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ABSTRACT 
 
Well-mixed and lattice-based descriptions of stochastic chemical kinetics have been extensively 
used in the literature. Realizations of the corresponding stochastic processes are obtained by the 
Gillespie stochastic simulation algorithm and lattice kinetic Monte Carlo algorithms, 
respectively. However, the two frameworks have remained disconnected. We show the 
equivalence of these frameworks whereby the stochastic lattice kinetics reduces to effective well-
mixed kinetics in the limit of fast diffusion. In the latter, the lattice structure appears implicitly, 
as the lumped rate of bimolecular reactions depends on the number of neighbors of a site on the 
lattice. Moreover, we propose a mapping between the stochastic propensities and the 
deterministic rates of the well-mixed vessel and lattice dynamics that illustrates the hierarchy of 
models and the key parameters that enable model reduction. 
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1. INTRODUCTION 

Stochasticity in the occurrence of chemical reactions has recently attracted significant interest in 
different research areas, such as biology and catalysis. In biology, the small sizes of the cellular 
compartments and the low numbers of molecules participating in biochemical reactions result in 
appreciable noise in gene expression and regulatory functions of the cell (Maheshri and O'Shea, 
2007; McAdams and Arkin, 1997, 1999). This noise modulates the behavior of genetic circuits 
and can induce novel expression patterns, such as enhancement of cellular variability and 
creation or destruction of bistability (Blake et al., 2003; Hasty et al., 2000; Kepler and Elston, 
2001; Raser and O'Shea, 2005; Stamatakis and Mantzaris, 2009) that have been linked to cell 
fate decisions (Maamar et al., 2007; Raser and O'Shea, 2005; Süel et al., 2007). In catalysis, the 
small sizes of systems, such as supported nanoparticle catalysts (Jacobs et al., 1997; Johánek et 
al., 2004; Zhdanov and Kasemo, 1998) or facets of field emitter tips (Suchorski et al., 2001; 
Suchorski et al., 1999), result in fluctuations in the coverages and reactivity, which have 
profound effects on the observed behavior. Complex phenomena, such as loss of bistability, 
noise-induced transitions or oscillations have been predicted by theory and confirmed by 
experiment (Liu and Evans, 2002; Pineda et al., 2006; Pineda et al., 2007; Vlachos et al., 1991; 
Zhdanov and Kasemo, 1994, 1998, 2000). 
 
Such phenomena can be analyzed by probabilistic descriptions of chemical kinetics, which have 
been used for many decades to model both well-mixed and spatially-distributed systems. Well-
mixed systems are described by the chemical master equation (Gardiner, 2004; McQuarrie, 1967; 
Nicolis and Prigogine, 1977; van Kampen, 1992), realizations of which can be obtained by an 
exact stochastic simulation algorithm (SSA), also known as the Gillespie kinetic Monte Carlo 
(KMC) algorithm (Gibson and Bruck, 2000; Gillespie, 1976, 1977). For spatially distributed 
systems, the lattice gas model (Kreuzer and Zhang, 1990) and the Ising spin model (Kawasaki, 
1972) are used. Kinetic Monte Carlo (KMC) methods have been developed for simulating the 
dynamic behavior of these models (Chatterjee and Vlachos, 2007). The method is often 
attributed to Bortz et al. (1975). 
 
From a theoretical standpoint, the two stochastic simulation methods, namely lattice KMC and 
the Gillespie SSA, remain disconnected, even though similar computational schemes are used in 
the simulation of lattice and well-mixed systems. Thus, in this work we are concerned with 
bridging the stochastic descriptions of spatially-distributed and well-mixed chemical systems. 
We apply singular perturbation analysis under the assumption of fast diffusion dynamics without 
closure assumptions or coarse-graining. We thus show that a master equation for the dynamics of 
a single species on the lattice reduces to a birth-death master equation that pertains to a well-
mixed chemical system. This procedure elucidates the mapping between the microscopic lattice 
propensities and those of the well-mixed stochastic model. We further demonstrate that the error 
of the approximation drops linearly with the inverse of the diffusion rate. Moreover, we 
investigate the thermodynamic limit of large system sizes and derive deterministic models that 
can accurately capture the dynamics. 
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2. METHODS 

Several methods have appeared in the literature for the treatment of time scale separation in 
chemical kinetics of well-mixed systems (Cao et al., 2005a; 2005b; E et al., 2005; Haseltine and 
Rawlings, 2002, 2005; Hill et al., 2008; Mastny et al., 2006, 2007; Peles et al., 2006; Rao and 
Arkin, 2003; Salis and Kaznessis, 2005a; 2005b; Salis et al., 2006; Samant et al., 2007; Samant 
and Vlachos, 2005; Weinan et al., 2007). We have extended these ideas to any type of discrete 
master equation by explicitly partitioning of the state space into sets within which the dynamics 
evolves rapidly and subsequently indexing of these sets. This procedure is essentially a 
coordinate transformation through which the state space is mapped to the index sets of the 
partition and each element of the partition. Through this mapping, conveniently chosen variables 
are introduced, thereby making possible the treatment of complex processes, such as the 
chemical kinetics of a fast diffusing species on a lattice. Previous methods can be viewed as a 
special case of our derivation when this mapping is linear. In the following, we summarize the 
key result of this derivation, the details of which appear in section 1 of the Supplementary 
Material along with a detailed review of previous methods. 
 
We start from a discrete master equation of the type: 
 

( ) ( ) ( ) ( ) ( )P ; t P ; t P ; t
t ′

′∈

∂ ′ ′ = α ⋅ − α ⋅ ∂ ∑ w w
w

w w w w w


 (1) 

 
where w and w′ denote states belonging to  , the state space of the system whose evolution is 
governed by equation (1). The latter equation is a balance for P(w;t), the probability that the 
system is in state w at time t. The transition probability for going from state w′ to state w is 
denoted as ( )′αw w . Thus, the positive terms of the right hand side of equation (1) express 
probability influx from states w′ to state w, and the negative terms express probability efflux 
from state w to state w′. 
 
We subsequently introduce a partitioning in  : 
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This partitioning is essentially a change of coordinates which maps every state w to a pair of 
elements (u,v), where ∈v  , with   being an index set for  , and ∈ vu  , with v  being an 
index set for v . Figure 1 illustrates this mapping in a simple case where a state space consisting 
of 16 discrete states is partitioned to 7 disjoined sets. 
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If the transition probabilities of equation (1) involve large parameters that are on the order of ε−1, 
ε being a small parameter, one can construct a partitioning that satisfies the following condition: 
 

( )
( )

( )
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1 , if
,

, otherwise

′
′ ′

′

 ′⋅α =εα = 
α

u v
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u v
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 (3) 

 
Then, equation (1) can be decomposed to the following two equations which become exact in the 
limit ε → 0: 
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Equation (4) expresses the quasi-steady-state approximation and (5) captures the slow dynamics 
onto which the fast ones have been projected. 

3. THEORY 

3.1. Model Formulation 

In this section we develop a master equation for the dynamics of adsorption, desorption, 
diffusion and reaction on a lattice (see Table I for the reaction network), involving a single 
species, and subsequently reduce this equation using the methodology of the previous section. 
The difference between the current work and that of Mastny et al. (2006) lies in the analytical 
formulation of exact and approximate mathematical models for single species lattice dynamics, 
whereas Mastny et al. (2006) focus on developing a numerical simulation strategy based on 
quasi-equilibrium arguments. 
 
The last process appearing in Table I is the diffusional hopping of a particle to an unoccupied 
neighboring site, and the kinetic constant for this process is denoted as kdif. We assume that this 
parameter assumes values that are much larger than any other kinetic constant. Thus, we can 
introduce a small parameter ε and write this kinetic constant as: 
 

dif
difk κ

=
ε

 (6) 

 
where κdif is the normalized diffusion constant, which is of the order of 1. Since kdif is now 
expressed as a parameter of order of ε−1, it is possible to apply singular perturbation analysis. 
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The assumption of fast diffusion is usually valid for catalytic surfaces, for example CO diffusion 
is much faster than other processes on Pt surfaces (Raimondeau and Vlachos, 2002; Zhdanov and 
Kasemo, 1994). This, however, may not be the case when dealing with diffusion-limited 
processes for example those occurring in zeolites (Coppens et al., 1998; Iyengar and Coppens, 
2004).  
 
