
 
 

1 
 

 

 

 

Docking and Bioinformatics Tools to 
Guide Enzyme Engineering  

 

 

Thesis submitted to University College London for the degree 
of Doctor of Philosophy 

 

 

 

 

John Strafford 

Department of Biochemical Engineering 

2010 

  



 
 

2 
 

 

 

 

 

 
-Charles Darwin, The Origin of Species (1859) 

  



 
 

3 
 

 

I, John Strafford confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

  



 
 

4 
 

 

I wish to thank my supervisors, Paul Dalby and David Jones, for their continued 

support throughout my PhD. I would also like to extend my thanks to all those in 

the Biochemical Engineering Department of UCL, in particularly Nigel Titchener-

Hooker for his words of encouragement at difficult times. 

I would not have been able to complete this work without the unending support of 

my girlfriend, Hannah Summers, who has kept me motivated and very happy 

throughout the last six years. I also need to give a massive thanks to my mum and 

my close family, who have always been there for me in the good, and the difficult 

times. 

Last, but not least, I would like to thank the Biotechnology and Biological Sciences 

Research Council for funding my PhD. 

  



 
 

5 
 

 

The carbon-carbon bond forming ability of transketolase (TK), along with its broad 

substrate specificity, makes it very attractive as a biocatalyst in industrial organic 

synthesis. Through the production of saturation mutagenesis libraries focused on 

individual active site residues, several variants of TK have been discovered with 

enhanced activities on non-natural substrates. We have used computational and 

bioinformatics tools to increase our understanding of TK and to guide engineering 

of the enzyme for further improvements in activity. 

Computational automated docking is a powerful technique with the potential to 

identify transient structures along an enzyme reaction pathway that are difficult to 

obtain by experimental structure determination. We have used the AutoDock 

algorithm to dock a series of known ketol donor and aldehyde acceptor substrates 

into the active site of E. coli TK, both in the presence and the absence of reactive 

intermediates. Comparison of docked conformations with available crystal structure 

complexes allows us to propose a more complete mechanism at a level of detail not 

currently possible by experimental structure determination alone. 

Statistical coupling analysis (SCA) utilises evolutionary sequence data present within 

multiple sequence alignments to identify energetically coupled networks of 

residues within protein structures. Using this technique we have identified several 

coupled networks within the TK enzyme which we have targeted for mutagenesis in 

multiple mutant variant libraries. Screening of these libraries for increased activity 

on the non-natural substrate propionaldehyde (PA) has identified combinations of 

mutations that act synergistically on enzyme activity. Notably, a double variant has 
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been discovered with a 20-fold improvement in kcat relative to wild type on the PA 

reaction, this is higher than any other TK variant discovered to date. 
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1  

Transketolase (TK) is a key constitutive enzyme in metabolic regulation, providing a 

link between the pentose phosphate pathway and glycolysis through the 

production of 3 and 6 carbon sugars (glyceraldehyde-3-phosphate and fructose-6-

phosphate respectively) (Figure 1.2 a and b) [1]. Found in the non-oxidative branch 

of the pentose phosphate pathway, TK catalyses the reversible transfer of two 

carbon ketol groups between several donor and acceptor substrates. In addition to 

supplying substrates for glycolysis, TK controls the supply of ribose-5-phosphate 

(R5P), essential for biosynthesis of nucleotides and nucleic acids, and catalyses the 

production of erythrulose-4-phosphate (E4P) which is utilised by microorganisms in 

the shikimate pathway for the biosynthesis of aromatic amino acids. 

Transketolase was first purified from Saccharomyces Cerevisiae [2] and requires 

divalent cations and thiamine diphosphate (ThDP) for its activity [3]. There is a high 

level of sequence identity between the TK proteins of different organisms with 

many residues displaying complete invariance [4]. A second TK encoding gene was 

identified in Escherichia Coli in 1993 [5], this gene was named tktB to distinguish it 

from tktA. tktA and tktB share high sequence identity (74%) but tktA encodes the 

major TK activity in E. coli. All future references to E. coli TK refer to tktA encoded 

transketolase. In all structures solved to date, TK exists as a homodimer with two 

identical active sites positioned at the interface between the subunits.  

The reaction catalysed by TK proceeds via a Ping Pong Bi Bi mechanism: two 

substrates are converted into two products as the ThDP cofactor within the enzyme 

active site shuttles between a free and a substrate modified intermediate state [6]. 
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The Ping Pong Bi Bi model describes a specific type of Bi Bi mechanism in which 

substrates and products are bound and released sequentially and the enzyme 

shuttles between a free and a substrate modified intermediate state (Figure 1.1). 

 

Figure 1.1 Kinetic Scheme of a Bi Bi Ping Pong Mechanism. In the Bi Bi Ping Pong model the enzyme shuttles 
between a free and a substrate modified intermediate state. In contrast to the standard Bi Bi model, 
substrates and products are bound and released sequentially in the Ping Pong model 

Enzymatic thiamine catalysis is recognised as proceeding through two intermediate 

states: the ylide of ThDP in which the C2 proton of the thiazolium ring is abstracted, 

and the 2-  hcarbanion which is formed following nucleophilic attack by the ylide C2 

on the donor substrate [6]. The h -carbanion is stabilised by the thiazolium ring 

which acts as an electron sink. Further stabilisation is provided by interconversion 

of the h -carbanion into a neutral enamine, creating a resonance hybrid. Following 

formation of the intermediate, the two carbon unit is transferred from the 

carbanion to the acceptor substrate forming a ketose with an extended carbon 

skeleton through nucleophilic attack. The ThDP in TK is bound in a V conformation 

which brings the 4-amino group of the pyrimidine ring into close proximity with the 

C2 carbon atom of the thiazolium ring, this conformation is essential for catalysis 

[7]. 

En
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P1 S2
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Broad substrate specificity, stereospecificity and stereoselectivity have made TK an 

attractive target for applications in organic synthesis [8]. The reversible reaction 

catalysed by TK in vivo has been utilised in a synthetic manner, but if the natural 

ketol donor is replaced with hydroxypyruvic acid (HPA), carbon dioxide is released 

as a by-product rendering the reaction irreversible and far more industrially useful 

(Figure 1.2 c). The industrial applicability of TK has been further adapted by 

engineering the protein sequence of the enzyme to improve attributes such as 

substrate specificity and enantioselectivity [9-11]. This thesis explores the potential 

of computational applications to direct and optimise the engineering of this enzyme 

towards even greater improvements.  

 

Figure 1.2 In vivo and In vitro reactions catalysed by transketolase. Reactions (a) and (b) occur in vivo in the 
non-oxidative branch of the pentose phosphate pathway and are reversible. (c) In vitro the ketol donor is 

generally replaced with b-HPA, rendering the reaction irreversible through elimination of CO2. Various 

aldehyde acceptors are accepted by TK but TK preferentially accepts a-hydroxylated aldehydes with the (R)-
configuration. 
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1.1 Transketolase structure and mechanism  

1.1.1 Transketolase structure  

The first transketolase structure was solved for yeast TK in 1992 [12] this was 

refined to 2Å in 1994 [13] (1TRK). Since then, several other transketolase structures 

have been solved for TK. The E. coli TK structure was solved in 1994 [14] (1QGD), 

Maize TK in 2003 [15] (1ITZ) and Leishmania Mexicana TK in 2004 [16] (1R9J). 

Several further yeast TK structures have also been solved in the quest to refine our 

functional understanding of this catalyst. These include Apo TK [17], D-ethrythrose-

mutants of TK [19] (1AYO) and several complexes of TK with ThDP analogues [20] 

(1TKA, 1TKB, 1TKC). More recently, E. coli TK structures were determined in 

covalent complexes with DX5P (2R8O) and DF6P (2R8P), and in non-covalent 

complex with DR5P (2R5N) [21]. 

The majority of detailed structural analysis and functional studies have been carried 

out on the yeast TK protein. Yeast and E. coli TK share a very high level of sequence 

identity and all homologous TK structures defined show near identical 

conformations of functional residue side chains. The vast majority of functional 

residues identified in yeast TK are 100% conserved in all TK proteins sequenced so 

far. We can therefore utilise the data and information gathered for yeast TK and 

apply it in our study of E. coli TK. Throughout this thesis, except where scientific 

evidence is based solely on yeast TK, numbering refers to E. coli TK and is based on 

the PDB structure 1QGD. Where yeast TK numbering is used, residues are 

underlined and numbering is based on the PDB structure 1TRK (in these situations 

E. coli numbering is also reported in brackets). Key functional residues are listed in 
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Table 1.1 together with the corresponding E. coli and yeast numbering for 

reference. 

In all TK structures solved to date, TK is a homodimer consisting of two subunits 

each of 70-74 kDa (Figure 1.3 a). ThDP binds along with the metal ion cofactor at 

the interface between these two subunits. Each subunit of TK is made up of three 

domains, the N-terminal domain or the PP domain, the middle domain or Pyr 

domain, and the C-terminal domain (Figure 1.3 b). Each of the domains is of h/  ̡

type and the PP and Pyr domains are structurally similar when superimposed upon 

each other. The following structural analysis of transketolase is based on the 

structure for E. coli TK [14], but could equally be applied to the structure of yeast TK 

due to the high degree of structural equivalence. 

The PP domain of E. coli includes residues 2-317 and comprises of a five stranded 

parallel ̡  sheet with several helices on either side and some on top of the sheet. 

The h /  ̡connection after the third strand contains a hairpin loop 187-191, this loop 

is involved in binding the cofactor and has been shown to be mobile in the apo-

transketolase of yeast [17]. In the holo-enzyme of yeast TK, Asp 192 (190) and Ile 

191 (189) are in contact with the metal ion and the cofactor. These interactions 

keep the hairpin in a closed conformation, enclosing the cofactor and shielding it 

from solvent [14]. 

The Pyr domain includes residues 318-527. This domain is made up of a parallel -̡

sheet of six strands. As mentioned above, the Pyr domain is structurally similar to 

the PP domain. The similarity between these two structural motifs is most 

pronounced in the last four h/  ̡units of the two domains. Like the PP domain, the 
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Pyr domain forms interactions with the THDP cofactor through the loops at the 

carboxy ends of the ̡-sheet [14]. 

The C-terminal domain of TK consists of a mixed -̡sheet with one antiparallel 

strand followed by four parallel strands. This domain is not involved in binding the 

ThDP cofactor and contributes less to the dimer interface interactions than do the 

other domains. Recent results [22] have demonstrated that the C-terminal domain 

is not essential for catalysis. The function of this domain remains unknown but it 

has been suggested that it may have a regulatory or a cellular localisation role. 

The interface between the subunits of TK consists of a buried region representing 

approximately 18% of the accessible surface area of one free monomer [13]. 

