UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Kernel methods for detecting the direction of time series

Peters, J; Janzing, D; Gretton, A; Schölkopf, B; (2010) Kernel methods for detecting the direction of time series. In: (pp. pp. 57-66).

Full text not available from this repository.

Abstract

We propose two kernel based methods for detecting the time direction in empirical time series. First we apply a Support Vector Machine on the finite-dimensional distributions of the time series (classification method) by embedding these distributions into a Reproducing Kernel Hilbert Space. For the ARMA method we fit the observed data with an autoregressive moving average process and test whether the regression residuals are statistically independent of the past values. Whenever the dependence in one direction is significantly weaker than in the other we infer the former to be the true one. Both approaches were able to detect the direction of the true generating model for simulated data sets. We also applied our tests to a large number of real world time series. The ARMA method made a decision for a significant fraction of them, in which it was mostly correct, while the classification method did not perform as well, but still exceeded chance level. © 2010 Springer-Verlag Berlin Heidelberg.

Type: Proceedings paper
Title: Kernel methods for detecting the direction of time series
ISBN-13: 9783642010439
DOI: 10.1007/978-3-642-01044-6-5
URI: http://discovery.ucl.ac.uk/id/eprint/1334309
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item