Since diffusion conserves the number of particles on a lattice, we can partition the state space 
into subsets in which the number of adparticles is constant (see equations 2, 3). The state of the 
system can then be represented as a vector of integers (ν,x1,x2,…xν), where ν denotes the number 
of adparticles that exist on the lattice, and x1,…,xν denote the sites that these particles occupy in 
an ascending order, so that we avoid double-counting of configurations. The corresponding 
master equation can be written as (see section 2 of the Supplementary Material): 
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Here kads, kdes, krxn1, krxn2, and kdif refer to the kinetic rates for the occurrence of each microscopic 
event, namely adsorption, desorption, single-site reaction, two-site reaction and diffusion, shown 
in Table I. Moreover, the indicator { }i jx neighbors x1  evaluates to 1 if the two sites xi and xj are 

neighbors, otherwise it returns 0. State (ν,x1,…,xν) may have resulted from adsorption of a 
particle to site xξ ≠ xi, i = 1,…,ν. Thus, state (ν,x1,…,xν) receives probability influxes due to 
adsorption from all possible states containing ν – 1 particles in sites x1,…,xξ−1,xξ+1,…,xν 
(excluding site xξ). The propensity for site xξ to become occupied in the next dt is kads, and xξ 
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may be any one of the sites (x1,…,xν); hence, the overall contribution of probability influxes due 
to adsorption events is given by the first sum of the right hand side. 
 
Furthermore, configuration (ν,x1,…,xν) has empty sites q = 1,…,NL provided that q ≠ xi, ∀ i = 
1,…,ν. Thus, adsorption to any of these sites can change the configuration, thereby generating 
the probability efflux term (the second sum in equation 7). The counter q over which summation 
is performed does not appear in the summand, since the probability is written for the occupied 
sites. However, q implicitly enters the calculation, in this case as a multiplication factor (the 
number of empty sites). 
 
For the desorption and single site reaction processes, state (ν,x1,…,xν) receives probability influx 
from states which have an additional adparticle at site q. The latter may take any value different 
from x1,…,xν, thereby justifying the expression used in the summation over q. 
 
The probability efflux term is justified as follows: any one of the adparticles existing in sites 
x1,…,xν can desorb giving rise to a different configuration. Thus, the probability efflux is the 
sum over all sites of the single site desorption terms. 
 
For the probability influx terms due to two-site reaction events, similar arguments can be applied 
to derive the terms that appear in equation (7), with the only difference that we now have two 
additional adparticles that need to be neighboring in order to react. Thus, we sum over the 
possible sites that the two particles can occupy, using the indicator for sites p and q being 
neighbors, { }p neighbors q1 . 
 
For the diffusion process, a particle jumps from site q to site xξ. Consequently, state (ν,x1,…,xν) 
receives contributions from states in which site xξ is unoccupied and site q is an occupied 
neighbor of site xξ. In a similar way, efflux terms for diffusion and reaction are calculated on the 
basis of the events that are allowed to happen when the system is in state (ν,x1,…,xν). 

3.2. Model Reduction 

Since diffusion does not change the number of particles on the lattice, let us introduce the 
marginal probability for the number of adparticles as P(ν;t) and the conditional probability for 
their positions P(x1,…,xν|ν;t). It follows that: 
 

( ) ( ) ( )1 1P , x ,..., x ; t P x ,..., x | ; t P ; tν νν = ν ⋅ ν  (8) 
 
and thus, by applying the singular perturbation methodology we reduce equation (7) to the 
following: 
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1
L L

0 1
L
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−
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 (9) 
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 (10) 

 
where νcoord is the coordination number of the lattice, namely the number of the nearest 
neighbors of a site. For our purposes we consider a 2D regular lattice, and thus, the coordination 
number can take one of the following values: 3 for a honeycomb-type lattice, 4 for a rectangular 
lattice, and 6 for a hexagonal lattice. 

3.3. Deterministic Model in the Thermodynamic Limit 

By taking the limit for large system size in the birth-death master equation (10), we can 
formulate an ordinary differential equation (ODE) for the processes of adsorption, desorption, 
and reaction, which we will refer to as the thermodynamic-limit deterministic model (TL-
deterministic model). Such deterministic models have been previously formulated (Mastny et al., 
2006). However, those were based on the chemical master equation, whereas ours are derived 
from the well-mixed lattice master equation (10), thereby being capable of revealing the effects 
of lattice connectivity and adparticle localization. Starting from equation (10) we multiply both 
sides with ν/NL and sum over ν: 
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ν ν
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ν ν
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∑
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∑ ∑

∑ ∑
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( )
( ) ( )

L LN 2 N
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0 0
0 2L L L

k2 1 P 2; t 1 P ; t
1 N 2 N 1 N

−

ν= ν=

⋅νν ν
⋅ ⋅ ν + ⋅ ν + ⋅ ν + − ⋅ ⋅ν ⋅ ν − ⋅ ν

⋅ −∑ ∑

(11) 

 
Subsequently, we change the summation limits of the positive terms, for instance for the 2-site 
reaction term: 
 

( )
( ) ( ) ( )

( )
( ) ( )

L LN 2 N
rxn2 coord rxn2 coord

0 0
0 2L L L L

k k 22 1 P 2; t 1 P ; t
2 N 1 N 2 N 1 N

−

ν= ν=

⋅ν ⋅νν ν −
⋅ ⋅ ν + ⋅ ν + ⋅ ν + = ⋅ ⋅ν ⋅ ν − ⋅ ν
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and thus: 
 

( )
( ) ( ) ( )

( )
( ) ( )

( )
( )

( )

L L

L

N 2 N
rxn2 coord rxn2 coord
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∑ ∑

∑
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In the thermodynamic limit NL → ∞, correlations and fluctuations are suppressed: 
 

2

L L

1
N N 1
ν ν −

⋅ = θ
−

 (14) 

 
Applying the same reasoning to the rest of the terms in equation (11), one derives the following 
deterministic model: 
 

( ) ( ) ( ) ( )ads des rxn1 rxn2
d r r r 2 r
dt
θ

= θ − θ − θ − ⋅ θ  (15) 

 
where the intensive propensity functions are given as: 
 

( ) ( )ads adsr k 1θ = ⋅ − θ  (16) 
 

( )rxn1 rxn1r kθ = ⋅θ  (17) 
 

( ) 2rxn2
rxn2 coord

kr
2

θ = ⋅ν ⋅θ  (18) 

 
( )des desr kθ = ⋅θ  (19) 

 
Therefore, the TL-deterministic model is written as: 
 

( ) 2
ads des rxn1 rxn2 coord

d k 1 k r k
dt
θ

= ⋅ − θ − ⋅θ − ⋅θ − ⋅ν ⋅θ  (20) 

 
Note that this model is identical to the mean-field models derived using the law of action kinetics 
(Lutsevich et al., 1991). Here, equation (20) was derived using singular perturbation assuming 
fast Fickian diffusion and a subsequent system size expansion. 
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4. RESULTS AND DISCUSSION 

4.1. Comparison of Microscopic Lattice KMC with Well Mixed Stochastic Kinetics 

In order to compare the full master equation (7) with the birth-death master equation (10), 
realizations of the corresponding stochastic processes were obtained through KMC simulations 
for fast diffusion dynamics. To simulate equation (7), we developed a lattice KMC code in 
FORTRAN 95. The code incorporates a binary tree structure for storing the partial sums of the 
propensities, thereby allowing for efficient (log2(P)) search and update, where P is the number 
of microscopic processes considered, i.e., the number of microscopic processes per site times the 
number of lattice sites. Note that P scales linearly with the number of lattice sites, NL. On the 
other hand, well mixed stochastic kinetics was simulated with Gillespie’s SSA algorithm, using 
the propensity functions appearing in equation (10). The stationary probability density was also 
obtained by direct solution of a system of NL+1 algebraic equations, obtained by writing 
equation (10) at steady state for ν = 1,…,NL−1, along with the following relations for ν = 0 and 
NL: 
 

( ) ( ) ( )
( )

( )rxn2 coord
ads L 0 des 0 rxn1 0 0

L

k0 k N P 0; t k P 1; t k P 1; t P 2; t
N 1

⋅ν
= − ⋅ ⋅ + ⋅ + ⋅ ν + + ⋅

−
 (21) 

