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1. Introduction

Monte Carlo simulations traditionally combine leading-order 2 → 2 matrix elements with

parton showers which provide resummation of soft and collinear radiation. This provides a

fully exclusive description of observables which allows evolution to the hadronization scale

where models of the non-perturbative regime can be incorporated. This makes Monte Carlo

simulations an essential tool in experimental analysis allowing a fully exclusive description

of the final state to be compared directly with experimental results.

Parton shower simulations include the leading-logarithmically, and an important sub-

set of the next-to-leading-logarithmically, enhanced contributions and therefore underesti-

mate the radiation of high transverse momentum (pT ) partons. The Monte Carlo descrip-

tion can be improved by matching to higher-order matrix elements which correctly describe

the production of high pT particles. A number of approaches have been developed to cor-

rect the emission of the hardest parton in an event. In the PYTHIA event generator [1],

corrections were included for e+e− annihilation [2], deep inelastic scattering [3], heavy

particle decays [4] and vector boson production in hadron collisions [5]. In the HERWIG

event generator [6, 7] corrections were included for e+e− annihilation [8], deep inelastic

scattering [9], top quark decays [10] and vector boson production [11] in hadron-hadron
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collisions following the general method described in [12, 13].1 These corrections had to be

calculated for each individual process and only corrected the first or hardest2 emission, in

addition the method can only be applied to relatively simple cases and the leading-order

normalisation of the cross section is retained.

In recent years there have been a number of additional developments which aim to

improve on these results by either providing a description of the hardest emission together

with a next-to-leading order (NLO) cross section [19 – 31],3 or the emission of more than

one hard parton at leading order [32 – 37].4 These matching prescriptions are complicated

because the regions of phase space filled by the higher-order matrix elements and the parton

shower must be smoothly separated in order to avoid problems such as double-counting,

where the shower and matrix elements radiate in the same region. In general the major

complication is gaining an analytic understanding of the result of the parton shower either

to subtract it from the real emission matrix element, as in the MC@NLO approach [19 – 24],

or to reweight the real emission matrix elements so they can be merged with the parton

shower in multi-parton matching.

The first successful scheme for matching at NLO was the MC@NLO approach [19 – 24]

which has been implemented with the HERWIG event generator for many processes. The

method has two draw backs; first, it involves the addition of correction terms that are not

positive definite and therefore can result in events with a negative weight and second, the

implementation of the method is heavily dependent on the details of the parton shower

algorithm used by the event generator.

In ref. [26] a novel method, referred to as POWHEG (POsitive Weight Hardest Emis-

sion Generator), was introduced to achieve the same aims as MC@NLO while creating only

positive weight events and being independent of the event generator with which it is im-

plemented. The POWHEG method has been applied to Z pair hadroproduction [27], heavy

flavour hadroproduction [30] and e+e− annihilation to hadrons [31]. A general outline of

the ingredients required for POWHEG with two popular NLO subtraction schemes is given

in ref. [29].

The POWHEG shower algorithm involves generating the hardest emission in pT sep-

arately using a Sudakov form factor containing the full matrix element for the emission

of an extra parton and adding to this vetoed showers, which produce radiation at lower

scales in the shower evolution variable, and a truncated shower, which generates radiation

at higher scales in the shower evolution variable, than the scale of the highest pT emission.

While the POWHEG scheme is independent of the parton shower algorithm, it does require

the parton shower to be able to produce vetoed and truncated showers. The ability to

1Herwig++ includes matrix element corrections for e
+

e
− annihilation [14], top quark decays [15], vector

boson production [16] in hadron-hadron collisions and Higgs production in gluon fusion [17] using the

approach of refs. [12, 13] and the improved angular-ordered parton shower of ref. [18].
2In PYTHIA the first emission was corrected whereas in HERWIG any emission which could be the hardest

was corrected.
3There have been other theoretical ideas but only the MC@NLO and POWHEG methods have led to

practical programs whose results can be compared with experimental data.
4A recent comparison of these approaches can be found in [38].
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perform vetoed showers is present in most modern Monte Carlo event generators, however

some changes are required to enable them to generate truncated showers. Although the

POWHEG approach is formally correct to the same accuracy as the MC@NLO technique

the two methods differ in their treatment of sub-leading terms.

In this work the POWHEG approach is applied to Drell-Yan vector boson production

with the Herwig++ [17, 39] event generator. A full truncated shower is implemented for

the first time.5

The paper is organised as follows. In section 2 we outline the main features of the

POWHEG method. In section 3 we collect the essential formulae relating to the NLO

cross section, for implementation in the program. In section 4 we give details of the

event generation process for the hard configurations, followed by a description of how

these configurations are subsequently reproduced by the Herwig++ angular-ordered parton

shower, thereby accounting for colour coherence effects associated with soft wide angle

parton emissions. In section 5 we present the results of our implementation, comparing it

to Tevatron data, and in section 6 we give our conclusions.

2. The POWHEG method

In the POWHEG approach [26] the NLO differential cross section for a given N -body process

can be written as

dσ = B (ΦB) dΦB

[

∆
R̂

(0) +
R̂ (ΦB,ΦR)

B (ΦB)
∆

R̂
(kT (ΦB ,ΦR)) dΦR

]

, (2.1)

where B (ΦB) is defined as

B (ΦB) = B (ΦB) + V (ΦB) +

∫

(

R̂ (ΦB ,ΦR) −
∑

i

Ci (ΦB,ΦR)

)

dΦR, (2.2)

B (ΦB) is the leading-order contribution, dependent on the N -body phase space variables

ΦB , the Born variables. The regularized virtual term V (ΦB) is a finite contribution arising

from the combination of unresolvable, real emission and virtual loop contributions. The

remaining terms in square brackets are due to N+1-body real emission processes which

depend on both the Born variables and additional radiative variables, ΦR, parametrizing

the emission of the extra parton. The real emission term, R̂ (ΦB,ΦR), is given by a sum of

parton flux factors multiplied by real emission matrix elements for each channel contribut-

ing to the NLO cross section. Finally, each term Ci (ΦB,ΦR) corresponds to a combination

of real counterterms/counter-event weights, regulating the singularities in R̂ (ΦB ,ΦR). The

modified Sudakov form factor is defined as

∆
R̂

(pT ) = exp

[

−
∫

dΦR
R̂ (ΦB ,ΦR)

B (ΦB)
θ (kT (ΦB,ΦR) − pT )

]

, (2.3)

5Truncated shower effects were neglected in refs. [27, 30], while an approximate treatment was used in

ref. [31] where at most one truncated emission was generated.
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where kT (ΦB ,ΦR) is equal to the transverse momentum of the extra parton.

