UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Estimation of dynamic models with nonparametric simulated maximum likelihood

Kristensen, D; Shin, Y; (2012) Estimation of dynamic models with nonparametric simulated maximum likelihood. Journal of Econometrics , 167 (1) 76 - 94. 10.1016/j.jeconom.2011.09.042.

Full text not available from this repository.

Abstract

We propose an easy-to-implement simulated maximum likelihood estimator for dynamic models where no closed-form representation of the likelihood function is available. Our method can handle any simulable model without latent dynamics. Using simulated observations, we nonparametrically estimate the unknown density by kernel methods, and then construct a likelihood function that can be maximized. We prove that this nonparametric simulated maximum likelihood (NPSML) estimator is consistent and asymptotically efficient. The higher-order impact of simulations and kernel smoothing on the resulting estimator is also analyzed; in particular, it is shown that the NPSML does not suffer from the usual curse of dimensionality associated with kernel estimators. A simulation study shows good performance of the method when employed in the estimation of jumpdiffusion models. © 2011 Elsevier B.V. All rights reserved.

Type:Article
Title:Estimation of dynamic models with nonparametric simulated maximum likelihood
DOI:10.1016/j.jeconom.2011.09.042
UCL classification:UCL > School of Arts and Social Sciences > Faculty of Social and Historical Sciences > Economics

Archive Staff Only: edit this record