Interactions between the two equivalent PP domains consist of tight packing 

interactions between the equivalent helices that link -̡strands two and three and 

the equivalent helices that link strands three and four. The main interactions 

between the Pyr domains of each subunit are limited to the equivalent helices that 

link strands four and five of the Pyr ̡-sheet. This dimeric configuration positions the 

loops at the carboxy ends of the PP -̡sheet facing the loops at the carboxy ends of 

the Pyr ̡ -sheet of the other subunit. The region where these loops come together 

constructs the ThDP binding site and the active site of TK. 
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Figure 1.3 (a) E. coli transketolase homodimeric structure (1QGD) coloured by chain. (b) Chain A of E. coli 
transketolase coloured by domain. 

Chain B

Chain A

PP domain

PYR domain

C-terminal domain

a) 
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          TK Numbering   

Residue E. coli  S.cerevisiae   Proposed function 

His 26 30  Interacts with substrates 
His 66 69  Interacts with cofactor and substrates 
His 100 103  Interacts with substrates 
Gly 114 116  Interacts with ǇȅǊƛƳƛŘƛƴŜ ǊƛƴƎ όпΩ-NH2) 
Leu 116 118  LƴǘŜǊŀŎǘǎ ǿƛǘƘ ǇȅǊƛƳƛŘƛƴŜ ǊƛƴƎ όbоΩύ 
Asp 155 157  Metal ion ligand 
Asn 185 187  Metal ion ligand 
Ile 187 189  Metal ion ligand (main chain oxygen) 
Ile 189 191  Contact with metal ion and cofactor 

Asp 190 192  Contact with metal ion and cofactor 
His 261 263  Interacts with cofactor and substrates 
Arg 358 359  Interacts with phosphate of substrates 
Leu 382 383  Interacts with cofactor thiazolium ring 
Ser 385 386  Interacts with phosphate of substrates 
Val 409 Ile 416  Interacts with cofactor thiazolium ring 
Glu 411 418  tǊƻǘƻƴŀǘŜǎ bмΩ ƴƛǘǊƻƎŜƴ ǇȅǊƛƳƛŘƛƴŜ ǊƛƴƎ 
Phe 434 442  Interacts with pyrimidine ring 
Phe 437 445  Interacts with pyrimidine ring 
Tyr 440 448  Interacts with pyrimidine ring 
His 461 469  Interacts with phosphate of substrates 
Asp 469 477  Interacts with substrates 
His 473 481  Interacts with substrates 
Arg 520 528  Interacts with phosphate of substrates 

Table 1.1 Key functional residues identified in yeast and E. coli transketolase with corresponding numbering. 
All residues are conserved apart from Val 109 in E. coli TK, the equivalent of which is Ile 416 in yeast TK. 

1.1.2 Cofactor binding  

ThDP binds in a deep cleft at the interface of the two TK subunits. Bound ThDP is 

totally isolated from the surrounding solvent apart from the reactive C2 carbon 

atom of the thiazolium ring. Unlike the structure of free ThDP, the bound cofactor is 

strained into a V-conformation. This ōǊƛƴƎǎ ǘƘŜ ǇȅǊƛƳƛŘƛƴŜ ǊƛƴƎ пΩ-NH2 group into 

close proximity with the reactive C2 carbon and contributes to the catalytic 

mechanism of all ThDP dependent enzymes (Figure 1.4). 

Conserved E. coli TK residues His 66 and His 261 form hydrogen bonds with the 

diphosphate group of ThDP. Two oxygen atoms of diphosphate together with Asp 
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155, Asn 185 and the main chain oxygen of Ile 187 are ligands of Ca2+ and create 

further indirect interactions [14]. 

Whilst the diphosphate of ThDP forms interactions with one subunit of TK, the 

thiazolium and pyrimidine rings of the cofactor are bound in a cleft between the 

subunits. The thiazolium ring forms hydrophobic interactions with conserved 

residues Leu 116 and Ile 189. The C4 methyl group of the thiazolium ring interacts 

with the side chains of Leu 382 and Val 409 [14].  

The pyrimidine ring is stacked with the ring system of Phe 437 and forms further 

interactions with conserved residues Phe 434 and Tyr 440. Main chain atoms of Gly 

114 and Leu 116 form H-ōƻƴŘǎ ǿƛǘƘ ǘƘŜ ǇȅǊƛƳƛŘƛƴŜ ǊƛƴƎ пΩ-bIн ƎǊƻǳǇ ŀƴŘ ǘƘŜ bоΩ 

ƴƛǘǊƻƎŜƴ ŀǘƻƳ ǊŜǎǇŜŎǘƛǾŜƭȅΦ ¢ƘŜ bмΩ ƴƛǘǊƻƎŜƴ ŀǘƻƳ ƻŦ ǘƘŜ ǇȅǊƛƳƛŘƛƴŜ ǊƛƴƎ ŦƻǊƳǎ ŀ I-

bond with Glu 411 [14]. This interaction is very important in the molecular 

mechanism of enzymatic thiamine catalysis [23]. 



1 - Introduction 
 

23 
 

 

Figure 1.4 ThDP bound in one active site of E. coli TK with the Ca
2+

 metal ion. The active site is formed 
between the PP domain of chain A (blue) and the PYR domain of chain B (red). Interacting residues are 
labelled. 

1.1.3 Substrate binding and recognition  

The active site binding cleft of TK is a deep funnel leading towards the exposed 

reactive C2 of ThDP. Conserved loops make up the walls of this binding funnel. Two 

conserved arginine residues are positioned at the entrance to the binding funnel. 

The middle of the binding channel contains several conserved residues including 

Asp 469, Ser 385 and His 461. Towards the base of the binding cleft, near the 

thiazolium ring of ThDP, there is a cluster of histidine residues on one side and 

there are also several conserved hydrophobic residues [14]. 
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The crystal structure of the acceptor substrate, DE4P, bound in yeast TK gives 

insight into the residues involved in substrate binding and recognition [18]. The 

phosphate group of the acceptor substrate forms interactions with several 

conserved residues near the entrance of the binding funnel. Arg 359 (358), Arg 528 

(520), Ser 386 (385) and His 469 (461) form interactions with the substrate 

phosphate group. These interactions position the substrate in the binding channel 

in the correct orientation, the long side chains of the arginine residues may also 

provide some flexibility to allow the substrate to move towards the reactive C2 of 

ThDP [18]. Asp 477 (469) forms polar interactions with the C2-hydroxyl group of the 

substrate and the aldehyde oxygen atom is within H-bonding distance of His 30 (26) 

and His 263 (261) (Figure 1.5) [18]. 

In order to further elucidate the role played by the arginine and histidine residues 

at the entrance to the binding funnel, these residues have been subjected to site 

directed mutagenesis in yeast TK [18]. Substitution of residues Arg359 (358), 

Arg528 (520) and His469 (461) for alanine did not have a great effect on catalytic 

activity (residual catalytic activities were 31%, 17% and 77% respectively) but did 

increase Km values for donor substrate, and in particular acceptor substrates, 

significantly. Consistent with the crystal structure of DE4P bound in the TK active 

site, these results support a role for these residues in binding the phosphate group 

of substrates.  

The pattern of H-bonds formed by Asp 477 (469), His 30 (26) and His 263 (261) with 

the acceptor substrate is consistent with the enantiosensitivity TK displays towards 

D-threo configured donor substrates. Inversion of the stereocentres in the favoured 
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configuration would disrupt this H-bond network and reduce enzyme affinity for 

substrate. The potential of forming a H-bond with Asp 477 (469) also explains the 

preference for a-hydroxylated acceptor substrates. Replacement of Asp 477 (469) 

with alanine in yeast TK resulted in an enzyme with severely impaired catalytic 

activity [24]. Kcat/Km for this variant is reduced relative to wild type TK for D- -h

hydroxyaldehydes (DE4P, DR5P) and this reduction is equivalent to the reduction in 

Kcat/Km for the wild type enzyme with 2-deoxyaldoses or L- -hhydroxyaldehydes 

[24]. 

Yeast TK residues His 30 (26) and His 263 (261) have also been mutated to alanine 

[19]. These residues are within H-bonding distance to the carbonyl oxygen of the 

acceptor substrate and their mutation to alanine has a large effect on kcat [19]. 
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Figure 1.5 DE4P bound by yeast TK. The active site is formed at the interface of the PP domain of chain A 
(blue) and the PYR domain of chain B (red). Residues from both chains make key interactions with DE4P. 
Interacting residues are labelled with yeast TK numbering. Hydrogen bonds are displayed by yellow dashed 
lines. 

A cluster of histidine residues is located towards the base of the binding funnel 

close to the reactive C2 of ThDP. Based on the structures of TK and acceptor 

substrate (DE4P) bound TK, histidine residues His 69 (66) and His 103 (100) were 

predicted to form H-bonds with the C1-hydroxyl group of the donor sugar 

phosphate [18]. In support of this role, replacement of His 69 (66) or His 103 (100) 

with alanine had little effect on the Km values for acceptor substrates but 

significantly increased those of donor substrates [19, 25]. These mutants also 

displayed a significant decrease in catalytic activity. Although hydroxypyruvate is a 

donor substrate for TK, pyruvate is not. The recognition of the C1-hydroxyl group of 

the donor by these two histidine residues might explain this molecular selectivity. In 
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a crystal structure of the covalent enamine intermediate bound in yeast TK [7], His 

103 (100) formed a H-bond with the b-hydroxyl oxygen of the intermediate. The b-

hydroxyl oxygen also interacted with His 69 (66), indirectly through a water 

molecule. These interactions further support a role for His 69 (66) and His 103 (100) 

in discrimination between hydroxypyruvate and pyruvate. 

Recent structures determined of covalent intermediates in E. coli TK support the 

structural studies above and the conserved function of residues between yeast and 

E. coli TK [21]. DX5P and DF6P covalent intermediates adopted very similar 

extended conformations in the active site of E. coli TK, forming at least 11 well 

defined hydrogen bonds with the side chains of active site residues. The C1-

hydroxyl and C2-hydroxyl groups of both substrates formed interactions with His 

пто ŀƴŘ ǘƘŜ пΩ-amino group of the ThDP pyrimidine ring. The C1-hydroxyl group 

also formed a hydrogen bond with His 100. The C3-hydroxyl groups interact with 

the two histidine residues His 261 and His 26 and the C4-hydroxyl group interacts 

with Asp 469 and His 26 (Figure 1.6). Phosphate interactions were mediated by 

residues His 461, Ser 385 and Arg 358 with the phosphate group of DF6P slightly 

closer to these residues due to the longer carbon chain. The additional C5-hydroxyl 

group of DF6P interacts with Ser 385. 
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Figure 1.6 Structure of the covalent complex formed between X5P and ThDP in the active site of E. coli TK. 
The PP domain of chain A is coloured blue and the PYR domain of chain B is coloured red. Residues forming 
interactions with the complex are labelled. Hydrogen bonds are displayed by yellow dashed lines. 

