UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure

de Koker, NP; Stixrude, L; Karki, BB; (2008) Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure. GEOCHIM COSMOCHIM AC , 72 (5) 1427 - 1441. 10.1016/j.gca.2007.12.019.

Full text not available from this repository.

Abstract

We perform first principles molecular dynamics simulations of Mg2SiO4 liquid and crystalline forsterite. On compression by a factor of two, we find that the Gruneisen parameter of the liquid increases linearly from 0.6 to 1.2. Comparison of liquid and forsterite equations of state reveals a temperature-dependent density crossover at pressures of similar to 12-17 GPa. Along tile melting curve, which we calculate by integration of the Clapeyron equation, the density crossover occurs within the forsterite stability field at P = 13 GPa and T= 2550 K. The melting curve obtained from the root mean-square atomic displacement in forsterite using the Lindemann law fails to match experimental or calculated melting curves. We attribute this failure to the liquid structure that differs significantly from that of forsterite, and which changes markedly upon compression, with increases in the degree of polymerization and coordination. The mean Si coordination increases from 4 in the uncompressed system to 6 upon twofold compression. The self-diffusion coefficients increase with temperature and decrease monotonically with pressure, and are well described by the Arrhenian relation. We compare our equation of state to the available highpressure shock wave data for forsterite and wadsleyite. Our theoretical liquid Hugoniot is consistent with partial melting along the forsterite Hugoniot at pressures 150-170 GPa, and complete melting at 170 GPa. The wadsleyite Hugoniot is likely sub-liquidus at the highest experimental pressure to date (200 GPa). (c) 2008 Elsevier Ltd. All rights reserved.

Type:Article
Title:Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure
DOI:10.1016/j.gca.2007.12.019
Keywords:SINGLE-CRYSTAL FORSTERITE, LINDEMANN MELTING LAW, MOLECULAR-DYNAMICS, SILICATE LIQUIDS, EARTHS MANTLE, GRUNEISEN PARAMETER, SEISMIC EVIDENCE, HEAT-CAPACITIES, SELF-DIFFUSION, ELECTRON-GAS
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Earth Sciences

Archive Staff Only: edit this record