreated controls). HC numbers 

were counted from x63 magnification confocal images using Image J software. Controls 

were maintained for the same length of time as their gentamicin treated counterparts, but 

were cultured in normal medium only. Each utricle was sampled 2-3 times and HC counts 

averaged, before being normalised to give hair cell numbers as a value of HCs/1000µm
2
.   

(A) Comparison of HC numbers at different time points in culture. Error bars show standard 

error. Percentage decrease of hair cell numbers given in chapter 4 were calculated using the 

HC/1000µm
2 
values shown in table (B). 

B 
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Comparison Mean 

Difference 

q P Value 

    

Control (2 D) vs Gent (2 DPG) 2.53 3.239 ns 

P>0.05 

Control (2 D) vs Gent (14 DPG) 4.761 6.095 ** 

P<0.01 

Control (2 D) vs Control (28 D) 1.08 1.312 ns 

P>0.05 

Control (2 D) vs Gent (28 DPG) 5.116 6.55 ** 

P<0.01 

Gent (2 DPG) vs Gent (14 DPG) 2.231 3.498 ns 

P>0.05 

Gent (2 DPG) vs Control (28 D) -1.449 2.104 ns 

P>0.05 

Gent (2 DPG) vs Gent (28 DPG) 2.586 4.055 ns 

P>0.05 

Gent (14 DPG) vs Control (28 D) -3.681 5.343 * 

P<0.05 

Gent (14 DPG) vs Gent (28 

DPG) 

0.3551 0.5568 ns 

P>0.05 

Control (28 D) vs Gent (28 DPG) 4.036 5.858 ** 

P<0.01 

 

Table 4-1 One-way ANOVA Statistical Analysis; Post-Hoc Analysis by Tukey’s Test 

This table shows the results of the Tukey’s test carried out on the hair cell count data 

collected from utricles maintained for multiple time periods following gentamicin 

treatment and control counterparts. Each pairwise comparison of mean hair cell count 

values analysed by the Tukey’s test is shown, in addition to the resulting P value; this 

statistical analysis indicates whether the differences in the mean values for each pair of 

experimental conditions are significantly different from one another. The following 

abbreviations are used by the GraphPad software to denote significance; ns = not 

significant, * = significant (P = 0.01 – 0.05), ** = very significant (P = 0.001 – 0.01). 

  



 

 

133 

 

4.2.3 EdU Labelling of Organotypic Utricular Cultures to Measure Cell 

Proliferation 

In order to investigate the level of cell proliferation taking place in the utricular culture 

model system, 5-ethynyl-2´-deoxyuridine (EdU) labelling was utilised to allow the 

visualisation of all cells which had undergone mitosis during the culture period. EdU, an 

alternative to 5-bromo-2'-deoxyuridine (BrdU), is a nucleoside analog of thymidine, 

which can become incorporated instead of a natural nucleoside during the DNA 

synthesis process; DNA synthesis is a required phase for any cell which is undergoing 

mitotic division (Hynes, 2004). EdU is good alternative to BrdU, since it does not 

require the same treatment with hydrochloric acid (HCL) that BrdU necessitates in order 

to detect labelled cells, and thus the potential for damage to the tissue and other antigens 

which may be required for antibody labelling is reduced. Utricular tissue was cultured 

in the presence of 10µM EdU in normal culture medium solution. EdU-containing 

medium was only used for culture experiments after the 48 hour gentamicin treatment 

had been completed; thus limiting the cells detected to those which had undergone 

mitotic events occurring after ototoxic drug exposure. This would focus results on the 

behaviour of the tissue during its period of hair cell loss and potential recovery. A 

‘Click-IT’™ kit (Invitrogen) was used to visualise any EdU labelled nuclei after 

fixation of the culture tissue. As described in the kit protocol, the detection of EdU is 

based on a click reaction, a copper catalysed covalent reaction between an azide (the 

Alexa Fluor® 488 dye) and an alkyne (the EdU).  

EdU Labelling in Cultured Utricles at 3 Weeks Post-Gentamicin Treatment 

Cultured tissue maintained in vitro for 3 weeks post-gentamicin treatment (i.e. a total of 

24 days), was labelled with a hair cell marker and for EdU to visualise any cells which 

had incorporated the EdU supplied to them whilst in culture into their genetic material 

during DNA synthesis. Using the LSM image browser software, it was possible to 

analyse z-stack confocal images of wholemount utricles by orthogonal sections, which 

visualised the location of EdU positive cells within different layers of the utricular 

tissue. 

A control utricle (Figure 4-9) maintained in vitro for the same time period, but which 

was not exposed to the ototoxic drug, showed that cell proliferation occurs in these 

organotypic cultures irrespective of drug induced hair cell death. There are a high 
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number of hair cells present on the sensory epithelium of this utricle (Figure 4-9 B) 

which are positively labelled with the hair cell marker calretinin, as seen in previous 

immunohistochemistry experiments examining the culture model system development. 

Orthogonal sectioning of this image (Figure 4-9 A) shows that EdU positive cells 

(labelled in green) are localised to the mesenchymal tissue underlying the sensory 

epithelium (Figure 4-9 A, far right). There are no cells visible which show co-

localisation of the hair cell marker and EdU. There are also no supporting cell nuclei 

which are EdU positive, indicating that none of the cells of the sensory epithelium have 

undergone mitotic division. It would appear that the cell proliferation observed by this 

EdU labelling is mostly confined to the area of the cultured tissue which is involved in 

the outgrowth of the original tissue on the nitrocellulose filter surface upon which the 

cultures are maintained.  

Organotypic cultures which received 48hrs gentamicin treatment and were then allowed 

a further 3 week recovery period in vitro (Figure 4-10) showed evidence of cell 

proliferation when labelled for EdU. Cell counts of DAPI positive nuclei and EdU 

positive nuclei (data presented in figure 4-11) from the entire utricle, indicate that 

approximately 27% of cell nuclei were positive for the mitotic marker, although, as with 

control utricles, there was no evidence of cells positive for EdU (labelled in red) also 

being positive for the hair cell marker calretinin. This would suggest that any 

regenerated hair cells present at this time point are not the product of supporting cells 

re-entering the cell cycle and dividing mitotically. The use of orthogonal sections to 

assess z-stack images of gentamicin treated cultures at this point allows visualisation of 

the level at which EdU positive nuclei are present and how this corresponds to the level 

where hair cell bodies are located. 
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Figure 4-9 Proliferation in Cultured Utricle Tissue at 24 Days In Vitro Without 

Gentamicin Treatment 

Organotypic utricular cultures immunolabelled as wholemount tissue using DAPI (blue) to 

label cell nuclei, calretinin (red) to label vestibular hair cells and the Click-IT™ reaction 

system with Alexa Fluor® 488 to label EdU positive nuclei. (A) Z-stack image of control 

tissue maintained in vitro for 24 days without gentamicin treatment, viewed by orthogonal 

sectioning. The location of EdU positive nuclei within the cell layers of the utricle is 

visualised in this way. (B) Maximal projection of the same z-stack used for orthogonal 

sectioning in (A). 
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Figure 4-10 EdU labelling of Cultured Utricles at 21 Days Post Gentamicin Treatment  

Organotypic utricular cultures immunolabelled as wholemount tissue using DAPI (blue) to 

label cell nuclei, calretinin (green) to label vestibular hair cells and the Click-IT™ reaction 

system with Alexa Fluor® 488  to label EdU positive nuclei (red). (A) Z-stack confocal 

image of a utricle cultured for 21 days post gentamicin treatment, viewed by orthogonal 

sectioning to show the relative location of hair cells and EdU positive nuclei within the 

cultured tissue. (B) Maximal projection of the z-stack image used for analysis by orthogonal 

sectioning in (A). 
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Figure 4-11 Proliferation in the Adult Mouse Utricle at 21 Days Post-Gentamicin  

Cell counts were carried out on z-stack confocal images of utricles cultured for 21 days post-

gentamicin in the presence of the mitotic marker, EdU. Total nuclei (those positive for DAPI) 

and EdU positive nuclei were counted using Image J on random samples of a total of 8 utricles; 

each utricle was sampled 2-3 times. SD = Standard deviation. SEM = Standard error. (A) Cell 

count data was used to calculate the percentage of nuclei that were EdU positive. (B) Graph 

compares the numbers of DAPI positive nuclei to those also positive for EdU. Error bars show 

standard error. 
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4.2.4 Organotypic Utricle Culture Morphology Examined Under the Scanning 

Electron Microscope 

Utricular Tissue Cultured for 5 Days Post-Gentamicin and Control Counterparts 

Scanning electron microscopy was utilised to provide further morphological evidence as 

to how the appearance of the vestibular sensory epithelium alters in response to ototoxic 

drug treatment.  

Control utricles, cultured for a total of 8 days, appear healthy and demonstrate an intact, 

regular, sensory epithelial surface which is widely populated with hair cells and 

supporting cells (Figure 4-12 A). When viewed at a higher magnification, there is 

widespread persistence and maintenance of stereocilia bundles on the apical surface of 

vestibular hair cells (Figure 4-12 B) as seen previously by labelling cultured utricles 

with phalloidin. These stereocilia appear normal in their morphology and organisation.   

In addition to the cells of the epithelium, the presence of a fibrilar substance which 

extends across much of the surface of the epithelium is visible. From the structural 

appearance of this material, it is believed to be otolithic membrane which has been 

produced by the supporting cells, acting as a potential indicator that the supporting cells 

survive well in the tissue under these culture conditions. That this membrane is still in 

the process of being actively synthesized by these cells is supported by evidence of 

vesicles which appear to be full of material, being present in the supporting cell 

cytoplasm when viewed by TEM. 

In comparison, tissue maintained for the same total number of days, but which was 

subjected to a 48 hour gentamicin treatment, shows a marked decrease in the number of 

hair cells visible on the surface of the epithelium (Figure 4-13 A) and there are large 

areas of the tissue where supporting cell scars have formed to maintain an unbroken 

epithelial layer. Despite the large decrease in the number of vestibular hair cells in this 

tissue, some have retained stereocilia (Figure 4-13 B). Many of these hair cells are 

located towards the periphery of the tissue, suggesting that perhaps hair cells in this 

region are less sensitive to the ototoxic drug. There are hair cells present which maintain 

apical hair bundles with a more normal morphology (Figure 4-14 B), whilst stereocilia 

in varying stages of disarray and disorder are also visible; including those which have 

become fused (Figure 4-13 B and Figure 4-15 A). Additional observation shows what 
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appears to be an immature bundle with a kinocilium (Figure 4-13). From these SEM 

images, it is not possible to determine whether this stereocilia structure has been created 

by regeneration of the tissue in response to gentamicin-induced hair cell loss, or 

whether this was a hair cell that was not fully mature at the time the tissue was dissected 

from the animal. 

In addition to hair cells with fused, disorganised stereocilia, which are likely to be in the 

process of dying, there is evidence of vestibular hair cells which are further ahead in the 

cell death process. Numerous incidences across the damaged epithelial surface (Figure 

4-16 B) of dying hair cells being extruded from the tissue at the apical region may be 

seen, as supporting cells expand and seek to remove the dead hair cell and close any 

consequent breakage in the epithelial layer.  

In gentamicin-treated utricles at this time point the epithelial surface is covered with 

material that resembles otolithic membrane (Figure 4-15 A). This membrane has a 

distinctive ‘honeycomb’ like appearance and its continued presence indicates that the 

supporting cells have not been affected by the ototoxic drug exposure. It is possible to 

see healthy looking microvilli protruding from the apical surfaces of the supporting 

cells underneath the otolithic membrane structure.  
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 Figure 4-12 Control Utricular Tissue Maintained in Culture for 8 Days Viewed by 

Scanning Electron Microscopy 

The surface of the sensory epithelium from utricle cultures maintained in vitro for 8 days 

with no gentamicin treatment. (A) An overview of the surface of the entire utricle. Bar = 

100µm. (B) Stereocilia of the vestibular hair cells. There is a fibrilar, membranous material 

which has covered much of the epithelium; this is obscuring the apices of the supporting 

cells. Bar = 1µm. 
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Figure 4-13 Utricular Cultures at 5 Days Post Gentamicin Viewed by Scanning 

Electron Microscope 

The surface of the sensory epithelium from utricle cultures maintained in vitro at 5 days post 

gentamicin treatment. (A) An overview of the entire utricle surface shows the decrease in 

hair cell numbers in comparison to control cultures. Bar = 100µm. (B) Some stereocilia are 

still present on the apical surface (black arrowheads), however, others are in disarray or 

have become fused (white arrowhead). What appears to be an immature bundle ‘I’ is visible 

on the surface of one hair cell. Bar = 10µm. 
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Figure 4-14 Vestibular Hair Cells of Utricular Tissue at 5 Days Post Gentamicin 

Viewed by SEM 

The surface of the sensory epithelium from utricle cultures maintained in vitro at 5 days post 

gentamicin treatment. (A) The ‘honeycomb-like’ structure of the fibrilar material present on 

the surface of the sensory epithelium. (B) A surviving vestibular hair cell with a normal 

stereocilia bundle; the supporting cells surrounding it have apices covered in microvilli. Bar 

= 1µm.  
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Figure 4-15 Hair Cell Death in Utricular Cultures at 5 Days Post Gentamicin Viewed 

by SEM 

The surface of vestibular hair cells and supporting cells in utricle cultures maintained for 5 

days post gentamicin treatment. (A) Remaining stereocilia often appear fused (white 

arrowhead) and disorganised. Bar = 1µm. (B) Remnants of a vestibular hair cell (centre) are 

extruded from the epithelium after undergoing cell death. Bar = 1µm. 
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Utricular Tissue Cultured for 14 Days Post-Gentamicin Treatment Viewed by 

Scanning Electron Microscope 

Following a two week period of recovery after 48 hours gentamicin exposure, utricles 

viewed by SEM appear, similar to those studied at 5 days post-gentamicin treatment, to 

have fewer vestibular hair cells (Figure 4-16 A). The process of vestibular hair cell loss 

is ongoing, with stereocilia present in various disorganised formations as the cell death 

cycle progresses (Figure 4-16 B), and very long kinocilia also visible. These hair cells 

are often found towards the periphery of the utricle, as seen in the tissue at 5 days post-

gentamicin treatment. This would appear to support the idea that the vestibular hair cells 

at the periphery of the sensory epithelium are those which are most resilient, but not 

completely resistant, to ototoxic drug induced hair cell loss. Dead hair cells also 

continue to be extruded from the utricle at this time point (Figure 4-17 A).  

Evidence of cellular proliferation occurring in the underlying mesenchyme of cultured 

utricles was observed by EdU labelling of these tissues, as described in 4. Further 

evidence of this proliferation and remodelling of the utricular connective tissue is also 

visible under SEM. Figure 4-17B shows the surface morphology of tissue which has 

‘grown out’ from the original utricle after being maintained in culture. This outgrowth 

across the surface of the nitrocellulose filter paper appears ‘stretched’ and sheet-like, 

with an apical surface populated by numerous microvilli. From their surface appearance 

it might be expected that the cells of these ‘outgrowths’ are of a fibroblast-like nature. 

Despite the continuation of the response of the tissue to gentamicin treatment in terms 

of hair cell loss, at 14 days post-gentamicin potential evidence of regeneration occurring 

begins to appear. The emergence of short, but highly organised bundles (Figure 4-18, 

inset) which resemble the morphology of an emerging, immature stereocilia bundle on 

the apex of a hair cell can be observed. It is not possible to determine with scanning 

electron microscopy as to whether a complete regenerative event has occurred i.e. that 

this immature bundle is developing from a hair cell which itself is entirely new and 

regenerated, rather than from a hair cell which lost its original stereocilia formation due 

to the gentamicin treatment and has been subsequently stimulated to produce a new 

bundle.  
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Figure 4-16 SEM of Utricular Tissue at 14 Days Post Gentamicin Treatment  

The epithelial surface of utricles maintained in vitro for 14 days post gentamicin treatment. 

(A) An overview of the entire surface of a single utricle demonstrates the decrease in hair 

cell numbers seen at this stage. Bar = 100µm. (B) Disorganised stereocilia and long 

kinocilia (arrowhead) on the surface of the tissue which shows a marked decrease in 

vestibular hair cell numbers at this time point. Bar = 1µm. 
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 Figure 4-17 SEM of Hair Cell Death at 14 Days Post Gentamicin and Explant 

Outgrowth 

The surface of utricles cultured for 14 days post gentamicin treatment viewed by scanning 

electron microscopy. (A) A vestibular hair cell (arrowhead) is extruded from the sensory 

epithelium. Bar = 1µm. (B) The morphology of the ‘outgrowth’ of cells from the original 

utricular tissue. Bar = 1µm. 
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Figure 4-18 SEM of the Potentially Regenerating Vestibular Epithelium at 14 Days 

Post Gentamicin  

The surface of a utricle cultured for 14 days post gentamicin viewed under the scanning 

electron microscope. At this time point, structures which resemble an immature stereocilia 

bundle (arrowhead, inset) are seen on the apical surface of the sensory epithelium. Bar = 

1µm. 
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Chapter 5: Integrin Expression in Response to Hair Cell Loss in the Adult Mouse 

Utricle 
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5.1 Quantitative PCR for the Investigation of Integrin Expression During Hair 

Cell Loss and Regeneration 

5.1.1 Objectives 

Through the use of RT-PCR with both degenerate and specific PCR primers, 8 

individual integrin subunits were identified as being expressed in the normal adult 

mouse utricle. The degenerate PCR primers designed for this project were not proven to 

be able to detect all of the known murine integrin subunits. It was therefore not possible 

to screen utricular cDNA for all of the α and β subunits using this method.  

In order to both conduct a full screen of normal adult mouse utricular cDNA for 

members of the integrin family, and to investigate the relative expression levels of 

particular integrin genes in response to hair cell loss, a set of quantitative PCR 

experiments was carried out. The abbreviated gene names of all known mammalian 

integrin subunits are summarised in table 1-1 and 1-2. 

5.1.2 Design of Custom TaqMan™ qPCR Gene Expression Array Plates 

Commercially available gene expression arrays for integrin subunits used the human 

version of the gene and thus could not be guaranteed to detect the genes for each of the 

murine integrins in mouse utricular cDNA samples. It was therefore decided to create a 

custom array, using the 96-well plate TaqMan® array system from Applied Biosystems.  

Figure 5-1 shows the layout of the selected assays within a single 96-well plate - each 

gene assay was replicated four times per plate.   Gene expression assays for a total of 18 

integrin α and β subunits were used in customised array. Rn18s and Gapdh assays were 

included in order to provide two endogenous controls. Gene assays for four hair cell 

markers were also included on the plate; Myo7a (myosin Viia), Pou4f3, Calb2 

(calretinin) and Atoh1. Each gene assay was repeated four times per array plate. It was 

anticipated that utricular cDNA samples from organotypic utricle cultures harvested at 

several time points following treatment with gentamicin would demonstrate changes in 

the expression level of these markers.  Significant hair cell loss had been observed in 

these cultured utricles by immunohistochemistry;  myosin Viia-positive hair cell 

numbers were observed to decrease in the utricle following gentamicin treatment and it 

would therefore be expected that the expression of Myo7a would be lower in utricular 

cDNA obtained from such cultures, in comparison to untreated controls. 
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Through a search of previously published literature, several integrins were identified as 

being unlikely candidates for expression in the utricle, due to their known cell type 

specificity e.g. Itga2b is specifically expressed by platelets as a key adhesion molecule 

in the platelet aggregation events which occur during the process of forming blood clots 

(Ruegg et al., 1992).  The following integrin subunits were therefore omitted from the 

customised qPCR gene expression array; αIIb, αX, αM, αE, αD, αL, α10 and β2. 

5.2 Relative Quantification of Custom Integrin TaqMan™ Gene Expression Array 

qPCR Data 

A successful qPCR run of the integrin gene expression array was achieved with each of 

the four utricular cDNA samples. The four samples tested were cDNA from normal 

utricular tissue which had not been maintained in vitro (0 DC) and cDNA from utricular 

cultures harvested at the following  time points post-gentamicin treatment; 4 days (4 

DPG), 14 days (14 DPG) and  21 days (21 DPG). A gene was determined as being 

‘detected’ in a given cDNA sample if it had been successfully amplified by at least 3 of 

the 4 replicate assays for that gene. Of the 18 integrin genes screened for, 11 α and β 

subunits were detected in normal utricular cDNA; Itga3, Itga6, Itga8, Itgav, Itgb1, 

Itgb3, Itgb4, Itgb5, Itgb6, Itgb7 and Itgb8.  The remaining integrins (Itga1, Itga4, Itga5, 

Itga7, Itga9 and Itga11) were not detected in normal utricular cDNA. These subunits 

were also not found in any of the gentamicin-treated utricular cDNA samples analysed.  

Relative quantification (RQ) analysis of the data from these experiments was carried out 

using SDS software (Applied Biosystems) as described in 2.9.3. Gene expression plots 

showing the RQ values for the α integrins are shown in figure 5-4 and those for the β 

integrins in figure 5-5.The array plate run using cDNA from normal adult mouse 

utricles which had not been cultured (0 DC) was used as the calibrator for this RQ 

study, in order to investigate the gene expression levels of integrins and hair cell 

markers in gentamicin treated tissue, relative to their expression in the normal, 

undamaged utricle. Error bars (figures 5-4 and 5-5) indicate the minimum and 

maximum RQ values based on the four replicate assays for each individual gene per 

array plate. Where error bars do not overlap i.e. when comparing the expression of a 

gene in normal tissue, to utricular tissue at 4 days post-gentamicin, the difference in 

expression level observed may be described as being significant with 95% confidence.  
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1 2 3 4 5 6 7 8 9 10 11 12

A Rn18s Rn18s Rn18s Rn18s Gapdh Gapdh Gapdh Gapdh Itga1 Itga1 Itga1 Itga1

B Itga2 Itga2 Itga2 Itga2 Itga3 Itga3 Itga3 Itga3 Itga4 Itga4 Itga4 Itga4

C Itga5 Itga5 Itga5 Itga5 Itga6 Itga6 Itga6 Itga6 Itga7 Itga7 Itga7 Itga7

D Itga8 Itga8 Itga8 Itga8 Itga9 Itga9 Itga9 Itga9 Itga11 Itga11 Itga11 Itga11

E Itgav Itgav Itgav Itgav Itgb1 Itgb1 Itgb1 Itgb1 Itgb3 Itgb3 Itgb3 Itgb3

F Itgb4 Itgb4 Itgb4 Itgb4 Itgb5 Itgb5 Itgb5 Itgb5 Itgb6 Itgb6 Itgb6 Itgb6

G Itgb7 Itgb7 Itgb7 Itgb7 Itgb8 Itgb8 Itgb8 Itgb8 Myo7a Myo7a Myo7a Myo7a

H Calb2 Calb2 Calb2 Calb2 Atoh1 Atoh1 Atoh1 Atoh1 Pou4f3 Pou4f3 Pou4f3 Pou4f3

Figure 5-1 Layout of Custom TaqMan™ Gene Array for Integrin qPCR Experiments 

This figure shows the design of a single 96-well plate gene expression array for 18 individual integrin subunits. Each gene assay was replicated four 

times on a single plate. Rn18s and Gapdh were selected as endogenous control assays. Four hair cell marker gene assays were also included; Myo7a, 

Calb2, Atoh1 and Pou4f3. qPCR experiments were run on these customised arrays using one 96-well plate per cDNA sample. 
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Figure 5-2 Omission of 21 DPG qPCR Data from RQ Analysis 

The qPCR data from the array plate run using 21days post-gentamicin cDNA was omitted from the RQ study; it was observed that the 21 DPG sample 

contained less cDNA than those of the other time points investigated. (A) With 0 day control (0 DC) cDNA, the Rn18s endogenous control began to be 

amplified at around 18 cycles, whilst Itga3 (C) began to be amplified at around 34 cycles. Using 21 DPG cDNA, Rn18s amplification (B) started at 

around 20 cycles; Itga3 (D) did not begin to be detected until as late as 38 cycles.   
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5.2.1 Expression Changes in Hair Cell Markers 

Changes in the expression level of each of the four hair cell markers which were 

included in the custom array plate were observed (shown in Figure 5-3). Atoh1, Calb2, 

Myo7a and Pou4f3 were all detected in normal utricular cDNA (0 DC). 

