Computers Working at the Speed of Light

Dr David R. Selviah
Department of Electronic and Electrical Engineering,
University College London, UCL, UK,
d.selviah@ee.ucl.ac.uk
Tel: 020 7679 3056
Moore’s Law

• Gordon Moore was a co-founder of Intel.

• In 1965 he said that the number of transistors in an integrated circuit will increase exponentially, almost doubling every two years in an article in Electronics, Volume 38, Number 8, April 19, 1965

• Moore’s law has been obeyed since the invention of the integrated circuit in 1958 to now

• The smaller the transistor the faster the switching speed can be - giving faster computers.
Computer CPU Performance Trend

Thanks to John McCallum http://www.jcmit.com/cpu-perf-chart.htm
Computer Processor Transistor Count Trend

- Intel 4004 with 2300 transistors
- Quad-Core Itanium Tukwila with 2 trillion transistors
Field Programmable Gate Arrays, FPGA
Transistor count for Xilinx Series

- Virtex with 70 million transistors
- Virtex E
- Virtex II
- Virtex II Pro
- Virtex 4
- Virtex 5 with 1.1 trillion transistors
Highest Speed Supercomputers

- Used for simulating nuclear tests, weather forecasting, oil exploration, human genome, human brain, astronomy

- 1 Flop/s – Floating point operations per second = 10^0
- 10 Flop/s – Speed of a simple calculator = 10^1
- 1,000 Flop/s = kFlop/s = 1 thousand = 10^3
- 1,000,000 Flop/s = 1 MegaFlop/s = 1 million = 10^6
- 1,000,000,000 Flop/s = 1 GigaFlop/s = 1 US billion = 10^9
- 1,000,000,000,000 Flop/s = 1 TeraFlop/s = 1 US trillion = 10^{12}
- 1,000,000,000,000,000 Flop/s = 1 PetaFlop/s = 1 US quadrillion = 10^{15}
Two Types of High Speed

1. Bandwidth
 - Large number of bits transmitted per second
 - Large data throughput
 - Measured in Hz or Bits/s

2. Latency
 - High travel velocity for data
 - Short Delays
 - Important for real time control of vehicles and robots, gaming
 - Measured in seconds
On-board Platform Applications
On-board Platform Applications

Reconfigurable Network Interconnections

RF/EO Sensors & comms data

High Bandwidth Signals

Aircraft utilities

Signal concentrator

core processor
Cray-1

- Based at Los Alamos National Laboratory
- Fastest in 1976
- Speed of 160 million floating-point operations per second
- Weighed 5.5 tons.

Read more: http://realitypod.com/2010/04/top-super-computers/#ixzz0unV5k3nv
Cray-2

• Based at United States Departments of Defense and Energy
• World's fastest computer 1985-1989
• Speed 1.9 gigaflops
• Liquid cooling, it was nicknamed `Bubbles'.

http://realitypod.com/2010/04/top-super-computers/#ixzz0unVup2zZ
Top 10 Fastest Computers in July 2010

<table>
<thead>
<tr>
<th>Rank</th>
<th>Computer</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jaguar - Cray XT5-HE</td>
<td>Opteron Six Core 2.6 GHz</td>
</tr>
<tr>
<td>2</td>
<td>Nebulae - Dawning TC3600 Blade</td>
<td>Intel X5650, NVidia Tesla C2050 GPU</td>
</tr>
<tr>
<td>3</td>
<td>Roadrunner - BladeCenter QS22/LS21 Cluster</td>
<td>PowerXCell 8i 3.2 GHz / Opteron DC 1.8 GHz, Voltaire Infiniband</td>
</tr>
<tr>
<td>4</td>
<td>Kraken XT5 - Cray XT5-HE</td>
<td>Opteron Six Core 2.6 GHz</td>
</tr>
<tr>
<td>5</td>
<td>JUGENE - Blue Gene/P Solution</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pleiades - SGI Altix ICE 8200EX/8400EX</td>
<td>Xeon HT QC 3.0/Xeon Westmere 2.93 GHz, Infiniband</td>
</tr>
<tr>
<td>7</td>
<td>Tianhe-1 - NUDT TH-1 Cluster</td>
<td>Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband</td>
</tr>
<tr>
<td>8</td>
<td>BlueGene/L - eServer Blue Gene Solution</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Intrepid - Blue Gene/P Solution</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Red Sky - Sun Blade x6275</td>
<td>Xeon X55xx 2.93 GHz, Infiniband</td>
</tr>
</tbody>
</table>

