UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Mechanical properties of dense zeolitic imidazolate frameworks (ZIFs): a high-pressure X-ray diffraction, nanoindentation and computational study of the zinc framework Zn(Im)2, and its lithium-boron analogue, LiB(Im)4.

Bennett, TD; Tan, JC; Moggach, SA; Galvelis, R; Mellot-Draznieks, C; Reisner, BA; ... Cheetham, AK; + view all (2010) Mechanical properties of dense zeolitic imidazolate frameworks (ZIFs): a high-pressure X-ray diffraction, nanoindentation and computational study of the zinc framework Zn(Im)2, and its lithium-boron analogue, LiB(Im)4. Chemistry , 16 (35) 10684 - 10690. 10.1002/chem.201001415.

Full text not available from this repository.

Abstract

The dense, anhydrous zeolitic imidazolate frameworks (ZIFs), Zn(Im)(2) (1) and LiB(Im)(4) (2), adopt the same zni topology and differ only in terms of the inorganic species present in their structures. Their mechanical properties (specifically the Young's and bulk moduli, along with the hardness) have been elucidated by using high pressure, synchrotron X-ray diffraction, density functional calculations and nanoindentation studies. Under hydrostatic pressure, framework 2 undergoes a phase transition at 1.69 GPa, which is somewhat higher than the transition previously reported in 1. The Young's modulus (E) and hardness (H) of 1 (E≈8.5, H≈1 GPa) is substantially higher than that of 2 (E≈3, H≈0.1 GPa), whilst its bulk modulus is relatively lower (≈14 GPa cf. ≈16.6 GPa). The heavier, zinc-containing material was also found to be significantly harder than its light analogue. The differential behaviour of the two materials is discussed in terms of the smaller pore volume of 2 and the greater flexibility of the LiN(4) tetrathedron compared with the ZnN(4) and BN(4) units.

Type:Article
Title:Mechanical properties of dense zeolitic imidazolate frameworks (ZIFs): a high-pressure X-ray diffraction, nanoindentation and computational study of the zinc framework Zn(Im)2, and its lithium-boron analogue, LiB(Im)4.
Location:Germany
DOI:10.1002/chem.201001415
Language:English
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record