Hair Cell Associated Proteins 

Myo7a and Calb2 showed a significant decrease in gene expression at 4 DPG in 

comparison to the level detected in the 0 day control sample; Myo7a expression had 

decreased to an extent that it was undetectable at 4 days post-gentamicin.  At 14 DPG, 

Calb2 expression continued to be significantly lower than that observed in normal 

tissue, but did not differ significantly from the level of expression detected at 4 DPG. 

Myo7a was detected at 14 days post-gentamicin, at a level of gene expression which 

was still significantly lower than had been detected in the 0 day control cDNA sample.  

Hair Cell Transcription Factors 

Atoh1 and Pou4f3, both transcription factors which are involved in hair cell 

differentiation, each show a significant increase in gene expression at 4 DPG in 

comparison to the level seen in normal utricular cDNA. Pou4f3 in particular, 

demonstrates a large (approximately 5-fold) increase in expression at 4 DPG; the 

expression level of this transcription factor  decreases significantly by 14 DPG, to a 

level which is significantly lower than  that observed in normal tissue. Atoh1 levels also 

show a significant decrease at 14 DPG, compared to the elevated gene expression seen 

at 4 DPG, however, at 14 DPG, Atoh1 gene expression had returned to a level which 

was not significantly different to that observed in the normal utricle.  
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Figure 5-3 Changes in Hair Cell Marker Gene Expression Levels in Response to Gentamicin-Induced Hair Cell Loss 

Relative quantification (RQ) analysis of the gene expression of four hair cell markers; Atoh1, Myo7a, Pou4f3 and Calb2. Data from the array plate run 

using cDNA from normal adult mouse utricles which had not been maintained in vitro (0 DC) was used as a calibrator in order to investigate gene 

expression levels at 4 (4 DPG) and 14 days post-gentamicin treatment (14 DPG) in comparison to expression in normal tissue. Error bars indicate 95% 

confidence intervals for RQ values.  
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5.2.2 Increased Expression of Integrins in Utricular cDNA Post-Gentamicin 

Treatment 

Five integrin subunits demonstrated an increase in gene expression level in utricular 

cDNA at 4 and 14 days post-gentamicin; Itga3, Itgav, Itgb1, Itgb5 and Itgb8. Each of 

these integrins was detected in normal utricular cDNA.  

Itga3 and Itgb5 gene expression shows an increase at 4 DPG compared to normal tissue, 

however, this increase was only calculated as being significant for Itga3. At 14 DPG, 

the expression of these two integrins was higher than that observed at 4 days, although 

neither increase was found to be significant.  

Itgav, Itgb1 and Itgb8 also exhibited increased gene expression at 4 DPG; this increase 

was significant for Itgav (an approximately 7-fold increase) and Itgb1 (an 

approximately 10-fold increase), but not for Itgb8.  All three subunits show a 

subsequent decrease in gene expression at 14 DPG compared to the level observed at 4 

DPG. This decrease was only found to be significant for Itgb1; this subunit was also the 

only subunit in this group to show a level of expression at 14 DPG which was 

significantly higher than that detected in normal utricular cDNA.   

5.2.3 Integrins Only Expressed in Normal Utricular cDNA 

Of the 18 integrins screened for, two subunits, namely Itgb7 and Itga8 were only 

detected in the normal utricular cDNA sample (0 DC). It is possible that  these genes 

were either not present at all in cDNA from gentamicin treated utricles, or that they 

were expressed at such a low level as to be undetectable by qPCR.  

5.2.4 Integrins Not Detectable at 4 Days Post-Gentamicin 

Integrins Itgb6 and Itga6 were detected in both normal utricular cDNA and at 14 DPG, 

but were undetectable in the 4 DPG cDNA sample. The gene expression of Itga6 was 

higher at 14 DPG in comparison to the level observed in normal tissue, however, this 

difference was not calculated as significant. Integrin Itgb6 expression showed a 

significant, but small decrease at 14 DPG in relation to expression level of this gene in 

normal utricular cDNA 
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5.2.5 Integrins Not Detectable at 14 Days Post-Gentamicin  

Integrins Itgb3 and Itgb4 were found to be present in normal utricular cDNA; each of 

these subunits also demonstrated a significant increase in gene expression at 4 DPG in 

comparison to that observed in normal tissue. These expression level increases were 

relatively large in comparison to other changes observed in integrin expression – Itgb3 

showed an approximately 11-fold increase in gene expression, and Itgb4 expression was 

approximately 12-fold higher than that of normal utricular cDNA. Neither integrin was 

detected in the 14 DPG cDNA sample – therefore Itgb3 and Itgb4 could be considered 

as being expressed at such a low level as to be undetectable by qPCR at this time point, 

or to be absent from this cDNA sample altogether.  

5.2.6 Integrins Not Detectable in Normal Utricular cDNA but Present in 

Gentamicin-Treated Tissue 

Of the 18 subunits screened for, only integrin Itga2 was undetectable in the normal 

utricular cDNA (0 DC) sample, but was then found to be expressed at both 4 and 14 

DPG. Expression of Itga2 was observed to be lower at 14 DPG than at 4 DPG, although 

this difference was not found to be significant.  
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Figure 5-4 Changes Integrin α Subunit Gene Expression in Response to Gentamicin-Induced Hair Cell Loss 

Relative quantification (RQ) of integrin α subunit qPCR data from gene expression array plates run using cDNA from normal adult mouse utricles which 

had not been cultured (0  DC) and utricular cultures harvested at 4 (4 DPG) and 14 days post-gentamicin treatment (14 DPG). Error bars indicate the 95% 

confidence intervals for each RQ value. 

 



 

 

158 

 

0

5

10

15

20

25

Itgb1

0 DC

Itgb1

4

DPG

Itgb1

14

DPG

Itgb3

0 DC

Itgb3

4

DPG

Itgb3

14

DPG

Itgb4

0 DC

Itgb4

4

DPG

Itgb4

14

DPG

Itgb5

0 DC

Itgb5

4

DPG

Itgb5

14

DPG

Itgb6

0 DC

Itgb6

4

DPG

Itgb6

14

DPG

Itgb7

0 DC

Itgb7

4

DPG

Itgb7

14

DPG

Itgb8

0 DC

Itgb8

4

DPG

Itgb8

14

DPG

RQ 

Integrin Beta Subunit TaqMan™ Gene Expression Assay 

cDNA Sample 

Figure 5-5 Changes in Integrin β Subunit Gene Expression in Response to Gentamicin-Induced Hair Cell Loss 

Relative quantification (RQ) of integrin β subunit qPCR data from gene expression array plates run using cDNA from normal adult mouse utricles which 

had not been cultured (0  DC) and utricular cultures harvested at 4 (4 DPG) and 14 days post-gentamicin treatment (14 DPG). Error bars indicate the 95% 

confidence intervals for each RQ value.  
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5.3 Multiplexed Individual Integrin Subunit qPCR Assays 

Following the RQ study of qPCR data obtained from the customised TaqMan™ integrin 

gene expression arrays, several subunits were selected for further investigation using 

multiplexed assays in order to confirm the results of the initial screen. Subunits to be 

included in these individual assays were selected on a basis of those which 

demonstrated larger changes in integrin expression level that were calculated as being 

significant. The five integrin subunits which were chosen for multiplexed qPCR assays 

were integrin α2, αV, β1, β3 and β4. The results of the RQ analysis of these assays are 

shown in figure 5-6. The same cDNA samples run on the array plates were also used for 

these individual assays.  

5.3.1 Relative Quantification  

All five integrin genes investigated using multiplexed assays were found to be 

expressed in normal utricular cDNA. These subunits had all been detected in normal 

utricular tissue by the initial qPCR screen, except for integrin Itga2.  

5.3.2 Increased Expression of Integrins in Utricular cDNA Post-Gentamicin 

Treatment 

Integrins Itgav, Itgb1 and Itgb3 all show a trend towards their gene expression being 

increased at 4 DPG, although differences between the levels detected at 4 days and in 

normal control tissue were not significant. These three subunits had all previously 

shown an increase in gene expression at 4DPG compared to normal utricular cDNA in 

the initial integrin qPCR screen. Integrin Itgav shows a subsequent decrease in 

expression at 14 DPG which was not calculated as being significant, but was higher 

than the level observed for this integrin in normal tissue. The changes in gene 

expression exhibited by Itgav follow the same trend as those observed for this subunit in 

the initial qPCR screen.  

Integrin Itgb3 also maintained a level of gene expression at 14 DPG which was higher 

than that detected in normal tissue, although this difference was not significant; integrin 

Itgb3 was not detected in the 14 DPG cDNA sample in the initial qPCR screen, but had 

shown increased expression at 4 DPG. This integrin exhibited a higher level of gene 

expression at 14 DPG than was detected at 4 DPG by multiplexed assay. 
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Integrin Itgb1, following an increase in gene expression at 4 DPG, shows a subsequent 

decrease in its expression level at 14 DPG. The expression of the Itgb1 gene appeared to 

show a small decrease from that observed in normal utricular cDNA, however, its 

expression at 14 DPG was not calculated as being significantly different from that 

detected in the 0 DC sample. Examination of the raw data from these multiplexed ssays 

indicates that integrin Itgb1 is likely to be present at a higher level than the other 4 

subunits investigated by these multiplexed assays; integrin Itgb1 expression begins to be 

detected after approximately 30 PCR reaction cycles in normal utricular cDNA, earlier 

than any of the other integrins in this sample. 

5.3.3 Integrin Multiplexed Assays Not Consistent with the Initial qPCR Screen 

Multiplexed assays for integrins Itga2 and Itgb4 detected these subunits in all 3 cDNA 

samples tested; Itga2 had not been detected in the 0 DC sample in the initial qPCR 

screen and Itgb4 had previously been undetectable at 14 DPG. Based upon the raw data 

from these assays, these two integrins are likely to be expressed in lower quantities in 

normal utricular cDNA compared to the other integrins for which multiplexed assays 

were carried out; Itgb4 does not begin to be detected until 35PCR reaction cycles and 

the start of Itga2 amplification occurs even later at around 37 cycles.  

Integrin Itgb4 shows a trend towards a decrease in gene expression at 4 DPG compared 

to its expression in normal utricular cDNA. This is the opposite of the trend observed in 

the initial qPCR screen, where Itgb4 was shown to increase significantly between the 0 

DC and 4 DPG samples. Itga2 gene expression displays a trend towards an increase at 

4DPG when compared to the 0 DC sample, and towards a further increase at 14 DPG. 

The significance of these RQ values cannot be calculated from the data obtained in 

these experiments; expression of these subunits being detected by only one of the three 

replicate assays carried out for each cDNA sample (with the exception of Itga2 in the 0 

DC sample). It was therefore not possible to calculate RQ maximum and minimum 

values for these assays, thus the RQ analysis for these subunits lacks 95% confidence 

intervals.  
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Figure 5-6 Multiplexed Individual Integrin Gene Expression Assays 

RQ analysis of individual multiplexed gene expression assays for five integrin subunits; Itga2, Itgav, Itgb1, Itgb3 and Itgb4.  Rn18s was used as the 

endogenous control. Data from assays run using the 0 DC (normal, uncultured utricle) cDNA sample were used to calibrate the expression of each 

integrin at 4 and 14 DPG relative to its expression in normal tissue. Error bars indicate 95% confidence intervals. Where no error bars are shown, RQ 

values were obtained from only one assay. 
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5.3 Discussion 

The custom integrin TaqMan ™ gene expression arrays carried out during this project 

detected the gene expression of 11 integrin subunits in normal adult mouse utricular 

cDNA. These arrays were also able to identify a group of 10 subunits which showed 

changes in their gene expression level in cDNA from utricles cultured for 4 and 14 days 

post-gentamicin treatment i.e. utricular tissue undergoing hair cell loss. Additionally, a 

subset of the integrins screened for in these qPCR experiments were identified as being 

undetectable in either normal or gentamicin utricular tissue. The changes exhibited by 

the gene assay carried out in this project, both integrins and hair cell markers, are 

summarised in table 5-1. 

A full discussion of those integrins determined as showing significant changes in gene 

expression in gentamicin treated utricles is given in chapter 7, in order to analyse these 

results in conjunction with the those obtained by degenerate RT-PCR (chapter 4) and 

subsequent immunohistochemistry experiments (chapter 6) and explore the implications 

of the presence of these integrins in the mammalian utricle.  

5.3.1 Limiting Factors for Integrin qPCR Experiments Using Utricular cDNA 

The cDNA samples utilised for both the custom integrin gene expression array plates as 

well as the individual multiplexed integrin assays represent the gene expression of a 

single ‘pool’ of utricular tissue; the cDNA from between 8 to 10 utricles from 4 to 5 

individual animals. Due to the size of the tissue of interest, pooling of tissue was 

necessary in order to obtain sufficient cDNA to run the number of assays carried out. 

However, this also introduces a greater variability of the genetic makeup of the cDNA 

within the sample, further complicating the investigation of changes in gene expression 

level by qPCR. In order to investigate this further, it would be necessary to carry out 

integrin gene expression assays with multiple ‘pools’ of cDNA, to assess whether the 

how replicable the results of the initial qPCR array plate screen are e.g. to reduce the 

potential for a single a-typical utricle within a given pool distorting the outcome of the 

results.  

The individual integrin subunit multiplexed assays carried out were limited by the 

amount of cDNA which was available after the initial screen had been carried out. 

Integrins selected for further investigation by multiplexed assay were chosen based 
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Genes Not Expressed in 

Normal or Gentamicin-

Treated Utricles 

 

Genes Only Expressed In 

Normal Utricle 

 

Genes Showing Increased 

Expression in Gentamicin-

Treated Utricles 

Genes Showing 

Decreased Expression 

in Gentamicin Treated 

Utricles 

 

Itga1 Itga8 Itga2 Myo7a 

Itga4 Itgb7 Itga3 Calb2 

Itga5  Itga6  

Itga7  Itgav  

Itga9  Itgb1  

Itga11  Itgb3  

  Itgb4  

  Itgb5  

   Itgb8  

  Pou4f3  

  Atoh1  

Table 5-1 Summary of Gene Expression Changes Detected by qPCR in the Utricle Following Gentamicin Treatment  

This table summarises the findings of the qPCR gene expression arrays carried out using cDNA from both normal and gentamicin treated utricle. 
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upon which subunits had shown a significant change in gene expression in the initial 

qPCR screen. Repeating the investigation of integrin gene expression in normal and 

gentamicin-treated tissue through the use of these multiplexed assays was carried out 

with the aim of establishing how replicable (and therefore how reliable) the results of 

the initial qPCR arrays were. Multiplexing of a target assay with an endogenous control 

limits the error that was potentially introduced into the array plate results - the assays on 

the customised integrin TaqMan™ gene expression arrays were not multiplexed. By 

having the endogenous control assay in the same well as each integrin target assay, their 

relative expression levels would be more directly comparable due to being subject to the 

same reaction conditions i.e. reagent and cDNA quantities and well position within the 

plate (wells which are nearer the edges of the 96-well plate are more susceptible to 

evaporation during the qPCR thermocycling process). It is possible that due to the 

samples used being the very last of the cDNA samples for each time point, that this may 

have caused pipetting errors and differences in the PCR reaction mixtures, which 

resulted in only one of the three replicate assays detecting the presence of integrins 

Itga2 and Itgb4 in the majority of the cDNA samples examined. It may also have 

contributed to the size of the error bars seen in figure 5-6 and explain why the results of 

the multiplexed assays show gene expression changes which generally follow the same 

trend as was observed in the initial screen, but which were not calculated as being 

significant. If qPCR experiments carried out in this project were to be attempted again, 

it would be important to obtain utricular tissue in greater quantities, both from normal 

control tissue and from gentamicin-treated utricle cultures, in order to ensure that the 

amount of cDNA being used was not a limiting factor. Since the cDNA samples used in 

this study were from pools of 8 – 10 individual utricles, it would be preferential to 

harvest at least double this amount of tissue for each time point being investigated.  

Quantitative PCR is a sensitive molecular technique, which results in studies such as 

this work which uses cDNA from a pool of tissue, being subject to subtle variations of 

individual utricles and therefore ultimately making significant expression level changes 

more difficult to establish. It is also possible that any changes in integrin expression 

which occur after gentamicin exposure are inherently small and more difficult to detect. 

RQ analysis in this project was only carried out comparing two time points (utricular 

cultures at 4 and 14 days post-gentamicin treatment) to normal utricular cDNA. cDNA 
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from utricles at 21 days post-gentamicin was also run on an TaqMan™ gene expression 

array, however there was insufficient cDNA in this sample for the data collected to be 

reliable and it was therefore omitted from the relative quantification study. It may 

therefore be the case that more significant changes in integrin expression occur in 

between the time points studied and up-regulation or down-regulation events at their 

most significant levels have been missed.   

5.3.2 Changes in the Expression of Hair Cell Markers in Gentamicin-Treated 

Utricular Tissue 

Pou4f3, a transcription factor expressed in sensory hair cells (also known as brn3c/brn-

3.1) exhibited a significant increase in gene expression at 4 days post-gentamicin in 

comparison to its expression in normal utricular cDNA. Pou4f3 has been previously 

identified as being involved in hair cell maturation and survival in the inner ear (Xiang 

et al., 1998)  in both auditory and vestibular hair cells. Mutation of this transcription 

factor causes deafness and vestibular deficiency in Pou4f3-deficient mice; animals 

lacking the Pou4f3 gene do not develop hair cells within their sensory epithelia (Erkman 

et al., 1996; Xiang et al., 1997). Pou4f3 mutation has also been linked to a type of 

progressive hearing loss in humans (Vahava et al., 1998). Research into understanding 

the downstream targets of Pou4f3 and the hair cell survival pathways in which they are 

involved is on-going. The observation of an increase in Pou4f3 gene expression in 

utricular cDNA at 4 days post-gentamicin would lend support to the current 

understanding that this transcription factor is important for hair cell survival as part of 

the damage responses triggered within sensory hair cells by aminoglycoside ototoxicity 

(Towers et al., 2011).   

Atoh1 is another hair cell associated transcription factor, which is known to be critical 

for the development and differentiation of sensory hair cells (Bermingham et al., 1999). 

The qPCR data from this project shows that Atoh1 (also known as math1) is present in 

the normal adult utricle and exhibits an increase in gene expression at 4 days-post-

gentamicin. This result is consistent with the findings of previous studies (Wang et al., 

2010) where Atoh1 mRNA was shown by qRT-PCR to be increased in the mouse utricle 

following aminoglycoside-induced hair cell loss. It would be anticipated, since Atoh1 is 

involved in the differentiation of hair cells, that the organotypic utricle culture model 
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used during this project i.e. a tissue known to exhibit a limited regenerative capability, 

would require up-regulation of the Atoh1 gene in order to induce the transdifferentiation 

of supporting cells into new hair cells. Adenoviral transfection with the Atoh1 gene has 

been shown to induce hair cell regeneration, above the level of spontaneous 

regeneration, in the aminoglycoside-damaged murine vestibular system (Schlecker et 

al., 2011).   

Immunohistochemistry using antibodies against the hair cell markers myosin Viia and 

calretinin in this project demonstrated that hair cells positive for each of these proteins 

are depleted in gentamicin-treated utricular tissue by 4 days post-gentamicin. The 

decrease in gene expression shown by Calb2 and Myo7a in this study by qPCR in 

cDNA from cultured utricles harvested at 4 days post-gentamicin follows the same 

trend as would be expected. That the expression of these hair cell markers subsequently 

begins to recover by 14 days post-gentamicin would support the known ability of the 

utricular epithelium to regenerate vestibular hair cells. A full discussion of the process 

of regeneration in the mammalian vestibular system is included in chapter 7. 

5.3.3 Summary 

The integrin qPCR gene expression assays carried out in this project served as an initial 

screen of utricular tissue for integrin subunits present in normal tissue and for changes 

in integrin gene expression within organotypic utricular cultures undergoing 

aminoglycoside-induced hair cell loss. The results of this qPCR study of integrin 

expression in the adult mouse utricle highlighted a group of integrin subunits which will 

be the subject of further analysis into a potential role for these cell surface receptors in 

hair cell loss and spontaneous regeneration in the vestibular sensory epithelium.  
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Chapter 6: The Expression Pattern of Integrins in Response to Gentamicin- 

Induced Hair Cell Loss 
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The development of an in vitro mouse utricle culture model provided a method of 

studying the effect of gentamicin-induced hair cell loss (and any subsequent 

regeneration) upon the expression of the integrin family of proteins. Immunofluorescent 

labelling of individual integrin α and β subunits was used to investigate both their 

presence in the murine vestibular sensory epithelium and their expression pattern.  

Primary antibodies against individual integrins subunits were initially used to label 

cryostat sections of adult mouse utricles which had not been maintained in culture, to 

investigate the ‘normal’ expression of each subunit in control tissue. Where necessary, 

the dilutions required for the use of the primary antibodies were determined by the use 

of an appropriate positive control tissue.  

A series of in vitro culture experiments were carried out to provide the tissue required 

for time series immunolabelling for several integrin subunits. Three time points at 

which to observe the tissue of interest were selected; 4, 14 and 21 days post-gentamicin 

treatment. These time points were chosen based on the findings of previous work 

(Berggren et al., 2003; Forge et al., 1998; Kawamoto et al., 2009). An early time point 

of 4 days post-gentamicin treatment was selected to show the tissue in a damaged state 

with surface scarring and substantial hair cell loss. The latter time points of 14 and 21 

days post-gentamicin were selected due to these previous studies indicating that 

regenerative events began to be observed at 14 days and were more evident at 21 days 

after ototoxic drug damage. 

 A ‘group’ of utricles (a group was defined as the dissection of 5 animals i.e. 10 

individual utricles) were dissected from adult mice and placed into culture on the same 

day, with one control utricle and two gentamicin-exposed utricles being maintained for 

each of the three time points, This process was then repeated in triplicate. The use of 

such an experimental approach provided three groups of tissue, with each time point 

represented by both control and gentamicin treated utricles. This tissue underwent 

cryostat frozen sectioning. Immunolabelling was carried out on a section of tissue from 

each group at each time point, for both control and gentamicin-treated utricles. 

