IN VIVO DISSECTION OF THE ROLE OF
THE UBIQUITIN PROTEASOME SYSTEM
IN THE PATHOGENESIS OF PRION
DISEASE

A thesis submitted to the University College London for the
degree of Doctor of Philosophy

Julie Moonga BSc (Hons), MSc
Institute of Neurology
University College London
London
DECLARATION STATEMENT

I, Julie Moonga declare that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

The copyright of this thesis resides with the author and no quotation from it or information derived from it may be published without prior written consent of the author.

Julie Moonga
ACKNOWLEDGEMENTS

I would like to extend my heartfelt thanks to my primary supervisor Professor Sarah Tabrizi. Without her tireless efforts, extraordinary knowledge and guidance, this project would not have been possible. Also, my sincere thanks to Dr. Ralph Andre who co-supervised this project, and coordinated my day-to-day experiments. Thank you for proofreading my thesis.

I would like to thank the BSF staff at Wakefield Street for assisting me with my animal colony and animal experiments. Special thanks are due to the Histology Team of the MRC Prion Unit for training me and allowing me to use their facility. I would like to thank some present and past members of the Tabrizi lab “Team Tabrizi” Dr. Rob Goold, Dr. Pela Deriziotis, Dr. Kerry Kerrington, Anna Magnusson, Dr. Samira Rabbanian, Chris McKinnon, Ulrike Traeger and Lucianne Dobson for their assistance and inspiration.

Throughout the course of my PhD there have been a core group of people who helped me stay focused, I could not have managed this far without their support. I would like to thank my friend and mentor Dr. Emmanuel Asante, who was instrumental and encouraging in my moving forward with this PhD when things were tough. Thank you for your input and for proofreading my thesis. Doctor Oke Avwenagha, for her words of wisdom when I needed a listening ear.

I would also like to acknowledge, the people who have made the biggest impact on my scientific career. Professor Terry Ann Krulwich, for encouraging me to follow a career in neuroscience. Professor Stephen Salton, my former supervisor for many years of support and encouragement.

I owe everything to my dear husband Choongo, for his unyielding love and support.
“Character cannot be developed in ease and quiet. Only through experience of trial and suffering can the soul be strengthened, ambition inspired, and success achieved”.

Helen Keller

For my mother

À quoi sert la vie si les enfants n'en font pas plus que leurs pères.
To Noli,
ABSTRACT

Prion diseases comprise a group of fatal neurodegenerative disorders caused by the conformational re-arrangement of a normal host-encoded prion protein, PrP\(^\text{C}\), to an abnormal infectious isoform, PrP\(^\text{Sc}\). Currently, the precise cellular mechanism(s) of prion-mediated neurodegeneration remain unclear. However, increasing evidence suggests a role for the ubiquitin proteasome system (UPS) in prion disease pathogenesis, with a direct functional impairment of the 26S proteasome leading to the accumulation of UPS substrates in the brains of prion-infected mice. The UPS functions to regulate the targeted degradation of intracellular proteins and maintain cellular proteostasis. Alterations in proteasome proteolysis have been shown to contribute to the build up of proteins associated with aging and dysregulation of the UPS has been linked to several neurodegenerative diseases. The principal aim of this thesis was to characterise the progression of UPS dysfunction in vivo in the brains of prion-infected mice using a ubiquitin-GFP reporter mouse model. Using the Ub\(^{G76V}\)-GFP transgenic mouse model, UPS dysfunction was observed in the brain early in the prion disease incubation period, before key hallmarks of disease pathology were observed. The accumulation of Ub-GFP reporter coincided with markers of prion disease neuropathology, such as PrP\(^\text{Sc}\) deposition and extensive astrogliosis. The majority of cells in which the Ub-GFP reporter was observed in the thalamus appeared to be astrocytes, suggesting that altered proteolysis and reactive astrocyte pathology may be linked. Ubiquitin levels were increased significantly in the brains of prion infected mice, while 26S proteasome peptidase activity was reduced. Behavioural abnormalities and motor skills deficits were also observed in prion-infected Ub\(^{G76V}\)-GFP mice, which may correlate to neuronal loss and/or synaptic dysfunction associated with impairment of the UPS machinery. Collectively, the data presented in this thesis provide evidence of an early and potentially important role for UPS dysfunction in prion disease pathogenesis.
Table of contents

DECLARATION STATEMENT ...2
ACKNOWLEDGEMENTS ...3
ABSTRACT ..6
TABLE OF CONTENTS ..7
LIST OF FIGURES ...11
LIST OF TABLES ..14
ABREVIATION LIST ..15

1 INTRODUCTION ..19
 1.1 PRION DISEASES IN ANIMALS ..20
 1.1.1 Scrapie ..20
 1.1.2 Bovine spongiform encephalopathy (BSE) ...21
 1.1.3 Chronic wasting disease (CWD) ..21
 1.1.4 Transmissible mink encephalopathy (TME) ..22
 1.1.5 Other animal prion diseases ..22
 1.2 HUMAN PRION DISEASES ...23
 1.2.1 Sporadic Creutzfeldt-Jakob disease (sCJD) ..24
 1.2.2 Acquired prion diseases ..25
 1.2.3 Inherited human prion diseases ..28
 1.3 PRION DISEASE GENETICS ...32
 1.4 PRION DISEASE NEUROPATHOLOGY ..35
 1.5 PRION DISEASE TRANSMISSION ...37
 1.6 THE PROTEIN-ONLY HYPOTHESIS OF PRION PROPAGATION39
 1.7 THE PRION PROTEIN (PrP) ..43
 1.7.1 PrPC structure and function ..43
 1.7.2 PrPSc structure ..45
 1.7.3 PrPSc conversion ..47
 1.8 PRION STRAINS AND TRANSMISSION BARRIERS ..48
 1.9 YEAST PRIONS ...52
 1.10 PRION-MEDIATED NEURODEGENERATION ...53
2 MATERIALS AND METHODS ... 86

2.1 Ub^G76V^-GFP REPORTER MICE .. 86
 2.1.1 Animal Care .. 86
 2.1.1.1 Genotyping ... 86
 2.2 Inoculation of mice with RML prions .. 87
 2.2.1 Preparation of inocula ... 87
 2.2.2 Prion infection of mice .. 88
 2.2.3 Timed-culls of mice ... 88
 2.2.4 Tissue handling and collection of samples 88
 2.3 Primary cell culture ... 89
 2.4 Immunocytochemistry .. 90
 2.5 Immunohistochemistry ... 90
 2.5.1 Immunostaining for PrP ... 91
 2.5.2 Immunostaining for GFP and ubiquitin 91
 2.5.3 Immunostaining for GFAP ... 92
 2.5.4 Immunostaining for NeuN and synaptophysin 93
 2.5.5 Light Microscopy ... 93
 2.6 Immunoblotting ... 94
2.6.1 Preparation of homogenates ... 94
2.6.2 BCA protein assay .. 94
2.6.3 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 95
2.6.4 Electroblotting ... 95
2.6.5 Dot blotting .. 95
2.6.6 Immunodetection ... 96
2.7 FLUORESCENT ASSAYS FOR PROTEASOME ACTIVITY 97
2.8 BEHAVIOURAL ASSESSMENTS ... 97
 2.8.1 Nesting ... 98
 2.8.2 Burrowing .. 98
 2.8.3 Grip Strength ... 99
 2.8.4 Rotarod .. 99
2.9 STATISTICAL ANALYSIS .. 99

3 GENERATION AND PRION INOCULATION OF UB^{G76V}-GFP REPORTER MICE 100
 3.1 BACKGROUND ... 100
 3.2 AIMS ... 102
 3.3 METHODS ... 102
 3.4 RESULTS .. 103
 3.4.1 Establishing the Ub^{G76V}-GFP reporter mouse colony 103
 3.4.2 Genotyping of the Ub^{G76V}-GFP1 and Ub^{G76V}-GFP2 mice 104
 3.4.3 Ub-GFP reporter expression in response to inhibition of the UPS in Ub^{G76V}-GFP primary cortical neurons ... 105
 3.4.4 Basal expression of the Ub^{G76V}-GFP reporter in primary cortical neurons from Ub^{G76V}-GFP1 mice ... 107
 3.4.5 Inoculation of Ub^{G76V}-GFP reporter mice with RML prions 108
 3.4.6 Pr^{Psc} accumulates in the brains of prion-infected Ub^{G76V}-GFP reporter mice. 109
 3.4.7 Gliosis increases in the brains of prion-infected Ub^{G76V}-GFP reporter mice. 111
 3.4.8 Confirmation of GFP in 22 L prion infected Ub^{G76V}-GFP1 mouse brain. 114
 3.4.9 Ub-GFP reporter accumulates in the brains of prion-infected Ub^{G76V}-GFP reporter mice .. 115
 3.5 DISCUSSION ... 117
 3.6 SUMMARY ... 122

4 PRION INFECTION IMPAIRS THE UPS IN UB^{G76V}-GFP REPORTER MICE 123
 4.1 BACKGROUND ... 123
 4.2 AIMS ... 124
4.3 METHODS .. 124
4.4 RESULTS ... 127
 4.4.1 Ub-GFP is expressed in the brains of RML prion-infected UbG76V-GFP1 mice before the onset of clinical signs ... 127
 4.4.2 Ub-GFP is expressed in the brains of prion-infected UbG76V-GFP2 mice before the onset of clinical signs ... 130
 4.4.3 PrpSc deposition in the brains of RML prion-infected UbG76V-GFP1 mice 133
 4.4.4 Gliosis in the brains of RML prion-infected UbG76V-GFP1 mice 138
 4.4.4 Ubiquitin deposition in the brains of RML prion-infected UbG76V-GFP1 mice 142
 4.4.5 26S proteasome activity is impaired in the brains of prion-infected UbG76V-GFP reporter mice 148
 4.4.6 A marker of ER stress is observed at end stage disease in the brains of prion-infected UbG76V-GFP1 mice... 150
4.5 DISCUSSION .. 152
4.6 SUMMARY ... 160

5 MOTOR SKILLS DEFICITS AND SYNAPTIC DYSFUNCTION IN UBG76V-GFP REPORTER MICE ... 161
 5.1 BACKGROUND .. 161
 5.2 AIMS ... 162
 5.3 METHODS .. 162
 5.4 RESULTS .. 163
 5.4.1 Neuronal loss in the brains of RML prion infected UbG76V-GFP reporter mice 163
 5.4.2 Neuronal loss in the CA1/CA3 region of the brains of UbG76V-GFP mice following RML prion infection .. 165
 5.4.3 Synaptic loss in the brains of UbG76V-GFP mice following RML prion infection 167
 5.4.4 Balance and coordination impairment in RML prion-infected UbG76V-GFP reporter mice ... 170
 5.4.5 Burrowing impairment in RML prion-infected UbG76V-GFP reporter mice 172
 5.4.6 Nest building impairment in RML prion-infected UbG76V-GFP reporter mice. 174
 5.4.7 RML Prion infection does not affect grip strength in UbG76V-GFP reporter mice 176
 5.5 DISCUSSION .. 178
 5.6 SUMMARY ... 182

6 CONCLUSIONS AND FUTURE WORK ... 183

7 APPENDICES .. 191
List of Figures

FIGURE 1.1 MUTATIONS AND POLYMORPHISMS IN THE PRNP GENE. .. 29
FIGURE 1.2 THE PRNP GENE. ... 34
FIGURE 1.3. CHARACTERISATION OF DISEASE-RELATED SPONGIOSIS AND GLIOSIS IN HUMAN PRION DISEASE... 36
FIGURE 1.4 CHARACTERISATION OF DISEASE-RELATED PrP IN HUMAN PRION DISEASE 37
FIGURE 1.5 PRION PROTEIN ISOFORMS. .. 41
FIGURE 1.6 DISTINCT PRION STRAIN OF CREUTZFELDT-JAKOB DISEASE. ... 46
FIGURE 1.7 SCHEMATIC OF PRION TRANSMISSION... 51
FIGURE 1.8 MODEL FOR THE MECHANISM OF OLIGOMERIC PrP-INDUCED NEURODEGENERATION. 54
FIGURE 1.9 TOXICITY MEDIATED BY ABNORMAL TOPOLOGY OR ALTERED TRAFFICKING OF PrPC 58
FIGURE 1.10 MECHANISMS FOR APOPTOSIS IN PRION MEDIATED-NEUROTOXICITY............................ 61
FIGURE 1.11 THE UBIQUITIN PROTEASOME PATHWAY. .. 66
FIGURE 1.12 OVERVIEW OF UBIQUITINATION. .. 69
FIGURE 1.13 THE 26S PROTEASOME IN SACCHAROMYCES CEREVISIAE .. 75
FIGURE 1.14 GENERATION OF UbG76V-GFP TRANSGENIC MICE ... 83
FIGURE 3.1 BREEDING OF THE UbG76V-GFP TRANSGENIC MICE. ... 103
FIGURE 3.2 GENOTYPING OF THE UbG76V-GFP TRANSGENIC MICE. .. 104
FIGURE 3.3 FUNCTIONAL CHARACTERISATION OF UbG76V-GFP EXPRESSION IN PRIMARY CORTICAL NEURONS. ... 106
Figure 3.4 Basal expression of the Ub^{G76V}-GFP reporter in expression primary cortical neurons from Ub^{G76V}-GFP1 mice. ... 107

Figure 3.5 RML infected Ub^{G76V}-GFP mice succumb to disease at 160 days post-inoculation. 109

Figure 3.6 RML infected Ub^{G76V}-GFP1 mice accumulate PrP^{Sc} at end-stage disease. 110

Figure 3.7 RML infected Ub^{G76V}-GFP2 mice accumulate PrP^{Sc} at end-stage disease. 111

Figure 3.8 RML infected Ub^{G76V}-GFP1 mice demonstrate gliosis at end-stage disease. 112

Figure 3.9 RML infected Ub^{G76V}-GFP2 mice demonstrate gliosis at end-stage disease. 113

Figure 3.10 GFP accumulates in the brain of 22L prion infected Ub^{G76V}-GFP1 mice at end-stage disease. 115

Figure 3.11 The Ub-GFP reporter accumulates in RML infected Ub^{G76V}-GFP1 mice at end-stage disease. 116

Figure 3.12 The Ub-GFP reporter accumulates in RML infected Ub^{G76V}-GFP2 mice at end-stage disease. 117

Figure 4.1 The Ub-GFP reporter accumulates in RML infected Ub^{G76V}-GFP1 mice at end-stage disease. 128

Figure 4.2 The Ub-GFP reporter accumulates in RML infected Ub^{G76V}-GFP2 mice at end-stage disease. 131

Figure 4.3 RML infected Ub^{G76V}-GFP1 mice accumulate PrP^{Sc} from day 85 post-inoculation through to end stage disease. 134

Figure 4.4 PrP^{Sc} deposition is widespread throughout the brain in RML infected Ub^{G76V}-GFP1 mice. 136

Figure 4.5 Immunoblot analysis of PrP^{Sc} expression in the brains of RML-prion-infected Ub^{G76V}-GFP1 mice. 137

Figure 4.6 RML infected Ub^{G76V}-GFP1 mice exhibit increased astrocytosis from day 85 post-inoculation through to end stage disease. 139

Figure 4.7 Astrocytosis is widespread throughout the brain in RML infected Ub^{G76V}-GFP1 mice. 141
Figure 4.8 Prion infection causes some increase in the deposition of ubiquitinated proteins in Ub^{G76V} -GFP mice. .. 143

Figure 4.9 Ubiquitinated inclusions are observed in the thalamus of the brain in prion infected Ub^{G76V} -GFP mice. .. 144

Figure 4.10 Total ubiquitin levels are increased in the brains of prion-infected Ub^{G76V} -GFP1 mice. ... 146

Figure 4.11 Accumulating ubiquitin in the brains of prion-infected Ub^{G76V} -GFP1 mice appears to consist of high molecular weight species.. 147

Figure 4.12 RML prion infection causes impairment of the proteolytic activity of the 26S proteasome in Ub^{G76V} -GFP1 mice. .. 149

Figure 4.13 Prion infection increases the expression of Grp78/Bip, indicating ER stress, at end stage disease in the brains of Ub^{G76V} -GFP1 mice 151

Figure 5.1 NeuN expression in the thalamus in the brain of RML prion-infected Ub^{G76V} -GFP mice. ... 164

Figure 5.2 NeuN expression in the hippocampus in the brain of RML prion-infected Ub^{G76V} -GFP mice. ... 166

Figure 5.3 Synaptophysin expression in the thalamus of RML prion-infected Ub^{G76V} -GFP mice. ... 168

Figure 5.4 Immunoblot analysis of synaptophysin expression in the brains of RML prion-infected Ub^{G76V} -GFP mice. ... 169

Figure 5.5 Early motor deficits in Ub^{G76V} -GFP mice following RML prion infection. 171

Figure 5.6 Burrowing behaviour is progressively lost in RML prion-infected Ub^{G76V} -GFP mice. 173

Figure 5.7 Nesting scores decline during disease progression in prion-infected Ub^{G76V} -GFP mice. ... 175

Figure 5.8 Grip strength in RML prion-infected Ub^{G76V} -GFP mice.. 177
List of Tables

TABLE 1.1 Prion diseases in animals ... 23
TABLE 1.2 Neuropathological criteria for diagnosis of human prion diseases 32
TABLE 4.1 UbG76V-GFP mice were inoculated in groups and culled at various time points thereafter. ... 126
TABLE 7.1 List of antibodies for immunocytochemistry .. 191
TABLE 7.2 List of primary antibodies used for immunohistochemistry 191
TABLE 7.3 List of primary antibodies used for immunoblotting 192
ABREVIATION LIST

°C – degrees Celsius
Å – angstrom
Ab – antibody
Aβ – amyloid-β peptide
AD – Alzheimer’s disease
AEBSF – 4-(2-aminoethyl) benzenesulphonyl fluoride
AF – Alexa Fluor
ALS – amyotrophic lateral sclerosis
AP – alkaline phosphate
APOE – apolipoprotein E
APP – amyloid precursor protein
Ar – argon
Atg – autophagy-related
ATP – adenosine 5’-triphosphate
ATPase – ATP hydrolyzing enzyme
BCA – bicinechonic acid
bp – base pairs
Bip – immunoglobulin heavy chain binding protein
BSA – bovine serum albumin
BSE – bovine spongiform encephalopathy
cDNA – complementary deoxyribose nucleic acid
CHIP – C-terminus of the Hsc70 interacting protein
CJD – Creutzfeld Jakob disease
cm – centimeter
CMV – cytomegalovirus
CNS – central nervous system
CP – core particle
CWD – chronic wasting disease
Da – Dalton
DAB – dianinobenzidine
dH2O – distilled water
ddH2O – de-ionised distilled water
DNA – deoxyribonucleic acid
dNTP – deoxynucleotide triphosphates
DRM – detergent resistant membrane
DTT – dithiotreitol
DUB – deubiquitylating enzyme
E1 – ubiquitin activating enzyme
E2 – ubiquitin conjugating enzyme
E3 – ubiquitin ligating enzyme
E4 – chain elongation factor
ECL – enhanced chemiluminescence
EDTA – ethylene diamine tetra-acetic acid
EPOX – epoxomicin
ER – endoplasmic reticulum
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERAD</td>
<td>ER associated degradation</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FFI</td>
<td>Fatal familial insomnia</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FVB</td>
<td>Friend Virus B-type (mouse)</td>
</tr>
<tr>
<td>FP</td>
<td>fluorescent protein</td>
</tr>
<tr>
<td>FSE</td>
<td>Feline spongiform encephalopathy</td>
</tr>
<tr>
<td>g</td>
<td>gravity (acceleration due to)</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>grp</td>
<td>glucose-regulated protein</td>
</tr>
<tr>
<td>GSS</td>
<td>Gerstmann-Straussler-Scheinker syndrome</td>
</tr>
<tr>
<td>hr</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HD</td>
<td>Huntington’s disease</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HeNe</td>
<td>helium-neon</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>Hsp</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>Hsc70</td>
<td>heat shock chaperone 70</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>IPD</td>
<td>inherited prion disease</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>KD</td>
<td>knock-down</td>
</tr>
<tr>
<td>KO</td>
<td>knockout</td>
</tr>
<tr>
<td>LAC</td>
<td>lactacystin</td>
</tr>
<tr>
<td>LTP</td>
<td>long term potentiation</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>M</td>
<td>methionine</td>
</tr>
<tr>
<td>mg</td>
<td>milligrams</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>ml</td>
<td>milliliters</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NCAM</td>
<td>neural cell adhesion molecule</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NGS</td>
<td>normal goat serum</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBS-T</td>
<td>phosphate buffered saline with 0.5% Tween</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen ion concentration</td>
</tr>
</tbody>
</table>
PIPLC – phosphatidylinositol-specific phospholipase C
PK – proteinase K
PLL – poly-L-lysine
PMCA – protein misfolding cyclic amplification
PMSF – phenylmethylsuphonyl fluoride
PRNP – prion protein gene (human)
Prnp – prion protein gene (mouse)
PrP – prion protein
PrP^C – cellular prion protein
PrP^{Sc} – disease-associated scrapie prion protein
PSD – postsynaptic density
PVDF – polyvinylidene difluoride
RML – Rocky Mountain laboratory
RNA – ribonucleic acid
RNase – ribonuclease
RNAi – RNA interference
ROS – reactive oxygen species
RP – regulatory particle
rpm – revolutions per minute
RT – room temperature
SCA – scrapie cell assay
sCJD – sporadic Creutzfeldt-Jakob disease
SD – standard deviation
SDS – sodium dodecyl sulphate
sec – second(s)
s – second(s)
SD – standard deviation
SNAP – synaptosomal-associated protein
SUMO – small ubiquitin-related modifier
SOD – superoxide dismutase
TBS – tris buffered saline
TBS-T – tris-buffered saline with 0.5% Tween-20
TCA – trichloroacetic acid
TME – transmissible mink encephalopathy
TSE – transmissible spongiform encephalopathy
U – units
Ub – ubiquitin
UBP – ubiquitin-specific processing protease
UDP – ubiquitin-like domain
UBL – ubiquitin-like protein
UCH – ubiquitin C-terminal hydrolase
UFD – ubiquitin fusion degradation
UPR – unfolded protein response
UPS – ubiquitin proteasome system
UV – ultraviolet
v/v – volume per volume
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCJD</td>
<td>variant Creutzfeldt-Jakob disease</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
<td></td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>micrograms</td>
<td></td>
</tr>
<tr>
<td>µl</td>
<td>microlitres</td>
<td></td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
<td></td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Prion diseases, or transmissible spongiform encephalopathies (TSEs), comprise a group of fatal and untreatable neurodegenerative diseases that affect humans (e.g., Creutzfeldt-Jacob disease) and various other mammals (e.g., bovine spongiform encephalopathy). Prion diseases can be transmitted naturally or experimentally by inoculation, dietary exposure or by contact with infectious tissue. Although a number of prion diseases have been identified in various mammals, including humans, they are believed to be caused by a single protein (Prusiner et al., 1991). Prion diseases are grouped together on the basis of their distinct neuropathological characteristics, as well as various clinical symptoms. Mammalian prions are characterized by their ability to cause fatal degeneration of the central nervous system (CNS). Biologically, the normal prion protein, PrP\textsubscript{C} (C for cellular), undergoes a post-translational conformational change to the abnormal prion protein PrP\textsubscript{Sc} (Sc denotes scrapie). A major conformational difference exists between the isoforms: PrP\textsubscript{C} has a predominantly alpha–helical structure, whereas PrP\textsubscript{Sc} is largely \(\beta\)-sheet in content. The altered structure of the protein is very stable and accumulates in infected tissue causing cell death and tissue damage. Prion diseases have incubation periods (the latent period from point of infection to appearance of the first sign of clinical disease) of months to several years, depending on the type of prion disease.
1.1 Prion diseases in animals

Scrapie, an endemic brain disease of sheep and goats, is known to have been first described in Europe in the 18th century, although it was not known to be infectious at the time. Scrapie is often considered to be the prototypic prion disease. A number of other mammals, however, develop prion diseases, including chronic wasting disease (CWD) in mule deer and elk, and bovine spongiform encephalopathy (BSE) in cattle. The clinical manifestation of animal prion diseases is characterised by the loss of motor control, paralysis and muscle wasting, which together ultimately lead to death. Other animal prion diseases such as transmissible mink encephalopathy (TME) have also been reported (Table 1.1).

1.1.1 Scrapie

Scrapie is a fatal, sub-acute, progressive disease found in sheep and goats. Animals affected by scrapie have been recognised by shepherds for many centuries. The name scrapie corresponds to the unusual condition of the disease where the suffering animal scrapes itself up against walls or fences to alleviate itchiness caused by the disease. However, for many years the disorder was regarded as an inherited, degenerative disease of the brain and spinal cord. The various symptoms of scrapie include hyperexcitability, itching, tremors, gait disorders, and loss of fur and skin damage due to scraping. The first report of scrapie being transmissible from one individual sheep to another was in the 1930s, with an incubation period of one year (Cuillé and Chelle, 1936). The transmissibility of scrapie was comprehensively demonstrated in 1943, when Scottish sheep were accidently inoculated against a common virus using infected material from a scrapie sick animal (Gordon, 1946). The natural mode of transmission of scrapie and the relative role of genetic susceptibility to the disease are long-standing areas of research, but are not yet fully understood (Parry, 1979).
1.1.2 Bovine spongiform encephalopathy (BSE)

Bovine spongiform encephalopathy (BSE), also known as “mad cow disease”, is a disease in cattle that was first observed as an epidemic in the 1980s, mainly in the UK (Wilesmith et al., 1988; Anderson et al., 1996). BSE was reported to be caused by processed animal feed, such as bone meal, containing rendered remains of scrapie affected sheep being fed to dairy cattle (Wilesmith et al., 1991; Wilesmith et al., 1988). The incidence of BSE assumed epidemic proportion within a very short period of time, with thousands of animals becoming affected (Wilesmith et al., 1988; Anderson et al., 1996). Since the outbreak in the UK, BSE cases have been reported in many other countries across the world, including the USA, Canada and Japan. The disease is characterised neuropathologically by spongiform change, neuronal loss and astrogliosis, which comprise the core characteristics of prion diseases (Wells et al., 1987). Clinical symptoms include changes in temperament, sensitivity to light and sound, as well as various movement disorders. The incidence of BSE in Australia and New Zealand, which are free of scrapie, is similar to that in the UK where scrapie in sheep is endemic. As an alternative explanation, the origins of BSE may lie in some sporadic cases that arose by chance to trigger the epidemic (Weissmann and Aguzzi, 1997).

1.1.3 Chronic wasting disease (CWD)

Chronic wasting disease (CWD) is a scrapie-like disease of unknown origin, found in North American wild and captive cervids, including mule deer, Rocky Mountain elk and captive mule (Sigurdson and Aguzzi, 2006). The disease ranges in duration from a few days to a few weeks from the initial onset of symptoms, which can include weight loss and excessive drinking (Williams, 2005; Williams and Miller, 2002). Experimentally, evidence confirms the presence of neuronal vacuolation (William and Young, 1980), aggregation of PrP in the CNS, as well as lymphoid tissues damage in affected animals (Browning et al., 2004). It is thought to be transmitted in a manner similar to scrapie, via saliva and blood.
(Miller and William 2003; Mathiason et al., 2006). However, the route of transmission is not clear and there is no evidence for CWD transmission to humans.

1.1.4 Transmissible mink encephalopathy (TME)

Transmissible mink encephalopathy (TME) is an animal prion disease seen in farmed mink. It has similar characteristics to the CWD found in elk and mule deer, and its occurrence is thought to have originated from being fed the meat of scrapie-infected sheep (Marsh et al., 1991; Marsh, 1992). Symptoms of TME include loss of muscle coordination and aggression. Following onset, the animal dies within a few weeks. Recent studies have reported similarities between TME and BSE in a mouse model (Baron et al., 2007).

1.1.5 Other animal prion diseases

Other animal prion diseases such as feline spongiform encephalopathy (FSE) have been reported. FSE has been reported in domestic and captive wild cats, predominantly in the UK (Leggett et al., 1990). Other TSEs have been reported in species such as kudu. Similarly to FSE, these diseases have been reported to exert similar characteristics to BSE and may have been caused by a BSE-like strain transmitted through feeding on contaminated material from cattle (Bruce et al., 1994; Collinge et al., 1996b).
Table 1.1 Prion diseases in animals

<table>
<thead>
<tr>
<th>Host</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep and Goat</td>
<td>Scrapie</td>
</tr>
<tr>
<td>Mule deer, elk</td>
<td>Chronic Wasting Disease</td>
</tr>
<tr>
<td>Cattle</td>
<td>Bovine Spongiform Encephalopathy</td>
</tr>
<tr>
<td>Mink</td>
<td>Transmissible Mink Encephalopathy</td>
</tr>
<tr>
<td>Cat</td>
<td>Feline Spongiform Encephalopathy</td>
</tr>
<tr>
<td>Tiger, Cheater, Kudu</td>
<td>Other Transmissible Spongiform Encephalopathy</td>
</tr>
</tbody>
</table>

1.2 Human prion diseases

Humans are susceptible to several prion diseases, amongst which are Creutzfeldt-Jakob disease (CJD), Gerstmann-Strausssler-Scheinker disease (GSS), fatal familial insomnia (FFI) and kuru (Table 1.2). Human prion diseases are rare neurodegenerative disorders, but are invariably fatal. They are characterised by the accumulation of aggregated and abnormally folded protease resistant PrPSc. Most manifestations of prion diseases in humans share a common non-inflammatory pathological process that is largely restricted to the CNS and includes deposits of PrPSc in the form of diffuse plaques (Figure 1.3).

General neuropathological characteristics of human prion disease include spongiform degeneration, gliosis and severe neuronal loss (Collinge and Palmer, 1992), which ultimately lead the brain to degenerate resulting in a progressive decline in cognitive and motor function. Human prion diseases have been classified as occurring as inherited, sporadic and acquired forms, with a further sub-classification according to certain
molecular criteria (Wadsworth and Collinge, 2007). Most cases of human prion disease occur sporadically, but hereditary, iatrogenic and dietary transmission can also occur. There has been a considerable interest in the disease following the identification of new variant (v)CJD, and the demonstration through transmission studies that vCJD is caused by the same prion strain as that causing BSE (Weissmann and Aguzzi, 1997; Mallucci and Collinge, 2004). With recent reports of blood-borne transmission (Wroe and Pal, 2006), prion diseases remain in the spotlight due to public health concerns. Particular attention has focused on the development of therapeutic agents and a diagnostic test (Miller and Williams, 2003; Mathiason et al., 2006).

1.2.1 Sporadic Creutzfeldt-Jakob disease (sCJD)

Sporadic CJD (sCJD) is a rapidly progressive multifocal dementing disease with neurological features that include cerebellar ataxia, neuropsychiatric symptoms and myoclonus (Brown et al., 1984; Collins et al., 2006). sCJD makes up 85% of all recognized human prion disease, with an incidence of about 1.2 per million per year and an apparently random distribution (Caramelli et al., 2006). This is possibly an underestimate, since prion disease can sometimes be misdiagnosed and confused with other neurological disorders. Onset usually occurs from 45-75 years of age, with a peak age of onset between 60-65 years. Rapid clinical progression usually leads to death within weeks or months. The median duration of illness in sCJD is four months with, 14% of cases having illness duration of a year or more, and 5% of cases surviving greater than twenty years. Possible causes of sCJD are spontaneous production of PrPSc via rare stochastic events, somatic mutation of the PrP-encoding gene (PRNP), or some unidentified environmental exposure. Reports on a two-case control study suggested prior surgery as a risk factor for sCJD, therefore raising the possibility of some sCJD being classified as an acquired illness (Collins et al., 1999; Ward et al., 2002).
Much clinical heterogeneity exists within sCJD, especially at symptom onset where particular focal deficits may be present. For instance, an isolated progressive cerebellar syndrome is observed in approximately 10% of cases, or an isolated progressive visual disturbance culminating with cortical blindness known as the Heidenhain’s variant is also sometimes reported (Collinge et al., 1996; Hill et al., 1999). The various clinical phenotypes associated with sCJD make it prone to misdiagnosis. The most difficult differential diagnosis of sCJD is the rapidly progressive feature, which can also be a characteristic of Alzheimer’s disease (AD), with cases misdiagnosed as sCJD in several series (Zerr et al., 2000; Tschampa et al., 2001). Definitive diagnosis of sCJD is achieved through neuropathological examination of the brain at autopsy. Cerebral imaging is important in excluding other diagnoses, but more recently imaging analysis of sCJD revealed a combination of cortical and basal ganglia signal change on magnetic resonance imaging (MRI) to have a diagnosis sensitivity of greater than 90% (Young et al., 2005). MRI is able to reveal changes in the density of deep grey nuclei (Di Rocco, et al., 1993). Pathologically, PrP amyloid plaques are not typically present in sCJD. However, diffuse or synaptic PrP$^\text{Sc}$ deposits are often present. PrP deposits are usually confirmed by immunohistochemistry (IHC) (Budka, 2003). The differential diagnosis also includes dementia with Lewis bodies, lymphoma and multiple cerebral infarctions (Poser et al., 1999; Steinhoff et al., 2004).

1.2.2 Acquired prion diseases

Acquired prion diseases in humans include kuru, iatrogenic CJD and vCJD. Kuru arose in the mid-20th century as an epidemic disease in localised parts of Papua New Guinea and is associated with exposure to prions during cannibalistic mortuary feasts. Iatrogenic exposure occurs through accidental exposure to human prions through medical or surgical procedures, most frequently through implantation of dura mater or through administration of growth hormone derived from the pituitary glands of human cadavers (Brown et al., 1992). Variant CJD has been shown through strain-typing studies and
transmission studies in transgenic mice to be caused by the same prion strain as that causing BSE (Parchi et al., 1999; Hill et al., 2003).

Kuru

Kuru was the first disorder in humans to be shown to be a transmissible prion disease. It was brought to prominence in the 1950s during pivotal descriptions of the disease in the Fore tribal people in the highlands of Papua New Guinea. It reached epidemic proportions among the Fore ethnic group in the remote mountainous areas in which they lived (Mead et al., 2003; Gajdusek et al., 1966; Gajdusek et al., 1957). Kuru means shivering or trembling in the Fore language, but is also known as “laughing disease” due to the facial grimaces it causes. Kuru is a sub-acute, fatal disease associated with cerebellar degeneration. It is a progressive ataxic syndrome with late dementia and other neurologic impairments. It is neuropathologically characterised by non-inflammatory loss of neurons, gliosis, spongiform change and accumulation of abnormal protease-resistant PrPSc plaques (Collinge et al., 2006; Mead et al., 2003).

A remarkable characteristic of kuru is its association with the practice of ritual mortuary cannibalism as a sign of respect for deceased loved ones. The rites involved grinding up the brain into a pale Grey soup, which was heated and eaten as a sign of respect and mourning for deceased relatives (Alpers, 1987). Studies of the Fore tribe showed that kuru transmission was more common amongst women and children, as they ate the highly infectious tissue of the CNS, while the men ate relatively safe tissue such as muscle. Kuru has gradually disappeared over the past 60 years since the practice of mortuary feasting ceased following a ban by the Australian government. Cases of Kuru since this ban in the 1950s represent not new infections, but rather long incubation periods of infections before the ban (Lindenbaum, 1979). That kuru could be a human prion disease was noted on the basis of similarities in the epidemiology, clinical course and histopathological features of kuru and scrapie. This led to the suggestion that the
transmission of kuru should be attempted (Collinge et al., 2006), prompting the successful experimental transmission of kuru to non-human primates (Gajdusek et al., 1966)

Iatrogenic CJD

Iatrogenic CJD is usually referred to as CJD despite having a prominent cerebral syndrome more reminiscent of kuru (Wadsworth and Collinge, 2007). Transmission may occur by one of a number of routes involving the use of inadequately sterilised neurosurgical instruments due to the high heat resistance of the infectious prion agent. The acquired sources of such infection are through medical procedures such as neurosurgery, growth hormone injections, and dura mater and corneal transplants, as well as the use of gonadotrophin derived from the pituitary gland from cadavers (Brown et al., 1992; Brown et al., 2000). Contaminated surgical instruments have been shown to remain infectious two years after their reported sterilization (Brown et al., 1992; Brown et al., 2000). Over a hundred people have acquired CJD from injections of human growth hormone or human gonadotropins, prepared from pooled pituitary glands that inadvertently included glands taken from humans with sCJD (Collinge, 1999; Wadsworth et al., 2001; Peden et al., 2005).