In the framework of a conventional parton shower Monte Carlo program the Sudakov

form factor ∆R̃ (pT ) has the same form as that in eq. 2.3 but with R̃ (ΦB,ΦR) replacing

R̂ (ΦB,ΦR), where the former is typically the sum of the real emission matrix elements

approximated by their soft/collinear limits. This object has an interpretation as the prob-

ability that given some initial configuration of partons resolved at some characteristic scale

pi
T , in evolving to some other resolution scale, pT , no further partons are resolved. The

parton shower approximation to the NLO differential cross section is analogously given by

dσ̃ = B (ΦB) dΦB

[

∆R̃ (0) +
R̃ (ΦB,ΦR)

B (ΦB)
∆R̃ (kT (ΦB ,ΦR)) dΦR

]

. (2.4)

The first term in eq. 2.4 gives a differential distribution proportional to the leading-order

differential cross section, which is retained in the absence of any parton showering, i.e. with

probability ∆R̃ (0) (non-radiative events), while the second term represents the probability

of evolving from the starting scale to scale pT at which point an emission is generated

according to R̃ (ΦB,ΦR)
∣

∣

∣

pT

. The term in square brackets in eqs. 2.1 and 2.4 is equal to

unity when integrated over the radiative phase space.

In the POWHEG framework the parton shower is promoted to NLO accuracy by de-

manding that the non-radiative events are distributed according to the first term in eq. 2.1

and that the hardest (highest pT ) emission is distributed according to the second term.

Whereas in the conventional simulation an N -body configuration is generated according to

B (ΦB) and then showered using the Sudakov form factor ∆R̃, the POWHEG formalism re-

quires that the N -body configuration is generated according to B (ΦB) and then showered

with the modified Sudakov form factor ∆
R̂
. As the B (ΦB) term is simply the NLO differ-

ential cross section integrated over the radiative variables, it is naturally positive, which is

reflected in the absence of events with negative weights, which are an unpleasant feature

of other next-to-leading order matching schemes.

Since any further emissions constitute higher-order terms in the differential cross sec-

tion, next-to-next-to-leading order and beyond, we may generate higher multiplicities in

the usual way, by showering the radiative events using the standard parton shower algo-

rithm. These showers must not generate emissions with pT greater than that of the emitted

parton in the event generated according to eq. 2.1,6 they must be vetoed showers. For a

parton shower which evolves in pT the POWHEG implementation is a trivial task; one sim-

ply initiates a parton shower from each external leg of the radiative POWHEG event using

its pT as the initial-evolution scale.

Angular-ordered parton showers account for the phenomenon of QCD coherence where

wide-angle soft gluon emissions, from near collinear configurations of two or more partons,

have insufficient transverse resolving power to be sensitive to the constituent emitters. In

effect the resulting radiation pattern is determined by the colour charge and momentum

of the mother of the emitters, rather than the emitters themselves. Ordering branchings

6Should the POWHEG event turn out to be a non-radiative event, the pT veto scale is zero so these

events remain as no-emission events.
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in the parton shower in terms of the angle between the branching products takes this

logarithmically enhanced effect into account; wide-angle soft partons are emitted from the

mother of any subsequent smaller angle splittings by construction.

As well as circumventing the problem of negative event weights, a second major success

of the POWHEG method is in defining how the highest pT emission may be modified to

include the logarithmically enhanced effects of this soft wide-angle radiation. In ref. [26]

it was shown how the angular-ordered parton shower which produces the hardest emis-

sion, may be decomposed into a truncated shower simulating coherent, soft wide-angle

emissions, followed by the highest pT (hardest) emission, followed again by further vetoed

parton showers, comprising of lower pT , smaller angle emissions. Performing this decom-

position established the form of the truncated and vetoed showers, thereby describing all

of the ingredients necessary to shower the radiative events in the POWHEG approach. This

procedure was proven in [29] to give agreement with the NLO cross section, for all inclusive

observables, while retaining the logarithmic accuracy of the shower.

In the POWHEG framework positive weight events distributed with NLO accuracy can

be showered to resum further logarithmically enhanced corrections by:

• generating an event according to eq. 2.1;

• directly hadronizing non-radiating events;

• mapping the radiative variables parametrizing the emission into the evolution scale,

momentum fraction and azimuthal angle (q̃h, zh, φh), from which the parton shower

would reconstruct identical momenta;

• using the original leading-order configuration from B (ΦB) evolve the leg emitting the

extra radiation from the default initial scale down to q̃h using the truncated shower;

• inserting a branching with parameters (q̃h, zh, φh) into the shower when the evolution

scale reaches q̃h;

• generating pT vetoed showers from all external legs.

This procedure allows the generation of the truncated shower for the first time with only

a few changes to the normal Herwig++ shower algorithm.

3. Next-to-leading order cross section

Although the NLO cross section for the Drell-Yan process was calculated nearly 30 years

ago [40, 41], we have implemented an independent calculation of it more suited to our

present goal, including the decay of the vector boson and γ/Z interference effects. In this

section we collect the ingredients that arise in the NLO calculation for q + q̄ → l + l̄,

necessary to describe our implementation of the POWHEG method.

– 5 –
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3.1 Kinematics and phase space

The leading-order process is of the type, p̄⊕ + p̄⊖ → p̄1 + . . . + p̄N , in which all particles

in the N -body final state are colourless. We denote the incoming hadron momenta P©,

for hadrons incident in the ±z directions, respectively. The corresponding massless parton

momenta, with momentum fractions x̄⊕ and x̄⊖, are given by p̄© = x̄©P©. The momenta

of the particles produced in the leading-order N -body process are p̄i, where i ranges from

1 to N .

We use ΦB to denote a set of variables defining a point in the N -body phase space and

convolution over the incoming momentum fractions, and Φ̂B to denote a set of variables

parametrizing the N -body phase space in the centre-of-mass frame of the partonic process.

It will also be convenient to define p̄ as the total momentum of the colour neutral particles,

p̄ ≡ x̄⊕P⊕ + x̄⊖P⊖, and ȳ as the rapidity of p̄. The partons’ momentum fractions are

therefore

x̄⊕ =

√

p̄2

s
e+ȳ , x̄⊖ =

√

p̄2

s
e−ȳ. (3.1)

The phase space for the leading-order process is

dΦB = dx̄⊕ dx̄⊖ dΦ̂B =
1

s
dp̄2 dȳ dΦ̂B, (3.2)

where dΦ̂B is the Lorentz invariant phase space for the partonic process, in n = 4 − 2ǫ

dimensions,

dΦ̂B = (2π)n
∏

i

[dp̄i] δn (p̄⊕ + p̄⊖ − p̄) , [dp̄i] =
dn−1p̄i

(2π)n−1 2Ēi

, (3.3)

and s the hadronic centre-of-mass energy. The set of variables ΦB =
{

p̄2, ȳ, Φ̂B

}

defines

the Born variables.

The real emission corrections to the leading-order process consist of 2 → N + 1

processes, p⊕ + p⊖ → p1 + . . . + pN + k, where we denote the momenta of the N final-state

colourless particles pi and that of the extra colour charged parton by k. The momentum

fractions of the incoming partons are distinguished from those in the 2 → N process as x⊕

and x⊖ (p© = x©P©). For these processes we introduce the Mandelstam variables ŝ, t̂, û

and the related radiative variables ΦR = {x, v, φ}, which parametrize the extra emission:

ŝ = (p⊕ + p⊖)2 =
p2

x
, (3.4a)

t̂ = (p⊕ − k)2 =
p2

x
(x − 1) (1 − v) , (3.4b)

û = (p⊖ − k)2 =
p2

x
(x − 1) v , (3.4c)

where φ is the azimuthal angle of k with respect to the +z axis, and p the total momentum

of the colourless particles, p ≡ x⊕P⊕ + x⊖P⊖ − k.