Immunofluorescent labelling was therefore repeated in triplicate with control and 

gentamicin-treated cultured tissue, in order to allow for any potential variation occurring 

within the in vitro culture set up and subsequent incubation period.  
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All cryostat sections in these immunohistochemistry experiments were labelled with 

primary antibodies against an integrin subunit and a hair cell marker (either a mouse 

monoclonal myosin Viia antibody [dilution of 1:250] or a polyclonal rabbit calretinin 

antibody [dilution of 1:100]). A full description of the methods used for 

immunohistochemistry is provided in 2.3; tables 2-1 and 2-2 give full details of the 

primary and secondary antibodies used during this project. 

6.1 The Expression of Integrin β1 in the Adult Mouse Utricle 

6.1.1 Expression of Integrin β1 in the Normal Adult Mouse Utricle 

Cryostat sections of normal, uncultured adult mouse utricular tissue, fixed immediately 

after dissection from the animal, were immunofluorescently labelled for integrin β1 

(green) using an integrin β1 (CD29) goat anti-rat primary antibody (BD Biosciences) at 

a dilution of 1:1000. The hair cell marker calretinin (red) was also used to label these 

sections in order to visualise vestibular hair cells within the sensory epithelium. 

In the normal adult utricle, integrin β1 appears to be expressed at the border between the 

vestibular sensory epithelium and the basement membrane (Figure 6-1 Ai & Bi). There 

is no co-localisation of integrin β1 and calretinin, indicating that this integrin is not 

present in mature vestibular hair cells. Calretinin is also a neuronal marker, and labels 

the nerve fibres which innervate the utricle (Figure 6-1 Bii, arrow). There is no integrin 

β1 labelling in this region. In addition to its localisation at the basement membrane, the 

other main region of significant integrin β1 positive labelling is located within the 

mesenchymal tissue underlying the epithelium. In particular, blood capillaries found in 

the mesenchyme demonstrate punctate integrin β1 expression along their length (Figure 

6-1 Ci, arrow).  

6.1.2 Co-labelling of Normal Adult Utricular Tissue with Integrin β1 and Collagen 

Type IV 

To confirm that integrin β1 expression occurs at the basement membrane border in the 

normal adult mouse utricle, cryostat sections were co-labelled for integrinβ1 (green) and 

collagen type IV (red). Collagen type IV is the main constituent protein found in basal 

lamina  (Kefalides, 1973) and it was selected for use as a basement membrane marker. 
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The collagen type IV anti-rabbit primary antibody (Abcam) was used at a dilution of 

1:1000. 

As expected, collagen type IV (red) positively labels the basement membrane upon 

which the sensory epithelium of the utricle lies (Figure 6-2 Aii). This marker also labels 

capillaries within the mesenchyme (Figure 6-2 Bii), since the endothelia of these blood 

vessels also possess a basement membrane (Kramer et al., 1985). Integrin β1 co-

localises with collagen type IV both within the blood capillaries (Figure 6-2 Biii, arrow) 

and at the epithelial-basement membrane border (Figure 6-2 D). At higher 

magnification, integrin β1 labelling is punctate in appearance across the length of this 

border.  Integrin β1 expression in the capillaries of the mesenchyme appears to be in 

closer proximity to the luminal surface of the vessels, in comparison to that of collagen 

type IV, which appears to label the outer region of these structures.  

6.1.3 Integrin β1 Expression in Gentamicin Treated Utricles 

Cryostat sections of utricular tissue cultured for 4, 14 and 21 days post-gentamicin were 

labelled for integrin β1 (green) in conjunction with a hair cell marker myosin Viia (red). 

Control tissue was grown in vitro for the same total time period (i.e. 7 days in the case 

of control counterparts of 4 day post-gentamicin utricles) without receiving 48 hours 

antibiotic treatment.  

In control tissue, the expression pattern of integrin β1 is similar to that seen in normal, 

uncultured adult mouse tissue.  Integrin β1 expression occurs at the epithelial-basement 

membrane border (Figure 6-3 Ai). There also appears to be integrin β1 positive 

labelling, similar to that observed in non-cultured tissue, in blood capillaries of the 

mesenchyme (Figure 6-3 Bi, arrowhead). This labelling is not as clearly defined as 

previously seen, appearing as irregular β1-positive plaques as opposed to the finer 

punctae observed in normal tissue. This could be attributed to the likelihood that these 

blood vessels die away following tissue dissection. The hair cell marker myosin Viia 

indicates that vestibular hair cells are abundant in control tissue at this time point in 

vitro (Figure 6-3 Aii). This pattern of β1 labelling was observed in all control utricles at 

each of the 3 time points examined (Figure 6-4A & 6-5A). A general observation of 

cultured utricles which have been maintained for this length of time in vitro is their 

tendency to show a greatly flattened appearance, which is especially evident when 
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examining sections through this tissue as opposed to wholemounts. The mesenchyme 

underlying the epithelium is demonstrably thinner than that of uncultured tissue.  

At 4 days post-gentamicin, β1 expression is very similar to that observed in the normal 

utricle. Despite the loss of vestibular hair cells indicated by the decreased number of 

cells labelled positive for myosin Viia (Figure 6-3 Bii) integrin β1 expression remains 

most evident at the epithelial-basement membrane border (Figure 6-3 Ci). As observed 

in control tissue which spent the same length of time under culture conditions, integrin 

β1 labelling of the blood vessels within the mesenchyme is sporadic and not as clearly 

defined as that seen in normal tissue (Figure 6-3 Ci); the capillaries are expected to have 

degenerated in vitro and thus the labelling seen is likely to be residual debris from these 

structures. 

At 14 (Figure 6-4) and 21 (Figure 6-5) days post-gentamicin, few vestibular hair cells 

positive for myosin Viia (Figure 6-4 Bii & 6-5Bii) are visible. Integrin β1 expression at 

these two latter time points does not appear to differ greatly from that observed at 4 

days post-gentamicin treatment. Integrin β1 is expressed at the basement membrane 

throughout the process of hair cell loss and any subsequent tissue recovery for the entire 

time period investigated (Figure 6-4 Ci & Figure 6-5 Ci). Irregular integrin β1 positive 

plaques also continue to be observed in gentamicin treated tissue within the underlying 

mesenchyme at all three time points.  
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 Figure 6-1 Integrin β1 Expression in the Normal, Uncultured Mouse Utricle 

Cryosections of normal mouse utricle which had not been cultured immunolabelled for integrin β1 (green) and calretinin (red). DAPI labels cell 

nuclei blue. (A & B) Vestibular hair cells are positive for calretinin (red) which also labels the neurons which innervate this tissue (Bii, arrow). (C) 

The same section as in B at higher magnification in a region where there are both neurons and blood capillaries visible (Ci, arrow).  
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  Figure 6-2 Co-labelling of Normal Adult Utricles for Integrin β1 and Collagen Type IV 

Cryosections of a normal uncultured adult mouse utricle labelled for integrin β1 (green) and 

collagen type IV (red). DAPI labels cell nuclei blue. (A & C) Overview of the entire utricle. 

(B) The same section as in A is viewed under higher magnification, focussing on a region 

containing several blood vessels (Biii, arrow). (D) Co-labelling of integrin β1 and collagen 

type IV, both in the underlying mesenchyme and at the epithelial-basement membrane 

border (arrow).  
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Figure 6-3 Integrin β1 Expression in Control and Gentamicin Treated Tissue at 4 Days Post-Gentamicin Exposure 

Cryostat sections of utricular tissue cultured for 4 days post-gentamicin labelled for integrin β1 (green) and myosin Viia (red). DAPI labels cell 

nuclei blue. (A & B) Control tissue cultured for a total of 7 days, without receiving 48 hours antibiotic treatment. Irregular integrin β1 positive 

plaques (arrow) are thought to be due to degradation of the blood vessels in vitro.  (C) Aminoglycoside treated tissue at 4 days post gentamicin 

treatment. 
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Figure 6-4 Integrin β1 Expression in Control and Gentamicin Treated Utricular Tissue at 14 Days Post-Gentamicin 

Cryostat sections of utricles cultured for 14 days post gentamicin treatment labelled for integrin β1 (green) and myosin Viia (red). DAPI labels cell nuclei 

blue. (A) Control tissue maintained in vitro for a total of 17 days without receiving gentamicin treatment. (B & C) Gentamicin treated utricular sections at 

14 days post gentamicin treatment. There is little remaining mesenchyme tissue at this time point. Plaques positive for integrin β1 (Ciii, arrowhead) 

correlated to the region where the blood capillaries of the tissue would have been located. 
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Figure 6-5 Integrin β1 Expression in Control and Gentamicin Treated Utricular Tissue at 21 Days Post-Gentamicin 

Cryostat sections of utricles cultured for 21 days post gentamicin treatment labelled for integrin β1 (green) and myosin Viia (red). DAPI labels cell 

nuclei blue. (A) Control tissue maintained in vitro for a total of 24 days without being treated with gentamicin. In this section the tissue is still 

sitting on the filter paper on which it was cultured. (B & C) Gentamicin treated utricular sections at 21 days post gentamicin exposure. 

Mesenchymal tissue is greatly reduced in these sections after 24 days in culture.  
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6.2 The Expression of Integrin αV in the Murine Vestibular Epithelium 

6.2.1 Integrin αV Expression in the Normal Adult Mouse Utricle 

Cryostat sections of mouse skin were used as a positive control tissue in order to 

determine an appropriate concentration at which to use the integrin αV primary 

antibody (BD Biosciences).  Phalloidin-FITC (red), used at a 1:1000 dilution, labels 

muscle fibres within the skin (Figure 6-6 Aii) with the distinctive striated appearance of 

actin filaments evident in muscle fibres present within this tissue. Integrin αV (green) 

used at a dilution of 1:200, labelled only at the periphery of these muscle fibres (Figure 

6-6 Ai).  

The dilution established from positive control experiments was used to label cryostat 

sections of normal adult mouse utricles which had not been maintained in vitro. The 

results of these experiments proved to be far less well defined in terms of reliable, 

specific labelling with the integrin αV antibody. Figure 6-6 B represents the clearest 

example of immunohistochemistry in the normal utricle under these conditions; this 

result was not consistently replicable.  Integrin αV (green) exhibits widespread labelling 

in the mesenchymal tissue beneath the vestibular hair cells and supporting cells, with 

regions of greater signal intensity at the edge of the mesenchyme closest to the 

epithelium and also in a pattern which would correspond to blood vessels. Although 

there is a small amount of background staining of αV within the epithelium, calretinin 

(red) labelling of the vestibular hair cells indicates that there is no co-localisation of the 

two proteins within these cells. The calretinin antibody has also labelled the neurons of 

the utricle in this section (Figure 6-6 Bii). 

It was thought that the poor labelling for integrin αV might be improved in utricular 

tissue by using a tyramide signal amplification kit to enhance the signal from integrin 

αV above that of the abundant background level within the mesenchymal tissue. This 

signal amplification system utilises a horse radish peroxidase (HRP) conjugate to 

activate a fluorescently tagged tyramide derivative. This process (which requires 

hydrogen peroxide) creates tyramide radicals which will then localise in the vicinity of 

the site at which the HRP conjugate interacts with the primary antibody being used.  
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In normal uncultured adult mouse tissue immunolabelled for integrin αV (Figure 6-7) 

with the use of the TSA amplification kit, a region of intense labelling (green) is 

detected at the top of the mesenchyme i.e. the area directly beneath the basement 

membrane (Figure 6-7 Aii). This is similar to the pattern seen without the use of 

tyramide amplification, but this region appears brighter and more pronounced over and 

above the background labelling visible across the majority of the mesenchyme. Co-

labelling of cryosectioned normal utricular tissue with integrin αV and the basement 

membrane marker collagen type IV (Figure 6-9), shows that integrin αV appears to be 

expressed only in the underlying mesenchyme, in particular at the region of the 

connective tissue which lies directly beneath the basement membrane ( (Figure 6-9 

Biii). Integrin αV positive-staining does not extend above this membrane into the 

sensory epithelium, indicating that this integrin is not expressed normally in either 

vestibular hair cells or the surrounding supporting cells. Phalloidin-FITC (red) labels 

the stereociliary bundles at the apex of cells within the sensory epithelial layer (Figure 

6-7 Ai). Tissue which would correspond with the vascular network of the utricle within 

the mesenchyme also appears to be positively labelled for integrin αV (Figure 6-7 Bii). 

In wholemount tissue, integrin αV positive undulating lineate structures (Figure 6-8 Aii) 

are visible beneath the layer of the tissue which contains calretinin-positive (red) 

vestibular hair cells. The morphology of these structures would correlate with blood 

capillaries present in the utricle.  
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Figure 6-6 Integrin αV Labelling of Mouse Skin and the Normal Uncultured Mouse Utricle 

(A) Cryosection of mouse skin tissue (as a positive control) immunolabelled with Phalloidin-FITC (red) and integrin αV at a dilution of 1:200 (green). 

DAPI labels cell nuclei blue. (B) Cryosection of normal uncultured adult mouse utricle immunolabelled with integrin αV (green), calretinin (red) as a hair 

cell marker. DAPI labels cell nuclei blue. 
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Figure 6-7 Integrin αV Expression in the Normal Adult Mouse Utricle Amplified using a TSA Kit 

Cryosections of normal uncultured adult mouse utricle labelled for integrin αV using a TSA amplification kit to provide better definition of the true 

signal above background labelling.  (A) Phalloidin-FITC labels stereocilia (red).  Integrin αV (green) is detected predominantly in the 

mesenchyme. DAPI labels cell nuclei blue. (B) Arrows indicate blood capillaries within the mesenchymal tissue which are also positive for integrin 

αV. 
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Figure 6-8 Integrin αV Expression in Normal Wholemount Utricular Tissue 

Normal uncultured adult mouse utricular tissue immunolabelled as a wholemount with calretinin (red) as a hair cell marker, integrin αV (green) and 

DAPI (blue) indicating cell nuclei. (A) Integrin αV (signal amplified using TSA kit) positively labels the vascular network (arrows) of the utricle within 

the underlying mesenchyme.  
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 Figure 6-9 Integrin αV and Collagen Type IV Co-Expression in the Normal Utricle 

Cryostat sections of normal adult utricular tissue co-labelled for integrin αV (green) and collagen type IV (red).  DAPI labels cell nuclei blue. (A) 

Co-localisation of integrin αV and collagen type IV occurs predominately at the basement membrane. (B) There is no integrin αV expression 

above the basement membrane (Arrow indicates basement membrane at the epithelial-mesenchymal border); integrin αV is not expressed in the 

sensory epithelium. 
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6.2.2 Integrin αV Expression in Gentamicin Treated Utricles 

Cryosections of cultured utricular tissue were labelled for integrin αV (green, with the 

use of a TSA amplification kit) in conjunction with the hair cell marker calretinin (red). 

Control tissue was grown in vitro for the same total time period (i.e. 7 days in the case 

of control counterparts of 4 day post-gentamicin utricles) without receiving 

aminoglycoside treatment. 

In control sections across all three time points studied (Figure 6-10, 6-12 A & 6-13 A) 

integrin αV positive labelling appears similar to that observed in normal uncultured 

utricular tissue, with labelling most evident in the mesenchyme directly beneath the 

basement membrane (Figure 6-10 Aii & Bii). There is no co-localisation of calretinin 

and integrin αV visible (Figure 6-10 Aiii & Biii). As was observed in time series 

immunohistochemistry experiments with integrin β1, which also showed a tendency to 

label the vasculature of the utricle, staining of these structures is less evident in cultured 

tissue both in control and gentamicin treated utricles, since these features of the 

underlying mesenchyme tend to disappear after being maintained in vitro. The sensory 

epithelium remains populated with calretinin-positive vestibular hair cells in these 

cultures (Figure 6-13 Bi). 

At 4 days post-gentamicin, utricles have undergone considerable hair cell loss (Figure 

6-11 Ai) and exhibit the same pattern of integrin αV expression (Figure 6-11 Aii & Bii) 

as seen in their control counterparts. The remaining mesenchyme, as in control tissue at 

this time point, lacks the clearly defined labelling of blood capillaries with integrin αV 

that is seen in normal uncultured utricles. By 14 days post-gentamicin (Figure 6-12 C) 

there remains no significant difference in terms of integrin αV expression in comparison 

to either control tissue maintained in vitro for the same length of time, or utricular tissue 

at 4 days post-gentamicin treatment.    

Following a 21 day recovery period, the expression pattern of αV appears little different 

to that observed in control counterparts and in gentamicin treated utricles at earlier time 

points. Despite the sensory epithelium being largely depleted in terms of hair cell 

numbers (Figure 6-13 Ci), the band of mesenchymal tissue immediately beneath the 

epithelial layer remains the focal point of integrin αV positive labelling in these cultures 

(Figure 6-13 Cii).
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Figure 6-10 Integrin αV Expression in Control Utricular Tissue Cultured for 7 Days 

Cryostat sections of utricular tissue maintained in culture for a total of 7 days without gentamicin treatment, immunolabelled for calretinin (red)  and 

integrin αV (green). DAPI labels cell nuclei blue. (A) Control tissue is well populated with vestibular hair cells. (B) x63 objective view of the same 

utricle section. 
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 Figure 6-11 Integrin αV Expression in Utricular Tissue at 4 Days Post-Gentamicin Treatment 

Cryostat sections of cultured utricular tissue at 4 days post-gentamicin exposure were immunolabelled for calretinin (red) and integrin αV (green). DAPI 

labels cell nuclei blue. (A) Calretinin positive cellular ‘debris’ of hair cells which have undergone cell death (arrowhead). (B) A x63 objective view of 

the same section as in A.  
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Figure 6-12 Integrin αV Expression in Utricular Tissue at 14 Days Post-Gentamicin Treatment 

Cryostat sections of cultured control utricles grown for 17 days with any gentamicin exposure immunolabelled with calretinin (red) as a hair cell marker 

and integrin αV (green), using the TSA amplification kit. DAPI labels cell nuclei blue. (A & B) Control tissue cultured for 17 days in vitro. (C) Tissue 

treated with gentamicin after a 14 day recovery period. 

 



 

 

187 

  

 

 

 

Figure 6-13 Integrin αV Expression in Cultured Utricular Tissue at 21 Days Post-Gentamicin Treatment 

Cryostat sections of utricular tissue grown in culture for 21 days post gentamicin, immunolabelled for calretinin (red) and integrin αV (green). DAPI 

labels cell nuclei blue. (A & B) Control tissue demonstrates a well-populated sensory epithelium of calretinin-positive hair cells. (C) Gentamicin treated 

tissue at 21 days post aminoglycoside exposure.  
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6.3 The Expression of Integrin β5 in the Adult Mouse Utricle 

6.3.1 Integrin β5 Expression in the Normal Uncultured Adult Mouse Utricle 

Cryosections of adult mouse small intestine (Figure 6-14 A) were used as a positive 

control in order to establish an appropriate concentration at which to use the integrin β5 

primary antibody (Millipore). Phalloidin-FITC (red) positively labels the muscular outer 

wall of the intestinal tissue which is rich in filamentous actin (Figure 6-14 Aii). Integrin 

β5 (green) at a dilution of 1:100 positively labels cells located within the tissue at the 

centre of the numerous villi present at the luminal surface (Figure 6-14 Ai). Additional 

integrin β5 positive cell bodies are seen at the base of crypts and villi in close proximity 

to the outer wall.  

In cryosections of normal adult mouse utricular tissue which had not been maintained in 

vitro, labelled with integrin β5 (green) and myosin Viia (red) as a hair cell marker, there 

appeared to be relatively widespread β5 expression within both the mesenchyme and 

sensory epithelial layers of the tissue (Figure 6-14 Bi). This subunit does not appear to 

be associated with the basement membrane as was observed for integrin β1 and αV. 

Integrin β5 appears to be associated with vestibular hair cells (Figure 6-14 C), in 

particular, towards the base of type I hair cells where they associate with neural calyces. 

There is a clear ‘gap’ in the tissue between the underlying mesenchyme and the myosin 

Viia-positive hair cell layer which shows no integrin β5 expression, corresponding to 

the supporting cell layer of the epithelium.  

6.3.2 Integrin β5 Expression in Gentamicin Treated Utricles 

Control tissue shows greater numbers of myosin Viia positive hair cells than seen in 

sections of gentamicin treated utricles; this occurs at each of the time points examined 

in this study (Figure 6-15 A, 6-16 A & B). At 4 days post-gentamicin (Figure 6-15), 

both control counterparts and gentamicin treated utricles appear to have lost integrin β5 

positive labelling within hair cell bodies in the region of the nerve calyces, where it had 

been observed in normal tissue. Irregular plaques positive for integrin β5 appear at the 

apical region of the sensory epithelium.  
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At 14 days post-gentamicin (Figure 6-16), there appears to be a re-distribution of 

integrin β5 expression. Punctate β5-positive labelling is visible at the basement 

membrane, a region of the tissue where it had not been detected in normal, uncultured 

utricles. This change is observed both in gentamicin treated utricles and their control 

counterparts. The lack of integrin β5 expression within the hair cells in the region of 

afferent calyces seen at 4 days persists at 14 days post-gentamicin treatment (Figure 6-

16 C & D). The irregular integrin β5 positive plaques seen at 4 days are also still visible 

after a 14 day recovery period; both in control and drug exposed utricles.  

By 21 days post-gentamicin (Figure 6-17), it was possible to see evidence that integrin 

β5 expression had begun to return to its original distribution. Myosin Viia positive hair 

cells showing integrin β5 labelling within the hair cell body towards the basal region 

which associates with the neural calyces may be seen in the sensory epithelium. 

However, there remain hair cells which are positive for myosin Viia, which are not 

integrin β5 positive, suggesting that this redistribution may only be partial.  
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Figure 6-14 Expression of Integrin β5 in Small Intestine and the Normal Mouse Utricle 

Cryostat sections of (A) mouse small intestine and (B) normal, uncultured adult mouse 

utricle. (A) Small intestine was used a positive control to determine an appropriate primary 

antibody concentration. Phalloidin-FITC (red) labels the muscular outer wall of the 

intestine. Integrin β5 (green) diluted 1:100.  DAPI labels nuclei blue. (B) The normal mouse 

utricle labelled for integrin β5 (green) and the hair cell marker myosin Viia (red).  
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 Figure 6-15 Expression of Integrin β5 in Cultured Utricular Tissue at 4 Days Post-Gentamicin Treatment 

Cryostat sections of cultured utricle grown for 4 days after gentamicin treatment immunolabelled for integrin β5 (green) and myosin Viia (red). DAPI 

labels cell nuclei blue. (A) Control tissue cultured for a total of 7 days without receiving gentamicin treatment. (B & C) Gentamicin treated tissue 

after a 4 day recovery period.  
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Figure 6-16 Expression of Integrin β5 in Utricular Tissue Cultured for 14 Days Post-Gentamicin Treatment 

Cryostat sections of utricular tissue maintained in vitro for 14 days post gentamicin treatment immunolabelled for integrin β5 (green) and myosin Viia 

(red). DAPI labels cell nuclei blue. (A & B) Control tissue cultured for a total of 17 days without gentamicin exposure. (Bi) Arrows indicate β5-positive 

punctae at the basement membrane. (C & D) Gentamicin treated tissue following a 14 day recovery period. 
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Figure 6-17 Integrin β5 Expression in Utricular Tissue Cultured for 21 Days Post -

Gentamicin Treatment 

Cultured utricular tissue at 21 days post gentamicin treatment, immunolabelled for integrin 

β5 (green) and myosin Viia (red). DAPI labels cell nuclei blue. (Aii) Arrow indicates 

integrin β5 positive labelling similar to that observed in normal tissue.  