Variant CJD (vCJD)

In 1995, a new human prion disease in humans resembling CJD, but showing clinically distinct traits, was reported in teenage patients with manifest clinical signs (Will et al., 1996; Collinge and Rossor, 1996). Concerns about cross-species transmission of BSE resulting from its epidemic in cattle lead to the establishment in the UK of a National Surveillance Unit for CJD, in 1990. Although no cases were noted during the first four years of monitoring the disease, twenty two cases of vCJD were reported between 1994 and 1997. These patients were typically younger than those with more familiar forms CJD, with prominent early psychiatric and behavioural manifestations, and persistent paraesthesias and dysaesthesias. Cerebellar ataxia uniformly develops and the course of the disease is
prolonged. These new cases of a previously unrecognised prion disease were termed new variant CJD (vCJD) (Collinge et al., 1996b; Hill et al., 1997; Bruce et al., 1997; Asante et al., 2002). Although rare, further cases in young adults were discovered, with their post-mortem brain histology showing a consistent and unique neuropathological appearance of prominent and diffuse PrP\textsubscript{Sc} plaques reminiscent of kuru. Other symptoms of vCJD include anxiety, depression, persistent pain in the limb/face, withdrawal and behavioural changes with progression of the disease, with dementia developing thereafter (Peden et al., 2006).

Direct experimental evidence from molecular analysis of prion strain types, transmission studies in transgenic and wild-type mice, and clinical and neuropathological correlates, collectively revealed that the disease was caused by the same prion strain as that causing BSE in cattle (Collinge et al., 1996b; Hill et al., 1997; Bruce et al., 1997; Asante et al., 2002). Intracerebral inoculation of BSE material into primates produced a disease pathologically similar to vCJD (Lasmezas et al., 1996). In addition, analysis of proteolysis and glycosylation patterns showed identical patterns for BSE and vCJD (Collinge et al., 1996a). Therefore, vCJD poses a serious potential public health threat. Evidence that the causative agents of vCJD and BSE were the same, distinct from the patterns associated with sporadic and iatrogenic disease (Hill and Desbruslais, 1997), raised the possibility that an epidemic could occur in the UK and other countries as a result of dietary or other routes of exposure (Ghani et al., 1999; Collinge, 1999).

1.2.3 Inherited human prion diseases

Around 10-15 percent of prion diseases in humans are inherited, occurring due to pathogenic autosomal dominant mutations in the \textit{PRNP} gene (Masters et al., 1981; Windl et al., 1999). The human \textit{PRNP} gene is located on the short (p) arm of chromosome 20 between the end (terminus) of the arm and position 12, from base pair 4,615,068 to base pair 4,630,233 (Figure 1.2). The first report of \textit{PRNP} mutations described insertion and missense mutations found in families with a prominence of dominant inherited
neurodegenerative disease (Owen et al., 1989; Hsiao et al., 1989). Over thirty different pathogenic mutations have since been recognised, with point mutations leading to amino acid substitution, a premature stop codon, or insertion of additional octapeptide repeats.

Figure 1.1 Mutations and polymorphisms in the PRNP cDNA.
Diagram of the human prion protein gene showing the octapeptide (51-91). Pathogenic mutations associated with inherited prion disease are shown above the gene (red), while non-synonymous polymorphisms and synonymous polymorphisms are shown below the gene (green). A polymorphism at codon 129 methionine (M) versus valine (V) is a common mutation in European populations, while a polymorphism at codon 219 glutamic acid (E) versus lysine (K) is common in Japanese populations.

1 Adapted from Lloyd et al., 2011.
Analysis of the *PRNP* gene has allowed for a clear pre-symptomatic diagnosis of inherited prion diseases (Collinge, 2005). There are many clinical symptoms manifested depending on the type of mutation involved, as well as a variety of neuropathological features (Chapman et al., 1993; Barbanti et al., 1996; Wadsworth et al., 2006). It is important to note that a single *PRNP* mutation can elicit different phenotypes, highlighting the role of epigenetic factors in prion disease pathogenesis. Although it is unclear how the *PRNP* mutations cause disease, many hypotheses have been postulated (Peden et al., 2004). The most common one is a tendency of the mutated PrPC to spontaneously form abnormal infectious PrPSc (Section 1.7). Other studies report that the pathogenesis of inherited prion diseases may be due to a change in the thermodynamic stability of the mutated PrP (Riek et al., 1998; Swietnicki et al., 1998).

Familial CJD (fCJD)

Between 10 and 15 percent of persons with CJD have a family history consistent with an autosomal dominant inheritance of the disease. Most of these point mutations, deletions or insertions are found in the coding sequence of the gene for PrP on the short arm of chromosome 20. More than 20 mutations in this gene have been described that are associated with phenotypes mimicking typical CJD or induce distinctive progressive diseases with spongiform changes in the nervous system (Johnson and Gibbs, 1998). In general, familial CJD has an early age of onset and a more protracted course than sporadic disease. The typical electroencephalographic changes are often missing and the 14-3-3 protein is not detected in cerebral fluid in about half of cases (Zerr et al., 1998). The neuropathological changes may vary in topographic distribution and in the prevalence of amyloid plaques, but the essential changes of vacuolization of neural cells with gliosis and neuronal loss are generally present. The most common mutation leading to the typical clinical and pathological findings of CJD is at codon 200. Clusters of disease among Libyan Jew in Israel, in a region of Slovakia, and in Chile are all explained by this mutation (Goldfarb et al., 1991).
Gerstmann-Straussler Scheinker disease (GSS)

GSS, first described in the early 20th century, is a distinct autosomal dominant prion disease. Phenotypic variability is a major feature with a median range of onset of 50 years of age (range 25-70 years) and a median duration of 4 years (Barbanti et al., 1996). The traditional GSS phenotype is a slowly progressive ataxia resulting later in dementia (Kretzschmar et al., 1992). Although dementia is less common in GSS, the disease course lasts several years until death. The histological hallmark is the presence of the multicentric amyloid plaques. GSS is most commonly associated with the P102L mutation in the PRNP gene, in which a proline is replaced by a leucine residue at position 102. It can also be associated with a valine instead of an alanine residue at position 117 (A117V).

Fatal Familial Insomnia (FFI)

FFI is a progressive and untreatable insomnia disorder, first described in 1986. It is an autosomal dominant inherited sleep disorder, associated with particularly prominent cortical astrocytosis (Collinge and Palmer, 1997). Early thalamic generation of FFI and related disorders produces the distressing symptom complex of progressive insomnia with late dementia. People with this rare disorder have inherited a PRNP gene with an asparagine residue instead of aspartic acid encoded at position 178 (D178N).
Table 1.2 Neuropathological criteria for diagnosis of human prion diseases\(^2\).

<table>
<thead>
<tr>
<th>Prion disease</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJD
Sporadic
Iatrogenic
Familial</td>
<td>Spongiform encephalopathy in cerebral and/or cerebellar cortex and/or subcortical grey matter; and/or encephalopathy with PrP immunoreactivity (plaque and/or diffuse synaptic and/or patchy/perivascular types)</td>
</tr>
<tr>
<td>vCJD</td>
<td>Spongiform encephalopathy with abundant PrP deposition, particularly multiple fibrillary PrP plaques surrounded by a halo of spongiform vacuoles (‘florid’) and other PrP plaques, and amorphous pericellular and perivascular PrP deposits especially prominent in the cerebellar molecular layer</td>
</tr>
<tr>
<td>GSS</td>
<td>Encephalo(myelo)pathy with multicentric PrP plaques</td>
</tr>
<tr>
<td>FFI</td>
<td>Thalamic degeneration with variably spongiform change in the cerebrum</td>
</tr>
<tr>
<td>Kuru</td>
<td>Spongiform encephalopathy in the Fore population in Papua New Guinea</td>
</tr>
</tbody>
</table>

1.3 Prion disease genetics

Most inherited human prion diseases, as described above, are associated with mutations in the \(PRNP\) gene. However, \(PRNP\) polymorphisms can also influence the conformational change of the protein to influence sporadic and acquired forms of the disease. In particular, homozygosity at amino acid position 129 of human PrP predisposes

\(^2\) From the world Health Organisation, http://www.WHO.int
an individual to acquired and sporadic CJD. Individuals can be either homozygous for methionine (M) or valine (V) at this codon, or heterozygous. The influence of codon 129 is seen, for example, in patients with a D178N mutation and a methionine at position 129 who will go on to develop FFI, whereas family members with a valine at 129 in addition to the D178N mutation will develop familial CJD (Gambetti et al., 1995; Goldfarb et al., 1992) (Figure 1.1).

The codon 129 genotype also has a profound effect on the incubation period of and susceptibility to kuru, with the MM genotype having the shortest incubation period, followed by VV homozygotes (Lee et al., 2001). MV heterozygotes are the most resistant genotype, having been reported to show incubation times greater than fifty years (Collinge et al., 2006). Several families previously exposed to mortuary feasts have been studied and elderly women survivors who were monitored are predominantly PRNP codon 129 heterozygotes (Lee et al., 2001; Mead et al., 2003). It is notable that PRNP codon 129 homozygotes have been essentially eliminated in the Fore population, as kuru imposed a strong balancing selection. The polymorphism at codon 129 appears to be the main genetic risk factor for vCJD (Mead et al., 2009), with every case genotyped being homozygous for methionine at codon 129 apart from a recent case report of vCJD in an individual heterozygous for PRNP codon 129 (Kaski et al., 2009). This particular case highlights the further potential of clinically silent cases of vCJD in the UK population. There is a marked genetic susceptibility to sCJD, with most cases occurring in homozygotes of methionine (M) or valine (V) at codon 129 of the PRNP gene; MV heterozygotes appear to be relatively protected from developing sCJD (Palmer et al., 1991). Moreover, genetic studies have revealed polymorphisms upstream of exon 1 of the PRNP gene (Mead et al., 2001) and in the 5’ UTR (Vollmert et al., 2006), that are reported to be associated with sCJD.
One possibility of a genetic explanation for these mutations could be that they enhance the rate of spontaneous conversion of PrPC to PrPS, permitting disease manifestation within the lifetime of an individual. This suggests that some sporadic incidents of prion disease can be accounted for by somatic mutations of the PRNP gene, which is an alternative explanation that these mutations confer susceptibility to infection. It has been known that some breeds of sheep in the UK have specific genotypes that confer resistance to sheep scrapie and these sheep are resistant to BSE as well (Weissmann and Aguzzi, 1997).

Figure 1.2 The PRNP gene.
The human PRNP gene is located on the short (p) arm of chromosome 20 between the end (terminus) of the arm and position 12, from base pair 4,615,068 to base pair 4,630,233.
1.4 Prion disease neuropathology

Prion diseases are diagnosed clinically at post-mortem by histopathological examination of brain tissue: neuropathological assessment of the structural changes in the CNS has been the mainstay in diagnosis of human prion diseases for many years. Histological analyses of both human and animal tissue shows that prion diseases cause a variety of neurological damage in the CNS resulting in neuronal cell death and brain atrophy (Kubler et al., 2003). The neuropathology of human prion diseases is characterised by four features: spongiform change, neuronal loss, astrogliosis and amyloid plaque formation, though the last feature is not always present. However, different prion diseases often have unique neuropathological features (Budka, 2003) (Figure 1.3, 1.4). For instance, vCJD is characterised by markedly increased accumulation of PrPSc in the brain and an accumulation of discrete plaques surrounded by prominent spongiosis (Will et al., 1996; Collinge and Rossor, 1996). In most human prion disease cases, the histologically distinctive vacuoles can appear in any layer of the cerebral cortex and may become confluent resulting in substantial distortion of the cortical network cytoarchitecture. Most cases of CJD are usually accompanied by spongiform change in the basal ganglia, thalamus, and cerebellar cortex. However, it is also recognized that these changes are enormously variable both from case to case, and within different parts of the CNS in individual cases.
Figure 1.3. Characterisation of disease-related spongiosis and gliosis in human prion disease.

(A) Spongiform changes in the cerebellum comprise multiple small vacuoles in the molecular layer which usually do not appear confluent. Spongiform change in most brain regions is accompanied by neuronal loss and gliosis involving both astrocytes and microglia. The tissue was stained for Glial Fibrillary Acidic Protein (GFAP). (B) Microglial hypertrophy and hyperplasia occur in a widespread distribution within the CNS in CJD, and microglia are also implicated in the pathogenesis of PrP plaques. Immunocytochemistry studies in both human and animal prion diseases have demonstrated that microglial cells are intimately involved in PrP plaque formation, and may perhaps play a role in the processing of PrP into an amyloid structure. The tissue was stained with haematoxylin and eosin (H&E).
Figure 1.4 Characterisation of disease-related PrP in human prion disease.
Brain sections from sporadic CJD (A) and variant CJD (B) showing abnormal PrP accumulation following immunohistochemistry using anti-PrP monoclonal antibody, ICSM35. Abnormal PrP deposition in sCJD most commonly present itself as diffuse, synaptic staining, whereas vCJD brain is distinguished by the presence of florid plaques consisting of a round amyloid core surrounded by a ring of spongiform vacuoles. Scale bars: 50 µm.

1.5 Prion disease transmission

Prion disease transmission occurs naturally through peripheral routes, either orally or trans-cutaneously. They can be transmitted through direct inoculation into the brain, or a closely related organ such as the eye (Johnson and Gibbs, 1998). CJD cases occurring after growth hormone injection show transmission via the bloodstream (Brown et al., 1992). Scrapie prions injected into limbs are able travel along peripheral nerves to the CNS (Kimberlin and Walker, 1980).

3 Adapted from Wadsworth et al., 2010.
Several lines of evidence suggest an involvement of the lymphoid system in the early stages of acquired prion disease. In particular, the spleen and lymph nodes have been demonstrated to be the first sites of the PrP^{Sc} replication after infection by peripheral routes (Hilton et al., 2002). Indeed, splenectomy and other methods that reduce peripheral lymphoid structures delay clinical manifestations following infection (Hilton et al., 2002). Diagnostic tests for scrapie based on detecting PrP in tonsillar tissue of infected sheep and goats have been developed (Van Keulen et al., 1996; Schreuder et al., 1996). The presence of PrP in peripheral lymphoid tissue can be observed on the surface of follicular dendritic cells (Muramoto et al., 1992), suggesting that transport by immune cells, such as macrophages or lymphocytes, could be important. However, the role of the immune system in this group of diseases is not well understood (Aguzzi and Calella, 2009; Brandner et al., 1999).

In BSE, infected animals showed that infectivity is virtually restricted to the nervous system, with only low infectivity in the lymph nodes and spleen (Brown et al., 1994). Muscle tissue seems to be relatively free of infectivity, even though PrP^C is expressed in skeletal muscle (DeArmond, 2004; DeArmond et al., 1996). In lambs exposed to scrapie-infected flocks, infectivity is first found at about one year of age in the lymphatic tissues and intestines, suggesting transmission by way of the alimentary tract. Infectivity in the brain is found at about two years of age, and infectivity slowly increases in the brain, with resultant spongiform changes and clinical disease during the subsequent year. In studies with mice infected with prions by sub-cutaneous inoculation, infectivity was found first in the lymphatics and spleen, and later in the brain (Eklund et al., 1967). Other studies have shown infectivity has been found in the blood of experimentally infected rodents (Kuroda et al., 1983). In addition, the presence of differentiated B cells appears important for invasion of the nervous system of the mouse after intraperitoneal inoculation (Klein et al., 1997). In all affected species, infectivity is greatest in brain tissue, but is also present in some peripheral tissues. The route of entry of the pathogen, infectivity of blood and tissue
at different stages of the infection, and variations between species and between the routes of inoculation of the nervous system, are central to many of the questions about the risk of prion infection.

1.6 The protein-only hypothesis of prion propagation

The prion protein-only hypothesis asserts that infectivity in prion diseases resides solely in a protein – a proteinaceous infectious particle, or prion. For many years, the nature of the infectious agent causing scrapie was subject to much debate. In particular, the scrapie infectious agent was known to be highly resistant to treatments that modify nucleic acids such as ultraviolet radiation and nucleases, but could be inactivated by exposure to compounds that destroy or denature proteins such as detergents (Alper et al., 1967; Alper et al., 1978; Prusiner 1982). In the 1960s, a physicist called J.S Griffith first raised the possibility that the material responsible for the transmission of prion diseases could be a protein that is able to replicate itself (Griffith, 1967). This hypothesis required that a protein with the ability to be infectious was purified and characterised. The work of Stanley Prusiner culminated in a partial purification protocol, involving ultracentrifugation and treatment with proteinase K, for a proteinaceous infectious agent (Prusiner et al., 1981). Further work by Prusiner and colleagues demonstrated the presence of a disease-associated protein as a component of the infectious agent, rather than a product of the disease (Bolton et al., 1982; Prusiner et al., 1982; Hope et al., 1986; Safar et al., 1990). The lack of a nucleic acid genome distinguishes prions from other infectious pathogen such as bacteria, fungi, viruses and viroids (Prusiner, 1982).

The initial purification protocols were adapted by the addition of a sucrose gradient step to isolate and identify the major constituent of infective fractions from hamster brain homogenates (Prusiner et al., 1982). Subsequent experimental data showed that the major constituent of infectivity was a 27-30 kDa protease-resistant protein, designated prion protein (PrP)\(^{27-30}\) (Figure 1.5). A protein of similar size was identified in uninfected brain
tissue, but unlike the disease-associated protein, it was completely digested by proteinase K treatment (Bolton et al., 1982). Experimental evidence confirming that the purified protein was infectious came from the transmission of scrapie into Syrian golden hamsters (Prusiner et al., 1980; Prusiner et al., 1982).

The successful purification of PrP led to the identification of its amino acid sequence, allowing further analysis of the protein and the production of anti-PrP antibodies (Bendheim et al., 1984). The protease-resistant protein fragment, PrP$^{27-30}$, was co-purified with scrapie infectivity in hamster brain, which allowed the molecular cloning and sequencing of PrP cDNA (Basler et al., 1986). Following the purification of the prion protein, the gene encoding PrP was identified. Amino acid sequencing of the N-terminus PrP$^{27-30}$ was used to derive a cDNA clone encoding a host protein, which subsequently demonstrated that PrP$^{27-30}$ was encoded by a chromosomal gene (Oesch et al., 1985; Basler et al., 1986). Several lines of research suggested that a normal host-encoded protein undergoes a post-translational modification to become an abnormal infectious form. There was no evidence to support the notion that the PrP encoding gene (PRNP) undergoes rearrangement during disease or a genetic basis for alternative splicing of the gene transcript (Basler et al., 1986). Other studies demonstrated that the PrP mRNA does not increase during the course of prion disease (Oesch et al., 1985). Amino acid sequencing studies of the N-terminus of PrPc and PrPsc revealed similarities between the two, suggesting that the observed differences are due to post-translational modifications (Turk et al., 1988).
Figure 1.5 Prion protein isoforms.
Bar diagram of the hamster Prnp gene and PrP isoforms. The Prnp ORF encodes a protein of 254 residues, which is shortened to 209 residues during posttranslational processing. PrP_{Sc} is an alternate conformation of PrP_C with identical primary structure. Limited PrP_{Sc} cleaves the amino terminus and produces PrP 27-30, composed of approximately 142 residues.⁴

The protein-only hypothesis was adapted, therefore, to suggest that infectivity arose from a single protein with an identical nucleic acid and amino acid sequence that could give rise to two conformations with exceedingly different properties. One is a normal cellular isoform (PrP_C), expressed in normal brain which is readily soluble and protease-sensitive; the other an abnormal scrapie-associated isoform (PrP_{Sc}) that accumulates in infected brain, is poorly soluble and partially protease-resistant, and is associated with infectious activity. Prions are, therefore, encoded by alterations in protein conformation rather than in nucleic acid or amino acid sequence (Cashman, 1997). Further evidence for this comes

from findings that inherited prion diseases are linked to mutations in the \textit{PRNP} gene (Collinge, 2001), indicating that in these cases a genetic disease may be propagated in an infectious way.

The dependence of \(\text{PrP}^\text{Sc} \) generation on \(\text{PrP}^\text{C} \) has been demonstrated \textit{in vivo} in \(\text{PrP} \) knockout mice, which are entirely resistant to scrapie (Sailer et al., 1994; Mallucci et al., 2002). This finding is supported by a study in a cell-free system (Kocisko et al., 1994). These observations demonstrate that host-encoded \(\text{PrP}^\text{C} \) is necessary for the disease (Pruisner et al., 1993). Studies in transgenic mice indicate that mutations in the \textit{PRNP} gene or overexpression of \(\text{PrP} \) can lead to spontaneous spongiform changes (Prusiner, 1996). The protein-only hypothesis is now the most widely accepted model of prion propagation, and forms the basis of work to characterise the replication and transmission of the prion disease infectious agent (Prusiner, 1998; Abid and Soto, 2006; Tatzelt and Schatzl, 2007; Wadsworth and Collinge, 2007).

Unequivocal proof of the protein-only hypothesis is frequently suggested to reside in demonstrating the \textit{in vitro} generation of infectious prions solely from \(\text{PrP} \). \textit{In vitro} replication of \(\text{PrP}^\text{Sc} \) was first demonstrated using an amplification system that used radio-labelled \(\text{PrP}^\text{C} \) (Kocisko et al., 1994), but this method was not successful in transmission barrier studies (Bessen et al., 1995; Raymond et al., 1997). A more recent method of amplification, a protein misfolding cycling amplification (PMCA) assay, has proven more successful (Castilla et al., 2005). Experiments using PMCA have been efficient in regards to amplification and infectivity, and have helped to demonstrate that infectious material can be produced in a cell-free system, leading to a scrapie–like disease when inoculated into mice (Supattapone, 2004; Castilla et al., 2005). In addition, it has been reported that synthetic prions that polymerise into fibrils \textit{in vitro} have been shown to be infectious \textit{in vivo} (Legname et al., 2004).
1.7 The prion protein (PrP)

1.7.1 PrP\textsubscript{C} structure and function

The normal prion protein, PrP\textsubscript{C}, is a host-encoded 250 amino acid glycoprotein that is widely expressed throughout the body. This 30-35-kDa protein is found abundantly in the neurons and glia of the brain, as well as in several peripheral tissues and leukocytes (Dodelet and Cashman, 1998; Harris, 1999; Aguzzi and Polymenidou, 2004). There is slight variation in the exact size of the protein in different species due to the number of octapeptide repeat region in the N-terminus of the protein (Stahl et al., 1990; Stahl et al., 1987). Most PrP\textsubscript{C} molecules are normally localized on the cell surface, where they are attached to the lipid bilayer via a C-terminal, glycosylphosphatidylinositol (GPI) anchor (Stahl et al., 1990; Stahl et al., 1987).

Studies by Fourier Transform Infrared Spectroscopy (FTIR) and circular dichroism have demonstrated that PrP\textsubscript{C} is predominantly \(\alpha\)-helical as compared to PrPSc, which is rich in \(\beta\)-sheet (Gasset et al., 1993; Pan et al., 1993). It contains a globular domain with three alpha-helices and a two-stranded antiparallel beta-sheet, an NH\textsubscript{2} terminal tail, and a short COOH terminal tail (Riek et al., 1997). PrP\textsubscript{C} is divided into two distinct regions: one N-terminal region that is flexible and contains an octapeptide repeat domain and a C-terminal region which comprise 3-alpha helical structures and two anti-parallel beta sheet structures. The C-terminal domain of PrP\textsubscript{C} is folded into alpha-helices that are stabilized by a single disulphide bond and nuclear magnetic resonance (NMR) revealed that it is monomeric (Riek et al., 1996). Studies into the C-terminus of PrP revealed a crystal structure that has three alpha-helices and a short anti-parallel beta-sheet (Knaus et al., 2001; Haire et al., 2004; Eghiaian et al., 2004). The octapeptide repeats have been shown to have tight binding sites for Cu2+ and Zn2+, suggesting possible regulatory and signalling properties (Riek et al., 1998; Hosszu et al., 1999; Jackson et al., 2001). The N-terminus of
PrPC contains an octapeptide repeat, which is thought to be involved in the cellular function of PrPC.

Comparing the sequences of PrPC from various mammalian species demonstrates that it is highly conserved (Damberger et al., 1995). However, its precise cellular function remains unknown. Possible suggestions have included copper binding, signal transduction, regulation of immune responses, synaptic functions and roles in apoptosis (Seidel and Engelhard, 2011; Haigh et al., 2010). As mentioned above, the N-terminal region of PrPC containing the octapeptide repeats represents a high-affinity binding site for copper ions properties (Riek et al., 1998; Hosszu et al., 1999; Jackson et al., 2001). In addition, recent evidence suggests that copper imbalance is an early change during infection, suggesting PrP may have a role in copper transport or metabolism. PrPC has been described to be a positive regulator of neural precursor proliferation during developmental and adult mammalian neurogenesis. Several lines of evidence have also suggested that PrPC may exert a cytoprotective activity, particularly against internal or environmental stresses that initiate an apoptotic cascade (Roucou and LeBlanc, 2005; Roucou et al., 2004). Various studies suggest that PrPC can activate transmembrane signaling pathways involved in several different phenomena, including neuronal survival, neurite outgrowth, and neurotoxicity (Westergard et al., 2007).

The biosynthetic pathway followed by PrPC is similar to that of other membrane and secreted proteins, involving synthesis on ER-attached ribosomes, transit to the Golgi, followed by delivery to the cell surface. Since PrPC is a GPI-anchored protein, the entire polypeptide chain is located on the extracytoplasmic face of the lipid bilayer, which is known to serve as molecular scaffolds for signal transduction (Tsui-Pierchala et al., 2002; Taylor and Hooper, 2007). Some of the protein is transferred to clathrin-coated pits where it is subject to constitutive endocytosis and recycling (Sunyach et al., 2003; Naslavsky et al., 1996; Shyng et al., 1994). PrPC can be produced in three topological conformations: the normal plasma membrane GPI-anchored PrPC; the transmembrane C-trans form (Ctm PrP),
for which the C-terminus part is in the ER lumen; and a N-trans membrane (\(N_{\text{tm}}\)PrP) for which the NH2-terminus is in the lumen (Crozet et al., 2008).

1.7.2 PrPSc structure

Studies comparing PrPSc and PrPC reveal marked differences in their respective tertiary structure, with PrPSc containing a much higher percentage of \(\beta\)-pleated-sheet regions (~45%) as compared to PrPC (~3%) (Gasset et al., 1993; Pan et al., 1993; DeArmond and Prusiner, 1995). This difference in tertiary structure causes PrPSc to have a high tendency to form aggregated, insoluble deposits (Prusiner, 1996; Riek et al., 1996). PrPSc is insoluble in non-ionic detergents and has a partial resistance to proteases. Only its N-terminus is readily cleaved, leaving a protease resistant core that retains infectivity (Riesner, 2003). The propensity of PrPSc to form aggregates correlates with its resistance to proteinase K digestion (Prusiner, 1996; Riek et al., 1996).

Distinguishing PrPSc from PrPC relies on the differential mobility of the protein on SDS-PAGE and the partial resistance of PrPSc to proteinase K digestion (Parchi et al., 1996; Collinge et al., 1996b). Different prion strains, moreover, can exhibit different levels of proteinase K-resistance (Bessen and Marsh, 1994; Bessen and Marsh, 1992) and PrPSc glycosylation patterns (Khalili-Shirazi et al., 2005). For example, distinct ratios of the PrPSc domains glycoforms (di-, mono- and unglycosylated) have been reported when comparing several prion strains, and is clearly demonstrated by comparisons between the PrPSc associated with sCJD and vCJD prions in humans (Collinge et al., 1996a; Hill et al., 2003) (Figure 1.6). The C-terminus of PrPSc can be digested by cathepsin D, which liberates its GPI anchor, but leaves it retaining prion infectivity (Lewis et al., 2006). Indeed, it has been shown in transgenic mice expressing PrP lacking a GPI anchor can propagate prions (Chesebro et al., 2005), thereby suggesting that the GPI anchor is not a prerequisite component of the infectious prion. Unlike PrPC, which is readily cleaved from membranes by treatment with phosphatidylinositol-specific phospholipase C (PIPLC) (Stahl et al., 1987),
PrPSc is resistant to such treatment (Caughey \textit{et al.}, 1990; Borchelt \textit{et al.}, 1993). This suggests a conformational change preventing accessibility of PIPLC.

![Figure 1.6 Distinct prion strain of Creutzfeldt-Jakob disease.](A) Immunoblot of proteinase K digested brain homogenates using anti-PrP monoclonal antibody 3F4 showing PrPSc types 1-4 in human brain according to the London classification. Types 1-3 PrPSc are seen in the brain of classical forms of CJD (either sporadic or iatrogenic CJD) and kuru, while type 4 PrPSc is uniquely seen in vCJD brain. (B) Relative proportion of di- and monoglycosylated PrPSc glycoforms following partial digestion with proteinase (K) in tonsil. The vCJD has a peripheral pathogenesis distinct from classical forms of CJD, with a prominent and uniform involvement of lymphoreticular tissues5.

Further insights into the native conformation of PrPSc are hindered by its insolubility and aggregation state. Amyloid, defined as extracellular proteinaceous deposits with a cross β-sheet structure, is readily detected by reagents such as Congo Red (Pedersen \textit{et al.}, 2010). Protease resistant PrPSc has been shown \textit{in vivo} to re-arrange into amyloids rods, which stain with the dye Congo red and show green-gold birefringence, the typical presentation of amyloids (Prusiner \textit{et al.}, 1983). PrPSc deposits can vary in size and morphology, and amyloid plaques have been identified in the brain tissue of animals.

5 Adapted from Wadsworth and Collinge, 2011
infected with scrapie (Merz et al., 1981). Studies using synthetic fibrils have provided clues on human prion diseases (Baskakov et al., 2002; Tattum et al., 2006). Studies have demonstrated that small PrP oligomers of 14-28 molecules are maximally infective compared to monomeric or fibrillar PrP (Silveira et al., 2005).

1.7.3 PrP^{Sc} conversion

The precise mechanisms of the conversion of PrP^C to PrP^{Sc} are not fully understood. PrP^{Sc} is suggested to act as a seed, providing a template for its own conversion from PrP^C. As this conversion event proceeds, small soluble aggregates are formed, which then become large insoluble deposits as the disease progresses. These PrP^{Sc} deposits accumulate in neural cells leading to disruption of their function and cell death. Current models propose that PrP fluctuates between its native PrP^C state and a series of conformations where the molecule self-associates to form a stable multimeric PrP^{Sc} molecule composed of misfolded monomers (Collinge, 2005). Studies using recombinant protein have shown that β-sheet-rich PrP aggregation occurs until it reaches a critical size at which it remains stable (Prusiner, 1998). However, it is not clear whether such alternative conformational states of the protein are sufficient to adopt a PrP^{Sc}-like conformation that is infectious and causes disease. It has been reported that particular PrP^{Sc} molecules can only convert PrP^C of the same, or at least similar, primary structure. For example, yeast engineered to form two types of prions form two types of “pure” aggregates within the cell, suggesting that each type of prion finds and aggregates with others of its own type. In PrP, this requirement for “like-with-like” resides in a short sequence at its N-terminal (Wickner, 1997; Serio and Lindquist, 2000; Wickner et al., 2007).

The site of PrP conversion in the cell has been thought to either be the cell surface membrane or within the endocytic pathway. PrP^{Sc} is located at the membrane and is continuously recycled through endocytosis (DeArmond and Ironside, 1999). Recently, a unique cell system in which epitope-tagged PrP^C is expressed in a PrP knock-down
neuroblastoma cell line demonstrated that the initial site of PrP conversion is at the cell surface membrane, after which PrP\textsubscript{Sc} is trafficked into the cell (Goold \textit{et al.}, 2011). This conversion of PrPC to PrP\textsubscript{Sc} at the cell membrane is extremely rapid following prion infection, with synthesis of PrP\textsubscript{Sc} being observed within minutes of cells being exposed to infectious prions (Goold \textit{et al.}, 2011).

1.8 Prion strains and transmission barriers

Prion strains remain the most challenging phenomenon in prion biology. Different prion isolates often have different properties that remain consistent over repeated passages, and are referred to as strains. Distinct prion strains can be distinguished \textit{in vivo} by differences in clinical signs, histological markers and incubation time (Morales \textit{et al.}, 2006). The possibility of distinct prion strains was first recognised in scrapie sick goats showing two different clinical syndromes, called “hyper” and “drowsy” (Pattison, 1965). Prion strains are defined as infectious isolates that when transmitted to identical host exhibit consistently distinct prion disease phenotypes (Aguzzi \textit{et al.}, 2007). The distinct pathologies and incubation periods in experimental animals associated with strains have been attributed to multiple forms of abnormal PrP folding (Telling, 1996). The existence of prion strains could be the underlying cause of the different forms of prion disease, each with their own incubation time and clinical severity (Bruce \textit{et al.}, 1991).

To comply with the criteria of the prion-only hypothesis of prion propagation, PrP\textsubscript{Sc} needs to contain all the information necessary to encode strain formation (Hill and Collinge, 2003; Bruce, 1993). PrP\textsubscript{Sc} encoded strain specificity was observed in the serial passage of two different strains of TME in hamsters, which demonstrated that they are associated with different physical and chemical properties of PrP\textsubscript{Sc} (Bessen and Marsh, 1994; Bessen and Marsh, 1992). Prion strains can be propagated in lines of inbred mice with the same \textit{PRNP} genotype (Scott \textit{et al.}, 1997), suggesting that strains are not encoded by differences
in the primary sequence of PrP. Strains most likely arise from alternative PrPSc conformations and glycosylation patterns (Bartz et al., 2000; Peretz et al., 2001; Morales et al., 2006). Indeed, distinct ratios of PrPSc glycoforms (di-, mono- and unglycosylated) are observed in different prion strains (Collinge et al, 2006; Hill et al, 2003) (Figure 1.6).

Each prion strain is believed to have a precise set of biochemical characteristics in the infectious protein that is specifically linked to it. However, disease incubation times for a single prion isolate may vary when inoculated into different mouse strains (Collinge et al., 1996; Hill et al., 2003). This variation depends on the PRNP gene, suggesting some forms of PrPC may be more easily converted to PrPSc than others. For example, BSE can be transmitted to a wide range of hosts, while maintaining specific characteristics after passage through an intermediate species. A combination of PRNP genotype and properties of the infectious strain influence the pattern of PrPSc deposition, and strain specific incubation times can be explained by differences in the relative efficiency of allotypic interactions that lead to conversion of PrPC to PrPSc (Carlson et al., 1986).

Prions isolated from one animal species often have reduced infectivity to other species, and if infectious at all, often have a longer incubation time (Wadsworth and Collinge, 2007). This phenomenon is known as a species barrier. Species barriers exist for all prion diseases, and these barriers are more impenetrable in some species than in others. This manifests itself in cases where prions from species A are used to infect species B, and not all animals from species B develop the disease, or those that do present a prolonged and variable incubation time of the disease (Moore et al., 2005). Nonetheless, in some cases, on a secondary passage from species B to other members of the same species, all animals succumb to disease and display shorter and more consistent incubation times (Figure 1.7).

