Measurement of the Top Quark Pair Production Cross Section in $p\bar{p}$ Collisions

We present a measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125pb^{-1} accumulated during the 1992–1996 collider run. We observe 39 $t\bar{t}$ candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7 ± 2.2 events. For a top quark mass of $173.3 \text{GeV}/c^2$, we measure the $t\bar{t}$ production cross section to be $5.5 \pm 1.8 \text{pb}$. [S0031-9007(97)03829-5]

PACS numbers: 14.65.Ha, 13.85.Ni, 13.85.Qk

The discovery [1] of the top quark in 1995 at the Fermilab Tevatron collider ended a long search following the 1977 discovery of the b quark [2] and represents another triumph of the standard model (SM). In the SM, the top quark completes the third fermion generation. A measurement of the top quark pair production cross section is of
interest as a test of QCD predictions. A deviation from these predictions could indicate nonstandard production or decay processes.

In $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, top and antitop quarks are predominantly pair produced through $q\bar{q}$ annihilation ($\approx 90\%$) or gluon fusion ($\approx 10\%$). In the SM, due to their large mass, they decay before they hadronize; nearly all ($\approx 99.8\%$) decay to a W boson and a b quark. The subsequent W decay determines the major signatures of $t\bar{t}$ decay. In the dilepton channel, both W bosons decay either to $e\nu$ or $\mu\nu$. The branching fraction for this channel is rather small (4/81), but it has the advantage of small backgrounds. In the lepton + jets channel, one W boson decays to $e\nu$ or $\mu\nu$ and the other hadronically. The branching fraction is 24/81. The dominant source of background for this channel is $W + \text{jets}$ production.

In this Letter we report a measurement of the $t\bar{t}$ production cross section ($\sigma_{t\bar{t}}$) using the entire data sample (125 \pm 7 pb$^{-1}$) collected during the 1992–1996 collider run. This is more than twice the data described in our previous publication [1]. Different trigger conditions cause the integrated luminosity to vary from channel to channel. The luminosity determination is described in Refs. [3]. The analysis presented here is optimized to maximize the expected precision of the $t\bar{t}$ cross section measurement.

A detailed description of the D0 detector, trigger, and algorithms for reconstructing jets and missing transverse energy E_T is found in Refs. [4] and [5]. The current electron and muon identification algorithms provide better rejection of backgrounds and increased efficiencies than those used in Ref. [5].

The signature of the dilepton channel consists of two isolated high p_T leptons, two or more jets, and large E_T. The selection criteria are summarized in Table I. Several additional cuts that remove specific backgrounds have been omitted from the table, but are noted below. In Table I, η is the pseudorapidity, H_T is the scalar sum of the E_T of all jets with $E_T \geq 15$ GeV, and $H_T^1 = H_T + E_T$ (leading electron). Three $e\mu$ events, one ee event, and one $\mu\mu$ event survive the selection criteria.

The signature of the lepton + jets channel consists of one isolated high p_T lepton, E_T, due to the neutrino, and several jets. In these events, jets are produced by the hadronization of two b quarks and the two quarks from W boson decay. Thus we expect to see four jets. However, due to gluon radiation and merging of jets, the number of detected jets may vary. After requiring an isolated high p_T lepton, E_T, and at least three jets, we expect 50 events from $t\bar{t}$ production (assuming top quark mass $m_t = 170$ GeV/c^2) but observe 550 events, due primarily to $W + \text{jets}$ production. To enhance the relative contribution of events from top quark decays, we employ two techniques. One method, denoted $\ell + \text{jets}/\mu$, requires a jet to be associated with a tag muon as evidence of the semileptonic decay of a b quark. A requirement on the maximum separation between the muon and the reconstructed jet $\Delta R_{\text{jet}} = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ defines this association. The other method, denoted $\ell + \text{jets}$, is applied to events without tag muons. It exploits the difference in event shape and kinematics between $t\bar{t}$ and background. Selection criteria for both methods are described in Table I. Note that the requirements on event shape variables are less stringent for the $\ell + \text{jets}/\mu$ analysis.