 

 

194 

  

 

6.4 The Expression of Integrin α6 in the Adult Mouse Utricle 

6.4.1 Integrin α6 in the Normal Uncultured Adult Mouse Utricle 

Cryosections of adult mouse lung tissue were used as a positive control in order to 

determine an appropriate concentration at which to use the integrin α6 (Serotec) primary 

antibody. Previous work on integrins in the inner ear using this α6 antibody used a 

1:200 dilution (Davies and Holley, 2002). Integrin α6 (green) shows widespread 

background labelling in mouse lung tissue (Figure 6-18 Aii), with lineate expression in 

regions that would correlate with the basement membranes of alveolar capillaries.  

Cryosections of normal adult mouse utricular tissue which had not been maintained in 

vitro were immunolabelled for integrin α6 (green) and myosin Viia (red) as a hair cell 

marker. Integrin α6 positive punctae are visible along the length of the epithelial-

basement membrane (Figure 6-18 Bi & Ci) similar to the pattern exhibited by integrin 

β1 in the same tissue. Integrin α6 also appears to label the vascular bed of the 

underlying mesenchyme and shows more widespread staining within the mesenchymal 

tissue at the lower regions of the utricle. There is no co-localisation of the hair cell 

marker and integrin α6 within the sensory epithelium.  

6.4.2 Integrin α6 Expression in Gentamicin Treated Utricles 

In control counterparts of utricles cultured for 4 days post-gentamicin, the sensory 

epithelium is populated with vestibular hair cells positive for myosin Viia (Figure 6-19 

Aii); the section shown does however exhibit a breakage point at the centre, likely to be 

the result of damage during the initial tissue dissection. Integrin α6 positive labelling is, 

as in normal uncultured utricular tissue, present at the border between the epithelial and 

mesenchymal layers of the utricle (Figure 19 Ai). As observed with other integrin 

subunits in this work which label the blood capillaries of the mesenchyme, the integrin 

α6 labelling of these structures is less defined and more irregular than in tissue which 

had not been maintained in vitro. This is attributed to the fact that the mesenchymal 

tissue undergoes considerable remodelling and outgrowth under culture conditions. 

Control tissue continues to show this pattern of integrin α6 expression in the non-treated 

counterparts of 14 and 21 days post-gentamicin utricles (Figure 6-20 A and Figure 6-21 

A).  
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At 4 days post-gentamicin (Figure 6-19), the integrin α6 expression pattern remains 

relatively unaltered from that seen in control tissue, in response to hair cell loss. Plaques 

of myosin Viia positive labelling believed to be cellular debris as the result of dying hair 

cells being extruded from the epithelial layer are visible in the tissue at this time point 

(Figure 6-19 Bii). Despite the loss of hair cells, integrin α6 expression persists at the 

epithelial-mesenchyme border in the region of the basement membrane (Figure 6-19 Bi 

& Ci). There are also large plaques positive for integrin α6 which are likely to 

correspond to the mesenchymal tissue and vascular network in which integrin α6 

expression was observed in uncultured tissue. The same tendency is seen in control 

counterparts, indicating that this occurrence is more likely to be as a result of 

remodelling of tissue in the mesenchyme caused by the culture process, than it is to be 

triggered through gentamicin treatment.  

Integrin α6 expression at the basement membrane is maintained in gentamicin treated 

tissue at both 14 (Figure 6-20 B) and 21 days (Figure 6-21 B) post drug exposure. The 

appearance of irregular integrin α6 positive plaques in the underlying mesenchyme also 

continues to be evident across each of the time points examined. Outgrowth and tissue 

remodelling continues in these organotypic cultures throughout the recovery period 

studied, and therefore these plaques would appear to be the result of the neural and 

vascular elements of the mesenchyme having been lost over time spent in vitro. 
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Figure 6-18 Integrin α6 Expression in Lung Positive Control Tissue and the Normal Adult Mouse Utricle 

(A) Cryosection of adult mouse lung tissue as a positive control to determine an appropriate concentration for the integrin α6 (green) primary 

antibody. DAPI labels cell nuclei blue. (B & C) Cryosections of normal, uncultured adult mouse utricle immunolabelled for integrin α6 (green) and 

myosin Viia (red). DAPI labels cell nuclei blue.  
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Figure 6-19 Integrin α6 Expression in Utricular Tissue Cultured for 4 Days Post-Gentamicin Treatment 

Cryosections of cultured utricular tissue at 4 days post gentamicin treatment immunolabelled for integrin α6 (green) and myosin Viia (red). DAPI 

labels cell nuclei blue. (A) Control tissue maintained in vitro for a total of 7 days without receiving gentamicin treatment. (B & C) Gentamicin treated 

utricular tissue after a 4 day recovery period. (B) This section remains sitting on top of the nitrocellulose filter upon which it was cultured; the filter 

tends to take up the TRITC secondary antibody thus appearing red.  
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Figure 6-20 Integrin α6 Expression in Utricular Tissue Cultured for 14 Days Post-Gentamicin Treatment 

Cryosections of cultured utricular tissue immunolabelled for integrin α6 (green) and myosin Viia (red). DAPI labels cell nuclei blue. (A) Control tissue 

maintained in vitro for 17 days without being treated with aminoglycoside antibiotic. (B) Gentamicin treated tissue following a 14 day recovery period. 
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 Figure 6-21 Integrin α6 Expression at 21 Days Post-Gentamicin Treatment 

Cryosections of cultured utricular tissue immunolabelled for integrin α6 (green) and myosin Viia (red). DAPI labels cell nuclei blue. (A) Control 

tissue grown in vitro for a total of 24 days without receiving 48 hours gentamicin exposure.(B) Gentamicin treated tissue after a 21 day recovery 

period in culture.  



 

 

200 

  

 

6.5 The Expression of Integrin β3 in the Adult Mouse Utricle 

6.5.1 Integrin β3 Expression in the Normal Adult Mouse Utricle 

Cryostat sections of mouse skin were used as a positive control tissue in order to 

determine an appropriate concentration for the use of the integrin β3 primary antibody 

(BD Biosciences). Phalloidin-FITC (red), used at a 1:1000 dilution, labels muscle fibres 

within the skin (Figure 6-22 Aii) with the distinctive striated appearance of actin 

filaments evident in muscle fibres present within this tissue. As was seen with integrin 

αV, the β3 antibody (green), at a dilution of 1:200, labelled only at the periphery of the 

muscle cells (Figure 6-22 Ai).  

When this primary antibody was used on cryosections of normal mouse utricle, it was 

generally very difficult to distinguish true β3 (green) positive labelling from widespread 

background staining (shown in Figure 6-22 B). There does appear (Figure 6-22 C 

represents the clearest labelling achieved with this antibody, although this result did not 

prove replicable) to be higher intensity β3 positive labelling in the region of neurons 

which are positive for calretinin (red). Further attempts to optimise the dilution at which 

the antibody was used did not prove successful in improving the quality of 

immunolabelling produced. An alternative β3 primary antibody (Novus Biochemicals) 

was tested on cryosectioned mouse small intestine to determine an appropriate dilution 

(Figure 6-23 A). When used to label cryosections of normal mouse utricle, there 

appeared to be widespread labelling within both the mesenchyme and the sensory 

epithelium (Figure 6-23 Bi). It was however, possible to observe regions of higher 

intensity β3 positive labelling within vestibular hair cells (believed to be type I hair cells 

base upon their shape) in the region of their neural calyces, similar to the labelling 

shown by integrin β5 (Figure 6-23 Ci).  

6.5.2 Integrin β3 Expression in Gentamicin Treated Utricles 

Control counterparts of utricles cultured for 4 days post-gentamicin show a similar 

pattern of integrin β3 labelling as that observed in normal, uncultured utricular tissue 

(Figure 6-24 Ai). The sensory epithelium is populated with myosin Viia-positive hair 

cells (Figure 6-24 Aii); integrin β3 is present in the hair cell layer in regions which 

correspond to the interface between type I hair cells and their neural calyces (Figure 6-
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24 Ai). There is also integrin β3 expression within the underlying mesenchyme. Control 

counterparts of 14 and 21 days post-gentamicin treatment utricles were not able to be 

carried out with the integrin β3 antibody due to a lack of tissue sections; 

immunohistochemistry experiments with this antibody were the last in the series of 

integrins investigated to be carried out.  

At 4 days post-gentamicin treatment (Figure 6-24 Bii), myosin Viia-positive hair cell 

numbers are substantially decreased – there are no hair cells visible in the section shown 

in this figure, only myosin Viia-positive debris. Integrin β3 labelling in this tissue, in the 

absence of hair cells, appears to have been redistributed, with integrin β3 expression 

associated with the supporting cells, suggesting that this integrin may be present at the 

interface between supporting cells and neurons. As seen with other integrins which 

localised to the mesenchyme, β3 labelling is present in the underlying connective tissue 

at 4 days post-gentamicin, but this expression appears more punctate and plaque-like 

due to the extensive remodelling which occurs in the mesenchyme in vitro. 

At 14 days post-gentamicin integrin β3 expression appears similar to that observed at 4 

days (Figure 8-25 i). The section shown in figure 8-25 lacks myosin-Viia positive hair 

cells. As seen at 4 days post-gentamicin, in the absence of vestibular hair cells, integrin 

β3 localises to regions which would correspond with the interface between a neuron and 

a supporting cell.  

By 21 days post-gentamicin, there is evidence which might suggest that integrin β3 is 

redistributed to the region of neural calyces at type I vestibular hair cells. It is not 

possible to determine from these immunohistochemistry experiments as to whether the 

myosin Viia-positive cells visible in figure 8-26 are hair cells which have been 

regenerated, or are instead hair cells which were able to survive the aminoglycoside 

treatment. The hair cells labelled with myosin Viia in this utricular section, however, 

demonstrate integrin β3 labelling which is similar to that observed in normal utricular 

tissue.  
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Figure 6-22 Integrin β3 Expression in Skin as a Positive Control Tissue and In the Normal Adult Mouse Utricle  

Cryostat sections of mouse tissue immunolabelled with an integrin β3 primary antibody (BD Biosciences). DAPI labels cell nuclei blue.(A) Adult 

mouse skin was used as a positive control to determine an appropriate concentration for the use of the integrin β3 (green) antibody. Phalloidin-FITC 

(red) labels actin filaments. (B & C) Normal uncultured adult mouse utricle cryosections labelled for integrin β3 (green) and calretinin (red). 
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Figure 6-23 Integrin β3 Expression in Positive Control Tissue and the Normal Adult 

Mouse Utricle  

Cryosections of adult mouse tissue were immunolabelled for integrin β3 with an alternative 

primary antibody (Novus Biochemicals). DAPI labels cell nuclei blue. (A) Mouse small 

intestine was used as a positive control tissue in order to determine an appropriate 

concentration at which to use the integrin β3 (green) primary antibody. (B & C) 

Cryosections of normal, uncultured adult mouse utricle immunolabelled for integrin β3 

(green) and myosin Viia (red).  
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 Figure 6-24 Integrin β3 Expression at 4 Days Post-Gentamicin Treatment 

Cryosections of cultured utricular tissue immunolabelled for integrin β3 (green) and myosin Viia (red). DAPI labels cell nuclei blue. (A) Control 

tissue cultured for a total of 7 days without exposure to gentamicin. (B) Gentamicin treated tissue following a 4 day recovery period.  
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Figure 6-25 Integrin β3 Expression at 14 Days Post-Gentamicin Treatment 

Cryosection of utricular tissue immunolabelled for integrin β3 (green) and myosin Viia 

(red) at 14 days post gentamicin. DAPI labels cell nuclei blue.  
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Figure 6-26 Integrin β3 Expression at 21 Days Post-Gentamicin Treatment 

Cryosection of utricular tissue at 21 days post gentamicin immunolabelled for integrin β3 (green) and myosin Viia (red). DAPI labels cell nuclei blue.  
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Chapter 7: Discussion 

 

 

 

 

 

 

 

 

 



 

 

208 

  

 

The experiments carried out during this project represent the first investigation into the 

expression of members of the integrin family of cell surface adhesion molecules within 

the adult mouse vestibular system. The data obtained also demonstrates a novel 

bioinformatics based assessment of the relationships between the alpha and beta integrin 

subunits in terms of their DNA sequence, which is specific to the mouse model species 

used.  

The mammalian utricle was chosen as the model tissue for this project since it has been 

established through previous work of this research group as being a sensory epithelium 

which is capable of some spontaneous regeneration. The structure of this tissue is such 

that the supporting cells of the sensory epithelium are in contact with the basement 

membrane which lies between the epithelium and the underlying mesenchymal tissue. 

Integrins are known to bind several extracellular matrix proteins which are major 

constituents of basement membranes, forming cellular adhesions between the membrane 

and cells such as epithelial cells which are in direct contact with it. Vestibular hair cells 

in the normal mature utricle do not have any contact with the basement membrane since 

they are surrounded by the supporting cells. However, during spontaneous regeneration 

following loss of hair cells, where supporting cells have been shown to undergo a 

phenotypic conversion  (Li and Forge, 1997), it is thought necessary for  these cells 

which are to become new hair cells to break their contacts with the basement 

membrane. This would allow regenerated cells to relocate to the apical layer of the 

sensory epithelium; previous work has shown cells believed to be undergoing 

transdifferentiation at several stages in this process of detachment, observing cells with 

apical bundles which appear immature, in addition to being in contact with the 

basement membrane by a ‘foot-like’ process (Li and Forge, 1997). The cellular 

processes which underlie these events during transdifferentiation would therefore be 

anticipated to involve integrin cell surface receptors. Additional events that could be 

suggested as requiring members of the integrin family are the cellular shape changes 

which occur as supporting cells fill the gaps in the epithelium created by the death of 

hair cells in order to seal the lesion and maintain the endocochlear potential. Supporting 

cells nearest utricular lesions have been shown to spread and become more squamous in 

their morphology (Meyers and Corwin, 2007). Integrins are known to be involved in 

cell spreading through their interaction with their surroundings via focal adhesion 
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complexes, in addition to playing a role in the re-organisation of the actin cytoskeleton 

(Cavalcanti-Adam et al., 2007). This work therefore presents the mouse utricle as a 

viable inner ear tissue for the study of integrin involvement in the repair and 

regeneration of the vestibular sensory epithelium.  

7.1 In Vitro Culture of Adult Mouse Utricular Tissue is a Viable Model System for 

the Induction of Hair Cell Loss 

7.1.1 In Vitro Vs In Vivo; Limitations of the Adult Mouse Utricular Culture Model 

The experimental data presented in chapter 4 illustrates the morphological changes 

which occur in organotypic adult mouse utricle cultures in response to exposure to the 

ototoxic aminoglycoside antibiotic gentamicin.  

Initial culture experiments were carried out on glass-bottomed Mattek™ dishes coated 

with laminin. Although utricles survived well on this culture surface, it was deemed 

unsatisfactory for continued use in the work carried out during this project. Utricles 

maintained in vitro on laminin coated glass showed a tendency to spread and ‘grow out’ 

from the original explant with the laminin acting as a substrate. Utricles maintained for 

longer time periods i.e. 14 days and longer, would prove to be very difficult to remove 

from the dish at the end of the experiment; in some instances the utricular tissue would 

appear virtually indistinguishable from the laminin coated glass. Laminin, an 

extracellular matrix protein is a known ligand for several integrin heterodimers 

including α3β1, α6β1 and αVβ5 (Belkin and Stepp, 2000). If utricular tissue maintained 

on a laminin substrate had been used for integrin immunofluorescent labelling, it would 

be possible that focal adhesion complexes containing one or more of the known 

laminin-binding integrin heterodimers might form at the base of the connective tissue 

i.e. the region of the explant in direct contact with the culture substrate. This could 

potentially have resulted in integrin positive immunofluorescent labelling being visible 

which is not usually present in the normal tissue.  Other previous studies which have 

carried out utricular culturing have allowed the dissected maculae to be maintained free 

floating in 24 well plate dishes containing culture medium (Cunningham, 2006). It 

could be suggested that this method of incubation might be less likely to induce 

artificial changes in the integrins of the utricular tissue, in particular the mesenchyme, if 
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the cultured utricles are not adhering to a culture substrate. However, tissue maintained 

in this manner has a tendency towards the utricle ‘curling inwards’ on itself at its 

peripheral regions. This would have implications for the manipulability of the tissue  for 

use in further experiments i.e. cryostat section for immunohistochemistry – tissue which 

is not flat would be extremely difficult to cut straight, even transverse sections through 

to provide optimal sections for immunolabelling . With the experimental requirements 

of the work to be carried out using the utricle culture model system in mind, it was 

deemed that the use of nitrocellulose filters as a surface on which to maintain explants 

was best suited to obtaining accurate results whilst preserving the ability to manipulate 

the tissue after the cessation of growth in vitro. It should be taken into consideration that 

the dissection methods utilised in order to prepare the tissue of interest for in vitro 

incubation are also altering the utricle in a manner that is not encountered in vivo. The 

utricular maculae cultured during this project had the overlying otolithic membrane and 

otoconia removed during the dissection process; these alterations to the utricle would 

not occur in an in vivo model, and represent an additional deviation of the culture 

system from the tissue in its natural state which might have the potential to influence the 

results observed in any studies of utricles maintained in vitro. 

The results of the immunolabelling experiments on cultured utricular tissue carried out 

during this study indicate that the tissue of interest, in particular the underlying 

mesenchyme, undergoes a considerable degree of remodelling and proliferation in 

response to the in vitro experimental conditions. The initial laminin culture substrate 

used was substituted for nitrocellulose filter paper due to the extent of cellular spreading 

observed and since laminin is a known ligand for multiple integrin heterodimers; in 

doing this it was hoped that a potential source of artificial changes to integrin 

localisation and expression had been removed from the model system. Despite this 

alteration to the culture technique, it is clear that the mesenchyme which underlies the 

vestibular epithelium continues to undergo cellular changes which are not representative 

of or comparable to the tissue in vivo. It is therefore possible that the remodelling which 

occurs in the mesenchymal tissue, particularly that which lies in closest proximity to the 

basement membrane (a key location within the tissue of interest where integrin 

expression would be expected), might artificially alter integrin expression levels or 

localisation patterns in a manner which does not occur naturally in vivo.  
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The immunohistochemistry experiments carried out in this project to investigate 

potential changes in the localisation pattern of several integrin alpha and beta subunits 

at several time points following gentamicin exposure were carried out only using the in 

vitro model. Control counterparts for each post-gentamicin time point were also 

immunolabelled for the integrin subunits investigated, in order to provide a comparison 

between untreated utricular tissue after a period of time grown in culture, and utricular 

tissue maintained in vitro for the same total length of time, but subjected to 48 hours 

gentamicin-treatment. However, based on the observation of these experiments, it is not 

possible rule out whether the results have been influenced by the culture conditions and 

show localisation patterns which would not be present in vivo. The 

immunohistochemistry experiments presented in this thesis could be repeated in vivo to 

verify the results obtained in vitro; this would involve treating adult mice with 

gentamicin (either systemically or directly into the inner ear. 

7.1.2 In Vitro Vs In Vivo Studies of the Effects of Aminoglycosides on Mammalian 

Utricular Sensory Hair Cells 

7.1.2.1 Gentamicin-Induced Hair Cell Loss  

The use of mammalian vestibular sensory epithelia to study changes which occur after 

hair cell loss induced by aminoglycoside antibiotics has been carried out in numerous 

previous studies. The work of members of this research group has developed and 

utilised organotypic utricular cultures as a method for investigating hair cell loss and 

spontaneous regeneration in the vestibular system, using tissue from several different 

species including the newt (Taylor and Forge, 2005), and guinea pigs (Forge and Li, 

2000).  The use of an in vitro system in this project in order to study the expression of 

integrins in a tissue undergoing hair cell loss and spontaneous regeneration therefore 

represents an original progression of the work established by other members of this 

research group.  

The selection of an in vitro model for gentamicin-induced hair cell loss in order to study 

the effects of this damage and any subsequent spontaneous regeneration on integrin 

expression was based upon consideration of the benefits and limitations of in vitro 

methods compared to an in vivo approach. A key benefit of using an in vitro system is 
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the ability to easily manipulate the environment in which the sensory epithelium is 

being maintained. During this project, the culture medium in which the tissue of interest 

was grown was utilised to treat the sensory epithelium with gentamicin at  a specific 

concentration for a given time period and additionally to expose the tissue to EdU in 

order to investigate cellular proliferation. Manipulation of the external environment to 

which the sensory epithelium is exposed is far easier with an in vitro system, with the 

culture medium being removed and replaced as required, and drug treatments added at 

the appropriate dilutions and removed from the culture dish after a specific incubation 

period has elapsed. This ease of manipulation would also be advantageous for potential 

future experiments i.e. for administering integrin chemical blockers or blocking 

antibodies in order to study the effects of integrin inactivation on gentamicin-induced 

hair cell loss and the regeneration. 

An in vivo model of gentamicin-induced hair cell loss requires that the aminoglycoside 

be administered to the animal directly. This may be carried out systemically via 

subcutaneous injection; requiring repeated injections over an extended time period in 

order to elicit a damage response – treatment carried out in this manner is not able to 

induce complete hair cell loss and it is not possible to carry out the drug treatment in a 

single dose, since this results in systemic toxicity to the animal, particularly in the 

mouse (Wu et al., 2001). Alternatively, aminoglycosides may be administered in vivo 

via several different surgical methods, including cochlear perfusion and direct 

application of a gentamicin-soaked pledget via the semi-circular canal or round window. 

The requirement of an in vivo model for repeated injection of an animal or surgery to 

manipulate experimental conditions is more complex and time consuming  than in vitro 

methods; surgery on an animal carries risks that the subject might die as a result of the 

procedure before the end point of the experiment; additionally, the injection of an 

animal with a drug treatment results in the ‘end point’ of drug treatment being less 

clearly distinguished, due to the potential for the antibiotic to remain present 

systemically even after cessation of treatment. Additionally, in an in vivo model, the 

damaged sensory epithelium will still be able to receive, and therefore respond to, 

stimuli and signalling molecules which originate outside of the epithelial and 

mesenchymal tissue. In vitro, the death and degeneration of the neurons which innervate 

the utricle is observed as the mesenchyme beneath the hair cell and supporting cell 
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layers undergoes considerable remodelling. Spontaneous regeneration in vitro is 

therefore reliant upon molecular signalling which originates from the remaining 

mesenchymal tissue and the supporting cells of the sensory epithelium. The cellular 

spreading and mesenchymal remodelling observed in vitro would not occur in vivo, and 

it could be that the changes taking place within this region as a result of being 

maintained in culture have an effect on the response of the sensory epithelium to 

aminoglycoside treatment.  

A key factor in the considered in the selection of an in vitro model over an in vivo 

system is that the underlying cellular mechanisms and pathways by which sensory hair 

cells die in response to aminoglycoside exposure appear to be the same. Despite 

variability of the number of hair cells lost from the vestibular epithelia of mammals 

depending upon the method of aminoglycoside administration and duration of exposure 

to the ototoxic drug, previous studies have shown that the mechanism of hair cell death 

is preserved both in vitro and in vivo. 