 
( ) ( ) ( )

( ) ( ) ( )

ads 0 L des L 0 L rxn1 L 0 L

rxn2 coord
L L 0 L

L

0 k P N 1; t k N P N ; t k N P N ; t
k N N 1 P N ; t
2 N 1

= ⋅ − − ⋅ ⋅ − ⋅ ⋅

⋅ν
− ⋅ ⋅ − ⋅

⋅ −
 (22) 

 
Figure 2 summarizes the results of these comparisons. Panel (a) shows transients of the number 
of adparticles on the lattice and panel (b) the corresponding stationary probability mass functions 
(PMFs), revealing an excellent agreement between the full and reduced model. At stationary 
conditions, the number of adparticles on the lattice can be viewed as a random variable that 
converges weakly (in distribution) to the random number of particles predicted by equation (10). 
The error of the approximation is on the order of ε as computationally shown in panel (c). For 
this plot, the stationary distribution ( )sP ν  was obtained though lattice KMC simulation, the 
approximate distribution ( )s

0P ν  was obtained by solving equation (10) at steady state along with 
equations (21, 22) and the error was calculated as the Euclidean norm of the difference 

( ) ( )s s
0P Pν − ν  (see equation 13 of Supplementary Material, section 1). Furthermore, the quality 

of the approximation is not affected by the presence of “boundaries”: excellent agreement is also 
observed for parameter sets for which the probability accumulates to the minimum (ν = 0) or the 
maximum (ν = NL) number of particles as shown in Figure 2(d) and Figure 2(e). 
 
The results obtained with the birth-death master equation (10) and the full model (7) should also 
agree in non-stationary conditions. To show this agreement we can solve a linear system of NL+1 
ordinary differential equations obtained by writing expression (10) for ν = 0,…,NL thereby 
computing P0(ν;t). Subsequently, the latter can be compared to the probability distributions 
obtained through KMC simulations. The results of these comparisons are shown in Figure 3a, b 
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in which the system is initialized with an empty lattice (P(ν,0) = δν,0) and the two probability 
densities are compared at two different times. In order to perform a convergence analysis, we 
evaluate the two distributions at 16 time instances from 0 to 1.5⋅10−6 and calculate the error as: 
 

( ) ( )( )
t LN N

2
0

i 0 0
Error P ;i t P ;i t

= ν=

= ν ⋅∆ − ν ⋅∆∑∑  (23) 

 
Figure 3c portrays the average ν of the birth-death equation as well as the time instances 0, ∆t, 
2⋅∆t, … used in the calculation of the error (equation 23), showing that the non-stationary 
solution is being sampled correctly. The convergence plot of Figure 3d shows that the error drops 
linearly with ε (see equation 6). 
 
It is interesting to observe that the bimolecular reaction propensity that appears in equation (10) 
depends on the coordination number of the lattice νcoord, which is the number of neighbors of a 
site. The maximum value of νcoord is NL − 1 and occurs when all lattice sites are treated as 
neighbors. For 1st-nearest neighbors in regular 2-dimensional lattices, the possible values of the 
coordination number are 3, 4 or 6 (triangular, rectangular and hexagonal lattices, respectively). 
Figure 4 shows the effect of lattice type on the stationary PMF for the number of adparticles. For 
the more connected hexagonal lattice (panels c, d), the rate of bimolecular reactions is higher, 
resulting in lower numbers of particles on the lattice at stationary state. If one rescales the 
reaction rate constant for lattices at different coordination numbers, so that the krxn2 ⋅νcoord is the 
same for these lattices, identical results are obtained (results not shown). 

4.2. Comparison of Microscopic Lattice KMC with TL-Deterministic Model 

Figure 5 compares of the TL-deterministic model (20) with lattice KMC simulations for fast 
diffusion and relatively large numbers of sites. Two different lattice configurations were used, 
namely triangular and hexagonal lattice, in both of which the agreement between the KMC and 
the TL-deterministic results is excellent. Fast (Fickian) diffusion homogenizes the adsorbates on 
the lattice thereby rendering the approximation accurate. Our derivation and the observations just 
noted are in line with previously published computations comparing KMC simulation results 
with those obtained by ideal models employing mean-field arguments (Araya et al., 1989; 
Lutsevich et al., 1991; Meakin and Scalapino, 1987). For example, Lutsevich et al. (1991) 
observe progressively better agreement between the KMC simulations and a deterministic ideal 
adsorbed layer model as the coordination number of the lattice increases (maximum number of 
reaction partners as noted in the cited paper). Inspection of equation (20) elucidates this 
observation: if all sites were treated as neighbors, the coordination number would be νcoord = NL 
– 1. For this case, the intensive reaction rate entering the mean-field model (krxn2∙νcoord) is 
approximately equal to the microscopic one scaled by the number of sites (krxn2∙NL), and thus the 
KMC simulation and the deterministic mean-field model are in excellent agreement. 

4.3. Computational Savings 

It is important to note that simulating the approximate models (10) or (15) is much faster than 
performing the full lattice KMC simulation with fast diffusion. Depending on the value of the 
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diffusion coefficient, the required computational time for the lattice KMC can vary from several 
minutes to hours. On the contrary, the corresponding simulations of the birth-death master 
equation typically take less than a minute and the TL-deterministic model can be simulated in a 
few seconds. Specifically, for fast diffusion, the computational time of the KMC increases 
linearly with the value of the diffusion coefficient, whereas the computational times of the 
approximate models remain constant. Thus, one can achieve computational speedup at least 
proportional to 1/ε, namely, linear with respect kdif (see equation 6). This argument assumes that 
(1) search and update algorithms are used in the lattice KMC (Chatterjee and Vlachos, 2007). 
In reality, the search and update algorithms are more expensive making the computational 
savings even larger. 

4.4. Comparison with Chemical Master Equation and Deterministic Mass Action Law 
Model 

It is interesting to compare the birth-death master equation (10) and the TL-deterministic model 
(20) with the following chemical master equation and the corresponding deterministic model, 
which is based on the mass action law, respectively: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

wm wm
in max in max

wm wm
rxn1 rxn1

wm wm
rxn2 rxn2

A A

P ; t k N 1 P 1; t k N P ; t
t

k 1 P 1; t k P ; t

k k2 1 P 2; t 1 P ; t
2 V N 2 V N

∂ ν
= ⋅ − ν + ⋅ ν − − ⋅ − ν ⋅ ν +

∂

⋅ ν + ⋅ ν + − ⋅ν ⋅ ν +

⋅ ν + ⋅ ν + ⋅ ν + − ⋅ν ⋅ ν − ⋅ ν
⋅ ⋅ ⋅ ⋅

 (24) 

 

( )wm wm wm 2
in max rxn1 rxn2

dC k C C k C k C
dt

= ⋅ − − ⋅ − ⋅  (25) 

 
where Nmax is the maximum possible number of particles in the vessel, C = ν/(NA⋅V) is the 
concentration of particles, with NA denoting the Avogadro’s number and V the volume of the 
vessel, and Cmax = Nmax/(NA⋅V). Moreover, 

wm
ink , wm

rxn1k , and wm
rxn2k  are the kinetic constants for the 

species inflow, and the 1st- and 2nd-order reactions, respectively (note that desorption has been 
omitted here for simplicity since it is a 1st-order process, in our example, like a reaction). 
 
Furthermore, by introducing the normalized concentration: 
 

max

C
C

χ =  (26) 

 
which is analogous to the coverage fraction θ of the lattice, equation (25) becomes: 
 

( )wm wm wm 2
in rxn1 rxn2 max

d k 1 k k C
dt
χ

= ⋅ − χ − ⋅χ − ⋅ ⋅χ  (27) 
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Note that the processes described by equations (24) and (25) are different from those of 
equations (10) and (20), since in the former, the molecules can be located anywhere in the 
continuous space of the vessel, whereas in the latter the molecules are localized to discrete lattice 
sites. Thus, the extensive reaction rates in the well-mixed vessel are affected by the volume, 
whereas in the lattice they are affected by the site density and neighboring structure. In the case 
of a vessel, bimolecular reactions occur between colliding molecules. Consequently, localization 
of particles in small volumes will result in more frequent collisions, and thus, higher reaction 
rates. For the lattice, however, bimolecular reactions occur only between neighboring molecules, 
and that is why the coordination number νcoord appears in the 2-site reaction propensity and 
deterministic rate. 
 
