UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Automatic nesting seabird detection based on boosted HOG-LBP descriptors

Qing, C; Dickinson, P; Lawson, S; Freeman, R; (2011) Automatic nesting seabird detection based on boosted HOG-LBP descriptors. Proceedings - International Conference on Image Processing, ICIP 3577 - 3580. 10.1109/ICIP.2011.6116489.

Full text not available from this repository.

Abstract

Seabird populations are considered an important and accessible indicator of the health of marine environments: variations have been linked with climate change and pollution [1]. However, manual monitoring of large populations is labour-intensive, and requires significant investment of time and effort. In this paper, we propose a novel detection system for monitoring a specific population of Common Guillemots on Skomer Island, West Wales (UK). We incorporate two types of features, Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP), to capture the edge/local shape information and the texture information of nesting seabirds. Optimal features are selected from a large HOG-LBP feature pool by boosting techniques, to calculate a compact representation suitable for the SVM classifier. A comparative study of two kinds of detectors, i.e., whole-body detector, head-beak detector, and their fusion is presented. When the proposed method is applied to the seabird detection, consistent and promising results are achieved. © 2011 IEEE.

Type:Article
Title:Automatic nesting seabird detection based on boosted HOG-LBP descriptors
DOI:10.1109/ICIP.2011.6116489
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > CoMPLEX - Maths and Physics in the Life Sciences and Experimental Biology

Archive Staff Only: edit this record