UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Magnetothermoelectric response near quantum critical points

Bhaseen, MJ; Green, AG; Sondhi, SL; (2009) Magnetothermoelectric response near quantum critical points. Physical Review B , 79 (9) , Article 094502. 10.1103/PhysRevB.79.094502. Green open access

[thumbnail of 0811.0269v2.pdf]
Preview
PDF
0811.0269v2.pdf
Available under License : See the attached licence file.

Download (503kB)

Abstract

Following on from our previous work [M. J. Bhaseen , Phys. Rev. Lett. 98, 166801 (2007)] we examine the finite temperature magnetothermoelectric response in the vicinity of a quantum critical point (QCP). We begin with general scaling considerations relevant to an arbitrary QCP, either with or without Lorentz invariance, and in arbitrary dimension. In view of the broad connections to high-temperature superconductivity and cold atomic gases, we focus on the quantum critical fluctuations of the relativistic Landau-Ginzburg theory. This paradigmatic model arises in many contexts and describes the (particle-hole symmetric) superfluid-Mott insulator quantum phase transition in the Bose-Hubbard model. The application of a magnetic field opens up a wide range of physical observables, and we present a detailed overview of the charge and thermal transport and thermodynamic response. We combine several different approaches including the epsilon expansion and associated quantum Boltzmann equation, entropy drift, and arguments based on Lorentz invariance. The results differ markedly from the zero-field case, and we include an extended discussion of the finite thermal conductivity which emerges in the presence of a magnetic field. We derive an integral equation that governs its response and explore the crossover upon changing the magnetic field. This equation may be interpreted as a projection equation in the low-field limit, and clearly highlights the important role of collision invariants (or zero modes) in the hydrodynamic regime. Using an epsilon expansion around three dimensions, our analytic and numerical results interpolate between our previously published value and the exact limit of two-dimensional relativistic magnetohydrodynamics.

Type: Article
Title: Magnetothermoelectric response near quantum critical points
Open access status: An open access version is available from UCL Discovery
DOI: 10.1103/PhysRevB.79.094502
Publisher version: http://dx.doi.org/10.1103/PhysRevB.79.094502
Language: English
Additional information: © APS 2009
Keywords: Boltzmann Equation, Critical Points, Entropy, Fluctuations In Superconductors, Ginzburg-Landau Theory, High-Temperature Superconductors, Hubbard Model, Integral Equations, Magnetocaloric Effects, Magnetoelectric Effects, Metal-Insulator Transition, Thermal Conductivity, Thermoelectricity, Superconductor-Insulator Transition, Phase-Transitions, Irreversible-Processes, Reciprocal Relations, Magnetic-Field, Mott-Insulator, Electron-Gas, Superfluid, Renormalization, Conductivity
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology
URI: https://discovery.ucl.ac.uk/id/eprint/1333463
Downloads since deposit
133Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item