Despite these differences, the mathematical formalisms of equations (10, 24) and (20, 27) are 
analogous, thereby making possible a comparison between the two frameworks of well-mixed 
versus lattice-based stochastic kinetics. The differences just noted are manifested as 
proportionality factors in the kinetic constants found in the models. Table II reveals the mapping 
between the stochastic propensities and the deterministic rates of the well-mixed vessel and 
lattice equations. Specifically, if one wants to use a well-mixed KMC (such as the Gillespie 
algorithm) for capturing lattice dynamics, one would have to use the propensities appearing in 
the 4th column (Stochastic Well-Mixed Propensity) and the rows of Table II marked as “Vessel”, 
with the following rate constants for the well-mixed case: 
 

( )

max L
wm
in ads
wm
rxn1 rxn1

wm coord A
rxn2 rxn2

L

N N

k k

k k
V Nk k

N 1

=

=

=
ν ⋅ ⋅

= ⋅
−

 (28) 

 
Similarly, simulation of a well-mixed vessel using the deterministic mass-action law equation 
(27) would yield identical results with the TL-deterministic model if equalities (28) hold and 
additionally: 
 

wm coord
L rxn2 rxn2

max

N k k
C
ν

→ ∞ ⇒ = ⋅  (29) 

5. CONCLUSIONS 

Motivated by the challenge of bridging the stochastic descriptions of spatially distributed and 
well-mixed chemical systems, we studied the stochastic on-lattice kinetics of a single species and 
showed the equivalence of the two formulations in the fast diffusion limit.  
 
Starting from a master equation for the processes of adsorption, desorption, diffusion and 
reaction of a single species on a lattice, we applied singular perturbation for fast Fickian 
diffusion, thereby deriving a stochastic birth-death model pertaining to a well-mixed system. 
This model can be simulated with the Gillespie algorithm and was found to be in excellent 
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agreement with the full lattice model. The quality of the approximation becomes progressively 
better for higher values of the diffusion coefficient and the computational savings from 
simulating the reduced models can be tremendous.  
 
We further derived the deterministic model in the thermodynamic limit (TL) of large system 
sizes (infinite number of lattice sites). Our TL-deterministic model is identical to the Bragg-
Williams mean-field formulation, when the lattice coordination number is taken into account in 
the kinetic constant of the two-site reaction. This reduction procedure naturally led to a mapping 
of the parameters of the different models in the hierarchy, thereby bridging the different levels of 
approximation. 
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TABLES 

Table I: Single Species Elementary Steps for Lattice Kinetics 
 

Reaction 1, 2 Description 

( ) ( )
adsk

s sA∗ →  Adsorption 

( ) ( )
desk

s sA → ∗  1st-order Desorption 

( ) ( )
rxn1k

s sA → ∗  1-Site, 1st-order  Reaction 

( ) ( ) ( ) ( )
rxn 2k

s n s nA A+ → ∗ + ∗  2-Site, 2nd-order Reaction 

( ) ( ) ( ) ( )
difk

s n s nA A+ ∗ → ∗ +  Diffusion 
1: microscopic kinetic constants are shown. 
2: subscripts (s) and (n) denote a site and its neighbor, respectively. 
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Table II: Comparison of rate expressions in various frameworks 
 

Process System Microscopic 
Propensity 

Stochastic (Well-
Mixed) Propensity  

Deterministic 
Rate 

Species 
Inflow 

Lattice ( )ads ik 1⋅ − σ  ( )ads Lk N⋅ − ν  ( )adsk 1⋅ − θ  

Vessel − ( )wm
in maxk N⋅ − ν  ( )wm

ink 1⋅ − χ  

1st-order 
Lattice rxn1 ik ⋅σ  rxn1k ⋅ν  rxn1k ⋅θ  

Vessel − wm
rxn1k ⋅ν  wm

rxn1k ⋅χ  

2nd-order 
Lattice rxn2 i jk ⋅σ ⋅σ  ( )

( )rxn2 coord

L

k 1
2 N 1

⋅ν
⋅ν ⋅ ν −

⋅ −
 2

rxn2 coordk ⋅ν ⋅θ  

Vessel − ( )
wm
rxn2

A

k 1
2 V N

⋅ν ⋅ ν −
⋅ ⋅

 wm 2
rxn2 maxk C⋅ ⋅χ  
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FIGURE CAPTIONS 

Figure 1: Illustration of the mapping w → (u,v). A set of 16 discrete states labeled w = 1, 2, … 
16 (left schematic) can be partitioned to 7 disjoint sets  v, for v ∈  = {1, 2, …, 7} (right 

schematic), each of which contains a different number of states. Each of the states belonging to 
the same set  v is assigned a “local number” u, so that the state is now specified by the ordered 
pair (u,v). For instance, the set v for v = 3 contains the states w = 5, 10 and 15; thus, 3 = {5, 

10, 15}. The corresponding index set is 3 = {1, 2, 3} and therefore the state w = 10 is now 

denoted as (u,v) = (2, 3). 
 
Figure 2: (a): Comparison of the transients obtained with the lattice KMC and the simulation of 
the birth-death master equation (10). (b): Histograms corresponding to the transients of panel (a). 
Parameter values for panels (a, b): rectangular periodic 5 × 5 mesh (NL = 25), νcoord = 4, kads = 
8.5×105, kdes = 4.0×105, kdif = 109, krxn2 = 106, tfinal = 4×10−4; sampling of the stochastic path was 
performed at time intervals ∆tsample = 10−8. (c): The points connected with lines show the error of 
the approximation with respect to ε. The error was calculated as the Euclidean norm of 

( ) ( )s s
0P Pν − ν , in which the stationary distribution ( )sP ν  is obtained through lattice KMC and 

the approximate one ( )s
0P ν  from solving steady state equations (10-22). The straight line 

indicates the scaling relation C⋅ε where ε was evaluated as ε = kads/kdif. (d): As in panel (b) with 
kads = 8.5×107, tfinal = 4×10−4. (e): As in panel (b) with kads = 5×104, tfinal = 10−3. 
 
Figure 3: (a, b): Comparison of probability distributions for the number of particles obtained 
with the lattice KMC and the simulation of the birth-death master equation (10) in the non-
stationary regime. Multiple trajectories were run and sampled at t = 10−7 (panel a) and 5×10−7 
(panel b). Kinetic constants as in Figure 2a. (c): The mean number of particles on the lattice as a 
function of time. The triangles mark the time instances used for evaluating the error in equation 
(23). (d): Convergence plot (similar to Figure 2c) but for the non-stationary regime. Multiple 
KMC trajectories were run and sampled at the times 0, 10−7, 2×10−7, … marked in panel (c). The 
error was calculated from equation (23). Parameters as in panels (a, b). 
 
Figure 4: (a): A 6 × 6 triangular lattice (νcoord = 3). (b): Histograms obtained from lattice and 
birth-death simulations of adsorption, desorption and reaction dynamics for the lattice of panel 
(a). Parameter values except mesh size and coordination number as in Figure 2(a). (c): A 6 × 6 
hexagonal periodic lattice (νcoord = 6). (d): As in panel (b) for the lattice of panel (a). 
 
Figure 5: Comparison of lattice KMC transients with mean-field results (ODE model 20). (a): 
Triangular periodic 30 × 30 mesh (NL = 900), νcoord = 3. (b): Hexagonal periodic 30 × 30 mesh 
(NL = 900), νcoord = 6. Other parameters: kads = 8.5×105, kdes = 4.0×105, kdif = 109, krxn1 = 0, krxn2 
= 106.  
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SUPPLEMENTARY MATERIAL 

1. SINGULAR PERTURBATION ON DISCRETE MASTER EQUATIONS 

A. Background 

The treatment of time-scale separation in the Chemical Master Equation (exact realizations of 
which are simulated by the Gillespie algorithm) has attracted significant attention, and several 
methods have been developed to this end. By partitioning the reactions into fast and slow and 
treat the fast ones as having reached equilibrium, hybrid and multi scale algorithms have been 
developed. Haseltine and Rawlings [1-2] have used such a scheme, in which Langevin 
formulations are used for the fast reactions and the discrete SSA [3-4] for the slow ones. In the 
same context, Salis and Kaznessis have proposed hybrid [5] and equation free [6] algorithms that 
have been integrated to freely available computational frameworks [7-8]. 
 