The entry of ototoxic aminoglycoside antibiotics, has been shown through previous 

work to involve the mechanotransduction (MET) channels located within hair cell 

stereocilia. The styryl dye FM1-43 had demonstrated the ability to selectively label 

sensory hair cells in several different species (Gale et al., 2000; Nishikawa and Sasaki, 

1996; Seiler and Nicolson, 1999). Having been shown to enter hair cells via MET 

channels, FM1-43 uptake by sensory hair cells resulted in these channels being 

permanently blocked. Pre-treatment of hair cells with FM1-43 prior to exposure to 

aminoglycosides resulted in a reduction of the damage and hair cell death observed. 

This finding suggests that aminoglycosides share the same route of entry into hair cells 

as FM1-43 (Gale et al., 2001; Marcotti et al., 2005). 

Exposure of the inner ear to aminoglycosides results in loss of the sensory hair cells in 

both the auditory and vestibular sensory epithelia. Previous studies have shown that this 

cell death is apoptotic in nature; occurring both in vitro and in vivo. Apoptosis, a type of 

programmed cell death, has distinctive morphological characteristics which include 

condensation of chromatin within the nucleus, cell shrinkage, ‘blebbing’ of the cell 

membrane and the formation of apoptotic bodies which may then be removed from the 

tissue by phagocytosis. Apoptotic hair cell death has been identified through visual 
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identification of these morphological changes in tissue obtained via an in vivo model (Li 

et al., 1995) , and also using terminal deoxynucleotidyl transferase dUTP nick end 

labelling (TUNEL) assay to detect apoptotic changes in the DNA of  dying hair cells 

(Lang and Liu, 1997) in the vestibular epithelia of guinea pigs.  

Further in vivo evidence of apoptotic hair cell death centres on the use of inhibitors of 

key apoptotic proteins and signalling pathways. Caspases are specialised proteases 

which when activated are able to cleave proteins linked to cell survival e.g. Bcl-2, as 

well as contributing to the disassembly of cellular structures and the cytoskeleton 

(Thornberry and Lazebnik, 1998). Observations made in vivo in  mammalian 

(Nakagawa et al., 2003) and avian (Matsui et al., 2003) species, indicate that the effects 

of aminoglycoside treatment are reduced by administration of the drug simultaneously 

with a caspase inhibitor; these animals exhibited increased hair cell survival and a 

reduction in the amount of apoptotic cells detected in both auditory and vestibular 

sensory epithelia.  Similar studies conducted in vitro using mouse (Cunningham et al., 

2002) and guinea pig (Forge and Li, 2000) vestibular epithelia also showed that 

aminoglycoside treatment resulted in the activation of multiple caspases, including the 

upstream caspase-9 and downstream caspase-3, and that incubation of cultures with a 

caspase inhibitor protected the vestibular epithelium from aminoglycoside-induced hair 

cell death. It would therefore appear that in vitro and in vivo models of mammalian hair 

cell loss induced by aminoglycosides share a common mechanism of cell death via 

apoptotic pathways. Some evidence suggests there may be other mechanisms involved 

in in vivo responses to ototoxicity; one in vivo mouse model of hair cell loss induced by 

kanamycin, demonstrated a lack of classic apoptosis markers and instead other 

molecules such as calpains, were detected – these proteases are involved in both 

apoptotic and necrotic cell death (Jiang et al., 2006). It is clear that whilst there are 

similarities in the response of inner ear sensory epithelia to ototoxic drugs and the way 

in which hair cells die in vitro in comparison to in vivo, there may also be differences 

that have consequences for results obtained using in vitro model systems.  

7.1.2.2 Similarities of the Adult Mouse Utricle In Vitro Model to Previous Studies 

The response of adult mouse utricles to gentamicin treatment over an in vitro recovery 

period of 21 days described in this work is similar temporally and spatially to previous 
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studies of regeneration of the mammalian vestibular epithelium in mouse (Lin et al., 

2011) and guinea pig (Forge et al., 1993; Warchol et al., 1993).  Relatively few previous 

studies have maintained murine utricular tissue in vitro long term;  utricular tissue was 

cultured for 21 to 28 days used utricles from early postnatal rats (Berggren et al., 2003; 

Werner et al., 2012). The culture experiments in this work present the adult mouse 

utricle as a tissue which is able to be maintained for up to 28 days in vitro whilst 

supporting the survival of sensory hair cells; mean hair cell counts of control utricles 

after 5 and 31 days in vitro showed no statistically significant difference.  Hair cell loss 

in these utricular cultures (Figure 4-4) occurs soon after gentamicin exposure. By 4 days 

post-treatment, hair cell numbers in the sensory epithelium are reduced in comparison to 

control counterparts cultured in parallel. Aminoglycoside treatment in vitro does not 

induce a complete loss of hair cells (Figure 4-6 and 4-7); the decrease in hair cell 

numbers compared to control utricles maintained in vitro for 5 days was not found to be 

statistically significant at 2 days post-gentamicin, but was significant both at 14 and 28 

days.  

FITC-phalloidin labelling of also reveals that some cells which remain positive for a 

hair cell marker (calretinin or myosin Viia) do not possess an apical stereociliary 

bundle. This occurs in tissue treated with ototoxic drugs and in control counterparts. 

Utricular cultures examined by transmission electron microscopy (Figure 4-2) also 

display evidence of hair cell bodies within the sensory epithelial layer which lack an 

apical hair bundle. Previous studies using the Organ of Corti (Sobkowicz et al., 1996) 

report the presence of auditory hair cells which remained following physical injury in 

vitro. In this instance, hair cells which did not die, yet which did not exhibit a 

stereociliary bundle, were often found to have been ‘covered over’ by the expansion of 

supporting cells to seal the breach in the epithelium following damage. This observation 

of supporting cell spreading is again, the kind of cellular shape change process in which 

it might be expected cell adhesion molecules like the integrin family to be involved. 

Scanning electron microscopy also shows evidence of stereocilia degeneration. At 5 

days post-gentamicin (Figure 4-13) examples of disorganised apical hair bundles can be 

seen on the epithelial surface. There are also stereociliary bundles present which have 

become fused; some of these bundles appear to have aggregated all of the filamentous 

actin from their stereocilia into one large projection. Disorganised stereocilia are also 
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observed in these utricular cultures at 14 days post-gentamicin treatment (Figure 4-16). 

Previous studies of the effect of aminoglycoside antibiotics on the mammalian 

vestibular epithelia (Forge and Li, 2000) have also observed these features of apical hair 

bundles under such experimental conditions.  

Scar formation as previously reported at the sites of hair cell loss (Meiteles and 

Raphael, 1994) in the mammalian utricle, is present in gentamicin treated utricular 

tissue at each of the time points investigated, from 4 to 28 days post-gentamicin 

exposure. Supporting cells have also been previously shown to engulf and phagocytose 

dying hair cells (Bird et al., 2010) in chick utricles when treated with aminoglycosides. 

Integrins have been documented as being mediators of phagocytosis  via both inside-out 

and outside-in signalling cascades which are able to trigger re-modelling of the actin 

cytoskeleton (Dupuy and Caron, 2008). Integrins αVβ5 and αVβ3 (all three constituent 

subunits of which have been detected during this project in normal mouse utricular 

tissue) have been described as being involved in the phagocytosis of apoptotic cells; 

αVβ5 has been shown to be involved in phagocytosis carried out by non-professional 

phagocytes such as retinal pigmented epithelial cells (Finnemann et al., 1997). It is 

therefore possible that integrins might play a role in facilitating the phagocytosis of 

apoptotic hair cells in the vestibular epithelium. 

 The reduction in hair cell numbers, stereociliary degeneration and scar formation 

observed in this study as a response to aminoglycoside treatment supports the idea that 

this in vitro model system responds in a manner which resembles hair cell loss in vivo in 

the vestibular epithelium. These findings support the use of an organotypic culture 

model in order to study the role of integrins in the mammalian vestibular system. If hair 

cells are dying and the supporting cells are undergoing morphological changes in order 

to maintain the integrity of the epithelial barrier, then there may be changes occurring in 

terms of the expression and localisation of members of the integrin family of proteins.  

7.1.3 Regenerative Capacity Following Gentamicin-Induced Hair Cell Loss 

Several non-mammalian vertebrate species have been shown to possess the ability to 

regenerate lost auditory and vestibular hair cells, including amphibians (Baird et al., 

1993; Taylor and Forge, 2005) and birds (Corwin and Cotanche, 1988; Cotanche, 1987) 

following both acoustic trauma and insult by ototoxic drug exposure. It has also been 
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established that in the avian vestibular epithelium, there is a continual turnover of 

vestibular hair cells, with on-going regeneration in response to the losses which occur 

naturally over time (Jorgensen and Mathiesen, 1988). The mammalian vestibular system 

possesses a limited ability to regenerate hair cells following aminoglycoside treatment 

or the physical creation of a lesion in the tissue. Previous work on the mouse utricle has 

documented the appearance of apparently regenerated vestibular hair cells with 

immature, embryonic-like apical bundles (Kawamoto et al., 2009; Lin et al., 2011). The 

appearance of these immature hair cell-like cells began to occur at between 14 to 21 

days after treatment with an aminoglycoside. The bundles then continued to elongate 

and acquire more mature morphological features e.g. tip-links between stereocilia. In 

this work, immature bundles did not become evident until 21 days post-gentamicin 

treatment; in order to determine an exact time point at which these structures start to 

emerge it would be necessary to examine organotypic cultures at time points between 

14 and 21 days post-gentamicin.  

Previous work on the utricular maculae of adult guinea pigs (Forge et al., 1993) 

observed the appearance of immature embryonic-like bundles by scanning electron 

microscopy which appear very similar in morphology to that observed on adult mouse 

utricles maintained in vitro for 14 days after ototoxic drug treatment (Figure 4-18). The 

immature bundles observed consist of short stereocilia which are all of an 

approximately similar length. The stereocilia are grouped very closely together and 

although they are not overtly dissimilar in length to the microvilli which cover the 

apices of the supporting cells surrounding them, they are easily distinguishable by their 

‘organised’ appearance. What appear to be new stereocilia are also visible in utricles at 

28 days post-gentamicin labelled with FITC-phalloidin (Figure 4-7). It may be possible 

to observe similar new bundles on utricles cultured for 14 days post-gentamicin (Figure 

4-6), however they are fewer in number and the bundle shorter and therefore less 

apparent than those seen at 28 days post-gentamicin.  

The use of mitotic trackers such as bromodeoxyuridine (BrdU) and tritiated thymidine 

in both in vitro and in vivo models of aminoglycoside-induced hair cell death in the 

mammalian vestibular system has been carried out in order to investigate whether 

cellular proliferation is responsible for the partial repopulation and regeneration of the 

utricle seen in this tissue. This project utilised EdU (a nucleoside analog which is an 
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alternative to BrdU) in order to investigate the proliferative events occurring in the in 

vitro culture model developed. Examination of cultured utricles incubated with EdU at 

21 days post-gentamicin did not detect the presence of any cells co-labelled for both 

myosin Viia and EdU, which is reminiscent of the findings of previous studies that 

regenerated hair cells were produced by phenotypic conversion of supporting cells and 

not mitotically; EdU-positive cells were visible predominantly at the level of the 

underlying utricular mesenchyme. 

The results presented in this thesis suggest that the in vitro adult mouse utricle model 

studied does possess some capacity to regenerate vestibular hair cells following 

gentamicin-induced hair cell loss.  

7.3 Integrin Expression in the Adult Mouse Utricle: A Potential Role for Integrins 

in the Mammalian Vestibular System 

The presence of the integrin family of cell surface glycoproteins within the inner ear has 

only been explored in a few previous studies (Davies, 2007; Davies and Holley, 2002; 

Littlewood Evans and Muller, 2000). This work presents evidence of the presence of 

multiple integrin α and β subunits in the adult murine utricle using a combination of RT 

and quantitative PCR. This cohort of integrins represents the subunits expressed by a 

number of different cell types, since the tissue from which cDNA was extracted 

contained mesenchyme, endothelium and other cell types in addition to the cells of the 

sensory epithelium. Relative quantification analysis of an initial qPCR-based screen of 

the tissue of interest suggests that some integrin subunits appear to be undergoing a 

change in their level of expression in response to damage and hair cell loss induced in 

by treatment with gentamicin in vitro. Immunofluorescent labelling of both normal and 

gentamicin treated utricular tissue has allowed the localisation of some of the integrins 

identified as being present in the tissue of interest to be investigated and for any changes 

in integrin distribution to be detected. 

Since this work has identified as many as 11 integrins as being present in the adult 

murine utricle in its normal state, in this discussion, integrins which have been 

previously identified in the inner ear as well as those which have been described in 

earlier studies as being involved in tissue repair in other model systems, are focussed 

on, in addition to those identified as showing significant expression level changes.  
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7.3.1 Integrin Immunohistochemistry 

During this project, primary antibodies raised against 5 different murine integrin 

subunits were used to label utricular sections, initially using tissue processed directly 

after dissection from normal adult mice, in order to visualise their expression pattern in 

the utricle in its normal state. These experiments observed the localisation of integrins 

at the basement membrane, to structures such as blood capillaries within the underlying 

mesenchyme, and in some cases the hair cells of the vestibular sensory epithelium. The 

localisation of each of the five integrin subunits examined is summarised in figure 7-1.  

Utricular sections of organotypic cultures maintained for 4, 14 and 21 days post-

gentamicin were also immunolabelled for α6, αV, β1, β3 and β5 in order to establish 
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Figure 7-1 Integrin Expression in the Normal Adult Mouse Utricle 

A summary of the integrin expression found in the normal, undamaged adult mouse utricle during this project through immunolabelling of 

utricular sections for five different α and β subunits. Integrins are present throughout the different structures of the tissue including the 

sensory epithelium, basement membrane and the underlying mesenchyme. Further work would be necessary to establish the α and β partners 

of each subunit detected and confirm which functional integrin heterodimers are present in this tissue.  

 



 

 

221 

  

 

 

 

 

 

 

 

Figure 7-2 Integrin Expression at 4 Days Post-Gentamicin in Adult Mouse Utricles Maintained In Vitro 

At 4 days post-gentamicin, the in vitro model of the response of adult mouse utricular tissue to the ototoxic aminoglycoside gentamicin shows a decrease 

in the number of vestibular hair cells labelled with myosin Viia. Integrin immunohistochemistry experiments suggest that expression of integrin β1 and 

α6 at the epithelial-basement membrane border remains unchanged from that observed in normal tissue, as does the localisation of integrin αV to the 

mesenchyme directly beneath the sensory epithelium. The structures of the mesenchyme i.e. blood vessels which expressed four integrin subunits in 

normal tissue, were labelled in a more ‘plaque-like’ manner, due to the remodelling of  this region exhibited by tissue maintained in culture. Of the two 

integrins believed to be localised to vestibular hair cells in normal, undamaged utricles, β3 appeared to associate with regions of supporting cells where 

there had been an interface with a neuron, whilst β5 accumulated at the apical surface of the epithelium in response to the loss of hair cells.  
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Figure 7-3 Integrin Expression at 14 and 21 Days Post-Gentamicin in Adult Mouse Utricles Maintained In Vitro 

Based upon immunohistochemistry experiments on cultured tissue, the expression of integrin β1 an α6 at the epithelial-basement membrane border 

appears to persist at both 14 and 21 days post-gentamicin, as does the localisation of αV in the mesenchyme which lies directly beneath the basement 

membrane; the mesenchyme has undergone considerable remodelling by these time points and is very thin, therefore integrin labelling in this region also 

appears to have been lost with the disappearance of structures such as blood capillaries. At 14 days post-gentamicin, β3 remains associated with 

supporting cells, whilst β5 appeared to be redistributed to the basement membrane; by 21 days post-gentamicin, both β3 and β5 were observed at the 

interface between vestibular hair cells and the region where neural calyx interfaces would be expected in normal tissue. 
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whether their localisation was altered in response to hair cell loss. The majority of these 

subunits did not show any changes in their localisation pattern i.e. β1 expression was 

detected at the basement membrane across all three of the time points studied. Where 

integrins were detected in the underlying mesenchyme and the structures associated 

with this region of the tissue, there was loss of integrin expression, however this was 

attributed to the fact that the mesenchyme undergoes considerable degradation and 

remodelling whilst in vitro. Utricular cultures were observed to become thin and 

flattened during the course of the culture time period, as the mesenchymal cells 

migrated away from the sensory epithelium. The localisation of each of the integrin 

subunits investigated during this project across the three time points post-gentamicin 

studied is summarised in figures 7-2 and 7-3.  

7.3.1.1 Limitations of Immunohistochemistry for the Detection of Utricular 

Integrins  

Whilst the degenerate and quantitative PCR molecular biology techniques utilised in 

this project have the ability to detect the expression of integrin subunit genes within a 

given cDNA sample, they do not provide information as to the presence or location of 

translated integrin proteins within the adult mouse utricle. The cDNA samples used for 

PCR experiments in this work were obtained from the entire utricular sensory 

epithelium and its underlying mesenchyme; any integrin gene expression detected could 

therefore be attributed to any of a number of different cell types found within this tissue. 

Immunohistochemistry allows a protein of interest to be detected within a tissue sample, 

providing qualitative information regarding its localisation to a particular region or cell 

type.  

This project investigated the expression pattern of five integrin subunits which had been 

positively detected by degenerate and quantitative PCR.  Of the integrin antibodies used 

in this study, the integrin β1 and α6 antibodies could be described as providing the best 

quality immunolabelling of utricular cryosections i.e. showed the lowest level of 

background staining in conjunction with strong positive labelling. The 

immunohistochemistry experiments presented in this thesis encountered problems with 

excessive levels of background staining with some of the antibodies used. Background 

labelling may have a number of causes; these include non-specific binding of the 
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primary or secondary antibodies during incubation, hydrophobic protein interactions, 

cross-reactivity of secondary antibodies and the level of efficiency and epitope affinity 

of the primary antibody used. High levels of background labelling can obscure the ‘true’ 

signal, making it difficult to interpret the results of these qualitative experiments as 

what is background and what is positive labelling of the intended antigen is subjective 

to the visual interpretation of each individual observer. Background labelling can be 

reduced through the use of serum, as part of blocking solution during the experimental 

protocol, utilising the ability of the large serum proteins to ‘block’ sites within the tissue 

which would be potential sources of non-specific antibody binding. The use, however of 

both serum and L-lysine (an amino acid) as the blocking strategy for the 

immunohistochemistry experiments carried out during this project did not sufficiently 

reduce the background labelling observed for some of the integrin antibodies tested.  

The labelling produced by the integrin αV antibody used in this study was improved by 

the use of a tyramide signal amplification (TSA) kit. This system allows for increased 

sensitivity (which may be of benefit where antigens are present at lower levels that 

might not be detected efficiently using a typical immunolabelling protocol, and which 

would also be masked by excess background staining).  The nature of the tyramide 

radicals produced using the TSA system means that the signal enhancement it provides 

is restricted to regions in very close proximity to the sites of initial primary antibody 

binding; this attribute allowed the tendency for integrin αV to be localised to the 

mesenchyme directly beneath the basement membrane and within blood capillaries to 

be distinguished above the background labelling experienced. The results obtained with 

this integrin antibody are still limited by the level of background staining and could be 

subject to further analysis in order to determine the cause of this background in order to 

reduce or eliminate this problem. The use of negative control experiments, where the 

primary antibody is not used during the first incubation stage, would establish whether 

background staining could be attributed to non-specific binding or cross reactivity of the 

secondary antibody used. The affinity of the primary antibody for the intended epitope 

alone is also a potential cause of background staining. If a primary antibody shows 

affinity for other similar epitopes within other proteins, then the resulting 

immunolabelling experiments will not be specific for the protein e.g. integrin αV, which 

is being investigated. One method of confirming antibody specificity is via a peptide 



 

 

225 

  

 

competition assay; the primary antibody is incubated with an excess of the peptide 

which it was intended to recognise, resulting in the antibody being ‘blocked.’ 

Immunohistochemistry experiments may then be carried out, comparing the staining 

observed when sections of the tissue of interest are incubated with the normal primary 

antibody to that observed with the blocked antibody solution. Successfully block 

primary antibodies within the blocked solution which are specific for the intended 

recognition epitope will be unable to bind and label this epitope within the tissue 

sample, therefore, any labelling observed with the normal primary which is not present   

Immunohistochemistry experiments used to investigate the expression pattern of 

integrin β3 utilised two different antibodies. The initial antibody used (CD61 

monoclonal, BD Biosciences) produced a significant amount of background staining 

which made it impossible to distinguish the true signal from antibody bound to the 

correct epitope, which was not reduced despite the testing of serial dilutions of the 

primary and secondary antibodies. There did appear to be higher intensity labelling in 

the region of the neuronal structures within the underlying mesenchyme of normal 

utricles with this antibody. A second β3 antibody (polyclonal, Novus Biologicals) was 

therefore utilised in order to determine whether the background staining was attributable 

to the affinity of the antibody tested initially. This β3 antibody also showed neural 

localisation in normal, undamaged utricular tissue similar to that observed with the 

monoclonal β3 antibody, but also exhibited labelling which appeared to correspond with 

regions of type I hair cells in closest proximity to their neural calyces. That the two β3 

antibodies tested show differences in their immunolabelling may be due to the different 

characteristics of monoclonal and polyclonal antibodies; polyclonal antibodies are more 

likely to produce non-specific binding, since they can recognise multiple epitopes on the 

target antigen. Correspondingly, the labelling shown by a monoclonal antibody can be 

affected as a result of these antibodies only recognising a single epitope – they can be 

‘too specific’ and their binding efficiency may be adversely affected by the epitope they 

recognise being inaccessible due the conformational state of the protein. The 

immunogen of the polyclonal (Novus Biologicals) β3 antibody was within the C-

terminal region of the integrin peptide; the supplier of the monoclonal β3 antibody (BD 

Biosciences) was not able to provide information on which region of the integrin 

peptide this antibody recognises, therefore differences in labelling exhibited by these 
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two antibodies may be as a result of a difference in accessibility of the epitopes they are 

able to recognise.  Additional factors which may affect how well a primary antibody 

binds include the abundance of the antigen in the tissue studied i.e. antibodies against 

proteins expressed at low levels would likely require higher antibody dilutions to be 

used (which would carry the risk of causing an increase in the level of background 

staining) and the potential for the fixation process, in this case paraformaldehyde, to 

damage protein epitopes within the tissue sample.  

The immunohistochemistry results presented here, in particular the labelling observed 

for integrin αV and β3, may be limited by some of the common difficulties encountered 

when carrying out these types of histological experiment. It must therefore be 

acknowledged that further work in order to reduce the level of background staining 

encountered would be beneficial and would improve the quality and reliability of the 

detection of these target antigens within the adult mouse utricle. Similar histology 

labelling techniques might also be carried out in order to obtain further information 

about expression patterns of integrins in the utricle i.e. in situ hybridisation of integrin 

subunits could be used to investigate whether mRNA distribution of these integrins 

corresponds to protein expression detected by immunohistochemistry. 

7.3.2 Integrin Subunits Detected in the Normal Undamaged Adult Mouse Utricle 

In this project, two PCR based approaches have been utilised, in addition to 

immunohistochemistry experiments, in order to identify which of the integrin α and β 

subunits are present in the tissue of interest in its normal, undamaged state. An initial 

screen of cDNA from the adult murine utricle was carried out by RT-PCR using a set of 

degenerate PCR primers, which detected the presence of a group of 5 subunits; α4, α9, 

β1, β5 and β8. The use of specific primers added a further 3 subunits to this group; α6, 

αV and β3.  