– 6 –
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To perform a simultaneous Monte Carlo sampling of the N - and N+1-body phase

spaces one has to specify the integration variables. We choose two of these to be the mass

and rapidity of the system of colourless particles, therefore p̄2 ≡ p2 and ȳ ≡ y, where y is

defined by analogy to ȳ as the rapidity of p.7 The momentum fractions of the partons for

2 → N + 1 processes are therefore related to those of the 2 → N process by

x⊕ =
x̄⊕√

x

√

1 − (1 − x) (1 − v)

1 − (1 − x) v
, x⊖ =

x̄⊖√
x

√

1 − (1 − x) v

1 − (1 − x) (1 − v)
. (3.5)

The phase space of the N+1-body real emission processes can be written in n = 4−2ǫ

dimensions as

dΦN+1 = dΦB dΦR
p2

(4π)2 x2

(

4π

p2

)ǫ 1

Γ (1 − ǫ)
J (x, v) , (3.6)

where here the partonic Born variables Φ̂B specify a configuration in the rest frame of p

rather than p̄. The function J (x, v) is given by

J (x, v) = [Sδ (1 − x) + C (x) (δ (v) + δ (1 − v)) + H (x, v)] v (1 − v) (1 − x)2 , (3.7)

where

S =
1

ǫ2
− π2

6
, (3.8a)

C (x) = −1

ǫ

1

(1 − x)+
− 1

(1 − x)+
ln x + 2

(

ln (1 − x)

1 − x

)

+

, (3.8b)

H (x, v) =
1

(1 − x)+

(

1

v+
+

1

(1 − v)+

)

. (3.8c)

The labelling S, C, H reflects the fact that the S and C terms are multiplied by δ-functions

which limit their contributions to configurations with soft (x → 1) and collinear (v → 0, 1)

emissions, while H is not associated with soft or collinear configurations but instead con-

tributes to hard emissions8 of the extra parton k.

The radiative phase space can be parametrized in terms of the radiative variables

dΦR =
1

2π
dxdv dφ , (3.9)

where, in the partonic centre-of-mass frame, x = 1− k0/E, where E is the energy of either

of the colliding partons, and v = 1
2 (1 + cos θ), where θ and φ are the polar and azimuthal

angles of k with respect to the +z axis.

As the rapidity of p and p̄ are equal, it is always possible to define a boost

B = B
−1
L BT BL, such that B p = p̄, where BL is a longitudinal boost to the frame in which

y = 0 and BT is a boost in the transverse direction, to the frame in which the transverse

momentum of p is zero. It follows that an N+1-body configuration can be assembled by

7Henceforth we will always refer to these variables as p
2 and y.

8Here by hard we simply mean emissions which are neither soft or collinear.
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first reconstructing the N -body configuration corresponding to ΦB, then p and k (from p2,

y, ΦR), at which point the boost B can be calculated and its inverse applied to the N -body

configuration. Although BL is uniquely defined due to p and p̄ having the same rapidity,

y, the transverse boost BT can be modified according to BT → RBT , with R a rotation,

and B will still satisfy B p = p̄. A convention must be adopted to fix BT , we shall return

to this point later.

3.2 Matrix elements

The squared, spin and colour averaged leading-order matrix element for the q + q̄ → l + l̄

Drell-Yan process is given by MB
qq̄ (pq, pq̄), where the first (second) argument refers to the

incoming fermion (antifermion) momentum. The real emission radiative corrections consist

of three processes: q + q̄ → l + l̄ + g; g + q → l + l̄ + q; and g + q̄ → l + l̄ + q̄. The matrix

elements squared for these processes are given by

MR
qq̄ =

Nqq̄

p2t̂û

[

(

ŝ + t̂
)2 MB

qq̄ (p̃q, p̃q̄g) + (ŝ + û)2 MB
qq̄ (p̃qg, p̃q̄) (3.10a)

−1

2
ǫ
(

t̂ + û
)2 (MB

qq̄ (p̃g, p̃gg) + MB
qq̄ (p̃gg, p̃g)

)

]

,

MR
qg = − Nqg

p2ûŝ

[

(

t̂ + û
)2 MB

qq̄ (p̃qg, p̃q̄) +
(

t̂ + ŝ
)2 MB

qq̄ (p̃q, p̃q̄g) (3.10b)

−1

2
ǫ (û + ŝ)2

(

MB
qq̄ (p̃g, p̃gg) + MB

qq̄ (p̃gg, p̃g)
)

]

,

MR
gq̄ = −Nqg

p2ŝt̂

[

(û + ŝ)2 MB
qq̄ (p̃qg, p̃q̄) +

(

û + t̂
)2 MB

qq̄ (p̃q, p̃q̄g) (3.10c)

−1

2
ǫ
(

ŝ + t̂
)2 (MB

qq̄ (p̃g, p̃gg) + MB
qq̄ (p̃gg, p̃g)

)

]

,

where, for a more uniform notation, and to help show how the crossing of the leading-order

process is manifest, we have denoted the final-state quark momentum in the qg initiated

process by pq̄ and the final-state antiquark momentum in the gq̄ process by pq. The shifted

momenta p̃i, p̃jg, and the normalization constants Nqq̄, Nqg are given by

p̃i =
1

xi

pi , Nqq̄ = 8παSCF µ2ǫ ,

xi =
2p.pi

p2
, Nqg = 8παSTF µ2ǫ/ (1 − ǫ) , (3.11)

p̃jg = p − p̃i ,

where µ is the regularization scale emerging from the use of conventional dimensional

regularization. The shifted momenta satisfy

p̃2
i = p̃2

jg = 0, p̃i + p̃jg = p, (3.12)

i.e. they obey the relations required for them to be considered as describing a kinematic

configuration for the leading-order process, hence they form valid arguments for MB
qq̄.
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These matrix elements hold independent of the type of exchanged vector boson, they

also hold for the case that the leading-order process consists of interferences between di-

agrams with different exchanged vector bosons. This universal behaviour is due to the

factorisation of the NLO hadron tensor, into kinematic factors multiplying the leading-

order hadron tensor. Such a factorisation of the matrix element is not necessary for the

implementation of the POWHEG method but it improves the flexibility and generality of

our implementation of the Drell-Yan process. This allows us to generate N+1-body con-

figurations, according to the full real emission matrix element, given the leading-order

configuration using a technique of sampling the radiative phase space with a branching

algorithm known as the Kleiss trick [42, 13], which we have extended to n dimensions as

needed for a complete NLO calculation, as we now describe in detail.