On the other hand, Rao and Arkin [9] partition the species into fast (ephemeral) and slow and 
derive a master equation for the slow species. The propensities in this equation appear as 
averages over the conditional probability of the fast species contents and no Langevin 
approximations are involved. Based on the same principle, Cao et al. [10] have developed the 
slow scale SSA (ssSSA) and a multiscale algorithm [11] in which the averaging of the 
propensities is done over the “virtual fast process”, namely realizations simulating only the fast 
events. Samant and Vlachos [12], Samant et al. [13] and E et al. [14-15] have used singular 
perturbation techniques to further generalize and expand the applicability of these concepts. It is 
worth noting that the nested SSA [14-15] does not a priori define slow and fast variables, 
thereby allowing for linear combinations of the original variables to be used as slow observables. 
 
Moreover, Peles et al. [16] have applied singular perturbation in conjunction with finite state 
projection for a class of biological problems. The latter method truncates the state space and 
introduces an additional error source, of which estimates can be found. A quite different 
approach was presented by Mastny et al. [17] who used singular perturbation for reaction 
networks in which the concentration of an intermediate species complex is zero. However, this 
method cannot be generalized to cases where the latter condition does not hold true. Finally, for 
the case of lattice dynamics, Mastny et al. [18] have used equilibrium assumptions (at the fast 
diffusion limit) to derive an approximate master equation for the number of adsorbed particles on 
the lattice. They demonstrated numerical results from simulating the CO oxidation on a square 
periodic lattice. 
 

* Corresponding Author. e-mail: vlachos@udel.edu 
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B. Methodology 

Let   be a discrete state space and consider the master equation: 
 

( ) ( ) ( ) ( ) ( )P ; t P ; t P ; t
t ′

′∈

∂ ′ ′ = α ⋅ − α ⋅ ∂ ∑ w w
w

w w w w w


 (1) 

 
In the above equation, w and w′ denote states belonging to  , the state space of the system 
whose evolution is governed by equation (1), P(w;t) is the probability that the system is in state 
w at time t, and ( )′αw w  denotes the transition probability for going from state w′ to state w. 
Thus, the positive terms of the right hand side of equation (1) express probability influx from 
states w′ to state w, and the negative terms express probability efflux from state w to state w′. 
 
Let us introduce a partition in   as follows: 
 

{ } ∈

′

=

⊆ ∀ ∈
′∩ = ∅ ∀ ∈ ∀ ∈

v v

v

v v

v
v v




  
   



 (2) 

 
meaning that the partition   is a set of disjoint subsets of  , indexed by set  , such that: 
 

∈

= = v
v

 




   (3) 

 
Furthermore, each of the elements of the partition is indexed by a set v  so that: 
 

{ } ∈
=

v
v u u

w


  (4) 

 
Hence, the information contained in vector w can now be fully captured by variables v ∈  and 
u ∈ v . The flow of probability in the state space   can be subsequently decomposed into two 
components: (i) intra-subset flow, namely flow between states inside the same subset v , and (ii) 
inter-subset flow, namely flow between states belonging to different subsets v  and ′v . Let us 
thus introduce the probabilities and propensities in these sets: 
 

( ) ( ) ( ) ( )
( ) ( ),

P ; t P , ; t P | ; t P ; t
,

= = ⋅

′ ′ ′α = αw u v

w u v u v v
w u v

 (5) 

 
Then, the master equation can be written as follows: 
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( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )}

,

,

P | ; t P ; t
, P | ; t P ; t

t

, P | ; t P ; t

′

′

′ ′
′ ′∈ ∈

′∈

∂ ⋅  ′ ′ ′ = α ⋅ ⋅  ∂  

 ′ ′ − α ⋅ ⋅  
 

∑ ∑

∑
v

v

u v
v u

u v
u

u v v
u v u v v

u v u v v

 



 (6) 

 
If we now apply the summing operator 

∈
∑

vu 
  to the previous equation (6): 

 
( ) ( ) ( ) ( ){

( ) ( ) ( )}
,

,

P ; t , P | ; t P ; t
t

, P | ; t P ; t

′

′

′ ′
′ ′∈ ∈ ∈
′≠

′∈ ∈

∂  ′ ′ ′ = α ⋅ ⋅  ∂  

 ′ ′ − α ⋅ ⋅  
 

∑ ∑ ∑

∑ ∑

v v

v v

u v
v u u
v v

u v
u u

v u v u v v

u v u v v

  

 

 (7) 

 
since the terms expressing jumps between states of the same set of the partition (v = v′) vanish: 
 

( ) ( ) ( ) ( ), ,, P | ; t , P | ; t 0′
′∈ ∈

′ ′ α ⋅ − α ⋅ = ∑ ∑
v v

u v u v
u u

u v u v u v u v
 

 (8) 

 
This setup makes possible the treatment of fast dynamics within subsets of  . Specifically, 
assuming that the dynamics inside the subsets v  evolve fast, we can develop a master equation 
for the dynamics in  . We thus consider two timescales: the probability flow inside v  occurs 
on the fast timescale, whereas the flow between different sets v  occurs on the slow timescale. 
The separation between these timescales is quantified by a single parameter ε. Thus: 
 

( )
( )

( )

,
,

,

1 , if
,

, otherwise

′
′ ′

′

 ′⋅α =εα = 
α

u v
u v

u v

u v v v
u v

u v
 (9) 

 
where the value of ε depends only on the rate parameters entering the propensity functions, and 

( ), ,′αu v u v  has no dependence in ε. We can subsequently introduce asymptotic expansions for 
the probabilities as follows: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
0 1 2

2
0 1 2

P | ; t P | ; t P | ; t P | ; t ...

P ; t P ; t P ; t P ; t ...

= + ε ⋅ + ε ⋅ +

= + ε ⋅ + ε ⋅ +

u v u v u v u v

v v v v
 (10) 

 
Therefore, on the order of ε−1, equation (6) gives: 
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( )

( ) ( ) ( ) ( )

1

, 0 , 0

:

0 , P | ; t , P | ; t

−

′
′∈

ε

′ ′ = α ⋅ − α ⋅ ∀ ∈ ∑
v

u v u v
u

u v u v u v u v v





 (11) 

 
Equation (11) mathematically justifies the use of the quasi-steady-state approximation in this 
context. Furthermore, from equation (7) on the order of 1: 
 

( )

( ) ( ) ( ) ( ){
( ) ( ) ( )}

0
, 0 0

, 0 0

1 :
P ; t , P | ; t P ; t

t

, P | ; t P ; t

′

′

′ ′
′ ′∈ ∈ ∈
′≠

′∈ ∈

∂  ′ ′ ′ = α ⋅ ⋅  ∂  

 ′ ′ − α ⋅ ⋅  
 

∑ ∑ ∑

∑ ∑

v v

v v

u v
v u u
v v

u v
u u

v u v u v v

u v u v v

  

 



 (12) 

 
Equation (12) has the formulation of a master equation but with propensities that are averages 
with respect to the posterior probability appearing in the (ε−1) equation (11).  
 
A few comments on the double summation are necessary to clarify the nature of this averaging. 
Let the system be found at pseudo-state v′ at time t. We use the word “pseudo-state” because v 
captures only the values of the slow variables, and thus, the actual (full) state of the system is 
known with some uncertainty associated with the values of the fast variables u′. Suppose now 
that the system transits to a pseudo-state v. Again, there is some uncertainty as to where exactly 
we have landed in terms of the actual state of the system. This uncertainty exists in the values of 
the fast variables u. Consequently, the double summation over u′ and u essentially averages out 
these two sources of uncertainty: since the fast variables sample the entire partitions ′v  and 

v , this averaging represents an averaging from-all to-all the possible unobserved states of the 
fast variables. In other words, we are averaging over all possible ways to go from ′v  to v . 
 