1.1.4 Molecular mechanism of Transketolase  

Transketolase catalyses the transfer of a two carbon unit from a ketose donor to an 

aldose acceptor, the reaction proceeds through two major steps. In the first step, 

the donor substrate is cleaved to produce an aldose and a covalent intermediate, 

ThDP h -carbanion. The second step is initiated by nucleophilic attack by the -h

carbanion on the acceptor substrate, resulting in a ketose product with an 

extended carbon skeleton. This reaction mechanism, described in further detail 

bellow, was proposed by Schneider and Lindqvist (1993) [6] (Figure 1.1Figure 1.7). 
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Figure 1.7 Reaction mechanism of transketolase, reproduced from Biochemica et Biophysica Acta (1385 387-
398) with permission from author and publisher. B1 ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ пΩ-imino group of the pyrimidine ring; B2 
ǊŜǇǊŜǎŜƴǘǎ ŜƛǘƘŜǊ Iƛǎ пто ƻǊ ǘƘŜ пΩ-imino group of ThDP; B3 represents either His 26 or His 261. 

Prior to the first step in catalysis, the C2 carbon of the thiazolium ring must be 

deprotonated in order to create an ylide that can attack the donor substrate. 

Evidence suggests that the deprotonation of C2 is catalysed by the cofactor itself 

[23]. The transketolase molecule contributes to cofactor deprotonation by 

maintaining the V-ŎƻƴŦƻǊƳŀǘƛƻƴ ƻŦ ¢Ƙ5tΣ ǿƘƛŎƘ ōǊƛƴƎǎ ǘƘŜ пΩ-NH2 group into close 

ǇǊƻȄƛƳƛǘȅ ǿƛǘƘ ǘƘŜ /н ŎŀǊōƻƴΣ ŀƴŘ ǘƘǊƻǳƎƘ ǇǊƻǘƻƴŀǘƛƻƴ ƻŦ ǘƘŜ bмΩ ƴƛǘǊƻƎŜƴ ƻŦ ǘƘŜ 

pyrimidine rƛƴƎΦ ¢ƘŜ bмΩ ƴƛǘǊƻƎŜƴ ƛǎ ǇǊƻǘƻƴŀǘŜŘ ōȅ ŀ I-bond with Glu 411, this 

interaction alters the pYŀ ƻŦ ǘƘŜ пΩ-bIн ƎǊƻǳǇ ŀƴŘ ƭŜŀŘǎ ǘƻ ǘƘŜ ǇǊƻŘǳŎǘƛƻƴ ƻŦ ŀ пΩ-

imino group which is sufficiently basic to deprotonate the C2 carbon of the 

thiazolium ring [6]. 

Once the C2 carbon has been deprotonated, the carbanion formed attacks the 

carbonyl oxygen of the donor substrate to create a high energy intermediate. 

During covalent bond formation between ThDP and the donor substrate, a proton 
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donor is required to stabilise the negative charge forming at the carbonyl oxygen. 

Iƛǎ пто ŀƴŘ ǘƘŜ ŎƘŀǊƎŜŘ пΩ-imino group of ThDP are possible proton donors at this 

step in the reaction. While site directed mutagenesis of the His 481 (His 473) in 

yeast TK suggested a role in transition state stabilisation, the lack of conservation of 

ǘƘƛǎ ƘƛǎǘƛŘƛƴŜ ǊŜǎƛŘǳŜ ŀŎǊƻǎǎ ƻǘƘŜǊ ¢Y ŜƴȊȅƳŜǎ ǎǳƎƎŜǎǘǎ ǘƘŀǘ ǘƘŜ пΩ-imino group may 

be responsible for the majority of transition state stabilisation. 

The final steps in TK catalysis require an acid/base catalyst that can deprotonate the 

hydroxyl group of the substrate at C3, catalysing the cleavage that produces the -h

carbanion intermediate, and act as a proton donor to the carbonyl oxygen of the 

acceptor substrate as it is attacked by the -hcarbanion. Both His 26 and His 261 are 

within H-bonding distance from the C3-hydroxyl group of the reaction intermediate 

and the carbonyl oxygen of the acceptor substrate. Replacement in yeast of either 

of these residues by alanine severely impairs catalytic activity and they may act 

together as the acid/base catalyst in the reaction [19].  

Crystal structures of the covalent high energy intermediates formed with DX5P and 

DF6P in E. coli TK reveal a conformation in which the newly formed C2-Ch  bond is 

out-of-plane with the thiazolium ring by 25-30º (Figure 1.8) [21]. This strained 

conformation will be relieved upon product elimination conceivably providing the 

driving force for the reaction. Density functional theory (DFT) calculations 

supported the above out-of-plane conformation, demonstrating that this 

conformation is energetically favourable relative to a model with a co-planar C2-Ch  

bond [21]. No structural rearrangements were seen in the active site following 

intermediate formation, suggesting that the active site is poised for catalysis such 
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that the substrate binding energy and the enthalpic energy gain following covalent 

bond formation between ThDP and the donor substrate can be channelled directly 

into the formation of the high energy, strained intermediate. 

 

Figure 1.8 Covalent complex of X5P and ThDP isolated in the active site of E. coli TK. The strained angle of the 
out-of-plane C2-Ch  bond is displayed relative to the thiazolium ring of ThDP. 

1.2 Transketolase as a biocatalyst  

In vivo, trasketolase catalyses the transfer of a 2-carbon ketol unit from D-xylulose-

5-phosphate to D-ribose-5-phosphate, generating D-sedulose-7-phosphate and D-

glyceraldehyde-3-phosphate. The carbon-carbon bond formation catalysed by TK is 

both stereospecific and stereoselective, making this a very attractive enzyme for 

the industrial production of complex organic structures. Unlike traditional chemical 

methods for organic synthesis, enzymatic catalysis does not require complex 

protection and de-protection steps, additional advantages include greater chiral 

control and milder reaction conditions. 

25-30º
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The reversible reaction catalysed by TK in vivo has been utilised for industrial 

applications but the usefulness of the biocatalyst can be enhanced by replacing the 

D-xylulose-5-phosphate (X5P) ketol donor with -̡hydroxypyruvate (HPA). Use of 

HPA results in the elimination of CO2 thereby rendering the reaction irreversible 

[26].  

In addition to varying the ketol donor, much work has been carried out exploring 

the substrate specificity of TK for aldehyde acceptors. Although TK favours 

aldehydes containing an h-hydroxylated group in an (R)-configuration [27], 

specificity with respect to the aldehyde is relatively broad with both non-

phosphorylated and phosphorylated aldehydes of varying sizes being accepted [28]. 

Steric hindrance appears to impact on relative activity with cyclic aldehydes and 

aldehydes containing bulky groups displaying lower activities.  

The broad nature of aldehyde substrate specificity is advantageous for the 

application of TK in organic synthesis as it provides flexibility in the nature of 

structures that can be produced. The broad specificity also provides a good starting 

point for engineering TK to improve activity on non-natural substrates. 

Early work in the development of TK as a biocatalyst utilised commercially available 

S. cerevisiae TK, and spinach TK extracted from spinach leaves. These sources are 

readily available but do not offer the scale required for an industrial process. In 

1993, Hobbs et al developed an efficient and reliable source of TK by introducing 

the previously cloned E. coli TK gene fragment into a high copy number plasmid and 

transforming this into E. coli [29]. The resulting transformants overexpressed TK 

with superior specific activity to that obtained previously from E. coli TK. Evaluation 
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of the substrate specificity of E. coli TK demonstrated a similar profile to yeast TK 

and the same preference for h-hydroxylated aldehydes with an (R)-configuration 

[29]. An additional benefit of E. coli TK was its increased activity with HPA (60 U/mg 

protein) relative to yeast (8.6 U/mg protein) or spinach (2 U/mg protein) [1, 28, 30]. 

1.2.1 Use of Transketolase in enzymatic synt heses 

Transketolase has been used successfully in various organic syntheses of both 

natural and unnatural complex, chiral compounds. The compounds produced using 

transketolase are expensive and would require complex multi-step synthesis if 

produced using traditional chemical methods. Some of the compounds synthesised 

by transketolase cannot be produced chemically. 

In an early example, D-[1,2-13C2]-xylulose was produced from [2,3-13C2]-

hydroxypyruvate and D-glyceraldehyde using spinach transketolase [31]. The 

isotopic labelling of sugars is useful for the study of metabolism and structure. 

Introduction of two adjacent 13C labels is particularly useful due to 13C-13C coupling. 

Transketolase has also been utilised to produce glycosidase inhibitors fagomine [32] 

and 1,4-dideoxy-1,4-imino-D-arabinitol [33], which have applications as 

agrochemicals and therapeutic agents. 

Commercially available TK was used together with chemical steps to produce -hexo 

brevicamycin, a beetle pheromone with applications in pest control. In this example 

TK was used to convert a racemic mixture of 2-hydroxy butyraldehyde and HPA into 

the key tri-hydroxy ketone intermediate in the process [34]. 
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Production of expensive food additives has also utilised TK. Spinach TK was used to 

produce 6-deoxy-L-sorbose, a precursor for synthetic furaneol, an aromatic product 

with a caramel like flavour. In the above synthesis, serine glyoxylate amino 

transferase was used to prepare HPA and 4-deoxy-L-threose was obtained by 

microbial isomerisation of 4-deoxy-L-erythrulose [35]. 

Multi-enzyme approaches have been successfully applied to the production of 

sugars 4-deoxy-D-fructose 6-phosphate and D-xylulose 5-phosphate. In the first 

example, 4-deoxy-D-fructose 6-phosphate was synthesised in a process including 

four steps and two enzymatic reactions. Epoxide hydrolase was first used to obtain 

(3S)-1,1-Diethoxy-3,4-epoxybutane which was subsequently opened by inorganic 

phosphate to produce 2-deoxy-D-erythrose 4-phosphate. This aldehyde was then 

reacted with L-erythrulose in the presence of yeast TK to introduce the second 

chiral centre [36]. 

In the second example, D-xylulose-5-phosphate, a valuable substrate required for 

enzymatic assays, was prepared in gram quantities through a one-pot procedure 

incorporating fructose 1,6 bisphosphate aldolase followed by E. coli TK [37]. The 

aldolase was initially used to produce D-glyceraldehyde-3-phosphate and 

dihydroxyacetone phosphate (DHAP) through retro-aldolization of D-fructose-1,6-

bisphosphate. The D-glyceraldehyde-3-phosphate produced was then coupled with 

HPA by E. coli TK to produce X5P. Zimmermann et al also incorporated 

triosephosphate isomerase (TPI) to equilibrate the two products of the retro-

aldolization thereby increasing the overall yield. Thanks to recent advances in 
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synthesis [38], DHAP is now available as a starting point, opening up a new route to 

the synthesis of X5P using just TPI and TK [39].  