http://www.top500.org/
Jaguar

- Based at Department of Energy, Oak Ridge Leadership Computing Facility, Tennessee, USA
- Demonstrated 1.75 petaflop/s
- Theoretical peak capability of 2.3 petaflop/s.
Nebulae

- Based at National Supercomputing Centre, Shenzhen, China
- Demonstrated 1.271 PFlop/s
- Theoretical peak capability of 2.98 petaflop/s, which is the highest ever on the TOP500.
IBM Roadrunner

• The first system to record a performance greater than a petaflop/s was Roadrunner, Based at Los Alamos, New Mexico, USA

• First system to demonstrate more than 1 petaflop/s at 1.04 petaflop/s
IBM BlueGene/P

- Based in Forschungszentrum Juelich in Germany
- Demonstrated 825.5 teraflop/s
Tianhe-1

- China's second fastest computer
- 4\times faster than the previous top computer in the country
- 563 teraflops
- Tianhe, means "river in the sky"
- Based at the National Super Computer Center, Tianjin
- 6144 Intel processors + 5120 AMD graphics processing units
IBM's Blue Gene/L: world's fastest supercomputer in 2005

- 65,536 processors
- Speed 280.6 teraflops or 280.6 trillion calculations per second
IBM's Blue Gene/L supercomputer simulated half a mouse brain 2007

- University of Nevada with IBM Almaden Research Lab, ran a "cortical simulator that was as big and as complex as half of a mouse's brain on the BlueGene L,"
- It had 8,000 neurons and 63,000 synapses
- It ran for 10 seconds at a speed "ten times slower than real-time"
IBM BlueGene/L

- Based at Lawrence Livermore National Laboratory
- Demonstrated 478.2 trillion floating operations per second.

http://realitypod.com/2010/04/top-super-computers/4/#ixzz0unTZLwt4
Worldwide

- China now runs 24 of the top 500 computers in the world
- But America’s Jaguar machine still has the fastest actual performance
- The UK has 38 computers in the top 500, making it the most powerful supercomputing nation in Europe, with the University of Edinburgh’s Hector machine placed sixteenth

- A third of the computers on the list are made by IBM, and 20 per cent by Hewlett Packard

- Thanks to Matt Warman, Consumer Technology Editor, The Telegraph Newspaper, 1 Jun 2010
Sequoia

- Being constructed by IBM for completion in 2011
- To be based at Lawrence Livermore National Laboratory, Department of Energy, USA
- Operating speed expected 20 petaflops per second
- It will occupy 96 refrigerator size racks in an area the size of a large house
- It will have the processing power of 1.6 million laptops
- Cost more than $100 million
- 6 megawatts energy consumption per year ~ same as 500 USA homes
Backplane Motherboards

Optical Connector

Optical and Electronic Interconnects

Backplane

Mezzanine Board (Daughter Board, Line Card)
Electromagnetic Carrier Waves

- Information is transmitted by encoding it onto a high speed carrier wave
- The highest speed waves are electromagnetic waves
- This includes radio waves, microwaves, VHF, UHF, gamma rays, X-rays, light
- Speed 3×10^8 metres per second in a vacuum
- A little slower in wires or optical fibres
- Radio and microwaves are guided along copper tracks or traces
- Light is guided through a transparent optical fibre or optical waveguides
Copper Tracks versus Optical Waveguides for High Bit Rate Interconnects

- Copper Track
 - EMI Crosstalk
 - Loss
 - Impedance control to minimize back reflections, additional equalisation, costly board material