The species barrier phenomenon is thought to depend on dissimilarities in PrP sequence and structure, thereby hindering the PrP conversion process (Palmer et al., 1991;
Chen and Gambetti, 2002; Vanik et al., 2004). Minor differences in sequence between species in the gene for PrP may determine the risk of spontaneous misformation, and other sequence differences may determine the likelihood of disease crossing species barriers and explain the lack of phylogenetic order in transmission. For example, normal sequence differences could explain why scrapie can be transferred from sheep to mice but not pigs, or why bovine isoforms can cause degenerative disease in cats but not dogs, and why the disease may be spread to humans by beef products but not those from sheep.

Species barriers have been studied extensively in mice, including transgenic mice expressing human rather than mouse PrP. In contrast to their wild-type counterparts, transgenic human PrP-expressing mice readily succumb to disease after infection with sCJD prions (Collinge et al., 1995a). On the other hand, vCJD prions are able to infect both human PrP-expressing transgenic and wild-type mice (Hill et al., 1997; Bruce et al., 1997). Collectively, these studies highlight the fact that transmission barrier may be more suitable to describe transmissibility of prions strains instead of species barrier. Various models have been proposed to explain the transmission barrier (Hill and Collinge, 2003; Collinge and Clarke, 2007). Cross-species transmission remains a health concern founded on the emergence in the UK and later elsewhere of vCJD resulting from the consumption of BSE-infected material (Hill et al., 1997; Bruce et al., 1997).
Figure 1.7 Schematic of prion transmission.

Susceptibility of a host to prion infection is co-determined by the prion inocula and the PrP gene. When prions are transmitted from one species to another disease develops only after a very long incubation period, if at all, but on serial passage in the new species the incubation time often decreases dramatically and then stabilizes. This species barrier can be overcome by introducing a PrP transgene from the prion donor i.e. hamster PrP$_{Sc}$ but not murine PrP$_C$ is a suitable substrate for conversion to hamster PrP$_{Sc}$ by hamster prion.
1.9 Yeast prions

Non-mammalian prion proteins were discovered in the yeast, *Saccharomyces cerevisiae*, by Reed Wickner in the 1990s, who proposed that unexplained instances of cytoplasmic inheritance in yeast and other fungi were due to the same phenomenon that had been proposed to underlie mammalian prion diseases (Wickner, 1997; Serio and Lindquist, 2000; Wickner et al., 2007). Since then, the study of yeast prions has contributed significantly to a better understanding of mammalian prions. This is despite fungal prions not being associated with any known pathogenic state. These prions behave in a similar manner to the PrP protein, although they are generally not toxic to their hosts and may even confer an advantage through a form of a protein-based inheritance (Lindquist et al., 2003). A few molecules of a PrPSc-like form of the Sup35 protein, when introduced into yeast cells, converts the yeast cell’s own Sup protein into prion aggregates.

Two yeast proteins, Sup35 and Ure2, can exist as either normal PrPC-like forms or an abnormal PrPSc form. Studies of fungal prions have given strong support to the protein-only hypothesis for mammalian prions and it has been demonstrated *in vitro* that purified protein extracted from yeast cells with a prion state can convert the normal form of the protein into the abnormal form. In the case of the translation termination factor Sup35, the conformational conversion results in fibril formation and can be reproduced in a cell-free system (Glover et al., 1997). When introduced into normal yeast cells, the polymerised forms of Sup35 cause them to adopt the mutant, or \{PSI+\}, phenotype. Different forms of aggregates generated *in vitro* under specific conditions give rise to different phenotypes in the transformed yeast, demonstrating the link between protein conformation and phenotype (King and Diaz-Avalos, 2004). Collectively, these observations have shed considerable light on the mechanisms of conversion and propagation of mammalian PrP. The degree to which yeast prions are pathogenic in these organisms, or have evolved for other specific functions, remains an area of considerable interest.
1.10 Prion-mediated neurodegeneration

The mechanisms by which prions induce toxicity in neuronal cells are only partially understood. However, some studies support a cytosolic localisation for a small proportion of PrP$^{\text{Sc}}$ in prion infected neuronal cells (Figure 1.8). In prion infected neuronal cells, toxicity is linked to a cytosolic localisation of a small proportion of PrP$^{\text{Sc}}$ in aggresomes (Kristiansen et al., 2005). However, it is unclear how PrP$^{\text{Sc}}$ oligomers traffic inside neurons and enter the cytosol resulting in UPS inhibition. Previous studies suggested that intracellular neuronal propagation of pathogenic PrP$^{\text{Sc}}$ appears important in neurotoxicity (Brandner et al., 1996; Mallucci et al., 2003). Other studies have shown that various proteolytic stress condition can cause functional impairment of the UPS which result in cellular dysfunction and apoptosis (Lindsten et al., 2002).
Figure 1.8 Model for the mechanism of oligomeric PrP-induced neurodegeneration.

(1) PrP interacts with its ligand LPrP on the cell surface to generate a signal necessary for cell survival. PrP binds to its natural ligand LPrP via its globular domain, while the interaction of the flexible N-terminus of PrP with LPrP triggers signal induction. (2) In a PrP knockout cell, π can replace PrP for both binding and signal transduction. (3) In experimental models where truncated forms of PrP (ΔPrP) or Doppel (Dpl, a member of the PrP supergene family harboring partial sequence and structure similarity with PrP) are expressed on a PrP^{0/0} background, binding of ΔPrP or Dpl to LPrP occurs, but not signal transduction in the absence of a complete N-terminus. Suppression of PrP or π signalling triggers cell death. (4) PrP oligomers present an altered interaction with LPrP. They bind, but do not trigger signal transduction, and thus by competition prevent PrP^{C} (PrP^{+/+} cells) or π (PrP^{0/0} cells) binding to LPrP, resulting in cell lethality. (5) The hydrophobic domain of PrP at the surface of the oligomers enhances their insertion in the cellular membrane. This leads to membrane dysfunction, and hypothetically to the formation of pore-like structures.
inducing toxic signals. (6) At high intracellular concentration, PrP oligomers accumulate in the aggresome and saturate the proteasomal or other degradation pathways of the cell, leading to the generation of apoptotic signals. (7) The hydrophobic domain of PrP oligomers interact abnormally with mitochondrial membranes, leading to the release of cytochrome C (Cyt C) triggering the apoptotic cascade.

1.10.1 PrP^C loss of function vs. PrP^Sc gain of function

It is well established that both normal and pathological isoform of prion protein, PrP^C and PrP^Sc respectively, are involved in the development and progression of various forms of prion diseases. However, conflicting evidence is emerging with respect to the processing of abnormal PrP^C. Thus, the identification of physiological functions of PrP^C is crucial for understanding the pathology characteristics of prion diseases (Figure 1.8). Studies done by Bueler and colleagues revealed that PrP^C–null mice do not succumb to disease when inoculated with prions, instead, they reported that prion-infected heterozygous mice showed longer incubation times compared to WT mice, suggesting that PrP^Sc incubation time and disease progression are inversely related to PrP^C levels (Bueler et al., 1993). It is known that PrP^C is essential for the development of prion disease (Bueler et al., 1993). However, a loss of function of PrP^C is unlikely to be the cause of pathology since it was reported that neither embryonic mice nor adult knockout PrP mice results in neurodegeneration (Bueler et al., 1992; Manson et al., 1994; Mallucci et al., 2002). PrP^C has been reported to confer cytoprotection against the deleterious effects of the pro-apoptotic protein Bax (Bounhar et al., 2001). The truncated N-terminal of Bax has been shown to activate both Bax-dependent and independent neurotoxic pathways, suggesting a crucial region for putative cytoprotective activity of PrP^C (Li et al., 2007). In addition, primary neurons collected from PrP^C -null mice were shown to be more sensitive to oxidative stress compare to WT neurons (Brown et al., 1997; White et al., 1999). Moreover, cells exposed

6 Taken from Simoneau et al., 2007.
to synthetic peptide treatment have been shown to result in microglia activation and the production of reactive oxygen species (ROS) (Combs et al., 1999). Synthetic peptide treatment has been used as a model for PrPSc (Forloni et al., 1993). Furthermore, another study reports that expression of N-terminally truncated PrPC in PrP-null mice lead to a rapid degeneration of cerebellar neurons, which can be rescued by co-expression of WT PrPC (Shmerling et al., 1998). Despite compelling evidence for conformational conversion in the course of prion diseases, it is still not clear what leads to the accumulation and toxicity of the pathological conformer and the gain-of-toxic-function hypothesis is not well understood.

1.10.2 Aberrant PrPC trafficking

The physiological roles of the transmembrane forms of PrP are not clear. However, transgenic mice expressing transmembrane form of PrP termed (CtmPrP) develop neurological symptoms and neuronal death that resembles certain prion disease. PrPC is translocated to the ER due to the presence of the NH2-terminal peptide that is then cleaved into the ER lumen (Figure 1.9). Studies have suggested that PrPC may be neuroprotective and atypical topology or aberrant PrP variants might be neurotoxic (Hegde et al., 1999; Hegde et al., 1998; Yedidia et al., 2001; Ma et al., 2002). Remarkably, following translocation in the ER, PrPC can be synthesized with at least three topologies: a secreted form that reflects the main pathway for PrPC synthesis in vivo, plus COOH- and NH2-terminal transmembrane forms, CtmPrP and NtmPrP, respectively, due to transmembrane insertion of hydrophobic pocket (Hegde et al., 1999; Hegde et al., 1998). The CtmPrP was suggested to be toxic and cause neurodegeneration, and certain mutations appear to favour this conformer (Hegde et al., 1999; Hegde et al., 1998), although CtmPrP appears not to be infectious when inoculated in reporter mice (Stewart et al., 2005). It was shown in vivo that the expression of PrP with the A117V mutation, which is linked to GSS, leads to neurodegeneration with a prion disease phenotype (Hegde et al., 1998). It was shown increased levels of CtmPrP, but low levels of PrPSc accumulation, in the transgenic
mice carrying the AV117 mutation, as well as a patient (carrying the same mutation). In addition, it was shown that neurodegeneration in CmPrP transgenic mice depends on the co-expression of endogenous WT PrPC (Stewart et al., 2005). It has been suggested that PrPC accumulation in the cytosol may be neurotoxic (Ma et al., 2002). It is not clear why WT PrPC is occasionally retained in the cytosol, nor whether it serves any physiological function or may be associated with pathogenesis. Indeed, in human primary neurons culture, cytosolic PrPC is not toxic and may, instead have anti-apoptotic functions (Roucou et al., 2003). Significant variable amounts of cytosolic PrPC usually detected after proteasome inhibition or overexpression of PRNP in neurons is still debatable. Under normal condition PrPC in the cytosol would be degraded by the proteasome. However, following proteasome inhibition cytosolic PrPC has been shown to aggregate, acquire partial resistance to proteases and ability to self-replicate (Ma and Lindquist, 2001; Ma and Lindquist, 2002; Cohen and Taraboulos, 2003). Furthermore, in the ER-associated degradation (ERAD) ER-resident proteins, in unassembled or misfolded forms, undergo retrograde transport to the cytosol, get ubiquitinated and are normally degraded by the proteasome (Meusser et al., 2005) (Figure 1.9). Misfolded, mutant and WT forms of PrP have been shown to be degraded by ERAD when proteasome inhibitors are present (Zanusso et al., 1999; Jin et al., 2000; Ma and Lindquist, 2001; Yedidia et al., 2001; Ma et al., 2002; Cohen and Taraboulos, 2003). Studies revealed evidence of ER stress and decreased translocation of nascent PrP during prion infection (Rane et al., 2008). It is suggested that PrPSc accumulation could cause ER stress, leading nascent PrPC to retro-translocate to the cytosol, where putative toxic PrP molecules accumulate (Rane et al., 2008) (Figure 1.9). Although, cytosolic PrP has been attributed to ER re-translocation (Ma and Lindquist, 2002), others have found that cytosolic PrPC contains NH2-terminal signal peptide, indicating that this subcellular location may be exclusively related to abortive translocation into the ER (Drisaldi et al., 2003; Fioriti et al., 2005; Campana et al., 2005).
Figure 1.9 Toxicity mediated by abnormal topology or altered trafficking of PrPC.

The normal isoform of prion protein, PrPC is synthesized, folded and glycosylated in the ER where its GPI anchor is added, before further modification in the Golgi complex. Mature PrPC translocates to the outer leaflet of the transmembrane form, generated in the ER, which have their COOH, NH2 terminus in the ER lumen, respectively. Misfolded and aberrantly processed proteins which would normally be degraded by the proteasomes through the ER-associated degradation (ERAD) pathway, aggregate in the cytoplasm and cause cell death. Putative proteasomal inhibition or malfunction during prion disease would contribute to this route of toxicity. Induction of ER stress by PrPSc may lead to translocation of nascent PrPC molecules to the cytosol for proteasomal degradation as a way to alleviate the overload of the ER (pQC pathway). However, this mechanism of
defence turns negative under chronic ER stress conditions, overwhelming the proteasome and leading to the cytosolic accumulation of potentially toxic PrP molecule.

1.10.3 Intermediate PrP species

There is evidence to suggest an implication of PrP^C-mediated signalling. However, the majority of signal transfers from PrP^C to intracellular compartment still remain unknown. The need for transmembrane signalling partners of PrP^C has been long recognized, there is evidence that PrP^C bind a variety of ligands, several of which may fulfill the requirement for a signalling intermediate and others may bridge PrP^C with further transmembrane partners. Studies in cell suggest that, rather than playing a specific role in a straightforward signalling pathway, PrP^C may serve as a scaffolding protein in multiple sets of poorly defined interactors at the cellular surface. It is likely that both the endogenous, as well as the ligand induced trafficking of PrP^C may strongly affect its functions according to the intermediate membrane environment (Roucou and LeBlanc, 2005; Roucou et al., 2004). Several basic features of PrP^C favour a dynamic scaffolding of multicomponent complexes. Distal to the lipid bilayer, specific PrP^C domain binds various proteins, glycosaminoglycans and metal ions (Hosszu et al., 1999; Jackson et al., 2001). Since the binding of domains of PrP^C are distinct for at least some of these ligands, and the affinity constants for confirmed ligand are variable, each cell likely interacts with a distinct set of partners through PrP^C, depending on both level of expression of the latter and the characteristics of intermediate microenvironment. A link between prion propagation and neurotoxicity has been suggested; A possible explanation is that PrP^{Sc} is itself inert, but toxicity resides in a smaller, labile oligomeric PrP species named PrP^L (for lethal), generated as an intermediate or side product during prion propagation (Hill et al., 2003; Hill and Collinge, 2003). It is suggested that neurotoxicity may require a critical PrP^L concentration that is reached during

7 Adapted from Aguzzi et al., 2009.
conventional infections but the slower kinetic if increase in infective titre in the subclinically infected mice may not mean that toxic PrP\(\text{L}\) levels are reached (Collinge, and Clarke, 2007).

1.10.4 Cellular aspects of prion toxicity

The means by which neuronal cells die following prion infection remain poorly understood. Many studies done on cell and animal models have highlighted the potential role of neuronal apoptosis in prion disease pathogenesis. Indeed, several studies done both in vitro and in vivo suggest the cause of cell death may be, in part, via apoptosis (Corsaro et al., 2012; Liberski et al., 2008; Liberski et al., 2005; Liberski et al., 2002; Thellung et al., 2000). Prion infection can induce apoptosis in primary neurons (Cronier et al., 2004), and treatment of primary cultures of various brain regions infected with the PrP peptide (PrP\(^{106-126}\)) has been shown to induce neuronal apoptosis (Forloni et al., 1993; Brown et al., 1994; Brown et al., 1996; Jobling et al., 1999; Thellung et al., 2000). Studies conducted in vivo in mice using the same PrP\(^{106-126}\) peptide injected into the retina have also been shown to induce apoptosis (Ettaiche et al., 2000). However, the exact mechanism by which PrP\(^{106-126}\) leads to apoptosis is unclear.

Alternative mechanisms of prion-induced toxicity include the production of reactive oxidative species (ROS) (Brown et al., 1996; Turnbull et al., 2003), or disruption of the mitochondrial membrane to cause release of cytochrome C and caspase activation (O’Donovan et al., 2001) (Figure 1.10). Early production of ROS and activation of caspase 3 may be caused by direct exposure of cells to PrP\(^{106-126}\), with other pathways such as that of the c-Jun N-terminal kinase (JNK) also being involved (Carimalo et al., 2005). Activation of caspases such as caspase-12 has been detected in neuroblastoma cells treated with small amount of full-length PrP\(^{\text{Sc}}\) from scrapie infected mouse brain (Hetz et al., 2003). Prion infected neuronal cells have been shown to become apoptotic when exposed to mild
proteasome inhibition, with proteasome impairment resulting in the formation of cytosolic aggresomes that are associated with activation of caspases 3 and 8 (Kristiansen et al., 2005). Such have been shown also to have a higher sensitivity to oxidative stress as compared to uninfected cells (Milhavet et al., 2000). In addition, prion infection can alter the molecular mechanisms responsible for protection against oxidative stress, by decreasing superoxide dismutase (SOD) and glutathione levels (Milhavet et al., 2000) (Figure 1.10).

Figure 1.10 Mechanisms for apoptosis in prion mediated-neurotoxicity.
Misfolded PrP^C can contribute to ER stress. Excessive levels of misfolded proteins accumulate in the cytosol and might impair proteasome function either directly or indirectly by the incorporation of aggresomes. Under conditions of proteasome inhibition, cytoplasmic forms of PrP aggregates are generated; for example the retranslocation of PrPres from the lumen of the endocytic and lysosomal vesicles into cytosolic aggresome.
The ER is the major organelle for protein synthesis and regulation of intracellular trafficking. The activation of ER stress genes has been found to be significantly upregulated in prion pathogenesis. In particular, the ER stress chaperone GRP78/Bip which belongs to the ER-stress resident Hsp70 family has been found to play a central role in the unfolded protein response (UPR) (Hetz and Soto, 2006). Excess stress in the ER induces apoptosis, but the mechanism underlying this process is not yet clear. The release of ROS from chemokine-activated microglia cells could contribute to ER stress and/or the ERAD process by inactivation of ER chaperones such as GRP78 (Bip).

Recently, it has been demonstrated that prion propagation in the brain proceeds via two distinct phases: a silent clinical phase in which infectivity increases and then a plateau phase before clinical endpoint. This finding indicates that production of neurotoxic species is triggered when propagation of infectivity has been saturated. This subsequently leads to a switch in the auto-catalytic process producing two phases: firstly, an infectivity phase 1, and then secondly, a toxic pathway (phase 2) (Sandberg et al., 2011).

1.11 Therapeutic approaches in prion diseases

To date, there are no available cures, vaccines or treatments to halt or slow the course of prion diseases. The course of prion disease is alarmingly rapid compared with other neurodegenerative disorders. Overexpression of PrP increases the onset of disease in prion-infected transgenic mice (Mallucci et al., 2003; Mallucci et al., 2007). It follows, therefore, that agents that reduce PrP expression may delay the onset of prion disease pathogenesis. In particular, compounds that bind and stabilise the PrP conformation may be beneficial. Similarly, agents destabilising the PrPSc conformation may be effective. In this regard, several vaccines to amyloid plaques in Alzheimer’s disease are in clinical trials and agents that interfere with the putative PrPc-PrPSc interaction might be similarly
effective. Chemicals affecting the endocytosis, exocytosis, intracellular trafficking or degradation of PrP may also be effective.

A range of potential therapeutic compounds have been studied. These include Congo red, polyanionic compounds, amphotericin B, porphyrins and quinacrine, which have each been shown to reduce accumulation of PrPSc in prion infected cell models (Trevitt and Collinge, 2005). However, such models have not provided similarly stringent or reliable results in vivo (Aguzzi et al., 2001). Targeting endogenous PrPc in mice with early prion infection has been shown to reverse spongiform change and prevent clinical symptoms, neuronal loss, and cognitive as well as behavioural deficits (Mallucci et al., 2003; Mallucci et al., 2007). The rise of RNA interference (RNAi) has been demonstrated to inhibit PrPc expression in neuroblastoma cells (Tilly et al., 2003) and prevent PrPSc accumulation in prion-infected cells (Daude et al., 2003). Other studies have revealed prolonged survival in prion infected mice when a lentivirus-expressing shRNA that targets PrP is injected into the hippocampus (White et al., 2008).

Targeting the conversion of PrPc to PrPSc has included the use of antibodies to bind to PrPc and stabilise it against conversion (Enari et al., 2001; Heppner and Aguzzi, 2004; white et al., 2003; Aguzzi et al., 2001; Perez et al., 2001). Recently, anti-PrP antibodies capable of crossing the blood brain barrier and targeting cytosolic PrP have been described. However, administering large quantities anti-PrP antibodies into the CNS may be ineffective, as they have been shown to cause signs of neurodegeneration in mice (Solforosi et al., 2004). A different approach has made use of a cationic ligand tetrapyrrole (Fe III-TMPyP), which displays potent anti-prion activity, can bind to the human PrPc via the C-terminus of PrP and potentially be used as therapeutic agent by preventing the conversion of PrPc to its disease-associated form (Nicoll et al., 2010; Nicoll and Collinge, 2009).

Diagnosing the disease, or identifying potentially contaminated biofluids, is equally difficult. However, a standard steel binding assay (SSBA) has been developed, providing a
prototype blood test for detecting prion infection in the diagnosis of vCJD (Edgeworth et al., 2010). The assay has been shown to quantify solid binding matrix in the infected blood by the capture and direct immunodetection of surface-bound material. Such developments may prove critical in identifying patients with the disease, and preventing exposure to potentially infectious biological fluids or tissue by donation or during surgery.

1.12 The ubiquitin proteasome system (UPS)

One of the factors that determine the biological activities of proteins are their concentration, which in turn is controlled by a balance between their synthesis and degradation rates. Enzymes that carry out such reactions are called proteases and are part of a major mechanism by which cells regulate the concentration of particular proteins and degrade misfolded proteins. Regulation and degradation of intracellular protein is a tightly regulated process and is called collectively proteostasis. There are two main cellular degradation pathways: the UPS and autophagy. The UPS is a two-step mechanism that degrades intracellular proteins (Figure 1.11). Proteins are first targeted for degradation by attachment of ubiquitin molecules, which are then recognized by a protease complex, the 26S proteasome (Reinstein and Ciechanover, 2006). Autophagy involves the degradation of protein complexes and intracellular organelles as mediated by a cell’s lysosomes. Autophagy involves formation of double-membrane bound structures known as autophagic vesicles. These vesicles then fuse with lysosomes and their contents are degraded by lysosomal hydrolases. Autophagy-mediated degradation is generally considered to involve low specificity in substrate recognition (Rubinsztein, 2006).

The UPS was discovered more than thirty years ago, but recently the field has rapidly expanded and gained the scientific interest that reflects its paramount role in cell biology and neuronal disorders. The UPS regulates degradation of cytosolic and nuclear proteins that occurs in the process of cell survival. In eukaryotes, the ubiquitination system often
serves as a triggering signal for degradation. It accounts for targeting selected proteins for
degradation by tagging them with chains of a small heat stable protein, the adenosine
triphosphate (ATP)-dependent proteolytic factor 1 (APF-1), which was later identified to be
identical to the protein ubiquitin (Wilkinson et al., 1980). Hersko and Ciechanover, in the
period of 1970 to 1980, found that ubiquitin could be conjugated to lysine residues of
proteins in an energy-dependent process that required ATP (Hershko and Ciechanover,
1998. The ubiquitin modification of protein was followed by rapid degradation by an
energy-requiring protease (Harper et al., 1997). The groups of enzymes required for
accomplishing ubiquitin conjugation include a ubiquitin activating enzyme (E1), the
ubiquitin-conjugating enzymes (E2) and the ubiquitin ligases (E3) (Figure 1.11). In a
sequential manner, these enzymes collaborate to covalently conjugate ubiquitin first to the
substrates and next to one of the lysine residues within the ubiquitin until a chain of
conjugated ubiquitin is formed. This conjugated protein is recognised by the proteasome,
resulting in degradation of the ubiquitinated protein (Hershko and Ciechanover, 1998;
Hershko et al., 1983).

Ubiquitin is encoded by a multi-gene family where monomeric ubiquitin genes are C-
terminally linked to a sequence encoding a ribosomal protein and multimeric ubiquitin
genes that are encoded in a tandem repetitive manner. The number of ubiquitin moieties
in the precursors and the nucleotide sequence can vary substantially among different
eukaryotic species. However, the amino acid sequence shows variation only of three
positions in the seventy six residue long protein, making ubiquitin one of the most
conserved eukaryotic proteins (Jentsch et al., 1991; Glickman and Ciechanover, 2002).
Yeast and human ubiquitin, for example, differ only at amino acid residue positions 19, 24
and 28 (Graham et al., 1989). Newly synthesized ubiquitin fusion proteins or multimeric
ubiquitin precursor are post-translationally processed by ubiquitin C-terminal hydrolases
(UCH) that recognize and cleave the last glycine residue of each ubiquitin moiety, releasing
functional single ubiquitin units. The high expression levels and stability of ubiquitin,
combined with the fact that ubiquitin is recycled after being used to tag proteins for degradation, safeguards the nuclear and cytosolic expression levels that are required for a functional UPS. In general, ubiquitin molecules are attached to an internal lysine in the protein and successive addition of other ubiquitin molecule is added to synthesize the polyubiquitin chain (Ciechanover, 2003; Glickman and Ciechanover, 2002).

Figure 1.11 The ubiquitin proteasome pathway.
Ubiquitin is conjugated to proteins that are destined for degradation by an ATP-dependent process that involves three enzymes. A chain of five ubiquitin molecules attached to the protein substrate is sufficient for the complex to be recognized by the 26S proteasome. In addition to ATP-dependent reactions, ubiquitin is removed and the protein is linearized and injected into the central core of the proteasome, where it is digested to peptides. The
peptides are degraded to amino acids by peptidases in the cytoplasm or used in antigen presentation.\(^8\)

Two groups of proteins share sequence homology with ubiquitin: the ubiquitin-like proteins (UBL); and, proteins containing an ubiquitin–like domain (UDP) (Jentsch et al., 2000). UBLs like SUMO or Nedd8 can be conjugated to other proteins in a mode resembling ubiquitin modifications. Yet they do not target for degradation but fulfil roles such as inhibition of ubiquitination, regulation of protein trafficking and activation (Jones et al., 2002; Muller et al., 2001). The UDPs comprise a diverse family of proteins that have an uncleaveable ubiquitin-like domain most often located in their N-terminal part. It has been shown that ubiquitin-like domain can interact with the proteasome, but it is not believed that this interaction results in degradation.

1.12.1 Ubiquitination

Ubiquitination of a substrate is performed in a series of enzymatic steps that start with the ATP-dependent activation of ubiquitin by the formation of a thiol-ester linkage between its C-terminal glycine and an active site cysteine residue present within the ubiquitin-activating enzyme (E1). The ubiquitin is then transferred to a cysteine residue of a ubiquitin-conjugating enzyme (E2) enzyme, and then finally covalently linked by an isopeptide bond to the E-NH2 group of a lysine residue in the substrate, a process that is directed and catalysed by a substrate-specific ubiquitin ligase (E3) (Figure 1.12). Once the first ubiquitin is linked to the substrate, the procedure is repeated and additional ubiquitins are covalently linked by their C-terminal glycine 76 residue to specific lysine residues within the previous ubiquitin to eventually form a polyubiquitin chain. Long chains have higher affinity for binding to the proteasome, and a minimum of four ubiquitins are sufficient to serve as a recognition signal for degradation (Thrower et al., 2000).

\(^8\) Adapted from Lecker et al., 2006.
Only one E1 enzyme has been described, deletion of the gene for which in yeast is lethal (McGrath et al., 1991). Mammalian cell lines expressing a temperature sensitive E1 tend to arrest in the G2 phase of the cell cycle and upregulate heat-shock proteins, indicating a strong stress response at non-permissive temperature (Finley et al., 1984; Ciechanover et al., 1984). The precise number of different E2 enzymes is not known, but estimations based on sequence homology suggest that over twenty E2 enzymes are encoded in the mammalian genome (Joazeiro and Weissman, 2000). The E2s are often small proteins identified by a characteristics core of around 15 kDa that contains the active site cysteine residues. Each E2 can interact with a number of different E3s, which comprises an even larger family of enzymes (Figure 1.12). The E3s, which can be single proteins or consists of multi-protein complexes, are responsible for the specificity of the UPS, since they recognize the proteasome substrate through the presence of degradation signals (section 1.12). There are multiple interactions between these enzymes: a single substrate can be ubiquitinated by different E2s and E3s and a single E3 can ubiquitinate different substrates and interact with different E2s.

The E3s can be divided into three majors groups: the HECT (Homologues to E6-AP C-Terminus) domain family, the RING (Really Interesting New Gene) finger domain family, and the recently identified U-box ligases (Hatakeyama et al., 2001; Pickart, 2001). There are many fundamental differences in the enzymatic activities of these E3 families. Recently characterised U-box domains of E3s contain a conserved 70 amino acid long stretch identified in at least six mammalian proteins (Pickart, 2001). The domain is required for the E3 activity and also shares some structural similarities to the E3 RING finger domains (Aravind and Koonoin, 2000). The prototype U-box protein is the yeast Ufd2 protein, which contributes to ubiquitination of the ubiquitin fusion degradation (UFD) substrates (Koegl et al., 1999). CHIP (C-terminus of the Hsc70 interacting protein) is also a member of this group of E3s and together with the E3 parkin, promotes ubiquitination of the unfolded Pael receptor involved in Parkinson’s disease (Imai et al., 2002). It is noteworthy that both Ufd2
and CHIP ubiquitinate substrates in concert with classic E3s and mainly promote elongation instead of initiation of the ubiquitin chain.

Figure 1.12 Overview of ubiquitination.

Ubiquitination is an enzymatic cascade involving an ubiquitin (Ub) - activating enzyme (E1), an Ub- conjugating enzyme (E2), and an Ub-ligase (E3). During ubiquitination, Ub is activated by the E1 Ub-activating enzyme and then transferred to an E2 Ub-conjugating
enzyme. The E3 Ub-ligase enzyme recognises and binds both the target substrate and the Ub-E2 enzyme and transfers UB to the target substrate. Ubiquitin is released as a single unit from its precursor forms through the cleavage by deubiquitination enzymes (DUBs). Ubiquitin is conjugated to proteins that are destined for degradation by an ATP-dependent process that involves three enzymes. A chain of five ubiquitin molecules attached to the protein substrate is sufficient for the complex to be recognized by the 26S proteasome. In addition to ATP-dependent reactions, ubiquitin is removed and the protein is linearized and injected into the central core of the proteasome, where it is digested to peptides. The peptides are degraded to amino acids by peptidases in the cytoplasm or used in antigen presentation. Activation of ubiquitin is an ATP-dependent process that result a thiolester linkage between ubiquitin and the enzymes\(^9\).

The primary function of ubiquitination is to serve as a reusable selecting tag to sorting proteins that are destined for proteasomal degradation. Yet this is not its only function. Different modes of ubiquitination are involved in such diverse functions as DNA repair, protein activation and endocytosis. The different ubiquitination signals are a consequence of the various possibilities to build a lysine-linked chain (Pickart, 2000). Ubiquitin carries seven lysine residues at positions 6, 11, 27, 29, 33, 48 and 63, of which lysine 29, 48 and 63 linked chains have been identified \textit{in vivo} (Gregori et al., 1990; Chau et al., 1989; Arnason and Ellison, 1994; Spence et al., 1995). The lysine 48-linked chain in which an isopeptide bond links the C-terminal glycine 76 residue of ubiquitin and the lysine 48 of the previous ubiquitin, are the conical signal for proteolysis by the UPS. Overexpression of ubiquitin, in which the lysine 48 is substituted for an arginine residue, is lethal in yeast (Finley et al., 1984). Though less common, lysine 29 linked ubiquitin chains can target a protein for degradation as well.

\(^9\) Adapted from Lindsten and Dantuma, 2003.
Poly-ubiquitin lysine 48 chains target proteins to 26S proteasome-mediated degradation, whereas polyubiquitin chains formed via lysine 63 target proteins for other diverse cellular activities (Hicke, 1999; Lauwers et al., 2009). The level of membrane proteins are maintained by lysine 66 linked polyubiquitination, which functions as a signal for selective trafficking to the lysosomal lumen via multivesicular endosomal (MVE) or multivesicular body (MVB) degradation pathways (Raiborg and Stenmark, 2009). This process of endosomal sorting is dependent on ubiquitination of membrane protein, or “cargo”. Ubiquitinated cargo is recognized by the endosomal sorting complex for transportation and recycling (Raiborg and Stenmark, 2009).

Regulation of the ubiquitination status of activators is critical in the control of transcription factor promoter function. The mechanism in which monoubiquitination balance is established with polyubiquitination and degradation has been the focus of intense investigation. Studies in yeast on Gal4-dependent genes first indicated that the 19S proteasomal ATPases bind to the Gal4 activation domain independently of both the non-ATPase 19S subunits and the 20S proteolytic core (Gonzalez et al., 2002). In 2007, Ferdous and colleagues demonstrated a non-proteolytic “destabilizing” function of the APIS (19S ATPase proteins independent of 20S) complex involving an ATP-dependent, rapid, and reversible disassociation of the transactivator-promoter complex, which was inhibited in the presence of mono-ubiquitin (Archer et al., 2008; Ferdous et al., 2001). Further studies have shown that mono-ubiquitination of transcription factors increase transactivation (Ferdous et al., 2007); however, the mechanisms involved in this process were unclear. Together, these studies shed light on the non-proteolytic and proteolytic role of ubiquitination.

1.12.2 Deubiquitination

Ubiquitination is a reversible protein modification process, as conjugated polyubiquitin can be removed and disassembled by the action of deubiquitination enzymes
(DUBs). DUBs comprise a large family of enzymes within the ubiquitin proteasome system. All DUBs are cysteine proteases with the exception of one recently discovered DUB within the proteasome that is a metalloprotease (Verma et al., 2002; Yao and Cohen, 2002). There are two groups of DUBS: UCHs and ubiquitin-specific processing proteases (UBP). The two classes have some common residues in their active sites, but besides that there is a poor sequence homology between them and other proteases. UCHs are typically small proteins that remove peptides fused to the C-terminus of ubiquitin while UBPs make up a more diverse family of proteins that are able to cleave isopeptide bonds between ubiquitin and lysine residues within a substrate or between ubiquitin in a polyubiquitin chain. DUBs play a vital role in maintaining a sufficient pool of free ubiquitin in the cell by processing the ubiquitin monomers from their precursors and by recycling polyubiquitin chains from substrates targeted for degradation (Chung and Baek, 1999; Wilkinson, 2004).

1.12.3 Proteasomes

Proteasomes are very abundant in the cellular cytosolic and nuclear compartment, accounting for up to 1% of total cellular protein (Baumeister et al., 1998). They can diffuse freely in the cytosol and the nucleus (Reits et al., 1997). They enter the nucleus through the nuclear pore complex, or they get entrapped within the nuclear compartment when the envelope is restored after cell division. In yeast, proteasomes are associated with the nuclear and ER membrane, and have an altered distribution during mitosis (Enenkel et al., 1998). Similar to lysosomes which degrade mostly extracellular proteins in a less selective manner, the proteasome controls its proteolytic activity through self-compartmentalisation of the responsive proteases.