Finally, transketolase was utilised to catalyse the key asymmetric step in a process 

to produce N-hydroxypyrrolidine, a glucosidase inhibitor. In this synthesis TK was 

used to couple (+-)-3-O-benzylglyceraldehyde with HPA to yield 5-O-benzyl-D-

xylulose in multigram quantities [40]. 

1.2.2 Optimisation of process for industrial application  

To utilise TK in large scale industrial enzymatic syntheses, limitations in the process 

must be identified and overcome to ensure product purity and maximise yield and 

efficiency. Limitations in TK biocatalysis include stability of the enzyme (reactive -h

hydroxy aldehydes inactivate TK [41]), and product inhibition. More general process 

options also need to be optimised during process development to ensure maximum 

yield, minimum cost and scalability. 

One strategy to overcome the problem of substrate deactivation of TK is to 

minimise substrate concentration by carrying out the reaction in an enzyme 

membrane reactor. Applied to the production of L-erythrulose from GA and HPA 

this strategy was able to increase the half-life of TK from 5.6 hours (repetitive batch 

reactor) to 106 hours (enzyme membrane reactor). This improvement in stability 

resulted in an increase in space time yield from 28 g/L/d to 45 g/L/d [41]. 

An alternative approach to increasing enzyme stability is to immobilise the enzyme 

on a support. GA is believed to deactivate TK by forming Schiff bases with amino 

acid side chains on the surface of the enzyme. Formation of Schiff bases can alter 
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the three dimensional structure of proteins. Stabilisation of TK by immobilisation 

can be explained by the prevention of the formation of Schiff bases, or by rigidifying 

the three dimensional structure of TK. Applied to the production of L-erythrulose 

from GA and HPA, immobilisation of TK on commercially available supports 

(Amberlite XAD-7 and Eupergit C) increased the stability of TK by 80- and 100-fold 

respectively. Immobilisation was unable to prevent inactivation by oxidation but 

this could be reduced by the inclusion of a stabilising solute such as 

mercaptoethanol [42]. Immobilisation confers additional benefits on process 

productivity: allowing the enzyme to be retained in the bioreactor, extracted from 

the product stream, and/or reused. 

In situ product removal (ISPR) has been explored as a means to overcome 

limitations introduced by product inhibition. L-erythrulose was successfully 

removed using an immobilised phenylboronate resin, however there were also 

considerable levels of nonspecific substrate binding to the resin which reduced the 

actual yield. To overcome the problem of nonspecific binding, a fed batch system 

was utilised. The fed batch mode gave the added benefit of reducing the 

deactivation of TK by GA. The rate of deactivation of TK by substrate is much higher 

than by the synthesised product [41], therefore in practice the reduction in 

aldehyde toxicity overcame the benefits of product removal and negated the need 

for ISPR [43]. 

Work has also been carried out to explore more general process development 

strategies to optimise yield, cost and scalability. The synthesis of X5P using TK and 

TPI has been utilised as a model reaction to investigate the potential of 
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semiquantitative process screening, to speed up process development for 

multienzyme biocatalytic processes. This approach has the potential to reduce the 

number of process options that need to be screened, applied to the synthesis of 

X5P the strategy successfully identified new biocatalytic routes and processes for 

further investigation [44]. 

As an alternative to reducing the number of process options to screen, high-

through microwell based based methods can be used to screen multiple process 

options in parallel. For TK process characterisation a more efficient alternative to 

microwells has recently been developed in the form of an immobilised enzyme 

microreactor (IEMR). The microreactor developed is composed of a 25 cm long 

fused silica capillary with a 200 µm internal diameter. His-tagged TK is reversibly 

immobilised inside the capillary via Ni-NTA linkages. His-tagged TK is expected to be 

kinetically identical to un-tagged protein based on the location of the His tag and on 

previous kinetic characterisation. The reactor can be operated in stop flow or 

continuous flow mode and product is analysed by HPLC. For high throughput 

screening of different process options or different enzyme variants the IEMR has 

several advantages over traditional microwell approaches, these include reduction 

in reactant volume, enhanced productivity, reduced reaction time and increased 

reusability [45]. 

1.2.3 Transketolase enzyme engineering  

Although TK displays broad substrate specificity, non-natural aldehyde substrates 

are converted at far lower rates than the phosphorylated, -hhydroxylated natural 

substrates. The production of non-phosphorylated chiral products is one of the 



1 - Introduction 
 

38 
 

major advantages of TK over other enzymes such as aldolases, it would therefore be 

advantageous to increase the activity of TK on these non-natural substrates. 

In addition to process engineering, enzyme engineering can be applied to TK to 

further optimise the biocatalyst for industrial applications. The good structural and 

mechanistic understanding of TK and its broad substrate specificity make the wild 

type enzyme a good candidate for enzyme engineering. However, the two-

substrate mechanism of TK complicates engineering as any change can result in 

positive or detrimental effects to the binding of either substrate. In recent years TK 

has been engineered to improve its activity on non-phosphorylated and non-

hydroxylated  substrates. The enzyme has also been engineered to improve or 

reverse its stereoselectivity with these non-natural substrates. 

Early work on TK engineering focussed on improving activity in the model reaction 

of GA and HPA to produce L-erythrulose. Variants with up to 5-fold improvements 

in activity against GA were identified by screening a library of single point mutants 

generated by saturation mutagenesis of nineteen positions. Residues were selected 

for mutagenesis based on structural and phylogenetic criteria. Two sets were 

included: residues within 4 Å of bound substrates, and phylogenetically varied 

residues within 10 Å of TPP. Following the screen, twelve variants were identified 

with enhanced specific activity on GA relative to wild type TK. Six of the nineteen 

residue libraries yielded variants with improved activity.  

The greatest improvements in activity against GA were associated with variations at 

residues His 461, Arg 520 and Ala 29. His 461 and Arg 520 interact with the 

phosphate group of natural substrates, mutation of these residues could improve 
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GA accessibility to the active site by removing a charged group or by reducing the 

steric bulk around the entrance to the active site. The third position identified, Ala 

29, is harder to rationalise as it is in the active site second shell and is in direct 

contact with the terminal phosphate group of TPP. Overall, residues with high 

sequence entropy were more likely to confer enhanced activity on GA following 

mutagenesis. The important exceptions to this rule were the three residues known 

to interact with the phosphate group of natural substrates. Saturation libraries of 

His 461, Arg 358 and Arg 520 all yielded at least one mutant with increased specific 

activity on GA despite the low sequence entropy at these positions. Interestingly 

the most successful mutations were non-natural variants [9]. 

In addition to increasing activity on non-phosphorylated substrates it would be 

advantageous to extend the applicability of TK by enhancing activity on aliphatic, 

non-hydroxylated aldehydes. Typically, activity of wild type TK on these substrates 

is only 5%-35% of that for h -hydroxylated aldehydes such as GA. The active site 

variant libraries described above were screened for TK catalysed production of 1,3-

dihydroxypentan-2-one (DHP) using the aldehyde substrate propioanldehyde (PA).  

Twenty-six distinct mutants were identified with increased specific activity on PA 

relative to wild type. These variants represented eight of the nineteen residue 

libraries. Five of the eight libraries yielding enhanced activity on PA had been 

previously identified through screening for enhanced activity on GA. These included 

the group of residues which interacts with the phosphate group of natural 

substrates, Arg 358, His 461, and Arg 520. The phylogenetically variant residues in 

the active site second shell, Ala 29 and Asp 259, were also identified. A third group 
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of residues not previously identified yielded variants with the greatest increase in 

activity on PA. This group was made up of conserved residues His 26, Asp 469 and 

His 100. These residues form a pocket in the active site and directly interact with 

the hydroxyl group at C2 of erythrose-4-phosphate. The greatest increase in activity 

on PA was observed with D469T which demonstrated a 5-fold improvement in 

specific activity over wild type [10]. 

Variation of phylogenetically variant residues or those interacting with the 

phosphate group of natural substrates led to enhanced activity on both GA and PA 

[10, 46]. In contrast, mutation of hydroxyl interacting residues produced variants 

with enhanced substrate specificity for PA over GA. The D469Y mutant displayed 

the greatest substrate specificity, with a 64-fold higher activity on PA relative to GA 

[10]. 

Wild type TK catalyses the production of L-erythrulose from GA and HPA with 95% 

ee, but 3S-DHP is only produced in 58% ee using PA and HPA. To identify variants 

with increased stereoselectivity for the production of 3S-DHP, Smith et al screened 

the three variant libraries of residues that interact with the hydroxyl group of 

natural substrates, His 26, Asp 469 and His 100. Significant increases in 

stereoselectivity were obtained with the D469E variant which produced 3S-DHP in 

90% ee. Interestingly the majority of His 26 variants lead to the formation of 3R-

DHP and H26Y produced 3R-DHP in 88% ee [11]. 

This work was extended to establish the enantioselectivity of wild type TK and 

selected variants on linear aliphatic aldehydes of increasing length and cyclic 

aldehydes. Compared to wild type TK, D469E TK produced products in greater yields 
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for the longer chain and cyclic aliphatic aldehydes although yield did decrease as 

chain length increased. Although yields were lower, D469E displayed enhanced 

stereoselectivity with longer chain aldehydes and over 99% ee for cyclic aldehydes 

cyclopropanecarbaldehyde and cyclopentanecarbaldehyde. H26Y gave product with 

lower yields but the reversal of ee was maintained across all the aldehydes tested, 

with the highest ee noted for butanal at 92% [47]. 

Although work to date has been limited to single point variants and residues in 

close proximity to the active site, considerable success has been achieved in the 

engineering of TK. Activity on both non-phosphorylated and non-hydroxylated 

aldehydes has been improved by 5-fold relative to wild type, and enantioselectivity 

has also been improved for the non-natural substrates. Surprisingly, a single point 

mutation was also able to reverse the enantioselectivity of the enzyme. The 

variants identified further expand the potential applications of TK for industrial 

synthesis applications. However, there is significant potential to further engineer TK 

to the point where non-natural substrates convert at the same rate and with the 

same exquisite stereoselectivity as the natural substrates.  
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1.3 Current methods in enzyme engineering  

Directed evolution can be used to engineer the catalytic properties of enzymes and 

has been used successfully to modify properties such as specificity, selectivity and 

enantioselectivity. The general process of directed evolution can be broken down 

into three steps; generation of a variant library, screening for a desired property 

and selection of positive variants for the next cycle. Although most directed 

evolution experiments follow this overall process, there are many different ways to 

carry out each step. The main limitation in directed evolution is the size of the 

library that can be screened. Typically, libraries of 103 to 106 variants can be 

screened using high-throughput techniques and robotic equipment. In some cases a 

desired attribute can be linked to a growth advantage in bacteria, allowing 

significantly larger libraries (up to 109-13) to be screened. Unfortunately for most 

directed evolution experiments this cannot be applied and we are limited to 

libraries containing thousands rather than millions of variants. In some situations 

we are limited to even smaller libraries, for example where a suitable colorimetric 

or fluorogenic assay is not available. 

