UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Tensor 2-sums and entanglement

Klavzar, S; Severini, S; (2010) Tensor 2-sums and entanglement. J PHYS A-MATH THEOR , 43 (21) , Article 212001. 10.1088/1751-8113/43/21/212001.

Full text not available from this repository.

Abstract

To define a minimal mathematical framework for isolating some of the characteristic properties of quantum entanglement, we introduce a generalization of the tensor product of graphs. Inspired by the notion of a density matrix, the generalization is a simple one: every graph can be obtained by addition modulo two, possibly with many summands, of tensor products of adjacency matrices. In light of this, we are still able to prove a combinatorial analogue of the Peres-Horodecki criterion for testing separability.

Type:Article
Title:Tensor 2-sums and entanglement
DOI:10.1088/1751-8113/43/21/212001
Keywords:GRAPHS, PRODUCTS
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record