A set of qPCR experiments required a ‘calibrator’ sample in order to carry out a relative 

quantification (RQ) study, using customised integrin gene expression array plates to 

investigate whether the expression level of integrins is altered in response to 

gentamicin-induced hair cell loss. This was achieved by running one array plate with 

cDNA from normal, uncultured utricles and thus provided an additional ‘screen’ of the 

tissue of interest in its undamaged state. The use of this sample as a calibrator allowed 
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the RQ study to investigate changes in integrin gene expression in comparison to the 

level present in normal tissue.  The results of this qPCR study also indicate that β1, β5, 

β8, α6, αV and β3 (as identified by RT-PCR) are present in the normal mouse utricle. 

An additional 5 subunits; α3, α8, β4, β6 and β7 are also indicated as being expressed in 

this tissue.  Of these subunits, antibodies against integrins β1, β3, β5, αV and α6 were 

successfully used to investigate the localisation of a subset of the integrin subunits 

detected in normal utricular tissue by PCR. It would be of interest to carry out similar 

immunohistochemistry experiments with antibodies against the remaining subunits 

detected by PCR in order to learn more about which region of this tissue, which 

contains a number of different and often highly specialised cell types, they are 

expressed within.  

PCR-based methods using normal, uncultured utricular tissue cDNA have indicated the 

presence of 11 different integrin subunits in the utricle of the adult mouse. Since the 

tissue from which this cDNA sample was obtained consisted of the sensory epithelium 

(i.e. hair cells and supporting cells) and the underlying mesenchyme of the utricular 

macula, which would include the vasculature of this vestibular organ, in addition to 

some of the neurons which innervate this tissue, that as many as 11 integrins were 

detected is not surprising. It is highly likely that some of these integrins are restricted in 

their expression to one particular cell type i.e. endothelial cells, rather than being 

associated with the sensory epithelium directly. Immunolabelling of the tissue of 

interest with antibodies against some of the integrin subunits detected by molecular 

methods has provided additional information about the localisation of these proteins to 

particular regions of the utricle and these observations may be utilised in conjunction 

with degenerate and qPCR data in order to discuss potential functional roles for some of 

these integrins. As stated earlier in this chapter, the in vitro model of utricular response 

to gentamicin exposure is affected by the culture conditions in some aspects; the 

underlying mesenchymal tissue degrades and reduces in mass due to cellular migration 

away from the epithelium the longer the utricle is maintained in vitro. The utricular 

mesenchyme would not undergo the same reduction or remodelling in an in vivo mouse 

model. Integrins which may be present exclusively within the utricular mesenchyme 

might therefore still play a role in the cellular events triggered by damage to the sensory 

epithelium in vivo.  
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Two α subunits identified as being present by degenerate RT-PCR (and additionally 

confirmed by DNA sequencing), α4 and α9, were determined based on the analysis 

criteria described in chapter 5 as not being detected in the normal utricle by qPCR. The 

raw data from the ‘0 day’ (normal, uncultured utricular tissue cDNA) gene expression 

array plate shows that α4 was only detected by one of the four replicate assays in 

normal utricular cDNA and α9 detected by two of the four replicates.  

The discrepancy between these two PCR experiments over whether α4 and α9 are 

present in the tissue of interest may be due to the fact that the degenerate RT-PCR and 

the qPCR integrin assay were carried out using different cDNA samples. Yields of 

cDNA reverse transcribed from RNA extracted from pooled utricles (10 utricles 

dissected from 5 individual animals) were low in comparison to the amount of cDNA 

obtained from positive control tissues. Positive control tissue processed according to the 

RNeasy protocol, used 30mg of tissue; 10 utricles could not constitute anywhere near 

the same weight or number of cells. With the amount available it was not possible to use 

the same cDNA sample for the normal control qPCR array plate (which required a large 

volume of cDNA in order to distribute the sample across 96 wells) as had been used for 

the degenerate PCR experiments. It is therefore possible that integrin α4 and α9 were 

present in the cDNA sample used with the degenerate primers, but not in the second 

sample which was used for qPCR. If these experiments were repeated, it would be 

crucial to collect a greater number of cultured utricles at each time point in order to 

prevent the amount of cDNA being a limiting factor.  

Integrin α4 is generally considered to be a leucocyte specific integrin subunit and is 

found in two known heterodimers; α4β1 and α4β7. Integrin α4β1 is able to interact with 

vascular cell adhesion molecule 1 (VCAM-1) and the endothelium in order to mediate 

the extravasation and trafficking of leucocytes during the inflammatory response 

(Postigo et al., 1993). Integrin α4β7 is described as having a similar role in terms of 

interaction with the endothelium (Berlin et al., 1995) but it has also been implicated as 

having a role in the recruitment of leucocytes specifically to gastrointestinal lymphoid 

tissue i.e. Peyer’s patches (Ruegg et al., 1992).  

Integrin α9 associates with only one of the β integrin subunits, to form the α9β1 

heterodimer. This integrin has recently been implicated as having a key role in the 
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development of lymphatic valves (Bazigou et al., 2009). Earlier studies when this 

subunit was first discovered show that it is expressed in smooth and skeletal muscle in 

certain tissues, as well as within some epithelia e.g. airway epithelia and squamous 

epithelia, at cell-cell and cell-basement membrane contacts (Palmer et al., 1993). 

Although phylogenetic studies class α9 as being most closely related to the α4 subunit, 

α9 has only been described as being expressed on polymorphonuclear leucocytes 

(neutrophils) and not by any other types of leucocyte (Shang et al., 1999). 

Based upon previous studies of the expression and function of these two α subunits, α4 

would not be considered a subunit likely to be present in the mouse utricle, particularly 

not in terms of being associated with hair cells or supporting cells of the sensory 

epithelium. Integrin α9, having been described in some epithelia, at cell-cell contacts or 

in the region of the basement membrane, could be considered more likely to be found in 

the tissue of interest. In order to determine definitively whether α4 or α9 are present in 

the normal adult mouse utricle, further PCR replicates with several cDNA samples 

would be required (either using the degenerate primers or qPCR) in order to establish 

whether the detection of these subunits was due to a ‘quirk’ of the cDNA sample used 

for degenerate RT-PCR, or if this result is real. Immunofluorescent labelling of the 

utricle for these integrins would also potentially answer this question; however, there 

are only a limited number of primary antibodies raised against the murine integrin 

proteins which are commercially available.  

The results of the qPCR integrin arrays using cDNA from utricles at 4 and 14 days post-

gentamicin also indicate that integrin α4 and α9 are not present at these time points 

following gentamicin-induced hair cell loss. Although it would be required to repeat 

these qPCR experiments using several different samples of cDNA at each time point in 

order to confirm these results, for the purposes of this project, these two integrin 

subunits have not been considered for further discussion in terms of a potential role in 

the processes of hair cell loss and subsequent regeneration.  

This chapter has discussed the limitations of the results presented in terms of the model 

system and experimental approaches used. In order to present the findings of the 

immunohistochemistry of integrins in the adult mouse utricle and the qPCR RQ analysis 

of changes in integrin gene expression following gentamicin treatment as being truly 
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representative of the behaviour of the vestibular sensory epithelium in vitro, it will be 

necessary to carry out the further which has been described e.g. replication of qPCR 

experiments in triplicate. With the acceptance that additional work is required to 

confirm the results suggested by experimental observations presented here, the 

following section of this discussion addresses the potential implications of these initial 

studies, suggesting potential functions for several integrin subunits believed to be 

present within the tissue of interest.  

7.4 Changes in Integrin Subunit Expression Levels in Gentamicin Treated 

Utricular Tissue 

Relative quantification studies comparing the results of integrin gene expression arrays 

run using cDNA from tissue at 4 and 14 days post-gentamicin, time points where hair 

cell loss would be occurring, to those of the normal ‘0 day’ uncultured control array 

plate suggest that there are 10 integrin subunits which show different levels of 

expression across the 3 time points included in this study. A summary of the changes 

detected in these experiments is presented in table 7-1.  However, the relative 

quantification of these gene expression levels indicates that not all of the changes 

observed (i.e. those shown in Figure 5-4) are significant. For the purposes of the work 

carried out during this project, this discussion focuses primarily upon those integrin 

subunits observed to show significant changes in their expression levels by relative 

quantification of qPCR results, in addition to those integrins for which antibodies were 

available in order to carry out immunofluorescent labelling of the utricle to localise 

integrin proteins.  

All of the five integrin subunits for which immunohistochemistry experiments on 

cryosectioned utricular tissue were carried out were found to be expressed in samples 

from control adult mice which had not been maintained in vitro; each of these integrins 

was also detected by qPCR in cDNA samples from uncultured control utricles. Three of 

these integrins – namely β1, β3 and αV, were observed by RQ analysis of the qPCR 

data to show a significant increase in gene expression at 4 days post-gentamicin, 

compared to the control calibrator sample. In utricular sections immunolabelled for 

these integrins, however, there is no observable increase in the expression of these three 

integrin proteins. Immunohistochemistry evidence might actually suggest that there are 
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less of the integrin subunits which are found in the mesenchyme e.g. αV and β1, since 

this is the region of the tissue which has been shown to undergo extensive remodelling 

in vitro, resulting a loss of the structures to which these integrins were localised i.e. 

blood capillaries; by 14 and 21 days post-gentamicin, there is only a thin layer of 

mesenchyme remaining in these cultured utricles lying directly beneath the sensory 

epithelium. Integrins β3 and β5, which both appear to be localised to the region of 

vestibular hair cells which is in contact with neural calyces in the normal adult mouse 

utricle, can be observed to redistribute to other areas of the sensory epithelium 

following gentamicin treatment. Each of these subunits also demonstrated an increase in 

gene expression at 4 days post-gentamicin detectable by qPCR, although the increase 

shown by β5 was not calculated to be significant. Additionally, there are several 

discrepancies between the results of the immunolabelling and qPCR experiments; 

integrin α6 was not detected in the 4 days post-gentamicin cDNA sample used for qPCR 

analysis, but this subunit is clearly visible in immunolabelled utricular sections at this 

time point, remaining localised to the epithelial-basement membrane border. Integrin β3 

was not detected at 14 days post-gentamicin in the qPCR experiments, whilst 

immunohistochemistry suggest that this integrin is in fact present at this time point 

within the remodelling mesenchyme and potentially at the former sites of supporting 

cell-neuron interfaces. These differences between the immunolabelling and qPCR 

experiments may be explained due to the fact that the qPCR gene expression assays 

were only run using a single pooled sample of cDNA for each time point studied; this 

cDNA might therefore not be truly representative of the gene expression of the tissue at 

each time point and result in some integrins being undetectable by qPCR at a given 

stage post-gentamicin, despite being localised in the tissue at that same time point by 

immunohistochemistry.  

The immunohistochemistry time-series experiments presented here can only truly be 

said to provide qualitative information about the expression of a subset of integrin 

subunits in the normal adult mouse utricle and in gentamicin-treated tissue i.e. 

immunolabelling can detect the presence of a protein and its localisation within a tissue. 

However, it cannot be reliably used to ascertain whether the expression of the integrins 

in question is changing in terms of the amount present in response to gentamicin 

treatment. The qPCR data obtained in this study can provide quantitative information 
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about the expression of integrins in the tissue of interest at a mRNA level, relative to a 

chosen calibrator control sample. Changes in gene expression, such as those detected in 

these experiments, however, do not necessarily correspond to an equivalent increase or 

decrease in the amount of the protein encoded by that gene. Where integrin gene 

expression has been shown to increase e.g. integrin β1 at 4 days post-gentamicin, it may 

be the case that although more integrin β1 mRNA is present at this time point, there 

may not be a similar increase in the translation of this mRNA into the functional 

integrin β1 protein. Alternatively, the integrins which appear to be up-regulated in terms 

of gene expression based on qPCR data might be undergoing an increased rate of 

protein turnover as a response to the gentamicin treatment – thereby showing no visible 

difference by immunohistochemistry i.e. higher intensity staining, but manifesting as a 

detectable increase in gene expression in order to replenish these integrins as they 

turnover more rapidly. The qPCR data obtained in this work could be refined and 

focused on the sensory epithelium of the utricle to provide more specific insight into 

changes in integrin expression. Treatment of utricular tissue with thermolysin, to enable 

the removal of the sensory epithelium from the basement membrane and underlying 

mesenchyme would allow the qPCR gene assays to focus on integrin expression within 

supporting cells and hair cells only, and could yield different results to those presented 

in this thesis.  
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Integrin 

Subunit 

Normal Utricular Tissue 4 Days Post-

Gentamicin 

14 Days Post-

Gentamicin 

    

Itga1 Not Detected Not Detected Not Detected 

Itga2 Not Detected Detected Decreased ** 

Itga3 Detected Increased * Increased * 

Itga4 Not Detected Not Detected Not Detected 

Itga5 Not Detected Not Detected Not Detected 

Itga6 Detected Not Detected Increased 

Itga7 Not Detected Not Detected Not Detected 

Itga8 Detected Not Detected Not Detected 

Itga9 Not Detected Not Detected Not Detected 

Itga11 Not Detected Not Detected Not Detected 

Itgav Detected Increased * Increased 

Itgb1 Detected Increased * Increased * 

Itgb3 Detected Increased * Not Detected 

Itgb4 Detected Increased * Not Detected 

Itgb5 Detected Increased Increased 

Itgb6 Detected Not Detected Decreased 

Itgb7 Detected Not Detected Not Detected 

Itgb8 Detected Increased Increased 

Table 7-1 Summary of Changes in Integrin Expression Detected by qPCR 

This table summarises the results of the RQ analysis carried out on the qPCR data obtained 

during this project. Of the 18 integrin subunits screened for, six were not detected in either 

normal or gentamicin-treated utricular cDNA. Where an integrin subunit is referred to as 

‘increased’ or ‘decreased’ refers to the level of gene expression detected at a given time 

pointe post-gentamicin  in comparison to the calibrator control sample; the calibrator cDNA 

sample was obtained from normal utricles which had not been maintained in vitro. 

 * Denotes a change in expression which was calculated to be significant with 95% 

confidence based on the RQ max and min values across replicate assays.  

** Since α2 was not detected in the calibrator sample, the decrease referred to at 14 DPG is 

in comparison to the level observed at 4 DPG 
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7.4.1 Limitations of Quantitative PCR Experiments 

The data obtained through the qPCR screening experiments carried out in this project 

using customised TaqMan® Gene Expression assay plates is limited by the lack of 

replicate results. Although each gene assay included was replicated four times on each 

plate (with one plate being used per experimental condition investigated), only one pool 

of tissue was utilised and run as a qPCR experiment per time point. The data obtained 

for each culture incubation period post-gentamicin (plus the control calibrator sample) 

therefore represents an n number of 1. As a consequence of this, the changes in gene 

expression suggested by the results of RQ analysis of the qPCR data may not be truly 

representative of the typical behaviour exhibited by the tissue when maintained in vitro; 

cDNA from an individual utricle responding in a non-typical manner e.g. due to a lack 

of cellular nutrients required by the tissue during culture, could ‘contaminate’ a pooled 

cDNA sample. If the findings of these qPCR gene expression assays were to be 

published, and in order to ensure that any changes in integrin expression observed were 

representative of the normal response of the tissue to the experimental condition 

(gentamicin treatment) it would be necessary to repeat the experiments at least twice 

more in order to have assayed each gene of interest in triplicate at each experimental 

time point and in control tissue.  

The qPCR experiments presented here were intended to serve as a preliminary screen of 

the tissue, due to the large number of integrin alpha and beta subunits found in 

mammals, in order to identify a subset of the integrins as being of particular interest and 

to focus subsequent further analysis by immunohistochemistry. Additionally, the 

financial implications of running these qPCR experiments also had to be taken into 

consideration; a set of 6 customised qPCR gene expression assay plates represented a 

cost of £1800, before the purchase of the additional reaction cocktail reagents. 

Replication of these qPCR experiments in triplicate would incur costs of at least £3600 

for the TaqMan® assay plates alone, and due to the funding available for consumables 

used in this project, the financial costs of obtaining and running these plates was also a 

limiting factor in terms of repeating the qPCR experiments. The control sample plate 

which was used as the calibrator sample for the RQ analysis which was carried out on 

the data obtained from the qPCR gene expression assays consisted of cDNA obtained 

from utricles which had been dissected from adult mice and had been placed 
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immediately into RNAlater; these utricles had not been treated with gentamicin, nor had 

they been maintained in vitro. Immunostaining of mouse utricles maintained in culture 

revealed that this tissue undergoes cellular changes as a result of the in vitro 

experimental conditions; in particular the underlying mesenchyme shows evidence of 

considerable remodelling, cellular spreading and proliferation. The use of cDNA from 

control tissue which had not been subjected to culture conditions as the calibrator for 

the RQ study therefore means that it is not possible to ascertain whether the changes in 

expression levels of integrins and the other genes assayed for are a true representation of 

the effect of gentamicin treatment on gene expression, or whether some of these 

changes are a result of in vitro experimental conditions – this is particularly true of the 

comparison by RQ of utricular cDNA at 4 days post-gentamicin treatment to non-

gentamicin treated, non-cultured utricular cDNA. In order to account for changes in 

gene expression which are purely a consequence of the tissue having been maintained in 

culture, it would be necessary to obtain cDNA samples from control tissue incubated in 

vitro, but which had not been exposed to the ototoxic aminoglycoside. It would be 

preferable, in order to account for all cellular changes in the tissue which occur due to in 

vitro conditions, to obtain a control counterpart cDNA sample for each of the post-

gentamicin treatment time points (4, 14 and 21 days post-gentamicin) and to include 

these samples in the qPCR experiments carried out. However, as previously mentioned, 

the customised TaqMan® plates used in this project represent a considerable financial 

expense, and to both replicate the results of each cDNA sample in triplicate and include 

control counterpart cDNA samples for each time point would have raised the costs of 

this study yet further. 

The results of the qPCR experiments presented in this thesis, although limited in terms 

of the control sample used as a calibrator and the lack of true replicates, serve as a 

further screen of the tissue of interest in its normal state and as an indication of the 

changes in integrin gene expression which may be occurring in response to gentamicin-

induced hair cell loss. Whilst in order to be presented for publication as conclusive 

evidence that significant changes in integrin gene expression are taking place within the 

gentamicin-treated mouse utricle in vitro, the qPCR experiments discussed would 

require replication, they may be utilised to focus the attention of future work on 
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particular integrin subunits which this preliminary screen suggests are subject to up-

regulation of gene expression. 

7.4.2 Epithelial Integrins Appear to be Up-regulated in Utricular Tissue at 4 Days 

Post-Gentamicin  

Several integrin subunits, namely α2, α3 and β4, which exhibit significant increases in 

their expression level at 4 days post-gentamicin, have been shown in previous studies to 

have a role in the processes involved in wound healing of epithelia such as the skin, 

cornea and airways. Although the cellular mechanisms involved in wound repair in 

these tissues involve migration of cells to the site of the lesion (a process which is not 

believed to be involved in scar formation in inner ear sensory epithelia) they also 

require proliferation in order to re-epithelialize the injury site. Wound healing in the 

skin involves migration of fibroblasts and re-organization of the extracellular matrix at 

the site of the lesion, whereas scar formation in the inner ear has been shown to involve 

myosin-based contractility of the actin cytoskeleton (Hordichok and Steyger, 2007) as 

well as supporting cell shape changes.  In epithelia such as the skin, integrins such as 

α2β1, α3β1 and α6β4 are expressed in keratinocytes as cell adhesion molecules 

maintaining the integrity of the epithelium via cell-cell contacts.  

Integrin α2 was not detected by qPCR in normal utricular cDNA, but was found to be 

present at both 4 and 14 days post-gentamicin. This α integrin only associates as a 

heterodimer with the β1 subunit. It is one of the major collagen binding integrins, 

having been shown in previous work to be able to interact with multiple types of this 

extracellular matrix molecule (Tuckwell et al., 1995). Integrin α2β1 has been described 

functionally as having a role in the wound healing process in terms of fibroblast 

migration and re-organisation of collagen (Tuckwell et al., 1995) in addition to being 

involved in platelet adhesion to collagen (Kunicki et al., 1993). Integrin β1, discussed in 

depth later in this chapter, also showed a significant increase in gene expression at 4 

days post-gentamicin; it therefore might be suggested that expression of the integrin 

α2β1 heterodimer is being triggered in the utricle at this time point following 

gentamicin treatment. Although further confirmation that this observed change is truly 

representative of the behaviour of the tissue is required, through replication of the qPCR 

experiments, it would also be of interest to carry out immunolabelling of both normal 
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and gentamicin-exposed utricular tissue maintained in vitro. Labelling of the utricle 

with an antibody against α2, in conjunction with the antibody for β1 which has already 

been used successfully in this project, would have the ability to indicate the region of 

the tissue to which α2 localises, if it is indeed an integrin not present in normal tissue, 

and its expression is switched on as a result of aminoglycoside treatment.  

Integrin α3, another α subunit which only forms one heterodimer, α3β1, is a known 

receptor for laminin-5, the major laminin isoform found in basement membranes. The 

only basement membrane protein positively identified in the tissue of interest in this 

project was collagen type IV. There is little previous work on the composition of the 

basement membrane of the murine utricle; it would be of interest in future studies to 

investigate this, since integrin expression is highly dependent upon expression of 

integrin ligands. Integrin α3 was detected in normal adult mouse utricular cDNA by 

qPCR and was detected at significantly higher levels at both 4 and 14 days post-

gentamicin treatment.   

Integrin β4 also shows a significant increase in expression at 4 days post-gentamicin 

compared to levels detected in normal utricular tissue. This subunit however was not 

detectable at 14 days post-gentamicin. Integrin β4 is only able to associate with the α6 

subunit to form a functional heterodimer, however the RQ results for α6 differ from 

those of β4; α6 was found to be present in control utricular cDNA, but was then 

undetected at 4 days post-gentamicin. Unlike β4, α6 was detected at 14 days post-

gentamicin at a higher level than that of normal tissue, although this difference was not 

calculated as being significant.  In order to address whether these differences are real 

results, as discussed previously, further repeats of these qPCR gene expression assays 

are necessary, with different cDNA samples in order to rule out the possibility that these 

results are a product of one pooled sample containing tissue which is not truly 

representative of the utricle at each time point.   

Integrin α6β4 is the only known integrin which is able to interact with intermediate 

filaments (most integrins interact with the cytoskeleton via actin filaments) and has 

been shown to be a component of hemidesmosomes and to be involved in the 

interaction of basal keratinocytes with the basement membrane upon which they sit. 

Integrin β4 has been implicated as playing a role in repair of lung epithelial damage, 
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since β4 positive alveolar epithelial cells (of which there are relatively few present in 

undamaged tissue) were shown to increase in number significantly following injury by 

bleomycin treatment (Chapman et al., 2011). It was suggested that these alveolar 

epithelial cells could represent a population of progenitors maintained in the tissue 

which are stimulated to proliferate in response to damage. Corneal epithelial wound 

healing studies have also shown that integrin β4 expression increases following damage, 

and that its localisation was also altered in healing cornea compared to its normal 

pattern of expression (Stepp et al., 1996). 

