UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Exploiting hierarchy in structural brain networks

Deligianni, F; Robinson, E; Sharp, D; Rueckert, D; Edwards, AD; Alexander, DC; (2011) Exploiting hierarchy in structural brain networks. Proceedings - International Symposium on Biomedical Imaging 871 - 874. 10.1109/ISBI.2011.5872542.

Full text not available from this repository.

Abstract

Whole-brain structural connectivity matrices extracted from Diffusion Weighted Images (DWI) provide a systematic way of representing anatomical brain networks. They are equivalent to weighted graphs that encode both the topology of the network as well as the strength of connection between each pair of region of interest (ROIs). Here, we exploit their hierarchical organization to infer probability of connection between pairs of ROIs. Firstly, we extract hierarchical graphs that best fit the data and we sample across them with a Markov Chain Monte Carlo (MCMC) algorithm to produce a consensus probability map of whether or not there is a connection. We apply our technique in a gender classification paradigm and we explore its effectiveness under different parcellation scenarios. Our results demonstrate that the proposed methodology improves classification when connectivity matrices are based on parcellations that do not confound their hierarchical structure. © 2011 IEEE.

Type:Article
Title:Exploiting hierarchy in structural brain networks
DOI:10.1109/ISBI.2011.5872542
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record