UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Semi-supervised feature learning from clinical text

Wang, Z; Shawe-Taylor, J; Shah, A; (2010) Semi-supervised feature learning from clinical text. Proceedings - 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010 462 - 466. 10.1109/BIBM.2010.5706610.

Full text not available from this repository.

Abstract

This paper is focused on the automated identification of the clinical free-text records that contain useful information (e.g. symptoms, modifiers, diagnosis, etc) of a certain disease. We introduce a novel semi-supervised machine learning algorithm to address this problem, by training the set covering machine in a bootstrapping procedure. The advantage of the proposed technique is that not only can it find the documents of interest more accurately than searching based on diagnostic codes, the features it learned could also be directly used as a knowledge representation of the given topic and to assist either further machine learning algorithms or manual post-processing and analysis. ©2010 IEEE.

Type:Article
Title:Semi-supervised feature learning from clinical text
DOI:10.1109/BIBM.2010.5706610
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record