UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Spam email filtering using network-level properties

Cortez, P; Correia, A; Rio, M; Sousa, P; Rocha, M; (2010) Spam email filtering using network-level properties. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). (pp. 476 - 489).

Full text not available from this repository.


Spam is serious problem that affects email users (e.g. phishing attacks, viruses and time spent reading unwanted messages). We propose a novel spam email filtering approach based on network-level attributes (e.g. the IP sender geographic coordinates) that are more persistent in time when compared to message content. This approach was tested using two classifiers, Naive Bayes (NB) and Support Vector Machines (SVM), and compared against bag-of-words models and eight blacklists. Several experiments were held with recent collected legitimate (ham) and non legitimate (spam) messages, in order to simulate distinct user profiles from two countries (USA and Portugal). Overall, the network-level based SVM model achieved the best discriminatory performance. Moreover, preliminary results suggests that such method is more robust to phishing attacks. © 2010 Springer-Verlag Berlin Heidelberg.

Type:Proceedings paper
Title:Spam email filtering using network-level properties
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

Archive Staff Only: edit this record