UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

KCNQ1 Channels Voltage Dependence through a Voltage-dependent Binding of the S4-S5 Linker to the Pore Domain

Choveau, FS; Rodriguez, N; Ali, FA; Labro, AJ; Rose, T; Dahimene, S; Boudin, H; ... Loussouarn, G; + view all (2011) KCNQ1 Channels Voltage Dependence through a Voltage-dependent Binding of the S4-S5 Linker to the Pore Domain. J BIOL CHEM , 286 (1) 707 - 716. 10.1074/jbc.M110.146324. Gold open access

Abstract

Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.

Type: Article
Title: KCNQ1 Channels Voltage Dependence through a Voltage-dependent Binding of the S4-S5 Linker to the Pore Domain
Open access status: An open access publication
DOI: 10.1074/jbc.M110.146324
Keywords: K+ CHANNEL, POTASSIUM CHANNEL, ACTIVATION GATE, SENSOR, PROTEINS, CONDUCTION, MOVEMENT, K(V)LQT1, KCNE1, STATE
UCL classification: UCL > School of Life and Medical Sciences
UCL > School of Life and Medical Sciences > Faculty of Life Sciences
URI: http://discovery.ucl.ac.uk/id/eprint/1325264
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item