- Optical Waveguides
 - Low loss
 - Low cost
 - Low power consumption
 - Low crosstalk
 - Low clock skew
 - WDM gives higher aggregate bit rate
 - Cannot transmit electrical power
Integration of Optics and Electronics

- Backplanes
 - Butt connection of “plug-in” daughter cards
 - In-plane interconnection
- Focus of OPCB project

- Out-of-plane connection
 - 45 mirrors
 - Chip to chip connection possible
Direct Laser-writing Setup: Schematic

• **Slotted baseplate** mounted vertically over translation, rotation & vertical stages; components held in place with magnets
• By using two opposing 45° beams we minimise the amount of substrate rotation needed
Laser written polymer structures

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)

- Writing speed: ~75 µm / s
- Optical power: ~100 µW
- Flat-top intensity profile
- Oil immersion
- Single pass

Optical microscope image showing end on view of the 45° surfaces
Current Results

Laser-writing Parameters:
- Intensity profile: Gaussian
- Optical power: ~8 mW
- Cores written in oil

Polymer:
- Custom multifunctional acrylate photo-polymer
- Fastest “effective” writing speed to date: 50 mm/s

(Substrate: FR4 with polymer undercladding)
Large Board Processing: Writing

- Stationary “writing head” with board moved using Aerotech sub-μm precision stages
- Waveguide trajectories produced using CAD program

- 600 x 300 mm travel
- Requires a minimum of 700 x 1000 mm space on optical bench
- Height: ~250 mm
- Mass:
 - 300 mm: 21 kg
 - 600 mm: 33 kg
- Vacuum tabletop
The spiral was fabricated using a Gaussian intensity profile at a writing speed of 2.5 mm/s on a 10 x 10 cm lower clad FR4 substrate. Total length of spiral waveguide is \(~1.4\) m. The spiral was upper cladded at both ends for cutting.
Laser direct written backplane

- HWU Direct laser written waveguide cores and cladding backplane layout designed by UCL fabricated on FR4
Laser Ablation for Waveguide Fabrication

- Ablation to leave waveguides
- Excimer laser – Loughborough
- Nd:YAG – Stevenage Circuits

Deposit cladding and core layers on substrate

Laser ablate polymer

Deposit cladding layer
Nd:YAG Ablation

- Nd:YAG laser based at Stevenage Circuits
- Grooves machined in optical polymer and ablation depth characterised for machining parameters
- Initial waveguide structures prepared
A cross-section through an array of waveguides fabricated in polyacrylate using CO$_2$ laser ablation
Cross-section through a waveguide (approx. 50 μm x 35 μm) formed in polyacrylate by excimer laser machining.

A plan view image of two 45 degree in-plane mirror structures formed in an optical waveguide by excimer laser ablation in polyacrylate.
Inkjetting as a Route to Waveguide Deposition

- Print polymer then UV cure
- Advantages:
 - controlled, selective deposition of core and clad
 - less wastage: picolitre volumes
 - large area printing
 - low cost
Changing Surface Wettability

Core material on cladding

Core material on modified glass surface (hydrophobic)

Large wetting - broad inkjetted lines

Reduced wetting – discrete droplets

Identical inkjetting conditions - spreading inhibited on modified surface
Towards Stable Structures

Stable line structures with periodic features

Cross section of inkjetted core material surrounded by cladding (width 80 microns)

A balance between wettability, line stability and adhesion
Waveguides of OE4140 optical polymer inkjet printed onto OE4141 cladding using multiple print and cure passes.

A cross-section through an inkjet printed waveguide of OE4140 core on cladding prepared using multiple print and cure cycles.
Optical Power Loss in 90° Waveguide Bends

Schematic diagram of one set of curved waveguides.