To select the optimal variables and their threshold values that yield the best precision for the measured cross section, we perform an optimization using a random grid search technique [6]. We use a Monte Carlo (MC) $t\bar{t}$ sample generated with $m_t = 170$ GeV/c^2 to compute the

| TABLE I. Kinematic selection criteria for decay channels included in the cross section measurement. An event may populate only one channel. All energies are in GeV. |
|---|---|---|---|
| | Dilepton | $\ell + \text{jets}$ | $\ell + \text{jets}/\mu$ | $e\nu$ |
| Lepton p_T | >15 | >20 | >20 | >20 |
| | >20 (ee) | | | |
| Electron $|\eta|$ | <2.5 | <2.0 | <2.0 | <1.1 |
| Muon $|\eta|$ | <1.7 | <1.7 | <1.7 | ... |
| E_T | >20 ($e\mu$) | >25 (e) | >20 | >50 |
| | >25 (ee) | >20 (μ) | | |
| Jet E_T | >20 | >15 | >20 | >30 |
| Jet $|\eta|$ | <2.5 | <2.0 | <2.0 | <2.0 |
| No. of jets | ≥ 2 | ≥ 4 | ≥ 3 | ≥ 2 |
| H_T | >120 ($ee, e\mu$) | ... | ... | ... |
| H_T | >100 ($\mu\mu$) | >180 | >110 | ... |
| A | ... | >0.065 | >0.040 | ... |
| E_T^1 | ... | >60 | ... | ... |
| η_D | ... | <2.0 | ... | ... |
| Tag muon | ... | veto | $p_T > 4$ | ... |
| | | $\Delta R_{\text{jet}} < 0.5$ | ... |
| $M_T^{\ell\nu}$ | ... | ... | >115 | ... |
expected signal event yield for various cutoffs, while we
determine the backgrounds using the methods described
below. Variables that provide significant discrimination
between $t\bar{t}$ events and backgrounds are H_T, the aplanarity
A, computed using W boson and jet momenta in the
laboratory frame [7], and E_T^L, the scalar sum of the lepton
E_T and E_T. A requirement on the pseudorapidity η_W of
the W boson which decays leptonically [8] is imposed in
the $\ell +$ jets analysis to obtain better agreement between
background control samples from data and the $W +$ jets
MC samples. In Fig. 1, we show plots of the two
kinematic variables A and H_T, after imposing all cuts
except those on the variables plotted, for our $\ell +$ jets data
sample, $t\bar{t}$ MC, and the two background sources: multijet
and $W + 4$ jets events. The cuts indicated by the dashed
lines provide a good separation between the expected
signal and backgrounds. The optimized selection criteria
listed in Table I yield nine $e +$ jets, ten $\mu +$ jets, five
$e +$ jets/μ, and six $\mu +$ jets/μ events.

We gain increased acceptance for $t\bar{t}$ production through
a more inclusive channel, the $e\nu$ channel, which requires
an isolated high E_T electron, $E_T > 50$ GeV, transverse
mass of $e\nu$, $M_{T\nu}^e > 115$ GeV, and two or more jets
with $E_T > 30$ GeV. The $e\nu$ channel contains top signal
mainly from dileptons and $e +$ jets top decays which fail
the standard kinematic selection. Four events survive the
eν requirements listed in Table I.

For all channels, the number of $t\bar{t}$ events expected
to pass the selection criteria is calculated for top quark
masses between 140 and 200 GeV/c2. Samples of $t\bar{t}$
decays to all possible final states are produced with the
HERWIG event generator [9] and a GEANT model of the
D0 detector [10]. We filter MC events according to
the same criteria as used for data. Therefore the
acceptances include events with $W \rightarrow \tau\nu$ decays that pass
the selection cuts. The acceptances computed from MC
are refined by incorporating lepton selection efficiencies
measured using $Z \rightarrow e\nu, \mu\mu$ data. Table II lists the
expected number of signal events, computed using
the $t\bar{t}$ production cross section of Ref. [11], for
three top quark masses along with the number of observed
events. The errors quoted include the uncertainty in the jet energy scale, differences between the
HERWIG and ISAJET [12] event generators, lepton identification, and trigger efficiencies.

