UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Spam email filtering using network-level properties

Cortez, P; Correia, A; Sousa, P; Rocha, M; Rio, M; (2010) Spam email filtering using network-level properties. Presented at: UNSPECIFIED.

Full text not available from this repository.


Spam is serious problem that affects email users (e.g. phishing attacks, viruses and time spent reading unwanted messages). We propose a novel spam email filtering approach based on network-level attributes (e.g. the IP sender geographic coordinates) that are more persistent in time when compared to message content. This approach was tested using two classifiers, Naive Bayes (NB) and Support Vector Machines (SVM), and compared against bag-of-words models and eight blacklists. Several experiments were held with recent collected legitimate (ham) and non legitimate (spam) messages, in order to simulate distinct user profiles from two countries (USA and Portugal). Overall, the network-level based SVM model achieved the best discriminatory performance. Moreover, preliminary results suggests that such method is more robust to phishing attacks. © 2010 Springer-Verlag Berlin Heidelberg.

Type: Conference item (UNSPECIFIED)
Title: Spam email filtering using network-level properties
ISBN: 3642143997
ISBN-13: 9783642143991
DOI: 10.1007/978-3-642-14400-4_37
Keywords: Anti-Spam filtering, Naive Bayes, Support Vector Machines, Text Mining
UCL classification: UCL > School of BEAMS > Faculty of Engineering Science
UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering
URI: http://discovery.ucl.ac.uk/id/eprint/1360112
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item