The proteasome was first observed in 1968 by electron microscopy, but it took almost twenty years before Goldberg and colleagues renamed the prosome, as it was originally known (Schmid et al., 1984) to the proteasome, highlighting its pivotal role in intracellular degradation (Arrigo et al., 1988). In eukaryotic cells, the proteasome forms a
barrel shaped complex consisting of a 20S core particle with the proteolytic active sites facing inward to the lumen of the proteasome (Figure 1.13). The 20S core particle is located between two 19S regulatory particles, also called PA700, that serve as proteasomal gatekeepers and control entry and exit of proteins and peptides. Progressive degradation of proteins by the proteasome results in the production of peptides of various lengths. These peptides are further degraded by cytosolic peptidases, generating amino acids that can be reused in protein synthesis. In vertebrates, these peptides can also be translocated into the ER and loaded in major histocompatibility complex (MHC) class I molecules that are subsequently transported and displayed at the cell surface, a process known as antigen presentation (Rock and Goldberg, 1999). Since the proteasome degrades the majority of intracellular proteins, the presented peptides are representative of the total pool of proteins present within the cell. This pool also includes proteins that are derived from infectious agents and are consequently eliminated by cytotoxic T-cells. Antigen presentation is one of the fundamentals phenomena of the immune system and is of major importance for the host response to viral infection (Dantuma et al., 2002; Lorenzo et al., 2001).

The mammalian proteasome is unique in that it has three exchangeable proteolytic β subunits that are induced in the presence of the cytokine IFNγ, which is produced by activated CD4 and CD8 positive T-cells and natural killer cells, and plays a major role in mobilizing the host defence against infectious pathogens. The β1, β2, and β5 subunits are exchanged into iβ1/LMP2, iβ2/MECL1 and iβ5/LMP7, respectively, resulting in the formation of the immunoproteasome complexes (Gaczynska et al., 1996). These modifications cause an altered preference of cleavage sites favouring the generation of peptides with hydrophobic C-termini and reducing the output of peptides with acidic C-termini. A peptide with hydrophobic C-terminus is more likely to be suitable for antigen presentation by MHC class I. The alteration of the cleavage specificity for the C-terminus is the most important for the proteasome (Serwold et al., 2002; Cascio et al., 2001).
1.12.4 The 20S core particle

The 20S proteasome consists of four heptameric rings, named α and β, forming the structure α-β-β-α. The two inner rings consist of seven β-subunits and contain three proteolytic activities each. The proteolytic active sites are located in the β1, β2 and β5 subunits of the core particle, facing into the proteolytic chamber of the proteasome (Dick et al., 1998). The β1 subunit displays post-glutamyl peptide hydrolysing (PGPH) activity, cleaving preferably after acidic amino acids. The β2 subunit has a trypsin-like activity, cleaving preferably after basic amino acids. The β5 subunit is responsible for the chymotrypsin-like activity, which cleaves preferably after hydrophobic amino acids (Arendt and Hochstrasser, 1997).
Figure 1.13 The 26S Proteasome in *Saccharomyces cerevisiae*

Schematic of the 26S proteasome in *Saccharomyces cerevisiae*, showing the 20S proteolytic core and one 19S regulatory particle. The ubiquitinated substrate binds to the 19S where the ubiquitin chain is removed. The 19S is composed of a “base” component and a “lid” component with nine non-ATPase subunits (Rpn3, Rpn5-9, Rpn11, Rpn12 and Rpn15) in the lid and four non-ATPase (Rpn1, Rpn2, Rpn10 and Rpn13) and six ATPase subunits (Rpt1-6) in the base (shown in red). The C-termini of the ATPases dock into intersubunit pockets in the α-rings of the proteasome and open the gate for substrate hydrolysis by the 20S β subunits. Cross section of the β-ring reveals the positions of the caspase-like (β1), trypsin-like (β2) and chymotrypsin-like (β5) subunits (all shown in yellow). Polyubiquitinated proteins are tagged for degradation, recognized and unfolded by the 19S ATPases, and are
translocated to the 20S core. The 20S cleaves the protein into peptides and free ubiquitin is released\(^\text{10}\).

1.12.5 Ubiquitin

All three catalytic sites are activated through cleavage of an N-terminal leader sequence that occurs during assembly of the proteasomal complex. The cleavage results in N-terminal threonine residues that exert the nucleophilic attacks on peptide bonds (Chen and Hoschtrasser, 1996). In addition, two less characterized proteolytic activities have been described, namely the “branched-chain amino acid preferring” (BrAAP) activity and the “small neutral amino acid preferring” (SNAAP) activity (Orlowski et al., 1993). These additional activities are most likely accommodated by the already identified active β sites since the presence of additional proteases in the proteasome complex have been excluded by structural analysis (Groll et al., 1997), kinetic studies (Cardozo et al., 1999, McCormack et al., 1998) and site-directed mutagenesis (Dick et al., 1998). In the end the cleavage repertoire makes sure that virtually any peptide bond in a protein can be potentially digested, thus the active sites of the proteasome show how much broader specificity than their names reveal.

1.12.6 The 19S regulatory particle

The 19S proteasome regulates the entry of substrates targeted for degradation. It docks the 20S core protein and regulates the opening of a narrow hole of 10 Å (in diameter, a size that allows only unfolded protein to enter (Wenzel and Baumeister, 1995). The α-rings form the anterior chamber leading into the 20S, but without the association of the 19S regulatory protein with the N-termini of the α-subunits to serve as a plug to hold together the α3 subunits and keep the 20S core protein closed (Groll et al., 2003; Groll et al., 2000; Ciechanover, 2006; Ciechanover and Brundin, 2003). Electron microscopic

\(^{10}\) Adapted from Deriziotis and Tabrizi, 2008.
studies revealed that the 19S regulatory particle is flexibly linked to the core protein and exerts wagging movement in an uncorrelated manner (Walz et al., 1998).

The 19S regulatory protein plays an important role in the recruitment of polyubiquitinated substrates, removal of polyubiquitin chains, as well as unfolding of protein substrates and their tethering into the 20S core chamber. The 19S regulatory protein can be subdivided into two sub-complexes, also known as the base and the lid. Using the nomenclature for mammalian proteasomes, the lid contains eight subunits: Rpn3, Rpn5, Rpn6, Rpn7, Rpn8, Rpn9, Rpn, and Rpn12 (Figure 1.13). It has been suggested that the lid is required for proper protein degradation and substrate recognition. However, the precise role of the lid in the protein degradation pathway is unclear. Studies have also revealed some deubiquitination activity in the Rp11 subunit, suggesting that it is important for the removal of the ubiquitin chain prior to degradation (Verma et al., 2002; Yao and Cohen, 2002). The base of the regulatory protein contains nine subunits: Rpt1, Rpt2, Rpt3, Rpt4, Rpt5, Rpt6, Rpn1, Rpn2 and Rpn1 (Figure 1.13). Rpt1-6 are ATPases associated with a variety of cellular activities (AAA), and form the ring entrance. AAA ATPases are known to be involved in protein remodelling and, in the context of the proteasome, it has been postulated that these subunits regulate unfolding and translocation of protein substrates into the proteolytically active chamber (Braun et al., 1999; Kohler et al., 2001). Rpt3 contains a polyubiquitin binding site that may be responsible for positioning the ubiquitinated substrate directly adjacent to the entrance (Lam et al., 2002). The two other base subunits, Rpn1 and Rpn2, are the largest subunits of the 19S regulatory particle and expose hydrophobic surfaces, possibly functioning as a scaffold for interacting proteins. Rpn1 has been shown in yeast to interact with UDP proteins such as Rad23 and Dsk2 (Elsasser et al., 2002).
1.12.7 The 11S regulatory particle

The formation of the immunoproteasome upon stimulation with IFNy stimulation involves the exchange of the 19S regulatory particle for another structure called termed the 11S regulatory particle or PA28 (Li and Rechsteiner, 2001). It has been shown that different complexes can be formed between the 20S core particle and either 19S or 11S regulatory particles (Tanahashi et al., 2000). Unlike the 19S particle, the 11S regulator contains two different types of subunits that form a hetero-hexameric ring structure that upon binding to the 20S is believed to open the entrance hole to the inner proteolytic chamber (Whitby et al., 2000). It has been shown that the Drosophila homologue of this regulator can modify the proteolytic activities of the proteasome (Masson et al., 2001).

1.13 The UPS and neurodegenerative disease

The UPS has been implicated in a range of neurodegenerative diseases, especially in conditions associated with the toxic accumulation of aberrant proteins that are prone to form potentially harmful aggregates. The importance of the UPS is highlighted by the direct relationship between onset of neurodegenerative diseases and perturbations in the UPS (Ciechanover and Schwartz, 2004; Rubinstzein, 2006). Many neurodegenerative disorders are characterised by the accumulation of ubiquitinated protein, suggesting that UPS dysfunction may play a prominent role in disease pathogenesis (Jung et al., 2009; Bedford et al., 2008). This accumulation of proteins may be caused by genetic or environmental factors, in combination with imbalances in anabolic and/or catabolic pathways in the cellular degradation system. Genetic mutation or environmental factors can lead to the production of proteins with different rates of degradation, or proteins with tendencies to form persistent cellular aggregates (Figure 1.10). Furthermore, disruption in gene expression also leads to accumulation of protein aggregates due to increased protein synthesis and reduced protein degradation by the 26S proteasome (Jung et al., 2009).
Intraneuronal aggregates contain ubiquitinated proteins and accumulation of these ubiquitinated aggregates is due to their impaired clearance by the proteasome.

UPS impairment is reported to be involved in aging, brain ischemia, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS). Protein aggregation has recently been shown to directly impair the function of the UPS. Transient expression of two unrelated aggregation-prone proteins, a huntingtin fragment containing a pathogenic poly-glutamine repeat and a folding mutant of cystic fibrosis transmembrane conductance regulator, caused nearly complete inhibition of the UPS (Bennett et al., 2005; Bence et al., 2001). These data confirm a potential mechanism linking protein aggregation to cellular dysfunction and cell death. The link between the UPS and neurodegenerative diseases is further strengthened by observations that several mutations linked to neurodegenerative disease onset are found in genes that code for proteins involved in the UPS.

It has become increasingly evident that altered activities of the UPS are crucially involved in the pathophysiology of Huntington’s disease, Parkinson’s disease and spinocerebellar ataxia (Bence et al., 2001; Lindsten et al., 2002) (Ciechanover and Brundin, 2003). UPS impairment has also been studied in cell culture and animal models overexpressing mutant huntingtin protein (Lindsten et al., 2003) and consistent with data proposing a protective effect of aggregation due to sequestration of toxic species, treatment with a compound that increases inclusion formation prevents huntingtin-mediated proteasome inhibition (Bodner et al., 2006). Global changes in the UPS were reported in HD, early in the disease course in both R6/2 transgenic model as well as in HD patient (Bennett et al., 2007), suggesting that impairment may be occurring at the level of ubiquitin turnover rather than impairment of proteolytic function. However, the lack of a reporter indicating UPS dysfunction in a Huntington’s disease mouse model (R6/2) crossed to GFPu mice may be indicative of a more complicated relationship between overexpression of mutant polyglutamine proteins and UPS function (Bett et al., 2009).
Mutations in Parkin, encoding an ubiquitin-E3 ligase result in juvenile recessive PD (Dawson and Dawson, 2003). Decreased proteasome activity has been suggested as a cause of aggregation and Lewy body formation in Parkinson's disease. This hypothesis is supported by the observation that yeast models of Parkinson's disease are more susceptible to toxicity caused by α-synuclein, the major protein component of Lewy bodies, under conditions of low proteasome activity. Bedford et al reported data describing the link between the 26S proteasome dysfunction and the development of alpha-synuclein neuropathology (Bedford et al., 2008). In the study, they genetically ablated a critical 19S/PA700 subunit in the forebrain, and thus, prevented the formation of the 26S proteasome. A recent description of Usp14, a proteasome-associated deubiquitinating enzyme has been reported to inhibit the degradation of ubiquitin-protein conjugates in both in vitro and in vivo (Lee et al., 2011), suggesting that inhibition is mediated by the trimming of the ubiquitin chain on the substrate.

1.14 The UPS and prion diseases

Prion infection is known to cause neuronal loss in the brain, but the molecular basis of prion neurotoxicity remains unknown. Significant evidence exists as to the involvement of UPS dysfunction in the pathogenesis of prion disease. Study by Bedford and colleague, shows evidence of a dysfunction of the 26S proteasome in the development of alpha-synuclein neuropathology in genetic mouse model using the Cre/loxP system (Bedford et al., 2008). Prion-infected cells are significantly more susceptible to apoptosis when treated with low levels of proteasome inhibition, accompanied by an accumulation of large cytosolic perinuclear PrPSc aggresomes (Kristiansen et al., 2005). Proteasomal activity is significantly decreased in prion-infected cells and in brain regions exhibiting significant neuropathology in prion-infected mice (Kristiansen et al., 2007). This finding established a solid link between UPS impairment and neurodegeneration associated with prion infection. Both PrPSc and recombinant forms of PrP containing large amounts of β-sheet structure inhibit the 26S proteasome directly in vitro (Kristiansen et al., 2007). Pre-incubation with
an anti-oligomer antibody or heat denaturation of PrP^{Sc} alleviates this inhibitory effect (Kristiansen et al., 2007). It has been reported that increased levels of ubiquitin conjugate, which correlate with decrease proteasome function accumulate in the brain of mice infected with prion (Kang et al., 2004). Most recently, Deriziotis and colleagues reported an accumulation of UPS substrate in prion infected mouse brains, suggesting impairment of the 26S proteasome (Andre and Tabrizi, 2012; Deriziotis et al., 2011). However, other studies by Quiaglio and colleagues revealed that transgenic mice expressing a non-infectious mutant form of PrP associated with certain inherited human prion diseases do not show UPS impairment (Quaglio et al., 2011).

1.15 The Ub^{G76V}-GFP reporter mouse model

In order to understand the precise role of the UPS under pathological conditions, the development of fluorescent-based reporters for monitoring the function of the pathway and quantifying proteolytic activities of substrate in mouse models is imperative. The major work of this thesis is based on a particular green fluorescent protein (GFP) proteasome substrate that allows monitoring of the UPS (Dantuma et al., 2000). GFP is a small soluble protein of 26 kDa that originates from the jellyfish <i>Aequorea victoria</i>. Well established in the literature, it does not have any known interacting partners is relatively well tolerated at high concentrations in mammalian cells, and is very stable (Tsien, 1998). The generation of the fluorescent reporter system in both cell line and transgenic model has made it possible to monitor the functionality of the UPS (Tsien, 1998). Furthermore, the development of fluorescent proteasome inhibitors has allowed specific labelling of proteasomes <i>in vitro</i> and <i>in vivo</i> (Dantuma et al., 2000). GFP reporters were initially characterized and used for studies in cellular systems but more recently development of a transgenic mouse model constitutively expressing the GFP reporter was developed. Subsequently, the use of these models has allowed the investigation of the effect of proteotoxic stress condition in the degradation of different proteasomal substrates (Verdoes et al., 2006; Menendez-Benito et al., 2005) and to gain insight into the
mechanisms contributing to the long-term accumulation of deleterious proteins during proteotoxic stress (Menendez-Benito et al., 2005).

The UbG76V-GFP proteasome substrates were generated by insertion of different N-end rule of UFD degron that converted GFP into a substrate of the UPS. Ubiquitin is recognised as a degradation signal leading to ubiquitylation within the ubiquitin moiety and subsequently lead to the degeneration of the UFD containing protein (Dantuma et al., 2000). Degradation of the substrates results in low basal fluorescence intensities, with pharmacological inhibition of the proteasome leading to the accumulation of GFP-fluorescent cells that can be monitored by fluorescence microscopy, flow cytometry and fluorimetry. Although the ubiquitination of GFP by the N-end rule and UFD degrons rely on different enzymes, both pathways converge at the level of the proteasome. This implies that these reporters cannot be used to test the individual catalytic activities of the proteasome, but rather monitor the general status of the UPS. The UbG76V-GFP reporters have proven their general applicability in several species including mammals (Dantuma et al., 2000, Lindsten et al., 2002; Myung et al., 2001; Verhoef et al., 2002) Drosophila (Lundgren et al., 2003) and yeast (Heessen et al., 2003; Heessen et al., 2002).
Figure 1.14 Generation of UbG76V-GFP transgenic mice.

For generation of N-end rule of substrates ubiquitin was cloned in frame with GFP so that cleavage by UCH exposes the amino acid on the N-terminus. Ubiquitin fused GFP is expressed in living cells. Upstream of the promoter, the GFP substrate is fused to a mutant ubiquitin moiety. GFP reporter mice were designed to study proteasome inhibition. The transgene has a Cytomegalovirus (CMV) early enhancer upstream and chicken beta actin promoter. Upstream of the promoter the GFP substrate is fused to a mutant ubiquitin.

The UbG76V-GFP reporter mouse model was generated from a chicken β-actin promoter with a cytomegalovirus (CMV) immediate early enhancer, which is a promoter complex that is known to induce a constitutive expression (Figure 1.14) (Okabe et al., 1997). Indeed the transcript of the GFP reporter could be detected in all tissues examined (Lindsten et al., 2003). However, inhibition of proteolysis is required in order to detect the UbG76V-GFP protein. Studies in primary cultures of fibroblasts and other cells demonstrated a clear dose-dependent accumulation of the GFP reporter in response to inhibition treatment. The functionality of the reporter was also confirmed in vivo by intraperitoneal injections with the different proteasome inhibitors MG-132, MG-262 and epoxomicin (Lindsten et al., 2003). A dramatic accumulation of GFP occurred in the liver, which is in line with previous data showing that proteasome inhibitor treatment of drug-primed mice.
induces hepatotoxicity in the form of accumulation of Mallory bodies (French et al., 2001). Other studies have been done on the generation of related reporter substrates. Bence and colleagues described a GFP reporter that is targeted through a short hydrophobic sequence (Bence et al., 2001), which was originally identified in a screen for degrons in yeast (Gilon et al., 1998).

The particular Ub^{G76V}-GFP construct was chosen based on its destabilizing and well tolerated effect in tissue culture. The Ub^{G76V}-GFP reporter mouse was the first in vivo model developed to investigate proteasomal degradation. It provides an excellent tool for studying the UPS in human disorders, especially neurodegenerative diseases characterized by pathologic accumulation of misfolded and aberrant proteins, which are potentially proteasome substrates. Previously, it has been shown that the functional analysis of the UPS can be accomplished by monitoring steady state levels of fluorescent reporter substrates (Salomons et al., 2005; Bence et al., 2001; Dantuma et al., 2000). The availability of the GFP reporter Ub^{G76V}-GFP reporter mouse model has been instrumental for the studies presented in this thesis, since it allowed a direct monitoring of the UPS dysfunction in vivo and neuro-pathological conditions associated with prion disease. The work described in this thesis shed light on understanding the role of UPS impairment in the pathogenesis of prion disease.
1.16 Aims

• To generate both lines of the Ub^{G76V}-GFP reporter mouse and characterize the Ub^{G76V}-GFP reporter in primary neurons;

• To investigate whether dysfunction of the ubiquitin-proteasome system (UPS) can be detected in RML prion infected Ub^{G76V}-GFP reporter mice;

• To sequentially monitor UPS impairment <i>in vivo</i> over the time-course of prion infection and determine whether it is an early or late event;

• To assess behavioural phenotype and motor skills deficits in the Ub^{G76V}-GFP reporter mice following RML prion infection.
2 MATERIALS AND METHODS

2.1 Ub^{G76V}-GFP reporter mice

Breeding pairs of Ub^{G76V}-GFP1 and Ub^{G76V}-GFP2 mice were provided by Professor Nico Dantuma at the Karolinska Center for Transgenic Technologies, Sweden (Lindsten et al., 2003). They were provided as hemizygotes that had been back-crossed for approximately 30 generations to a C57BL/6N background using both males and females. The mice were subsequently bred in-house at the MRC Prion Unit Biological Safety Facility (BSF).

2.1 Animal care

All work with animals conformed to United Kingdom legislation and institutional guidelines for animal welfare. The mice were housed at an appropriate temperature (22°C) in a light-controlled room (12-hr light/dark cycle), and kept in groups of four to six per cage. All animals had free access to food and water.

2.1.2 Genotyping

Mice were genotyped by PCR of genomic DNA isolated from ear biopsies taken from each individual animal. Ear biopsies were taken at three weeks of age. They were digested at 55°C overnight in a solution containing 49 µl Direct PCR lysis reagent (Viagen Biotech) and 1 µl proteinase K (PK) (21mg/ml) (Roche). The lysates containing genomic DNA were then incubated at 85°C for 45 min and briefly centrifuged.

PCR was performed on the genomic DNA using oligonucleotide primers specific to the Ub^{G76V}-GFP construct. A PCR stock solution was made containing 12.5 µl of 1x REDTaq ReadyMix PCR Reaction Mix with MgCl₂ (Sigma), and 1 µM each of the forward and reverse primers. The stock solution was added to individual reaction tubes, followed by the addition of 2 µL genomic DNA to a final volume of 25 µl of solution. The samples were
subjected to cycling temperatures of 94°C for 30 sec, 58°C for 30 sec and 72°C for 1 min, for 36 cycles. The PCR product was loaded onto a 1.25% agarose gel or stored at 4°C until ready for loading into gel.

Primers were designed using Primer Express software (Applied Biosystems). UbG76V-GFP primer sequences were: forward primer 5’ CCT ACA GCT CCT GGG CAA CGT 3’; reverse primer 5’ TCG ACC AAG CTT CCC CAC CAC 3’). β-actin primer sequences were: forward primer 5’ ACC AGG GTG TGA TGG TGG GAA 3’; reverse primer 5’ AGC CAG GTC CAG ACG CAG GAT 3’).

Agarose gel electrophoresis was conducted using 1.25% agarose in 1x TAE buffer, pH 8.0. Ethidium bromide was added to the mixture to visualise the gel. The mixture was poured into a mini-gel system with appropriate fitted combs (Thermo Fisher). Twenty five microlitres of PCR solution was loaded into each well. To confirm the 300 base pair size of the product, 10 µl of TrackIt 1000 bp DNA ladder (Sigma) was added to a single well. The gel was run at 90 volts for 20-25 min. The gel was examined on a BioRad Gel Doc 1000 imaging system under UV light to evaluate sample integrity. Gels were photographed and analysed using Quantity One software (BioRad).

2.2 Inoculation of mice with RML prions

2.2.1 Preparation of inocula

Inocula were made from homogenised brain tissue. Frozen brains were transferred to a Petri using clean a disposable forceps and 1 ml of sterile 1X PBS was added to the brain immediately. Homogenisation was done using a tissue RiboLyser (Eppendorf). Screw cap tubes filled with small clean ribolysing beads were weighed and samples were ribolysed at a speed of 6.5 for 45 seconds; 10 % (w/v) tissue homogenates were prepared.
2.2.2 Prion infection of mice

Mice were inoculated intracerebrally (ic) between the midline of the two hemispheres with 30 µl 1% (w/v) RML (Rocky Mountain Laboratories) brain homogenate, or 30 µl 1% (w/v) I7723 normal CD-1 brain homogenate as control. All mice were monitored on a daily basis and subsequently examined for clinical signs of scrapie-like disease.

2.2.3 Timed-culls of mice

Following inoculation, a series of timed culls were carried out at days 45, 85, 105, 125, 145 and 165 post-inoculation until end-stage disease. Early indicators for the onset of disease include erect ears, rigid tail, piloerection, ungroomed appearance and a hunched posture. However, a definitive diagnosis was not made until a confirmatory sign was seen, such as ataxia, limb paralysis, ruffled fur and generalised tremor. Animals were culled by an authorised Schedule 1 procedure (Animals Scientific Procedures Act 1986) using a sealed chamber with a rising concentration of CO\textsubscript{2} for 5 min, followed by confirmation of death by cervical dislocation.

2.2.4 Tissue handling and collection of samples

All procedures were carried out in a microbiological containment level III facility and strict safety protocols were followed. Tissue was harvested from animals immediately after they were culled. The brains were separated into right and left hemisphere. The left hemisphere was fixed into buffered formalin, whilst the right hemisphere was snapped-frozen in iced cold isopentane and stored at -80 °C.
2.3 Primary cell culture

Adult pregnant mice were culled at gestation day 16, as described above. An incision was made along the length of the abdomen and the surrounding skin dissected away to expose the embryonic sac. Individual embryos were removed and kept on ice. The head was removed from the embryo and pinned by the nose to a wax-filled Petri dish. Dissected cortices were then placed in a dish containing ice-cold medium NeuroBasal medium supplemented with B27 supplement, 1% 200 mM L-glutamine, 1% penicillin (5000 U/ml)/streptomycin (5000 μg/ml) and 5% foetal bovine serum (FBS). Cortices were dissociated using a sterile surgical scalpel blade, then triturated through a series of three flamed glass pipettes with different diameters to produce a single-cell suspension. The suspension was allowed to settle by gravity for 1 min to reduce un-dispersed clumps. The supernatant was transferred into a fresh tube and centrifuged at 350 xg for 5 min. The resultant cell pellet was resuspended in pre-warmed culture medium, as above.

Culture plates, or glass coverslips placed in 6-well tissue culture plates, were coated with 1 % poly-L-lysine (1mg/ml) at room temperature for 10 min. Excess poly-lysine was then removed and the coverslips were washed three times in sterile water. The coverslips were left to dry in a sterile environment for at least 2 hr prior to use. Single cell suspensions were counted using a haemocytometer. The cells were seeded at a density of 1.125 x 10^5 cells cm^2 onto poly-L-lysine plated plates. Cultures were incubated at 37°C in a humidified, 5% CO₂ incubator. After two days of culture, the cultures were given a full media change and a half media change every 4-5 days thereafter.
2.4 Immunocytochemistry

Primary cortical neurons were fixed onto coverslips with 4% paraformaldehyde (PFA) for 20 min at room temperature. They were washed three times with D-PBS and permeabilised at -20 °C with pre-cooled 100% methanol for 15 min. They were then washed with 1x PBS and the cells were blocked with 10% bovine serum albumin (BSA) (Sigma) for 1 hour at 37 °C. Coverslips were incubated for 1 h at 37 °C with primary antibodies diluted in 1x PBS (see Appendix I). Alexa-fluor secondary antibodies diluted into 1x PBS was added onto each coverslip and incubated for 1 hour at 37 °C in the dark. Following incubation, a series of three washes were carried out with 1X PBS. Coverslips were mounted onto Superfrost Plus slides (Thermo Fisher) using mounting medium (Dako) and left to dry in a cool dark place.

Confocal microscopy was used to obtain fluorescence images. The confocal microscope (Zeiss microscope LSM510 META) was equipped with ‘plan-Apochromat’ 63x/1.40 Oil DIC objective and was controlled by Zeiss LSM software. Fluorescence was recorded at 488 nm using 30 mW Ar-laser for excitation or at 543 nm using 1 mW HeNE-laser for excitation. Zeiss Imersol™ was used as the imaging medium.

2.5 Immunohistochemistry

For histological studies, half-brains were fixed in buffered formalin for at least 72 hours and up to a maximum of seven days. The sections were dehydrated and then embedded in a paraffin block by the MRC Prion Unit Histology staff. Sagittal serial sections were obtained from each block, cut at a standard thickness of 3-5 µm. Sections were mounted on Superfrost slides (Thermo Fisher), and allowed to dry at room temperature for 2 hours and then overnight at 60 °C. For a list of the antibodies used, see Appendix I.
2.5.1 Immunostaining for PrP

For anti-PrP staining, sagittal sections were first de-waxed and re-hydrated through two washes with xylene and three washes with decreasing concentrations of ethanol. Sections were then washed in water and treated with 98 % formic acid for 5 min and boiled in EDTA-Tris-citrate buffer pH 7.8 for 25 min.

The buffer solution was transferred to the pressure cooker, the temperature was set on high (setting 10) and the buffer brought to boil. Sections were then placed in the boiling solution allowing full pressure to be reached in the cooker with the lid completely sealed. The heating time began only when full pressure was reached. After a constant jet of steam was emitted, the heat on the electric hotplate was reduced to setting 7 and the pressure in the cooker was released immediately; a timer was set for 3 min. After the cooker was depressurised, the electric hot plate was turned off. An additional 3 min was timed; the cooker was then transported to a nearby sink and put under cold running water.

Immunohistochemical staining was performed using a Ventana Medical Systems, USA. PrP deposition and distribution were visualised using an anti-PrP monoclonal antibody, ICSM35 (1:3000) (D-Gen), and a rabbit anti-mouse secondary antibody (Asante et al., 2002).

2.5.2 Immunostaining for GFP and ubiquitin

For GFP and ubiquitin stainings, the sections were not pre-treated; however, antigen retrieval was done through enzymatic digestion and standard citrate buffer. For primary antibody, either a rabbit polyclonal anti-GFP antibody (Invitrogen) was used, followed by a swine anti-rabbit secondary antibody (1:200). Intracellular ubiquitin deposits were detected using a monoclonal anti-ubiquitin antibody (1:10:000) (Santa Cruz, Biotechnology) and a rabbit anti-mouse secondary antibody was used after a treatment of a citrate buffer (MCC2) pH 6.
All immunohistochemistry was carried out using Ventana Discovery or Benchmark automated systems, following manufacturer’s instructions (Ventana Medical Systems). Reagents supplied including a DAB Map kit designed for automated immunohistochemistry for detecting antigen localization in paraffin-embedded tissue section. The DAB Map Kit contains a series of antigen detection reagents such as diaminobenzidine (DAB), horse radish peroxidise (HRP), copper sulphate and inhibitor D for reducing endogenous peroxidise activity. An iView DAB Detection Kit was also used; it is an indirect biotin streptavidin system for detecting mouse IgG, mouse IgM and rabbit primary antibodies. The iView DAB Detection Kit contains; inhibitor (3 % hydrogen peroxide solution), SA-HRP (a conjugated streptavidin horseradish peroxidase, H2O₂ (.04 %- .08% hydrogen peroxide in a phosphate buffer solution, DAB substrate; diaminobenzidine, copper sulphate. The iView DAB Detection Kit uses an indirect method to visualize specific antibodies bound to antigens by depositing a brown colour precipitate. Bluing reagent, a strong alkaline reagent help interpret the result as it blues the haematoxylin stained sections on the glass. Counterstains, haematoxylin and bluing reagent work through the combined effect of lithium ions for the staining of cellular nuclei. A signal amplification technique was used to enhance the sensitivity of GFP staining (Ventana Medical Systems).

2.5.3 Immunostaining for GFAP

Gliosis was detected with anti-glial fibrillary acidic protein (anti- GFAP) rabbit polyclonal antiserum (1:1000, Dako) at 42° C for 32 min using the Ventana automated immunohistochemical system. Sections for GFAP were not pre-treated, but antigen retrieval was done with protease 3 and mild citrate buffer. The enzymatic digestion method involved a process of dewaxing, rehydration and rinsing the sections under running water. The slides were then re-equilibrated in mild or standard citrate buffer and incubated for 2 to 6 min protease level 1 or level (Ventana Medical Systems). Antigen retrieval was either done with a strong protease (protease 1), an alkaline protease solution for strong
enzymatic treatment (0.55 ± 1 acidic units/ml), or protease 3, a mild alkaline protease
treatment (0.02 ± 0.0075 units/ml). Sections for GFAP staining were treated with protease 3.

The sections were counterstained with haematoxylin for 5 min and a bluing reagent
was used as post-counterstain. A basic diaminobenzidine (DAB) detection kit was used
according to the manufacturer’s instruction (Ventana Medical Systems).

2.5.4 Immunostaining for NeuN and synaptophysin

For the labelling of neurons and synapses, sections were placed in a stainless steel
tray, de-waxed and, re-hydrated through three washes of xylene, two washes of 100 %
ethanol through one wash of 90 % and one wash of 70 % ethanol. The slides were then
rinsed in cold running water. The slides were submerged in one litre of 1 M EDTA pH 7.8
and microwaved for a period of 25 min in maximum power. After the microwave
treatment, the sections were washed in cold dH₂O before proceeding with immunostaining.

Either a monoclonal neuronal nuclei (NeuN) antibody was used (1:2000) (Chemicon) for 32
min or a monoclonal anti-synaptophysin (Zymed) was used and a rabbit anti-mouse
secondary antibody (1:200) (Dako) using the Ventana automated system. To visualise
neurons, basic diaminobenzidine detection system was used according to the
manufacturer’s instruction (Ventana Medical Systems, USA).

2.5.5 Light Microscopy

Light micrographs of histological areas of interest were taken using a light microscope
(Zeiss), attached to a digital camera on an ImageView digital microscope. Images were
analysed with the help of Professor Sebastian Brandner in the Department of
Neuropathology at the UCL Institute of Neurology.
2.6 Immunoblotting

2.6.1 Preparation of homogenates

Tissue was homogenised in 100 mM Tris.HCl, pH 7.4, 300 mM NaCl, 4 mM EDTA, 1 % Triton-X-100, 1% deoxycholate using sequentially narrower syringe needles. Homogenates were treated with 50 U/ml benzonase for 20 min on ice. An aliquot was removed for protein assay to ensure equal loading. For PrP^Sc western blots, proteinase K was added to a final concentration of 50 μg/ml for 30 min at 37 °C. Samples were then centrifuged at 16,000 xg for 1 min to pellet cellular debris. Digestion was ended in samples by adding 8 mM AEBSF. An equal volume of 2 X reducing sample buffer was added to each sample (125 mM Tris, pH 6.8, 20 % glycerol, 0.05 % bromophenol blue, 4 % SDS), which were then boiled at 100 °C for 10 min prior to use or storage.

2.6.2 BCA protein assay

A bicinchoninic acid (BCA) protein assay reagent kit (Pierce) was used to detect and quantify the total of protein in tissue homogenate. The BCA assay is based on the ability of the protein to reduce Cu^{2+} to Cu^{+} in an alkaline environment. Protein standards were prepared with bovine serum albumin (BSA) in the same diluent as the unknown sample. A series of 0, 25, 50, 100, 150, 200 and 250 μg standards were used. Twenty five microliters of each standard or unknown sample was pipetted into a 96-well plate in triplicate. Two hundred μl BCA working reagent was then added to each well and mixed gently for 30 seconds follow by a 25 min incubation at 37° C. The plate was analysed using a plate reader (Tecan), with the absorbance filter set at 570 nm.
2.6.3 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

Samples in 1x reducing sample buffer were centrifuged at 16,000 x g for 1 min, briefly vortexed, and finally spun again at 16,000 x g for 1 min. Samples were loaded on to pre-cast 16% Tris-Glycine mini gels (Novex, Invitrogen). They were electrophoresed vertically in tris/glycine SDS running buffer (National Diagnostics) in X-Cell Mini-Cell system (Invitrogen) apparatus at 200 V for 90 min. Pre-stained Seeblue (Invitrogen) or Precision (BioRad) protein standards were used as a molecular weight marker.

2.6.4 Electroblotting

SDS-PAGE protein samples were transferred onto PVDF membrane (Immobilon). Membrane was pre-cut at the same size as the gels and pre-soaked in 100% methanol for 2 min to ensure even hydration prior to transfer. Proteins were transferred from the gel to the membrane in X-Cell II Blot modules (Invitrogen) and blotting buffer (National Diagnostics) at either 35 V for 90 min or 14 V overnight.

2.6.5 Dot blotting

Protein samples were prepared in 1x reducing samples buffer, as above. Fifteen micrograms of each sample was placed into a 96-well plate in triplicate and kept on ice. BioRad Bio-Dot microfiltration apparatus were assembled with a sheet of nitrocellulose membrane and 5-6 sheets of filter papers that had been pre-wetted in 1x TBS. A gasket was aligned above the support plate and placed over a vacuum reservoir, and the apparatus attached to a three-way flow valve. Samples were loaded into the 96-well frame of the Bio-Dot apparatus and incubated at room temperature for 30 min. The flow valve was then adjusted to apply a vacuum to draw any remaining sample on to the membrane. The membranes were washed under vacuum suction twice with 1x TBS, following which the membrane was removed from the apparatus.
2.6.6 Immunodetection

After electroblotting, membranes were transferred to an appropriately sized container and washed in either 1x PBS or 1x TBS. Blots were then blocked for 1 h at RT with gentle agitation using either 5 % non-fat milk powder (Marvel) diluted in 1x PBS-T (1x PBS, 0.5% Tween-20), or Li-Cor blocking buffer (Li-cor Biosciences) diluted in an equal volume of 1x PBS. Incubation with the appropriate primary antibody (see Appendix I) diluted in either 1 % non-fat milk or Li-Cor blocking buffer diluted in an equal volume of 1x PBS-T was done with gentle agitation overnight at 4 °C. The membranes were then washed in 1x PBS-T for a minimum of 45 min, changing the buffer five times. The membranes were incubated with an appropriate secondary antibody (see Appendix I), diluted in 1x PBS-T, for 45 min at room temperature. The membranes were then washed in 1x PBS-T for a minimum of 1 hr, changing the buffer ten times.