The limitation in the size of libraries means we can only sample a tiny fraction of the 

possible sequence space. A protein with 300 amino acids has 20300 distinct possible 

sequences so even with a large screening effort of 106 variants we can only sample 

a minute fraction of the potential sequence space. The strategy chosen to produce 

the variant library must therefore be selected very carefully in order to target the 

best section of sequence space for the desired property.  



1 - Introduction 
 

43 
 

1.3.1 Error -prone polymerase chain reaction  

The most commonly used method to produce a library is error-prone polymerase 

chain reaction (epPCR). Error-prone PCR involves the introduction of random 

copying errors through imperfect reaction conditions (e.g. by adding Mn2+ or Mg2+ 

to the PCR reaction mixture) usually with the aim of introducing approximately one 

mutation each time the gene is copied [48]. Such a technique applied to a 300 

amino acid protein will produce a library of 5,700 potential variants, easily 

screenable even accounting for the oversampling required. In such examples it is 

usually possible to find a variant with improved properties although several cycles 

may be required as multiple variations are usually needed to generate the required 

level of improvement in a particular property. Previous experiments have 

demonstrated that on average 30% - 50% of random mutations are deleterious, 

50% - 70% are neutral, and just 0.01% - 0.5% are beneficial [49]. In our example of a 

300 amino acid protein we could expect to find 1 ς 30 beneficial mutations in the 

5,700 variant library. 

Using epPCR the full length of the protein sequence can be probed; but the cycling 

nature of directed evolution, and the introduction of one change at a time, means 

that an evolutionary trajectory is entered once the first variant has been selected. 

This trajectory theoretically limits the potential optimal sequence that can be 

achieved. If all the individual variations that constitute an improved activity are 

independently beneficial and additive in nature then this is not a problem because 

all trajectories should arrive at the same optimal solution. Unfortunately, variation 
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at one site in a protein sequence often requires the simultaneous variation at 

another site to be beneficial. 

Following several rounds of selection directed evolution experiments often plateau 

with further rounds failing to generate improvements. This has been suggested to 

represent protein sequences becoming stuck on fitness peaks in sequence space. 

Usually this can be overcome by one or two rounds of selection for stabilising 

mutations, it is hypothesised that the accumulation of beneficial mutations 

gradually reduces stability until no further mutations can be tolerated [49]; 

introduction of stabilising mutations allows the protein to tolerate further 

mutations. We can envisage a situation where an incredibly beneficial variant is so 

destabilising that it cannot be introduced without the simultaneous introduction of 

a specific stabilising variation, which by itself may have no impact on the stability of 

the wild type sequence. In such a situation, it would be impossible to identify the 

beneficial variant even following pre-stabilisation of the protein fold.  

1.3.2 Saturation mutagenesis  

Another common method of library generation is saturation mutagenesis. This 

approach requires the selection of one, or a small number of sites in the protein 

sequence; randomised codons are then used in PCR primers to generate all the 

possible variants at the individual sites. Single site libraries created in this manner 

are small enough to allow the use of conventional GC or HPLC methods for 

screening and therefore allow selection for properties that are intractable with high 

throughput techniques. However, as more sites are added to the library, the size 

quickly becomes intractable to screening. Complete saturation at three sites would 
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create 7,999 potential variant sequences (including 57 single point mutants and 

1,083 double mutants), four sites results in approximately 1.6 x 105 possible 

sequences, representing the approximate upper limit even for high throughput 

screening techniques. Such a mutagenesis strategy generally requires structural 

information and a good understanding of the functionally important residues. Sites 

are normally selected based on their proximity to the active site and on their 

hypothesised role in specific elements of the reaction being catalysed. 

Saturation mutagenesis overcomes some of the issues which limit epPCR, allowing 

multiple amino acids to be varied simultaneously means we can identify 

combinations of variations that may be deleterious or neutral in isolation. Reetz et 

al identified multiple beneficial variants by saturated mutagenesis of three 

positions in the epoxide hydrolase enzyme from Aspergillus niger (ANEH), variants 

were screened for activity on a new substrate. 5000 variants were screened 

resulting in 26 unique hits. Twenty two (85%) of the resulting hits were triple 

mutants and four (15%) were double mutants; none were single mutants [50]. The 

authors did not create double and triple mutant cycles to investigate whether the 

multiple beneficial variants were synergistic or additive in nature but it is 

interesting that no single variants were identified by the screen. 

1.3.3 Limitations in enzyme engineering  

Many variations and combinations of the above methods have been used in 

directed evolution experiments. A further method, DNA shuffling, represents 

another technique used for library generation but this is not covered in detail here. 

For each enzyme engineering experiment a choice of technique is made in an effort 
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to maximise the proportion of beneficial variants in the limited library size. 

However, no one method has proved universally superior to the others and each 

has its own benefits and limitations. 

In examples where mutagenesis is focused on residues likely to confer beneficial 

properties, positions are usually selected based on their proximity to the active site. 

Where an attempt is made to introduce multiple mutations, such sites are often 

selected based on their proximity to each other [51]. Such a simple selection 

strategy illustrates the limitations of current enzyme engineering approaches. 

Enzyme properties such as substrate specificity are sometimes determined by sites 

distant from the active site. Hedstrom et al successfully engineered Trypsin serine 

protease to accept Chymotrypsin substrates, but to do so required mutation of 

ōƻǘƘ ǘƘŜ ōƛƴŘƛƴƎ ǇƻŎƪŜǘ ŀƴŘ ŘƛǎǘǊƛōǳǘŜŘ ǎǳǊŦŀŎŜ ƭƻƻǇǎ ǿƘƛŎƘ ŘƻƴΩǘ ƛƴǘŜǊŀŎǘ ŘƛǊŜŎǘƭȅ 

with the substrate. A particular residue (172) was identified as a determinant of 

substrate specificity through interaction with both the binding pocket residues and 

surface loops [52, 53]. Using proximity to the active site to select residues for 

mutagenesis, it would not be possible to engineer a Trypsin enzyme to accept 

Chymotrypsin substrates. 

Modern computational techniques such as structural modelling and statistical 

coupling analysis provide a new resource to refine our choice of enzyme residues to 

target in enzyme engineering experiments. In addition to supporting library design, 

structural modelling can be used to rationalise positive hits identified in a successful 

enzyme engineering campaign. This new information can be cycled around for 

further potential benefit in later rounds of design. Statistical coupling analysis has 
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the potential to identify relationships between residues that are not apparent from 

examination of the structure. Such information could lead to the production of 

multiple variant libraries that are not limited to a proximal shell around the active 

site. In the following sections these techniques are discussed in further detail. 
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1.4 Computational methods for enhanced of enzyme 

engineering  

1.4.1 Computational structural modelling  

Crystal structures provide a great deal of information that can be utilised in the 

generation of hypotheses on enzyme mechanism and to guide the design of variant 

libraries for enzyme engineering. Protein crystallisation does however have various 

limitations- the time required to produce crystals is often limiting; the nature of the 

crystallisation process renders it impossible to derive reactive structures that only 

exist transiently; this process also limits crystal structures to static structure 

solutions, crystal structures often fail to indicate the dynamic nature of a particular 

protein structure. Computational docking of ligands in protein active sites allows us 

to address some of the issues that limit crystal structures of proteins and extends 

the use of structure data. With a protein structure as a starting point, 

computational docking allows us to generate multiple structures representing the 

likely conformations of different ligands bound in the active site of the protein in a 

fraction of the time required to achieve this experimentally. We can also model the 

structures of intermediate, transient, structures within the protein active site. This 

would not be possible experimentally. Computational modelling has even been 

extended to design de novo functional enzymes, Baker et al have utilised 

computational enzyme design to produce both kemp elimination catalysts [54] and 

a Diels-Alderase [55]. 

Computational automated docking involves searching for a conformation of a ligand 

in an active site that has minimal energy. The energy of the ligand in the context of 
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the active site is calculated using a molecular mechanics forcefield with parameters 

for all the different types of interaction that contribute to the bound energy of the 

ligand. There are two main categories of automated docking methods: matching 

methods and docking simulation methods. In matching methods, a model of the 

active site is created and rigid ligands are docked into this model. Dock is a good 

example of an automated docking algorithm using a matching method. In contrast 

to matching methods, docking simulation methods involve exploration of flexible 

ligand translations and orientations until an ideal conformation is found within the 

protein active site. Docking simulation methods are more computationally intensive 

than matching methods but this is not a problem unless a large chemical database 

of lead compounds needs to be screened against an active site. Docking simulation 

methods allow the docking of a flexible ligand and the use of a more detailed 

molecular mechanics forcefield which can more accurately calculate the binding 

energy of the ligand. 

Although other programs such as DOCK are available for ligand-protein docking, 

Autodock is the best known example of a docking simulation method. This program 

couples a well optimised empirical molecular mechanics forcefield with an efficient 

search algorithm. These attributes, together with the fact that Autodock is freely 

available, have led to a good support network for this program and many 

publications utilising it. Docking simulation aims to identify the minimum energy 

binding conformation in a huge energy landscape, resulting in a very 

computationally intensive problem requiring sophisticated search algorithms to 

reduce the search space to a tractable size. Autodock (Version 3.0.5) uses a 
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Lamarckian genetic algorithm and an empirical free energy function to find the 

minimal energy binding conformation 

A genetic algorithm is a search technique that utilises the principles of biological 

evolution to find a solution which exhibits maximum fitness. In the genetic 

algorithm used by Autodock, the state of the ligand in the context of the protein is 

defined by a set of state variables which describe the translation, orientation and 

conformation of the ligand. Each state variable corresponds to a gene in the genetic 

algorithm. The state of the whole ligand corresponds to the genotype, and the 

atomic coordinates of the ligand correspond to the phenotype. Finally, the fitness 

of the ligand state is defined by the total interaction energy of the ligand with the 

protein. 

The genetic algorithm initiates with a random set of genotypes which makes up the 

population. Individuals with better fitness in the initial population are allowed to 

reproduce whereas others die. Reproduction involves the mating of random pairs 

of individuals, during this process crossover takes place with new individuals 

inheriting genes from either parent. Some of the offspring also undergo random 

mutation where one gene changes by a random amount. 

