UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

Mouilleron, S; Langer, CA; Guettler, S; McDonald, NQ; Treisman, R; (2011) Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci Signal , 4 (177) ra40 - ?. 10.1126/scisignal.2001750.

Full text not available from this repository.

Abstract

Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

Type: Article
Title: Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.
Location: United States
DOI: 10.1126/scisignal.2001750
Language: English
Keywords: Actins, Active Transport, Cell Nucleus, Amino Acid Motifs, Animals, Cell Nucleus, Fibroblasts, Mice, Multiprotein Complexes, NIH 3T3 Cells, Protein Structure, Quaternary, Protein Structure, Tertiary, Structure-Activity Relationship, Trans-Activators
URI: http://discovery.ucl.ac.uk/id/eprint/1371749
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item