- Radius R, varied between $5.5 \text{ mm} < R < 35 \text{ mm}$, $\Delta R = 1 \text{ mm}$
- Light lost due to scattering, transition loss, bend loss, reflection and back-scattering
- Illuminated by a MM fiber with a red-laser.
Crosstalk in Chirped Width Waveguide Array

100 µm 110 µm 120 µm 130 µm 140 µm 150 µm

- Light launched from VCSEL imaged via a GRIN lens into 50 µm x 150 µm waveguide
- Photolithographically fabricated chirped with waveguide array
- Photomosaic with increased camera gain towards left

Copyright © 2008 UCL
Surface roughness

- RMS side wall roughness: 9 nm to 74 nm

- RMS polished end surface roughness: 26 nm to 192 nm.
Photolithographic Fabrication of Waveguides

UV Exposure
Lower cladding
FR4

200 µm

UV Exposure
Mask
Spacer
Core layer
FR4

50 µm

Waveguide
FR4

250 µm

50 µm

UV Exposure
Upper cladding
FR4

50 µm

Copyright © 2008 UCL
Polymer waveguides formed by Photolithography in Truemode® polymer
Schematic Diagram Of Waveguide Crossings at 90° and at an Arbitrary Angle, θ
System Demonstrator

Fully connected waveguide layout using design rules

Copyright © 2008 UCL
Demonstrator Dummy Board
The Shortest Waveguide Illuminated by Red Laser
Waveguide with 2 Crossings Connected 1st to 3rd Linecard Interconnect
Output Facet of the Waveguide Interconnection
Optical Backplane Connection Architecture

Backplane and Line Cards Orthogonal

- Lens Interface
- Backplane
- Connector housing
- Parallel optical transceiver
- Copper layers
- FR4 layers
- Optical layer
VCSEL Array for Crosstalk Measurement

Source: Microsemi Corporation

Source: ULM Photonics GmbH

Source: GRINTech GmbH

MT compatible interface
Parallel optical transceiver circuit
- Small form factor quad parallel optical transceiver
- Microcontroller supporting I²C interface
- Samtec “SEARAY™” open pin field array connector
- Spring loaded platform for optical engagement mechanism
- Custom heatsink for photonic drivers

Backplane connector module
- Samtec / Xyratex collaborate to develop optical PCB connector
- 1 stage insertion engagement mechanism developed
- Xyratex transceiver integrated into connector module
Hybrid Electro-Optical Printed Circuit Board

- Standard Compact PCI backplane architecture
- 12 electrical layers for power and C-PCI signal bus and peripheral connections
- Electrical C-PCI connector slots for SBC and line cards
- 1 polymeric optical layer for high speed 10 GbE traffic
- 4 optical connector sites
- Dedicated point-to-point optical waveguide architecture

Optical connector site
Compact PCI slot for single board computer
Compact PCI slots for line cards
Hybrid Electro-Optical Printed Circuit Board

- Standard Compact PCI backplane architecture
- 12 electrical layers for power and C-PCI signal bus and peripheral connections
- Electrical C-PCI connector slots for SBC and line cards
- 1 polymeric optical layer for high speed 10 GbE traffic
- 4 optical connector sites
- Dedicated point-to-point optical waveguide architecture
HIGH SPEED SWITCHING LINE CARD

- **Array connector for pluggable active optical connector**
- **SMP connector sites**
- **8 x 8 Crosspoint switch**
- **XFP ports**
- **FPGA**
- **Compact PCI bus connector**
- **PCI Bridge**

Research and Development Overview

- Richard Pitwon
Demonstrator with Optical Interconnects
Acknowledgments

• University College London, UK
 – Kai Wang, Hadi Baghsiahi, F. Aníbal Fernández, Ioannis Papakonstantinou (now at Sharp Labs of Europe Ltd)
• Loughborough University, UK
 – David A. Hutt, Paul P. Conway, John Chappell, Shefiu S. Zakariyah
• Heriot Watt University
 – Andy C. Walker, Aongus McCarthy, Himanshu Suyal
• BAE Systems, UK
 – Henry White
• Stevenage Circuits Ltd. (SCL), UK
 – Dougal Stewart, Jonathan Calver, Jeremy Rygate, Steve Payne
• Xyratex Technology Ltd., UK
 – Dave Milward, Richard Pitwon, Ken Hopkins
• Exxelis Ltd
 – Navin Suyal and Habib Rehman
• Cadence
 – Gary Hinde
• EPSRC and all partner companies for funding

© UCL 2010