Integrin α2, α3 and β4 have all been implicated in tissue repair in other epithelial organ 

systems, and have been suggested by the qPCR screen as showing changes in their 

expression level over time in utricular tissue damaged by gentamicin in culture. In order 

to further investigate these changes, it would be beneficial to carry out 

immunofluorescent labelling of utricular tissue with primary antibodies against these 

subunits to determine whether they show any visible alterations in their distribution i.e. 

re-localisation from cell-cell contacts or the epithelial-basement membrane border 

across the time points studied using the utricular organotypic culture model of hair cell 

loss and regeneration in the adult mouse.  

The results of the immunohistochemistry and PCR based strategies employed in this 

study to identify the integrins which are present in the adult mouse utricle maybe 

utilised in conjunction with one another to propose potential functions for these cellular 

adhesion proteins within the tissue of interest, and whether they might be involved in 

the processes of gentamicin-induced hair cell loss and spontaneous vestibular hair cell 

regeneration. The following discussion sections investigate several integrin subunits for 

which both immunolabelling and qPCR data was obtained during this project and 

present potential functional roles for these adhesion molecules within the utricle, in 

addition to the future experiments which could be carried out in order to test these 

hypotheses. 

7.4.3 Integrin β1 Expression in the Adult Mouse Utricle 

The integrin β1 subunit is the most ‘promiscuous’ of the eight known mammalian β 

subunits; it is able to form functional heterodimers with almost all of the known integrin 
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α subunits. It could therefore be suggested that this would be the most probable integrin 

subunit to be found in the tissue of interest.   

Immunohistochemistry experiments show evidence that in the normal adult mouse 

utricle, the integrin β1 subunit is present in several distinct regions of the tissue. 

Cryosections of utricular tissue labelled with an integrin β1 primary antibody in 

addition to the hair cell marker calretinin (Figure 6-1) reveal that this integrin subunit 

shows dense punctate expression at the border region between the sensory epithelium 

and the underlying connective tissue. Integrin β1 positive labelling is also present within 

the underlying mesenchyme which corresponds with the vascular network that exists in 

this region of the utricle.  

In order to further explore the localisation of integrin β1 at the epithelial-mesenchymal 

border region, cryosections were co-labelled for integrin β1 and collagen type IV 

(Figure 6-2). Collagen type IV is the major constituent extracellular matrix protein of 

basement membranes (Kefalides, 1973) and was therefore selected to serve as a 

basement membrane marker. The results of these experiments indicate that integrin β1 

is expressed in close proximity to the basement membrane which lies at the epithelial-

mesenchymal border indicated by collagen type IV expression. Collagen type IV is also 

found in perivascular basement membranes (Colorado et al., 2000) and is observed to 

localise at regions corresponding with these structures, co-localising with integrin β1.  

Integrin β1 expression does not appear to alter in response to gentamicin treatment in 

terms of its localisation within adult utricular tissue; integrin β1-positive labelling 

persists at the epithelial-mesenchymal border across all three post-gentamicin time 

points examined. Despite this lack of an obvious change in localisation pattern of 

integrin β1, the results of the initial qPCR screen are suggestive of a significant increase 

in the gene expression of this integrin subunit at 4 days post-gentamicin. Although β1 

remains evident at the epithelial-mesenchymal border in a manner which does not 

appear to differ from immunolabelled control counterparts, integrin β1 is also found in 

mesenchymal blood capillaries in the tissue underlying the sensory epithelium, a feature 

which is observed to degenerate over time spent in culture (occurring in both control 

and gentamicin treated utricles) as the mesenchyme undergoes extensive remodelling. 

Given these observations, it might be expected that integrin β1 gene expression would 
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be decreased in cDNA obtained from gentamicin-treated utricles maintained in vitro, 

however, the results of the qPCR RQ analysis indicate that integrin β1 gene expression 

is significantly higher (approximately 10-fold) at 4 days post-gentamicin treatment, in 

comparison to the control, non-treated calibrator sample. 

One of the few previous studies which investigated the presence of several integrin 

subunits within the murine utricle by in situ hybridisation, found that between the ages 

of E16 to P0, integrin β1 mRNA was distributed throughout the hair cell body in the 

sensory epithelial layer (Littlewood Evans and Muller, 2000). Although not mentioned 

specifically, observation of the in situ hybridization experiments carried out in this 

previous study using probes for α8 and β1 mRNA do appear to show that both are 

present at the epithelial-basement membrane border (the region at which the 

immunohistochemistry work carried out during this project has shown β1 expression to 

be localised), although mRNA localisation does not necessarily correlate with protein 

expression. This earlier study also identified a vestibular dysfunctional phenotype in 

mice deficient for integrin α8 which survived post-natally; many of these mice die a few 

days after birth due to severe kidney development defects (Muller et al., 1997). 

Immunohistochemistry localised this integrin α subunit to the apical surface of hair cells 

and to the developing stereocilia between the ages of E16 and P0. Since the integrin α8 

subunit is only able to bind integrin β1 to form a functional heterodimer, then it would 

be suggested that integrin β1 protein is expressed in these regions of the immature 

mouse utricle also. Additional work was carried out in this previous study to localise 

several extracellular matrix proteins, including collagen type IV. In control tissue, 

collagen type IV was seen to be expressed at the apical surface of the vestibular hair 

cells; this is not seen in the immunohistochemistry co-labelling experiments of this 

project where utricular cryosections were labelled for collagen type IV to determine the 

location of basement membranes within the tissue, and showed this collagen isoform to 

be present at the border between the sensory epithelium and the underlying 

mesenchyme. This difference would suggest that there may be re-distribution of both 

the integrin β1 subunit and collagen type IV between P0 and adulthood in the mouse 

utricle.  

Immunohistochemistry in this work on adult vestibular tissue does not suggest that 

integrin β1 is expressed in vestibular hair cells, nor in the stereocilia bundles of mature 
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utricular maculae. Since previous work has postulated a theory that the expression of 

integrin α8β1 is linked to development of the stereocilia (Littlewood Evans and Muller, 

2000) then it may be the case that the expression of this particular integrin heterodimer 

is transient and once stereocilia development is complete, this protein is no longer 

required in this region. Since the previous study did not examine integrin α8 expression 

in animals older than P0, it might be anticipated that at some time point between birth 

and the animal being fully mature, an immunolabelling study, if conducted, would 

reveal at which point the stereocilia and hair cell apices cease to be integrin α8 positive.  

Integrin β1 expression at the sub-epithelial basement membrane of the utricle would be 

expected based upon previous studies of the interaction of this integrin subunit with 

basement membranes and their major constituent, collagen type IV.  This study has 

confirmed the presence of integrin β1 within the mouse utricle by both RT-PCR and 

qPCR, and has additionally localised this integrin to the epithelial-mesenchymal border 

of this tissue. Of the integrin heterodimers which are able to bind collagen extracellular 

matrix proteins, α1β1 and α2β1 are the two main integrins for which binding sites have 

been located within a triple helical region of the collagen type IV molecule (Eble et al., 

1993) (Kern et al., 1993). It would therefore be considered likely that the integrin α 

subunit partner for integrin β1 at this basement membrane is either α1 or α2, however, 

integrin α1 was not detected in utricular cDNA from normal or gentamicin treated 

cultures by qPCR, and integrin α2 was only detected in cDNA from 4 and 14 days post-

gentamicin utricles. On the basis of these results from this study, it is possible that one 

of the other α integrins which associates with β1 forms the integrin β1-containing 

heterodimer present at the basement membrane in the utricle.  

The endothelial cells which form capillaries are known to interact with their 

extracellular matrix through several integrins which contain the β1 subunit; namely 

α1β1, α2β1, α3β1, α5β1 and α6β1 (Dejana et al, 1993). Work carried out in this project 

also identified integrin β1 as being expressed within the vasculature of the mature 

utricle within the underlying connective tissue and in some regions this co-localised 

with collagen type IV. Although this work does not confirm which β1-containing 

heterodimers are present in this tissue, it would be expected that the positive labelling 

for integrin β1 in the capillary network would be due to one or more of the known 

endothelial integrins, which play a key role in the adhesion of endothelial cells to the 
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perivascular basement membrane and extracellular matrix via binding of the ligands 

collagen type IV and laminin, which are the two major components of the basement 

membrane (Stupack and Cheresh, 2002).  

Integrin β1 possesses the ability to form twelve functional integrin heterodimers in 

mammalian species. The work carried out during this project has identified integrin α6 

as showing a similar localisation pattern by immunolabelling as that exhibited by 

integrin β1, suggesting that α6 might be a potential partner for β1 in this location. 

However, previous studies have identified the integrin α6β1 heterodimer as being the 

key laminin-binding integrin that is present on platelets and involved in the processes of 

platelet spreading and adhesion (Inoue et al., 2006); this would indicate that the integrin 

α6 and β1 subunits localised by immunohistochemistry are found in similar regions of 

the tissue, but are not present in the same heterodimer. The degenerate and qPCR 

experiments carried out in this work have each detected the presence of a number of the 

other potential alpha subunits which could associate with integrin β1: α3, α4, α8, α9 and 

αV. Immunolabelling of utricular sections for integrin αV indicates that this alpha 

subunit is restricted to the mesenchymal regions which lie directly beneath the sensory 

epithelium; it does not appear to be localised within either vestibular hair cells or the 

supporting cells. Based on these findings, it would seem less likely that αV is 

associating to form a heterodimer with β1 in this region of the utricle. In order to 

definitively identify which integrin alpha subunit or subunits make up the integrin β1-

containing heterodimers present at the epithelial-mesenchymal border within the mouse 

utricle, it would be necessary to carry out co-immunoprecipitation experiments as part 

of future work. Co-immunoprecipitation using integrin β1 antibodies immobilised on 

agarose bead supports would be able to isolate β1-containing protein complexes from 

utricular tissue lysate, and allow subsequent analysis by SDS-PAGE and western blot in 

order to identify the co-precipitated proteins. In addition to identifying the 

heterodimeric partners for integrin β1, co-immunoprecipitation studies could also reveal 

the extracellular matrix ligands with which these integrins are binding, providing further 

insight into the function of these integrins in the tissue of interest.   

Based on the location of integrin β1 and the potential alpha partners which this study 

has identified, integrin β1 could be anticipated as providing a typical adhesive role as is 

common to many integrin heterodimers. In order to provide structural integrity to the 
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utricle, the supporting cells must be sufficiently well anchored to the basement 

membrane upon which they are situated. It might therefore be speculated that integrin 

β1-containing heterodimers are responsible for the adhesive structures that would be 

expected to be present within any epithelial tissue, interacting with extracellular matrix 

proteins which are constituents of the basement membrane i.e. collagen type IV, as has 

been positively identified as being present in the basement membrane which underlies 

the sensory epithelium of the utricle.  

In order to investigate this hypothesis, it would be of interest to examine what effect a 

lack of integrin β1 has upon the structure of the utricle. Integrin β1 deficient mice die 

very early on in development, so an experimental approach to investigate the effect of 

β1 deficiency in the utricle would require an inducible knockout system to overcome 

this problem. Producing a mutant mouse strain using the Cre/lox system, it would be 

possible to create an animal in which an integrin β1 deficiency could be induced 

through drug treatment e.g. by administering tamoxifen. Experiments with the intention 

of investigating the role of β1 in the utricle could potentially be carried out both in vivo 

and in vitro if necessary.Previous work on the development of Cre/lox mice strains for 

inducible β1 knockouts has encountered issue with lethality after induction, which 

might prove problematic if conducting long-term in vivo experiments e.g. looking at the 

effect of β1 knockout at 21 days-post gentamicin treatment. In non-gentamicin treated 

animals or control in vitro utricular tissue from Cre/lox β1 knockout mice, induction of 

the mutation would be used to investigate whether β1 is critical for the adhesion of 

supporting cells to the basement membrane. Previous work in other epithelial cells in 

vitro has shown that integrin β1 has a half-life of approximately 24 hours 

(Delcommenne and Streuli, 1995), although since no previous work has looked into 

integrin expression in depth within the inner ear, the level of integrin turnover in the 

utricle may differ from that observed in other tissue types. Testing a range of incubation 

time points following induction of the integrin knockout would therefore be required in 

order to examine whether a lack of new β1 protein affects the structure of the utricle; if 

the hypothesis that β1 is key for the adhesion of supporting cells to the basement 

membrane, it would be expected that the structural integrity of the tissue would be 

disrupted if deficient of this integrin subunit. This might result in the observation, by 
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immunolabelling of utricular sections with appropriate markers, of supporting cells 

which have become detached from the basement membrane.  

Since the qPCR experiments carried out in this study suggest that β1 gene expression is 

significantly increased at 4 days post-gentamicin, there is the potential for a further role 

for this subunit in utricular tissue which has been exposed to ototoxic aminoglycosides. 

In gentamicin-damaged tissue, β1-containing heterodimers could be involved in cellular 

signalling stimulated by hair cell death or the reorganisation of the cytoskeleton and 

cellular spreading undergone by supporting cells as they change shape in order to close 

up holes left in the sensory epithelium where vestibular hair cells have been lost. The 

observed increase in integrin β1 at 4 days post-gentamicin could therefore be as a result 

of increased focal adhesion formation as the supporting cells undergo various 

morphological changes. These hypotheses could be investigated using the proposed 

inducible β1 knockout mouse – by treating with the aminoglycoside and then 

administering the tamoxifen required to induce the β1 deficiency. On examination of the 

utricular tissue at 4 days post-gentamicin by phalloidin labelling, it would anticipated 

that the supporting cell shape changes observed through the appearance of scars on the 

apical surface of the epithelium would be impaired if the tissue was unable to up-

regulate β1; rather than the typical surface appearance at this stage post-gentamicin, it 

would be expected that the supporting cells would not be able to spread effectively, 

leaving gaps in the epithelial layer created by hair cell loss.   

Integrin β1 has been previously shown to be involved in cutaneous wound healing; mice 

with a fibroblast-specific deletion of integrin β1 were observed to show delayed wound 

healing in comparison to wild-type control mice (Liu et al., 2010). Mice lacking β1 also 

displayed defects in the production of new extracellular matrix and reduced activation 

of latent TGF-β, a key signalling molecule known to be involved numerous cellular 

processes which occur during wound healing (Werner and Grose, 2003). Integrin β1 has 

also been shown to be critical for keratinocyte migration during re-epithelialisation of 

cutaneous wounds, since mice with a keratinocyte-specific deletion of β1 exhibited 

migration impairment and their wounds failed to close as did those of their control 

littermates (Grose et al., 2002).  
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Based upon both the results of experiments carried out in this project and the findings of 

previous studies regarding the numerous cellular processes in which this integrin has 

been shown to play a role, the integrin β1 subunit should be considered for further 

research into its function in the adult mouse utricle. 

7.4.4 Integrin β3 and β5 Expression in the Adult Mouse Utricle is Associated with 

Vestibular Hair Cells 

7.4.4.1 Integrin β3  

Integrin β3 is one of two integrin subunits which have been identified as being 

associated with vestibular hair cells based upon the results of the immunohistochemistry 

experiments carried out during this study. The localisation pattern of integrin β3 in the 

utricle was also observed to change in response to gentamicin-induced hair cell loss; 

this subunit appears to be expressed within type I hair cells at the region in closest 

proximity to the neural calyx, but is redistributed at 4 days post-gentamicin to regions at 

which there would be an interface between supporting cells and neurons.  

Immunohistochemistry results suggest that this redistribution persists at 14 day-post 

gentamicin, however, at 21 days post-gentamicin β3 could be seen to localise within 

vestibular hair cells in a manner similar to that observed in normal utricular tissue.  

Integrin β3 is able to associate with two α subunits to form the heterodimers αIIbβ3 and 

αVβ3. Whilst the αIIbβ3 integrin is specifically expressed on blood platelets, playing a 

critical role in the control of blood clot formation (Hodivala-Dilke et al., 1999), the 

αVβ3 heterodimer shows more widespread expression and is involved in many cellular 

processes, including angiogenesis (Brooks et al., 1994) and wound healing (Clark et al., 

1996). A previous study demonstrated that integrin β3 null mice showed enhancement 

of the cutaneous wound healing process compared to their wild-type littermates 

(Reynolds et al., 2005). This enhanced wound closure (β3-deficient mice showed 

complete wound closure by day 5 after wounding, whereas wild-type controls had not 

completed the re-epithelialisation process until day 10) was found to be the result of 

increased levels of TGF-β1  in the platelets of mice which lack integrin β3. These 

previous findings highlight the ability of integrins to alter signalling pathways which 

regulate key cellular processes in addition to their cell-adhesion molecule properties. 
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With regards to the inner ear, integrin β3 has been implicated in previous work as 

having a role in the differentiation of hair cells through studies carried out on OC-2 cells 

(an immortalised cell line derived from the mouse inner ear). OC-2 cells can be 

maintained in a proliferative, undifferentiated state by incubation at 33°C, but can be 

induced to differentiate and express known hair cell markers such as myosin VI and 

myosin Viia by increasing the incubation temperature to 39°C (Rivolta et al., 1998). In 

this previous study, OC-2 cells were shown to increase surface levels of integrin β3 

when switched to their differentiating state (Brunetta et al., 2012). This increase in β3 

expression correlated with an increase in myosin VI and myosin Viia. This earlier study 

also showed that over-expression of β3 in undifferentiated OC-2 cells incubated at 33°C 

was able to produce an increase in myosin VI and myosin Viia that was comparable to 

levels seen in differentiated OC-2 cells.  

That the work carried out in this project has detected β3 expression in vestibular hair 

cells supports the theory that integrins may play a role in the events of hair cell 

development, perhaps through facilitating the release of differentiated hair cells from 

the basement membrane. Myosin Viia expression was also investigated in cultured 

utricles at several time points by qPCR. Relative quantification of this data indicated 

that after being initially detected in normal, undamaged tissue, myosin Viia was 

undetectable at 4 days post-gentamicin treatment. Myosin Viia was detectable again by 

14 days post-gentamicin, at a level that was significantly lower than that observed in 

normal tissue. That myosin Viia expression begins to re-emerge following a significant 

increase in β3 expression would support a potential role for this integrin in the 

differentiation of hair cells through transdifferentiation events triggered by gentamicin-

induced hair cell loss in the mammalian utricle.  

If integrin β3 is able to influence the expression of proteins such as myosin Viia (a key 

marker of hair cell differentiation) in the same manner observed in the OC-2 hair cell 

line in vestibular hair cells, i.e. via an integrin-mediated cell signalling pathway, this 

may indicate a role for integrin β3 in the spontaneous hair cell regeneration observed in 

the mammalian utricle. Based upon RQ analysis of the qPCR experiments carried out 

during this project, integrin β3 appears to show a significant increase in gene expression 

at 4 days post-gentamicin, which could also support a role for this integrin in 

phenotypic conversion of supporting cells to hair cells. In order to test the hypothesis 



 

 

247 

  

 

that integrin β3 has a functional role in spontaneous regeneration in the adult mouse 

utricle, it would be of interest to examine the effects of both a lack of integrin β3 and 

the over-expression of this integrin subunit. Integrin β3 knockout mice are viable, 

however, litter numbers are reduced due to placental defects and these animals remain 

susceptible post-natally to internal haemorrhaging, particularly of the gastrointestinal 

tract (Hodivala-Dilke et al., 1999).This is due to the fact that this integrin forms part of 

the αIIbβ3 heterodimer which is expressed on blood platelets and is critical for platelet 

aggregation following vascular injury. In order to study the effect of a lack of β3 on hair 

cell regeneration, it would therefore be preferable to either conduct the study in vivo 

using such β3 knockout animals, or alternatively, to develop an inducible β3 knockout 

strain via the Cre/lox recombinase system as described earlier in this chapter for integrin 

β1. Due to the long term nature of the experiments required to observe regeneration, 

there would be a risk of the knockout animals dying during the experimental time 

period - surgical administration of the aminoglycoside would also be extremely risky to 

such mice, due to their impaired blood clotting capabilities.  

Using an in vivo model, with an inducible β3 knockout mouse strain, it would be 

possible to expose the vestibular epithelium to the aminoglycoside gentamicin, before 

administering tamoxifen to induce the gene disruption and knockout integrin β3. Whilst 

also running control experiments in parallel, the utricular tissue of mice unable to 

produce new integrin β3 protein would be examined at multiple time points post-

gentamicin treatment by carrying out hair cell counts. If integrin β3 is required for the 

cellular processes which contribute to the phenotypic conversion of supporting cells to 

hair cells, then it would be expected that mice lacking this subunit would exhibit a 

reduction in the number of new hair cells produced following gentamicin treatment in 

comparison to control counterparts with the functional integrin β3 gene. A concomitant 

reduced level of gene expression of hair cell markers such as myosin Viia and myosin 

VI would also be expected if the tissue from these experiments was examined by qPCR.  

Conversely, if β3 was overexpressed within the utricle e.g. by transfection of this tissue 

with an appropriate integrin β3 adenoviral construct, following gentamicin treatment it 

would be expected that hair cell numbers in aminoglycoside treated tissue would be 

higher, in addition to an increase in hair cell markers detectable by qPCR, than in 

control utricular tissue. Over-expression of integrin β3 in normal, non-gentamicin 
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treated animals would be expected to produce an increase in the number of vestibular 

hair cells above the numbers which are normally found in the adult epithelium.  

7.4.3.2 Integrin β5 

The integrin β5 subunit was detected in this study by both immunohistochemistry and 

qPCR; this integrin appears to localise to the base of type I hair cells in the utricular 

epithelium in the region at which they associate with neural calyces, based upon 

immunolabelling of adult mouse utricular sections. However, the only known alpha 

integrin partner for β5 is the αV subunit, and the immunohistochemistry experiments 

carried out with an anti-integrin αV antibody indicated that this integrin subunit was not 

present at all in the sensory epithelium, only in the underlying mesenchymal tissue. 

These observations suggest that further experiments are required in order to confirm the 

presence of β5 in the sensory epithelium e.g. through additional immunohistological 

investigation (having made further attempts to reduce background labelling or through 

use of another αV primary antibody with greater efficacy and antigen specificity), in 

situ hybridisation or western blot. If the results of further work were to support the 

expression of the integrin αVβ5 heterodimer in vestibular type I hair cells, the 

localisation pattern of β5 observed might be indicative of a potential role for this 

integrin in the utricle. Numerous previous studies have shown that members of the 

integrin family are able to increase the regenerative capacity of adult neurons e.g.  

integrin α1 and α5 (Condic, 2001), enhancing the extension of neurites, required for the 

re-innervation of tissue. Changes in the expression of integrin α6 in the mouse inner ear 

during development have also been shown in previous work to be involved in neuronal 

outgrowth. Expression of α6 at E10.5 is restricted to the otic epithelium and the 

neuroblasts migrating out of this region by E12.5 were shown to be those cells which 

had lost expression of this integrin subunit. Instead, glial cells which interact with the 

developing neurons in the CVG were found to be α6-positive, indicating that integrins 

may be involved in the survival and organisation of auditory neurons during 

development (Davies, 2007).   