The O (αS) virtual corrections to the q+ q̄ → l+ l̄ process solely consist of the qq̄ vertex

correction. At NLO, this loop diagram only contributes to the matrix element through its

interference with the leading-order amplitude, correcting it by,

MV
qq̄ =

αSCF

2π

(

4πµ2

p2

)ǫ
1

Γ (1 − ǫ)

[

− 2

ǫ2
− 3

ǫ
− 8 + π2

]

MB
qq̄ (pq, pq̄) . (3.13)

3.3 Differential cross section

The partonic flux due to parton a in hadron A and parton b in hadron B, at scale µ2, with

momentum fractions x⊕ and x⊖ respectively, is defined as

Lab (x⊕, x⊖) = fA
a

(

x⊕, µ2
)

fB
b

(

x⊖, µ2
)

. (3.14)

In Lab (x⊕, x⊖) the functions f I
i

(

xi, µ
2
)

are the parton distribution functions (PDFs) for

finding a parton i in hadron I with momentum fraction xi at scale µ2. The contribution

to the differential cross section from the leading-order process q + q̄ → l + l̄ is therefore

dσB
qq̄ = B (ΦB) dΦB , (3.15)

where

B (ΦB) =
1

2p2
MB

qq̄ (p̄⊕, p̄⊖) Lqq̄ (x̄⊕, x̄⊖) . (3.16)

The virtual corrections (eq. 3.13) add

dσV
qq̄ = V0 (ΦB) dΦB , (3.17)

where

V0 (ΦB) =
αSCF

2π

[

−2

ǫ

(

1

ǭ
+ ln

(

µ2

p2

))

− 3

ǭ
+

π2

3
+ Vqq̄

]

B (ΦB) , (3.18)

with ǭ defined by 1
ǭ

= 1
ǫ
− γE + ln (4π) and

Vqq̄ = −3 ln

(

µ2

p2

)

+
2π2

3
− 8 . (3.19)

In eqs. 3.16 and 3.17 we have included a flux factor 1/2p2 for the partonic process. The

subscript on V0 identifies this as a bare divergent quantity.

– 9 –



J
H
E
P
1
0
(
2
0
0
8
)
0
1
5

The differential cross section for the real emission processes a + b → l + l̄ + c is of the

form

dσR
ab =

1

4πx
Lab (x⊕, x⊖)

[

∑

i

fi (x, v) MB
qq̄ (p̃i, p̃j)

]

dΦB dΦ̃R , (3.20)

where for i = qg, q, g, gg, we have j (i) = q̄, q̄g, gg, g. Each of the fi (x, v) functions

is defined as the coefficient of the squared leading-order matrix element in the MR
ab real-

emission matrix element, eq. 3.10.

Returning to the earlier discussion of the definition of the Born variables and the boost

B, we note that for each i in eq. 3.20 the boost to the rest frame of p̃i + p̃j is the same up

to an overall rotation (as p̃i + p̃j = p). Furthermore, for i = q we have p̃i = pi/xi, so p̃i

and pi have the same orientation, as do p̃j and pj for index j = q̄. Since B was defined up

to an arbitrary rotation R, we could choose to resolve this ambiguity by setting R = Rq,

B = Bq, where Bq additionally satisfies,

Bq p̃q ≡ B
−1
L Rq BT BL p̃q = p̄⊕, (3.21)

i.e. Rq is such that the value of p̃q in the p rest frame is equal to p̄⊕ in the p̄ rest frame,

therefore

MB
qq̄ (p̃q, p̃q̄g) dΦB ≡ MB

qq̄ (p̄⊕, p̄⊖) dΦB. (3.22)

To have the analogous equivalence for the i, j = qg, q̄ term, one needs to have B = Bqg,

defined such that Bqg p̃q̄ = p̄⊖ is satisfied along with original requirement (B p = p̄).

Similar boosts can be constructed for the i = g, gg terms in the matrix element,

mapping p̃g to p̄⊕ and p̄⊖ respectively. However, as these terms carry a factor ǫ, they only

contribute to exactly collinear configurations in which the parton k is unresolved, hence

such boosts are a purely formal consideration, and are not needed in practice.

The real emission phase space can therefore be sampled using a simple Monte Carlo

branching algorithm; namely, given a set of Born and radiative variables, the event is

reconstructed as described in section 3.1, except that, where previously a single boost B
−1

was used to embed the N -body configuration in the N+1-body event, now we use a boost

B
−1
i selected according to the probability distribution Pi = fi (x, v) /

∑

i fi (x, v). Sampling

the phase space in this way, the generation of the Born variables becomes completely

independent of the radiative variables:

dσR
ab = Rab,0 (ΦB ,ΦR) dΦR dΦB , (3.23a)

Rab,0 (ΦB,ΦR) =
ŝ

2π
L̂ab (x⊕, x⊖)

∑

i

fi (x, v)
dΦ̃R

dΦR
B (ΦB) , (3.23b)

where L̂ab is the ratio of the general parton flux relative to that of the leading-order process,

L̂ab (x⊕, x⊖) =
Lab (x⊕, x⊕)

Lqq̄ (x̄⊕, x̄⊖)
. (3.24)

The functions Rab,0 (ΦB,ΦR), calculated according to eq. 3.23, are given by

Rab,0 (ΦB,ΦR) =
αSCab

2π

1

x
L̂ab (x⊕, x⊖) Rab,0 B (ΦB) , (3.25)
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where Cab = CF for ab = qq̄ and TF otherwise.

For the qq̄ contribution Rqq̄,0 is given by

Rqq̄,0 = Sqq̄δ (1 − x) +

(

−1

ǭ
Pqq + Cqq̄

)

(δ (v) + δ (1 − v)) + Hqq̄, (3.26)

where

Sqq̄ =

(

2

ǫ
+ 3

)(

1

ǭ
+ ln

(

µ2

p2

))

− π2

3
− 3 ln

(

µ2

p2

)

, (3.27a)

Pqq =

(

1 + x2

1 − x

)

+

, (3.27b)

Cqq̄ =
(

1 + x2
)

(

1

(1 − x)+
ln

(

p2

µ2x

)

+ 2

(

ln (1 − x)

1 − x

)

+

)

+ 1 − x , (3.27c)

Hqq̄ =
1

(1 − x)+

(

1

v+
+

1

(1 − v)+

)

(

(1 − x)2 (1 − 2v (1 − v)) + 2x
)

. (3.27d)

For the qg contribution Rqg,0 is given by

Rqg,0 =

(

−1

ǭ
Pgq + Cqg

)

δ (v) + Hqg , (3.28)

where

Pgq = x2 + (1 − x)2 , (3.29a)

Cqg =
(

x2 + (1 − x)2
)

(

ln

(

p2

µ2x

)

+ 2 ln (1 − x)

)

+ 2x (1 − x) , (3.29b)

Hqg =
1

v+

(

2x (1 − x) v + (1 − x)2 v2 + x2 + (1 − x)2
)

. (3.29c)

The function Rgq̄,0 is equal to Rqg,0 under the replacement v ↔ 1 − v.

