UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Pseudoholomorphic tori in the Kodaira-Thurston manifold

Evans, JD; Kedra, J; (2012) Pseudoholomorphic tori in the Kodaira-Thurston manifold. [Digital scholarly resource]. http://arxiv.org/abs/1205.1239

Full text not available from this repository.

Abstract

The Kodaira-Thurston manifold is a quotient of a nilpotent Lie group by a cocompact lattice. We compute the family Gromov-Witten invariants which count pseudoholomorphic tori in the Kodaira-Thurston manifold. For a fixed symplectic form the Gromov-Witten invariant is trivial so we consider the twistor family of left-invariant symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This family defines a loop in the space of symplectic forms. This is the first example of a genus one family Gromov-Witten computation for a non-Kähler manifold.

Type:Digital scholarly resource
Title:Pseudoholomorphic tori in the Kodaira-Thurston manifold
Publisher version:http://arxiv.org/abs/1205.1239
Keywords:symplectic manifolds, Gromov-Witten theory
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Mathematics

Archive Staff Only: edit this record