We distinguish between physics backgrounds, which
have the same final states as the signal process, and
instrumental backgrounds, in which objects in the final
state were misidentified. Instrumental backgrounds for all
channels are estimated entirely from data, using control
samples consisting of multijet events and the measured
probability for misidentifying a jet as a lepton [5]. For the
physics backgrounds discussed below, the distributions
for $W +$ jets background are modeled using the VECBOS
event generator [13], which is interfaced to HERWIG to
fragment the partons. The background estimates for all
analyses are summarized in Table II.

Sources for physics backgrounds depend on the channel
under consideration. The main physics backgrounds to
the dilepton channels are Z boson, Drell-Yan, and vector
boson pair production. These are estimated by MC
simulations and corrected for efficiencies measured in
collider data. In the $e\mu$ channel, the signal to background
ratio is $<<10 : 1$, where about half of the total background

<table>
<thead>
<tr>
<th>Channel</th>
<th>Events observed</th>
<th>Background</th>
<th>Expected signal m_t (GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Dilepton</td>
<td>5</td>
<td>1.4 \pm 0.4</td>
<td>5.9 \pm 1.0</td>
</tr>
<tr>
<td>$\ell +$ jets</td>
<td>19</td>
<td>8.7 \pm 1.7</td>
<td>18.3 \pm 6.3</td>
</tr>
<tr>
<td>$\ell +$ jets/μ</td>
<td>11</td>
<td>2.4 \pm 0.5</td>
<td>9.1 \pm 1.7</td>
</tr>
<tr>
<td>$e\nu$</td>
<td>4</td>
<td>1.2 \pm 0.4</td>
<td>2.5 \pm 0.8</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>13.7 \pm 2.2</td>
<td>35.9 \pm 8.8</td>
</tr>
</tbody>
</table>

	170	190
Dilepton	4.1 \pm 0.7	2.6 \pm 0.5
$\ell +$ jets	14.1 \pm 3.1	9.2 \pm 1.4
$\ell +$ jets/μ	5.8 \pm 1.0	3.7 \pm 0.6
$e\nu$	1.7 \pm 0.5	1.1 \pm 0.3
Total	25.7 \pm 4.6	16.6 \pm 2.4

FIG. 1. Distributions of A vs H_T for $\ell +$ jets data events
compared to expectations for higher luminosity samples of
$t\bar{t}$ ($m_t = 170$ GeV/c2), multijet, and $W + 4$ jets backgrounds.
The dashed lines represent the threshold values used for the
selection.
is due to $Z \rightarrow \tau \tau$ events. In the $\mu \mu$ channel, Z decays are rejected by a kinematic fit to the $Z \rightarrow \mu \mu$ hypothesis. The $Z \rightarrow ee$ background is reduced by raising the cut on E_T to 40 GeV for dielectron masses within 12 GeV of the Z mass. The dominant physics background process for the $e\nu$ channel is $W(\rightarrow e\nu) + $ jets production and is strongly suppressed by the large transverse mass requirement. To estimate this background, we use the number of $W + \geq 2$ jets events observed in our data before the transverse mass cut and the rejection of the M_T cut determined using $W + 2$ jets MC. Contributions to the uncertainty in the background include 12% for variations in the jet energy scale (15% for $e\nu$), 10% for uncertainties in the cross sections used for MC samples, 15% for modeling of H_T and H_T^d distributions in the MC, and typically 5% for multiple interactions. For the $\mu\mu$ channel there is an additional 10% uncertainty for the kinematic fit.