Note that we did not encounter any closure problems in deriving equation (12). Terms pertaining 
to P1 no longer appear in this equation as a result of the introduction of the space partition 
(equation 2). We further highlight that under these conditions, the slow variables themselves 
follow a stochastic process that exhibits the Markov property. This is only true, of course, in the 
limit ε → 0.  
 
We finally note that our derivation pertains to the probabilities P0 and the order of the 
approximation is ε. In the case of stationary conditions, this has the following important 
consequence. Suppose that the stochastic processes described by the original master equation (1) 
and the approximate equations (11) and (12) are both ergodic. We can thus take samples of 
variable v over time with a sampling time-lag much greater than the autocorrelation times, so 
that the samples are uncorrelated. Thus, we can introduce the random variables v and vapprox 
pertaining to the original (1) and approximate (11, 12) master equations. The limiting behavior of 
P0, discussed in the previous paragraph, reveals that vapprox converges in distribution (weakly) to 
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v. More specifically, the error, namely the norm of the difference between the probabilities Ps 
(satisfying the full master equation) and s

0P  (satisfying the reduced model) must be 1st-order in ε: 
 

( ) ( )( )2s s
0Error P P C as 0= − → ⋅ε ε →∑

v
v v  (13) 

 
where C is a constant equal to the Euclidean norm of P1: 
 

( )( )2
1C P ; t= ∑

v
v  (14) 

 

2. LATTICE MASTER EQUATION 

Consider a lattice having NL sites. The state of the system can be described with the occupancy 
vector σ whose ith element is 1, if site i is occupied by an adparticle, and 0 otherwise. Therefore: 
 

{ } LN0,1∈ =σ   (15) 
 
Note that the state space in this case is finite containing LN2  elements. The Master equation 
describing the probability flow in the state space, dictated by the elementary steps described in 
Table I of the main text, is written as: 
 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

L

L L

L L

L L

L L

L

L

1 N

N N

ads i 1 i N ads i 1 i N
i 1 i 1
N N

des i 1 i N des i 1 i N
i 1 i 1
N

rxn1 i 1 i N rxn1
i 1

P ,...,

t

k P ,...,1 ,..., k 1 P ,..., ,...,

k 1 P ,...,1 ,..., k P ,..., ,...,

k 1 P ,...,1 ,..., k

= =

= =

=

∂ σ σ
=

∂

⋅σ ⋅ σ − σ σ − ⋅ − σ ⋅ σ σ σ +

⋅ − σ ⋅ σ − σ σ − ⋅σ ⋅ σ σ σ +

⋅ − σ ⋅ σ − σ σ − ⋅σ

∑ ∑

∑ ∑

∑ ( )

{ } ( ) ( ) ( )

{ } ( )

{ } ( )

L

L

L L

Li j

L L

Li j

i j

N

i 1 i N
i 1

N N

rxn2 i j 1 i j Nx neighbors x
i 1 j 1

N N

rxn2 i j 1 i j Nx neighbors x
i 1 j 1

dif i j 1x neighbors x

P ,..., ,...,

k 1 1 P ,...,1 ,...,1 ,...,

k P ,..., ,..., ,...,

k 1 P ,..

=

= =

= =

⋅ σ σ σ +

⋅ ⋅ − σ ⋅ − σ ⋅ σ − σ − σ σ +

− ⋅ ⋅σ ⋅σ ⋅ σ σ σ σ +

⋅ ⋅ − σ ⋅σ ⋅ σ

∑

∑∑

∑∑

1

1

1 ( )

{ } ( ) ( )

L L

L

L L

Li j

N N

i j N
i 1 j 1

N N

dif i j 1 i j Nx neighbors x
i 1 j 1

.,1 ,...,1 ,...,

k 1 P ,..., ,..., ,...,

= =

= =

− σ − σ σ +

− ⋅ ⋅σ ⋅ − σ ⋅ σ σ σ σ

∑∑

∑∑ 1  (16) 
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where kads, kdes, krxn1, krxn2, and kdif refer to the kinetic rates for adsorption, desorption, single-site 
reaction, two-site reaction and diffusion (see Table I in main text). In the above equation, the 
positive terms express probability influxes from lattice configurations (states) which will result 
in configuration ( )L1 N,...,σ σ  after the occurrence of a single event (adsorption, desorption, or 

reaction). For example, a configuration in which site i is occupied by an adparticle, (σi = 1 at 
time t), receives a probability influx due to adsorption from a configuration which had σ′i = 0 at 
time t – dt. The influx term will then be written as:  
 

( ) ( ) ( )L Lads i 1 i N ads i 1 i Nk 1 P ,..., ,..., k P ,...,1 ,...,′ ′⋅ − σ ⋅ σ σ σ = ⋅σ ⋅ σ − σ σ  
 
Furthermore, if site i of configuration ( )L1 N,...,σ σ

 
is unoccupied at time t – dt (σi = 0), it can 

accept an adparticle through adsorption, resulting in a different configuration at time t. This is 
expressed by the negative efflux term: 
 

( ) ( )Lads i 1 i Nk 1 P ,..., ,...,− ⋅ − σ ⋅ σ σ σ  
 
For the desorption process, a configuration that has σ′i = 1 at time t – dt can result in a 
configuration with σi = 0 at time t. Thus, the corresponding influx term due to desorption from 
site i will be: 
 

( ) ( ) ( )L Ldes i 1 i N des i 1 i Nk P ,..., ,..., k 1 P ,...,1 ,...,′ ′⋅σ ⋅ σ σ σ = ⋅ − σ ⋅ σ − σ σ  
 
Moreover, a particle existing at site i of configuration ( )L1 N,...,σ σ  can desorb giving rise to a 
new configuration. This process corresponds to the following efflux term: 
 

( )Ldes i 1 i Nk P ,..., ,...,⋅σ ⋅ σ σ σ  
 
Since the state of the lattice changes when the occupancy of any site changes, one has to sum the 
aforementioned terms over all lattice sites, as done in equation (16). 
 
In the case of two-site processes, an example would be diffusion from site i to site j. The lattice 
configuration at time t – dt has σ′i = 1 and σ′j = 0 and results in configuration σi = 0 and σj = 1. 
Thus, the term expressing probability influx to state ( )L1 N,...,σ σ  due to diffusion from site i to 
site j will be written as: 
 

{ } ( ) ( )
{ } ( ) ( )

Li j

Li j

dif i j 1 i j Nx neighbors x

dif i j 1 i j Nx neighbors x

k 1 P ,..., ,..., ,...,

k 1 P ,...,1 ,...,1 ,...,

′ ′ ′ ′⋅ ⋅σ ⋅ − σ ⋅ σ σ σ σ =

⋅ ⋅ − σ ⋅σ ⋅ σ − σ − σ σ

1

1
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By observing that diffusion does not change the number of adsorbed particles, we can partition 
  to discrete hyperplanes ν  in which the number of adsorbed particles remains constant. The 
collection of such hyperplanes will be indexed by the set   = {0, 1, …, NL} whose elements are 
the possible numbers of adsorbed particles and each hyperplane is indexed by set ν , the 
elements of which are vectors with the positions of the adparticles (see section 4. Lattice State 
Coordinate Transformation for an illustrative example). Then, by the assumption of fast 
diffusion, the transitions between states that belong to a hyperplane are fast and transitions 
between hyperplanes are slow. This allows us to apply singular perturbation analysis after 
introducing the following change of coordinates: 
 

( )1, x ,..., xννσ  (17) 
 
where ν denotes the number of adparticles that exist on the lattice, and x1,…,xν denote the sites 
that these particles occupy in an ascending order, so that we avoid double-counting of 
configurations. For example, a configuration in a 3 × 5 lattice where sites 1, 3 and 7 are occupied 
will be given as: 
 
( ) (

 

)

1

1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 3 , 1, 3, 7
x ,..., xννσ





 (18) 

 
Apparently: 
 

{ }
{ }

L

i L L

0,..., N

x 1,..., N i 1,..., N

ν ∈

∈ ∀ =
 (19) 

 
For this application we will consider adsorption, desorption, diffusional hops, as well as 1st-order 
and 2nd-order reactions. Let us introduce the probability of a lattice configuration P(ν,x1,…,xν). 
The normalization condition for this probability will be written as follows: 
 