One potential hypothesis for the presence of integrin β5 in proximity to the neural 

calyces of type I hair cells in the utricle is that this integrin functions as a target for 

neurons which innervate the vestibular hair cells. Within the in vitro model used in this 
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project, neurons of the utricular tissue degenerate as the mesenchymal tissue undergoes 

extensive remodelling – this process occurs in both control and gentamicin-treated 

tissue and is therefore a side effect of the culture conditions. A potential interaction 

between integrin β5 and vestibular neurons would therefore have to be tested in vivo 

where the neural processes have been observed to regrow from remnants of the neuronal 

architecture e.g. spiral ganglion cells, following hair cell loss, rather than being 

regenerated in their entirety (Strominger et al., 1995) . Integrin β5-null mice reproduce 

and develop normally (Huang et al., 2000b) , unlike other integrin knockout mice. It 

would therefore be of interest to examine the inner ears of these animals to investigate 

whether the formation of the utricle, in particular the innervation of the tissue i.e. 

through immunolabelling with markers such as myosin Viia and anti-neurofilament 

antibodies or calretinin to label the utricular neurons, is affected by a lack of β5 – at the 

time of writing this thesis, no reference to a vestibular phenotype was found in studies 

using β5-null mice to examine the role of this integrin in other organ systems. Several 

cellular processes thought to involve integrin β5 have been observed to be unaffected by 

a lack of this subunit in β5-null mice e.g. cutaneous wound healing; it may therefore be 

the case that if utricular tissue from these β5-deficient mice does not differ from that 

observed in normal animals, that other proteins, including other members of the integrin 

family, are able to compensate for a lack of integrin β5.  

7.4.5 Integrin αV Expression in the Adult Mouse Utricle 

The integrin αV subunit is the α integrin which is able to form the most functional 

heterodimers, being present in 5 of the 24 known mammalian integrins; αVβ3, αVβ5, 

αVβ6, αVβ8 and αVβ1.  Αlpha V integrins are commonly able to bind the ECM 

proteins vitronectin and fibronectin, with αVβ3 considered the ‘classical vitronectin 

receptor.’ Studies in the mouse have shown that αV integrins are predominantly 

expressed in the developing nervous system and skeletal muscle (Hirsch et al., 1994). 

αV integrins have also been implicated in vasculogenesis, angiogenesis (Brooks et al., 

1994) and the activation of TGFβ1 (Li et al., 2010).  

In this work, integrin αV appears to localise to the utricular mesenchyme which is in 

closest proximity to the basement membrane (Figure 6-7) as well as to the capillary 

network which is found within this tissue beneath the sensory epithelium. The only 
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previous study which shows any evidence of αV expression in the utricle indicates 

through in situ hybridisation that αV mRNA is distributed throughout vestibular hair 

cells in mice at P0 (Littlewood Evans and Muller, 2000), although this was not 

investigated further to establish whether the αV protein showed the same localisation 

pattern. Immunohistochemistry experiments carried out in this project did not detect any 

expression of integrin αV within the sensory epithelium in either normal utricular tissue, 

or in sections of utricular cultures damaged by gentamicin in vitro; αV expression was 

maintained in the mesenchyme at the region most proximal to the basement membrane 

at all three of the time points studied post-gentamicin exposure. The findings of this 

work suggest that like integrin β1, there may be redistribution of the integrin αV subunit 

during the maturation of the murine inner ear between P0 and the animal becoming an 

adult, possibly implicating that this integrin has a role in development of this sensory 

epithelium. 

The integrin αV subunit showed a significant increase in gene expression at 4 days post-

gentamicin in comparison to the level detected in normal utricular cDNA (Figure 5-4 

A).  Although the work completed during this project does not definitely identify which 

of the αV-containing integrins are present in the tissue of interest, of the 5 possible β 

subunits that αV can associate with, only integrin β1 and β3 demonstrate a similar 

significant increase in expression at 4 days post-gentamicin (Figure 5-5).  Identification 

of the β subunit partner or partners for αV in the mouse utricle by co-

immunoprecipitation would therefore be of benefit for future studies. 

αV integrins, in particular αVβ5, have been previously identified as playing a vital role 

in the success of adenovirus infection (Summerford et al., 1999). αVβ5 has been shown 

to promote the internalisation of adenovirus particles and host-cell membrane 

permeablisation (Wickham et al., 1994).  Due to this capability, αVβ5 expression on the 

cell surface has also been shown to correlate with greater efficacy of gene delivery 

using adenoviral vectors (Goldman and Wilson, 1995). That the αVβ5 integrin 

heterodimer is potentially expressed in the adult mouse utricle could be beneficial for 

treatment of vestibular disorders/damage by gene therapy. Previous studies using an 

adenoviral vector to transfect vestibular hair cells of cultured mouse utricles with Atoh1 

in order to enhance the regenerative capability of the tissue (Staecker et al., 2011), by 

directly inducing cells to become hair cells, show that the mouse utricle is able to 
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successfully internalise adenoviruses, and therefore it could be the presence of integrin 

αVβ5 that facilitates this process.   

Integrin αVβ5 has also been shown to be involved in phagocytosis of apoptotic cells by 

amateur phagocytes in other organ systems such as the retina (Finnemann et al., 1997). 

That integrin αV has been shown to be significantly increased in the utricle at 4 days 

post-gentamicin, in comparison to normal tissue, might potentially be linked to 

supporting cells removing dying vestibular hair cells from the sensory epithelium by 

phagocytosis.  

7.5 Future Work 

The work presented in this thesis represents the first study to investigate the expression 

of the integrin family of cell-adhesion molecules in the adult mouse utricle. Having 

screened this tissue for the known α and β subunits, a subset of integrins has been 

identified as being expressed in utricular macula of adult mice within both the sensory 

epithelium and the underlying mesenchyme. 

As addressed earlier in this discussion, there is some immediate future work which 

would be necessary in order to further corroborate the results obtained during this 

project. Although samples of utricular tissue used to produce cDNA for qPCR gene 

expression array experiments contained 8 to 10 individual utricles from several different 

animals, each ‘pool’ of tissue can only be technically classified as a single sample of 

cDNA for a particular time point. The qPCR array plates run with control utricular 

cDNA and cDNA from organotypic cultures maintained for three different time points 

post-gentamicin treatment represent an initial screen of the tissue for the majority of the 

known α and β integrins. Those integrins which have been highlighted as being present 

in this screen, and in particular, those which have shown significant expression level 

changes in response to hair cell damage and loss, would be candidates for replicate 

qPCR assays to be carried out with several different ‘pooled’ samples of cDNA for each 

time point. It was not possible to utilise the qPCR array plate data collected from the 

experiment run with cDNA from utricles at 21 days post-gentamicin treatment. This 

was due to the cDNA yield, despite using the same number of utricles as other time 

points, being significantly lower – possibly a consequence of the remodelling and 

migration of mesenchymal cells observed in long term cultures. This low cDNA yield 
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resulted in the integrin subunits detected only beginning to be amplified by the PCR 

reaction very late into the 50 cycle run of the experiment; the consistency of detection 

across replicate assays was also considerably reduced i.e. of the 4 replicate assays for 

each gene present on the plate, a given gene was often only detected by one or two of 

the replicates. Replication of these qPCR experiments in triplicate would increase the 

reliability of the results and the likelihood that they represent the true response of the 

tissue following gentamicin treatment.Since immunolabelling of utricles cultured for 21 

days post-gentamicin treatment showed evidence of immature stereocilia bundles on the 

apical surface of the sensory epithelium, it would be of interest to be able to compare 

the expression levels of the integrins in tissue undergoing this kind of regenerative 

process, with their expression in normal, undamaged tissue. This would be particularly 

relevant where integrins such as α8β1 have been implicated by previous studies as 

having a role in the formation of stereocilia in vestibular hair cells (Littlewood Evans 

and Muller, 2000), as it might be anticipated based upon this work  that expression of 

these two subunits would be up-regulated in the utricle if there are new apical hair 

bundles being produced in a manner similar to that which occurs during development.  

A total of five integrin subunits were investigated further with immunohistochemistry in 

order to examine their localisation within the tissue, in addition to exploring the 

possibility of temporal-spatial changes in their expression pattern at several time points 

following gentamicin treatment. It would be of interest to obtain primary antibodies to 

allow the localisation of the remaining subunits detected by PCR in order to complete a 

full study of the expression pattern of these integrins, establishing which region of the 

tissue they are associated with i.e. are they linked to the mesenchyme or the sensory 

epithelium. Since functionally, the integrin subunits must exist as a heterodimer, it 

would be of interest to establish the pairings of α and β subunits which exist in the 

murine utricle. Although some of the subunits detected are only able to form a single 

heterodimer, and thus if they are present it must be inferred that this is the heterodimer 

present, in the case of the more ‘promiscuous’ α V and β 1 subunits, it might be possible 

that they are present in the utricle as part of several yet unknown pairings. Co-

immunoprecipitation experiments could therefore be utilised in order to pull down 

particular integrins from utricular tissue cell lysate whilst still associated with their 

heterodimer partner. These experiments could also result in integrin-associated proteins 
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i.e. proteins through which integrins interact with the cytoskeleton being pulled down 

simultaneously, lending further insight into how the integrins which are present in the 

tissue are interacting with their intra and extracellular surroundings. Since the integrins 

expressed on any given cell type are directly influenced by the extracellular matrix 

ligands present in a particular tissue, identification and localisation of the integrin 

ligands present in the utricle would also be important for future investigation of the 

function of integrin heterodimers in the vestibular sensory epithelium.  

The long-term culture model established during this project represents a successful 

method of inducing hair cell loss in the adult mouse utricle, in order to study the 

potential role of integrins in the repair and limited spontaneous regeneration which 

occurs in this tissue. However, it cannot be ruled out, as discussed earlier in this chapter, 

that the behaviour of the tissue in vitro in response to gentamicin treatment might differ 

from that which would occur in vivo. It would therefore be beneficial for future work to 

explore whether these differences i.e. the remodelling of the mesenchyme, have an 

influence on the expression and localisation of integrins by repeating both the 

immunohistochemistry experiments and the qPCR gene expression assays using an in 

vivo mouse model. The integrin subunits identified in this work as showing significant 

changes in expression level e.g. β3, β1 and αV would be candidates for further 

investigation using this culture model.  

Inhibition of integrins has been the subject of numerous previous studies, with particular 

emphasis in the field of cancer research and their effect on tumour growth and 

angiogenesis. Integrin inhibitors, such as CNTO 95 (Trikha et al., 2004) an αV inhibitor 

antibody and LM609 (Brooks et al., 1995) an αVβ3 blocking monoclonal antibody, as 

well as small molecule (Kerr et al., 1999) and cyclic RGD-containing peptides i.e. 

cilengitide (Desgrosellier and Cheresh, 2010) have all been previously used to inhibit 

integrins and reduce tumour proliferation and angiogenesis. Utricular cultures incubated 

in vitro with a specific integrin inhibitor could be used in order to investigate whether 

some of the integrins highlighted by this project play a role in the cellular processes 

involved in hair cell loss and regeneration of the sensory epithelium. Immunolabelling 

of these cultured tissues for actin and myosin Viia could then be used to investigate 

whether blocking a particular integrin subunit has an effect upon the behaviour of the 

tissue of interest during a subsequent recovery period following gentamicin exposure 
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i.e. whether hair cell regeneration might be reduced or enhanced by inducing a loss of 

function of a particular integrin known to be present in normal tissue and up-regulated 

significantly following damage. Further in vivo based experiments were discussed at 

length in 7.4, describing the potential for the use of integrin knockout mice to explore 

the effect of deficiency in particular integrin subunits within both normal utricular tissue 

and in animals treated with an aminoglycoside to induce hair cell loss. This additional 

approach would provide a means of comparing the response of the utricle when lacking 

a given integrin subunit, when incubated in culture and when maintained in vivo.  

The work carried out in this thesis has already begun to be applied to human vestibular 

epithelium within this research group. It will be of interest to observe how similar the 

integrin expression of the human tissue is in comparison to the mouse model used in 

this project and whether cultured utricles show similar changes in integrin expression 

level following gentamicin treatment. Mammalian vestibular epithelia are known to 

show limited regeneration of hair cells following damage, although not to the extent of 

the capabilities shown by birds and amphibians. The human organ of Corti is incapable 

of regenerating following the loss or damage of auditory hair cells. It would be of 

interest to explore the integrin expression of the mammalian organ of Corti and to 

compare this with that observed in the utricle. Although both epithelia contain hair cells 

which have a mechanosensory function, their arrangement and the supporting cells 

which surround them differ significantly. Recent studies on regeneration of auditory 

hair cells have demonstrated that treatment of noise-damaged mice in vivo with a γ-

secretase inhibitor (producing an increase in Atoh1), was sufficient to induce 

phenotypic conversion of supporting cells into hair cells (Mizutari et al., 2013). 

However, despite being myosin Viia positive, these supporting cell-derived regenerated 

hair cells were still found to be attached to the basement membrane. It might be possible 

that integrins present in the utricle which could play a role in the processes of repair and 

regeneration are not found in the organ of Corti, and that the inability to replace 

auditory hair cells may be partially attributed to a lack of integrins which may 

potentially be involved in the utricle in the release of supporting cells which have 

converted to hair cells from their surface adhesions to the basement membrane.  
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7.6 Conclusion 

The aim of this project was to investigate the integrin family of cell-surface adhesion 

molecules in an adult inner ear sensory epithelium that was known to undergo a degree 

of spontaneous regeneration following hair cell loss. Few previous studies had been 

conducted with regards to the presence of integrins in the inner ear, and those which 

existed had primarily been conducted on embryonic or very early postnatal animals.  

The work presented in this thesis represents the first study of the integrin family in the 

adult mammalian utricle. A subset of the known mammalian integrin α and β subunits 

have been identified through a series of degenerate and quantitative PCR experiments as 

being present in the adult mouse utricle in its normal, undamaged state. 

Immunohistochemistry reveals the localisation of some of these subunits and 

demonstrates that they are present throughout the epithelial and mesenchymal structures 

of the utricle.  

Through the use of an in vitro organotypic culture system as a model for the induction 

of damage responses and spontaneous regeneration in adult utricular tissue, qPCR and 

immunohistochemistry based experiments have been applied in order to investigate 

whether integrin expression is affected by the loss of vestibular hair cells. Several 

integrin subunits which have been previously described as being involved in tissue 

repair in other organ systems e.g. integrins β1, β3 and αV, have been shown in this 

project to demonstrate significant changes in gene expression level in tissue, in 

particular at 4 days post-gentamicin, when the utricle shows a large decrease in hair cell 

numbers, although further replicate qPCR experiments would be required to confirm 

that these results are a true representation of the typical behaviour of the utricle in terms 

of integrin expression. Immunofluorescent labelling of integrins in sectioned utricular 

tissue at three individual time points post-gentamicin treatment indicates that at least 

two of the integrin subunits studied in this project exhibited evidence of re-distribution 

following gentamicin treatment, suggesting that integrins might play a role in the 

cellular events of vestibular epithelial repair and regeneration. 

The work described in this thesis represents a foundational study of the integrins of the 

adult mouse utricle and presents the integrin family as a group of cell-adhesion 

molecules which warrant further examination and research in order to learn more about 
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what their exact role might be in the vestibular sensory epithelium, and whether this 

might allow integrins to be manipulated in order to enhance the regenerative capabilities 

of the mammalian vestibular epithelium.  
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Gel Images for Restriction Digests of Degenerate PCR Products 

The results of the restriction digests carried out on cloned degenerate RT-PCR products 

are illustrated by the images of agarose gels on which restriction digest products were 

run. As described in 2.8.4,these digests were used to identify which of the potentially 

detected amplicons were present in the PCR products for each degenerate primer pair. 

Table A-1 summarises the integrin subunits each restriction digest was intended to 

distinguish between, and the expected banding patterns for each restriction digest.  

Figure  Integrins to be 

Identified  

Restriction 

Digest 

Expected Bands 

    

A αX, αM, αE & αD BglI αX/αD = 1766, 1763, 1318 & 206 bp bands 

   αM/αE = 1447, 1318, 289, 286 & 206 bp bands 

B α1, α2, α10 & α11 BamHI α1 = linearised plasmid, does not cut other 

amplicons/the vector 

C α1, α2, α10 & α11 XhoI α2 = linearised plasmid, does not cut other 

amplicons/the vector 

D α1, α2, α10 & α11 RsaI Cuts all amplicons once (linearises), except α10 

E α5, αV, αIIb & α8 HaeII αV/αIIb = 1990, 906, 370 & 8 bp bands 

   α5/ α8 = 1990, 476, 433, 370 & 8 bp bands 

F αV & αIIb ApaI Linearises if αV. αIIb = 3071 & 212 bp bands 

F α5, αV, αIIb & α8 PstI Linearises if α8. α5 = 3142 & 138 bp bands 

G α3, α6 & α7 EcoRV α7 = linearised plasmid, does not cut other 

amplicons/the vector 

H α6 & α3 TaqI  α3 = 1444, 576, 434, 82 & 80 bp bands  

   α6 = 1444, 576, 434 & 165 bp bands 

I β1, β4 & β7 HindIII β7 = linearised, does not cut other amplicons/the 

vector 

J  β1, β4 & β7 TaqI β1 = 1444, 576, 526, 434 & 377 bp bands 

   β4 = 1444, 576, 526, 434 & 368 bp bands 

   β7 = 1444, 576, 526, 434, 273 & 107 bp bands 

K β3, β5 & β6 TaqI β3 = 1444, 576, 526, 434, 309 & 75 bp bands 

   β5 = 1444, 576, 526, 434, 266 & 121 bp bands 

   β7 = 1444, 576, 526, 434 & 381 bp bands 

L β2 & β8 NcoI β2 = linearised, plasmid, β8 = 3108 & 255 bp 

bands 

Table A-1 Restriction Digest Figures Reference Table 

Summary of the restriction digests used to identify integrin amplicons from degenerate PCR 

products. References are provided for gel photo images which show representative results of 

each of the digests carried out. 
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Figure A-1 Restriction Digests of Cloned Degenerate PCR Products 

Images of restriction digest products run on an appropriate weight agarose gel. A 1kb DNA ladder (NEB) was used to determine the size of the digest 

products.   
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Figure A-2 Restriction Digests of Cloned Degenerate PCR Products 

Images of restriction digest products run on an appropriate weight agarose gel. A 1kb DNA ladder (NEB) was used to determine the size of the digest 

products. 
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Figure A-3 Restriction Digests of Cloned Degenerate PCR Products 

Images of restriction digest products run on an appropriate weight agarose gel. A 1kb DNA ladder (NEB) was used to determine the size of the digest 

products. (K) P1, P2 & P3 indicate the three different banding patterns detected in restriction digests produced – a sample of each was sent for DNA 

sequencing to confirm the identity of the integrin subunit amplified.  
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One-way ANOVA with Tukey’s Test  

The following data represents the full output generated by the GraphPad software used 

to analyse hair cell count data by one-way ANOVA with the post hoc Tukey’s Test. The 

summary data from this statistical analysis is shown in table 4-1. 

              One-way Analysis of Variance (ANOVA)                

 

The P value is 0.0012, considered very significant. 

Variation among column means is significantly greater than expected 

by chance. 

 

 

Tukey-Kramer Multiple Comparisons Test 

If the value of q is greater than 4.508 then the P value is less 

than 0.05. 

 

 

                                      Mean    

            Comparison             Difference    q      P value   

================================== ========== ======= =========== 

  Control (2 D) vs Gent (2 DPG)         2.530   3.239  ns  P>0.05 

  Control (2 D) vs Gent (14 DPG)        4.761   6.095  **  P<0.01 

  Control (2 D) vs Control (28 D)       1.080   1.312  ns  P>0.05 

  Control (2 D) vs Gent (28 DPG)        5.116   6.550  **  P<0.01 

   Gent (2 DPG) vs Gent (14 DPG)        2.231   3.498  ns  P>0.05 

   Gent (2 DPG) vs Control (28 D)      -1.449   2.104  ns  P>0.05 

   Gent (2 DPG) vs Gent (28 DPG)        2.586   4.055  ns  P>0.05 

  Gent (14 DPG) vs Control (28 D)      -3.681   5.343  *   P<0.05 

  Gent (14 DPG) vs Gent (28 DPG)       0.3551  0.5568  ns  P>0.05 

 Control (28 D) vs Gent (28 DPG)        4.036   5.858  **  P<0.01 

 

                                Mean       95% Confidence Interval 

            Difference        Difference            From     To    

================================== ========== ======= ======= 

  Control (2 D) - Gent (2 DPG)          2.530     -0.9915   6.051 

  Control (2 D) - Gent (14 DPG)         4.761   1.240   8.282 

  Control (2 D) - Control (28 D)        1.080  -2.631   4.792 

  Control (2 D) - Gent (28 DPG)         5.116   1.595   8.638 

   Gent (2 DPG) - Gent (14 DPG)         2.231 -0.6440   5.106 

   Gent (2 DPG) - Control (28 D)       -1.449  -4.555   1.656 

   Gent (2 DPG) - Gent (28 DPG)         2.586 -0.2889   5.462 

  Gent (14 DPG) - Control (28 D)       -3.681  -6.786 -0.5751 

  Gent (14 DPG) - Gent (28 DPG)        0.3551  -2.520   3.230 

 Control (28 D) - Gent (28 DPG)         4.036  0.9302   7.141 

 

Assumption test: Are the standard deviations of the groups equal? 

 

ANOVA assumes that the data are sampled from populations with 

identical 

SDs. This assumption is tested using the method of Bartlett. 

 

Bartlett's test can only be performed when every column has 

at least five values. 
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Assumption test: Are the data sampled from Gaussian distributions? 

 

ANOVA assumes that the data are sampled from populations that 

follow  

Gaussian distributions. This assumption is tested using the method  

Kolmogorov and Smirnov: 

 

     Group        KS     P Value  Passed normality test? 

=============== ======   ======== ======================= 

  Control (2 D)   Too few values to test. 

   Gent (2 DPG)   Too few values to test. 

  Gent (14 DPG)   Too few values to test. 

 Control (28 D)   Too few values to test. 

  Gent (28 DPG)   Too few values to test. 

 

Intermediate calculations. ANOVA table 

 

        Source of             Degrees of   Sum of     Mean   

        variation              freedom    squares    square  

============================  ==========  ========  ======== 

Treatments (between columns)           4    60.050    15.013 

Residuals (within columns)            12    19.526     1.627 

----------------------------  ----------  -------- 

Total                                 16    79.576 

 

F = 9.226  =(MStreatment/MSresidual)  

 

 

                         Summary of Data                          

 

                Number                       Standard 

                  of              Standard   Error of 

     Group      Points     Mean   Deviation    Mean     Median  

=============== ======   ======== =========  ========  ======== 

  Control (2 D)     2       5.988   0.6571     0.4646     5.988 

   Gent (2 DPG)     4       3.458    1.185     0.5927     2.946 

  Gent (14 DPG)     4       1.227   0.4745     0.2373     1.170 

 Control (28 D)     3       4.907    2.578      1.489     5.755 

  Gent (28 DPG)     4      0.8714   0.5501     0.2750    0.7836 

 

                                  95% Confidence Interval 

     Group      Minimum  Maximum     From        To     

=============== ======== ======== ========== ========== 

  Control (2 D)    5.523    6.452    0.08409     11.891 

   Gent (2 DPG)    2.714    5.224      1.572      5.344 

  Gent (14 DPG)   0.7252    1.842     0.4715      1.982 

 Control (28 D)    2.012    6.955     -1.498     11.313 

  Gent (28 DPG)   0.3275    1.591  -0.003768      1.747 
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