UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Dense surface reconstruction for enhanced navigation in MIS.

Totz, J; Mountney, P; Stoyanov, D; Yang, GZ; (2011) Dense surface reconstruction for enhanced navigation in MIS. Med Image Comput Comput Assist Interv , 14 (Pt 1) 89 - 96.

Full text not available from this repository.

Abstract

Recent introduction of dynamic view expansion has led to the development of computer vision methods for minimally invasive surgery to artificially expand the intra-operative field-of-view of the laparoscope. This provides improved awareness of the surrounding anatomical structures and minimises the effect of disorientation during surgical navigation. It permits the augmentation of live laparoscope images with information from previously captured views. Current approaches, however, can only represent the tissue geometry as planar surfaces or sparse 3D models, thus introducing noticeable visual artefacts in the final rendering results. This paper proposes a high-fidelity tissue geometry mapping by combining a sparse SLAM map with semi-dense surface reconstruction. The method is validated on phantom data with known ground truth, as well as in-vivo data captured during a robotic assisted MIS procedure. The derived results have shown that the method is able to effectively increase the coverage of the expanded surgical view without compromising mapping accuracy.

Type:Article
Title:Dense surface reconstruction for enhanced navigation in MIS.
Location:Germany
Language:English
Keywords:Biomedical Engineering, Humans, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Laparoscopy, Phantoms, Imaging, Reproducibility of Results, Robotics, Surface Properties, Surgery, Computer-Assisted, Surgical Procedures, Minimally Invasive
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science
UCL > School of BEAMS > Faculty of Engineering Science > Medical Physics and Bioengineering

Archive Staff Only: edit this record