UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Finding the optimal balance between over and under approximation of models inferred from execution logs

(2012) Finding the optimal balance between over and under approximation of models inferred from execution logs. In: (pp. pp. 21-30).

Full text not available from this repository.

Abstract

Models inferred from execution traces (logs) may admit more behaviours than those possible in the real system (over-approximation) or may exclude behaviours that can indeed occur in the real system (under-approximation). Both problems negatively affect model based testing. In fact, over-approximation results in infeasible test cases, i.e., test cases that cannot be activated by any input data. Under-approximation results in missing test cases, i.e., system behaviours that are not represented in the model are also never tested. In this paper we balance over- and under-approximation of inferred models by resorting to multi-objective optimization achieved by means of two search-based algorithms: A multi-objective Genetic Algorithm (GA) and the NSGA-II. We report the results on two open-source web applications and compare the multi-objective optimization to the state-of-the-art KLFA tool. We show that it is possible to identify regions in the Pareto front that contain models which violate fewer application constraints and have a higher bug detection ratio. The Pareto fronts generated by the multi-objective GA contain a region where models violate on average 2% of an application's constraints, compared to 2.8% for NSGA-II and 28.3% for the KLFA models. Similarly, it is possible to identify a region on the Pareto front where the multi-objective GA inferred models have an average bug detection ratio of 110: 3 and the NSGA-II inferred models have an average bug detection ratio of 101: 6. This compares to a bug detection ratio of 310928: 13 for the KLFA tool. © 2012 IEEE.

Type: Proceedings paper
Title: Finding the optimal balance between over and under approximation of models inferred from execution logs
ISBN-13: 9780769546704
DOI: 10.1109/ICST.2012.82
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: http://discovery.ucl.ac.uk/id/eprint/1370219
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item