UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Exploiting hierarchy in structural brain networks

Deligianni, F; Robinson, E; Sharp, D; Edwards, AD; Rueckert, D; Alexander, DC; (2011) Exploiting hierarchy in structural brain networks. Proceedings - International Symposium on Biomedical Imaging pp. 871-874. 10.1109/ISBI.2011.5872542.

Full text not available from this repository.


Whole-brain structural connectivity matrices extracted from Diffusion Weighted Images (DWI) provide a systematic way of representing anatomical brain networks. They are equivalent to weighted graphs that encode both the topology of the network as well as the strength of connection between each pair of region of interest (ROIs). Here, we exploit their hierarchical organization to infer probability of connection between pairs of ROIs. Firstly, we extract hierarchical graphs that best fit the data and we sample across them with a Markov Chain Monte Carlo (MCMC) algorithm to produce a consensus probability map of whether or not there is a connection. We apply our technique in a gender classification paradigm and we explore its effectiveness under different parcellation scenarios. Our results demonstrate that the proposed methodology improves classification when connectivity matrices are based on parcellations that do not confound their hierarchical structure. © 2011 IEEE.

Type: Article
Title: Exploiting hierarchy in structural brain networks
DOI: 10.1109/ISBI.2011.5872542
UCL classification: UCL > School of Life and Medical Sciences
UCL > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Child Health
UCL > School of BEAMS
UCL > School of BEAMS > Faculty of Engineering Science
URI: http://discovery.ucl.ac.uk/id/eprint/1335037
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item