Detection of alkaline phosphatase bound antibody was performed using Tropix CDP-star (DAB) (Applied Biosystems), according to manufacturer’s instructions. Excess reagents were poured off and the membranes were placed between acetate films and transferred to a photographic cassette. Biomax MR films (Kodak from Anachem) were developed using Kodak developer and fixer by hand or by using a Xograph imaging machine (Xograph Imaging Systems). Developed films were scanned using an Epson scanner for electronic format and densitometry of digital images was achieved by using ToolLab 1D Gel analysis software. Detection of LI-COR antibodies was done by scanning the membrane using the Odyssey Infrared Imaging System and software (Li-cor Biosciences). For stripping and re-probing of membranes, Re-Blot Plus Western Blot Strong Antibody Stripping Solution was used, following manufacturer’s instructions (Millipore).
2.7 Fluorogenic assays for proteasome activity

A protocol was used as described previously (Berkers et al., 2005; Dantuma et al., 2000; Kisselev and Goldberg, 2005). Homogenates were prepared, as described above, in 50 mM Tris-HCl pH 7.4, 2 mM ATP, 5 mM MgCl₂, 250 mM sucrose. A small aliquot was taken for protein content determination by BCA assay and 1 mM DTT was added to the remaining sample. To control for non-specific peptide hydrolysis, an aliquot of sample homogenate was incubated with the specific proteasome inhibitor 50 µM epoxomicin for 30 min at 37°C. Proteasomal activity was measured in 10 µg of protein incubated with 100 µM fluorogenic substrates (Ac-nLPnLD-AMC for caspase-like activity (Bachem); Suc-LLVY-AMC for chymotrypsin-like activity (Enzo Life Sciences); Boc-LRR-AMC for trypsin-like activity (Enzo Life Sciences), and 50 mM Tris.HCl pH 7.4, 5 mM MgCl₂, 2 mM ATP, 1 mM DTT, to a final volume of 100 µl. Samples were incubated for 1 hr at 37 °C and the release of 7-amino-4-methylcoumarin (AMC) was monitored continuously every minute at 360 nm excitation and 465 nm emission using a TECAN 96-well plate reader.

2.8 Behavioural assessments

Behavioural testing was performed on groups of fifteen age-matched UbG76V-GFP mice. Mice were grouped house prior to individual experiment and were monitor daily. Mice were inoculated soon after they were weaned; fifteen mice were inoculated with RML prions and fifteen mice were inoculated with control brain homogenate (CD1). Testing was initiated twenty days following inoculation. Mice were tested within a conserved ~3 hour time period in the morning. All protocols using these mice were first approved by the animal committee, and official approved procedures were followed for the care and use of these mice. Experimental room environment was kept constant between test sessions with respect to temperature humidity and light intensity.
2.8.1 Nesting

Testing was followed as described previously (Deacon et al., 2001). UbG76V-GFP mice were kept in groups of 4 or 5 mice per cage prior to testing. Nesting assessments were carried out for period of fourteen weeks, starting at day 20 post-inoculation. For an accurate assessment of nest building, the mice were single-housed for 24 hr and then regrouped after testing. Nesting material was placed in clean cages, positioned at the end of the cage opposite the mouth of the water bottle. A square compact nest was put into the cage. The following morning, an assessment of the nest was made, and a grade was given to each mouse based on the amount of material shredded, the neatness of the nest and the height of the nest. A grade of (1) = nestlet not touched (more than 90% intact); grade (2) = nestlet partially torn (50-90% remain intact); grade (3) = nestlet mostly shredded (less than 50% remain intact); grade (4) = nestlet mostly torn and the material gathered into a flat nest; and grade (5) = nestlet nearly perfect, made into a crater with wall matching mouse body. Images were photographed of each scored nest.

2.8.2 Burrowing

Testing was followed as described previously (Deacon et al., 2001; White et al., 2008). UbG76V-GFP mice were housed individually for the duration of the burrowing assessment. A one-end closed opaque plastic tube (250 ml in length and 55 mm in diameter) was filled with 200 g of food pellets of normal food diet and placed into a clean cage. The cylindrical-shaped tube was left overnight for mice to burrow the pellet out. The next morning, assessment was made by measuring the weight of the pellets displaced from the tube.
2.8.3 Grip Strength

Grip strength apparatus were calibrated for each trial. Mice were lifted and held by the tail so that their forelimb could grasp a wire grip. The mice were then pulled backward by the tail with their posture parallel to the surface of the table until they release the grid. The peak force applied by the forelimbs of the mouse was recorded in g. Each mouse was tested three times, and the average value obtained. The mouse body weight was measured. The mean of the three grip-strength measurements was used against the body weight to obtain the grip measurement.

2.8.4 Rotarod

A rotarod apparatus (UGO Basile) with a rotating cylinder of 3 cm diameter was used, with assessments done for a period of ten weeks, starting at day 45 post-inoculation. Mice were placed on the stationary rod and allowed to become familiar with the environment for one minute before the rod motor was engaged. On each day of testing, each mouse was tested for three trials with a 10 min inter-test resting period. Mice were tested within a conserved 3 hr time period in the morning. Mice were trained for 3 consecutive days prior to the first official testing date by repeatedly placing the mice on the rod until they were able to remain on the rod. Each mouse was held by the tail and placed on the rotating (4 r.p.m.) rod in such a way to walk forward on it. After 5 s the rod was accelerated at a constant speed of 20 r.p.m./min and the speed and time at which the mouse fell off were noted. Each mouse received three trials per session. The mean speed for each mouse was taken and analysed.

2.9 Statistical analysis

Data were expressed as standard deviation (SD) and analysed by Student’ T-test or Two-way ANOVA with Bonferroni post-test. Significance was expressed as follows: P<0.05*; P<0.01**, P<0.001***, unless otherwise specified Appendix IV.
3 Generation and Prion Inoculation of UbG76V-GFP Reporter Mice

3.1 Background

The functional state of the UPS can be monitored by steady state levels of a fluorescent reporter substrate (Dantuma et al., 2000). The UbG76V-GFP construct comprises a form of ubiquitin (G76V) fused to the N-terminus of GFP. When expressed in cells, UbG76V-GFP is poly-ubiquitinated at both its lysine 29 and lysine 48 residues, under normal cellular conditions it is targeted for degradation by the 26S proteasome (Bence et al., 2001; Cheroni et al., 2009). Fluorescent reporters have been expressed to study the function of the UPS in cells (Lindsten et al., 2003). Such cell models can be maintained at a lower cost, are quick to work with and provide high volumes of data. However, unlike transgenic animals, cell lines do not necessarily provide a full picture of complex diseases, thereby, cannot be used to study tissue specific responses involving changes of the UPS. The UbG76V-GFP reporter transgene, consists of ubiquitin (G76V) protein substrates, has been applied to the generation of animal models for in-depth study of the UPS. In this thesis, the first transgenic mouse model (UbG76V-GFP reporter), based on the ubiquitous expression of (G76V) protein substrates, developed for monitoring UPS degradation in vivo, has been used.

This mouse model allows a direct monitoring of UPS dysfunction in mice inoculated with RML prions to determine its possible correlation with disease pathogenesis. The UbG76V-GFP reporter mouse is based on the constitutive expression of a UbG76V substrate, which was selected because of its half-life degradation rate and low toxicity in cell culture. The UbG76V-GFP reporter mouse model consists of a UbG76V-GFP transgene, expressed from a chicken β-actin promoter with a cytomegalovirus (CMV) immediate early enhancer from the pCCALL vector excised using Scal and HindIII, and cloned blunt-ended in the NheI site.
located upstream of the UbG76V-GFP open reading frame (Lindsten et al., 2003). High constitutive expression is normally detected in all tissues (Okabe et al., 1997). Other mouse models for monitoring the UPS function have been developed, one of them is based on xenografts of UFD-luciferase reporter-expressing human cell lines in nude mice (Berkers et al., 2005; Luker et al., 2003). The UbG76V-GFP reporter mice are available as two lines: UbG76V-GFP1 and UbG76V-GFP2. These lines were characterised for the presence of the transcript, which was seen in all examined tissues including lung, spleen, small intestine, muscle, heart, kidney, pancreas, liver, testis and brain (Lindsten et al., 2003). Since its development, the usage of the UbG76V-GFP reporter mice has increased as UPS dysfunction has been increasingly reported to be linked with different neurodegenerative diseases (Cheroni et al., 2009; Rubinsztein, 2006). Indeed, the UbG76V-GFP transgenic mouse model appears to be an excellent tool to monitor the functionality of the UPS \textit{in vivo}.

Work in this chapter presents the breeding and characterisation of the two lines of the UbG76V-GFP reporter mice, UbG76V-GFP1 and UbG76V-GFP2. These mice were exposed to RML prions to check their susceptibility to prion infection in a manner, similar to that in their non-transgenic counterparts. Brain tissue from RML-infected UbG76V-GFP1 and UbG76V-GFP2 mice at end-stage disease was analysed for the presence of typical pathological markers of prion disease, PrPSc and GFAP. The presence of the Ub-GFP reporter was also investigated, thereby confirming previous observations using a different prion strain (Kristiansen et al., 2007), and the suitability of the model for use in investigating the UPS throughout the course of prion disease pathogenesis.
3.2 AIMS

- To breed UbG76V-GFP1 and UbG76V-GFP2 transgenic mice for subsequent study of the UPS.
- To confirm expression of the Ub-GFP reporter in these mice in response to inhibition of the UPS.
- To transmit RML prions to both UbG76V-GFP lines and confirm the onset of disease.
- To characterize the UbG76V-GFP1 reporter mice in primary neurons.

3.3 METHODS

Breeding pairs of UbG76V-GFP1 and UbG76V-GFP2 mice were provided by Professor Nico Dantuma at the Karolinska Center for Transgenic Technologies, Sweden. These mice had been backcrossed on to a C57Bl/6N background for at least thirty generations (Lindsten et al., 2003) and were maintained on this background in generating the animals for our experiments. The mice were genotyped by PCR with GFP-specific oligonucleotide primers of genomic DNA isolated from ear biopsies taken from each individual animal (Section 2.1.2). Confirmation of Ub-GFP reporter expression in these mice was obtained by establishing primary cortical neuronal cultures that were treated with proteasome inhibitors (Section 2.3).

Transgenic and control mice were inoculated i.c. with 30 µl 1% RML brain homogenate (designated I6201), or 30 µl 1% I7723 normal CD-1 mouse brain homogenate (designated I7723) as a control (Section 2.2.2). The mice were then culled at end-stage disease. This work was done in collaboration with Dr Ralph Andre and the MRC Prion Unit’s Biological Services Facility (BSF) at Wakefield Street under project license number 70/6454.
3.4 RESULTS

3.4.1 Establishing the UbG76V-GFP reporter mouse colony

To establish stable colonies of the UbG76V-GFP reporter mice, a single breeding pair for each of the UbG76V-GFP1 and UbG76V-GFP2 lines was obtained from Professor Nico Dantuma at the Karolinska Center for Transgenic Technologies, Sweden. Using these breeding pairs, heterozygous UbG76V-GFP+/- mice and homozygous UbG76V-GFP-/- littermates were generated in an expected Mendelian fashion for further experimental use (Figure 3.1).

![Breeding Diagram](image)

Figure 3.1 Breeding of the UbG76V-GFP transgenic mice.

Founders were backcrossed to C57BL/6N to produce UbG76V-GFP transgenic mice. Offspring were generated in an expected Mendelian fashion when heterozygous UbG76V-GFP mice were mated together. **(A)** Breeding plan for the ST5/UbG76V-GFP1 line. **(B)** Breeding plan for the ST5/UbG76V-GFP2 line.
3.4.2 Genotyping of the UbG76V-GFP1 and UbG76V-GFP2 mice

To identify UbG76V-GFP-positive mice, biopsies were taken from the ears of 5-6 week-old UbG76V-GFP progeny. Genomic DNA was analysed by PCR using primers to specifically detect the presence of the UbG76V-GFP transcript (Section 2.1.2). PCR products were analysed by agarose gel electrophoresis and UbG76V-GFP-positive animals were identified by the presence of a specific band of 300 base pair (bp) (Figure 3.2).

Figure 3.2 Genotyping of the UbG76V-GFP transgenic mice.
Genotyping of genomic DNA isolated from the UbG76V-GFP mice. The 300-bp PCR product identified Ub-GFP positive mice in the (A) UbG76V-GFP1 and (C) UbG76V-GFP2 lines. This method was not able to distinguish between heterozygous or homozygous Ub-GFP positive mice. (B, D) Primers specific for β-actin were used as a control in all PCR reactions.
3.4.3 Ub-GFP reporter expression in response to inhibition of the UPS in UbG76V-GFP primary cortical neurons

Accumulation of the Ub-GFP reporter was previously described in the UbG76V-GFP reporter mice (Lindsten et al., 2003). To validate the UbG76V-GFP transgenic mouse model, primary cortical neurons from embryonic E16 UbG76V-GFP1 mice were harvested and analysed by immunohistochemistry to detect the presence of the Ub-GFP reporter. Primary cortical neurons were treated with lactacystin, a proteasome inhibitor, at concentrations of 0.5 and 50 µM for 24 h. This treatment of lactacystin induced the accumulation of GFP in the neuronal cells, indicating the presence of the Ub-GFP reporter (Figure 3.3). Indeed, the primary cortical neurons responded to treatment with the proteasome inhibitor in a dose dependent manner as previously described (Lindsten et al., 2003). The most intense UbG76V-GFP accumulation was observed in neurons treated with the highest concentration of lactacystin (Figure 3.3 C). This validated the functionality of the Ub-GFP reporter mouse model in detecting dysfunction of the cellular UPS machinery.
Figure 3.3 Functional characterisation of UbpG76V-GFP expression in primary cortical neurons.

Primary cortical neurons were harvested from neonatal E16 UbpG76V-GFP1 mice. The proteasome inhibitor, lactacystin, was used to treat the cells in order to monitor Ubp-GFP accumulation resulting from the inhibited UPS degradation pathway. The cells were fixed and confocal immunofluorescence images were taken of primary cortical neurons treated with (B) 0.5 µM and (C) 50 µM lactacystin, as compared to (A) untreated controls. Increasing GFP fluorescence was observed with increasing concentrations of lactacystin. Fluorescent imaging were analysed with a confocal microscope (Zeiss).
3.4.4 Basal expression of the UbG76V-GFP reporter in primary cortical neurons from UbG76V-GFP1 mice.

In analysing the induction of the UbG76V-GFP reporter in the UbG76V-GFP1, some basal level of the Ub-GFP reporter was detected in non-lactacystin treated cells. This basal level of GFP was observed in UbG76V-GFP1 primary neurons that were co-immunostained for GFP and a neuronal marker, neurofilament (NF200) (Figure 3.4).

![Figure 3.4 Basal expression of the UbG76V-GFP reporter in primary cortical neurons from UbG76V-GFP1 mice.](image)

Primary cortical neurons were harvested from neonatal E16 UbG76V-GFP1 mice and fixed prior to immunocytochemistry. (A) Immunoreactivity using an anti-GFP antibody (Invitrogen) showed basal GFP expression in these cells. (B, C) The GFP-positive cells were positively identified as neurons as shown by co-localisation with neurofilament (NF200). Fluorescent imaging were analysed with a confocal microscope (Zeiss).
3.4.5 Inoculation of UbG76V-GFP reporter mice with RML prions

To monitor UPS impairment following prion infection, heterozygous UbG76V-GFP1+/- and UbG76V-GFP2+/- (henceforth termed UbG76V-GFP1 and UbG76V-GFP2, respectively) mice were inoculated with prions. UbG76V-GFP1+/- and UbG76V-GFP2+/- mice, along with UbG76V-GFP-/- littermate controls (termed Ub-GFPneg), were inoculated with RML brain homogenate, or normal CD-1 brain homogenate as a control (Section 2.2). The mice were then monitored on a daily basis for sign of illness. Animals in the advanced stage of the disease showed the typical symptoms of inoculation with RML prions, including a ruffled coat due to poor grooming, erect ears, agitation, unusual gait and piloerection. As expected, the incubation period of the disease post-inoculation with RML prion was approximately 160 days (Figure 3.5). This incubation time period confirms previous incubation time observed in mice of the same C57Bl/6N strain (Llyod et al., 2001). Incubation period for the end-stage groups of the UbG76V-GFP1, UbG76V-GFP2 and UbG76V-GFPneg mice were the same. This demonstrates that the Ub-GFP reporter itself does not influence the incubation period of RML prion infection in these mice. See Appendix IV for statistics report.
Figure 3.5 RML infected UbG76V-GFP mice succumb to disease at 160 days post-inoculation.

Groups of UbG76V-GFP1 (n=3) and UbG76V-GFP2 mice (n=5), alongside non-transgenic controls (n=8), were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenate. The x-axis shows the number of days post RML prion infection. The first observable signs of scrapie symptoms were seen at day 137 post-inoculation, with a mean incubation period to end-stage disease of 160.2 days. Non-transgenic (blue), UbG76V-GFP1 (red), UbG76V-GFP2 (pink). No differences in incubation period were observed between the groups of UbG76V-GFP1, UbG76V-GFP2 and non transgenic mice. See Appendix IV.

3.4.6 PrP$^\text{Sc}$ accumulates in the brains of prion-infected UbG76V-GFP reporter mice.

To confirm that the brains of RML prion-infected UbG76V-GFP1 showed neuropathological features of prion infection, brain tissue was assessed by immunohistochemistry for the presence of formic acid resistant disease-associated PrP$^\text{Sc}$. Abnormal PrP$^\text{Sc}$ deposits were detected in the brains of RML prion infected UbG76V-GFP
mice, and were seen throughout key neuropathological regions of the brain, including the thalamus, cortex and hippocampus, in both RML-infected UbG76V-GFP1 and UbG76V-GFP/- mice (Figure 3.6 A, B). No abnormal PrPSc was detected in non-infected littermate controls (Figure 3.6 C), and there were no differences in PrPSc accumulation or distribution between UbG76V-GFP1 and UbG76V-GFP/- mice.

Parallel analyses were done in UbG76V-GFP2 mice. As expected, abnormal PrPSc deposits were detected throughout key neuropathological regions of the brain in both RML-infected UbG76V-GFP2 and UbG76V-GFP/- mice (Figure 3.7 A, B), and no abnormal PrPSc was observed in non-infected littermate controls (Figure 3.7 C). No differences in PrPSc accumulation or distribution were seen between UbG76V-GFP2 and UbG76V-GFP/- mice, or the UbG76V-GFP1 mice.

Figure 3.6 RML infected UbG76V-GFP1 mice accumulate PrPSc at end-stage disease.

UbG76V-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenate. Immunohistochemistry analysis was carried out on paraffin-embedded end-stage disease mouse brain tissue using the ICSM35 anti-PrP antibody. Significant deposition of formic acid-resistant PrPSc was observed throughout the brain in (A) UbG76V-GFP1 mice and (B) non-transgenic controls. (C) No PrPSc was observed in non-infected mice inoculated with control CD1 mouse brain homogenate. Images are taken of the thalamus, scale bar = 20 µm.
Figure 3.7 RML infected UbG76V-GFP2 mice accumulate PrPSc at end-stage disease. UbG76V-GFP2 mice (n=5) and non-transgenic controls (n=5) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenate. Immunohistochemistry analysis was carried out on paraffin-embedded end-stage disease mouse brain tissue using the ICSM35 anti-PrP antibody. Significant deposition of formic acid-resistant PrPSc was observed throughout the brain in (A) UbG76V-GFP2 mice and (B) non-transgenic controls. (C) No PrPSc was observed in non-infected mice inoculated with control CD1 mouse brain homogenate. Images are taken of the thalamus, scale bar = 20 µm.

3.4.7 Gliosis increases in the brains of prion-infected UbG76V-GFP reporter mice.

To further investigate whether the UbG76V-GFP reporter mice demonstrate other typical hallmarks of prion disease pathology, brain tissue from both UbG76V-GFP1 and UbG76V-GFP2 mice were examined for the presence of astrocytic gliosis, a characteristic of neuropathological features in prion-infected brain tissue. GFAP is a well-established marker for astrocytes and was analysed by immunohistochemistry. The occurrence of gliosis was detected in the brains of prion-infected UbG76V-GFP mice (Figure 3.8 A), coinciding with the accumulation of PrPSc in the hippocampus, cortex, thalamus, cerebellum.
and hypothalamus. This gliosis was similarly observed in the brain of RML prion-infected Ub\(^{G76V}\)-GFP\(^{neg}\) mice (Figure 3.8 B), but not in uninfected controls brain (Figure 3.8 C).

The same observations were made in RML-infected Ub\(^{G76V}\)-GFP2 mice. Gliosis was observed throughout key neuropathological regions of the brain in both RML-infected Ub\(^{G76V}\)-GFP2 and Ub\(^{G76V}\)-GFP\(^{neg}\) mice (Figure 3.9 A, B), whereas increased gliosis was not observed in non-infected littermate controls (Figure 3.9 C). No differences were observed in gliosis between Ub\(^{G76V}\)-GFP2 and Ub\(^{G76V}\)-GFP\(^{neg}\) mice.

Figure 3.8 RML infected Ub\(^{G76V}\)-GFP1 mice demonstrate gliosis at end-stage disease.
Ub\(^{G76V}\)-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 μl of 1% RML-infected mouse brain homogenate. Immunohistochemistry was carried out on paraffin-embedded end-stage disease mouse brain tissue using an anti-GFAP antibody (Dako). Increased gliosis, a secondary neuropathological marker of prion disease pathology, was observed throughout the brain in (A) Ub\(^{G76V}\)-GFP1 mice and (B) non-transgenic controls. (C) Similar gliosis was not observed in non-infected mice inoculated with control CD1 mouse brain homogenate. Images are taken of the thalamus, scale bar = 20 μm.
Figure 3.9 RML infected UbG76V-GFP2 mice demonstrate gliosis at end-stage disease.

UbG76V-GFP2 mice (n=5) and non-transgenic controls (n=5) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenate. Immunohistochemistry was carried out on paraffin-embedded end-stage disease mouse brain tissue using an anti-GFAP antibody (Dako). Increased gliosis, a secondary neuropathological marker of prion disease pathology, was observed throughout the brain in (A) UbG76V-GFP2 mice and (B) non-transgenic controls. (C) Similar gliosis was not observed in non-infected mice inoculated with control CD1 mouse brain homogenate. Images are taken of the thalamus, scale bar = 20 µm.
3.4.8 Confirmation of GFP in 22 L prion infected UbG76V-GFP1 mice mouse brain

Accumulation of the Ub-GFP reporter was previously described (Lindsten et al., 2003) and recently, impairment of the Ub-GFP reporter was observed at end stage in UbG76V-GFP mice infected with 22L prion. It was shown that prion infection with 22L prion causes UPS impairment in end stage mice (Kristiansen et al., 2007).

To confirm and validate those previous findings, immunohistochemistry was done on brain sections of UbG76V-GFP1 mice infected with 22L prion, which were also used as positive control for the UbG76V-GFP mice infected with RML prion. Brain sections of 22L prion were assessed as described by Kristiansen and colleagues. GFP accumulation was observed in area of the thalamus as expected (Figure 3.10 A), no GFP was seen in mock-infected animals (Figure 3.10 B) or non-transgenic (Figure 3.10 C). Detection of the Ub-GFP reporter in the brains of these mice suggests that proteins accumulate as they are not degraded by the failing proteasome machinery, and that there is significant dysfunction in the activity of the UPS. This observation was as reported by Kristiansen and colleagues previously (Kristiansen et al., 2007).
Figure 3.10 GFP accumulates in the brain of 22L prion infected UbG76V-GFP1 mice at end-stage disease.

Both UbG76V-GFP 1+/- (A) and UbG76V-GFP1/- (B) were inoculated with 30 µl of 1% RML-infected 22L prion, while UbG76V-GFP littermates (C), used as negative controls were inoculated with CD1 brain homogenate. Immunohistochemistry was done on paraffin sections using an anti-GFP antibody (Invitrogen). Scale bar = 20 µm. 22L prion infected brains embedded in paraffin were obtained from Prof. John Portis, Rocky Mountain Laboratories, USA.

3.4.9 Ub-GFP reporter accumulates in the brains of prion-infected UbG76V-GFP reporter mice

To analyse the UbG76V-GFP reporter in RML prion-infected UbG76V-GFP reporter mice, brains tissue was assessed by immunohistochemistry for the presence of the Ub-GFP reporter. An anti-GFP antibody was used to confirm the presence of GFP in the brains of the UbG76V-GFP mice as they succumbed to disease.
In both UbG76V-GFP1 (Figure 3.11) and UbG76V-GFP2 (Figure 3.12) mice, GFP immunoreactivity was observed in the brains of the prion infected mice. This accumulation appeared to be restricted to the region of the thalamus. Importantly, the Ub-GFP reporter was not detected in the brains of either RML-infected UbG76V-GFPneg mice, which lack expression of the reporter, or uninfected UbG76V-GFP mice (Figures 3.11 B, C, & Figures 3.12 B, C). This result demonstrates the accumulation of the Ub-GFP reporter substrate, indicating UPS dysfunction. This impairment is in this case specific to mice inoculated with prions, and that the anti-GFP immunoreactivity was specific to the presence of the Ub-GFP reporter. This finding confirms previous observations (Kristiansen et al, 2007), and indicates the suitability of the UbG76V-GFP model as means of monitoring UPS dysfunction throughout the pathogenic time-course of disease.

Figure 3.11 The Ub-GFP reporter accumulates in RML infected UbG76V-GFP1 mice at end-stage disease.

UbG76V-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenate. Immunohistochemistry was carried out on paraffin-embedded end-stage disease mouse brain tissue using an anti-GFP antibody (Invitrogen). Accumulation of the Ub-GFP reporter was observed in the thalamus of (A)
UbG76V-GFP1 mice, but not in (B) non-transgenic controls or (C) non-infected mice inoculated with control CD1 mouse brain homogenate. Scale bar = 20 µm.

Figure 3.12 The Ub-GFP reporter accumulates in RML infected UbG76V-GFP2 mice at end-stage disease.
UbG76V-GFP2 mice (n=5) and non-transgenic controls (n=5) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenate. Immunohistochemistry was carried out on paraffin-embedded end-stage disease mouse brain tissue using an anti-GFP antibody (Invitrogen). Accumulation of the Ub-GFP reporter was observed in the thalamus of (A) UbG76V-GFP2 mice, but not in (B) non-transgenic controls or (C) non-infected mice inoculated with control CD1 mouse brain homogenate. Scale bar = 20 µm.

3.5 DISCUSSION

Work presented here confirms the UbG76V-GFP reporter mice as a suitable model for monitoring UPS impairment following RML prion infection. In addition, validation and characterization of the UbG76V-GFP mice were done in primary cortical neurons. Neurons are particularly vulnerable during the progression of prion diseases (Mallucci et al., 2007; Mallucci et al., 2002), therefore it was important to confirm the functionality of the UbG76V-
GFP reporter in these cells. Cortical neurons isolated from the UbG76V-GFP mice brain were shown to have an accumulation of the Ub-GFP reporter in response to the inhibition of the UPS, as previously reported (Lindsten et al., 2003). This was achieved by treating the cells with lactacystin, a specific proteasome inhibitor. However, these neurons appeared to show, at least while being cultured in vitro, some basal level of Ub-GFP expression. The degree to which the Ub-GFP reporter can accumulate in non-neuronal cells, such as astrocytes, was not investigated at this point.

It was also important to demonstrate that the UbG76V-GFP mice are susceptible to infection with RML prions. Previous studies have shown the UbG76V-GFP mice are susceptible to 22L prions (Kristiansen et al., 2007). Therefore, to ascertain whether RML prion exerts similar effect, the UbG76V-GFP reporter mice were inoculated with RML prion in the same manner as previously done with 22L prion. Detection of the UbG76V-GFP reporter was observed in 22L prion-infected transgenic mouse brains, whereas no UbG76V-GFP accumulation in mice inoculated with normal brain or in 22L prion-infected non-transgenic littermates was seen (Kristiansen et al., 2007). Following inoculation of RML prion, the UbG76V-GFP mice succumbed to disease as would be expected. The incubation period until end stage disease of ~160 days was the same for the UbG76V-GFP1, UbG76V-GFP2 and UbG76V-GFPneg mice. This demonstrates that expression of the Ub-GFP reporter itself does not influence the prion incubation period in these mice. Moreover, the incubation period observed was similar to previous observations of the C57Bl/6N background strain on which the UbG76V-GFP mice are based (Lloyd et al., 2001).

To investigate whether the Ub-GFP reporter displayed the neuropathological markers associated with prion disease at end stage disease, histological analyses of brain tissue isolated from the UbG76V-GFP mice were carried out. As expected, a widespread appearance of disease-associated PrPSc, accompanied by a marked astrocytosis and gliosis was observed throughout the brain, but more specifically in the region of the thalamus. No noticeable differences in staining of PrPSc or GFAP were observed between the UbG76V-
GFP1, UbG76V-GFP2 and UbG76V-GFPneg mice, indicating that expression of the Ub-GFP reporter itself does not influence the prion-mediated neuropathology induced in these mice.

To confirm previous findings of GFP accumulation in 22L prion-infected UbG76V-GFP mice, similar detection methods were used. Analysis of the Ub-GFP reporter by anti-GFP immunoreactivity demonstrated that the UPS is impaired by RML prion at end stage disease, as was observed with 22L prion previously (Kristiansen et al., 2007). Moreover, positive staining was observed only in the UbG76V-GFP1 and UbG76V-GFP2 mice, with no such staining being detected in prion-infected UbG76V-GFPneg mice. Indeed, this result confirms the specificity of the immunohistochemistry procedure used to detect the Ub-GFP reporter. Interestingly, the anti-GFP immunoreactivity was stronger in the prion-infected UbG76V-GFP1 mice than their UbG76V-GFP2 counterparts.

The variation in GFP staining between the two lines of the UbG76V-GFP reporter mice could be explained by the high basal level expression of the Ub-GFP substrate reported in the UbG76V-GFP1 mice (Lindsten et al., 2003). Similar variation was observed in the expression of the UbG76V-GFP transgene when double transgenic of ALS, (SOD1G93A) and UbG76V-GFP reporter mice were examined (Cheroni et al., 2009). Substantial differences were seen between the two transgenic lines of the reporter mice. The basal level GFP in the UbG76V-GFP1 were clearly detectable by immunostaining in both dorsal and ventral lumbar spinal cord, but no immunostaining was observed in the UbG76V GFP2 (Cheroni et al., 2009), suggesting the study UbG76V-GFP2 must be done in conjunction with the UbG76V-GFP1 transgenic mice. Using the proteasome inhibitor lactacystin, a significant accumulation of the UbG76V-GFP substrate was observed in cortical neurons, indicating impairment in the UPS machinery. This result was consistent with previous studies (Dantuma et al., 2000; Lindsten et al., 2003). The level of proteasome inhibition observed is likely to have severe consequences on neuronal viability.
Although the molecular basis of prion neurotoxicity is not yet clear, it is suggested that intracellular accumulation of disease-associated PrPSc is required for cytotoxicity. Previous studies support a cytosolic localization for a small proportion of PrPSc in prion infected neuronal cells in line with our previous data demonstrating toxic cytosolic PrPSc aggresomes (Kristiansen et al., 2005; Kristiansen et al., 2007). Granular deposits of disease-related PrP have been reported in cell body of neurons and CJD brains, suggesting the occurrence of intraneuronal prion aggregates (Kovacs and Budka, 2008). However, it is unclear how PrPSc oligomers traffic inside neurons and enter the cytosol to cause cell death. Other studies suggested that intracellular neuronal propagation of pathogenic PrPSc appears important in neurotoxicity (Brandner et al., 1996; Mallucci et al., 2003). However, it was shown that various proteolytic stress condition can cause functional impairment of the UPS which result in cellular dysfunction and apoptosis (Lindsten et al., 2002).

PrPC is essential for prion propagation and neurotoxicity (Bueler et al., 1993). However, some studies reveal that PrPC knockout in adult mouse brain shows no overt phenotypic effect (Mallucci et al., 2002). Moreover, embryonic PrPC knockout models demonstrate normal development and behaviour (Bueler et al., 1992; Manson et al., 1994). Therefore, PrPC knockout studies effectively exclude loss of function of PrPC in neurons as a significant mechanism in prion mediated neurodegeneration.

Down-regulation of PrP expression has been proposed as a possible therapy for prion disease, assuming prion expression is required for infection (Bueler et al., 1993) and the down-regulation of PrP expression can prolong disease incubation time (Manson et al., 1994; Prusiner et al., 1983). Studies by Mallucci and colleagues have shown the down-regulation of prion expression in mice can halt neuronal cell death and reverse the disease in the infected animal (Mallucci et al., 2007).

The pathogenesis of prion disease is likely to be multifactorial, but inhibition of the proteasome by pathogenic PrP is likely to result in neuronal perturbation and contribute to
neuronal loss (Ma and Lindquist, 2002). *In vivo* testing of the role of the UPS in neurodegeneration using the same Ub-GFP reporter mouse model as used here demonstrated that proteasome impairment does not contribute to pathogenesis in spinocerebellar ataxia 7 (SCA7) mice (Bowman et al., 2005). The Ub-GFP reporter does not accumulate when there is neuronal apoptosis *per se* and is only seen when there is a significant UPS dysfunction. Accumulation of the UbG76V-GFP reporter occurred only in prion infected mice brains and was associated with PrPSc deposition.

PrPC accumulation in the cytoplasm by use of proteasome inhibitor is reported to be associated with neuronal cell death (Ma and Lindquist, 2002). However, the data are controversial with evidence both for (Ma et al., 2002; Heller et al., 2003; Rambold et al., 2006) and against (Drisaldi et al., 2003; Roucou et al., 2003; Fioriti et al., 2005). A major drawback of many studies on cytosolic PrPC is the high levels of proteasome inhibition used, which may limit any physiological relevance in experiments *in vivo* (Ding et al., 2003). Importantly, for a prion disease such as CJD, the abnormal prion conformer PrPSc inhibits the 26S proteasome *in vitro*, while either preincubation with an oligomer antibody or heat denaturation of PrPSc alleviated this inhibitor effect (Kristiansen et al., 2007), indicating a specific effect (Kristiansen et al., 2007). Moreover, proteasome activity also decreased in both cells exposed to prion-infected mouse brain homogenates and in brain region exhibiting significant prion neuropathology in mice infected with PrPSc (Kristiansen et al., 2007). This finding establishes a solid link between UPS impairment and neurodegeneration associated with prion infection.

Other studies have suggested both the full-length PrPSc (Hertz et al., 2003) and the short PrP peptides are toxic to cell *in vitro* (Forloni et al., 1993), and their relevance *in vivo* pathogenesis should be carefully investigated. However, strong evidence provided by several studies suggests PrP itself may not be the toxic component. For instance, it has been shown that PrPC-null tissue can be in close proximity to PrPSc deposits without suffering deleterious effects (Brandner et al., 1996; Mallucci et al., 2003), and there is no
direct evidence to correlate between neuronal loss and PrP$^\text{Sc}$ plaques in CJD brains (Parshi et al., 1996). As already mentioned, some have reported studies done on prion diseases in which PrP$^\text{Sc}$ is barely detectable (Collinge et al., 1995; Lasmezas et al., 1997), and subclinical infection where high levels of PrP$^\text{Sc}$ accumulate in the absence of clinical symptoms are recognized (Hill et al., 2000; Race et al., 2001; 2002; Hill and Collinge, 2003).

