UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Evolutionary symbiotic feature selection for email spam detection

Cortez, P; Vaz, R; Rocha, M; Rio, M; Sousa, P; (2012) Evolutionary symbiotic feature selection for email spam detection. In: ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics. (pp. 159 - 164).

Full text not available from this repository.

Abstract

This work presents a symbiotic filtering approach enabling the exchange of relevant word features among different users in order to improve local anti-spam filters. The local spam filtering is based on a Content- Based Filtering strategy, where word frequencies are fed into a Naive Bayes learner. Several Evolutionary Algorithms are explored for feature selection, including the proposed symbiotic exchange of the most relevant features among different users. The experiments were conducted using a novel corpus based on the well known Enron datasets mixed with recent spam. The obtained results show that the symbiotic approach is competitive. Copyright © 2012 SciTePress.

Type:Proceedings paper
Title:Evolutionary symbiotic feature selection for email spam detection
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

Archive Staff Only: edit this record