( ) ( )
L L L

1

N N 1 N

1
1 x 1 x 1

P 0 ... P , x ,..., x ; t 1
ν

−ν+

ν
ν= = =

+ ν =∑ ∑ ∑  (20) 

 
where P(0) is the probability that no adsorbed particles exist on the lattice. The master equation 
that models the aforementioned processes can be written in terms of the (ν,x1,…,xν) coordinates 
as follows (equation 12 of the main text): 
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( )

( ) ( )

( ) ( )

L
i

L
i

1

ads 1 1 1 ads 1
1 q 1,...,N

q x i 1,...,

des 1 des 1
q 1,...,N 1

q x i 1,...,

rxn1 1

P , x ,..., x ; t
t

k P 1, x ,..., x , x ,..., x ; t k P , x ,..., x ; t

k P 1, x ,...,q,..., x ; t k P , x ,...x ; t

k P 1, x ,...,q

ν

ν

ξ− ξ+ ν ν
ξ= =

≠ ∀ = ν

ν

ν ν
= ξ=

≠ ∀ = ν

∂ ν
=

∂

⋅ ν − − ⋅ ν +

⋅ ν + − ⋅ ν +

⋅ ν +

∑ ∑

∑ ∑

( ) ( )

{ } ( )

{ }

L
i

L L
i i

rxn1 1
q 1,...,N 1

q x i 1,...,

rxn2 1p neighbors q
p 1,...,N q p 1,...,N

p x i 1,..., q x i 1,...,

rxn2 1x neighbors x

,..., x ; t k P , x ,...x ; t

k P 2, x ,..., p,...,q,..., x ; t

k P , x ,..., x , x ,..
ξ ς

ν

ν ν
= ξ=

≠ ∀ = ν

ν
= = +

≠ ∀ = ν ≠ ∀ = ν

ξ ς

− ⋅ ν +

⋅ ⋅ ν + +

− ⋅ ⋅ ν

∑ ∑

∑ ∑ 1

1 ( )

{ } ( )

{ } ( )

L
i

L
i

1

1 1

dif 1 1 1x neighbors q
1 q 1,...,N

q x i 1,...,

dif 1x neighbors q
1 q 1,...,N

q x i 1,...,

., x ; t

k P , x ,..., x , x ,...,q,..., x ; t

k P , x ,..., x ,..., x ; t

ξ

ξ

ν− ν

ν
ξ= ς=ξ+

ν

ξ− ξ+ ν
ξ= =

≠ ∀ = ν

ν

ξ ν
ξ= =

≠ ∀ = ν

+

⋅ ⋅ ν +

− ⋅ ⋅ ν

∑ ∑

∑ ∑

∑ ∑

1

1
 (21) 

 

3. FAST DIFFUSION APPROXIMATION 

In order to apply singular perturbation according to the methodology discussed in section 1. B, 
we assume that kdif, the rate constant for diffusion is large:  
 

dif
difk κ

=
ε

 (22) 

 
where κdif is the normalized diffusion constant, which ranges on the order of 1, and kdif has now 
been expressed as a parameter on the order of ε−1. Since diffusion does not change the number of 
particles on the lattice, let us introduce the marginal probability for the number of adparticles as 
P(ν;t) and the conditional probability for their positions P(x1,…,xν|ν;t). It follows that: 
 

( ) ( ) ( )1 1P , x ,..., x ; t P x ,..., x | ; t P ; tν νν = ν ⋅ ν  (23) 
 

and thus, the (ε−1) equation is expressed as follows: 
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( )

{ } ( )

( )

L
i

1

0 1 1 1x neighbors q
1 q 1,...,N

q x i 1,...,

0 1

:

P x ,..., x , x ,...,q,..., x | ; t

P x ,..., x ,..., x | ; t 0

ξ

−

ν

ξ− ξ+ ν
ξ= =

≠ ∀ = ν

ξ ν

ε

⋅ ν

− ν =

∑ ∑ 1



 (24) 

 
which has the solution of uniform probability over the space of configurations: 
 

( ) ( )1
L L

0 1
L

N ! N !
P x ,..., x | ; t

N !

−

ν

ν ⋅ − ν 
ν = = ν 

 (25) 

 
The (1) equation for P0(ν;t) will contain expressions of the adsorption, desorption and reaction 
propensities averaged with respect to the conditional probability of equation (25). Before starting 
to evaluate these averages, we make two observations. First, the number of terms summed in the 
operator: 
 

L L L

1 i i 1 1

N 1 N i N

x 1 x x 1 x x 1
... ...

− ν ν−

−ν+ −ν+

= = + = +

•∑ ∑ ∑  (26) 

 
is equal to the combinations of NL by ν. Second, since P(x1,…,xν|ν;t) is constant, averaging for 
one-site events essentially amounts to summing the same term multiple times. Thus, the terms 
for adsorption will be averaged as follows: 
 

( )

( )

L L L

1 i i 1 1

N 1 N i N

ads 1 1 1
x 1 x x 1 x x 1 1

1
L L

ads

ads L

... ... k P x ,..., x , x ,..., x | 1; t

N N
k

1

k N 1

− ν ν−

−ν+ −ν+ ν

ξ− ξ+ ν
= = + = + ξ=

−

⋅ ν −

   
= ⋅ν ⋅ ⋅   ν ν −   
= ⋅ − ν +

∑ ∑ ∑ ∑

 (27) 

 

( )

( )

( )

L L L

1 i i 1 1 L
i

N 1 N i N

ads 1
x 1 x x 1 x x 1 q 1,...,N

q x i 1,...,

1
L L

L ads

ads L

... ... k P , x ,..., x ; t

N N
N k

k N

− ν ν−

−ν+ −ν+

ν
= = + = + =

≠ ∀ = ν

−

⋅ ν

   
= ⋅ − ν ⋅ ⋅   ν ν   
= ⋅ − ν

∑ ∑ ∑ ∑

 (28) 

 
The desorption and 1st-order reaction terms are treated in the same way, therefore we only 
mention the former: 
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( )

( )

( )

L L L L

1 i i 1 1
j

N 1 N i N N

des 0 1
x 1 x x 1 x x 1 q 1

q x , i 1,...,

1
L L

L des

des

... ... k P x ,...,q,..., x | 1; t

N N
N k

1

k 1

− ν ν−

−ν+ −ν+

ν
= = + = + =

≠ ∀ = ν

−

⋅ ν +

   
= ⋅ − ν ⋅ ⋅   ν ν +   
= ⋅ ν +

∑ ∑ ∑ ∑

 (29) 

 

( )
L L L

1 i i 1 1

N 1 N i N

des 0 1
x 1 x x 1 x x 1 1

1
L L

des

des

... ... k P x ,..., x | ; t

N N
k

k

− ν ν−

−ν+ −ν+ ν

ν
= = + = + ξ=

−

⋅ ν

   
= ⋅ν ⋅ ⋅   ν ν   
= ⋅ν

∑ ∑ ∑ ∑

 (30) 

 
Finally, for the treatment of 2nd-order reaction events, let us start with the efflux terms which are 
slightly simpler: 
 

{ } ( ) ( )
L L

1 1

N 1 N 1

rxn2 0 1 rxn2 pairsx neighbors x
x 1 x x 1 1 1

... k P x ,..., x | ; t k N
ξ ς

ν ν−

−ν+ ν− ν

ν
= = + ξ= ς=ξ+

⋅ ⋅ ν = ⋅ ν∑ ∑ ∑ ∑ 1  (31) 

 
( )pairsN ν  in equation (31) denotes the expected number of occupied site pairs, given that the 

lattice is seeded with ν adparticles, and it can be computed if we consider the expected number 
of occupied neighbors for an occupied site. To this end, consider the expected number of sites 
with j occupied neighbors, denoted as ( )occp site

occp neigh, jN ν . Then the expected number of pairs will 
be given as: 
 

( ) ( )
coord

occp site
pairs occp neigh, j

j 0

1N j N
2

ν

=

ν = ⋅ ⋅ ν∑  (32) 

 
where the factor of ½ prevents double-counting the pairs (otherwise each pair would be counted 
once per occupied site and therefore two times total). 
 
