UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

An evaluation of penalised survival methods for developing prognostic models with rare events.

Ambler, G; Seaman, S; Omar, RZ; (2012) An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med , 31 (11-12) 1150 - 1161. 10.1002/sim.4371.

Full text not available from this repository.

Abstract

Prognostic models for survival outcomes are often developed by fitting standard survival regression models, such as the Cox proportional hazards model, to representative datasets. However, these models can be unreliable if the datasets contain few events, which may be the case if either the disease or the event of interest is rare. Specific problems include predictions that are too extreme, and poor discrimination between low-risk and high-risk patients. The objective of this paper is to evaluate three existing penalised methods that have been proposed to improve predictive accuracy. In particular, ridge, lasso and the garotte, which use penalised maximum likelihood to shrink coefficient estimates and in some cases omit predictors entirely, are assessed using simulated data derived from two clinical datasets. The predictions obtained using these methods are compared with those from Cox models fitted using standard maximum likelihood. The simulation results suggest that Cox models fitted using maximum likelihood can perform poorly when there are few events, and that significant improvements are possible by taking a penalised modelling approach. The ridge method generally performed the best, although lasso is recommended if variable selection is required.

Type: Article
Title: An evaluation of penalised survival methods for developing prognostic models with rare events.
Location: England
DOI: 10.1002/sim.4371
Language: English
Keywords: Carcinoma, Squamous Cell, Computer Simulation, Female, Heart Valve Prosthesis, Humans, Incidence, Likelihood Functions, London, Male, Penile Neoplasms, Prognosis, Prosthesis Failure, Survival Analysis
UCL classification: UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Statistical Science
URI: http://discovery.ucl.ac.uk/id/eprint/1330418
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item