UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Development of a bone tissue-engineered construct to enhance new bone formation in revision total hip replacement

García Gareta, E.; (2012) Development of a bone tissue-engineered construct to enhance new bone formation in revision total hip replacement. Doctoral thesis, UCL (University College London). Green open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
12Mb

Abstract

The main issue associated with revision total hip replacements (rTHRs) is how to generate new bone and restore bone stock for fixation of the revision stem. Bone tissue engineering (BTE) seeks the generation of constructs ex vivo in order to replace damaged or lost bone. The aim of this thesis was to develop a bone tissue-engineered construct with a calcium-phosphate (CaP) coated porous metal scaffold seeded throughout its structure with mesenchymal stem cells (MSCs) in order to enhance new bone formation at rTHRs. The study had in vitro and in vivo phases. For the in vitro phase, CaP coatings by biomimetic and electrochemical methods on the surface of titanium and tantalum discs were investigated and seeded with MSCs under static culture conditions. Different coating methods produced different morphologies and compositions with biomimetic coatings enhancing MSCs growth while the electrochemical ones enhanced their osteogenic potential. An electrochemically CaP coated porous titanium cylinder was seeded with MSCs and dynamically cultured in a perfusion bioreactor, showing an increased MSCs proliferation and osteogenic differentiation and an even distribution of cells throughout the scaffolds compared to statically cultured constructs. Tissue-engineered constructs in the perfusion bioreactor were evaluated in vivo by implantation in the medial femoral condyle of sheep with and without gap. Their osseointegration and implant-bone fixation strength were compared to non tissue-engineered constructs. The results showed that the addition of MSCs to the scaffolds did not significantly increase osseointegration or implant-bone fixation strength. However, in the defects with gap the tissue-engineered constructs showed a higher implant-bone contact area and therefore higher forces were necessary to push the tissue-engineered implants out of the bone in the defects with gap than for the non tissue-engineered ones. In conclusion, BTE can be applied in order to develop constructs with a clinical application in rTHRs where a lack of bone stock is problematic.

Type:Thesis (Doctoral)
Title:Development of a bone tissue-engineered construct to enhance new bone formation in revision total hip replacement
Open access status:An open access version is available from UCL Discovery
Language:English
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Medical Sciences > Surgery and Interventional Science (Division of) > Institute of Orthopaedics and Musculoskeletal Science

View download statistics for this item

Archive Staff Only: edit this record