The soft term in the real correction Rqq̄,0, proportional to δ (1 − x), is now combined

with the virtual correction V0, to give a soft-virtual contribution V , which is finite for ǫ →
0. The remaining divergences are initial-state collinear divergences proportional to δ (v)

and/or δ (1 − v). Working in the MS scheme these are absorbed into the definition of the

PDFs. This renormalization and cancellation of divergences amounts to the replacements,

V0 → V and Rab,0 → Rab, where

V (ΦB) =
αSCF

2π
Vqq̄ B (ΦB) (3.30)

and

Rab (ΦB,ΦR) =
αSCab

2π

1

x
Rab L̂ab (x⊕, x⊖) B (ΦB) , (3.31a)

Rqq̄ (ΦB ,ΦR) = Cqq̄ (δ (v) + δ (1 − v)) + Hqq̄, (3.31b)

Rqg (ΦB ,ΦR) = Cqgδ (v) + Hqg, (3.31c)

Rgq̄ (ΦB ,ΦR) = Cgq̄δ (1 − v) + Hgq̄. (3.31d)

Adding these contributions we obtain the NLO differential cross section:

dσ = B (ΦB) dΦB + V (ΦB) dΦB + R (ΦB,ΦR) dΦBdΦR , (3.32)

where R denotes the sum of the Rab terms.
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4. Implementation in Herwig++

In the first two parts of this section we describe how distributions of NLO accurate non-

radiating and single emission events are generated. In section 4.3 we describe the simulation

of further, lower pT , emissions, from the radiative events, using the truncated and vetoed

shower algorithms.

4.1 Generation of the leading-order configuration

As noted in section 2, sampling the B (ΦB) function (eq. 2.2), which is the next-to-leading

order differential cross section integrated over the radiative variables,

B (ΦB) = B (ΦB)

[

1 +
αSCF

2π
Vqq̄ +

∑

ab

∫

dΦR
αSCab

2π

1

x
Rab L̂ab (x⊕, x⊖)

]

(4.1)

provides Born variables ΦB distributed according to the exact NLO differential cross sec-

tion. The way in which the leading-order process is factorised inside the real emission terms

Rab allows the B (ΦB) distribution to be generated as a straightforward reweighting9 of

the leading-order cross section.

For convenience the radiative phase space dΦR is reparametrized by variables on the

interval [0, 1] such that the radiative phase space volume is unity, a three-dimensional unit

cube. This is achieved by a trivial change of variables φ → φ̄ = φ/2π and x → x̃, where x̃

is defined by

x (x̃, v) = x̄ (v) + (1 − x̄ (v)) x̃, (4.2)

where x̄(v) is the lower limit on the x integration. Numerical implementation of the B (ΦB)

distribution requires all plus distributions be replaced by regular functions, the results of

which are given in appendix A.

The generation of the leading-order, N -body configuration proceeds as follows:

1. a leading-order configuration is generated using the standard Herwig++ leading-order

matrix element generator, providing the Born variables ΦB with an associated weight

B (ΦB);

2. radiative variables ΦR are then generated by sampling B (ΦB), parametrized in

terms of the ‘unit-cube’ variables x̃, v, φ̄, using the Auto-Compensating Divide-

and-Conquer (ACDC) phase space generator [43], which implements a variant of the

VEGAS algorithm [44];

3. the leading-order configuration is accepted with a probability proportional to the

integrand of eq. 4.1 evaluated at
{

p2, y, ΦR

}

.

9Apart from the requirement that the final state be colour neutral, this reweighting is independent of

the details of the vector boson and any decay it undergoes.
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4.2 Generation of the hardest emission

The hardest (highest pT ) emission is generated from the N -body configuration according to

the modified Sudakov form factor, eq. 2.3. The integrand in the exponent of the Sudakov

form factor consists of three different contributions, one for each channel ab=qq̄, qg, gq̄.

The integrands are defined as

Wab (ΦR,ΦB) =
R̂ab (ΦB,ΦR)

B (ΦB)
=

αSCab

2π

1

x
Ĥab L̂ab (x⊕, x⊖) , (4.3)

where Ĥab is equal to Hab without the plus prescription. We use the following parametriza-

tion of the partonic, vector boson and jet momentum in the hadronic centre-of-mass frame:

p⊕ =
1

2

√
s (x⊕, 0, 0,+x⊕) , p = (mT cosh y, pT sin φ, pT cos φ, mT sinh y) ,

p⊖ =
1

2

√
s (x⊖, 0, 0,−x⊖) , k = (pT cosh yk, −pT sin φ, −pT cos φ, pT sinh yk) , (4.4)

where pT is the transverse momentum, mT =
√

p2 + p2
T and yk is the rapidity of the

additional parton. Instead of generating the hardest emission in terms of ΦR = {x, v, φ}
we find it more convenient to make a change of variables to Φ′

R = {pT , yk, φ}, related to

ΦR according to

p2
T =

p2

x
v (1 − v) (1 − x)2 , (4.5)

yk = y +
1

2
ln

(

v

1 − v

)

− 1

2
ln

(

1 − v (1 − x)

x + v (1 − x)

)

.

The modified Sudakov form factor of eq. 2.3 contains a θ-function in pT , however by

choosing to parametrize the radiative phase space in pT the θ-function simply becomes the

lower limit on the integral. The modified Sudakov form factor for each channel therefore

has the form

∆
R̂ab

(pT ) = exp

(

−
∫ pTmax

pT

dΦR Wab (ΦR,ΦB)

)

, (4.6)

where pTmax is the maximum possible transverse momentum. The full Sudakov form factor,

∆
R̂
(pT ), is given by the product of ∆

R̂ab

(pT ) for the individual channels. The radiative

variables (pT , yk) are generated according to eq. 2.3 using the veto algorithm.10 This

procedure requires simple bounding functions for each channel. Functions of the form,

gab (pT ) =
Kab

p2
T

, (4.7)

are used, with suitable values of Kab for each channel together with an overestimate of the

limits for the rapidity integral, ykmin
and ykmax

. The generation procedure then proceeds

as follows:

1. pT is set to pTmax;

10A good description of this technique can be found in ref. [1].
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2. a new (pT , yk) configuration is generated using two random numbers according to11

pT =

(

1

pT
− 1

Kab (ykmax
− ykmin

)
lnR

)−1

, (4.8a)

yk = ykmin
+ R (ykmax

− ykmin
) ; (4.8b)

3. if pT < pTmin, where pTmin is the minimum allowed pT for the emission, then no

radiation is generated;

4. if the generated configuration is outside of the exact phase space boundaries then

return to step 2;

5. if Wab (ΦB ,ΦR) /gab (pT ) > R then accept the configuration, otherwise return to

step 2.

For this process there are three partonic channels contributing to the radiative corrections,

this is dealt with by using competition, where a (pT , yk) configuration is generated, as

outlined above, for each channel individually and the configuration with the highest pT

accepted.

