UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Fast and robust joint models for biomedical event extraction

Riedel, S; McCallum, A; (2011) Fast and robust joint models for biomedical event extraction. Presented at: UNSPECIFIED.

Full text not available from this repository.

Abstract

Extracting biomedical events from literature has attracted much recent attention. The best-performing systems so far have been pipelines of simple subtask-specific local classifiers. A natural drawback of such approaches are cascading errors introduced in early stages of the pipeline. We present three joint models of increasing complexity designed to overcome this problem. The first model performs joint trigger and argument extraction, and lends itself to a simple, efficient and exact inference algorithm. The second model captures correlations between events, while the third model ensures consistency between arguments of the same event. Inference in these models is kept tractable through dual decomposition. The first two models outperform the previous best joint approaches and are very competitive with respect to the current state-of-the-art. The third model yields the best results reported so far on the BioNLP 2009 shared task, the BioNLP 2011 Genia task and the BioNLP 2011 Infectious Diseases task. © 2011 Association for Computational Linguistics.

Type: Conference item (UNSPECIFIED)
Title: Fast and robust joint models for biomedical event extraction
UCL classification: UCL > School of BEAMS > Faculty of Engineering Science
UCL > School of BEAMS > Faculty of Engineering Science > Computer Science
URI: http://discovery.ucl.ac.uk/id/eprint/1367734
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item