UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Exploiting semantic annotations for clustering geographic areas and users in location-based social networks

Noulas, A; Scellato, S; Mascolo, C; Pontil, M; (2011) Exploiting semantic annotations for clustering geographic areas and users in location-based social networks. In: AAAI Workshop - Technical Report. (pp. 32 - 35).

Full text not available from this repository.

Abstract

Location-Based Social Networks (LBSN) present so far the most vivid realization of the convergence of the physical and virtual social planes. In this work we propose a novel approach on modeling human activity and geographical areas by means of place categories. We apply a spectral clustering algorithm on areas and users of two metropolitan cities on a dataset sourced from the most vibrant LBSN, Foursquare. Our methodology allows the identification of user communities that visit similar categories of places and the comparison of urban neighborhoods within and across cities. We demonstrate how semantic information attached to places could be plausibly used as a modeling interface for applications such as recommender systems and digital tourist guides. Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.

Type:Proceedings paper
Title:Exploiting semantic annotations for clustering geographic areas and users in location-based social networks
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record