Now, we can find an analytical expression for ( )occp site

occp neigh, jN ν  as follows: let ν adparticles be 
seeded on the lattice. Given an occupied site, we want to find the probability that this site has j 
neighbors, where j ranges from 0 to νcoord, the lattice coordination number. The latter is defined 
as the number of nearest neighbors of a site on the lattice. The probability distribution in 
question is hypergeometric, since we can reformulate the problem as follows: consider a 
collection of the NL − 1 sites, of which NL − ν will be empty and ν − 1 will be occupied. We 
need to sample this collection νcoord times without replacement, in order to populate the 
neighbors of the given occupied site. We then ask what is the probability that j out of the νcoord 
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sites will be occupied. Clearly, the number of successes will follow a hypergeometric 
distribution, and thus: 
 

( ) 1occp site
occp neigh, j L L

coord coord

N N N 11
j j

−ν − ν −ν −    
= ⋅ ⋅    ν − νν     

 (33) 

 
and therefore: 
 

( )
coord

1
L L

pairs
j 0 coord coord

N N 111N j
j j2

−ν

=

− ν −ν −    
ν = ⋅ν ⋅ ⋅ ⋅ ⋅    ν − ν    

∑  (34) 

 
The sum evaluates to the average of the hypergeometric distribution, which is equal to the 
product of total number of samplings and maximum number of successes divided by the size of 
the sampled population. Therefore, in our case: 
 

( )
( )coord

pairs
L

11N
2 N 1

ν ⋅ ν −
ν = ⋅ν ⋅

−
 (35) 

 
Let us now treat the influx terms due to 2nd-order reaction events: 
 

{ } ( )
L L

1 1 L L
i i

N 1 N

rxn2 0 1p neighbors q
x 1 x x 1 p 1,...,N q p 1,...,N

p x i 1,..., q x i 1,...,

... k P x ,..., p,...,q,..., x | 2; t
ν ν−

−ν+

ν
= = + = = +

≠ ∀ = ν ≠ ∀ = ν

⋅ ⋅ ν +∑ ∑ ∑ ∑ 1  (36) 

 
The above expression averages over all possible configurations of ν + 2 adparticles: ν particles at 
sites x1,…,xν and two additional adparticles occupying sites p and q. Note though that since the 
site counters p and q do not appear in a sequence of ordered sums (unlike x1,…,xν), some 
configurations of the ν + 2 particles appear repetitively in the summed expression. To overcome 
this complication we introduce the indicator variable { }ix ranks ξ1  which evaluates to 1 if site xi 

appears in the ξth position in an ordered list of sites x1,…,xν. In our case we are concerned with 
the order of sites p and q in the ordered list x1,…,p,…,q,…,xν. Thus we can write:  
 

{ } { }

L L

1 1 L L
i i

L L

1 1 L L
i i

N 1 N

x 1 x x 1 p 1,...,N q p 1,...,N
p x i 1,..., q x i 1,...,

N 1 N 1 2

p ranks q ranks
x 1 x x 1 p 1,...,N q p 1,...,N 1 1

p x i 1,..., q x i 1,...,

p ra

...

...

...

ν ν−

ν ν−

−ν+

= = + = = +
≠ ∀ = ν ≠ ∀ = ν

−ν+ ν+ ν+

ζ ξ
= = + = = + ζ= ξ=ζ+

≠ ∀ = ν ≠ ∀ = ν

• =

⋅ • =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ 1 1

1{ } { }

L L

1 1 L L
i i

N 1 N1 2

nks q ranks
1 1 x 1 x x 1 p 1,...,N q p 1,...,N

p x i 1,..., q x i 1,...,
ν ν−

−ν+ν+ ν+

ζ ξ
ζ= ξ=ζ+ = = + = = +

≠ ∀ = ν ≠ ∀ = ν

⋅ •∑ ∑ ∑ ∑ ∑ ∑ 1

 (37) 
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The latter expression sums over the possible orders of p and q (ζ and ξ, respectively). 
Furthermore, for fixed ζ and ξ the summations over p and q can be incorporated into the 
sequence of ordered sums over x1,…,xν and eliminate the rank indicators. Using this reasoning 
we conclude that: 
 

{ } ( )

{ } ( )

L L

1 1 L L
i i

L

1 2 1

N 1 N

rxn2 0 1p neighbors q
x 1 x x 1 p 1,...,N q p 1,...,N

p x i 1,..., q x i 1,...,

N

rxn2 0 1x neighbors x
x 1 x x 1

... k P x ,..., p,...,q,..., x | 2; t

... k P x ,..., x ,..., x ,..., x | 2; t

ν ν−

ζ ξ

ν+ ν+

−ν+

ν
= = + = = +

≠ ∀ = ν ≠ ∀ = ν

ζ ξ ν
= = +

⋅ ⋅ ν + =

⋅ ⋅ ν +

∑ ∑ ∑ ∑

∑

1

1
LN 11 2

1 1

−ν+ν+ ν+

ζ= ξ=ζ+
∑ ∑ ∑

 (38) 

 
Consequently, we can apply our previous reasoning and write: 
 

{ } ( )

( )
( ) ( )

L L

1 1 L L
i i

N 1 N

rxn2 0 1p neighbors q
x 1 x x 1 p 1,...,N q p 1,...,N

p x i 1,..., q x i 1,...,

occp site coord
rxn2 occp neigh, j rxn2

L

... k P x ,..., p,...,q,..., x | 2; t

2 11 1k N 2 k
2 2 N 1

ν ν−

−ν+

ν
= = + = = +

≠ ∀ = ν ≠ ∀ = ν

⋅ ⋅ ν + =

ν ⋅ ν + ⋅ ν +
⋅ ⋅ ν + = ⋅ ⋅

−

∑ ∑ ∑ ∑ 1

 (39) 

 
Finally, by collecting the averaged terms, we end up with a birth-death master equation for the 
number of adparticles: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

0
ads L 0 ads L 0

des 0 des 0

rxn1 0 rxn1 0

rxn2 coord rxn2 coord
0 0

L L

P ; t k N 1 P 1; t k N P ; t
t

k 1 P 1; t k P ; t
k 1 P 1; t k P ; t
k k2 1 P 2; t 1 P ; t
2 N 1 2 N 1

∂ ν
= ⋅ − ν + ⋅ ν − − ⋅ − ν ⋅ ν +

∂

⋅ ν + ⋅ ν + − ⋅ν ⋅ ν +

⋅ ν + ⋅ ν + − ⋅ν ⋅ ν +
⋅ν ⋅ν

⋅ ν + ⋅ ν + ⋅ ν + − ⋅ν ⋅ ν − ⋅ ν
⋅ − ⋅ −

 (40) 

4. LATTICE STATE COORDINATE TRANSFORMATION 

To illustrate the coordinate transformation from the occupancy 
vector σ to the number and positions of particles (ν,x1,…,xν), we 
present the following example. Consider a lattice with NL = 3 
sites, labeled 1, 2, 3. Then there are 8 possible configurations that 
can be represented in terms of the occupancy vector or the 
adparticles’ number and positions (see table on the right). 
 
In the occupancy vector representation, (1, 0, 1) means that sites 
1 and 3 are occupied. The sets of configurations that have the 
same number of particles belong to discrete planes that satisfy 0 
≤ σ1 + σ2 + σ3 = ν ≤ NL and are shown in the left plot of the following figure. The plane for ν = 0 

σ (ν,x1,…,xν) 
(0, 0, 0) (0) 
(1, 0, 0) (1, 1) 
(0, 1, 0) (1, 2) 
(0, 0, 1) (1, 3) 
(1, 1, 0) (2, 1, 2) 
(1, 0, 1) (2, 1, 3) 
(0, 1, 1) (2, 2, 3) 
(1, 1, 1) (3, 1, 2, 3) 
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has only one point (0, 0, 0); for ν = 1, there are 3 points (1, 0, 0); (0, 1, 0); (0, 0, 1), etc. 
 

 
Representation of the possible lattice configurations for a 3-site lattice in σ and (ν,x1,…,xν) coordinates. 

 
In the number and positions representation, (2, 1, 3) means that there are 2 adparticles on the 
lattice (first element of the vector), which are found at sites 1 and 3. Thus, the sets of 
configurations that have the same number of adparticles belong to discrete pyramids in ν

 , 
which satisfy 1 ≤ x1 < x2 < x3 ≤ NL, shown in the right plot of the figure. 
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