We employ a simple prescription [13] to generate the azimuthal angle that allows

the leptonic correlations to be correctly generated. For the qq̄ channel, the prescription

proceeds as follows:

1. momenta are first constructed in the vector boson rest frame;

2. the p⊕ direction is chosen with probability

(

ŝ + t̂
)2

/
(

(

ŝ + t̂
)2

+ (ŝ + û)2
)

, (4.9)

otherwise the p⊖ direction is chosen. The momenta are then rotated around the

chosen direction by a random angle generated uniformly on the interval [0, 2π];

3. momenta are boosted back to the lab frame such that the rapidity of the vector boson

is the same as for the N -body configuration.

The same procedure is used for the qg and gq̄ initiated channels with the replacements

ŝ → t̂, t̂ → û, û → ŝ and ŝ → û, t̂ → ŝ, û → t̂, respectively.

4.3 Truncated and vetoed parton showers

Before describing how the radiative events are further showered, we need to recall some

details of the Herwig++ parton shower algorithm. This is described in more detail in

refs. [39, 18]. The shower starts at a scale given by the colour structure of the hard

scattering process and evolves down in the evolution variable q̃ by the emission of partons

in 1 → 2 branching processes. Finally, the set of scales, q̃, momentum fractions, z, and

azimuthal angles, φ, which describe these branchings, are used to construct the momenta of

11
R refers to a random number in the interval [0, 1], a different random number is generated each time.
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all the partons radiated in the parton shower. The Herwig++ approach generally requires

some reshuffling of these momenta after the generation of the parton showers in order to

ensure global energy-momentum conservation.

The N+1-body states generated as described in section 4.2 are first interpreted as

a single standard Herwig++ shower emission, from the N -body configuration, described

by the shower branching variables (q̃h, zh, φh). The complete POWHEG shower is then

performed as a single Herwig++ shower modified by certain conditions which allows a

simple but complete implementation of the truncated shower.

The shower algorithm proceeds as follows:

1. the truncated shower evolves from the hard scale, determined by the colour structure

of the N -body process, to the hardest emission scale q̃h such that the pT is less than

that of the hardest emission pTh
, the radiation is angular-ordered and branchings do

not change the flavour of the emitting parton;

2. the hardest emission is forced with shower variables (q̃h, zh, φh);

3. the shower is allowed to evolve down to the hadronization scale with the addition of

a transverse momentum veto on radiation above pTh
.

The implementation described above requires that the hardest emission, generated as de-

scribed in section 4.2, be interpreted as a Herwig++ shower emission that is forced when we

evolve to the associated scale in the parton shower. In order to do this, we need to find a

mapping from the N +1 momenta, describing the hardest emission, to the shower variables

(q̃h, zh, φh) and an N -body configuration. This equates to undoing the momentum recon-

struction procedure used in the Herwig++ shower. The reconstruction procedure consists

of two steps [39]. First, the momenta of partons at each step of the shower are constructed,

in the centre-of-mass frame of the hadronic collision, recursively from the shower variables.

Second, boosts are applied to each jet individually which ensures global momentum con-

servation. The reconstruction process is different for initial- and final-state radiation, here

we will only consider the initial-state case which is relevant for the Drell Yan process.

In Herwig++ the momenta of the partons, qi, in a jet are given by

qi = αip + βin + q⊥i, (4.10)

where for initial-state radiation the reference vectors p and n are given by the hadronic

momenta of the beam particles p⊕ and p⊖ and q⊥i is the transverse momentum with respect

to the beam axis.

For initial-state radiation we use a backward evolution algorithm which starts from the

hard process and evolves to lower evolution scales backwards towards the incoming hadron

by the emission of time-like partons. The reconstruction of the initial-state jet starts from

the last initial-state parton produced by the backward evolution algorithm with momentum

calculated from the fraction of the beam momentum it carries. The momentum of the time-

like daughter of this parton is reconstructed as described in ref. [39]. The momentum of the

space-like daughter is then given by momentum conservation. This process is iterated for
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each initial-state branching eventually giving the momentum of the space-like progenitor

parton, colliding in the hard process.

The momenta of the two progenitor partons are then reshuffled such that mass and

rapidity of the partonic centre-of-mass system are conserved. Under this reshuffling the

progenitor momenta are transformed according to

q© → q′© = α©k©p© +
β©

k©

p© + q⊥©. (4.11)

The reshuffling parameters, k⊕ and k⊖, are found by solving equations requiring conserva-

tion of mass and rapidity and hence the associated Lorentz transform is obtained.

The basis vectors p© are the hadronic beam momenta and the α© parameters in

eq. 4.11 are simply the Born partonic momentum fractions, given in eq. 3.2. The reshuffling

parameters, k©, can therefore be calculated from the momenta of the shuffled progenitors,

q′0©. Decomposing these momenta into their Sudakov parameters the momentum shuffling

parameters are simply

k⊕ =
α′

0⊕

x̄⊕
, k⊖ =

α′
0⊖

x̄⊖
, (4.12)

where α′
0© refers to the α parameters in the Sudakov decomposition of the shuffled pro-

genitors. The inverse of the Lorentz boosts implementing the reshuffling can then be

calculated and applied to each momentum, yielding the unshuffled momenta qi. These are

then decomposed yielding their Sudakov parameters, the shower variables parametrizing

the branching can then be determined. The momentum fraction is given by

z =
αi

αeij

, (4.13)

where αi is the Sudakov parameter for the space-like parton entering the hard process

and αeij
the Sudakov parameter of the initial-state parent parton. In this simple case the

transverse momentum is simply equal to that of the off-shell space-like parton initiating

the leading-order hard process, or equivalently, its outgoing, time-like, sister parton. The

scale of the branching is defined in terms of the pT and light-cone momentum fraction z, as

q̃2 =
zQ2

g + p2
T

(1 − z)2
, (4.14)

where Qg is the constituent gluon mass, the infrared regulator of the Herwig++ par-

ton shower.

Using this approach we can calculate the shower variables (q̃h, zh, φz) for the hardest

emission which allows us to generate the truncated and vetoed showers.

5. Results

As a check of the calculation of the next-to-leading order differential cross section, dis-

tributions of the vector boson rapidity produced by the POWHEG implementation and
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Figure 1: Comparisons of dσ/dy for the POWHEG implementation and MCFM [45] for Z and W+

production at the Tevatron (
√

s = 2TeV) and the LHC (
√

s = 14TeV).

the NLO program MCFM [45] were compared. Figure 1 shows distributions for γ/Z and

W+ production at the Tevatron (proton-antiproton at
√

s = 2TeV) and the LHC (proton-

proton at
√

s =14 TeV). In all cases the total cross sections from MCFM and our POWHEG

implementation agreed to within 0.5 %. The distribution of the rapidity of the lepton pro-

duced in the γ/Z and W decay is shown in figure 2 and is also in good agreement. For

both Herwig++ and MCFM in this comparison, the parton density functions used were the

MRST2001 NLO [46] set with the LHAPDF interface [47].

In figures 3-6, distributions from the Drell-Yan POWHEG implementations for the

rapidity and transverse momentum of the vector boson are compared to Tevatron data.

