UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Twistors in geometric algebra

Arcaute, E; Lasenby, A; Doran, C; (2008) Twistors in geometric algebra. In: ADVANCES IN APPLIED CLIFFORD ALGEBRAS. (pp. 373 - 394). BIRKHAUSER VERLAG AG

Full text not available from this repository.

Abstract

Twistors are re-interpreted in terms of geometric algebra as 4-d spinors with a position dependence. This allows LIS to construct their properties as observables of a quantum system. The Robinson congruence is derived and extended to non-Euclidean spaces where it is represented in terms of lines. Different conformal spaces are constructed through the infinity twistors for Friedmann-Robertson-Walker spaces. Finally, we give a 6-d spinor representation of a twistor, which allows us to define the geometrical properties of the twistors as observables of this higher dimensional space.

Type:Proceedings paper
Title:Twistors in geometric algebra
Event:7th International Conference on Clifford Algebras and Their Applications
Location:Univ Paul Sabatier, Toulouse, FRANCE
Dates:2005-05-19 - 2005-05-29
DOI:10.1007/s00006-008-0083-x
Keywords:geometric algebra, multi particle quantum theory, conformal space, twistors, Robinson congruence, non-Euclidean spaces, d-lines, ONE-LOOP AMPLITUDES
UCL classification:UCL > School of BEAMS > Faculty of the Built Environment > Centre for Advanced Spatial Analysis

Archive Staff Only: edit this record