In the $\ell +$ jets channel, physics backgrounds arise mainly from $W +$ jets production. We estimate the $W +$ jets background for events with four or more jets, which survive the η_W cut, by extrapolating from a $W +$ jets data sample at low jet multiplicities, assuming that the number of $W +$ jets events falls exponentially with the number of jets in the event (N_{jets} scaling) [13]. We have checked our $W +$ jets data sample at jet multiplicities between 1 and 3, before event shape cuts (A, H_T), and they support this scaling law [5]. We then apply the survival probability for event shape cuts which is determined to be $9\% \pm 1\%$ from $W + 4$ jets MC. The uncertainty in the background estimate includes a 10% error on the validity of the N_{jets} scaling law (determined using $Z +$ jets, $\gamma +$ jets, and multijet control samples), 5% for jet energy scale variations, and 15% for differences in event shape variables between background and MC $W + 2$ jets and $W + 3$ jets samples.

The principal source of background in the $\ell +$ jets/\mu analysis is also $W +$ jets production. We assume the heavy flavor content in $W +$ jets events is the same as in multijet events [5]. The probability of tagging a jet in the absence of $t\bar{t}$ production is then determined by the fraction of jets in multijet events that are tagged. We parameterize the tagging rate as a function of jet E_T and η. By comparing the predicted and observed number of tags in several data samples with jet E_T thresholds varying from 20 to 85 GeV, we assign a systematic uncertainty of 10% to this procedure. We then apply this tagging rate to each jet in a background dominated sample satisfying all selection criteria in Table I except the b-tag requirement. For the $\mu +$ jets/\mu final state, we reject $Z(\rightarrow \mu\mu) +$ jets events, where one of the muons is counted as a tagging muon, by using a kinematic fit to the Z decay hypothesis. This residual background is estimated using a MC simulation. Figure 2 shows the jet multiplicity spectrum of $\ell +$ jets/\mu events and the background estimates before event shape (A, H_T) cuts. There is good agreement for 1 and 2 jet samples, while a clear excess is observed at 3 or more jets, indicative of $t\bar{t}$ production.

Overall, 39 events satisfy the selection criteria. We expect 13.7 ± 2.2 events from background sources and 24.2 ± 4.1 $t\bar{t}$ events, assuming $m_t = 173$ GeV/c2 and the predicted cross section of Ref. [11]. The total acceptance for $t\bar{t}$ events varies between 2.8% and 4.9% for top quark masses between 150 and 190 GeV/c2. Figure 3 shows the measured $t\bar{t}$ cross section versus top quark mass, compared to three theory calculations [11,14,15]. The error band accounts for statistical and systematic uncertainties, both in the backgrounds and acceptances, and takes account of the correlations among channels. The systematic uncertainty has a component due to m_t dependent variations between MC generators (gen) used to
model top production, while all other fractional systematic uncertainties are m_t independent. We quote $\sigma_{t\bar{t}}$ at our central value $m_t = 173.3 \text{ GeV}/c^2$ [8]. The cross section measurements for the individual channels are consistent with each other: we measure 6.3 ± 3.3 pb from dilepton and $e\nu$, 4.1 ± 2.0 pb from $\ell +$ jets, and 8.2 ± 3.5 pb from $\ell +$ jets/μ events. Combining them gives $\sigma_{t\bar{t}} = 5.5 \pm 1.4(\text{stat}) \pm 0.9(\text{syst}) \pm 0.6(\text{gen})$ pb, in good agreement with the SM predictions. Adding the three uncertainties in quadrature, we measure the $t\bar{t}$ production cross section to be 5.5 ± 1.8 pb.

We thank the staffs at Fermilab and collaborating institutions for their contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (U.S.), Commissariat à L’Energie Atomique (France), State Committee for Science and Technology and Ministry for Atomic Energy (Russia), CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), and the A.P. Sloan Foundation.

*Visitor from IHEP, Beijing, China.
†Visitor from Universidad San Francisco de Quito, Quito, Ecuador.