UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Simplicial mixtures of Markov chains: Distributed modelling of dynamic user profiles

Girolami, M; Kaban, A; (2004) Simplicial mixtures of Markov chains: Distributed modelling of dynamic user profiles. In: Thrun, S and Saul, K and Scholkopf, B, (eds.) ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16. (pp. 9 - 16). M I T PRESS

Full text not available from this repository.

Abstract

To provide a compact generative representation of the sequential activity of a number of individuals within a group there is a tradeoff between the definition of individual specific and global models. This paper proposes a linear-time distributed model for finite state symbolic sequences representing traces of individual user activity by making the assumption that heterogeneous user behavior may be 'explained' by a relatively small number of common structurally simple behavioral patterns which may interleave randomly in a user-specific proportion. The results of an empirical study on three different sources of user traces indicates that this modelling approach provides an efficient representation scheme, reflected by improved prediction performance as well as providing low-complexity and intuitively interpretable representations.

Type:Proceedings paper
Title:Simplicial mixtures of Markov chains: Distributed modelling of dynamic user profiles
Event:17th Annual Conference on Neural Information Processing Systems (NIPS)
Location:CANADA
Dates:2003-12-08
ISBN:0-262-20152-6
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Statistical Science

Archive Staff Only: edit this record