Functional consequences of TGFB1 codon 10 polymorphisms in regulatory T cells and haematopoietic stem cell transplantation

M Berro1,2, E Arrieta-Bolaños*2,3, D Figueroa-Tentori2,3, JA Madrigal2,3, BE Shaw2,3,4.
1Hospital Universitario Austral, Buenos Aires, Argentina. 2Anthony Nolan Research Institute, London, UK. 3UCL Cancer Institute, London, UK. 4Royal Marsden Hospital, Surrey, UK.

INTRODUCTION
We have previously shown that the presence of a polymorphism at codon 10, nucleotide 29 T>C, in the TGFB1 gene in patients has a significant impact on the outcome of unrelated donor allogeneic stem cell transplantation by increasing non relapse mortality and overall mortality in individuals with a CC genotype. The biological significance of this polymorphism is not well understood, however the interaction between TGF-β1 and regulatory CD4+CD25+FOXP3+ T cells (Tregs) is well known.

MATERIALS AND METHODS
To investigate this further we analysed the activation phenotype of Tregs in terms of LAP-bound TGF-β1 membrane expression, active TGF-β1 secretion and the suppressive capability of these cells in correlation with TGFB1 codon 10 T/C genotype. We isolated Tregs and effector CD4 T cells by MiniMACS® technology (Miltenyi Biotec, Germany) from healthy donors bearing the 3 genotypes (2 C/C, 3 T/T and 3 T/C). Membrane LAP expression after polyclonal activation was measured at different time points by flow cytometry analysis. Similarly, we measured TGF-β1 in the supernatant of the activated Tregs by Luminex® technology (Luminex Corp., USA). Simultaneously, in a subset of samples, we studied Treg autologous suppression activity by radioactive thymidine incorporation.

RESULTS
We observed that LAP expression in CD4+/CD25+/FOXP3+ cells peaked between 24 and 48 hours (13-20%) and kept high levels up to 96 hours with similar kinetics between different genotypes (Figures 1-2). TGF-β1 secretion had a later peak between 96 and 216 hours (Figure 3). Compellingly, we found that Tregs from C/C individuals showed significantly higher suppression capability (Figure 4) (95%) compared to T/T (70%) cells (p=0.013).

CONCLUSIONS
In conclusion, we found a higher suppressive capability of Tregs in samples with a TGFB1 codon 10 C/C genotype, which may explain our observations of a worse transplant outcome in these individuals. We hypothesise that higher suppression could impair patients’ response to infection. We are currently conducting additional cellular and Q-PCR experiments in order to further clarify the effect of this polymorphism on TGF-β1. Moreover, we are also analysing the in vivo expression of LAP by Tregs in patients after an allogeneic-HSCT.

*esteban.arrieta.09@ucl.ac.uk / esteban.arrieta@anthonynolan.org