Autodock 3.0.5 combines a genetic algorithm with a local search method which 

performs energy minimisation. The genetic algorithm stage is a global search of the 

energy landscape and allows transitions over energy barriers which may separate 

energy valleys. The local search method uses the same forcefield as the genetic 

algorithm to make fine adjustments and find the energetic minimum within the 

energy trough. The step size of the local search method is adaptive, becoming 
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smaller in response to a series of consecutive successes. Following a local search 

the individual can be replaced by the result of the local search. As the local search is 

carried out at the phenotypic level, this is an example of an inverse mapping 

ŦǳƴŎǘƛƻƴΣ ŀ ƎŜƴƻǘȅǇŜ Ŏŀƴ ōŜ ŘŜǊƛǾŜŘ ŦǊƻƳ ŀ ƎƛǾŜƴ ǇƘŜƴƻǘȅǇŜΦ ¢ƘŜ ǘŜǊƳ ά[ŀƳŀǊŎƪƛŀƴ 

ƎŜƴŜǘƛŎ ŀƭƎƻǊƛǘƘƳέ ǊŜŦŜǊǎ ǘƻ WŜŀƴ .ŀǇǘƛǎǘŜ ŘŜ [ŀƳŀǊŎƪΩǎ ōŜƭƛŜŦ ǘƘŀǘ ǇƘŜƴƻǘȅǇƛŎ 

characteristics acǉǳƛǊŜŘ ŘǳǊƛƴƎ ŀƴ ƛƴŘƛǾƛŘǳŀƭΩǎ ƭƛŦŜǘƛƳŜ Ŏŀƴ ōŜŎƻƳŜ ƛƴƘŜǊƛǘŀōƭŜ ǘǊŀƛǘǎ 

[56]. 

The scoring function used by Autodock to represent fitness is based on an empirical 

free energy function that can reproduce experimentally derived binding constants 

of ligands. The energy function consists of five entropic terms which represent Van 

der Waals forces, H-bonding, electrostatic forces, entropy of the ligand and 

solvation. Coefficients for each of these terms have been determined using linear 

regression from a set of protein ligand complexes with known binding constants. 

Autodock utilises a fast grid based method for energy evaluation in which ligand-

protein pairwise interaction energies are precalculated and used as a look up table 

during the simulation. Summations are performed for all ligand (i) and protein (j) 

atom pairs as well as all ligand atom pairs three or more bonds apart (Equation 1.1). 

DG = DGvdw + DGHbond + DGelec + DGtor + DGsol 
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Equation 1.1 Energy function utilised by Autodock 3.0.5 calculations of binding energy. 
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The three terms that describe the interaction energies of atom pairs include a 

Lennard Jones 12-6 van der waals term, a directional 12-10 H-bonding term in 

which E(t) is a directional weight based on the angle between the H-bond donator 

and the H-bond acceptor atom, and a coulombic electrostatic potential with a 

distance cut off. Ligand binding is accompanied by unfavourable entropy as the 

ligands conformational degrees of freedom are reduced. This contribution to the 

total binding energy is proportional to the number of SP3 bonds in the ligand and is 

represented by Ntor. The grid based method for energy evaluation used by 

Autodock limits the choice of solvation terms to use as most of these methods are 

based on surface area calculations. Autodock uses the pairwise volume based 

method of Stouten et al, in which the percentage of volume around a ligand atom 

that is occupied by protein atoms is weighted against the atomic solvation 

parameter of the ligand atom [57]. This gives the desolvation energy contribution 

from the ligand atom upon binding. 

1.4.2 Statistical coupling analysis  

There are many examples of epistatic coupling within proteins. Signalling proteins 

such as GPCRs rely on information transfer between distant residues [58, 59], the 

exquisite specificity of antibodies generated through B-cell maturation is often 

determined by residues distant from the antigen binding site [60], co-operative 

binding of oxygen in haemoglobin is mediated by networks of interacting residues 

[61-64]. In all of these examples, energy transduction mechanisms have evolved 

which make possible the highly adapted functions of these varied proteins. 
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Identification of these interacting networks of residues could enable enhanced 

engineering of new properties into protein scaffolds. 

A new method termed Statistical Coupling Analysis (SCA) has been developed to 

identify epistatically coupled networks of residues [65]. SCA utilises evolutionary 

Řŀǘŀ ŎƻƴǘŀƛƴŜŘ ǿƛǘƘƛƴ ƳǳƭǘƛǇƭŜ ǎŜǉǳŜƴŎŜ ŀƭƛƎƴƳŜƴǘǎ όa{!Ωǎύ ǘƻ ƛŘŜƴǘƛŦȅ Ŏƻ-evolved 

positions within a protein sequence. The method is based on two hypotheses, firstly 

that without evolutionary constraint, the amino acids at a specific position in an 

MSA will approach their mean distribution in all proteins. Secondly, that functional 

coupling of two positions in a protein should mutually constrain their evolution. If 

two positions are functionally coupled, alteration of the distribution of amino acids 

at one site (by the removal of sequences from the MSA) should results in a change 

in the distribution of amino acids at the other site. Importantly, this does not 

require that the level of conservation change at the second site, just that the 

distribution of amino acids be altered [65]. 

In the first application of the SCA technique, Lockless et al applied the method to 

the identification of coupled sites within the PDZ domain, a small protein binding 

motif [65]. PDZ domains can be divided into two classes based on their target 

sequence specificity. The identity of the residue at position 76 in the PDZ domain is 

known to be an important determinant of this property. Lockless et al constructed a 

multiple sequence alignment consisting of 274 eukaryotic PDZ domains, including 4 

PDZ domains with known structures. This MSA was then perturbed by removing all 

the sequences apart from those with a histidine at position 76. In response to this 

perturbation, the distributions of amino acids at several other positions in the MSA 
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were found to be altered. These sites are statistically coupled to position 76. 

Positions identified included both sites in close proximity to position 76 and other 

surface residues which are involved in sequence recognition. Coupling to proximal 

cooperative surface sites can be explained by energy propagation through the 

bound substrate. A third, unexpected, class of residues were also identified by SCA; 

these sites were a long distance from position 76 and were found in the core or on 

the opposite surface of the PDZ domain. Although the mechanism and function of 

this coupling is unknown, pathways of sterically connected, coupled residues were 

identified that connect position 76 to these distant residues. These pathways may 

represent routes of signal transduction through the tertiary structure of the 

protein. Lockless et al went on to verify the coupling interactions identified through 

thermodynamic mutant cycle analysis. This verification demonstrated good 

correlation between the statistically coupled sites and the thermodynamically 

coupled sites including those both proximal and distant from position 76. 

Since this early demonstration of statistical coupling analysis, the technique has 

been applied to several different protein folds including G-protein coupled 

receptors, haemoglobin and serine proteases [66]. In these examples, Suel et al 

hypothesised that if networks of coupled residues exist and are conserved, 

perturbations at positions within the network should redundantly identify each 

other. In each of the examples above, Suel et al carried out global perturbation 

analysis and displayed the resulting statistical coupling energies on a matrix with 

perturbations represented by columns and positions represented by rows. Using 
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two-dimensional cluster analysis, global patterns of statistical coupling could be 

identified in the protein folds. 

Of particular interest is the analysis of statistical coupling in serine proteases. A 

multiple sequence alignment was constructed consisting of 616 chymotrypsin 

serine proteases. Global SCA was carried out involving 69 site specific 

perturbations. Iterative two-dimensional clustering of the resulting matrix 

identified two distinct clusters, each containing positions that demonstrate similar 

patterns of coupling. One of the clusters was found to encompass both the S1 

binding pocket and the surface loops known to determine substrate specificity. 

Residue 172 was also present in this cluster. Although distant from the active site 

and the binding pocket, SCA was able to identify positions known to determine 

substrate specificity. 

Substrate specificity of the transketolase enzyme has previously been modified 

using saturation mutagenesis. Improved specific activity towards non-natural 

substrates such as glycoaldehyde [9] and propionaldehyde [10] has been 

engineered into transketolase by targeting residues in close proximity to the TPP 

cofactor. Phylogenetic information was also used to select residues but in both 

cases no residues more than 10Å from the ThDP cofactor were modified. In the 

examples above, single point variant libraries were constructed and screened using 

a colorimetric assay or conventional HPLC. Although hits were identified for 

different non-natural substrates within these libraries, the screening process 

limited the number of residues that could be probed and multiple simultaneous 

mutations could not be assessed. Statistical coupling analysis was able to identify 
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sites in chymotrypsin that appear to have co-evolved to determine substrate 

specificity. Identification of such networks in the transketolase enzyme may allow 

screening to be directed towards areas of sequence space unidentifiable by 

traditional structure and phylogeny directed selection methods. 
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1.5 Conclusions 

The natural activity of transketolase can be applied to many applications where 

regio- and stereo-specific carbon-carbon bonds need to be created. This activity is 

hugely sort after in the synthesis of fine chemicals and pharmaceuticals. In addition 

to the added specificity afforded by transketolase over more traditional chemical 

processes, the use of a biocatalyst reduces the need for harsh reaction conditions, 

organic solvents, and multistep processes. To date, all biotransformations using 

transketolase have used the wild type molecule, an enzyme which has evolved over 

millions of years to catalyse two specific reactions in vivo. Through protein 

engineering, the tools exist to tailor-make transketolase variants with improved 

properties desirable to the fine chemical and pharmaceutical industries. 

Arguably the most powerful method in enzyme engineering is directed evolution. 

However, limitations in library size impose limits on the sequence space that can be 

searched using this technique. Effort is being made to reduce these size limitations 

through advancements in high throughput screening and improved ligation steps. 

But, as long as there is any limit at all in library size, it will be necessary to target the 

sequence space to be searched to areas most likely to lead to functional 

improvements. Various strategies can be adopted to select residues to target; from 

simple spatial constraints to more complex phylogenetic strategies, such as 

common ancestor rebuilding. We can also take a rational approach to choose 

changes that are likely to improve characteristics. Most of these selection methods 

utilise one branch of knowledge and data. Here we attempt to utilise sophisticated 

computational techniques to merge information sources, creating a more 
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sophisticated knowledge base that can be used to direct the creation of more 

intelligent variant libraries. 

Crystal structures of proteins represent one of the richest data sources available to 

us as enzyme engineers. But, these structures are limited to long-lived, static 

targets through the nature of crystallisation. Our understanding of the nature of 

non-covalent interatomic interactions and data from ligand binding experiments 

allow us to computationally model the energy landscape of substrate-protein 

interactions, and predict conformations in which substrates are likely to bind. This 

extends our understanding of function and structure beyond what is possible with 

X-ray crystallography alone. Computational docking of substrates can identify 

residues directly involved in substrate interactions as well as rationalising the 

results from previous library screens. 