In vitro and *in vivo* experimental data presented in this chapter investigate UbG76V-GFP reporter mice following RML prion infection and confirm the model as suitable for monitoring the UPS dysfunction through the progression of prion disease (*presented in Chapter 4*).

3.6 SUMMARY

In this chapter, I present data, which characterize and validate the UbG76V-GFP mouse model for the purpose of the direct monitoring of the UPS dysfunction in the pathogenesis of prion diseases. Both UbG76V-GFP1 and UbG76V-GFP2 lines were generated and cross-bred in a C57BL6/N background to establish stable colonies. The UbG76V-GFP reporter was characterized in primary cortical neurons, and offspring were inoculated with RML strain prion. Both GFP reporter mice (UbG76V-GFP1 and UbG76V-GFP2) were generated to investigate the impairment of the UPS throughout the course of disease. To date, it is the first time the UbG76V-GFP reporter mice have been inoculated with RML strain prion and a time-course was designed not only to monitor disease progression, but to investigate UPS impairment at early stages of prion infection.
4 PRION INFECTION IMPAIRS THE UPS IN Ub^{G76V}-GFP REPORTER MICE

4.1 BACKGROUND

Aberrations in the UPS machinery have been implicated in the pathogenesis of many diseases, including a variety of neurodegenerative diseases (Ciechanover and Brundin, 2003), and significant evidence exists of UPS dysfunction contributing to those diseases (Section 1.13). Consequently, understanding the spatial and temporal activity of the UPS is important for understanding its exact role and function in a neurodegenerative disease such as prion disease. Indeed, previous research has provided evidence for the implication of the UPS in prion disease (Section 1.14). Studies in prion-infected mouse brain have shown a correlation between elevated levels of ubiquitin conjugates and reduced proteasome function (Kang et al., 2004), and functional impairment of the UPS in prion disease, leading to a potential role in disease pathogenesis has been described (Deriziotis & Tabrizi, 2008; Andre and Tabrizi, 2011).

Direct interaction has been demonstrated between β-sheet-rich PrP species similar to disease-associated PrP^{Sc} and the 20S core particle of the 26S proteasome (Deriziotis et al., 2011). These studies show that aggregated β-sheet-rich PrP oligomers inhibit the proteolytic activities of the 26S proteasome, in a manner that is specific to PrP in an aggregated non-native β-sheet form (Kristiansen et al., 2007). The extent to which these in vitro observations are recapitulated in vivo in prion infected animals has not been previously fully investigated. Dysfunction of the UPS has been observed before in prion-infected Ub^{G76V}-GFP mice, but the animals were analysed solely at end-stage disease (Kristiansen et al., 2007). As a result, little is known about whether such impairment occurs at an early stage in the time-course of the disease, or whether changes in UPS function after prion infection correlate with or even precede other aspects of cellular dysfunction as
the disease progresses. In this chapter, data is presented to address the \textit{in vivo} time-course of UPS dysfunction in prion disease pathogenesis using both UbG76V-GFP UbG76V-GFP1 and UbG76V-GFP2 reporter mice (Chapter 3). Also investigated are other aspects of disease pathogenesis, including typical histopathological markers of prion disease such as disease-associated PrPSc and a marker of gliosis, GFAP.

4.2 AIMS

- To evaluate the functional status of the UPS through a time-course during the prion disease pathogenesis;

- To further clarify the relationship between UPS dysfunction and neuropathological markers of prion disease;

- To potentially correlate UPS dysfunction and ER stress during the course of prion disease.

4.3 METHODS

Mice were generated and genotyped, as described in Chapter 3. Heterozygous UbG76V-GFP1 and UbG76V-GFP2 mice, together with UbG76V-GFPneg controls were bred. Mice were inoculated intracerebrally with either 30 µl 1% RML prion brain homogenate or 30µl 1% normal CD1 mouse brain homogenate as a control (Section 2.2.2). This was followed by a series of timed culls at days 45, 85, 105, 125 and 145 post-inoculation, and at end-stage disease (~160 days) (Table 4.1). At each time-point, one brain hemisphere was fixed for histological analysis and the other was frozen for biochemical studies. The presence of disease pathology was confirmed by immunohistochemical staining of PrPSc and GFAP, as shown in chapter 3.
Immunohistochemistry was performed using Ventana Medical Systems (Section 2.5). Western blots and/or dot blots were undertaken for PrP^Sc and ubiquitin. Fluorogenic assays were used to monitor the chymotrypsin-like activity of 26S proteasomes (Section 2.8). This work was done in collaboration with Dr Ralph Andre, MRC Prion Unit, UCL Institute of Neurology.

Data were expressed as standard deviation (SD) and analysed by Student T t-test. Significance was expressed as follows: *** $p < 0.001$; ** $p < 0.01$, * $p < 0.05$. See Appendix IV.
Table 4.1 Ub^{G76V}-GFP mice were inoculated in groups and culled at various time points thereafter.

<table>
<thead>
<tr>
<th>Mouse type</th>
<th>Inocula</th>
<th>Day cull post inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ub^{G76V}-GFP1 +/-</td>
<td>I6201 RML i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP1 +/-</td>
<td>I7723 normal i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP1 -/</td>
<td>I6201 RML i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP1 -/</td>
<td>I7723 normal i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP2 +/-</td>
<td>I6201 RML i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP2 +/-</td>
<td>I7723 normal i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP2 -/</td>
<td>I6201 RML i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
<tr>
<td>Ub^{G76V} -GFP2 -/</td>
<td>I7723 normal i.c.</td>
<td>45, 85, 105, 125, 145, 165</td>
</tr>
</tbody>
</table>
4.4 RESULTS

4.4.1 Ub-GFP is expressed in the brains of RML prion-infected UbG76V-GFP1 mice before the onset of clinical signs

To investigate the earliest time-point in which UbG76V-GFP reporter accumulates in RML prion infected mice, brain sections from UbG76V-GFP1 mice were analysed by immunohistochemistry. Accumulation of Ub-GFP was detected as early as day 85 in the thalamus of RML prion-infected UbG76V-GFP1 mice (Figure 4.1). This accumulation increased as the disease progressed. Ub-GFP was not observed in the brains of RML prion-infected UbG76V-GFPneg mice or control inoculated animals (Figure 4.1). In addition, some Ub-GFP was observed in the cortex towards end stage disease, but the appearance of the reporter was largely restricted to the thalamus. By cellular morphology, it seemed that the majority of the cells in which the Ub-GFP reporter was observed in the thalamus were astrocytes, although some Ub-GFP in neurons was observed. Taken together, this data shows that UPS dysfunction occurs in the brains of prion-infected mice relatively early in disease progression, and before the onset of clinical signs.
Figure 4.1 The Ub-GFP reporter accumulates in RML infected UbG76V-GFP1 mice at end-stage disease.

UbG76V-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry was carried out on paraffin-embedded mouse brain tissue using an anti-GFP antibody (Invitrogen). Accumulation of the Ub-GFP reporter was observed over time in the thalamus of UbG76V-GFP1 mice (A, D, G, J, M, P), but not in non-transgenic controls (B, E, H, K, N, Q) or non-infected mice inoculated with control CD1 mouse brain homogenate (C, F, I, L, O, R). Scale bar = 20 µm. Continued overleaf.
Figure 4.1 (continued). The Ub-GFP reporter accumulates in RML infected UbG76V-GFP1 mice at end-stage disease.
4.4.2 Ub-GFP is expressed in the brains of prion-infected Ub\(^{G76V}\)-GFP2 mice before the onset of clinical signs

To verify whether similar accumulation of GFP could be observed in the Ub\(^{G76V}\)-GFP2 mice, brain sections were analysed in the same manner as the Ub\(^{G76V}\)-GFP1 reporter mice. Accumulation of the Ub-GFP was also observed in the thalamus of RML prion-infected Ub\(^{G76V}\)-GFP2 mice, although convincing stainings of GFP appeared to be from day 125 post-inoculation onwards (Figure 4.2). Ub-GFP was not observed in the brains of RML prion-infected Ub\(^{G76V}\)-GFP\(^{neg}\) mice or control inoculated animals. There were no differences in the histological or cellular patterns of the Ub-GFP accumulation between the Ub\(^{G76V}\)-GFP2 and the Ub\(^{G76V}\)-GFP1 mice. Collectively, this data shows that the two Ub\(^{G76V}\)-GFP lines behave similarly in response to prion infection. However, due to its apparent increased sensitivity to UPS impairment, the Ub\(^{G76V}\)-GFP1 line was chosen for use in the majority of further studies.
Figure 4.2 The Ub-GFP reporter accumulates in RML infected UbG76V-GFP2 mice at end-stage disease.

UbG76V-GFP2 mice (n=5) and non-transgenic controls (n=5) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry was carried out on paraffin-embedded mouse brain tissue using an anti-GFP antibody (Invitrogen).

Accumulation of the Ub-GFP reporter was observed over time in the thalamus of (A, D, G, J, M, P) UbG76V-GFP2 mice, but not in non-transgenic controls (B, E, H, K, N, Q) non-infected mice inoculated with control CD1 mouse brain homogenate or (C, F, I, L, O, R). Scale bar = 20 µm. Continued overleaf.
Figure 4.2 (continued). The Ub-GFP reporter accumulates in RML infected UbG76V-GFP2 mice at end-stage disease.
4.4.3 PrP_{Sc} deposition in the brains of RML prion-infected Ub^{G76V}-GFP1 mice

To determine whether PrP_{Sc} was present in RML prion-infected Ub^{G76V}-GFP1 mice, brain sections were analysed by immunohistochemistry. In the thalamus particularly where the Ub-GFP reporter could be detected from day 85 post-inoculation, significant amounts of disease-associated PrP_{Sc} deposition were observed (Figure 4.3). Similar levels of PrP_{Sc} were observed in RML-prion infected Ub^{G76V}-GFP^{neg}, indicating that the presence of the Ub-GFP reporter had no influence on the deposition of PrP_{Sc}. No PrP_{Sc} was detected in non-infected control mice. The concurrent appearance of PrP_{Sc} with the Ub-GFP reporter indicates that there may be a relationship between the two. It should be noted, however, that the deposition of PrP_{Sc} was far more widespread than the appearance of the Ub-GFP reporter, with PrP_{Sc} being readily observed in cortical, striatal and hypothalamic regions that are typically associated with RML prion neuropathology (Figure 4.4).

Furthermore, confirmation of the deposition of PrP_{Sc} was completed by Western blot analysis of protease K resistant material in 10% brain homogenates made from the RML prion-infected Ub^{G76V}-GFP1 mice. PrP_{Sc} was readily observed at later time-points, whereas a NaPTA precipitation of aggregated material was required to detect PrP_{Sc} at days 85-125 post-inoculation (Figure 4.5). PrP_{Sc} was not observed at day 45 post-inoculation, in agreement with the immunohistochemistry analysis. Protease K-resistant PrP_{Sc} was not observed in the brains of non-infected control animals.
Figure 4.3 RML infected UbG76VGFP1 mice accumulate PrPSc from day 85 post-inoculation through to end stage disease.

UbG76VGFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry analysis was carried out on paraffin-embedded end-stage disease mouse brain tissue using the ICSM35 anti-PrP antibody. Significant deposition of formic acid-resistant PrPSc was observed throughout the brain in (A, D, G, J, M, P) UbG76VGFP1 mice and non-transgenic controls (B, E, H, K, N, Q). No PrPSc was observed in non-infected mice inoculated with control CD1 mouse brain homogenate(C, F, I, L, O, R). Images are taken of the thalamus, scale bar = 20 µm.
Figure 4.3 (continued). RML infected Ub^{G76V}-GFP1 mice accumulate PrP^{Sc} from day 85 post-inoculation through to end stage disease.
Figure 4.4 PrP_{Sc} deposition is widespread throughout the brain in RML infected Ub^{G76V}-GFP1 mice.

Ub^{G76V}-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry analysis was carried out on paraffin-embedded end-stage disease mouse brain tissue using the ICSM35 anti-PrP antibody. Significant deposition of formic acid-resistant PrP_{Sc} was observed throughout the brain in (A, C, E, G) Ub^{G76V}-GFP1 mice. No PrP_{Sc} was observed in non-infected mice inoculated with control CD1 mouse brain homogenate (B, D, F, H). Scale bar = 1 mm.
Figure 4.5 Immunoblot analysis of PrPSc expression in the brains of RML-prion-infected UbG76V.GFP1 mice.

UbG76V.GFP1 mice were inoculated with RML prions and culled at various time-points (days 45, 85, 105, 125, 145 and 165) post-inoculation. A 1% tissue homogenate was made for biochemical assay. (A) Samples obtained from the day 85, 105 and 125 groups required NaPTA precipitation prior to western blotting in order to observe a detectable PrPSc signal, (B) whereas as homogenates from days 145 and 165 produced a detectable signal without precipitation. Immunoblots were probed with the ICSM35 anti-PrP antibody.
4.4.4 Gliosis in the brains of RML prion-infected Ub^{G76V}-GFP1 mice

To directly assess neuropathological features of RML in the prion in Ub^{G76V}-GFP1 mice, brain sections were analysed by immunohistochemistry using a typical marker for gliosis. Extensive astrocytosis is a secondary marker of the onset of prion disease pathology, which can be readily detected by immunoreactivity of the specific astrocyte marker, GFAP. An increase in GFAP immunoreactivity was observed from day 85 post-inoculation onwards in the thalamus of RML prion-infected Ub^{G76V}-GFP1 mice (Figure 4.6), correlating to PrP^Sc deposits observed in the same time-point. This astrocytosis was also seen in Ub^{G76V}-GFP^{neg} mice, but not in non-infected controls. The increased GFAP expression was apparent throughout the brain (Figure 4.7). The concurrent appearance of prion disease-associated pathology with the Ub-GFP reporter indicates that there may be a relationship between the two in the earliest stages of pathogenesis.

Increasing evidence suggest that astrocyte pathology may contribute to a number of neurodegenerative disease mechanisms, including prion disease (Lepore et al., 2008; Wyss-Coray et al., 2003; Raeber et al., 1997). Astrogliosis is reported to be prominent, diffuse and intense throughout the affected CNS regions in CJD and other related prion disease, especially if clinical symptoms have been of long duration. Although this astrogliosis exhibit some characteristics of severe diffuse reactive astrogliosis, it is not clear whether astrocytes play an active role in prion replication and disease pathogenesis or whether astrogliosis is largely reactive to the disease process in other cell types (Kovacs and Budka, 2008).
Figure 4.6 RML infected Ub^{G76V}-GFP1 mice exhibit increased astrocytosis from day 85 post-inoculation through to end stage disease.

Ub^{G76V}-GFP1 mice ($n=3$) and non-transgenic controls ($n=3$) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry was carried out on paraffin-embedded end-stage disease mouse brain tissue using an anti-GFAP antibody (Chemicon). Increased astrocytosis, a secondary neuropathological marker of prions disease pathology, was observed throughout the brain in (A, D, G, J, M, P) Ub^{G76V}-GFP1 mice and non-transgenic controls (B, E, H, K, N, Q). (C-I;O-P). Similar gliosis was not observed in non-infected mice inoculated with control CD1 mouse brain homogenate (C, F, I, L, O, R). Images are taken of the thalamus, scale bar = 20 µm.
Figure 4.6 (continued). RML infected UbG76V-GFP1 mice exhibit increased astrocytosis from day 85 post-inoculation through to end stage disease.
Astrocytosis is widespread throughout the brain in RML infected UbG76V-GFP1 mice. UbG76V-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry was carried out on paraffin-embedded end-stage disease mouse brain tissue using an anti-GFAP antibody (Millipore). Increased astrocytosis, a secondary neuropathological marker of prions disease pathology, was observed throughout the brain in UbG76V-GFP1 mice (A, C, E, G). A lesser degree gliosis was observed in non-infected mice inoculated with control CD1 mouse brain homogenate (B, D, F, H). Scale bar = 1 mm.
4.4.4 Ubiquitin deposition in the brains of RML prion-infected UbG76V-GFP1 mice

To further clarify the relationship between prion infection and UPS dysfunction, immunohistochemistry was used to analyse ubiquitin deposition in the brains of RML prion-infected UbG76V-GFP1 reporter mice. Granular deposits of ubiquitin in the brain of end stage 22L prion-infected mice were previously reported (Kristiansen et al., 2007). Although discerning widespread changes in ubiquitin levels was proved difficult (Figure 4.8), similar granular ubiquitinated deposits as previously seen in the 22L prion infected mice were observed in the thalamus of the RML prion-infected UbG76V-GFP1 mice (Figure 4.9). This result provides some further evidence that the UPS machinery is impaired in the brains of prion infected mice.

Ubiquitin-protein conjugates within neurons have been previously reported in the brains of prion-infected mice, whereby intracellular ubiquitinated deposits were seen early and increased with disease progression (Lowe et al., 1992). Ubiquitin conjugates associated with pathological lesions have also been described in several neurodegenerative disorders. For example, in Parkinson’s disease the level of the 26S proteasome and proteasome activity are reduced (Rubinsztein, 2006). However, a direct role of ubiquitinated proteins in those neurodegenerative diseases has not been established.
Figure 4.8 Prion infection causes some increase in the deposition of ubiquitinated proteins in Ub^{G76V}-GFP mice.

Ub^{G76V}-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry analysis was carried out on paraffin-embedded day 45, 85, 125 and 165 mouse brain tissue using an anti-
ubiquitin antibody (Appendix I). Ubiquitinated deposits were observed throughout the brain in Ub\(^{G76V}\)-GFP1 mice and non-transgenic controls. Images are taken of the thalamus, scale bar = 20 \(\mu\)m.

Figure 4.9 Ubiquitinated inclusions are observed in the thalamus of the brain in prion infected Ub\(^{G76V}\)-GFP mice.

Intracellular cytosolic granular ubiquitinated deposits is shown to accumulate at day 125 post RML prion infection in the brains of Ub\(^{G76V}\)-GFP1 reporter mice. These deposits could represent ubiquitinated-protein conjugates accumulate as they are not degraded by the failing proteasome. Immunohistochemistry analysis was carried out on paraffin-embedded day 125 on mouse brain tissue using an anti-ubiquitin antibody (Santa Cruz). Images are taken of the thalamus, scale bar = 20 \(\mu\)m.
In an attempt to quantify any differences in ubiquitin levels in the brains of RML prion-infected Ub^{G76V}-GFP1 mice, 10% homogenates were subjected to dot blot analysis. The data presented show that ubiquitin levels were significantly increased in the brains of RML prion infected mice from day 125 post-inoculation to end stage disease, as compared to their respective controls (Figure 4.10). Such differences were not observed at earlier time-points post-inoculation. Ubiquitin levels corresponded to differences in the poly-ubiquitin associated with accumulating UPS substrates, Western blots were carried out on the same samples (Figure 4.11). There was an increase in poly-ubiquitin level toward end stage disease in the RML prion infected mice brain. This result suggests that the differences on total ubiquitin levels could be ascribed to an accumulation of poly-ubiquitin associated with UPS dysfunction, rather than for example, differences in the expression level of non-conjugated monomeric ubiquitin. Student t-test. ***p<0.001, **p<0.01. For statistics report, see Appendix IV.
Figure 4.10 Total ubiquitin levels are increased in the brains of prion-infected Ub\(^{G76V}\)-GFP1 mice.

Ub\(^{G76V}\)-GFP1 mice were inoculated with RML prions and culled at various time-points (days 45, 85, 125, and 165) post-inoculation. A 1% tissue homogenate was prepared for biochemical assay and analysed using 96-well dot blot apparatus. (A) Membranes were probed with an anti-ubiquitin antibody (Santa Cruz) and analysed using the Li-cor Odyssey system. (B) Quantification demonstrates an accumulation of total ubiquitin in the brains of prion infected mice from day 125 to end stage disease. Data were normalised to β-actin levels in the same samples measured by Western blot and Li-cor analysis in Figure 4.11.
Figure 4.11 Accumulating ubiquitin in the brains of prion-infected UbG76V-GFP1 mice appears to consist of high molecular weight species.

UbG76V-GFP1 mice were inoculated with RML prions and culled at various time-points (days 45, 85, 125, and 165) post-inoculation. A 1% tissue homogenate was made for biochemical assay. Immunoblots were probed with anti-ubiquitin and anti β-actin antibodies. High molecular weight poly-ubiquitin species appear to accumulate in the brains of infected mice as disease progresses.
4.4.5 26S proteasome activity is impaired in the brains of prion-infected UbG76V-GFP1 mice

Given the observations made here that the UPS is impaired in the brains of RML-infected UbG76V-GFP1 mice during prion disease pathogenesis, and that a direct inhibitory effect of β-sheet-rich PrP species on 26S proteasomes has been reported by (Deriziotis et al., 2011), the activity of 26S proteasomes in the brains of the RML-infected UbG76V-GFP1 mice was assessed. The enzymatic function of the proteasomes in RML-infected UbG76V – GFP mice was analysed using fluorogenic peptide activity assays, as used routinely in our laboratory (Kristiansen et al., 2007). In particular, the chymotrypsin-like peptidase activity of the 26S proteasome was measured (Figure 4.12). The results demonstrate that 26S proteasomal activity was inhibited from day 145 post-inoculation onwards, correlating reasonably well with the deposition of poly-ubiquitinated substrates in the brain described above (Figure 4.10) at these time-points. Thus, the effect of prions to cause UPS dysfunction is associated with a functional loss of proteasome activity in the brains of these mice. Student t-test ***\(p<0.001\), *\(p<0.05\) (compared to uninfected control). See Appendix IV for statistics report.
Figure 4.12 RML prion infection causes impairment of the proteolytic activity of the 26S proteasome in Ub^{G76V}-GFP1 mice.

26S proteasomes in the brains of RML prion-infected Ub^{G76V}-GFP1 mice showed a significant reduction in 20S proteasome chymotrypsin-like proteolytic activity as compared to control non-infected mice towards end stage disease. Data are means of three independent experiments. This experiment was done by Dr. Ralph Andre.
4.4.6 A marker of ER stress is observed at end stage disease in the brains of prion-infected Ub^{G76V}-GFP1 mice

Alteration of ER homeostasis by several forms of stress, such as heat shock, overexpression of mutant proteins, or alteration of proteasome activity can cause the accumulation of misfolded proteins in the ER (Ferri and Kroemer, 2001; Liu et al., 1997). These alterations trigger specific activation of a protective cellular response, leading to upregulation of ER chaperones and a general decrease in protein synthesis (Rao et al., 2002; Reddy et al., 1999). Increased expression of ER chaperones glucose-regulated protein (grp) such as; Grp78/BiP (immunoglobulin chain binding protein) can exert a pro-survival effect of the UPR (Reddy et al., 1999; Rao et al., 2002; Sitia and Braakman, 2003).

To investigate whether a relationship exists between RML prion infection and ER stress, Ub^{G76V}-GFP1 reporter mice brains were evaluated for the ER stress marker, Grp78/BiP. The Grp78/BiP protein was observed in a few dispersed cells at end stage disease in the thalamus of RML prion infected Ub^{G76V}-GFP mice brain, but not in non-infected controls (Figure 4.13). The small pool of cells expressing Grp78/BiP indicates that ER stress may be a late event in the course prion disease. This observation suggests that prion-induced UPS dysfunction may precede disease-associated ER stress, and that prions may trigger a non-classical ER stress response.
Figure 4.13 Prion infection increases the expression of Grp78/Bip, indicating ER stress, at end stage disease in the brains of UbG76V-GFP1 mice.

UbG76V-GFP1 mice (n=3) and non-transgenic controls (n=3) were inoculated i.c with 30 µl of 1% RML-infected mouse brain homogenates. Immunohistochemistry analysis was carried out on paraffin-embedded day 45, 85, 125 and 165 mouse brain tissue using an anti-Grp78/Bip antibody (Cell Signaling). Deposits, shown with arrows, were observed in the thalamus of RML prion infected brain at end stage disease (J and K), but not in the non-transgenic controls (L). Images are taken of the thalamus, scale bar = 20 µm.
4.5 DISCUSSION

The data presented in this chapter indicate an impairment of the UPS machinery in the brains of UbG76V-GFP reporter mice infected with RML prion infection, as shown by the accumulation of the model substrate, UbG76V-GFP (Dantuma et al., 2000; Lindsten et al., 2003). Accumulation of the UbG76V-GFP reporter occurred only in the brains of prion-infected mice, with no Ub-GFP being observed in animals injected with non-prion control homogenate. The observed accumulation of Ub-GFP coincided with markers of prion disease neuropathology such as PrPSc deposition and extensive GFAP immunoreactivity. The accumulation of the Ub-GFP reporter was observed early in the disease time-course, at least at 85 days post-inoculation following infection with RML prions in a \textsim 160 day disease time-course (Figure 4.1). This was also the earliest time-point at which PrPSc and other neuropathological markers were observed. Moreover, these observations seemed to be restricted at these early time-points to certain regions of the brain such as the thalamus, suggesting some spatial as well as temporal correlation between UPS impairment and prion disease pathology. This supports the claim that impairment of the UPS may be an important contributor to prion disease pathogenesis (Kristiansen et al., 2007; Deriziotis and Tabrizi, 2008; Andre and Tabrizi, 2012).

During the experimental time-course, clinical symptoms of prion disease were monitored in both UbG76V-GFP transgenic mice until end-stage disease. The onset of disease pathology was confirmed by the presence of PrPSc deposits, gliosis and spongiosis in affected areas of the brain in the RML prion-infected mice, but not in non-infected littermate control animals (Figure 4.3; Figure 4.6, Figure 4.7). Further confirmation of PrPSc deposits was provided by western blot analysis of proteinase K resistant material in the brains of these animals. PrPSc was not observable at day 45 post-inoculation, in agreement with the immunohistochemistry analysis. The onset of PrPSc was observed by Western blotting at day 85 post-inoculation, with a subsequent increase in PrPSc levels until end-
stage disease, is also consistent with the immunohistochemistry observations. There were no obvious differences in the appearance or time-course of prion disease pathology between either of the two Ub\(^{G76V}\)-GFP lines and their non-transgenic Ub\(^{G76V}\)-GFP\(^{neg}\) counterparts. This indicates that the expression of the Ub-GFP reporter itself does not influence the course of disease pathology in these animals.

Due to its apparent increased sensitivity to UPS impairment, the Ub\(^{G76V}\)-GFP1 line was chosen for use in the majority of the experiments described in this Chapter. Detection of the Ub-GFP reporter was observed only in the brains of RML-prion infected mice. No Ub-GFP reporter accumulation was seen in the brains of Ub\(^{G76V}\)-GFP inoculated with control normal brain homogenate, or in RML-prion infected Ub\(^{G76V}\)-GFP\(^{neg}\) littermates (Figure 4.1). This indicates that the effects observed are specific to both infection of animals with RML prions and to the detection of the Ub-GFP reporter itself. Similar results were obtained with the two available reporter mouse strains, Ub\(^{G76V}\)-GFP1 and Ub\(^{G76V}\)-GFP2, established from different founders (Dantuma et al., 2002; Lindsten et al., 2003). Taken together, these data show that UPS dysfunction occurs in the brains of prion-infected mice relatively early in disease progression, well before the onset of clinical signs.

The majority of the cells in which the Ub-GFP reporter was observed in the thalamus appeared to be astrocytes, although some neurons were observed throughout the time-course. Increasing evidence points towards reactive astrogliosis to play either a primary or a contributing role in neurodegeneration, either via a loss of normal astrocyte functions or a gain of abnormal effects (Eklund et al., 1967; Race et al., 1995; Raeber et al., 1997). Although diffuse reactive astrogliosis is one of the most prominent neuropathological features and most commonly observed in prion diseases (Scott and Fraser, 1984), it is not clear whether astrocytes play an active role in prion replication or disease pathogenesis, or whether astrogliosis is largely reactive to the disease process in other cell types (Kovacs and Budka, 2008). In Parkinson’s disease, astrocytes have been implicated as potentially
exerting both neurotoxic (Di Monte et al., 1996; Przedborski et al., 2000) and neuroprotective activities (Chen et al., 2009).

There is evidence to suggest two different potential roles for astrocytes in neurodegenerative diseases, through the loss of a neuroprotective function and a gain of a neurotoxic effect (Lepore et al., 2008; Rothstein et al., 2005). In Huntington’s disease, astrocytes have been implicated in the disturbances of glutamate uptake that can alter synaptic function and lead to excitotoxicity, or in abnormal production of neurotoxic molecules (Lobsiger and Cleveland, 2007; Maragakis and Rothstein, 2006; Gil and Rego, 2008). In Alzheimer’s disease, reactive astrogliosis tends to be focal such that they are intimately associated with amyloid plaques or diffuse deposits of amyloid and surround them with dense layers of processes (Nagele et al., 2004; Thal et al., 2000). It is also reported that reactive astrocytes can take up and degrade extracellular deposits of AB42 (Wyss-Coray et al., 2003), and this function is attenuated in ApoE-/- astrocytes (Koistinaho et al., 2004), suggesting that both the function and dysfunction of astrocytes could play a role in the progression and severity of Alzheimer’s disease.

The occurrence of astrogliosis and impaired proteasome activity in neurodegenerative diseases has led to the speculation that the UPS might contribute to the regulation of astrogliosis (Midderldorp et al., 2009; Sabbatini et al., 1999; Yoshida et al., 1996). GFAP protein levels are generally up-regulated in reactive astrocytes in diseases, in which impaired proteasome activity is confirmed, (Tang et al., 2006; Maragakis et al., 2006). By contrast, it was shown that proteasome inhibition does not induce an accumulation of GFAP protein but rather induces a sharp decrease in the transcript levels of all expressed GFAP isoforms in vitro (Midderldorp et al., 2009). Furthermore, proteasome inhibition prevents GFAP accumulation in reactive astrocytes in vivo, thereby suppressing reactive astrocytes (Midderldorp et al., 2009). The decrease in proteasome activity described by others, however, was measured in whole brain homogenates without discriminating between different cell types (Keller et al., 2000; Lopez et al., 2000; Glenn et
Moreover, ubiquitin immunoreactivity was found mostly in inclusion bodies within neurons (Layfield et al., 2005; Lowe et al., 1988), but not astrocytes. Taken together, it could be argued that the proteasome is not inhibited in astrocytes but might rather be activated.

Intracellular cytosolic granular ubiquitinated deposits have been shown to accumulate in the brains of 22L prion-infected mice, accompanying with the appearance of the Ub-GFP reporter (Kristiansen et al., 2007). These deposits may represent ubiquitinated-protein conjugates that accumulate as they are not degraded by the failing proteasome. Although, similar intracellular cytosolic granular ubiquitinated deposits were observed by immunohistochemistry in the present study in the brains of RML prion-infected Ub^{G76V}-GFP1 mice, they were not observed at early time-points to coincide with the accumulation of the Ub-GFP reporter. Nevertheless, a slight increase of ubiquitinated-protein was observed towards end-stage disease in the thalamus of the RML prion-infected Ub^{G76V}-GFP1 mice (Figure 4.8). Interestingly, ubiquitin-protein conjugates within neurons have been reported in the brains of prion-infected mice, whereby intracellular ubiquitinated deposits were seen early and increased with disease progression (Lowe et al., 1992). In addition, the pathological accumulation of the intracellular ubiquitin-protein structures corresponded temporally with the earliest detection of PrP^Sc (Lowe et al., 1992).

To further assess differences in ubiquitin levels in the brains of RML prion-infected Ub^{G76V}-GFP1 mice, brain homogenates from these mice were analysed by immunoblotting. Using a quantitative dot-blotting assay, ubiquitin levels were significantly increased in the brains of RML-prion infected mice from day 125 post-inoculation to end stage disease, as compared to their non-infected controls (Figure 4.10). Such differences were not observed at earlier time-points post-RML infection. Furthermore, Western blots were carried out on the same samples to determine whether changes in total ubiquitin levels corresponded to differences in poly-ubiquitin associated with UPS substrates that may have failed to
degrade by the proteasome, (Figure 4.11). The results demonstrate that increase in total ubiquitin levels correlates with the appearance of high-molecular weight poly-ubiquitin conjugates. Collectively, these data suggest that the differences in total ubiquitin levels can be ascribed to an accumulation of poly-ubiquitin associated with UPS dysfunction, rather than differences in the expression level of non-conjugated monomeric ubiquitin.

Recent work done by our group described a novel mechanism of inhibition by PrP isoforms containing a β-sheet-rich structure similar to that of PrPSc (Deriziotis et al., 2011; Andre and Tabrizi, 2012). This occurs by a direct interaction between the 20S proteasome core particle and β-sheet-rich PrP isoforms, as demonstrated by immunoprecipitation both in vitro and in vivo (Deriziotis et al., 2011). The interaction causes an impairment of the opening of the gate of the 20S core particle through which substrates are able to pass into the catalytic core of the proteasome. Such impairment results in reduction in the rate of proteolytic cleavage by each of the peptidase sites; (chymotrypsin-like, trypsin-like and caspase-like) in the 20S proteasome (Deriziotis et al., 2011). Similar findings have been shown in Alzheimer’s disease, where in vitro studies demonstrated a direct binding of Aβ protein to bovine 20S proteasomes, resulting in a reduction in chymotrypsin-like activity (Gregory et al., 1995, Gregory et al., 1997). Moreover, transgenic Alzheimer’s disease mice have been shown to have impaired proteasome activity that correlates with an accumulation of intraneuronal Aβ oligomers (Tseng et al., 2008).

Direct interaction of PrPSc with the 20S core particle to mediate impairment of the 26S proteasome may be the cause of the accumulation of the Ub-GFP reporter in RML-prion infected UbG76V-GFP mice. If so, a reduction in the proteolytic activity of the 26S proteasome in brains extract from these mice would be expected. Therefore, to ascertain this inhibitory effect in the brains of RML-prion infected UbG76V-GFP mice, fluorogenic peptide activity assays were performed to assess proteasomal function (Figure 4.12). Indeed, the chymotrypsin-like activity measured in brain tissue lysates was significantly reduced from day 145 post-inoculation onwards. The data presented here correlate
reasonably well with the deposition of poly-ubiquitinated substrates described above (Figure 4.11). However, the proteasome inhibition described here is observed much later than the initial appearance of the Ub-GFP reporter in the brains of the RML-prion infected mice. Presumably, this discrepancy can be explained by the limited spatial distribution of UPS impairment at these earlier time-points, to an extent that fluorogenic peptide activity assays of whole brain tissue lysate would not be sensitive enough to detect such an impairment.

Accumulation of ubiquitin may be related to the activity of protein degradation machinery attempting to degrade aggregates of misfolded proteins, or misfolded proteins themselves have an inhibitory effect on the UPS (Bence et al., 2001; Glickman and Ciechanover, 2002). A large number of in vitro studies support the potential importance of UPS impairment in neurodegenerative diseases (Ciechanover and Brundin, 2003), but the precise role of the UPS and its mechanisms of action in disease remains unclear despite the huge increase of in vivo studies. Mass spectrometry-based method revealed that lysine 48-linked polyubiquitin chains, which is typically associated with proteasomal targeting, accumulate early in the pathogenesis of both transgenic Huntington’s disease mice and in Huntington’s disease patients (Bennett et al., 2007). In addition, Psmc1(Rpt2) knock-out mouse model with a neurodegenerative phenotype and ubiquitin-positive inclusions displayed 26S proteasomal dysfunction in neurons (Bedford et al., 2008), providing in vivo evidence for a direct role of the UPS in the pathogenesis of these neurodegenerative diseases. Taken together, the results presented here suggest that UPS dysfunction is associated with neurodegenerative diseases. However, the mechanism(s) of UPS impairment remain unclear.

