UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Jointly identifying predicates, arguments and senses using Markov logic

Meza-Ruiz, I; Riedel, S; (2009) Jointly identifying predicates, arguments and senses using Markov logic. In: NAACL HLT 2009 - Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Proceedings of the Conference. (pp. 155 - 163).

Full text not available from this repository.

Abstract

In this paper we present a Markov Logic Network for Semantic Role Labelling that jointly performs predicate identification, frame disambiguation, argument identification and argument classification for all predicates in a sentence. Empirically we find that our approach is competitive: our best model would appear on par with the best entry in the CoNLL 2008 shared task open track, and at the 4th place of the closed track - right behind the systems that use significantly better parsers to generate their input features. Moreover, we observe that by fully capturing the complete SRL pipeline in a single probabilistic model we can achieve significant improvements over more isolated systems, in particular for out-of-domain data. Finally, we show that despite the joint approach, our system is still efficient. © 2009 Association for Computational Linguistics.

Type:Proceedings paper
Title:Jointly identifying predicates, arguments and senses using Markov logic
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record