UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Improving NIRS predictions of ingredient composition in compound feedingstuffs using Bayesian non-parametric calibrations

Perez-Marin, D; Fearn, T; Guerrero, JE; Garrido-Varo, A; (2012) Improving NIRS predictions of ingredient composition in compound feedingstuffs using Bayesian non-parametric calibrations. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS , 110 (1) 108 - 112. 10.1016/j.chemolab.2011.10.007.

Full text not available from this repository.


Type:Article
Title:Improving NIRS predictions of ingredient composition in compound feedingstuffs using Bayesian non-parametric calibrations
DOI:10.1016/j.chemolab.2011.10.007
Keywords:Bayesian statistics, Nonlinear calibration, Near-infrared reflectance spectroscopy, Compound feeds, Ingredient percentage
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Statistical Science

Archive Staff Only: edit this record