The middle and bottom panels in each of these plots shows the (Theory − Data)/Data

and χ values for each bin. In figure 3 the rapidity distribution of γ/Z bosons of mass
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Figure 2: The rapidity of a) the electron in Z and b) the positron in W+ production at the

Tevatron including the leptonic decay of the gauge boson for the POWHEG implementation and

MCFM [45] at the Tevatron (
√

s = 2TeV).

71-111 GeV is compared to D0 Run II data [48]. Figure 4 shows the transverse momentum

distribution of γ/Z bosons of mass 66-116 GeV compared to CDF Run I data [49]. Figure 5

shows the transverse momentum distribution of γ/Z bosons of mass 40-200 GeV compared

to D0 Run II data [50]. Figure 6 shows the transverse momentum distribution of W bosons

compared to Run I D0 data [51]. In addition to the results from our implementation of

the POWHEG method, the results from Herwig++ including a matrix element correction

and MC@NLO [19 – 24] are shown. The predicted W and Z pT distributions at the LHC

are shown in figure 7.

The Herwig++ results were generated using an intrinsic pT of 2.2 GeV which was

obtained by fitting to the Run I W and Z pT distributions [39]. The POWHEG results used

the same intrinsic pT as Herwig++ and a minimum pT of 2GeV for the hardest emission.

The MC@NLO and HERWIG results were generated using an intrinsic pT of 1.6 GeV from

a fit to D0 data [52].

The leading-order parton distribution functions of [46] were used for the Herwig++

result and the central value of the NLO parton distributions of [53] for the POWHEG and

MC@NLO results.

All the approaches give good agreement for the rapidity of the Z boson however they

differ in the description of the pT spectrum of the gauge boson. The chi squared per

degree of freedom for the various pT spectra and approaches are given in table 1. All the

approaches are in good agreement with the Run I data from CDF and D0 for the pT of the

Z and W . However, with the exception of the results of the FORTRAN HERWIG program

including a matrix element correction, which gave the worst agreement with the Run I Z
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Figure 3: Rapidity distribution for Z production compared to D0 Run II Tevatron data [48]. The

solid line shows the prediction of our POWHEG implementation, the dotted line is the prediction

of MC@NLO and the dashed line is the default Herwig++ result.

data, all the results are below the new D0 Z pT data at high transverse momentum.

There is a common trend, at both the Tevatron and LHC energies, that the matrix

element correction gives the largest result at large pT , followed by the POWHEG approach

with MC@NLO giving the lowest value. This is due to the treatment of the hardest emission

in the different approaches. In the MC@NLO method the result at large pT is the leading-

order matrix element for the production of a vector boson and a hard QCD jet. However in

this region, as we are normalising to the total cross section, the matrix element correction

result is essentially the matrix element for vector boson plus jet production multiplied by

the K-factor12 giving a larger result. In the large pT region the POWHEG result, because

the real-emission matrix element is exponentiated, is the real-emission matrix element

multiplied by the B function, which results in a K-factor-like correction, and the Sudakov

form factor which causes the result to be slightly smaller than the default Herwig++ result.

The POWHEG result has the significant advantage that rather than using a global rescaling

of the cross section to get the NLO normalization, which can lead to a poor description

of observables, such as the boson rapidity, which are non-zero at leading order the NLO

correction is calculated for each momentum configuration.

In an ideal world we would like to use the NLO result for vector boson production

12The K-factor here is the ratio of the NLO cross section for inclusive vector boson production divided

by the leading-order cross section.
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Figure 4: Transverse momentum distribution for Z production compared to CDF Run I Tevatron

data [49]. The solid line shows the prediction of our POWHEG implementation, the dotted line is

the prediction of MC@NLO and the dashed line is the default Herwig++ result. The inset shows an

expanded view of the low pT region.

in association with a hard jet to describe the high pT region, however incorporating this

result into a Monte Carlo simulation is not currently feasible, and therefore the POWHEG

or matrix element correction methods which basically assume the correction for inclusive

production is the same as for vector boson production in association with a jet at least

have the advantage of including a correction which improves agreement with data.

In general all the results lie below the D0 Run II Z pT data between 50 and 100 GeV

which results in the relatively poor chi squared, however in general the POWHEG approach

gives comparable results to the other state-of-the-art techniques. The effect of varying the

scale used for the parton distributions and αS between 0.5ŝ and 2ŝ for the B term and

between 0.5m2
T and 2m2

T for the hardest emission is shown in figure 8, where mT is the

transverse mass of the gauge boson. While this variation moves the POWHEG result close

to the data it still is below the experimental result in the intermediate pT region.

The effect of the truncated shower is illustrated in figure 9 which shows the small pT

region of the transverse momentum distribution for W and Z production compared to D0

and CDF data. In this region where the highest pT emission is at a small scale and there

is often a large region for the evolution of the truncated shower it has the largest effect.

However the effect is relatively small at least for the transverse momentum distribution,
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Figure 5: Transverse momentum distribution for Z production compared to D0 Run II Tevatron

data [50]. The solid line shows the prediction of our POWHEG implementation, the dotted line is

the prediction of MC@NLO and the dashed line is the default Herwig++ result. The inset shows an

expanded view of the low pT region.

Approach Data Set

D0 W pT CDF Z pT D0 Z pT

All pT > 30 GeV All pT > 30 GeV All pT > 30 GeV

MC@NLO 0.51 0.82 0.70 0.96 7.2 13.9

Herwig++ 0.67 0.42 0.89 0.61 5.1 7.0

POWHEG 0.54 0.33 1.99 1.00 5.3 6.9

HERWIG 0.69 1.08 2.45 4.47 2.0 1.9

Table 1: Chi squared per degree of freedom for MC@NLO, Herwig++, our implementation of the

POWHEG method in Herwig++ and FORTRAN HERWIG compared to Tevatron vector boson pT

data. The chi-squared values are calculated for the shapes of the distributions, i.e. normalizing them

to unity. In order to compare the high pT region and minimise the effect of tuning the intrinsic

transverse momentum the chi squared per degree of freedom is given for both the full pT region

and only for the data points with pT > 30GeV.

equivalent to a small change in the intrinsic transverse momentum. We would expect to

see a larger effect in the distributions of jets in the event, in particular the second hardest

jet, which we will study in the future.
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Figure 6: Transverse Momentum distribution for W production compared to D0 Run I data [51].

The solid line shows the prediction of our POWHEG implementation, the dotted line is the prediction

of MC@NLO and the dashed line is the default Herwig++ result. The inset shows an expanded view

of the low pT region.

6. Conclusion

The POWHEG NLO matching prescription has been implemented in the Herwig++ Monte

Carlo event generator for Drell-Yan vector boson production. A full treatment of the

truncated shower, which is required to produce wide angle, soft radiation in angular-ordered

parton showers, is included for the first time.

The implementation gives a good description of data, on a similar level to the matrix

element correction methods and better than MC@NLO. It will be available in a forthcoming

release of Herwig++.