ER stress is not only caused by disturbances in the ER structure and function, but also by accumulation of misfolded proteins, as well as alterations in calcium homeostasis (Ciechanover and Brundin, 2003; Imai et al., 2001; Korhonen and Lindholm, 2004). In case of prolonged or aggravated ER stress, cellular signals leading to cell death are activated.
Indeed, cell expressing mutant presenilin involved in familiar early-onset AD are more sensitive to ER stress compared to normal cells (Guo et al., 1999). ER resident chaperones involved in quality control play a major role in neurodegenerative disorders. High capacity and low affinity of calcium of Grp78/Bip and Grp94 has led to the suggestion that chaperones may act as a calcium buffer and are thus protective against alteration in calcium homeostasis (Michalak et al., 2002). Heat shock protein, Hsp90 and Hsp70 can inhibit Aβ aggregation (Evans et al., 2006). One of the chaperones of the UPR, BiP/GRP78 has been found to be upregulated in AD brain (Hoozemans et al., 2005). In addition, increased levels of Bip/Grp78 and the protein kinase, perk have been shown in AD brain, suggesting neurotoxicity leading to cell death (Hoozemans et al., 2005). BiP (GrP78) binds regulating protein APP in AD and reduces the production of Aβ aggregates (Kudo et al., 2006; Yang et al., 1998).

A frequently discussed hypothesis to explain the pathogenesis of neurodegenerative disorders involves chronic oxidative stress. Dysfunction of any of several interconnected cellular pathways is sufficient to cause oxidative stress in the brain, including defects in the ubiquitin-proteasome system and the presence of aggregated proteins (Halliwell, 2006; Menendez-Benito et al., 2005). Several lines of evidence suggest that PrPc may play a role in protecting cells from oxidative stress (Milhavet and Lehmann, 2002; Brown et al., 1997; Brown et al., 2002). Perhaps the most compelling observation is that neurons cultured from cerebellar granular layer and neocortex from Prn-p0/0 mice are more susceptible than neurons from wild-type mice to treatment with agents that induce oxidative stress, including hydrogen peroxide and copper ions (Brown et al., 1997; Brown et al., 2002).

There is evidence to suggest that activation of ER stress genes are significantly upregulated in prion pathogenesis, suggesting that ER stress is linked to the disease. ER specific caspases, such as the caspase-12, are thought to directly induce cell death. The
correlation between caspase-12 activation and neuronal loss was confirmed in model of prion-infected mice as well as in CJD patients (Castilla and Soto, 2005). Previously, it was shown that prion replication is accompanied by increased expression of Grp58 in the brain regions showing extensive neuronal loss at terminal stage of the disease in both human affected with CJD and mouse models (Yoo et al., 2002; Hetz et al., 2003). In addition, downregulation of Grp58 at the terminal stage of the disease correlated with the occurrence of neuronal loss (Hetz et al., 2005; Hetz et al., 2003), suggesting a general mechanism of neuronal toxicity initiated by the accumulation of misfolded proteins in neurodegenerative diseases (Soto, 2003). Bip/Grp78 and Grp94 have been reported to have protective activity against ER stress-mediated apoptosis and control protein folding and components of the UPR (Liu et al., 1997; Reddy et al., 1999; Rao et al., 2002).

Therefore, to investigate whether ER stress is implicated in the RML prion infection, Ub$_{G76V}$-GFP reporter mice brain, were assessed for Bip/Grp78 expression. A small increase in Bip/Grp78 protein level was observed in the Ub$_{G76V}$-GFP mice brain infected with RML prion but not in non-infected controls (Figure 4.13). It is important to note that this effect was seen only at the late stage of prion disease, indicating that ER stress may be a late event in the course of prion disease, occurring after the onset of UPS impairment. The question that remains, however, is whether cell death is caused by ER stress and not the result of other pathway malfunction. Indeed, very little is known about the importance of interaction in the control of cell death, and the proteins taken part in ER-cross pathways communication.

Collectively, data presented in this chapter support the hypothesis that relates prion infection with the impairment of the UPS machinery. Evidence for a direct relationship between neuropathology and the UPS impairment in the Ub$_{G76V}$-GFP reporter mice is presented. Together, results in this chapter support a potential role of the UPS in prion disease mediated neurodegeneration.
4.6 SUMMARY

The work in this chapter describes an early UPS impairment in the UbG76V -GFP reporter mice during the course of prion disease, following RML infection. The Ub-GFP reporter accumulates only in the brains of RML-prion infected mice and not in the brains of UbG76V -GFP inoculated with control normal brain homogenate, or in RML-prion infected UbG76V -GFPneg littermates, indicative of a functional impairment in the UPS machinery. The observed accumulation of Ub-GFP coincides with markers of prion disease neuropathology such as PrPSc deposition and extensive GFAP immunoreactivity. The majority of the cells in which the Ub-GFP reporter was observed in the thalamus appeared to be astrocytes, suggesting that astrocyte pathology may contribute to disease pathophysiology. Additionally, ubiquitin levels were significantly increased in the brains of RML prion infected mice from day 125 post-inoculation to end stage disease, correlating with fluorogenic peptide assays data, which show prion infection inhibits the chymotrypsin-like and 26S proteasomal activities in brain lysates of the UbG76V -GFP mice. An assessment of ER stress indicates that ER stress may be a late event in the course of prion disease. Together, these results provide evidence for a direct relationship between prion neuropathology and UPS impairment in UbG76V -GFP reporter transgenic mice. Collectively, this chapter described UPS impairment as an early phenomenon in prion disease pathogenesis.
5 MOTOR SKILLS DEFICITS AND SYNAPTIC DYSFUNCTION IN UbG76V-GFP REPORTER MICE

5.1 BACKGROUND

The neuropathology of prion diseases is associated with a dysfunction and/or loss of neurons that contributes to the onset and progression of disease symptoms (Malucci et al., 2007). A combination of behavioural and neurophysiological analysis provides direct evidence for early neuronal dysfunction, which leads to cognitive impairment in prion infected mice (White et al., 2008; Mallucci et al., 2003). Furthermore, typical neuropathological features of prion infection and behavioural deficiencies are accompanied with a progressive cognitive dysfunction in prion diseases (Nazor et al., 2005; Nazor et al., 2007). Prion infected mice show changes in species-typical motivational behaviours long before emergence of motor signs (Guenther et al., 2001; Deacon et al., 2001), which correlate with early loss of presynaptic terminals in the dorsal hippocampus (Cunningham et al., 2003). Until recently, the majority of studies on prion disease have been focused on the terminal stages of the disease, and criteria for the onset of clinical prion disease in mice have relied on detecting changes in locomotor activities that appear within a few weeks of death (Hunter et al., 1986). However, the complexity of the spectrum of clinical symptoms and of the neuropathology at terminal disease has made it difficult to draw conclusions about these relationships and the underlying mechanisms of prion disease pathogenesis.

Based on the relationship between prion disease neuropathology and the UPS presented in Chapters 3 and 4, this present chapter attempts to determine whether the UPS dysfunction observed in the UbG76V-GFP reporter mice correlates with behavioural and
motor measures throughout the time-course of disease, and with markers of neuronal loss or dysfunction that may underlie them.

5.2 AIMS

- To monitor specific neuronal and synaptic markers in RML prion-infected UbG76V-GFP mice;

- To assess motor function and behavioural phenotypes in RML prion-infected UbG76V-GFP mice.

5.3 METHODS

All protocols using these mice were first approved by the MRC Prion Unit animal committee, and official approved procedures were followed for the care and use of these mice. The environment of the experimental room was kept consistent between test sessions with respect to temperature, humidity and light intensity (Section 2.9).

Mice were grouped together prior to individual experiments and were monitored daily. Behavioural testing was performed on groups of at least ten age-matched UbG76V-GFP mice, which had been inoculated i.c. with 30 µl of 1% RML-prion infected mouse brain or control homogenates (Section 2.2.2). Each mouse was given a unique identification number and all subsequent behavioural assessments were performed blinded as to which experimental group the animal belonged to. Testing was initiated from twenty days post-inoculation with RML prions. The animals were tested within a conserved ~3 hour time period in the morning.

For histological analysis, brains were dissected rapidly after sacrifice and immersed into a fixing formalin buffer solution. Half brain tissues were embedded in paraffin and 4
μm saggital sections were obtained and mounted onto positively charged glass slides for immunohistochemistry analysis (Section 2.5).

Data were expressed as standard deviation (SD) and analysed by two-way ANOVA with Bonferroni post-test. Significance was expressed as follows: *** $p <0.001$; ** $p <0.01$, * $p <0.05$. See Appendix IV.

5.4 RESULTS

5.4.1 Neuronal loss in the brains of RML prion infected UbG76V-GFP reporter mice

Previous work showed that neurons are lost during prion disease progression. For example, significant loss of cells from the CA1 region of the hippocampus has been reported in ME7 prion infected mice (Cunningham et al., 2003). Therefore, to determine whether the UPS dysfunction observed in prion-infected mice correlates either temporally and/or spatially with neuronal loss, RML prion-infected UbG76V-GFP1 mice were examined by immunohistochemistry for the neuronal marker, NeuN. In the thalamus of the prion-infected mice, little difference was seen in the pattern of NeuN staining at any stage of the disease course until end-stage disease at ~160 days post-inoculation (Figure 5.1). This contrasted with the evidence of UPS dysfunction observed early in this part of the brain described in Chapter 4. This may indicate that UPS dysfunction seen in certain areas of the brain in prion-infected mice does not necessarily lead to neuronal cell death. Nevertheless, these data demonstrate that UPS dysfunction in the brains of prion-infected mice precedes the onset of neuronal loss as the disease progresses.
Figure 5.1 NeuN expression in the thalamus in the brain of RML prion-infected UbG76V-GFP mice.

UbG76V-GFP1 mice were inoculated i.c with 30 µl of 1% RML-prion infected mouse brain or control homogenates, and culled at days 45, 85 and 125 post-inoculation, and at end-stage disease. Immunohistochemistry analysis was carried out on paraffin-embedded brain tissue using an anti-NeuN antibody. Images are taken of the thalamus and, in this region, show similar levels of staining between the RML-prion infected mice and non-infected controls. Scale bar = 20 µm.
5.4.2 Neuronal loss in the CA1/CA3 region of the brains of UbG76V-GFP mice following RML prion infection

To assess whether neuronal loss could be detected in other neuropathological region of the brain, the hippocampus of the prion-infected mice was evaluated by immnohistochemistry. A noticeable loss of neurons was observed in the CA1/CA3 region at the later stages of the disease time-course, from day 125 post-inoculation with RML prions onwards (Figure 5.2). However, despite a widespread accumulation of PrPSc, these areas did not show consistent evidence of UPS dysfunction (see Chapter 4). Other prion strains have been shown to induce hippocampal pathology which gives rise to distinct phases of behavioural and anatomical abnormalities (Guenther et al., 2001; Jeffrey et al., 2000; Betmouni et al., 1999), and it has been demonstrated that early behavioural deficits correlate with a selective disorganization of the CA1 synapses that initially occurs in the absence of cell death (Cunningham et al., 2003).
Figure 5.2 NeuN expression in the hippocampus in the brain of RML prion-infected UbG76V-GFP1 mice.

UbG76V-GFP1 mice were inoculated i.c with 30 µl of 1% RML-prion infected mouse brain or control homogenates, and culled at days 45, 85 and 125 post-inoculation, and at end-stage disease. Immunohistochemistry analysis was carried out on paraffin-embedded brain tissue using an anti-NeuN antibody. Images are taken of the hippocampus (CA1/CA3) and, in this region, show a loss of neurons in the RML-prion infected mice as compared to the non-infected controls. Scale bar = 20 µm.
5.4.3 Synaptic loss in the brains of Ub\(^{G76V}\)-GFP mice following RML prion infection

Dysfunction in synaptic function is thought to underlie the earliest symptoms in several neurodegenerative diseases, and loss of synapses is thought to precede the loss of neuronal cell bodies (Mallucci, 2009; Wishart et al., 2006). To assess any synaptic dysfunction Ub\(^{G76V}\)-GFP1 mice brain were analysed by immunohistochemistry.

In the thalamus of the prion-infected mice, small deposits of synaptophysin staining indicating dysfunction of synapses were observed towards end-stage disease at ~160 days post-inoculation (Figure 5.3). This subtle staining was not observed in other parts of the brain. The localisation of synaptic dysfunction in the thalamus is similar to where UPS dysfunction was most strongly observed in prion-infected Ub\(^{G76V}\)-GFP1 mice (see Chapter 4). This indicates that UPS dysfunction may precede some synaptic dysfunction during the time-course of prion disease progression.

In an attempt to quantify any loss of synapses during prion disease pathogenesis, brain homogenates of Ub\(^{G76V}\)-GFP1 mice were examined by Western blots using an anti-synaptophysin antibody. No differences were observed in comparing prion-infected Ub\(^{G76V}\)-GFP1 mice and their non-infected control counterparts (Figure 5.4). This observation may reflect a lack of sensitivity using this particular method to detect small or focal differences in certain parts of the brain.
Figure 5.3 Synaptophysin expression in the thalamus of RML prion-infected Ub^{G76V}-GFP mice.

Ub^{G76V}-GFP1 mice were inoculated i.c with 30 µl of 1% RML-prion infected mouse brain or control homogenates, and culled at days 45, 85 and 125 post-inoculation, and at end-stage disease. Immunohistochemistry analysis was carried out on paraffin-embedded brain tissue using an anti-synaptophysin antibody. Deposits of synaptophysin are seen in the thalamus of RML-prion infected mice, as compared to the non-infected controls. Scale bar = 20 µm.
Figure 5.4 Immunoblot analysis of synaptophysin expression in the brains of RML prion-infected UbG76V-GFP mice.

UbG76V-GFP1 mice were inoculated i.c with 30 µl of 1% RML-prion infected mouse brain or control homogenates, and culled at days 45, 85 and 125 post-inoculation and at end-stage disease. A 1% tissue homogenate was made and immunoblotted with anti-synaptophysin or anti β-actin antibodies. Detection of Li-Cor secondary antibodies was done by scanning the membrane using the Odyssey Infrared Imaging System (Li-Cor Biosciences). No significant differences in synaptophysin in whole brain lysates was detected between RML-prion infected and control UbG76V-GFP1 mice.
5.4.4 Balance and coordination impairment in RML prion-infected UbG76V-GFP reporter mice

Previous work indicates that sensorimotor deficits precede the spontaneous onset of prion disease in Tg (GSS) mice, and behavioural abnormalities appear in prion-infected mice long before the manifestation of clinical signs (Nazor et al., 2007; Bertmouni et al., 1999). To evaluate whether prion infection causes a loss of balance and coordination in prion-infected UbG76V-GFP\textsubscript{1} reporter mice, correlating with the onset of UPS dysfunction, assessments were made using rotarod apparatus. This comprises a well-characterised behavioural task designed to monitor motor function by requiring mice to ambulate on an accelerating rotating rod (Dunham and Miya, 1957; Jones and Roberts, 1968). Mice were tested at various time-points from day 45 until day 105 post-inoculation with RML-prions. A significant difference was observed in the performance of the UbG76V-GFP\textsubscript{1} reporter mice, as compared to non-infected control animals, from the earliest post-inoculation time-point onwards (Figure 5.5). This indicates that deficits in this motor test are apparent early in the disease-course, well before the onset of disease pathology. Two-way ANOVA with Bonferroni post-test*** \(p < 0.001 \). See Appendix IV for F values and DF or relevance.
Figure 5.5 Early motor deficits in UbG76V-GFP mice following RML prion infection.

Rotarod testing was performed on groups of ten RML prion-infected and ten non-infected UbG76V-GFP1 reporter mice. They were inoculated i.c with 30 µl of 1% RML-infected mouse brain or control homogenates. The mean latency to fall over two trials for each individual mouse was analysed. A significant difference was observed between the groups of RML prion-infected and control UbG76V-GFP1 mice at every time-point tested, including the earliest time-point at day 45 post-inoculation with RML prions.
5.4.5 Burrowing impairment in RML prion-infected UbG76V.GFP reporter mice.

Spontaneous burrowing behaviour by rodents has a robust association with early prion pathology (Mallucci et al., 2007; Deacon et al., 2001). Burrowing has been proposed as a powerful tool for elucidating brain function requiring a high degree of reorganisation and executive function that are thought to reflect motivational aspects of spontaneous behaviour in rodents (Deacon et al., 2001; Guenther et al., 2001). To investigate the ability of RML-prion infected UbG76V.GFP1 mice to burrow, a container filled with objects food pellets was placed into a clean cage and left overnight (Appendix III). Typically, non-infected mice actively burrowed to displace 70-80\% of the pellets (Figure 5.6). This was also observed at the earliest time-point post-inoculation, at day 25, in the RML-prion infected UbG76V.GFP1 animals. Thereafter however, a progressive decrease in burrowing was recorded from day 45 post-inoculation onwards in the RML prion-infected mice. Two-way ANOVA with Bonferroni post-test*** $p<0.001$. See Appendix IV for F values and DF or relevance.
Figure 5.6 Burrowing behaviour is progressively lost in RML prion-infected UbG76V-GFP mice.

Burrowing was investigated in groups of fourteen prion-infected and fifteen non-infected UbG76V-GFP1 mice. They were inoculated i.c with 30 µl of 1% RML prion-infected mouse brain or control homogenate. The displacement of food pellets from a filled tube placed in the animal’s cage was analysed. Whilst burrowing was similar at the earliest time-point tested, day 25 post-inoculation with RML prions, a significant difference was observed between the groups of RML prion-infected and control UbG76V-GFP1 mice at every time-point tested thereafter. This deficit progressively worsened as the disease progressed. See Appendix IV.
5.4.6 Nest building impairment in RML prion-infected UbG76V-GFP reporter mice.

Nest building in rodents is a natural behaviour that is important for heat conservation, as well as for reproduction and shelter. It is a task that requires an intact dorsal hippocampus (Deacon et al., 2002). To evaluate nest building, RML-prion infected UbG76V-GFP1 reporter mice were at various time-points post-inoculation left overnight with a nestlet placed into the home cage. The animals routinely shredded the tightly-packed material and arranged it into a nest. Qualitative assessments were made based on the neatness of the nest and the amount of un-shredded material left (see Appendix III). Mice were tested at various time-points from day 25 until day 105 post-inoculation with RML prions. A significant difference was observed in the performance of the prion-infected UbG76V-GFP1 reporter mice, as compared to non-infected control animals, from the earliest post-inoculation time-point onwards (Figure 5.7). This data indicates that deficits in this behavioural test are apparent early in the disease-course, well before the onset of disease pathology. Moreover, the deficit became progressively worse as the disease progressed. Two-way ANOVA with Bonferroni post-test*** $p <0.001$. See Appendix IV for F values and DF or relevance.
Figure 5.7 Nesting scores decline during disease progression in prion-infected UbG76V-GFP mice.

Nesting was investigated in groups of ten prion-infected and ten non-infected UbG76V-GFP1 mice. They were inoculated i.c with 30 µl of 1% RML-prion infected mouse brain or control homogenates. Scores of shredding of nesting material placed in the cage were analysed. Mice in all groups constructed nestlets. However, shredding was significantly lower in the RML prion-infected mice when compared to the non-infected groups. A moderate difference was observed at day 25 post-inoculation, which got progressively larger as the disease progressed thereafter. See Appendix IV.
5.4.7 RML Prion infection does not affect grip strength in UbG76V-GFP reporter mice

To investigate whether neuromuscular strength was impaired in prion-infected UbG76V-GFP reporter mice, a grip strength test was used to evaluate limb strength in both healthy and prion-infected mice. This method is used to measure disease progression and neurobehaviour, as well as to test specific therapeutic interventions in mouse models (Spurney et al., 2009; Rayavarapu et al., 2010). This test is based on the natural tendency of the mouse to grip a bar or grip when suspended by the tail. Mice were tested at various time-points from day 25 until day 105 post-inoculation with RML prions. There were no consistently significant differences in the performance of the RML prion infected UbG76V-GFP1 reporter mice, as compared to non-infected control animals (Figure 5.8). Two-way ANOVA with Bonferroni post-test. *** $p < 0.001$; ** $p < 0.01$, * $p < 0.05$. See Appendix IV for F values and DF or relevance.
Figure 5.8 Grip strength in RML prion-infected Ub^{G76V}-GFP mice.

Grip strength was investigated in groups of fourteen prion-infected and fifteen control Ub^{G76V}-GFP1 mice. They were inoculated i.c with 30 μl of 1% RML-prion infected mouse brain or control homogenates. The mean peak force applied by the forelimbs of the mouse was analysed. Although grip strength appeared to be slightly reduced in the RML prion-infected mice at some time-points, a progressive deficit was not observed. See Appendix IV.
5. 5 DISCUSSION

Premature neuronal cell death is typical in prion disease (Collinge et al., 1995; Medori et al., 1992; Forloni et al., 1993). However, the underlying mechanisms that contribute to neuronal loss are far from being elucidated. As reported in Chapters 3 and 4, substantial PrPSc deposits accumulate in the brain of RML prion-infected mice during the disease time-course following prion infection. Whether PrPSc is the toxic component involved in the molecular mechanisms leading to neurodegeneration remains unclear. There are indications that neuronal cell death might be related to the altered function of several cellular processes, including cell signalling, intracellular trafficking and cellular proteostasis. Indeed, experimental evidence suggests that neuronal death is associated with UPS impairment (Goldberg, 2003; Tydlacka et al., 2008). However, it is not known if UPS dysfunction is the cause or the consequence of cellular damage. Impairment of the UPS has been shown to be important in prion disease (Ma et al., 2002; Ma and Lindquist, 2002; Kang et al., 2004; Deriziotis et al., 2011), as further evidenced by data presented in Chapter 4 of the present thesis.

The data presented in this chapter attempts to determine whether aspects of prion neuropathology such as neuronal and synaptic integrity, and behaviour and motor function, are altered in prion-infected mice in a manner that relates to the UPS dysfunction reported in Chapter 4. The UPS was impaired in the thalamus of RML prion-infected UbG76V-GFP mice at day 85 post-inoculation of a ~160 day disease time-course, but in this region, overt loss of neurons was not observed (Figure 5.1). Notably, however, obvious neuronal loss was observed in the CA1 and CA3 regions of the hippocampus of the prion-infected mice (Figure 5.2), as well as to a lesser extent in some other areas. This neuronal loss in the hippocampus was observed from day 125 post-inoculation onwards. This coincided with widespread increases in markers of prion disease pathology such as extensive PrPSc deposition and GFAP immunoreactivity, and with the broadly increased ubiquitin levels and deficits in 26S proteasome peptidase activity first observed at this time-point (Chapter 4).
Nevertheless, whilst the temporal correlation of neuronal loss with some indicators of UPS dysfunction was clear, the overt impairment of the UPS in the thalamus was not particularly reflected by a loss of neurons in this area.

To further assess whether UPS dysfunction corresponded with any synaptic loss or dysfunction, the brains of prion-infected UbG76V\textsubscript{-GFP1} mice brain were examined for the specific marker, synaptophysin. Some synaptic loss, in the form of small synaptophysin deposits indicating a retraction of functional synapses, was detected towards end-stage disease in the thalamus of prion-infected mice (Figure 5.3). Such differences were not observed at earlier time-points post-prion infection. These changes were particularly marked in the thalamus, the area of the brain in which UPS impairment was most obvious. The focal nature of the altered synaptophysin staining was reflected by Western blots of whole brain homogenates that did not show any differences in total synaptophysin levels as compared to non-infected controls (Figure 5.4). Clearly, the discrepancy in the data with the synaptophysin marker may be explained due to the sensitivity of the different detection methods. Nevertheless, that UPS dysfunction in the thalamus precedes a loss of synapse integrity seems to be clear.

During the experimental time-course, infected UbG76V\textsubscript{-GFP} transgenic mice showed the expected clinical symptoms of prion disease. This led to a closer assessment of behavioural and motor abnormalities, which might associate temporally with the onset of UPS dysfunction and other aspects of prion neuropathology. Therefore, a small behavioural study was designed such that clear behavioural phenotypes correlating to pathological features would be measurable. Behavioural testing can reveal effect in prion-infected mice long before the manifestation of clinical signs appears (Bertmouni et al., 1999). Indeed, it has been shown that sensorimotor deficits precede the spontaneous onset of prion disease in Tg(GSS) mice (Nazor et al., 2007).
Several well-characterised behavioural tasks designed to assess performance in motor function and coordination were employed. One of them, burrowing, was used to measure motor coordination in prion-infected mice. Burrowing, as measured by the displacement of food pellets from a tube in the home cage, decreases in ME7 prion-infected mice early in disease at twelve weeks post-inoculation (Guenther et al., 2001). In the present study, the RML infected groups showed a progressive decrease in burrowing ability from day 45 post-inoculation onwards (Figure 5.5). This is notable in that it precedes markers of prion neuropathology, including UPS impairment, by up to forty days.

Nest construction, a species-typical behaviour test was also measured, starting at day 20 post-RML prion infection. Nesting ability was significantly impaired in the RML prion-infected group, as compared with non-infected animals. Taken together, these data support the claim that burrowing and nesting tests are sensitive, early indicators of behavioural impairment in prion-infected mice (Deacon et al., 2001). Nesting and burrowing strengthens the preclinical changes seen in an earlier study (Bermouni et al., 1999). However, it is unclear whether the effects observed were due to motor rather than motivational impairments and further studies would be needed to resolve this question.

The rotarod task has been described as a sensitive indicator of motor skills impairment and cerebellar abnormalities (Hilber and Caston, 2001). It not only assesses motor coordination and balance, but also characterises the motor phenotype of transgenic and knockout mice. The latency to fall at a set speed was measured in both RML prion-infected and non-infected groups of mice. A significant difference was observed in the performance of the prion-infected Ub^{G76V}-GFP1 mice, as compared to non-infected control animals, from the earliest time-point at day 45 post-inoculation (Figure 5.6). This indicates that deficits in this motor test were apparent early in the disease-course, well before the onset of disease pathology. In contrast, a grip strength test was used to assess forelimb strength, which can also be influenced by co-ordination deficits. However, no difference
was detected in grip strength ability between RML prion-infected and the non-infected animal groups (Figure 5.8).

The main findings of the data presented here were that characteristic behavioural changes can be reliably detected in this model of prion disease. However, many pathways that underlie diverse clinical signs are complex and thus it is difficult to relate a particular clinical symptom to a specific neuropathological feature. It is not clear whether the behavioural phenotype and motor skills deficits observed in these mice can be correlated with particular aspects of loss of neurons or synapses in particular brain areas. Prion infected mice show changes in species-typical motivational behaviours before emergence of motor signs (Guenther et al., 2001; Deacon et al., 2001), which correlate with early loss of pre-synaptic terminals in the dorsal hippocampus (Cunningham et al., 2003). It should be recognised that several limitations to this study may have affected the data presented here. Validity of the results obtained from behavioural phenotyping is largely dependent on methods of animal husbandry, so physiological parameters were kept constant throughout the time of testing. The majority of mouse behavioural studies are dependent on age, sex and strain, and it was important to keep these parameters comparable throughout a single experiment. Environment factors contribute to the levels of anxiety within the mouse, so temperature, humidity, ventilation, noise and lighting intensity were kept at a constant level that is appropriate to the mice. Mice were also kept at a uniform environment before and after testing to avoid anomalous results.

The work presented here indicates that deficits in the behavioural tests are early in the disease-course, well before the onset of disease pathology. However, it is not clear that neuronal loss and alteration of synapses alone are sufficient to account for the behavioural deficiency observed. Previous studies give strong evidence that UPS impairment is linked to prion disease, and altered activities of the UPS are crucially involved in the pathophysiology of several other neurodegenerative diseases. This study clearly indicates an early effect of prion infection to behavioural function in the UbG76V-GFP1 mice.
However, a more in depth behavioural study is needed with a baseline set at pre-inoculation with RML prion to better understand the relationship between prion infection and behavioural abnormalities in these mice.

5.6 SUMMARY

The work in this chapter presents data which support previous report that neuronal and synaptic loss contribute to the pathological features that underlie early behavioural dysfunction in prion diseases. Significant impairment in motor functions was observed in UbG76V-GFP reporter mice infected with RML prion and a marked neuronal loss was observed in key neuropathological region of the hippocampus. In addition, some sign of synaptic loss was observed toward end stage of prion disease. Neuromotor deficits and prion disease-related neuropathology in the RML infected UbG76V-GFP reporter mice observed in this study suggest that prion disease mediates important pathological and behavioural changes during the course of disease. Taken together, the data in the present chapter demonstrate evidence of neuronal loss and synaptic dysfunction in the brains of prion-infected mice that may, especially the latter in the thalamus, correlate with UPS dysfunction. Collectively, these changes may underlie behavioural changes that are seen early disease in prion-infected mice, although some of these changes precede discernible alterations in neuropathology. The causative nature, however, of these different observations remains to be determined. Collectively, data presented in this chapter suggest a relationship, which correlates UPS dysfunction observed in the UbG76V-GFP reporter mice with behavioural and motor skills deficits and neuropathological features of prion disease. Although, the mechanisms/pathways contributing to this relationship are not well understood.
6 CONCLUSIONS AND FUTURE WORK

The work described in this thesis aimed to investigate impairment of the UPS in vivo in the pathogenesis of prion disease. Specifically, this thesis aimed to monitor the functional status of the UPS following RML prion infection using UbG76V-GFP reporter mice. Previous studies have suggested a role for the UPS in prion disease (Ma et al., 2002; Kang et al., 2004; Kristiansen et al., 2007; Deriziotis et al., 2011), but it is not known how early in disease progression that this phenomenon occurs and how it correlates with other aspects of disease pathogenesis. Determining those pathogenic events that are causative to disease progression and those that are secondary to other disease-associated events remains a difficult task. However, it may be expected that underlying causative events in disease pathogenesis should be observed relatively early in disease progression and in those areas of the brain that are considered most pathologically important. In the present studies, a temporal relationship with the onset of typical prion neuropathology and of impairment of the UPS was observed in prion-infected UbG76V-GFP mice. This onset was first detected at day 85 post-inoculation with RML prions, which was about halfway through a disease time-course of about 160 days.

The UPS dysfunction observed by accumulation of the UbG76V-GFP reporter was followed, as might be expected, by a measurable increase in total ubiquitin in the brains of prion-infected mice, which seemed to correspond to an increase in high-molecular weight poly-ubiquitin species. The UPS is associated with the degradation of substrates that are tagged by the addition of polyubiquitin that is lysine-48 linked. Most poly-ubiquitinated substrates targeted for proteasomal degradation are lysine-48 linked (Pickart and Fusman, 2004) and their steady-state cellular levels are expected to reflect proteasome function. If the UPS is impaired in prion-infected animals, it might be expected that lysine-48 linked poly-ubiquitin accumulates as disease progresses. Lysine 48-linked poly-ubiquitin is often used as an endogenous marker of UPS function, and its levels have been measured by UBA.
pull-down and mass spectrometry analysis to assess UPS function in neurodegenerative disease (Bennett et al., 2007), and quantify poly-ubiquitin chains (Kirkpatrick et al., 2006). Moreover, if the substrate proteins to which accumulating lysine-48 linked polyubiquitin were linked could be identified, this would allow the identification of subsets of accumulating aberrant proteins accumulating as cells die during disease pathology. The underlying molecular mechanisms of the UPS impairment observed in prion-infected mice remain only partially understood. The underlying cause of this UPS dysfunction could lie in a recently described mechanism of proteasome inhibition by β-sheet-rich PrP species (Deriziotis et al., 2011). In that *in vivo* study, proteasome proteolytic activity as was measured by fluorogenic substrate assays shown to be impaired prior to end-stage disease. This impairment was observed much later than the Ub-GFP reporter UPS dysfunction. An explanation for this discrepancy could be due to a lack of sensitivity of these assays in a whole brain homogenates.

Given the potential limitations of the Ub^{G76V}-GFP mouse model, the data presented here could be validated further by use of alternative UPS reporter substrates. Since substrates carrying different degradation signals are likely to be handled differentially by the UPS, a different type of substrate to that used in Ub^{G76V}-GFP mice could be used (Menendez-Benito et al., 2005), which could potentially reflect how another class of substrate is handled by the UPS. Kumarapeli and colleagues generated a ubiquitously expressing GFPdgn transgene, modified GFP targeted for proteasome degradation (Kumarapeli et al., 2005). This model is comparable to the Ub^{G76V}-GFP model and has been shown to delineate dysfunction of the UPS in several disease models (Kumarapeli et al., 2005; Chen et al., 2005; Liu et al., 2006). Alternatively, specific aberrant ubiquitin substrates can be measured in relation to the UPS. For example, UBB^{+1} is a mutant form of ubiquitin that accumulates in cells in neurodegenerative diseases, and appears to be both a substrate and an inhibitor of the UPS (Lindsten et al., 2002; Verhoef et al., 2007). UBB^{+1} causes a general blockage of proteasomal degradation in neuronal cells, and that inhibitory
effect is dependent on ubiquitination of UBB$^{+1}$. UBB$^{+1}$ has been found to play a role in Alzheimer’s disease (Van Leeuwen et al., 2000), where it mediates Aβ toxicity via inhibition of the 26S proteasome (Song et al., 2003). It would be of interest to investigate whether UBB$^{+1}$ accumulates during prion disease pathogenesis and, if so, is associated with inhibition of the 26S proteasome.

Beyond the use of monitoring UPS dysfunction, GFP reporter substrate models can be used as research tools in cell biology for the purpose of through screenings for small compound inhibitors of the UPS as well as the bioviability of compound in combination with therapeutic potential of proteasome inhibitors (Verdoes et al., 2006; Dantuma et al., 2000; Tsien, 1998). This is of great importance since it is well documented that proteasome inhibitors have many therapeutics purpose. However, limitations still exist within the model in detecting UPS impairment. Nevertheless, the UbG76V-GFP reporter mouse model provides a useful tool for monitoring the functional status of the UPS in the pathogenesis of prion disease and several other neurodegenerative diseases. This mouse model based on the ubiquitin-proteasomal reporter substrate opens new opportunities to gain insight into the global effect of pathological conditions on the UPS (Menendez-Benito et al., 2005; Bowman et al., 2005; Luker et al., 2003).

Experiments to examine the links between UPS dysfunction and prion disease pathogenesis could be undertaken using agents that activate or decrease UPS function. For example, it may be expected that compounds that increase activity of the UPS might be beneficial to the onset of pathology in prion-infected animals. Recently, a small molecular inhibitor of a proteasome-associated deubiquitinating enzyme called USP14 was shown to up-regulate activity of the UPS (Lee et al., 2010). USP14 dissembles the ubiquitin chain, thereby slowing down proteasome degradation (Lee et al., 2004), but its loss in mice leads to an ataxic neurological phenotype (Wilson et al., 2002; Anderson et al., 2005). However, IU1-mediated inhibition of USP14 indirectly accelerates proteasomal degradation of
proteins, including tau and ataxin-3, both of which are involved in neurodegenerative disease (Lee et al., 2010). Therefore, a similar approach could be explored in prion-infected cells and mice, in which USP14-inhibition might be expected to reduce levels of misfolded protein, possibly including disease-associated PrP.

Conversely, experiments could be done that monitor UPS dysfunction in animals in which the production of disease-associated PrP\textsubscript{Sc} is altered. For example, lentivirus-mediated delivery of RNAi targeting PrP that would be expected to show a reduction in PrPSc production, may show a concurrent reversal in the UPS dysfunction observed in prion-infected mice. An RNAi-based approach such as this has been used previously, in which White and colleagues demonstrated the development of phenotypic deficits in parallel with the development of early spongiform changes, and the recovery of these deficits in mice in which PrP was depleted (White et al., 2008). It has been shown that transgenic mice generated by lentiviral transduction of embryos stably express anti-PrP shRNAs have increased resistance to prion infection because of RNAi–mediated reduced expression of endogenous PrP (Pfeifer et al., 2006). Injection of virus into the hippocampus after prion infection could prevent behavioural deficits associated with early pathology (Cunningham et al., 2003).