The second great data source available to protein engineers is the vast, ever 

growing, collection of sequence data. Using statistical coupling analysis we can 

delve into this data and discover energetic coupling between sites within proteins. 

The true power of this technique becomes apparent when the networks of 

energetic coupling are superimposed onto the three-dimensional structure of the 

protein. Using the results from computational docking of substrates together with 

the knowledge of coupled networks of sites in the protein structure we can start to 

target our variant library very efficiently. 

Structural and sequence data represents the culmination of a 3.5 billion year 

experiment in evolution. It is evolution which ties each of these data sets 

inextricably together. Random mutation of sequence affects the structure of 
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proteins, altering the chemical properties of active sites, leading to changes in the 

function of enzymes. These changes in enzyme function drive evolution. Only when 

each class of data is viewed in the context of the others does its true potential 

become apparent. Using the most modern computational methods, we hope to 

develop rich, combinatorial, information which can help direct the production of 

variant libraries to those regions which hold the most potential for improved 

activities. 
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2 

 

2.1 Introduction  

The carbon-carbon bond forming ability of TK, along with its broad substrate 

specificity, makes it very attractive as a biocatalyst in industrial organic synthesis [8, 

39, 67].  If the ketol donor in the reaction is replaced by hydroxypyruvic acid (HPA) 

the reaction is rendered irreversible by the release of carbon dioxide .  The use of 

a-hydroxyaldehydes as acceptors together with HPA as the ketol donor allows the 

creation of enantiomerically pure chiral triols.  The potential for producing non-

phosphorylated products simplifies their isolation and avoids the requirement to 

remove phosphate from the product [8, 67]. The TK enzyme from E. coli is a 

preferable biocatalyst to that from yeast due to the higher specific activity of E. coli 

TK towards HPA [68].  Therefore, it is useful to establish that the structural and 

mechanistic information gained for yeast TK is equally applicable to TK from E. coli, 

for which there is also a crystal structure available [14].  Considerable mechanistic 

detail has been obtained for S. cerevisiae and E. coli TK from crystal structures and 

NMR experiments [7, 18, 21]. Crystal structures have been obtained for the DE4P 

acceptor substrate bound to the yeast-TK active-site [18], and also for the enamine 

intermediate formed upon reaction of the yeast enzyme with the DX5P donor 

substrate [7].  More recently, E. coli TK structures were obtained in covalent 

complexes with DF6P (2R8P.pdb) and DX5P (2R8O.pdb) prior to enamine formation, 

as well as a non-covalent complex with the cyclic form of DR5P (2R5N) [21].   
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Despite these impressive structural studies, there is still little information regarding 

the mode of binding for the donor substrate before it reacts to form the covalent 

complex and subsequent enamine intermediate, or for the aldehyde acceptor 

binding in the presence of the enamine intermediate.  While crystal structures offer 

valuable insights into how ligands interact with protein binding-pockets, the binding 

of enzyme substrates is more challenging as the substrate will usually only bind 

transiently in the correct conformation before reaction occurs.  Notably, for the 

crystal structure of DE4P bound to the TK active-site [18], the original aim was to 

solve the structure with DF6P, but the electron density of the resulting structure 

revealed that the donor substrate had been cleaved into DE4P by TK during the 

crystal formation process.  This exemplifies the difficulties in obtaining structures of 

substrates bound in active sites. 

There is considerable interest in the further development of TK as an efficient 

biocatalyst, with rational mutagenesis and directed evolution approaches 

previously having resulted in mutants with altered or improved activity [9], 

substrate specificity [10, 69] and enantioselectivity [11].  However, further protein 

engineering to accept an even broader range of substrates would benefit from 

methods to rationalise the behaviour of existing mutants in structural terms, and to 

understand how non-natural substrates bind to the active site of this enzyme.  

Unlike DE4P, many of the non-natural aldehyde acceptor substrates so far 

examined for biocatalysis with TK, do not contain a phosphate group or an h-

hydroxyl group, which are both known to have an important role in substrate 

recognition [18].  Furthermore, the engineering of TK variants that are less 



2 ς Computational substrate docking 
 

62 
 

susceptible to substrate or product inhibition will require a better understanding of 

the roles played by various residues within the enzyme active-site.   

Automated computational docking presents an alternative and complementary 

means to x-ray crystallography for probing the binding of reactive substrates in 

short-lived conformations, and also for studying the many non-natural substrates 

and products, for which crystallography would be time-consuming.  Computational 

automated docking involves searching for the conformation of a ligand bound 

within in an enzyme active-site that has minimal energy.  AutoDock is the best 

known example of a docking simulation method in which the active site is created 

and ligands are docked into an enzyme active-site model with an accurate 

calculation of the binding energy. Flexible ligand translations and orientations are 

explored until an ideal conformation is found within the protein active site [70].  

The observation that very little structural change occurs in the TK active site upon 

formation of covalent complexes with substrates [21], suggests that it would be an 

excellent system for docking different substrate complexes without requiring the 

modelling of amino-acid sidechains for induced fit. 

Here we show that automated docking can produce accurate models of substrates 

bound in the active site of TK.  The accuracy of our results is demonstrated by 

comparison of a computationally derived structure with the crystal structure of 

DE4P in yeast TK.  Further validation is provided by a correlation of experimentally 

derived Km values for yeast TK, with those calculated from computationally derived 

docking energies in AutoDock.  Having demonstrated the accuracy of the approach 

we explored the differences and similarities between the binding of DE4P in the 
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active-sites of E. coli TK and yeast TK, and the impact this may have on function.  

We then examined the binding of natural and non-natural substrates in E. coli TK in 

non-covalently associated complexes that are too reactive to be obtained by 

crystallography.  We also discuss the implications on the potential nucleophilic 

attack of the deprotonated ThDP cofactor upon the ketol substrate at an unusual 

Bergi-Dunitz angle, and also the mechanism for ring opening of the cyclic form of D-

ribose-5-phosphate.  These results will have a significant bearing on attempts to 

further engineer TK as a biocatalyst for organic synthesis, as well as generating 

useful hypotheses for future experimental studies to understand the enzyme 

mechanism of TK. 
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2.2 Materials and methods  

2.2.1 AutoDock 3.0.5  

The open source AutoDock software version 3.0.5 was used for all the automated 

docking reported.  AutoDock combines a Lamarckian Genetic algorithm with an 

empirical free energy function to obtain ligand docked conformations [70].  

Substrate docking models were obtained using the E. coli TK structure 1qgd.pdb 

with a cubic grid in the active site of sides 80 Å. Defaults were used for docking each 

substrate except for the following: the maximum number of energy evaluations was 

increased to 1 million, the number of genetic algorithm runs was increased from 10 

to 200, and the grid spacing used was 0.375 Å.  AutoDock performed a cluster 

analysis to each final conformation obtained from the 200 GA runs such that two 

conformations with an RMSD less than 0.5 Å are stored in the same cluster.  

Clusters are output in ranked order of increasing energy following completion of 

analysis.  Manual visual analysis of docked conformations and further analysis of 

the docked conformations was carried out with Pymol and Ligplot. 

2.2.2 Docking of D-erythrose 4 -phosphate in yeast TK  

D-erythrose 4-phosphate (DE4P) was removed from the yeast TK PDB file 1NGS.  

AutoDock was used to re-dock the substrate back into the binding site.  Grid centre 

and size used for AutoDock run: (-12.645, 56.02, 19.419) 80 Åx80 Åx80 Å. 

2.2.3 Docking of D-erythrose 4 -phosphate in E. coli TK 

DE4P was docked into the binding site of E. coli TK (1QGD).  Grid centre and size 

used for AutoDock run: (-10.6, 27.6, 36.4) 80 Åx80 Åx80 Å. 
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2.2.4 Creation of a model of the ThDP -enamine i ntermediate in E. 

coli  TK 

The ThDP-enamine intermediate was docked into E. coli TK (1QGD).  Grid centre 

and size for AutoDock run: (-10.0, 28.1, 36.0) 80 Åx80 Åx80 Å. 

2.2.5 Docking DE4P and glycolaldehyde in ThDP -enamine 

complexed forms of yeast and E. coli TK 

DE4P was docked into the yeast ThDP-enamine-TK complex (1GPU) and in the 

modelled E. coli ThDP-enamine-TK complex.  Glycolaldehyde (GA) was docked into 

the modelled E. coli ThDP-enamine-TK complex.  Grid centres and sizes were (-6.6, 

56.7, 18.4) 60 Åx60 Åx60 Å for DE4P in yeast ThDP-enamine-TK, and (-11.4, 26.3, 

36.4) 60 Åx60 Åx60 Å for DE4P and GA in E. coli ThDP-enamine-TK. 

2.2.6 Docking of n atural and non -natural aldehyde  substrates into 

E. coli TK 

PDB files for the ten TK substrates for which there are published Km values, and also 

fluoropyruvate, found to be a potential inhibitor (unpublished data), were 

generated using the Dundee PRODRG server [71].  Each substrate was docked into 

the active site of E. coli TK.  Preliminary docking identified two docking regions 

within the binding funnel of E. coli TK for some of these substrates.  Grid sizes and 

positions were altered to obtain docked conformations for each substrate in the 

binding region closest to the ThDP cofactor.  For some substrates the grid centres 

ǿŜǊŜ ŀŘŀǇǘŜŘ ǘƻ ŀǾƻƛŘ ƛƴŀŎŎŜǎǎƛōƭŜ ǇƻŎƪŜǘ άǘǊŀǇǎέ ǿƛǘƘƛƴ ǘƘŜ ǇǊƻǘŜƛƴΦ  DǊƛŘ ŎŜƴǘǊŜǎ 

and sizes were as follows (grid centres in brackets): 
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Hydroxypyruvate:    (-15.991 21.945 37.096) 60 Å x 60 Å x 60 Å 
Acetaldehyde:     (-18.344 24.016 40.547) 60 Å x 60 Å x 60 Å 
D-erythrose 4-phosphate:   (-18.344 24.016 40.547) 40 Å x 40 Å x 40 Å 
D-erythrose:     (-18.344 24.016 40.547) 40 Å x 40 Å x 40 Å 
D-glyceraldehyde 3-phosphate:  (-10.586 27.153 35.586) 80 Å x 80 Å x 80 Å 
D-glyceraldehyde:    (-18.344 24.016 40.547) 40 Å x 40 Å x 40 Å 
D-ribose 5-phosphate:    (-10.586 27.153 35.586) 80 Å x 80 Å x 80 Å 
D-ribose:     (-10.586 27.153 35.586) 80 Å x 80 Å x 80 Å 
Glycolaldehyde:    (-15.991 21.945 37.096) 60 Å x 60 Å x 60 Å 
Xylulose 5-phosphate:    (-10.586 27.153 35.586) 80 Å x 80 Å x 80 Å 
Fluoropyruvate:   (-15.991 21.945 37.096) 60 Å x 60 Å x 60 Å 

 

Docking energies (DG) were converted to a Km values using DG = -RT.ln(Km), where R 

is the gas constant and T is the temperature in Kelvin. 