The technique we have used to implement the POWHEG approach, by interpreting

the hard emission in terms of the variables used to generate the parton shower is very

powerful, and has many other applications in matching approaches, for example for the

CKKW approach [32, 33], which we will explore in the future.
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Figure 7: The pT distributions of a) W and b) Z bosons at the LHC. The solid line shows the

prediction of our POWHEG implementation, the dotted line is the prediction of MC@NLO and the

dashed line is the default Herwig++ result.

Figure 8: Transverse Momentum distribution for Z production compared to D0 Run II data [50].

The band shows the effect of varying the scale used for the parton distributions and αS between

0.5ŝ and 2ŝ for the B term and between 0.5m2
T

and 2m2
T

for the hardest emission.
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Figure 9: Transverse Momentum distribution for a) W production compared to D0 Run I data [51]

and b) Z production compared to CDF Run I Tevatron data [49]. The solid line includes the

truncated shower whereas the dashed line does not.
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Note added in Proof. While we were in the final stages of completing this paper another

paper on the same topic was submitted to the arXiv [54].

A. Plus distributions

In order to implement the collinear (Cab) terms in the real-emission contributions to B (ΦB)

the following relations are required

∫ 1

x̄(v)
dx

f (x)

(1−x)+
=

∫ 1

0
dx̃ (1 − x̄ (v))

[

f (x (x̃, v))−f (x (1, v))

1 − x (x̃, v)
+

f (x (1, v))

1−x̄ (v)
ln (1−x̄ (v))

]

(A.1)

and
∫ 1

x̄(v)
dx f (x)

(

ln (1 − x)

1 − x

)

+

(A.2)

=

∫ 1

0
dx̃ (1 − x̄ (v))

[

(f (x (x̃, v)) − f (x (1, v)))

(

ln (1 − x (x̃, v))

1 − x (x̃, v)

)

+
f (x (1, v))

2 (1 − x̄ (v))
ln2 (1 − x̄ (v))

]
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with x̃ defined in eq. 4.2 and v ∈ [0, 1]. For the hard (Hab) contribution to the real radiation

components in B (ΦB)

∫ 1

0
dv

∫ 1

x̄(v)
dx f (x, v)

1

(1 − x)+

(

1

(1 − v)+
+

1

v+

)

(A.3)

=

∫ 1

0
dv

∫ 1

0
dx̃

1

1 − x̃

(

f (x (x̃, v) , v) − f (1, v) − f (x (x̃, 1) , 1) + f (1, 1)

1 − v

+
f (x (x̃, v) , v) − f (1, v) − f (x (x̃, 0) , 0) + f (1, 0)

v

)

+

∫ 1

0
dv

∫ 1

0
dx̃

(

f (1, v) ln (1 − x̄ (v)) − f (1, 1) ln (1 − x̄ (1))

1 − v

+
f (1, v) ln (1 − x̄ (v)) − f (1, 0) ln (1 − x̄ (0))

v

)

,

where in the last line of eq. A.3 we have introduced the identity as
∫ 1
0 dx̃. Similar relations

are derived, in different variables, in ref. [29].
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[17] M. Bähr et al., HERWIG++ 2.2 release note, arXiv:0804.3053.

[18] S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12

(2003) 045 [hep-ph/0310083].

[19] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower

simulations, JHEP 06 (2002) 029 [hep-ph/0204244].

[20] S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy

flavour production, JHEP 08 (2003) 007 [hep-ph/0305252].

[21] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO,

JHEP 03 (2006) 092 [hep-ph/0512250].

[22] S. Frixione and B.R. Webber, The MC@NLO 3.3 event generator, hep-ph/0612272.

[23] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs

from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081

[hep-ph/0702198].

[24] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top

hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv::0805.3067].

[25] O. Latunde-Dada, HERWIG++ Monte Carlo at next-to-leading order for e+e− annihilation

and lepton pair production, JHEP 11 (2007) 040 [arXiv:0708.4390].

[26] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms,

JHEP 11 (2004) 040 [hep-ph/0409146].

[27] P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair

hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275].

[28] S. Frixione, P. Nason and G. Ridolfi, The POWHEG-hvq manual version 1.0,

arXiv:0707.3081.

[29] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower

simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092].

[30] S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for

heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088].

[31] O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte

Carlo for e+e− annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281].

[32] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers,

JHEP 11 (2001) 063 [hep-ph/0109231].

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C90%2C95
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C90%2C95
http://arxiv.org/abs/hep-ph/9410414
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB436%2C443
http://arxiv.org/abs/hep-ph/9410244
http://jhep.sissa.it/stdsearch?paper=02%282004%29005
http://arxiv.org/abs/hep-ph/0311208
http://jhep.sissa.it/stdsearch?paper=02%282007%29069
http://jhep.sissa.it/stdsearch?paper=02%282007%29069
http://arxiv.org/abs/hep-ph/0612236
http://arxiv.org/abs/hep-ph/0609306
http://arxiv.org/abs/0804.3053
http://jhep.sissa.it/stdsearch?paper=12%282003%29045
http://jhep.sissa.it/stdsearch?paper=12%282003%29045
http://arxiv.org/abs/hep-ph/0310083
http://jhep.sissa.it/stdsearch?paper=06%282002%29029
http://arxiv.org/abs/hep-ph/0204244
http://jhep.sissa.it/stdsearch?paper=08%282003%29007
http://arxiv.org/abs/hep-ph/0305252
http://jhep.sissa.it/stdsearch?paper=03%282006%29092
http://arxiv.org/abs/hep-ph/0512250
http://arxiv.org/abs/hep-ph/0612272
http://jhep.sissa.it/stdsearch?paper=04%282007%29081
http://arxiv.org/abs/hep-ph/0702198
http://jhep.sissa.it/stdsearch?paper=07%282008%29029
http://arxiv.org/abs/:0805.3067
http://jhep.sissa.it/stdsearch?paper=11%282007%29040
http://arxiv.org/abs/0708.4390
http://jhep.sissa.it/stdsearch?paper=11%282004%29040
http://arxiv.org/abs/hep-ph/0409146
http://jhep.sissa.it/stdsearch?paper=08%282006%29077
http://arxiv.org/abs/hep-ph/0606275
http://arxiv.org/abs/0707.3081
http://jhep.sissa.it/stdsearch?paper=11%282007%29070
http://arxiv.org/abs/0709.2092
http://jhep.sissa.it/stdsearch?paper=09%282007%29126
http://arxiv.org/abs/0707.3088
http://jhep.sissa.it/stdsearch?paper=02%282007%29051
http://arxiv.org/abs/hep-ph/0612281
http://jhep.sissa.it/stdsearch?paper=11%282001%29063
http://arxiv.org/abs/hep-ph/0109231


J
H
E
P
1
0
(
2
0
0
8
)
0
1
5

[33] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002)

015 [hep-ph/0205283].

[34] A. Schalicke and F. Krauss, Implementing the ME+PS merging algorithm, JHEP 07 (2005)

018 [hep-ph/0503281].
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