Astrocytes in the thalamus seemed to be particularly affected by prion-infection in terms of UPS dysfunction, as shown by accumulation of the Ub-GFP reporter in this thesis work. In many studies in which the UPS has been studied in brain tissue, proteasome activity has been measured in whole brain homogenates without discriminating between the different cell types present (Wang et al., 2008; Keller et al., 2000; Glenn et al., 2004; Lopez et al., 2000). This may to some degree reflect differences in the detection of the sensitivity of the Ub-GFP reporter in different cell types. For example, it may be that expression of sequence encoding the UbG76V-GFP reporter may be inherently higher in astrocytes rather than other neural cells. This could be tested in primary cultures of
different neural cells isolated from UbG76V-GFP mice, in which mRNA sequences encoded by the UbG76V-GFP transgene are quantified by real-time PCR. Alternatively, \textit{in situ} hybridisation could be used to monitor UbG76V-GFP transgene expression in different cells in the brains of the mice. If expression of the transgene does differ between different cell types, it may be possible detect Ub-GFP in, for example, increased numbers of neurons using more sensitive detection techniques. Alternative methods of tissue processing, such as cryosections from frozen tissue, might be a better method of detecting the Ub-GFP reporter in neurons and other cells type. The use of fluorescent detection methods may increase detection sensitivity and would allow the co-localisation of Ub-GFP with specific cellular markers such as GFAP for astrocytes and NeuN for neurons. Fluorescence-based methods would facilitate visualisation using laser confocal microscopy, where more in-depth images could be obtained of various sub-cellular groups.

Nevertheless, astrocyte function is becoming increasingly recognised as important in the maintenance of the neuronal environment in neurodegenerative disease, and alterations in astrocyte function may be important in disease pathogenesis. If the UPS is particularly impaired in astrocytes in prion disease, then the reasons for this could be investigated further. A more detailed time-course experiment to monitor the functional relevance of astrocytes could be important. Specific aspects of UPS dysfunction in astrocytes could be investigated \textit{in vitro}, but might be hampered by a lack of suitable astrocyte cell lines that are susceptible to prions.

Altered behavioural and motor phenotypes were observed in prion-infected UbG76V-GFP mice, but these preceded the onset of neuropathology, including measures of UPS dysfunction. This suggests that the very earliest underlying events of prion disease progression remain to be determined. Nevertheless, the UPS dysfunction observed in the thalamus of prion-infected mice corresponded with some later loss of synaptic integrity seen in this area, as shown using synaptophysin as a marker. Previous reports have shown
that prion disease pathogenesis is accompanied by neuronal and synaptic loss associated with early behavioural impairments. Mallucci and colleagues showed evidence for recovery of behavioural and synaptic impairments, as well as spongiosis when neuronal PrPC was depleted in prion infected mice (White et al., 2008; Mallucci et al., 2007). Moreover, experiments in ME7 prion-infected mice show loss of synapses early, with a significant reduction in synaptophysin in the CA1 region of the hippocampus, thirteen weeks after the ME7 prions were injected in the hippocampus (Belinchenko et al., 2000; Cunningham et al., 2003). Synaptic loss was observed in my study in the same thalamic regions, albeit substantially later in the disease time-course, in which UPS dysfunction was most pronounced in the RML prion-infected UbG76V-GFP mice. Synaptic loss and dysfunction are well-documented in several other neurodegenerative diseases (Wang et al., 2008; Klyubin et al., 2005; Ross and Pickart, 2004). Importantly, a study done by Wang and colleagues in Huntington’s disease mice showed that mutant huntingtin causes a loss of proteasome activity in neurons that is specifically localised at the synapses (Wang et al., 2008). Such an observation has not yet been described in prion diseases, but it is possible that similar events take place. Localised UPS dysfunction in synapses could be investigated in purified synaptosome in which fluorogenic peptidase assays could be carried out to measure proteasome activity in the synapses of neurons from prion-infected mice.

Given the impairment of the UPS observed following prion-infection, it would be interesting to investigate whether other aspects of cellular proteostasis are altered as well. The other major intracellular degradation system is autophagy. Unlike the UPS, autophagy is mainly responsible for the degradation of long-lived proteins and large intracellular bodies, including organelles (Levine and Klionsky, 2004; Lum et al., 2005). At least twenty seven ATG genes have been defined to participate in autophagy or autophagy-related process (Klionsky et al., 2003). However, the functional connection of autophagy to the UPS is not well understood. Ding and colleagues demonstrated that the two cellular degradation systems are functionally coupled and suppression of the UPS can activate
autophagy (Ding et al., 2007, Ding et al., 2006). Simultaneous inhibition of autophagy promotes accumulation of ubiquitinated protein aggregates, ER stress and cell death. Whereas the evidence by Ding and colleagues that UPS and autophagy are functionally linked is derived from inhibiting proteasome function, evidence indicating such a connection has also emerged in other studies where autophagy machinery is disrupted. Mice deficient in key autophagy genes, atg5 or atg7, accumulate ubiquitinated protein aggregates in neurons at an early stage and develop symptoms of neurodegenerative diseases (Kotmatsu et al., 2006; Hara et al., 2006). Therefore, it is worth investigating whether the inhibition of the proteasome induces autophagy. The use of a proteasome inhibitor could reveal whether the two proteins degradation pathways are functionally coupled as inhibition of proteasome activates autophagy. Proteasome inhibition of MG132 for example, could elicit a time-dependent and dose-dependent accumulation of LC3II, a lipid form of LC3, which is localized on the autophagic vacuoles (Kabeya et al., 2000). It has become evident that the function of autophagy and UPS are coordinated in several neurodegenerative diseases, and the impairment of the UPS can result in the upregulation of autophagy.

During neurodegeneration ER stress may have a protective effect initially as expression levels of ER chaperones are increased, thus helping cell handle misfolded proteins. On the other hand, prolonged activation of the UPR pathways may lead to cell death and eventually neurodegeneration. Therefore, molecular mechanisms mediate the change in the UPR from being a beneficial to cell death-inducing response is worth investigating. It would be of a particular interest to study the vulnerability of the UPS towards proteotoxic stress conditions in the Ub^{G76V}–GFP reporter model and different cell types. Impairment of the UPS may also be linked to ER stress, which has been shown as PrP^Sc accumulates in cells (Budka, 2003; Menendez-Benito et al., 2005; Hetz and Soto, 2006).
Several studies indicate that ER resident chaperones involved in quality control play a major role in neurodegenerative disorders and there is evidence to suggest the activation of ER stress genes have been found to be significantly upregulated in prion pathogenesis, suggesting that ER stress is linked to the disease. Previous studies have shown that the expressions of Grp78 and Grp94 have protective effects against ER stress-mediated apoptosis (Liu et al., 1997; Reddy et al., 1999; Rao et al., 2002), and ER specific caspases, such as caspase-12 is thought to directly induce cell death. The correlation between caspase 12 activation and neuronal loss was confirmed in models of prion infected mice as well as in CJD patients (Castilla and Soto, 2005). Previously, it was shown in both human affected with CJD and mouse models that prion replication in brain is accompanied by increased expression of Grp58 in the terminal stage of the disease and in the brain regions showing extensive neuronal loss (Yoo et al., 2002; Hetz et al., 2003). However, it is not clear whether this alteration is early or late during disease progression. Although a small increase in Bip/Grp78 protein level was observed in the UbG76V -GFP mice brain, it is not clear whether upregulation of Bip/Grp78 and other binding partners influence the UPS. Therefore, a more detailed time-course experiment to monitor the expression levels of Grp58, Grp78 and Grp94 in different brain areas could be done by quantitative Western blotting.

In summary, work presented in this thesis indicates early UPS dysfunction in the brains of prion-infected UbG76V -GFP mice. In addition, neuropathological features of prion disease correlate with the accumulation of the Ub-GFP substrate. Taken together, this work supports the hypothesis that UPS dysfunction occurs relatively early and may play an important role in disease pathogenesis. Further studies to elucidate the mechanisms of UPS impairment in prion disease may be important in understanding the underlying processes of disease pathogenesis.
7 APPENDICES

Appendix I

Table 7.1 List of antibodies for immunocytochemistry

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species</th>
<th>Company</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>Rabbit polyclonal</td>
<td>Invitrogen</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>NF200</td>
<td>Mouse monoclonal</td>
<td>Insight genomics</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>AF 488</td>
<td>Goat anti-mouse</td>
<td>Life Technologies</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>AF 568</td>
<td>Goat anti-rabbit</td>
<td>Life Technologies</td>
<td>1 μg/ml</td>
</tr>
</tbody>
</table>

Table 7.2 List of primary antibodies used for immunohistochemistry

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species</th>
<th>Company</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICSM35</td>
<td>Mouse monoclonal</td>
<td>D-GEN</td>
<td>2 μg/ml</td>
</tr>
<tr>
<td>GFAP</td>
<td>Mouse monoclonal</td>
<td>Dako</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>GFP</td>
<td>Rabbit polyclonal</td>
<td>Invitrogen</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>Ubiquitin</td>
<td>Mouse monoclonal</td>
<td>Santa Cruz</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>Synaptophysin</td>
<td>Mouse monoclonal</td>
<td>Santa Cruz or Zymed</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>NeuN</td>
<td>Mouse monoclonal</td>
<td>Chemicon</td>
<td>1 μg/ml</td>
</tr>
<tr>
<td>GRP78 (Bip)</td>
<td>Mouse monoclonal</td>
<td>Cell Signalling</td>
<td>1 μg/ml</td>
</tr>
</tbody>
</table>
Table 7.3 List of primary antibodies used for immunoblotting

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species</th>
<th>Company</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICSM35</td>
<td>Mouse monoclonal</td>
<td>D-GEN</td>
<td>5 µg/ml</td>
</tr>
<tr>
<td>Ubiquitin</td>
<td>Mouse monoclonal</td>
<td>Santa Cruz</td>
<td>10 µg/ml</td>
</tr>
<tr>
<td>Synaptophysin</td>
<td>Mouse monoclonal</td>
<td>Santa Cruz or Zymed</td>
<td>5 µg/ml</td>
</tr>
<tr>
<td>β-actin</td>
<td>Mouse monoclonal</td>
<td>Sigma</td>
<td>.1 µg/ml</td>
</tr>
</tbody>
</table>

Appendix II

Primary cortical neuron culture medium

NeuroBasal medium
B27 supplement
L-glutamine (200 mM)
Penicillin (5000 U/ml)/ streptomycin (5000µg/ml)
Foetal bovine serum (FBS)

Homogenisation buffer solution

50mM Tris pH 7.5
5mM MgCl₂
250mM sucrose
1mM DTT
2mM ATP
Antigen retrieval buffer

Mild citrate (MCC1) Tris/citrate EDTA buffer pH 7.8

1.3 mM EDTA
2.1 mM Tris
1.1 mM citrate, pH 7.8

Ventana reagents

DAB Map Kit

Diaminobenzidine (DAB)
Horse radish peroxidise (HRP)
Copper sulphate
Inhibitor D

iView DAB Detection Kit

Inhibitor (3 % hydrogen peroxide solution)
SA-HRP (Conjugated streptavidin horseradish peroxidase)
H₂O₂ (.04 %-.08% hydrogen peroxide in an phosphate buffer solution)
Diaminobenzidine DAB substrate
Copper sulphate.

Lysis Buffer

100 mM Tris-HCl, pH 7.4
300 mM NaCl
4 mM EDTA
1 % Triton-X-100
1 % deoxycholate
8 mM AEBSF

2x reducing sample buffer
125 mM Tris, pH 6.8
20 % glycerol
0.05 % bromophenol blue
4 % SDS

Fluorogenic assay reagents

Homogenization buffer
50 mM Tris.HCl, pH 7.4,
2 mM ATP
5mM MgCl₂
250 mM sucrose
1 mM DTT

Assay buffer
50 mM Tris.HCl, pH 7.4
5 mM MgCl₂
2 mM ATP
1 mM DTT
Appendix III

Behavioural assessment

Nesting assessment

A. Grade (1) = nestlet not touched (more than 90% intact)
B. Grade (2) = nestlet partially torn (50-90% remain intact),
C. Grade (3) = nestlet mostly shredded (less than 50% remain intact)
D. Grade (4) = nestlet mostly torn and the material gathered into a flat nest
E. Grade (5) = nestlet nearly perfect
Burrowing assessment

A one-end closed opaque plastic tube (250 x 55 mm, length x diameter) was filled with 200 g of normal food diet pellets were placed into a clean cage and left overnight for mice to burrow the pellet out.
Appendix IV

Statistical report

Survival curve

<table>
<thead>
<tr>
<th>Log-rank (Mantel-Cox) Test</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi square</td>
<td>0.1572</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.9244</td>
<td></td>
</tr>
<tr>
<td>P value summary</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Are the survival curves sig different?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Logrank test for trend

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi square</td>
<td>0.09846</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.7537</td>
<td></td>
</tr>
<tr>
<td>P value summary</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Sig. trend?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-transgenic</th>
<th>GFP1</th>
<th>GFP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>159.1</td>
<td>161</td>
<td>160.8</td>
</tr>
<tr>
<td>9.478</td>
<td>3.464</td>
<td>1.643</td>
</tr>
<tr>
<td>3.351</td>
<td>2</td>
<td>0.7348</td>
</tr>
</tbody>
</table>
Ubiquitin dot blot

Two-way ANOVA

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>% of total variation</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>7.16</td>
<td>0.0543</td>
</tr>
<tr>
<td>Column Factor</td>
<td>30.46</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Row Factor</td>
<td>42.8</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>P value summary</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>ns</td>
<td>No</td>
</tr>
<tr>
<td>Column Factor</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Row Factor</td>
<td>***</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Df</th>
<th>Sum-of-squares</th>
<th>Mean square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>3</td>
<td>65.46</td>
<td>21.82</td>
<td>2.927</td>
</tr>
<tr>
<td>Column Factor</td>
<td>1</td>
<td>278.4</td>
<td>278.4</td>
<td>37.35</td>
</tr>
<tr>
<td>Row Factor</td>
<td>3</td>
<td>391.2</td>
<td>130.4</td>
<td>17.49</td>
</tr>
<tr>
<td>Residual</td>
<td>24</td>
<td>178.9</td>
<td>7.454</td>
<td></td>
</tr>
</tbody>
</table>

Number of missing values: 0

Bonferroni posttests

Control vs RML

<table>
<thead>
<tr>
<th>Row Factor</th>
<th>Control</th>
<th>RML</th>
<th>Difference</th>
<th>95% CI of diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>7.105</td>
<td>10.97</td>
<td>3.863</td>
<td>-1.350 to 9.075</td>
</tr>
<tr>
<td>85</td>
<td>9.88</td>
<td>12.39</td>
<td>2.507</td>
<td>-2.705 to 7.720</td>
</tr>
<tr>
<td>125</td>
<td>12.35</td>
<td>19.88</td>
<td>7.533</td>
<td>2.320 to 12.75</td>
</tr>
<tr>
<td>165</td>
<td>12.72</td>
<td>22.42</td>
<td>9.695</td>
<td>4.482 to 14.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row Factor</th>
<th>Difference</th>
<th>t</th>
<th>P value</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>3.863</td>
<td>2.001</td>
<td>P > 0.05</td>
<td>ns</td>
</tr>
<tr>
<td>85</td>
<td>2.507</td>
<td>1.299</td>
<td>P > 0.05</td>
<td>ns</td>
</tr>
<tr>
<td>125</td>
<td>7.533</td>
<td>3.902</td>
<td><0.01</td>
<td>**</td>
</tr>
<tr>
<td>165</td>
<td>9.695</td>
<td>5.022</td>
<td><0.001</td>
<td>***</td>
</tr>
</tbody>
</table>
Fluorogenic assay

Chymotrypsin D45

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Data 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column A</td>
<td>control</td>
</tr>
<tr>
<td>vs</td>
<td>vs</td>
</tr>
<tr>
<td>Column B</td>
<td>RML</td>
</tr>
</tbody>
</table>

Unpaired t test

P value	0.2879
P value summary	ns
Are means signif. different? (P < 0.05)	No
One- or two-tailed P value?	Two-tailed
t, df	t=1.225 df=4

How big is the difference?

Mean ± SEM of column A	100.0 ± 2.887 N=3
Mean ± SEM of column B	105.00 ± 2.887
Difference between means	5.000 ± 4.082
95% confidence interval	-6.333 to 16.33
R square	0.2727

F test to compare variances

F,DFn, Dfd	1.000, 2, 2
P value	1
P value summary	ns
Are variances significantly different?	No
Chymotrypsin D85

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Data 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column A</td>
<td>control</td>
</tr>
<tr>
<td>vs</td>
<td>vs</td>
</tr>
<tr>
<td>Column B</td>
<td>RML</td>
</tr>
</tbody>
</table>

Unpaired t test
- **P value**: 0.2379
- **P value summary**: ns
- **Are means signif. different? (P < 0.05)**: No
- **One- or two-tailed P value?**: Two-tailed
- **t, df**: t=1.470 df=3

How big is the difference?
- **Mean ± SEM of column A**: 100.0 ± 7.782 N=3
- **Mean ± SEM of column B**: 125.2 ± 18.65 N=2
- **Difference between means**: -25.22 ± 17.15
- **95% confidence interval**: -79.80 to 29.36
- **R square**: 0.4188

F test to compare variances
- **F, DFn, Dfd**: 3.830, 1, 2
- **P value**: 0.3789
- **P value summary**: ns
- **Are variances significantly different?**: No
Chymotrypsin D105

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Data 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column A</td>
<td>control</td>
</tr>
<tr>
<td>vs</td>
<td>vs</td>
</tr>
<tr>
<td>Column B</td>
<td>RML</td>
</tr>
</tbody>
</table>

Unpaired t test

<table>
<thead>
<tr>
<th>P value</th>
<th>0.416</th>
</tr>
</thead>
</table>

P value summary

<table>
<thead>
<tr>
<th>P value summary</th>
<th>ns</th>
</tr>
</thead>
</table>

Are means signif. different? (P < 0.05)

<table>
<thead>
<tr>
<th>No</th>
<th></th>
</tr>
</thead>
</table>

One- or two-tailed P value?

<table>
<thead>
<tr>
<th>Two-tailed</th>
<th></th>
</tr>
</thead>
</table>

t, df

<table>
<thead>
<tr>
<th>t=0.9064</th>
<th>df=4</th>
</tr>
</thead>
</table>

How big is the difference?

<table>
<thead>
<tr>
<th>Mean ± SEM of column A</th>
<th>99.98 ± 2.994 N=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SEM of column B</td>
<td>112.5 ± 13.49 N=3</td>
</tr>
<tr>
<td>Difference between means</td>
<td>13.81</td>
</tr>
<tr>
<td>95% confidence interval</td>
<td>-50.87 to 25.83</td>
</tr>
<tr>
<td>R square</td>
<td>0.1704</td>
</tr>
</tbody>
</table>

F test to compare variances

<table>
<thead>
<tr>
<th>F,DFn, Dfd</th>
<th>20.29, 2, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P value</td>
<td>0.0939</td>
</tr>
</tbody>
</table>

P value summary

<table>
<thead>
<tr>
<th>P value summary</th>
<th>ns</th>
</tr>
</thead>
</table>

Are variances significantly different?

<table>
<thead>
<tr>
<th>No</th>
<th></th>
</tr>
</thead>
</table>
Chymotrypsin D125

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Data 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column A</td>
<td>control vs vs</td>
</tr>
<tr>
<td>Column B</td>
<td>RML</td>
</tr>
</tbody>
</table>

Unpaired t test

- **P value**: 0.0755
- **P value summary**: ns
- **Are means signif. different? (P < 0.05)**: No
- **One- or two-tailed P value?**: Two-tailed
- **t, df**: t=2.386, df=4

How big is the difference?

- **Mean ± SEM of column A**: 100.0 ± 7.741 N=3
- **Mean ± SEM of column B**: 81.18 ± 1.523 N=3
- **Difference between means**: 18.82 ± 7.890
- **95% confidence interval**: -3.080 to 40.72
- **R square**: 0.5873

F test to compare variances

- **F,DFn, Dfd**: 25.85, 2, 2
- **P value**: 0.0745
- **P value summary**: ns
- **Are variances significantly different?**: No
Chymotrypsin D145

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Data 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column A</td>
<td>control</td>
</tr>
<tr>
<td>vs</td>
<td>vs</td>
</tr>
<tr>
<td>Column B</td>
<td>RML</td>
</tr>
</tbody>
</table>

Unpaired t test

P value	0.019
P value summary	*
Are means signif. different? (P < 0.05)	Yes
One- or two-tailed P value?	Two-tailed
t, df	t=3.806 df=4

How big is the difference?

Mean ± SEM of column A	100.0 ± 8.069
N=3	
Mean ± SEM of column B	65.96 ± 3.858
N=3	
Difference between means	34.04 ± 8.944
95% confidence interval	9.212 to 58.87
R square	0.7836

F test to compare variances

F,DFn, Dfd	4.374, 2, 2
P value	0.3722
P value summary	ns
Are variances significantly different?	No
Chymotrypsin End stage

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Data 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column A</td>
<td>control vs</td>
</tr>
<tr>
<td>Column B</td>
<td>RML vs</td>
</tr>
</tbody>
</table>

Unpaired t test

- **P value**: 0.0002
- **P value summary**: ***
- **Are means signif. different? (P < 0.05)**: Yes
- **One- or two-tailed P value?**: Two-tailed
- **t, df**: t=13.78 df=4

How big is the difference?

- **Mean ± SEM of column A**: 99.99 ± 0.1898 (N=3)
- **Mean ± SEM of column B**: 52.37 ± 3.450 (N=3)
- **Difference between means**: 47.62 ± 3.455
- **95% confidence interval**: 38.03 to 57.21
- **R square**: 0.9794

F test to compare variances

- **F,DFn, Dfd**: 330.4, 2, 2
- **P value**: 0.006
- **P value summary**: **
- **Are variances significantly different?**: Yes
Behavioural assessment statistics report

Rotarod

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Total data bar chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way RM ANOVA</td>
<td>Matching by cols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>% of total variation</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>2.75</td>
<td>0.006</td>
</tr>
<tr>
<td>Time</td>
<td>4.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>Column Factor</td>
<td>69.2</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>4.846</td>
<td>0.4263</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>P value summary</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>**</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Column Factor</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>ns</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Df</th>
<th>Sum-of-squares</th>
<th>Mean square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>4</td>
<td>15614</td>
<td>3903</td>
<td>3.833</td>
</tr>
<tr>
<td>Time</td>
<td>4</td>
<td>25835</td>
<td>6459</td>
<td>6.342</td>
</tr>
<tr>
<td>Column Factor</td>
<td>1</td>
<td>392871</td>
<td>392871</td>
<td>371.3</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>26</td>
<td>27513</td>
<td>1058</td>
<td>1.039</td>
</tr>
<tr>
<td>Residual</td>
<td>104</td>
<td>105912</td>
<td>1018</td>
<td></td>
</tr>
</tbody>
</table>

Number of missing values: 0

Bonferroni posttests

Control vs RML

<table>
<thead>
<tr>
<th>Column Factor</th>
<th>Control</th>
<th>RML</th>
<th>Difference</th>
<th>95% CI of diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>111.2</td>
<td>33.07</td>
<td>-78.1</td>
<td>-109.7 to -46.44</td>
</tr>
<tr>
<td>60</td>
<td>154.3</td>
<td>56.55</td>
<td>-97.79</td>
<td>-129.4 to -66.13</td>
</tr>
<tr>
<td>70</td>
<td>169.6</td>
<td>49.52</td>
<td>-120</td>
<td>-151.7 to -88.39</td>
</tr>
<tr>
<td>85</td>
<td>144.2</td>
<td>49.07</td>
<td>-95.12</td>
<td>-126.8 to -63.46</td>
</tr>
<tr>
<td>105</td>
<td>175.2</td>
<td>36.55</td>
<td>-138.7</td>
<td>-170.3 to -107.0</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Column Factor</td>
<td>Difference</td>
<td>t</td>
<td>P value</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>-78.1</td>
<td>6.45</td>
<td>P<0.001</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>-97.79</td>
<td>8.076</td>
<td>P<0.001</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>-120</td>
<td>9.914</td>
<td>P<0.001</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>-95.12</td>
<td>7.855</td>
<td>P<0.001</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>-138.7</td>
<td>11.45</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

Burrowing

Table Analyzed

<table>
<thead>
<tr>
<th>Total data</th>
</tr>
</thead>
</table>

Two-way RM ANOVA

Matching by cols

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>% of total variation</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>10.41</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Time</td>
<td>4.82</td>
<td>0.0002</td>
</tr>
<tr>
<td>Column Factor</td>
<td>46.14</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>14.2731</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>P value summary</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Column Factor</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>***</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Df</th>
<th>Sum-of-squares</th>
<th>Mean square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>5</td>
<td>18148</td>
<td>3630</td>
<td>11.11</td>
</tr>
<tr>
<td>Time</td>
<td>5</td>
<td>8409</td>
<td>1682</td>
<td>5.149</td>
</tr>
<tr>
<td>Column Factor</td>
<td>1</td>
<td>80441</td>
<td>80441</td>
<td>84.05</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>26</td>
<td>24884</td>
<td>957.1</td>
<td>2.93</td>
</tr>
<tr>
<td>Residual</td>
<td>130</td>
<td>42458</td>
<td>326.6</td>
<td></td>
</tr>
</tbody>
</table>

Number of missing values: 0
<table>
<thead>
<tr>
<th>Column Factor</th>
<th>Control</th>
<th>RML</th>
<th>Difference</th>
<th>95% CI of diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>70.51</td>
<td>57.79</td>
<td>-12.72</td>
<td>-33.71 to 8.264</td>
</tr>
<tr>
<td>45.</td>
<td>95.8</td>
<td>61.06</td>
<td>-34.74</td>
<td>-55.72 to -13.75</td>
</tr>
<tr>
<td>60.</td>
<td>89.02</td>
<td>48.97</td>
<td>-40.05</td>
<td>-61.03 to -19.06</td>
</tr>
<tr>
<td>70.</td>
<td>85.98</td>
<td>50.48</td>
<td>-35.5</td>
<td>-56.49 to -14.51</td>
</tr>
<tr>
<td>85.</td>
<td>90.07</td>
<td>27.73</td>
<td>-62.34</td>
<td>-83.32 to -41.35</td>
</tr>
<tr>
<td>105.</td>
<td>95.79</td>
<td>18.55</td>
<td>-77.24</td>
<td>-98.22 to -56.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column Factor</th>
<th>Difference</th>
<th>t</th>
<th>P value</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>-12.72</td>
<td>1.62</td>
<td>P > 0.05</td>
<td>ns</td>
</tr>
<tr>
<td>45.</td>
<td>-34.74</td>
<td>4.424</td>
<td>P<0.001</td>
<td>***</td>
</tr>
<tr>
<td>60.</td>
<td>-40.05</td>
<td>5.1</td>
<td>P<0.001</td>
<td>***</td>
</tr>
<tr>
<td>70.</td>
<td>-35.5</td>
<td>4.521</td>
<td>P<0.001</td>
<td>***</td>
</tr>
<tr>
<td>85.</td>
<td>-62.34</td>
<td>7.938</td>
<td>P<0.001</td>
<td>***</td>
</tr>
<tr>
<td>105.</td>
<td>-77.24</td>
<td>9.835</td>
<td>P<0.001</td>
<td>***</td>
</tr>
</tbody>
</table>
Nesting

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Total data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way RM ANOVA</td>
<td>Matching by cols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>% of total variation</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>7.43</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Time</td>
<td>6.57</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Column Factor</td>
<td>71.71</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>6.4608</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>P value summary</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Column Factor</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>***</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Df</th>
<th>Sum-of-squares</th>
<th>Mean square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>6</td>
<td>23.23</td>
<td>3.871</td>
<td>24.16</td>
</tr>
<tr>
<td>Time</td>
<td>6</td>
<td>20.55</td>
<td>3.425</td>
<td>21.37</td>
</tr>
<tr>
<td>Column Factor</td>
<td>1</td>
<td>224.3</td>
<td>224.3</td>
<td>299.7</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>27</td>
<td>20.21</td>
<td>0.7484</td>
<td>4.671</td>
</tr>
<tr>
<td>Residual</td>
<td>162</td>
<td>25.96</td>
<td>0.1602</td>
<td></td>
</tr>
</tbody>
</table>

Number of missing values: 0

Bonferroni posttests

<table>
<thead>
<tr>
<th>Control vs RML</th>
<th>Column Factor</th>
<th>Control</th>
<th>RML</th>
<th>Difference</th>
<th>95% CI of diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.</td>
<td>4.867</td>
<td>3.571</td>
<td>-1.295</td>
<td>-1.795 to -0.7958</td>
</tr>
<tr>
<td></td>
<td>30.</td>
<td>5</td>
<td>3.786</td>
<td>-1.214</td>
<td>-1.714 to -0.7148</td>
</tr>
<tr>
<td></td>
<td>45.</td>
<td>5</td>
<td>3.071</td>
<td>-1.929</td>
<td>-2.428 to -1.429</td>
</tr>
<tr>
<td></td>
<td>60.</td>
<td>5</td>
<td>3</td>
<td>-2</td>
<td>-2.499 to -1.501</td>
</tr>
<tr>
<td></td>
<td>70.</td>
<td>5</td>
<td>2.571</td>
<td>-2.429</td>
<td>-2.928 to -1.929</td>
</tr>
<tr>
<td></td>
<td>85.</td>
<td>5</td>
<td>2.429</td>
<td>-2.571</td>
<td>-3.071 to -2.072</td>
</tr>
<tr>
<td></td>
<td>105.</td>
<td>5</td>
<td>1.714</td>
<td>-3.286</td>
<td>-3.785 to -2.786</td>
</tr>
<tr>
<td>Column Factor</td>
<td>Difference</td>
<td>t</td>
<td>P value</td>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>-1.295</td>
<td>7.053</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>-1.214</td>
<td>6.612</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>-1.929</td>
<td>10.5</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>-2</td>
<td>10.89</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>-2.429</td>
<td>13.22</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td>-2.571</td>
<td>14</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>105.</td>
<td>-3.286</td>
<td>17.89</td>
<td>P<0.001</td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>

Grip strength

<table>
<thead>
<tr>
<th>Table Analyzed</th>
<th>Total data edited</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way RM ANOVA</td>
<td>Matching by cols</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>% of total variation</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>1.86</td>
<td>0.2647</td>
</tr>
<tr>
<td>Time</td>
<td>2.67</td>
<td>0.1016</td>
</tr>
<tr>
<td>Column Factor</td>
<td>28.08</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>28.9401</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>P value summary</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>ns</td>
<td>No</td>
</tr>
<tr>
<td>Time</td>
<td>ns</td>
<td>No</td>
</tr>
<tr>
<td>Column Factor</td>
<td>***</td>
<td>Yes</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>***</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Df</th>
<th>Sum-of-squares</th>
<th>Mean square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>5</td>
<td>1.562</td>
<td>0.3123</td>
<td>1.307</td>
</tr>
<tr>
<td>Time</td>
<td>5</td>
<td>2.248</td>
<td>0.4495</td>
<td>1.881</td>
</tr>
<tr>
<td>Column Factor</td>
<td>1</td>
<td>23.62</td>
<td>23.62</td>
<td>26.2</td>
</tr>
<tr>
<td>Subjects (matching)</td>
<td>27</td>
<td>24.34</td>
<td>0.9015</td>
<td>3.772</td>
</tr>
<tr>
<td>Residual</td>
<td>135</td>
<td>32.26</td>
<td>0.239</td>
<td></td>
</tr>
<tr>
<td>Number of missing values</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bonferroni posttests

<table>
<thead>
<tr>
<th>Control vs RML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Factor</td>
</tr>
<tr>
<td>30.</td>
</tr>
<tr>
<td>45.</td>
</tr>
<tr>
<td>60.</td>
</tr>
<tr>
<td>70.</td>
</tr>
<tr>
<td>85.</td>
</tr>
<tr>
<td>105.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column Factor</th>
<th>Difference</th>
<th>t</th>
<th>P value</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.</td>
<td>-0.9964</td>
<td>4.536</td>
<td>P<0.001</td>
<td>***</td>
</tr>
<tr>
<td>45.</td>
<td>-0.9697</td>
<td>4.415</td>
<td>P<0.001</td>
<td>***</td>
</tr>
<tr>
<td>60.</td>
<td>-0.5733</td>
<td>2.61</td>
<td>P > 0.05</td>
<td>ns</td>
</tr>
<tr>
<td>70.</td>
<td>-0.7399</td>
<td>3.369</td>
<td>P<0.01</td>
<td>**</td>
</tr>
<tr>
<td>85.</td>
<td>-0.4912</td>
<td>2.236</td>
<td>P > 0.05</td>
<td>ns</td>
</tr>
<tr>
<td>105.</td>
<td>-0.6533</td>
<td>2.974</td>
<td>P < 0.05</td>
<td>*</td>
</tr>
</tbody>
</table>
8 REFERENCE LIST

214

Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol. 35: 513-529.

Mice devoid of PrP are resistant to scrapie. Cell. 73:1339-1347.

Chen HK., Fernandez-Funez SF., Acevedo YC., Lam MD., Kaytor MH., Fernandez A. Aitken

Dantuma NP., Heessen S., K. Lindsten K., Jellne M, Masucci MG (2000). Inhibition of
proteasomal degradation by the gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci U S A 97:8381-5.

Di Rocco A., Molinari S., Stollman AL., Decker A., Yahr MD. (1993). MRI abnormalities in

Drisaldi B., Stewart RS., Adles C., Stewart LR., Quaglio E., Biasini E., Fioriti L., Chiesa R., and Harris DA. (2003). Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem. 278: 21732-21743.

Finle D., Sadis S., Monia B., Boucher P., Ecker DJ., Crooke ST., Chau V. (1994). Inhibition of

Goldfarb LG., Brown P., Haltia M., Ghiso J., Frangione B., and Gajdusek DC. (1993). Synthetic peptides corresponding to different mutated regions of the amyloid gene in familial...

Haigh CL., Marom SY., Collins SJ. (2010). Copper, endoproteolytic processing of the prion protein and cell signaling Front Biosci. 15:1086-104.

Haire F., Whyte SM., Vasisht N., Gill AC., Verma C., Dodson EJ., Dodson GG., and Bayley

facilitates prion replication, J. Biol. Chem. 282:12725–12733.

Jeffrey M., Halliday WG., Bell J., Johnston AR., Macleod NK., Ingham C., Sayers AR., Brown

Kimberlin RH and Marsh RF. (1975). Comparison of scrapie and transmissible mink

Lecker SH., Golberg AL., Mitch WE. (2006). Protein degradation by the ubiquitin-

Li A., Barmada SJ., Roth KA., and Harris DA. (2007). N-terminally deleted forms of the prion

Mead S., Stumpf MP., Whitfield J., Beck J., Poulter M., Campbell T., Uphill J., Goldstein D.,

Merz PA., Somerville RA., Wisniewski HM., and Iqbal K. (1981). Abnormal fibrils from

Naslavsky N., Shmeeda,H., Friedlander G., Yanai A., Futerman AH., Barenholz Y., and

Prusiner SB., McKinley MP., Groth DF., Bowman K., Mock NI., Cochran SP., and Masiarz FR.

Russell SJ., Reed SH., Huang W., Friedberg, EC., Johnston SA. (1999.) The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell. 3:687-95.

Simoneau S., Rezaei H., Salès N., Kaiser-Schulz G., Lefebvre-Roque M., Vidal C., Fournier JG.,

Vanderlugt CL., Rahbe SM., Elliott PJ., Dal Canto MC., and Miller SD. (2000). Treatment of

9 PUBLICATION, POSTER PRESENTATIONS AND CONFERENCES

Published conference abstracts from this thesis

Early impairment in the ubiquitin proteasome system in prion disease pathogenesis.