UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Structured Discussion and Early Failure Prediction in Feature Requests

Fitzgerald, CEB; (2012) Structured Discussion and Early Failure Prediction in Feature Requests. Doctoral thesis, UCL (University College London). Green open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
10Mb

Abstract

Feature request management systems are popular tools for gathering and negotiating stakeholders' change requests during system evolution. While these frameworks encourage stakeholder participation in distributed software development, their lack of structure also raises challenges. We present a study of requirements defects and failures in large scale feature request management systems, which we build upon to propose and evaluate two distinct solutions for key challenges in feature requests. The discussion forums on which feature request management systems are based make it difficult for developers to understand stakeholders' real needs. We propose a tool-supported argumentation framework, DoArgue, that integrates into feature request management systems allowing stakeholders to annotate comments on whether a suggested feature should be implemented. DoArgue aims to help stakeholders provide input into requirements activity that is more effective and understandable to developers. A case study evaluation suggests that DoArgue encapsulates the key discussion concepts on implementing a feature, and requires little additional effort to use. Therefore it could be adopted to clarify the complexities of requirements discussions in distributed settings. Deciding how much upfront requirements analysis to perform on feature requests is another important challenge: too little may result in inadequate functionalities being developed, costly changes, and wasted development effort; too much is a waste of time and resources. We propose an automated tool-supported framework for predicting failures early in a feature request's life-cycle when a decision is made on whether to implement it. A cost-benefit model assesses the value of conducting additional requirements analysis on a body of feature requests predicted to fail. An evaluation on six large-scale projects shows that prediction models provide more value than the best baseline predictors for many failure types. This suggests that failure prediction during requirements elicitation is a promising approach for localising, guiding, and deciding how much requirements analysis to conduct.

Type:Thesis (Doctoral)
Title:Structured Discussion and Early Failure Prediction in Feature Requests
Open access status:An open access version is available from UCL Discovery
Language:English
Keywords:Requirements Engineering, Feature Request Management Systems, Failure Prediction, Design Rationale, Global Software Development, Cost-Benefit Analysis
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

View download statistics for this item

Archive Staff Only: edit this record