2.2.7 PyMol Molecular Graphics System  

All visualisations of docked conformations were produced using PyMol, available 

from http://www.pymol.org [72]. 
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2.3 Results and discussion 

2.3.1 Automated docking of D -erythrose -4-phosphate in the active 

site of yeast TK 

Nilsson et al (1997) previously solved the crystal structure for a substrate protein 

complex of DE4P bound in the active site of yeast TK [18].  The original aim of their 

crystallisation was to solve the structure with DF6P but the electron density of the 

resulting structure would not fit a six-carbon chain and the conclusion was drawn 

that the donor substrate had been cleaved into DE4P by TK during the long period 

necessary for crystal formation.  This cleavage would also yield the a,b-

dihydroxyethyl thiamine diphosphate intermediate but this would degrade in a few 

hours into ThDP and glycolaldehyde explaining the lack of an intermediate in the 

electron density map. 

To assess the accuracy and potential of automated computational docking on the 

substrates of TK we initially docked DE4P into the empty active site of yeast holo-

TK, to recreate the substrate-holoenzyme complex.  AutoDock accurately predicts 

the binding conformation of DE4P producing a docked structure within 1.65 Å 

RMSD of the crystal structure (Figure 2.1).  The hydrogen bonding network of the 

docked substrate is accurately predicted by AutoDock, supporting the role and 

evolution of this network in determining the stereospecificity of TK.  In the crystal 

structure the C1 aldo carbon atom of the acceptor substrate is positioned 4.16 Å 

away from the reactive C2 carbon of the thiazolium ring of ThDP.  This distance is 

sufficient to allow the presence of an enamine intermediate in a reactive 

conformation with the acceptor substrate.  The computationally docked 
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conformation positioned the C1 aldo carbon 4.81 Å away from the thiazolium ring 

of ThDP.  Although AutoDock docked DE4P slightly further away from the ThDP 

reactive centre, it was still within an acceptable distance to react in the presence of 

the intermediate. 

The main discrepancy between the experimentally determined structure and that 

created by computational docking was the position of the phosphate group.  In the 

computational docking the phosphate group of DE4P was pulled closer to the side 

chains of the Arg 358, Arg 520, Ser 385 and His 461 residues (E. coli numbering) at 

the entrance to the binding funnel (by just over 1 Å).  This has the effect of pulling 

DE4P slightly out of the funnel away from the ThDP cofactor (Figure 2.1).  The 

interaction between the phosphate group and the positively charged arginine 

residues of yeast TK is strongly affected by the electrostatic interactions between 

these groups.  The force field of AutoDock includes a term to model electrostatic 

interactions but the discrepancy between the modelled and the crystal structures 

may be explained by errors in the electrostatic term of the forcefield.  While all of 

the thirty ligand-protein complexes used to calibrate the AutoDock forcefield 

included H-bond interactions, only a small proportion involved electrostatic 

interactions of explicitly charged groups [70].  Electrostatic interactions between 

these groups would also be strongly influenced by pH which may further explain the 

slight discrepancy.  However, the TK structure itself was resolved to 2.4 Å and so a 

1 Å shift is acceptable within error.  Despite the possible error in the modelling of 

phosphate binding, the results show that AutoDock is capable of reproducing 

accurate docked conformations of substrates in the active site of TK. 
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Figure 2.1 Comparison of D-erythrose-4-phosphate (DE4P) binding in yeast and E. coli transketolases.  E. coli 
TK residues are shown as blue sticks and the aligned yeast TK residues are shown as lines.  Three DE4P 
structures are compared: (magenta) crystal structure in yeast (1NGS); (yellow) docked into the uncomplexed 
E. coli TK structure (1QGD); (green) re-docked into the yeast TK structure (1NGS). 

2.3.2 Automated docking of D -erythrose -4-phosphate in the active 

site of E. coli TK 

The active sites of yeast and E. coli TK, including the orientation of conserved 

residues, are nearly identical.  For E. coli TK, structures are available in covalent 

complexes with DF6P (2R8P.pdb) and DX5P (2R8O.pdb), as well as a non-covalent 

complex with the cyclic form of DR5P (2R5N) [21].  However, no crystal structure 

exists for the non-covalent complex of E. coli TK with DE4P.  If E. coli TK binds DE4P 

in the same conformation as for yeast TK then mechanistic insights derived from 

studies of yeast TK could be used with confidence to infer equivalent mechanistic 

details in the E. coli protein.  This would be of great value as much of the work on 

the function of TK to date has been carried out on the yeast enzyme. 
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DE4P was docked into the active site of E. coli TK (1QGD) using AutoDock.  Many of 

the docked conformations predicted by AutoDock involved an inversion of the 

DE4P, with the phosphate group oriented towards the ThDP and the carbonyl active 

centre of DE4P pointing out of the active site in an un-reactive conformation.  This 

could be explained by the error in the handling of phosphate interactions.  Like the 

arginine residues at the entrance to the active site normally involved in phosphate 

binding, the ThDP molecule carries an explicit positive charge.  Hypothetically, the 

DE4P may actually be able to bind in this orientation and form an un-reactive 

inhibitory complex.  If this is not an artefact of computational docking it may 

therefore have implications for substrate inhibition of TK at high concentrations. 

AutoDock also docked DE4P in the reactive orientation in E. coli TK (Figure 2.1).  

This conformation is very similar to that of DE4P bound in yeast TK (compared in 

Figure 2.1).  The phosphate group is positioned close to the entrance of the active 

site and interacts with residues Arg 358, Arg 520, Ser 385 and His 461.  These 

interactions are equivalent to those maintaining the position of the DE4P 

phosphate group in yeast TK.  The carbon chain of DE4P extends down the active 

site of E. coli TK forming a hydrogen-bonding network with the side chains of 

several conserved residues.  The C3 hydroxyl group forms an interaction with the 

backbone oxygen of Gly 262 that is not seen in the yeast TK bound structure.  Like 

yeast TK, the conserved Asp 469 residue of the E. coli enzyme interacts with the C2 

hydroxyl group of DE4P but an additional interaction is formed through His 26.  The 

C1 aldo oxygen atom interacts with residues His 261 and His 26 in E. coli as 
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observed in yeast TK, to position the C1 aldo carbon at 4.89 Å away from the C2 

atom of the ThDP thiazolium ring. 

The general binding conformation for DE4P in E. coli TK is the same as that for yeast 

TK.  The minor differences in the hydrogen bonding network do not change the 

favoured stereospecificity of the recognition and these interactions could be 

transiently present in the yeast structure with only a small degree of dynamic 

movement.  The conformation of DE4P docked in E. coli TK supports the hypothesis 

that the conserved residues of the TK active sites of E. coli and yeast TK have the 

same roles in substrate binding. 

2.3.3 Modelling  the enamine intermediate in E. coli TK and docking 

of D-erythrose -4-phosphate into the yeast and E. coli TK-ThDP-

enamine complexes  

We have demonstrated the ability of AutoDock to accurately model the binding 

conformation of DE4P in yeast TK and shown that the same binding conformation is 

formed in E. coli TK.  However, in the TK catalysed reaction, DE4P cannot bind 

productively until an enamine intermediate has first been formed between the 

ThDP cofactor and the ketol donor substrate.  It is possible that the binding 

conformation of DE4P in the TK active site is different in the presence of this 

intermediate.  Due to the reactive nature of the intermediate, DE4P would not bind 

and exist in the presence of the enamine intermediate for long enough to obtain 

crystals for structural analysis.  Currently, the only way to solve the structure for 

DE4P bound in the presence of ThDP-enamine intermediate is to model this 

structure computationally.  In the yeast-TK crystal structure of the ThDP-enamine 
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intermediate there were no significant variations in the orientations or positions of 

active site residue side chains relative to the ThDP bound structure.  The ThDP-

enamine intermediate could therefore be confidently docked into the known E. coli 

holo-TK structure using AutoDock to obtain a model of the E. coli TK-ThDP-enamine 

complex. 

As seen in Figure 2.2, the complex obtained for E. coli TK-ThDP-enamine was nearly 

identical to the solved structure of the yeast TK-ThDP-enamine complex (1GPU) [7].  

All the major functional interactions were present in the modelled complex, 

including the Glu 411 (Glu пму ƛƴ ȅŜŀǎǘ ¢Yύ ƛƴǘŜǊŀŎǘƛƻƴ ǿƛǘƘ bмΩ ƻŦ ǘƘŜ ǇȅǊƛƳƛŘƛƴŜ 

ring [73].  The ketol donor derived enamine intermediate is co-ordinated by 

hydrogen bonds to the conserved E. coli histidine residues His 100 and His 473.  The 

only difference between the TK-enamine interactions of yeast and TK is that in the 

yeast-TK complex His 481 (His 473 in E. coli) interacts with both hydroxyl groups of 

the enamine whereas in the E. coli complex His 473 only interacts with the 

a-hydroxyl group.  Some other minor differences are present in the hydrogen-

bonding network of the di-phosphate group but none of these differences 

significantly alter the position of ThDP-enamine relative to the TK molecule (Figure 

2.2). 
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Figure 2.2 Comparison of the ThDP-enamine intermediate in yeast and E. coli transketolases.  The ThDP-
enamine intermediate in yeast TK (blue sticks) is from an available structure (1GPU), whereas that for E. coli 
TK was obtained by docking (green sticks) in 1QGD.  The bound calcium ion is shown as a green sphere. 

Following the creation of the E. coli TK-ThDP-enamine complex model, AutoDock 

was used to obtain docked conformations of DE4P in both the yeast (crystal 

structure) and the E. coli (modelled) TK-ThDP-enamine complexes.  In each case the 

DE4P molecule docked in the same conformations as previously observed in Figure 

2.1, in the absence of the enamine intermediate.  The hydrogen bonding 

interactions between the TK and DE4P observed in the absence of the enamine are 

also preserved along with the few differences between yeast and E. coli TK 

described above.  The DE4P carbonyl C1-atom is placed within 3.44 Å and 4.28 Å of 

the enamine a-carbon in the yeast TK and E. coli TK models respectively.  As well as 

positioning the carbonyl group of DE4P in close proximity to the a-carbon of the 

enamine, the hydrogen-bonding network described orientates the carbonyl group 




















































































































































































































