UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Information measures in distributed multitarget tracking

Uney, M; Clark, DE; Julier, SJ; (2011) Information measures in distributed multitarget tracking. In: Fusion 2011 - 14th International Conference on Information Fusion.

Full text not available from this repository.

Abstract

In this paper, we consider the role that different information measures play in the problem of decentralised multi-target tracking. In many sensor networks, it is not possible to maintain the full joint probability distribution and so suboptimal algorithms must be used. We use a distributed form of the Probability Hypothesis Density (PHD) filter based on a generalisation of covariance intersection known as exponential mixture densities (EMDs). However, EMD-based fusion must be actively controlled to optimise the relative weights placed on different information sources. We explore the performance consequences of using different information measures to optimise the update. By considering approaches that minimise absolute information (entropy and Rényi entropy) or equalise divergence (Kullback-Leibler Divergence and Rényi Divergence), we show that the divergence measures are both simpler and easier to work with. Furthermore, in our simulation scenario, the performance is very similar with all the information measures considered, suggesting that the simpler measures can be used. © 2011 IEEE.

Type:Proceedings paper
Title:Information measures in distributed multitarget tracking
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record